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Preface to the Second Edition

The landscape of computer vision has undergone dramatic changes mainly
due to the introduction of machine learning (ML) techniques, including deep
learning, since the publication of the first edition 6 years ago. ML techniques
have made inroads into almost every corner of computer vision, provided
significant impacts, and established high-performance modules. The impact
has been so great that certain researchers call, for a joke, the post-introduction
period of ML as AD-CV era and the pre-introduction period as BC-CV era. It
was natural to cover these ML techniques in the AD-CV era, and the primal
purpose of this revision was, thus, to collect AD-CV topics.

On the other hand, the classic BC-CV methods are not well shared by the
younger generations. Especially, the development speed has been so rapid
and most of the presentations have been made in conference papers with page
limits. As a result, older BC-CV methods have often been neglected and for-
gotten in spite of their fundamental importance. The Master said,
Bernard de Chartres also said, “nani gigantum umeris insidentes.” The wis-
dom of mankind can only progress on the basis of what has been accumulated
so far. Otherwise, it will become a tower on sand, developing the same
methods over and over again, without any progress. To avoid this, I decided to
retain those old BC-CV techniques under the title “Traditional Approaches.”

I hope this book will contribute toward a prosperous development of the
computer vision community.

Redmond, WA, USA Katsushi Ikeuchi, Editor in Chief
Suita, Japan Yasuyuki Matsushita, Associate Editor in Chief
Tokyo, Japan Rei Kawakami, Assistant Editor in Chief
August 2021
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Preface to the First Edition

Computer vision is a field of computer science and engineering; its goal
is to make a computer that can see its outer world and understand what
is happening. As David Marr defined, computer vision is “an information
processing task that constructs efficient symbolic descriptions of the world
from images.” Computer vision aims to create an alternative for human visual
systems on computers.

Takeo Kanade says, “computer vision looks easy, but is difficult. But, it is
fun.” Computer vision looks easy because each human uses vision in daily
life without any effort. Even a new-born baby uses its vision capability to
recognize the mother. It is computationally difficult, however, because the
original outer world is made up of three dimensional objects, while those
projected on the retina or an image plane, are of only two dimensional images.
This dimensional reduction from 3D to 2D occurs along the projection from
the outer world to images. “Common sense” needs to be used to augment the
descriptions of the original 3D world from the 2D images. Computer vision is
fun, because we have to discover this common sense. This search for common
sense attracts the interest of vision researchers.

The origin of computer vision can be traced back to Lawrence Roberts’
research, “Machine Perception of Three-Dimensional Solids.” Later, this
line of research has been extended through Project MAC of MIT. Professor
Marvin Minski, the then director of Project MAC, initially believed that
computer vision could be solved as a summer project of an MIT graduate
student. His original estimation was wrong, and for more than 40 years we
have been investigating various aspects of computer vision.

This 40-year effort proved that computer vision is one of the fundamental
sciences, and the field is rich enough for researchers to devote their entire
research lives to it. This period also reveals that the field contains a wide
variety of topics from low-level optics to high-level recognition problems.
This richness and diversity were an important motivation for us to decide to
compile a reference book on computer vision.

Lawrence Roberts’ research contains all of the essential components of
the computer vision paradigm, which modern computer vision still follows:
homogeneous coordinate system to define the coordinates, cross operator for
edge detection, and object models represented as a combination of edges.
David Marr defines his paradigm of computer vision: shape-from-x low-level
vision, interpolation and fusion of such fragmental representations, 2-1/2D
viewer-centered representation as the result of interpolation and fusion,
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viii Preface to the First Edition

and 3D object-centered representation. Roughly, this reference guide follows
these paradigms, and defines the sections accordingly.

The online version of the reference guide is intended to be developed
continuously, both by the updates of existing entries and by the addition
of new entries. In this way, it will provide the resources to help both
vision researchers and newcomers to the field be on the same page with the
continuing and exciting developments in computer vision.

This reference guide has been completed through a team effort. We are
most grateful for all the contributors and section editors who have made this
project possible. Our special thanks go to Ms. Neha Thapa and other Springer
colleagues for their assistance in the development and editing of this reference
guide.

March 2014 Katsushi Ikeuchi, Editor in Chief
Yasuyuki Matsushita, Associate Editor in Chief

Rei Kawakami, Assistant Editor in Chief
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Journal within the past decade.
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to imitate human dance. Int J Robot Res 26(8):829–844]. They succeeded
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from this line of work, including IEEE KS Fu Memorial Best Transaction
Paper Award and three RSJ Best Transaction Paper awards.
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Switzerland

S. C. Pont Industrial Design Engineering, Delft University of Technology,
Delft, The Netherlands
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Synonyms

Detection and localization; Event recognition

Definition

The goal of human action recognition is to tem-
porally or spatially localize the human action of
interest in video sequences. Temporal localiza-
tion (i.e., indicating the start and end frames of
the action in a video) is referred to as frame-level
detection. Spatial localization, which is more
challenging, means to identify the pixels within
each action frame that correspond to the action.
This setting is usually referred to as pixel-level
detection. In this chapter, we are using action,
activity, and event interchangeably.
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2 Action Recognition in Real-World Videos

Background

Three main ingredients of action research are
visual features, machine learning methodology,
and datasets. Recent years have witnessed a
tremendous increase in research and development
in all these areas of research. Several new
visual features have been proposed which range
from handcrafted local and global features
and deeply learned visual features for action
recognition and detection. Almost all the machine
learning techniques have been applied to achieve
robust action classification. Most of the action
classifications methods gear around supervised
approach [1–3]. Since obtaining labels of videos
for the supervised approach is quite a time-
consuming and costly, several weakly supervised
[4–8] and unsupervised approaches [9–11] have
been proposed.

The availability of diverse and real-world
representative datasets plays a crucial role in
research and development in any field. Several
large scales, diverse, real-world representative
datasets have been introduced in recent years.
These datasets include videos from sports,
movies, daily lives, and person-environment
interaction videos [12–20].

In what follows, we provide a brief review
of some of the very important visual features
techniques, machine learning approaches to learn
action classifiers, and some of the recent action
datasets.

Visual Features for Action
Recognition

To recognize and localize human action in
videos, several recent visual features have been
proposed. Good visual features are invariant to
scale, rotation, affine transformation, brightness
changes, occlusion and camera motion, and
position. Overall, there are two types of features,
i.e., handcrafted features and features, learned
through deep networks. In handcrafted features,
there are further two categories. Local features
are extracted by the dense sampling of the videos
or finding interest points in frames, whereas

holistic features gather features that extract global
shape, structure, and contextual information of
the human body and make a 3D volume of
space-time. These features contain the human
pose information at a different time and spatial
location of the person in video frames. Deeply
learned features capture both local and global
information in the same framework.

Hand-Crafted Visual Features

Holistic Features Holistic representations
extract features from global regions (whole frame
or whole human body) which are invariant to the
cluttered background and appearance changes.
Yilmaz et al. [21] purpose space-time volume
(STV) to take space-time information of action.
SVT is generated by stacking the 2D object
contour in the image plane with respect to
time to make a space-time volume. Differential
geometric properties from STV are shown to be
the invariant viewpoint. Another technique of
getting motion information is through algorithm
optical flow which computes the direction of
motion on two consecutive frames. The shape
model presented in [22] learned a prototype tree
for action recognition.

Local Features In local representation,
spatiotemporal keypoints (corners, edges, etc.)
are detected in the video and descriptors made
over these key points are used to capture the
local motion information. Laptev et al. [23]
(called STIP) extended Harris corner detector
in space-time domain. They used a normalized
spatiotemporal Laplacian operator to detected
events over temporal and spatial scales. Local
representation overcomes the problems in holistic
representation.

Spatiotemporal interest points capture infor-
mation for a short duration of time and hence
cannot capture long-term duration information.
Wang et al. [24] extract dense trajectory features
for capturing long-duration information. Feature
points are densely extracted on gird of pixels, and
these points are tracked in consecutive frames
to make dense trajectory. HOG (histograms of
oriented gradients), HOF (histograms of optical
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flow), and MBH (motion boundary histogram)
are computed along the trajectory to extract static
appearance information, local motion informa-
tion, and encode relative motion information,
respectively. This method is shown to perform
much better than STIP because trajectory cap-
tures the motion and dynamic information.

Deep Network-Based Features
With the resurgence of deep learning, several new
features are introduced for action recognition.
Below, we briefly explain some of the most used
deep features.

Two-Stream Convolutional Networks Simon-
yan et al. [25] proposed two-stream deep
networks for action recognition that have two
separate input streams (spatial, temporal). The
spatial stream uses information from still video
frames, while the temporal stream uses the dense
optical flow. Both streamed are fused to produce
the final output. Their model is inspired by the
two-streams hypothesis in which the human
visual cortex contains two paths: the ventral
stream (which performs object recognition) and
the dorsal stream (which recognizes motion).

3D ConvNets (C3D) Tran et al. [26] purpose
deep three-dimensional convolutional networks
(3D ConvNets) for learning of spatiotemporal
features and a simple linear classifier. They
showed good performance on different video
analysis tasks with these learner features.
Network architecture is as follow: it has eight
convolution layers, five pooling layers, followed
by two fully connected layers, and a softmax
output layer. Convolution kernels are of size 3 ×
3× 3, whereas the pooing kernels are of size 2 ×
2× 2 except for first pooling layer which has
1 × 2× 2. Finally, each fully connected layer has
4096 output units.

Inception-3D Carreira et al. [27] purpose a new
two-stream inflated 3D ConvNet called I3D in
which 2D ConvNet trained for image classifi-
cation is expanded to 3D ConvNet that extract
spatiotemporal feature from a video. They con-
vert 2D ConvNets that accurately work with 2D-

image classification models into a 3D model
by adding one additional dimension to 2D filter
and kernel. Resulted kernel and filters have an
additional temporal dimension where 2D – N ×
N filters converted into 3D – N × N × N. As
mentioned before, inspired by two-stream net-
works [25] for videos classification, Carreira et
al. [27] use two 3D-Streams; one for RGB and
other for optical flow. Both networks are trained
separately, and the results are averaged.

Multi-fiber Networks Chen et al. [28] pur-
posed multi-fiber networks architecture that com-
posed of separately connected multiple fibers
or lightweight 3D convolutional networks which
are independent of each other. In this way, a
complicated neural network is divided into a
group of different small networks. They increase
the model efficiency by reducing the number of
connections in the network. The number of con-
nections is reduced by slicing the conventional
complex residual unit into fixed separate parallel
paths (called fibers). They solve the information
blockage problem across the paths using fully
convolution layer at the beginning and end of
each unit and use a multiplexer that redirects
and amplifies features from all fibers. The paper
shows state-of-the-art action recognition accu-
racy with less computational time.

Action Datasets

In this section, we briefly review some of the
recent action detection datasets.

THUMOS-14
THOMOS-14 [20] contains videos of a large
number of human action classes. The dataset
contains a variety of actions including normal
daily life activity (brushing teeth) and sports
actions (golf swing). It contains a total of 18,394
video sequences. They have used the entire
UCF101 data for training, and testing is done
on 1579 videos that contain one or more action
instances in it.
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UCF-Crime
Sultani et al. [19] proposed a new anomaly
detection dataset named as UCF-Crime. The
UCF-Crime dataset contains untrimmed real-
world surveillance videos. It contains 13 real-
world anomalies, including abuse, arrest, arson,
assault, road accident, burglary, explosion,
fighting, robbery, shooting, stealing, shoplifting,
and vandalism. This dataset contains a total of
1900 video clips. The total duration of 1900 clips
is 128 h at 30 fps with 240 × 320 resolutions.
They use 800 normal and 810 anomalous videos
for training, and the remaining 150 normal and
140 anomalous videos are used for testing (Fig 1).

ActivityNet
ActivityNet [18] is a large-scale action dataset
that contains 203 activity classes like eating,
drinking, sport, exercise, and relaxing. This
dataset contains a total of 1900 video clips. The
total duration of 19,994 clips is 849 h at 30 fps
with 1280 × 720 resolutions. They have used
50% videos for training, 25% videos for testing,
and the remaining 25% videos for validation.

EPIC-Kitchens
The EPIC-Kitchens dataset [17] contains videos
of different kitchen actions. In these videos, the
camera is mounted on the face of the person.

Videos are taken from 32 different kitchens. The
dataset contains 819 different actions like a wash,
adjust heat, pour oil, and put the bottle. The total
duration of video clips is 55 h having 45 million
frames at 60 fps and 1920 × 1080 resolutions.
They split the dataset in which 80% videos are
used for training and the remaining 20% are used
for testing.

UT Egocentric
UT Egocentric dataset [16] contains four videos
of different action captured by a camera mounted
on the head of a person. The duration of these
videos are about 3–5 h long and are captured
in a natural and uncontrolled environment.
The actions include driving, eating, shopping,
cooking, and attending lectures. The total
duration of 4 clips is 17 h at 15 fps with 320×480
resolutions. In this dataset three videos are used
for training, and one video is used for testing.

Moments in Time
Moments in Time dataset [15] is generated by
MIT-IBM Watson AI Lab to help the vision
system to understand and recognize the action in
the videos. The dataset contains videos of people,
animals, objects, or natural phenomena. It con-
tains 339 action classes and one million labeled
3-s videos at 5fps. They generate a training set

Action Recognition in Real-World Videos, Fig. 1 Typical frames from some of the most popular action datasets
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of 802,264 videos having 500 to 5000 videos per
class. The test set of 67,800 videos has 200 videos
per class.

YouTube M8
YouTube M8 [14] was generated by Google
in 2016 which contains 6.1 million video ID
taken from YouTube and duration of video clips
are 350,000 h at 1fps. There are approximately
3862 classes in this dataset, and class labels
are machine-generated. In this dataset, a single
video has multiple labels, and average labels per
video are around three. The dataset contains pre-
computed audio and visual features from video
frames that are easily used to train machine learn-
ing models. Both feature and video-level labels
are available for download. They split videos into
three partitions, train 70%, validate 20%, and
test 10%. They want to make their dataset as
a baseline to evaluate the various classification
models using popular evaluation metrics.

Charades
Charades [13] is a very large temporal video
action dataset that is presented in ECCV 2016.
To make their dataset more realistic, they record
different indoor action videos by 267 unique
users according to predefined sentences. These
sentences are made from fixed vocabulary which
includes objects and actions of different kinds.
The dataset contains a total of 9848 annotated
videos of 157 different actions having a length
of 30s. The annotation contains both descriptions
of the video and temporal intervals of different
performing actions.

AVA Actions Dataset
Atomic visual actions (AVA) [12] is a densely
labeled video action dataset of untrimmed videos.
In this dataset, actions are labeled with respect
to both temporal and spatial locality and have 80
different atomic visual actions. Multiple labels on
single humans are annotated, resulting in 1.62M
of total dens labels. It contains 430 different video
clips having a duration of 15 min. Every person
is labeled with a bounding box and type of action
from its atomic visual action vocabulary.

Action Recognition Approaches

In what follows, we briefly review some of the
recent fully supervised, weakly supervised, and
unsupervised action recognition approaches.

Supervised Action Recognition
Supervised action recognition assumes the
availability of complete labels of all the classes
to be learned. Although, getting videos annotated
is quite a time-consuming and costly task, the
supervised action recognition methods have
much higher detection accuracy as compared to
unsupervised or weakly supervised approaches.

Jain et al. [1] presented that object encoding
improves the performance of action localization
and classification. They have obtained responses
of 15,000 object detectors for each frame of
video and averaged those responses to video
representation. They demonstrated that these
object-based representations provide good action
recognition and detection accuracy. They also
demonstrated that object-action relations are
generic and it can be used for transfer learning
between different datasets.

Choutas et al. [2] proposed an interesting
approach for robust human recognition using
a new representation called potion. The potion
is obtained by temporally aggregating the
probability maps of the human pose estimator.
They assigned different colors to human poses
depending on their relative temporal location in
the videos.

Recently, Hu et al. [3] proposed an encoder-
decoder framework using 3D separable convolu-
tion for the pyramid pooling of efficient human
action recognition and segmentation. Their pro-
posed approach is efficient and provide very good
segmentation and action detection as compared to
several competitive baselines.

Weakly Supervised Action Detection
Weakly supervised action detection falls
between supervised learning (labeled data) and
unsupervised learning (no labels). In weakly
supervised learning, the complete annotations of
the concepts to be learned are not available during
training. For example, for spatiotemporal action
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detection, instead of spatiotemporal bounding
boxes, only the video-level labels are available
during training. However, on testing, the classifier
needs to provide spatiotemporal bounding boxes
of actions. Weakly supervised approaches help in
reducing the time, effort, and cost of annotations.

Nguyen et al. [7] proposed a sparse pooling
network to temporally localize human action in
the videos. They introduced a method to generate
temporal class activation mapping in the two-
stream framework and demonstrated improved
detection results.

Wang et al. [6] introduced a new end to
end architecture, called UntrimmedNet. It gen-
erates short clips proposal from videos by uni-
formly sampling. After extracting the network
from a pre-trained network, action labels are
predicted for each temporal segment. Further-
more, the selection module is proposed to rank
important action proposals. Finally, the output of
the classification and selection module are fused
to produce a final classification.

Singh et al. [5] used a different and new
approach to that problem called Hide and Seek.
Instead of changing the algorithm, they change
the input video. During training, they randomly
remove the frames and hence force the network to
learn all the discriminative frames which produce
good classification results. These automatically
discovered frames are then used for action
classification.

Chang et al. [4] purposed Discriminative Dif-
ferentiable Dynamic Time Warping (DTW) that
uses weak supervision to segments and aligns the
video frames. At training time, only the ordered
list of action is provided. The main contribution
of their work is to make an alignment loss to be
differentiable.

Weakly supervised anomaly detection algo-
rithms in [29] developed multiple instance rank-
ing loss for criminal activity detection in surveil-
lance videos. Training labels of being normal and
abnormal are assigned at video level, and a model
is a train to temporally detect abnormal activists
in videos.

Unsupervised Action Recognition
Due to the availability of free humongous visual
data, several researchers have worked on design-

ing unsupervised approaches for action recogni-
tion. The key advantage of unsupervised action
recognition is that it does not need any kind of
manual annotations. The design of such unsuper-
vised methods can save time and cost and evade
manual annotations biases.

Generally, in unsupervised action recognition,
the first step is clustering. The visual features
are extracted from the videos, and based on fea-
ture similarities, videos are grouped into separate
clusters. After that, the classifier is learned on
these clusters. This is followed by the iterative
process in which both classifiers and clusters
are improved. As compared to fully supervised
action recognition, less research work has been
done in unsupervised action recognition. Below,
we describe some of the recent works for unsu-
pervised action recognition.

Jones et al. [11] proposed feature grouped
spectral multigraph (FGSM) approach for unsu-
pervised action recognition. Firstly, feature clus-
tering generates the number of action classes
or feature space. Secondly, for each feature, a
separate graph is generated. Multigraph Spectral
Embedding is found on each graph, and these
embeddings are combined into a single represen-
tation.

Yu et al. [10] introduced a technique in which
video frames are categories by a collection of
spatiotemporal interest points (STIPs). They use
the histogram of gradient (HOG) and histogram
of flow (HOF) as a descriptor of STIP. A random
forest is built to model the distribution of high-
dimensional feature space. After that, from this
random forest, each STIP is matched to the
query class and provides a voting score for each
action type.

Recently, Soomro et al. [9] proposed a novel
unsupervised approach for action detection. They
clustered action videos using a dominant set clus-
tering algorithm. After that discriminative clus-
tering is applied which is followed by the variant
of knapsack optimization. They have demon-
strated competitive results compared to several
baselines. Finally, Sultani et al. [30] proposed
an unsupervised way to rank the action proposal
in the videos. They demonstrated that better re-
ranking of action proposals leads to better action
detection accuracy (Fig. 2).
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Action Recognition in Real-World Videos, Fig. 2 Examples of recently proposed unsupervised [9], weakly
supervised [29], and supervised [31] action classification approaches

Action Segmentation
The desired output of the action segmentation is
to generate a segmentation mask on the regions
of video where the action is being performed
including start time, end time, and action class
label. Many papers use different techniques for
action segmentation. Jhuang et al. [32] describe
the importance of action segmentation in video
data. They show that different types of anno-
tations on the same dataset change the perfor-
mance of the algorithm. They described that 2D
puppet model of humans (made from 10 body
parts connected by 13 joints) show significant
improvement in classification rather than using
bounding boxes, class level label, or temporal
localization of action in the video. Lu et al.
[33] found a single and hierarchical MRF model
which showed significantly improved results in

action segmentation. They also found that bound-
ing box and action segmentation mask improve
results over the video-level label, and specifically
segmentation mask gets better results than bound-
ing box. Ghosh et al. [34] introduced stacked spa-
tiotemporal graph CN for action segmentation.
Graph-based CNN uses a combination of spatial
and temporal dynamics for better segmentation.
Their method is an extension of the spatiotem-
poral graph CN that was developed for skeleton-
based action recognition.

Trimmed Video Action Classification
Trimmed action videos contain single action from
start to end of the video. These types of videos are
usually shorter in length around 10–15 s. Sultani
et al. [35] introduced a novel approach in which
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they used web images to achieve spatial action
localization in trimmed action videos. Soomro
et al. [36] used supervoxels for capturing the rela-
tion between spatiotemporal segmentation in the
video. Initially, they started with random super-
voxels during training and then found matching
supervoxels and used those to localize action
at testing time. Carreira et al. [27] purpose a
two-stream Inflated 3D ConvNet called I3D that
extracts spatialtemporal feature form video. The
idea behind I3D is to expand 2D ConvNet trained
for image classification into 3D ConvNet for
video action classification. They convert 2D Con-
vNets that accurately work with 2D-image clas-
sification models into a 3D model by adding one
additional dimension to the 2D filter and kernel.

Untrimmed Video Classification
Untrimmed videos are comparatively longer in
time and contain multiple actions and/or single
action which is repeated several times in the
same video. They are more close to real-world
settings. These types of videos are usually around
5 to 15 min long. Singh et al. [37] introduced
a method in which they performed the tasks
of action classification by combining video-level
global feature and frame-level features and gener-
ated temporal action proposals by using dynamic
programming. Montes et al. [38] introduced a
simple method in which they used the features
from 3D Convolutional Neural Network (C3D)
and employ recurrent neural networks (RNN) to
perform action classification.

Temporal Action Detection
Temporal action detection algorithms seek to
identify the frames of the video where the action
is being performed. Recently, several approaches
are being presented for the temporal action
detection including [37–39]. Zhao et al. [39]
purposed a novel approach called a structured
segment network (SSN) in which the temporal
structure of action is represented with a structured
temporal pyramid.

Spatiotemporal Action Detection
Spatiotemporal action classification is a much
harder problem where we want to do temporal

localization (starting and ending frame of the
action) as well as spatial localization.Several of
the above mentioned papers accomplished spa-
tiotemporal action classification [35, 40]. Singh
et al. [40] introduced a new efficient action tube
generation algorithm employing optical flow for
action localization and classification.

Action Recognition Challenges

Action Recognition Challenges aim to mature
the computer vision algorithm across dif-
ferent domains such as surveillance videos,
indoor/outdoor activities, wildlife observation,
and action anticipation Generally, the organizing
committees of these challenges release some new
large-scale datasets, and participants across all
over the world compete with each other on these
datasets. Below are some of the famous computer
vision competitions.

THUMOS Challenge
THUMOS workshop and challenge (http://
www.thumos.info/home.html) contributes a lot
in defining new challenges and approaches in
automatic action recognition and localization.
The challenge is performed on the THUMOS
2015 dataset which is a very large action
recognition dataset of untrimmed videos
recorded in realistic scenes taken from YouTube.
THUMOS 2015 is an extension of THUMOS14,
but it has 430 h of videos that are 70% larger
than THUMOS14. The participants trained
their models and checked their performance on
both action classification and temporal action
localization.

AVA Challenge
AVA Action challenge (https://research.google.
com/ava/challenge.html) aims at exploring new
approaches for action recognition in both space
and time on the AVA dataset. In this challenge,
participants have to identify 80 video classes of
actions. Performance is evaluated on the local-
ization of action in both time and space. AVA
dataset is quite challenging as multiple people
are doing multiple actions in the video. In 2019

http://www.thumos.info/home.html
http://www.thumos.info/home.html
https://research.google.com/ava/challenge.html
https://research.google.com/ava/challenge.html
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Facebook Al Research (FAIR) won this challenge
with 34.24% mAP at 0.5 IOU.

EPIC-Kitchens Action Recognition
Challenge
EPIC-Kitchens Action Recognition Challenge
(https://epic-kitchens.github.io/2020) aims to
classify trimmed videos of seen and unseen
kitchens action in EPIC-Kitchens dataset. Videos
are recorded by a camera mounted on the face of
people in 32 different kitchens. The task in this
challenge is to classify the action segments from
a trimmed video. Noun and verb classes jointly
define the action class for a segment. Participants
have to provide confidence scores for each noun
and verb class for their submission. The highest
top-1 accuracy of this challenge in 2019 on the
action recognition task is 41.37% with 25.13%
precision and recall 26.39%.

Charades Activity Challenge
Charades Activity Challenge (http://vuchallenge.
org/charades.html) aims to explore challenges
and methods on automatic action recognition
tasks on indoor daily life activities of people, by
providing realistic videos from Charades dataset.
Charades is a very large dataset of diverse videos
from daily life activities including sitting on a
chair, opening doors, working on computers, and
drinking water. The aim is to boost the action
recognition accuracy in real daily life tasks. There
are two separate tracks in this challenge: classi-
fication track and localization track. The classi-
fication track is to classify all activities/actions
of the given video. The localization track is to
localize the intervals of a specific action. The top
accuracy of the winning team in this challenge is
34% mAP.

Open Problems

Although tremendous research work has been
done in different areas of action recognition
problems, there are still several areas that are
less explored. CCTV surveillance cameras are
ubiquitous nowadays and recording humongous
about of data 24/7. Most of these videos are of

low quality. There is not much research work for
the detection of actions in CCTV cameras. Stat
of the art action recognition methods performed
quite poorly on CCTV videos. Action detection
under different weather conditions (rain, snow,
shadow) is not much explored. Action detection
in the videos capturing night scenes is still an
unexplored area. Only a little research work
has been done for action recognition from far
cameras (cameras mounted to the top of the
building). Furthermore, a lot of work needs to
be done for action detection and localization in
crowded environments.
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Synonyms

Linear shape and appearance models

Definition

An active appearance model (AAM) is a sta-
tistical generative model of deformable objects,
which simultaneously models shape and appear-
ance variation. The term AAM often refers to
not only a model but also a fitting algorithm
associated with the model.

Background

When a deformable object changes its shape,
the deformation affects both the 2D shape and
appearance (texture) on the captured images of
the object. Modeling such shape and appear-
ance variation enables us not only to synthe-
size photo-realistic images but also to interpret
images (interpretation by synthesis). That is, once
a parametric generative model is fit to an object
in an image, the model parameters “explain” the
object in terms of its position, orientation, scale,
shape, and appearance. Therefore, a variety of
parametric shape and appearance models were
extensively studied in the late 1980s to the early
1990s to realize efficient and stable deformable

object detection and fitting algorithms. In particu-
lar, statistical linear models have been considered
as promising models for shape [5, 6] and appear-
ance [19] variation because they are trainable and
therefore more suitable for describing the actual
distribution in the real world.

A statistical linear model of shape variation is
referred to as a point distribution model (PDM)
[5], where a shape is described by a vector (a
list of landmark points), and its statistical dis-
tribution is trained from examples. The active
shape model (ASM) [6] is a typical method in
which 2D PDMs are applied. Similar to active
contour models (snakes) [14], the ASM algorithm
iteratively moves each point of a shape toward
local features (e.g., edges) to find the pose and
shape of a deformable object in an image. Here,
PDMs globally constrain shape variation, i.e.,
deformation is only allowed in the range learned
from a given training set. This is in contrast
to active contour models, which impose local
smoothness constraint through the internal spline
energy.

In the late 1990s, several methods were pro-
posed to combine appearance models with PDMs
[7, 12, 13, 18]. Active blobs describe the appear-
ance information of a deformable object with
patches, where pixel values are interpolated along
with shape warp [18]. 3D morphable models
(3DMMs) utilize a linear model to deal with tex-
ture variation while using a 3D shape model (3D
PDM) for shape deformation [2, 13, 20]. AAMs
also employ linear models to describe 2D shape
deformation and appearance variation [7, 12].
There are several variants of AAMs. The original
AAM [6] uses “combined” parameters to model
the correlation between shape and appearance,
while certain other variants of AAMs [3, 15]
model shape and appearance separately. Further-
more, several fitting algorithms have been stud-
ied with associated models [3, 15], as will be
explained later.

Theory

Model
Suppose that N labeled landmark points,
{(xi, yi)}Ni=1, describe a 2D shape of a single
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deformable object. Assume that all points
are aligned in a common coordinate frame
of the object (which will be referred to as
the object coordinate frame), and let x =
(x1, y1, . . . , xN , yN)� be a shape vector.
In AAMs, shape variation is modeled by
a linear combination of orthogonal modes
ps,1, . . . ,ps,n ∈ R

2N :

x = x̄ +
n∑

i=1

bs,ips,i = x̄ + Psbs , (1)

where x̄ is the mean shape vector, the columns
of Ps = [ps,1, . . . ,ps,n] ∈ R

2N×n are the
orthogonal modes of shape variation, and bs =
(bs,1, . . . , bs,n)

� are shape parameters, each of
which corresponds to each shape mode.

Given a set of shape examples (shape vec-
tors) in the object coordinate frame as a training
set, the orthogonal modes, Ps , can be obtained
through principal component analysis (PCA) by
considering n eigenvectors corresponding to the
largest n eigenvalues of the covariance matrix of
shape examples. A model of Eq. (1) trained from
shape examples is referred to as a PDM [5],
as explained in the Background. Once a PDM
is trained, a variety of deformed shapes can be
generated by changing its shape parameters.

Appearance is typically defined within the
mesh with the mean shape, x̄, where an image
defined over the pixels inside the region of mesh
x̄ is referred to as a shape-normalized image. Let
g ∈ R

M be an appearance (texture) vector con-
structed by sampling intensity information of the
shape-normalized image, where M is the number
of sampling points. We here assume gray-scale
images for simplicity, while the model can be eas-
ily extended to color images. In AAMs, appear-
ance variation is described by a linear combina-
tion of the orthogonal modes pg,1, . . . ,pg,n ∈
R

M similar to shape variation:

g = ḡ +
m∑

i=1

bg,ipg,i = ḡ + Pgbg, (2)

where ḡ is the mean appearance vector, the
columns of Pg = [pg,1, . . . ,pg,m] ∈ R

M×m

are orthogonal modes of appearance variation,

and bg = (bg,1, . . . , bg,m)� are appearance
parameters.

Each example image is warped to obtain a
shape-normalized image to train the model.
Assume that each example image in a training
dataset is annotated with N labeled landmark
points, X = (X1, Y1, . . . , XN, YN)�. By warping
the intensity information within the mesh with
vertices X to the mesh with x̄, we obtain
a shape-normalized image. Here, piece-wise
affine warp of triangle patches is typically used
considering mesh correspondence between X
and x̄. The total appearance information inside
the shape-normalized image is then sampled
and vectorized to obtain a training example of
appearance vector g, where the intensity values
are standardized appropriately. Through the
warping step, the pixel correspondence among
training examples is achieved, which is a key to
successful appearance variation modeling based
on Eq. (2). Once all training images are aligned
as the shape-normalized images, PCA can be
employed to compute Pg from the training data
(a set of appearance vectors obtained from image
dataset), similar to shape modeling. The obtained
modes, i.e., the columns of Pg , are considered as
shape-normalized eigenimages.

In the original AAM [8], the correlation of
shape and appearance variations is further mod-
eled as follows. Consider a concatenated vector
of shape and appearance parameters

b =
(

Wsbs

bg

)
, (3)

where Ws is a diagonal weight matrix that
balances the scale between shape and appearance
parameters. The concatenated vector is again
described by a linear model

b = Qcc =
(

Qs

Qg

)
c, (4)

where c is a vector of shared parameters and
Qs ∈ R

n×l and Qg ∈ R
m×l are the subma-

trices of Qc. The columns of Qc ∈ R
(n+m)×l

are l eigenvectors corresponding to the largest l

eigenvalues of the covariance matrix of b, where
the training examples of b are given by Eq. (3)
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with the pairs of bs and bg obtained through the
computation of Ps and Pg , respectively.

Equations (1) to (4) can be summarized as
follows [4]:

x = x̄ + PsW
−1
s Qsc = x̄ + Q̃sc,

g = ḡ + PgQgc = ḡ + Q̃gc.
(5)

In this model, the change of shared parame-
ter vector c generates correlated shape x and
appearance g learned from training examples.
This enables us to simultaneously fit shape and
appearance models to a given image using opti-
mization with respect to c. If Qc is the iden-
tity matrix, the two models, i.e., Eqs. (1) and
(2), become independent of each other (this is
referred to as an independent AAM in [15]).

Fitting Algorithm
Given a target image, I , and an AAM expressed
by Eq. (5), a fitting algorithm searches several
parameters, including c, to optimally fit the model
to the image I . Let X = S(x; t) be a transformed
point set on the target image frame from a point
set (shape) x in the object frame using similarity
transformation S with parameter t, where t =
(sx, sy, tx, ty)

�. Here, (sx, sy) = (s cos θ − 1,

s sin θ) describes scaling s and rotation θ , and
(tx, ty) describes translation. Note that t = 0
yields the identical transformation (i.e., x =
S(x; 0)) and S(x; t + δt) ≈ S(S(x; δt); t). Let
gs(I,X) ∈ R

M denote the sampled intensity val-
ues of the shape-normalized image warped from
target image I using the mesh correspondence
between X and x̄. Intensity values should also be
normalized appropriately by searching for addi-
tional normalization parameters [9]; however,
these parameters are omitted here for simplicity.

Let r(p) be the fitting error between target
and generated intensity values in the shape-
normalized images, with respect to parameter
p = (c�, t�)�:

r(p) = gs(I, S(x(c); t)) − g(c), (6)

where x and g are given by Eq. (5). The fitting
algorithm finds parameter p by solving

min
p

E(p) = ||r(p)||2. (7)

An iterative algorithm can be utilized to minimize
E(p) [3]. The first-order Taylor expansion of r(p)

gives

r(p + δp) = r(p) + ∂r
∂p

δp, (8)

where ∂r
∂p is the Jacobian whose (i, j) element is

∂ri
∂pj

. By solving argminδp ||r(p+δp)||2, we obtain
an update rule p ← p + kδp with

δp = −
(

∂r
∂p

T ∂r
∂p

)−1
∂r
∂p

�
r(p), (9)

where k = 1 for the initial step size and k

is adjusted (using, e.g., k = 0.5, 0.25) during
iteration steps so that E(p) decreases. As the
computation cost of ∂r

∂p is high, it is assumed to
be approximately fixed and pre-computed using
numerical differentiation before the search. In
practice, several techniques, e.g., a multireso-
lution (hierarchical) approach with a Gaussian
image pyramid, are used improve efficiency and
robustness (e.g., to prevent falling into a local
minimum) [9].

When shape and appearance are separately
modeled by Eqs. (1) and (2) (i.e., in the case of
independent AAMs), other efficient fitting meth-
ods are available including the inverse composi-
tional image alignment algorithm [15].

Applications

AAMs have been used for a variety of applica-
tions of deformable object fitting (e.g., detection
and tracking) and image synthesis. In particular,
registration on facial images [12] and medical
images [4] are well-known examples.

The relationship between AAMs (to be pre-
cise, independent AAMs) and 3DMMs, which
utilize 2D and 3D shape models, respectively, has
been discussed in detail in [16]. The work has
shown that the parameter size of AAMs becomes
larger compared to 3DMMs in modeling similar
3D deformation and that the 2D shape models
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in AAMs have too much representational power
(i.e., they are able to generate physically unre-
alizable shapes). Therefore, the combination of
AAMs and 3D shape models have also been pro-
posed to impose 3D shape constraint for robust
real-time fitting applications [16, 22].

Open Problems

A drawback of the original AAM for object
tracking is its sensitivity to appearance changes
(e.g., change in lighting conditions) because it
models the holistic appearance of a deformable
object. Instead of modeling the total appearance
within an object, recent fitting approaches exploit
constrained local models (CLMs) [10, 11]. Note
that while the term CLM was originally used for
a particular AAM variant in which texture was
sampled only around landmark points [11], it
has often referred to more general models that
incorporate local feature detectors [10] (ASMs
are considered as CLMs in this context [17]).

CLMs combine the local information of land-
mark points, e.g., response maps computed by
a feature detector, with the global shape con-
straint imposed by PDMs. In many cases, CLMs
show better fitting performance compared to the
original AAM. Since the late 2000s, many facial
tracking methods have therefore utilized CLMs
with various extensions of fitting objective func-
tions and optimization strategies for achieving
accuracy, stability, and computational efficiency
[17, 21]. 3D shape models, similar to 3DMMs,
have also been used in [1,17] for facial landmark
tracking in uncontrolled environments.
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Synonyms

Active computer vision; Active object recogni-
tion; Active perception

Related Concepts

�Active Sensor (Eye) Movement Control
�Animat Vision

Definition

Active Recognition is the task of processing
visual information in order to determine the
presence and identity of a particular element
in a scene by employing an agent that knows why
it wishes to achieve that recognition, chooses
what to sense toward that goal, and determines
how, when, and where to execute the sensing and
recognition actions. Some methods have been
termed active if they emit or project signals
whose reflections back to the sensor play a
role in the processing of visual information.
Others emphasize that processing requires image
sequences rather than a static image, in a way
such that dynamic control of imaging geometry
is not explicitly considered. These methods are
not part of Active Recognition as described here,
and the discussion will focus only on visible light
camera sensors.

Background

Active Recognition is a necessary methodology
for intelligent agents that need to function in
the real world. This was recognized early with
the 1969 presentation of the SHAKEY robot, the
first general-purpose mobile robot that could rea-
son about its actions [1]. Employing cameras,
rangefinders, and bumpers as sensors, it could be
given a task and then planned how to deploy its
resources, specifically in our context its sensing
resources, to complete that task. From within
this team, emerged perhaps the earliest Doctoral
Dissertation on active perception by Tenenbaum
in 1970 [2], where he described methods to con-
trol camera parameters by computer. For Tenen-
baum, sensor accommodation is automatic and
improves the reliability and efficiency of machine
perception by matching the information provided
by the sensor with that required by specific per-
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ceptual functions. The advantages of accommo-
dation are demonstrated in the context of five
key functions in computer vision: acquisition,
contour following, verifying the presence of an
expected edge, range-finding, and color recogni-
tion. Shortly after, Barrow and Popplestone [3]
pointed out that object recognition is a naturally
active process because a recognition agent can
interact with its environment by shifting its view-
point, walk around an object, or even manipulate
or handle it in order to gain more information and
resolve ambiguities. They presented a broader
perspective by noting that such activities involve
planning, inductive generalization, and indeed,
most of the capacities required by an intelligent
machine. Even so, the idea of active perception
seemed to lay relatively dormant for some time
until Bajcsy [4] wrote: Active sensing is the prob-
lem of intelligent control strategies applied to the
data acquisition process which will depend on
the current state of data interpretation including
recognition. Her paper was titled “Active Percep-
tion” because she correctly noted that not only
vision but all the sensing modalities can benefit
from active methodologies. Active Recognition,
the focus of the current article, is but one of many
visual functionalities within this broader view of
perception. Aloimonos, Weiss, and Bandyopad-
hyay [5] added further structure to the concept
by putting more emphasis on the observer and its
purpose. They suggested that active observation
is driven by an agent’s purpose and the agent’s
activity is intended to manipulate the constraints
underlying the observed phenomena in order to
improve the quality of the perceptual results.

Bajcsy et al. [6] define the broad category
of active perception as follows: The processing
of visual information is active if its agent knows
why it wishes to sense, and then chooses what to
perceive, and determines how, when and where
to achieve that perception. In other words, an
actively perceiving agent is one which dynam-
ically determines the why of its behavior and
then controls the what, how, where, and when
for each behavior. Active Recognition limits the
perceptual component of this definition to the
aspects that directly impact visual recognition,
which for this purpose will be taken to mean

the detection, identification and localization of a
particular element of a visual scene (e.g., a car,
my cup, etc.). The explicit connection of sensing
to behavior was nicely described by Ballard [7] in
his animate vision concept, writing: An animate
vision system with the ability to control its gaze
can make the execution of behaviors involving
vision much simpler. In addition, resource con-
straints play an important role not only because
of computer power and memory capacity but
also because in practice, the number of sensors
(and other physical components of an agent) is
limited as well. Any agent at any point during
the execution of its task, will necessarily consider
several options or hypotheses about what its next
action should be. Thus, choices must be made
and in part, this is the role of attentive processes.
As Tsotsos [8] wrote: Since several simultaneous
[interpretation] hypotheses can co-exist, a focus
of attention mechanism is necessary in order to
limit the number of hypotheses under consider-
ation. Matching an agent’s capabilities (physical
behaviors, sensors, computational power, timing
constraints, etc.) to its current task requirements
(environment, timing and accuracy of required
response) is an attentive tuning process [9] and
is critical for any real-world agent.

With respect to Active Recognition specif-
ically, the first system to embody all of the
elements of the active vision definition was
that of Wilkes and Tsotsos in 1992 [10]. The
motivation for their approach stemmed from the
fact that single-view object recognition is subject
to many difficulties, mainly due to viewpoint-
related ambiguities, occlusions, and coincidences
[11]. In this work, low-level image data was
used to drive the sensor to a special viewpoint
with respect to the object to be identified.
From such a viewpoint, the three-dimensional
object recognition problem is reduced to a
two-dimensional pattern recognition problem.
Solutions for tasks such as robust tracking of
image primitives from one sensor position to
the next, a simple behavior-based viewpoint
control driven primarily by the current image data
(three behaviors perform image-line-centering,
image-line-following, and camera-distance-
correcting), probabilistic algorithms for efficient
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storage and retrieval of sets of feature vectors,
and a method for selecting additional special
views in the case that there remains uncertainty in
the identity of the object of interest are presented.

Ikeuchi and Hebert [12] considered the task
component of visual recognition and described
two vision systems (a rock sampling system for
planetary rovers and a bin-picking system for
industrial use). They argued for a task-oriented
vision approach to the design of vision systems.
The task-oriented vision approach proposes to
change the architecture of a vision system in a
systematic fashion which depends on each task
specification. They specifically considered the
localization and grasping of 3-D objects. Their
general methodology involved analyzing the task
specification to derive the constraints on its solu-
tion as well as any constraints or requirements on
the vision components. This analysis started with
the type of representation, derived from the type
of grasping selected, and continued down to the
type of sensor.

Dickinson et al. connect attention to Active
Recognition [13]. The attention mechanism con-
sists of a probabilistic search through a hierarchy
of predicted feature observations, taking objects
into a set of regions classified according to the
shapes of their bounding contours, and choos-
ing which predictions to further explore. The
probabilistic feature hierarchy encodes viewpoint
changes possible in order to achieve a particular
view and thus can be used to guide the camera
to a new viewpoint from where the object can
be disambiguated. Further integration of attention
with active recognition is presented by Rasouli
and Tsotsos [14] where saliency measures are
included as a means of non-combinatorial look-
ahead for next view determination.

There are other examples of early work that
used multiple viewpoints but, mostly, these were
pre-determined, such as placing an object on
a turntable and via its rotation acquiring sev-
eral viewpoints that were integrated (e.g., [15]).
These approaches do not satisfy several of the
elements of our definition. Recently, interest has
resurfaced in the deep learning community with
several examples of learned systems that purport
to accomplish active recognition. But again, those

do not fit our definition. They focus on learning
an environment fully or learning the appearance
of objects from many viewpoints and then per-
forming a classification (e.g., [16]).

In addition to the already cited sources, the
interested reader can examine the following
collections and reviews [17–27]. Good sources
for active vision as a human capability include
[28, 29].

Theory

A Passive Recognition strategy (recognition from
a single image) might suffice for many visual
scenes. However there have always been the tacit
assumption that the image is well-formed, that is,
that the subject of interest in represented roughly
in the center of the image (to avoid boundary
issues), that the subject is sufficiently well lit
(the light is bright enough but not too bright,
the location of the light source relative to subject
and camera does not cause interfering highlights
and shadows), that the pose of the subject in 3D
is one from which recognition can be expected
to be reasonable, that the subject is not overly
occluded, and so on. Whenever any of these
assumptions are violated, an active approach is
the proper remedy. These assumptions are gen-
erally invalid for recognition systems embodied
in a mobile agent operating in the natural world.
These scenarios provide the starting points for
any theoretical or practical development toward
Active Recognition. Below is a table that lists a
few such scenarios plus the kinds of actions a
sensing system might use as part of an Active
Recognition method.

For particular applications, it is sometimes
possible to reduce or eliminate the need for
some of these by engineering the environment
appropriately (e.g., ensure sensors always see
the items of interest with sufficient resolution
and lighting, or, objects of interest are always
within a known sub-image). However, for a
general-purpose agent operating in a dynamic 3D
world, this is usually not feasible. How exactly
each of these or other sensing system actions
are deployed, how the situations for each are
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detected (e.g., [11]), how these contribute to the
successful completion of some task in a given
domain (e.g., [12]), how is an overall recognition
system orchestrated to include multiple behaviors
(e.g., [10, 13, 14]) are all important questions for
any theory of Active Recognition.

Yet another dimension of theoretical analysis
is related to the real world in the sense that any
actual system must live with resource constraints.
A key resource is that of the amount of compu-
tation possible within the physical resources and
time constraints of the agent. The relative com-
putational complexity of active vision when com-
pared to passive vision was laid out [30]. Active
vision includes sampling a scene over time; in
the trivial case with a fixed camera this is simply
processing image sequences. The non-trivial case
of active vision includes any hypothesize-and-test
strategy where the choice of next image sample
is determined by the state of the interpretation
hypothesis space. Typically, there are many pos-
sible interpretations for what is being observed
and the agent must manage this large set of
hypotheses. The solution was formulated using
a strategy that generates many hypotheses for a
potential solution at first, but then with more data,
gradually tightens acceptability constraints and
thus eliminates falsified hypotheses until the best
one remains. The additional data comes naturally
with each image sample in time. Using such a
technique, Tsotsos [30] showed the conditions
under which active sensing approaches actually
provide lower complexity solutions than passive
techniques.

Theoretical analysis also can play the impor-
tant role as a guide to the kind of solution that
is possible. Careful examination of the compu-
tational nature of a problem points the way to
appropriate solutions. For example, for the sen-
sor planning problem – how one determines the
best sequence of sensing actions for an object
search task in an unknown 3D space – Ye and
Tsotsos [31] proved that this problem was NP-
hard. This means that no single solution that is
optimal for all problem instances is possible. As
a result, they developed a robust heuristic solution
[32]. In general, understanding the computational
nature of a problem at the computational level as

Marr [33] noted, and at the complexity level as
Tsotsos [34] argues, provides a solid foundation
for developing solutions.

Active Recognition necessarily must interact
with any inference processes within a real-world
agent. Considering the big picture of robotics
research and development, it can be argued that
among the main open questions are the follow-
ing: How can robots figure things out? How
can they reason about their circumstances and
tasks? How can they exploit attention and con-
text, which seem to be key elements for figuring
things out? The current state of the art includes
major advancements largely facilitated by major
developments in computing power and in data-
driven learning methodologies. There is no ques-
tion that data sets and benchmarking have played
major roles. However, they also have drawbacks:
they are static and mostly of unspecified prove-
nance, i.e., all aspects of imaging/scene geom-
etry, illumination, etc., are decided separately,
often unknown to the interpretation system. In
other words, the image acquisition process is
decoupled from the image interpretation process.
Such a decoupled process simply records what-
ever appears within a field of view, independently
of how any parameters are set or the purpose
served by sensing. No matter how much data is
collected or its statistical value, a passive strategy
gives up control over the specific characteristics
of what is sensed, at what time and for which
purpose.

Intelligent agents need to be maximally sensi-
tive to the task-relevant while remaining vigilant
about the task-irrelevant, and thus some con-
nection between perception, their mission, and
task/world knowledge must exist. One such con-
nection could be an effective use of inductive rea-
soning. Inductive reasoning takes specific infor-
mation (premises) and makes a broader general-
ization (conclusion) that is considered probable.
The only way to know is to test the conclusion;
a passive sensing strategy could only do this by
accident. Passive sensing thus impedes the use of
any form of inductive reasoning. It is certainly
possible to restrict an application domain so that
passive sensing suffices (point a sensor in the
right direction in advance, frame the object of
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interest manually, ensure figure-ground segrega-
tion is easy, etc.), but this cannot satisfy the goal
of real-world functionality.

Active inductive inference seems to require a
world model from which to draw inferences and
direct their testing. Figure 1 shows the kinds of
recognition pipelines that depict the differences
just described in terms of the main elements of
recognition paradigms. Figure 1a portrays the
recognition pipeline found in classic computer
vision, adapted from [26]. Figure 1b shows the
typical pipeline used in systems based on CNN’s
or Deep Learning. Note the major difference with
this and part a; in the classic version, object

classes are represented separately and accessed
as needed, whereas in the learned system, knowl-
edge about object is embedded within the net-
work weights and parameters. Finally, Fig. 1c
lays out the recognition pipeline that uses an
active observer. The visual hierarchy and inter-
pretation stages may be either of the classical or
modern type; however they must be able to accept
and use feedback from the prediction stage to
guide processing. Figure 1c portrays the active
recognition strategy with the key components of
prediction and closed loop processing including
sensor control. The key point here is that the
prediction stage, based on the current state of

Active Recognition, Fig. 1 Recognition Pipelines. (a)
This is the recognition pipeline found in classic com-
puter vision. (Adapted from [26]). (b) This is a typi-
cal pipeline used in systems based on CNN’s or Deep
Learning. Note the major difference with this and part
(a); in the classic version object classes are represented
separately and accessed as needed, whereas in the learned

system knowledge about object is embedded within the
network weights and parameters. (c) This is a recognition
pipeline with an active observer. The visual hierarchy
and interpretation stages may be either of the classical
or modern type; however they must be able to accept
and use feedback from the prediction stage to guide
processing
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Active Recognition, Table 1 Linkage between scene characteristics and sensing actions that might ameliorate the
difficulties a single image exhibit

Visual scene includes Sensing actions to assist

Scene objects are in motion Move fixation to track motion (pursuit motion)

Scene objects extend beyond the camera image boundary Move to a different fixation spatial point (saccade)

Scene objects are occluded making recognition difficult Change camera viewpoint to reduce or eliminate
occlusion

Scene too large to be captured by a single image Move viewpoint to explore the scene

If sensor is foveated, the scene is not uniformly sampled Change fixation location to increase resolution of
portions of interest

Resolution of image is insufficient to enable recognition Lens zoom

Move camera viewpoint closer

Scene object not sufficiently well focused Change aperture (depth of field)

For binocular cameras, change stereo vergence to
appropriate depth plane

Adjust focal length

Illumination of scene is too high or too low to permit good
recognition

Adjust shutter speed

Degenerate views (such as accidental alignments) cause
recognition ambiguities

Adjust camera viewpoint

Adjust lighting levels

decisions for the task of the moment, provides
three kinds of control for processing: it directs the
choice of imaging geometry and sensor parame-
ters to apply for the next scene sample to acquire;
it tunes the visual hierarchy, where possible, to
be most receptive to the kinds of visual informa-
tion needed for the task at that moment; and it
biases the interpretation process for the categor-
ical classes expected from the current sampling
action. The task/decision stage also provides a
bias to the interpretation stage so that regardless
of moment-to-moment bias provided by the pre-
diction stage, the main objective of the current
task will remain active.

Application
Recognition is obviously a function necessary
for any intelligent agent (robot) operating in the
real world. There are many examples of active
agents mostly in the robotics domain. For exam-
ple, consider robots for household tasks such as
help with laundry, load and unload dishwashers,
do preparatory work for cooking meals (e.g.,
chopping vegetables), pick up objects (e.g., toys,
newspaper, clothes, sneakers) from the floor and
move them to the right location, unload groceries

from the car parked in garage, assemble furni-
ture, or help with moving heavy objects. In each
case, if the agent is to engage with the objects
mentioned (e.g., grasping as in [12]), the object
needs to be recognized and localized. If it is
currently within the robot’s camera view, and
the assumptions listed earlier are valid, passive
recognition might suffice. If one of the scenarios
of Table 1 are present however, active methods
are needed. The term visual search refers to the
process of examining different images within a
scene until a target object is found, and this
is a very common function in everyday visual
behavior. Examples of such visual search tasks
have been presented [35–38]. The 2012-2015
DARPA Robotics Challenge included a different
class of applications, all which can benefit from
Active Recognition methods. These were more
clearly industrial tasks, such as driving a vehi-
cle; traverse a rough-terrain course covered with
tripping hazards; clear lumber and pipes that are
blocking an entryway; open doors of any type
(push door, a pull door, door with a self-closing
hinge); climb a ladder; open and close valves; and
more. A nice survey of active search applications
can be found in [37].
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Open Problems
Perhaps the most pressing need is for the cre-
ation of appropriate test environments that permit
active observation. Computer vision researchers
have become accustomed to the use of datasets
and benchmarks in their work. It is a good prac-
tical way to measure how much progress one
is making. But for an active observer, the next
image sample depends on context and the state of
current interpretation; it thus can only be found
in a live environment or in an environment that
is generated in real time given dynamically set
imaging geometry parameters. Protocols to fairly
evaluate performance with such data need to be
agreed on as do methods for creating test data
sets. An example of an early such test environ-
ment is that of the Animat framework [39], while
more recent ones include [40], Gibson [41] and
the Polyhedral Scene Generator [42].

Another open issue is how much control over
camera and imaging geometry is actually neces-
sary for a given application environment? In the
early days of active vision, a great deal of effort
was put into the design and testing of binocular
camera systems (see [6, 22] for reviews). Such
developments are still ongoing, but with seem-
ingly lesser intensity (e.g., [43]) and replace-
ments such as the several good RGB-D sensors
(e.g., Microsoft’s Kinect) seem to dominate due
to their ease of use and strong performance in
many environments. Nevertheless, these do not
support several of the why’s of active vision
(specifically, functionality that requires control of
imaging properties such as binocular vergence,
zoom, cyclotorsion, aperture, focal length, volt-
age gain, shutter speed, white balance). Is it
really the case that these are not necessary? Since
each has shown value in the past (for point-
ers see [6]), and most are also part of bio-
logical vision, this question is important. What
capabilities exactly are lost by the adoption of
RGB-D sensors? In general, the impact of vari-
ation in sensing parameters and configuration
has not be adequately considered. Andreopou-
los and Tsotsos [44] show the large impact on
performance of such variations for a large class
of computer vision algorithms. The need for
new sensing hardware that lends itself to active

control of a broad set of imaging parameters is
strong.

The great majority of active vision approaches
consider one dimension of active functionality at
a time (viewpoint only for example). As should
be clear there are many variables that define
an overall imaging and interpretation scenario
and more emphasis should be placed on how
the control of many variables can be accom-
plished in concert rather than separately (e.g.,
[13, 14]).

A final important research direction concerns
the role of machine learning. One example
of a computational learning theory of active
object recognition appears in Andreopoulos and
Tsotsos [45]. Brynjolfsson and Mitchell [46]
looked more deeply into the kinds of domains
where ML can be effective. They concluded
that the key characteristics of such domains
include learning a function that maps well-
defined inputs to well-defined outputs; large data
sets exist or can be created containing input-
output pairs; the task provides clear feedback
with clearly definable goals and metrics; no
long chains of logic or reasoning that depend
on diverse background knowledge or common
sense; no need for detailed explanation of how
the decision was made; a tolerance for error
and no need for provably correct or optimal
solutions; the phenomenon or function being
learned should not change rapidly over time; no
specialized dexterity, physical skills, or mobility
required. As should be clear, the characteristics
of active vision depart significantly from most
of these. In fact, it has been asserted that active
perception breaks deep learning methods. Yet, the
need for systems that learn is undeniable. Most
current examples of learned active recognition
focus on learning how objects appear with
different viewpoints. This seems an important
distinction. It seems that a major direction for
the future will be into developing new learning
paradigms that can deal with actively observing
agents; perhaps Fig. 1c points to the possibilities.
Specifically, the strategy of learning the views
needs to mature into a strategy of learning how
to select views (including imaging geometry
properties).
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Conclusions

Everyday behavior for humans or computational
agents relies on sequences of perceptual,
decision-making, and physical actions selected
from a large set of elemental capabilities. The
problem of selecting a sequence of actions
to satisfy a goal under resource constraints
is known to be NP-hard [31]. Nevertheless,
humans are remarkably capable. However, the
theoretical results tell us that an end-to-end
solution that covers the full scope of the problem
is unlikely. Perhaps our human capability is due
the fact that we are active observers and actors
within the world. Active vision has the goal
of providing the computational embodiment of
these characteristics and will be a fundamental
methodology for future intelligent agents that can
deal with the enormous breadth of visual settings
and behaviors in a reliable, safe, and predictable
manner.
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Synonyms

Gaze control

Related Concepts

�Active Recognition
�Evolution of Robotic Heads
�Visual Servoing

Definition

Active sensors are those whose generalized view-
point (such as sensor aperture, position, and ori-
entation) is under computer control. Control is
done so as to improve information gathering and
processing.

Background

The generalized viewpoint [1] of a sensor is
the vector of values of the parameters that are
under the control of the observer and which
affect the imaging process. Most often, these
parameters will be the position and orientation
of the image sensor, but may also include such
parameters as the focal length, aperture width,
and the nodal point to image plane distance, of the
camera. The definition of generalized viewpoint
can be extended to include illuminant degrees of
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freedom, such as the illuminant position, wave-
length, intensity, spatial distribution (for struc-
tured light applications), and angular distribution
(e.g., collimation) [2].

Changes in observer viewpoint are used in
active vision systems for a number of purposes.
Some of the more important uses include tracking
moving objects, searching for objects, and
increasing the dynamic range of the sensor,
through adjustment of parameters such as sensor
sensitivity, aperture, and focus.

To carry out these changes in the sensor’s
generalized viewpoint requires computer control
of the sensor’s actuators based on processing
done on the camera video signal. As such, design
of active sensing systems needs the integration of
computer vision and motor control processes.

Theory

Low-Level Camera Motion Control
Systems
Most robotic active vision control systems act
mainly to produce either smooth pursuit motions
or rapid saccadic motions. Pursuit motions cause
the camera to move so as to smoothly track
a moving object, maintaining the image of the
target object within a small region (usually in the
center) of the image frame. Saccadic motions are
rapid, usually large, jumps in the position of the
camera, which center the camera field of view on
different parts of the scene being imaged. This
type of motion is used when scanning a scene,
searching for objects or information, but can also
be used to recover from a loss of tracking of an
object during visual pursuit.

Much has been learned about the design of
pursuit and saccadic motion control systems from
the study of primate oculomotor systems. These
systems have a rather complicated architecture
distributed among many brain areas, the details
of which are still subject to vigorous debate [3].
The high-level structure, however, is generally
accepted to be that of a feedback system. A
very influential model of the human oculomotor
control system is that of Robinson [4], and many

robotic vision control systems employ aspects of
the Robinson model.

The control of an active camera system is both
simple and difficult at the same time. Simplicity
arises from the relatively unchanging character-
istics of the load or “plant” being controlled. For
most systems the moment of inertia of the camera
changes only minimally over the range of motion,
with slight variations arising when zoom lenses
are used. The mass of the camera and associated
linkages does not change. Inertial effects become
more important for control of the “neck” degrees
of freedom due to the changing orientation and
position of the camera bodies relative to the
neck. The specifications on the required veloci-
ties and control bandwidth for the neck motions
are typically much less stringent than those for
the camera motions, so that the inertial effects
for the neck are usually neglected. The relatively
simple nature of the oculomotor plant means
that straightforward proportional-derivative (PD)
or proportional-integral-derivative (PID) control
systems are often sufficient for implementing
tracking or pursuit motion. Some systems have
employed more complex optimal control systems
(e.g., [5]) which provide improved disturbance
rejection and trajectory following accuracy com-
pared to the simpler approaches.

There is a serious difficulty in controlling cam-
era motion systems, however, caused by delays
in the control loops. Such delays include the
measurement delay due to the time needed to
acquire and digitize the camera image and sub-
sequent computations, such as feature extraction
and target localization. There is also a delay or
latency arising from the time needed to compute
the controller output signal [6]. If these delays are
not dealt with, a simple PD or PID controller can
become unstable, leading to excessive vibration
or shaking and loss of target tracking.

There are a number of approaches to dealing
with delay. PID or PD systems can be made
robust to delays simply by increasing system
damping by reducing the proportional feedback
gain to a sufficiently low value [7]. This results
in a system that responds to changes in target
position very slowly, however, and is unaccept-
able for most applications. For control of saccadic
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motion, a sample/hold can be used, where the
position error is sampled at the time a saccade
is triggered, and held in a first-order hold (inte-
grator) [8]. In this way, the position error seen by
the controller is held constant until the saccadic
motion is completed. The controller is insensitive
to any changes in the actual target position until
the end of this refractory period. This stabilizes
the controller, but has the drawback that if the
target moves during the refractory period, the
position error at the end of the refractory period
can be large. In this case, another, corrective or
secondary, saccadic motion may need to be trig-
gered. For stabilization of pursuit control systems
in the presence of delay, an internal positive feed-
back loop can be employed [4, 8]. This positive
feedback compensates for delays in the negative
feedback servo loop created by the time taken to
acquire an image and compute the target velocity
error. The positive feedback loop sends a delayed
efference copy of the current commanded cam-
era velocity (which is the output of the pursuit
controller) back to the velocity error comparator
where it is added to the measured velocity error.
The positive feedback delay is set so that it arrives
at the velocity error comparator at the same time
as the measurement of the effect of the current
control command, effectively canceling out the
negative feedback and producing a new target
velocity for the controller. Another delay han-
dling technique is to use predictive control, such
as the Smith Predictor, where the camera position
and controller states are predicted for a time T

in the future, where T is the controller delay,
and control signals appropriate for those states
are computed and applied immediately [6, 7].
Predictive methods make strong assumptions on
changes in the external environment (e.g., that all
objects in the scene are static or traversing known
smooth trajectories). Such methods can perform
poorly when these assumptions are violated.

The Next-Look Problem and Motion
Planning
The control of pursuit and saccadic motions is
usually handled by different controllers. While
pursuit or tracking behavior can be implemented
using frequent small saccade-like motions, this

can produce jumpy images which may degrade
subsequent processing operations. With multi-
ple controllers, there needs to be a way for the
possibly conflicting commands from the con-
trollers to be integrated and arbitrated. The sim-
plest approach uses the output of the pursuit con-
trol system by default, with a switchover to the
output of the saccade control system whenever
the position error is greater than some thresh-
old and switching back to pursuit control when
the position error drops below another (lower)
threshold.

Pursuit or tracking of visual targets is just one
type of motor activity. Activities such as visual
search may require large shifts of camera position
to be executed based on a complex analysis of
the visual input. The process of determining the
active vision system controller set point is often
referred to as sensor planning [1] or the next-
look problem [9]. The next-look problem can be
interpreted as determining sensor positions which
increase or maximize the information content
of subsequent measurements. In a visual search
task, for example, the next-look may be specified
to be a location which is expected to maximally
discriminate between target and distractor. One
principle that has been successfully employed in
next-look processes is that of entropy minimiza-
tion over viewpoints. In an object recognition or
visual search task, this approach takes as the next
viewpoint that which is maximally informative
relative to the most probable hypotheses [10].
A common approach to the next-view problem
in robotic systems is to employ an attention
mechanism to provide the location of the next
view. Based on models of mammalian vision
systems, attention mechanisms determine salient
regions in visual input, which compete or interact
in winner-takes-all fashion to select a single loca-
tion as the target for the subsequent motion [8].

Application

The earliest robotic eye movement control system
was found in Stanford’s Shakey robot [11].
There was a resurgence in research on robotic
vision systems in the late 1980s and early 1990s.
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However, at that time commercial camera motion
platforms lacked the performance needed by
robotics researchers and manufacturers. This
led many universities to construct their own
platforms and develop control systems for them.
These were generally binocular camera systems
with pan and tilt degrees of freedom for each
camera. Often, to simplify the design, a common
tilt action was employed for both cameras, and
the pan actions were sometimes linked together
to provided vergence and/or version motions
only. Examples include the UPenn head [12],
the Harvard head [13, 14], the KTH head [15],
the TRISH head from the University of Toronto
[16], the Rochester head [17], the SAGEM-GEC-
Inria-Oxford head [18], the Surrey head [19], the
LIFIA head [20], the LIA/AUC head [21], and
the Technion head [5]. These early robotic heads
generally used PD servo loops, some with delay
compensation mechanisms as described above,
and were capable of speeds up to 180 degrees
per second. The pan axis maximum rotational
velocities were usually higher than those of the
tilt and vergence speeds. The axes were most
often driven either by DC motors or by stepper
motors.

A more recent example of a research system
is the head of the iCub humanoid robot [22].
Unlike the early robotic heads, which were one-
off systems limited to use in a single laboratory,
this robot was developed by a consortium of
European institutions and is used in many dif-
ferent research laboratories. It has independent
pan and common tilt for two cameras as well as
three neck degrees of freedom. The maximum
pan speed is 180 degrees per second, and the
maximum tilt speed is 160 degrees per second.

Currently, most robotic active vision systems
are based on commercially available monocular
pan-tilt platforms. The great majority of com-
mercial platforms are designed for surveillance
applications and are relatively slow. There are a
few systems with specifications that are suitable
for robotic active vision systems. Perhaps the
most commonly used of these fast platforms are
made by FLIR Motion Control Systems, Inc. (for-
merly Directed Perception). These are capable
of speeds up to 120 degrees per second and can

handle loads of up to 90 lbs. Commercial systems
generally lack torsional motion and hence are not
suitable for precise stereo vision applications.

The fastest current commercial pan/tilt units,
as well as the early research platforms, only
reach maximum speeds of around 200 degrees
per second. This is sufficient to match the speeds
of human pursuit eye movements, which top
out around 100 degrees per second. However, if
these speeds are compared to the maximum speed
of 800 degrees per second for human saccadic
motions, it can be seen that the performance of
robotic active vision motion platforms still has
room for improvement.
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Definition

Active stereo vision utilizes multiple cameras for
3D reconstruction, gaze control, measurement,
tracking, and surveillance. Active stereo vision is
to be contrasted with passive or dynamic stereo
vision in that passive systems treat stereo imagery
as a series of independent static images while
active and dynamic systems employ temporal
constraints to integrate stereo measurements over
time. Active systems utilize feedback from the
image streams to manipulate camera parameters,
illuminants, or robotic motion controllers in real
time.

Background

Stereo vision uses two or more cameras with
overlapping fields of view to estimate 3D scene
structure from 2D projections. Binocular stereo
vision – the most common implementation – uses
exactly two cameras, yet one can utilize more
than two at the expense of computational speed
within the same algorithmic framework.

The “passive” stereo vision problem can be
described in terms of a system of at least two
cameras attached rigidly to one another with
constant intrinsic camera calibration parameters.
Stereo pairs captured from this geometry are
considered to be temporally independent. Thus
no assumptions are made, nor propagated,
about camera motion within the algorithmic
framework. Passive vision systems are limited to
the extraction of metric information from a single
set of images taken from different locations in
space (or at different times) and treat individual
frames in stereo video sequences independently.
Dynamic stereo vision systems are characterized
by the extraction of metric information from
sequences of imagery (i.e., video) and employ
temporal constraints or consistency on the
sequence (e.g., optical flow constraints). Thus,
dynamic stereo systems place assumptions on
the camera motion such as its smoothness
(and small motion) between subsequent frames
and proper temporal synchronization between



28 Active Stereo Vision

Left Image Right Image

Passive Stereo Dynamic Stereo

Active Stereo

Active Stereo Configuration

Object in Scene 
(Static)

Uncontrolled 
Movement

Left Sequence Right Sequence

Object in Scene 
(Dynamic)

Visual Feedback

a b

dc

Motor Control

Controlled 
Movement

Left Sequence Right Sequence

Object in Scene 
(Dynamic)

Pan

Tilt

Cyclotorsion

Base Frame

Translational Control (Mount to vehicle)

T

Active Stereo Vision, Fig. 1 Different types of stereo
systems. (a) shows a traditional passive stereo system.
(b) shows an active stereo system in which a moving but
uncontrolled stereo camera views an active environment.

(c) shows an active stereo system in which image cap-
ture geometry is controlled based on previously captured
imagery. (d) shows various degrees of freedom that can be
controlled in an active stereo system

the cameras that make up the system. Active
stereo vision systems subsume both passive
and dynamic stereo vision systems and are
characterized by the use of robotic camera
systems (e.g., stereo heads) or specially designed
illuminant systems (e.g., structured light) coupled
with a feedback system (see Fig. 1) for motor
control. Although systems can be designed
with more modest goals – object tracking, for
example – the common computational goal is
the construction of large-scale 3D models of
extended environments.

Theory

Fundamentally, active stereo systems (see [2])
must solve three rather complex problems: (1)
spatial correspondence, (2) temporal correspon-
dence, and (3) motor/camera/illuminant control.
Spatial correspondence is required in order to
infer 3D depth information from the information
available in camera images captured at one
time instant, while temporal correspondence is
necessary to integrate visual information over
time. The spatial and temporal correspondence
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Active Stereo Vision, Fig. 2 Point cloud datasets obtained by the active stereo system described in [1]

problems can either be treated as problems
in isolation or integrated within a common
framework. For example, stereo correspondence
estimation can be seeded using an ongoing 3D
representation using temporal coherence (e.g.,
[3, 4]) or considered in isolation using standard
disparity estimation algorithms (see [5]).

Motor or camera control systems are neces-
sary to move (rotate and translate) the cameras
so they look in the appropriate direction (i.e.,
within a tracking or surveillance application),
change their intrinsic camera parameters (e.g.,
focal length or zoom), or to tune the image
processing algorithm to achieving higher accu-
racy for a specific purpose. Solving these three
problems in an active stereo system enables one
to develop algorithms that infer ego-motion [6],
autonomously control vehicles throughout the
world [7], and/or reconstruct 3D models of the
environment [1, 8]. Examples of the output of
such a system is shown in Fig. 2, and [9] provides
an example of an active system that interleaves
the vergence and focus control of the cameras
with surface estimation. In [10] an active stereo
head with pan-tilt-servo mechanisms and an auto-
matic calibration algorithm is developed. The
algorithm uses feature matching and geometric
constraints to automatically determine the rela-
tionships between the cameras which is main-
tained with high accuracy motor encoders.

Although vision is a powerful sensing modal-
ity, it can fail. This is a critical issue for active

stereo vision where data is integrated over time.
The use of complementary sensors – traditionally
Inertial Measurement Units (see [11]) – augments
the camera hardware system with the capabil-
ity to estimate the system dynamics using real-
world constraints. Accelerometers, gyroscopes,
and compasses can provide timely and accurate
information either to assist in temporal corre-
spondences and ego-motion estimation or as a
replacement when visual information is unreli-
able or absent (i.e., dead reckoning). See [12] for
an example of this type of integrated approach.

Relation to Robotics and Mapping
A wide range of different active and dynamic
stereo systems have been built (e.g., [1, 8, 13,
14]). Active systems are often built on top of
mobile systems (e.g., [1]) blurring the distinction
between active and dynamic systems. In robotics,
active stereo vision has been used for vehicle
control in order to create 2D and 3D maps of
the environment. Commonly the vision system
is complemented by other sensors. For instance,
in [15], active stereo vision is combined with
sonar sensors to create 2D and 3D models of the
environment. Murray and Little [16] use a trinoc-
ular stereo system to create occupancy maps of
the environment for in-the-loop path planning
and robot navigation. Diebel et al. [17] employ
active stereo vision for simultaneous estimation
of the robot location and 3D map construction,
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and [1] describes a vision system used for in-
the-loop mapping and navigational control for an
aquatic robot. Davison, in [7], was one of the
first to effectively demonstrate the use of active
stereo vision technology as part of the navigation
loop. The system used a stereo head to selectively
fixate scene features that improve the quality of
the estimated map and trajectory.

Autocalibration
A fundamental issue with active stereo vision
is the need to establish and maintain calibration
parameters online. Intrinsics and extrinsics are
necessary to the 3D estimation process as they
define the epipolar constraints which enable
efficient disparity estimation algorithms [18, 19].
Each time the camera parameters are modified
(e.g., vergence of the cameras, change of focus),
the epipolar geometry must be re-estimated.
Although kinematic modeling of motor systems
provides good initial estimates of changes in
camera pose, this is generally insufficiently
accurate to be used by itself to update camera
calibration. Thus, autocalibration becomes an
important task within active stereo vision.
Approaches to autocalibration are outlined in
[18, 20]. In [18], the autocalibration algorithm
operates on pairs of stereo images taken in
sequence. A projective reconstruction for motion
and structure of the scene is constructed. This
is performed for each pair of stereo images
individually for the same set of features (thus
they must be matched in the stereo pairs as well
as tracked temporally). The projective solutions
can be upgraded to an affine solution (ambiguous
up to a rigid rotation/translation/scale) by noting
these features should match in 3D space as
well as in 2D space. A transformation can be
linearly estimated that constrains the projective
solution to an affine reconstruction. Once the
plane at infinity is known, the affine solution
may be upgraded to a metric solution. In order
to achieve the desired accuracy in the intrinsics,
a nonlinear minimization scheme is employed to
improve the solution. If one trusts the accuracy
of the camera motion control system, the
extrinsics can be seeded with this information in
a nonlinear optimization scheme that minimizes
the reprojection error of the image matching

points and their 3D triangulated counterparts.
This nonlinear optimization is known as bundle
adjustment [21] and is used in a variety of
forms in the structure-from-motion literature
(see [18, 19]). These concepts are applied to
an active-stereo head in [10] to estimate both
the lens properties and rigid transformations
between the servo-controlled camera motors
automatically.

Relation to Other Types of Stereo Systems
Since active stereo systems are characterized by
the use of visual feedback to inform motor control
systems (or higher-level vehicular navigational
systems), they are related to a wide range of
research areas and hardware systems. Mounting
a stereo system to a robotic vehicle is common
in the robotics literature to inform the navigation
system about the presence of obstacles [22] and
to provide input to mapping algorithms [23]. The
use of such active systems is applicable directly
to autonomous systems as they provide a high
amount of controllable accuracy and dense mea-
surements at relatively low computational cost.
One significant example is the use of active stereo
in the Mars Rover autonomous vehicles [14].

Estimating 3D information from stereo views
is problematic due to the lack of unambiguous
texture in many man-made environments. This
can be alleviated with the use of active illumina-
tion [24]. Projecting a known or even stochastic
pattern, rather than uniform lighting, into the
scene enables the estimation of a more dense
disparity field using standard stereo disparity esti-
mation algorithms due to the added texture in
textureless regions (see [25]). The illumination
may be controlled actively depending on per-
ceived scene texture, the desired range, or the
ambient light intensity of the environment. The
illumination may be within the visible light spec-
trum or in the infrared spectrum as most camera
sensors are sensitive to IR light. This has the
added advantage that humans in the environment
are not affected by the additional illumination.
In [26], an approach is developed that uses
a mirror-galvanometer-controlled laser beam to
project light into the scene and alleviate the stereo
matching problem. However, factors such as cam-
era exposure, material light absorption properties,
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and laser power output limit the speed at which
the laser can travel throughout the scene and
ultimately reduce performance

Machine Learning
In recent years traditional computer vision
techniques suitable for active stereo vision have
been augmented with data-driven and machine
learning approaches. For example, [27] describes
a neural net auto-encoder to perform point
cloud matching. In [28] a neural network is
employed to learn the nonlinear function that
converts matched features in stereo pairs into
3D locations, thus demonstrating the ability
to learn complex functions that include lens
distortions and affine transformations. In [29]
a neural network training algorithm is employed
to estimate the matching score between stereo
image pairs resulting in a dense stereo result.
Also, [30] describes a Convolutional Neural
Network trained with RGB + Stereo Depth
estimates to track a person as input to a robot
navigation control scheme.

Application

Active stereo vision is characterized by the use
of visual feedback in multi-camera systems
to control the intrinsics and extrinsics of the
cameras and any underlying vehicular platform.
Active stereo vision systems find a wide range of
application in autonomous vehicle navigation,
gaze tracking, and surveillance. Commonly,
active stereo systems are used to estimate
visual odometry of a robotic platform such as
in [31–33] and can be coupled with inertial
measurement units such as in [34]. A host of
hardware systems exist and commonly utilize
two cameras for binocular stereo and motors
to control the gaze/orientation of the system.
Visual attentive processes (e.g., [35, 36]) may
be used to determine the next viewpoint for
a particular task, and dense stereo algorithms
can be used for estimating 3D structure of the
scene. Fundamental computational issues include
autocalibration of the sensor with changes in
its configuration and the development of active
stereo control and reconstruction algorithms.
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Definition

Activity recognition refers to the process of iden-
tifying the types of movement performed by
humans over a certain period of time. It is also
known as action recognition when the period of
time is relatively short.

Background

The classic study on visual analysis of biological
motion using moving light display (MLD) [1] has
inspired tremendous interests among the com-
puter vision researchers in the problem of recog-
nizing human motion through visual information.

The commonly used devices to capture
human movement include human motion capture
(MOCAP) with or without markers, multiple
video camera systems, and single video camera
systems. A MOCAP device usually works under
controlled environment to capture the three-
dimensional (3D) joint locations or angles of
human bodies; multiple camera systems provide a
way to reconstruct 3D body models from multiple
viewpoint images. Both MOCAP and multiple
camera systems have physical limitations on
their use, and single camera systems are probably
more practical for many applications. The latter,
however, captures least visual information and,
hence, is the most challenging setting for activity
recognition. In the past decade, research in
activity recognition has mainly focused on single
camera systems. The development of commodity
depth cameras, such as Microsoft Kinect sensor,
provides another feasible and economic way
to capture simultaneously two-dimensional
color information and depth information of
the human movement. In addition, techniques
for locating two-dimensional (2D) or three-
dimensional (3D) joints of human bodies
directly from video frames and depth maps

offer practical alternatives to traditional MOCAP
devices.

Regardless of which capturing device or which
modality, RGB (Red-Green-Blue) video, depth,
or skeleton, is used, a useful activity recognition
system has to be independent of anthropometric
differences among the individuals who perform
the activities, independent of the speed at which
the activities are performed, robust against
varying acquisition settings and environmental
conditions (for instance, different viewpoints and
illuminations), scalable to a large number of
activities, and capable of recognizing activities
in a continuous manner. Since a human body
is usually viewed as an articulated system
of the rigid links or segments connected
by joints, human motion can be considered
as a continuous evolution of the spatial
configuration of the segments or body posture,
and effective representation of the body
configuration and its dynamics over time has
been central to the research of human activity
recognition.

Theory

Let O = {o1, o2, · · · , on} be a sequence of
observations of the movement of a person over
a period of time. The observations can be a
sequence of joint angles, a sequence of color
images or silhouettes, a sequence of depth
maps, or a combination of them. The task of
activity recognition is to label O into one of
the L classes C = {c1, c2, · · · , cL}. Therefore,
solutions to the problem of activity recognition
are often based on pattern recognition and
machine leaning approaches, and an activity
recognition system usually involves extracting
features from the observation sequence O,
learning a classifier from training samples and
classifying O using the trained classifier. The
spatial and temporal complexity of human
activities has led researchers to cast the problem
from different perspectives. Early work is mainly
based on handcrafted features for recognition,
and recent work has been driven greatly by deep
learning.
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Handcrafted-feature-based methods The
existing techniques based on handcrafted features
can be broadly divided into two categories
according to whether the dynamics of the activ-
ities is implicitly or explicitly modelled. In the
first category, the problem of activity recognition
is cast from a temporal classification problem to a
static classification one by representing activities
using descriptors. A descriptor is extracted from
the observation sequence O, which intends to
capture both spatial and temporal information of
the activity and, hence, to model the dynamics
of the activity implicitly. Activity recognition
is achieved by a conventional classifier such
as support vector machines (SVM) or K-
nearest neighborhood (KNN). There are three
commonly used approaches to extract activity
descriptors. The first approach builds upon
motion energy images (MEI) [2], a binary
image representing the presence of motion in
regions, and motion history images (MHI) [2],
a static image representing motion location and
progressing path, and their variants. The second
approach considers a sequence of silhouettes as a
spatiotemporal volume, and an activity descriptor
is computed from the volume. Typical examples
are differential geometric surface properties [3],
space-time saliency, action dynamics, and shape
structure and orientation [4]. The third approach
describes an activity using a set of spatiotemporal
interest points (STIPs). The general concept is
first to detect STIPs [5] from the observations
O which is usually a video sequence. Features
are then extracted from a local volume around
each STIP, and a descriptor can be formed by
simply putting them together to become a bag-
of-features or by classifying the STIPs into a
set of vocabulary (i.e., a bag of visual words) and
calculating the histogram of the occurrence of the
vocabulary within the observation sequence O.
In addition to SVM and KNN, latent topic models
such as the probabilistic latent semantic analysis
(pLSA) model and latent Dirichlet allocation
(LDA) were used in [6].

In the second category, the proposed methods
usually follow the concept that an activity is a
temporal evolution of the spatial configuration

of the body parts and, hence, emphasize more
on the dynamics of the activities than the
methods in the first category. They usually
extract a sequence of feature vectors, each feature
vector being extracted from a frame, or a small
neighborhood, of the observation sequence O.
The two commonly used approaches are temporal
templates and graphical models. The temporal-
template-based approach, typically, directly
represents the dynamics through exemplar
sequences and adopts dynamic time warping
(DTW) to compare an input sequence with the
exemplar sequences, for instance, the work in [7].
The graphical-model-based approach includes
both generative and discriminative models.
The most prominent generative model is the
hidden Markov model (HMM), where sequences
of observed features are grouped into similar
configuration, i.e., states, and both the probability
distribution of the observations at each state and
the temporal transitional functions between these
states are learned from training samples [8].
A more general generative graphical model,
referred to as an action graph, was established
in [9], in which an activity is encoded by one
or multiple paths in the action graph. Due to
the sharing mechanism, the action graph can
be trained and also easily expanded to new
actions with a small number of training samples.
The generative graphical models often rely on
an assumption of statistical independence of
observations to compute the joint probability of
the states and the observations. This makes it hard
to model the long-term contextual dependencies
which is important to the recognition of activities
over a long period of time. The discriminative
models, such as conditional random fields
(CRF) [10], offer an effective way to model long-
term dependency and compute the conditional
probability that maps the observations to the
motion class labels.

Deep-learning-based methods There are four
commonly used approaches to leveraging the
capability of deep neural networks for action
recognition from RGB video or depth sequences
[11]. The first approach is to employ convolu-
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tional neural networks (CNNs) to extract fea-
tures from single frames or a stack of frames
sampled from a video sequence representing an
instance of actions. The widely used two stream
architecture [12] is a typical example. The sec-
ond approach is to apply three-dimensional (3D)
convolution to a segment of frames and then
temporal pooling to form video-based features,
such as C3D [13], or to simply apply 3D convo-
lution to an entire action instance [14]. The third
approach is to first extract frame-based features
using a CNN and then model temporal dynamics
using a recurrent neural network (RNN), such
as ConvLSTM [15]. Typically, video-based fea-
tures are obtained from the last time-step of the
RNN. The fourth approach is to generate dynamic
images [16] through rank pooling and to apply
a CNN to extract features from the dynamic
images. Each approach has its own strength and
weakness. For instance, the first approach tends
to focus on short-term rather than long-term tem-
poral information. The second approach, if it
is implemented using temporal pooling, is also
weak at capturing long-term temporal informa-
tion. Such weakness can be mitigated to some
extent by applying 3D convolution to the entire
action instance. In the third approach, extraction
of spatial information (e.g., using a CNN) is
separated from temporal modeling (e.g., using
a RNN). It tends to model long-term dynam-
ics more effectively than short-term dynamics.
The dynamic image approach depends on how
effectively both spatial and temporal information
can be encoded into one or multiple images.
The commonly used ranking pooling method
to generate the dynamic images tends to sup-
press small motion. Similar approaches have been
developed to extract deep features from skeleton
sequences [11]. For instance, Yan et al. [17]
proposed Spatial-Temporal Graph Convolutional
Networks (ST-GCN). In [18], spatial and tempo-
ral information in a skeleton sequence is encoded
into multiple texture images, and CNNs are used
to extract features. In [19], a skeleton sequence
is fed into an RNN directly, and features are
extracted from the last-time step of the RNN.
Compared with traditional RNN, the recently

proposed independently recurrent neural network
(IndRNN) [20] is promising and achieves the
state-of-the-art results.

In many realistic applications, an activity may
occupy only a small portion of the entire space-
time volume of a video sequence. In such sit-
uations, it does not make sense to classify the
entire video. Instead, one needs to locate the
activity in space and time. This is commonly
known as an activity detection or action detection
problem. In addition, continuous recognition of
activities under realistic conditions, such as with
viewpoint invariance and large number of activ-
ities, remains challenging though the extensive
effort, and progress have been made in activity
recognition research in the past decade.

Application

Activity recognition has many potential applica-
tions. It is one of the key enabling technologies
in security and surveillance for automatic moni-
toring of human activities in a public space and
of activities of daily living of elderly people at
home. It is also essential for autonomous retail
shops and autonomous driving. Robust under-
standing and interpretation of human activities
also allows a natural way for humans to interact
with machines. A proper modeling of the spatial
configuration and dynamics of human motion
would enable realistic synthesis of human motion
for gaming and movie industry and help train
humanoid robots in a flexible and economic way.
In sports, activity recognition technology has
also been used in training and in sports video
retrieval.
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Synonyms

Adaptive boosting; Discrete AdaBoost

Related Concepts

�Deep CNN-Based Face Recognition
� Feature Selection
�Machine Recognition of Objects

Definition

The AdaBoost algorithm learns a classifier from
data by combining additively a number of weak
classifiers. The weak classifiers are incorporated
sequentially, one at a time, in order to reduce
the empirical exponential classification risk of the
combined classifier.
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Background

Boosting [1, 2], introduced by Robert Schapire
in [3], is a general technique for combining
the response of several predictors with limited
accuracy into a single, more accurate predic-
tion. AdaBoost is a popular implementation of
boosting for binary classification [4]. Soon after
its introduction, AdaBoost became one of the
most popular learning algorithms; for example,
Breiman [1] described AdaBoost with trees as the
“best off-the-shelf classifier in the world.”

Much of the popularity of AdaBoost was due
to its performance, which was comparable to
the one of support vector machines [5], and its
algorithmic simplicity. In the computer vision
community, AdaBoost became very popular due
to the work of Viola and Jones in face detec-
tion [6], which used it to demonstrate accurate
face detection in real time; key to their method
is a classifier obtained by boosting (combin-
ing) weak classifiers, each incorporating a single
Haar wavelet [6, 7]. Haar wavelets can be com-
puted very efficiently using integral images. Fur-
thermore, the weak classifiers can be computed
sequentially, in a cascade, and the computation
terminated as soon as sufficient evidence to reject
a hypothesis is accumulated.

The additive boosting framework is fairly gen-
eral, and several variants have been proposed,
among which are AdaBoost [4]; Real AdaBoost,
LogitBoost, and GentleBoost [1]; Regularized
AdaBoost [8]; or extensions to multiple classes
such as AdaBoost.MH [9].

Theory

This section describes the AdaBoost algorithm
as originally given by Freund and Schapire [4].
The particular variant below, also known as dis-
crete AdaBoost [1], is summarized in Algo-
rithm 1.

The purpose of AdaBoost is to learn a binary
classifier that is a function H(x) = y which maps
data x ∈ X (e.g., a scrap of text, an image, or

Algorithm 1 Discrete AdaBoost
1: Initialize F0(x) = 0 for all x ∈ X.
2: Initialize wi = 1 for all i = 1, 2, . . . , n.
3: for t = 1 to m do
4: Find the weak hypothesis ht ∈ H that minimizes

ε(ht ;w) ∝
n∑

i=1

wi [ht (xi ) �= yi ].

5: Let the weak hypothesis coefficient be:

αt ← 1

2
log

1 − ε(ht ;w)

ε(ht ;w)
;

6: Update the weights

wi ← wi e
−yiαt ht (xi );

7: Update the function Ft = Ft−1 + αtht .
8: end for
9: Return the classifier H(x) = sign Fm(x).

a sound wave) to its class label y ∈ {−1,+1}.
The classifier H is obtained as the sign of an
additive combination of simple classifiers h :
X → {−1,+1}, called weak hypotheses. Given
coefficients αt ∈ R, the classifier can then be
written as:

H(x) .= sign

(
m∑

t=1

αtht (x)

)
, (1)

The input to AdaBoost is a set H of
weak hypotheses and n data-label pairs
(x1, y1), . . . , (xn, yn); the output is a combi-
nation H of m weak hypotheses in H and
their coefficients α1, . . . , αm. The algorithm is
designed so that the combined classifier closely
fits the training data, i.e., H(xi ) = yi for most
i = 1, . . . , n.

Let us denote with Hm the classifier H with
m weak hypotheses shown in Eq. (1). AdaBoost
operates sequentially by adding to Hm−1 one
new weak hypothesis (hm, αm). While any weak
hypothesis with performance better than chance
can be used, it is more common to select the weak
hypothesis hm in the set H that minimizes the
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weighted empirical error

ε(h;w)
.=

∑n
i=1 wi [yi �= h(xi )]∑n

i=1 wi

.

where w = (w1, . . . , wn) are non-negative data
weights, as given below. Here the term [yi �=
h(xi )] is equal to 1 if yi �= h(xi ) and 0 otherwise.
Hence, the empirical error ε(h;w) is the average
number of incorrect classifications of the weak
hypothesis h on the weighted training data.

The selected weak hypothesis hm can be writ-
ten as ε(h;w), i.e., hm = argminh∈H ε(h;w) and
is added to the current combination Hm−1 with
coefficient

αm = 1

2
log

1 − ε(hm;w)

ε(hm;w)
. (2)

While AdaBoost minimizes the empirical error
of the weak hypothesis hm at each iteration, the
weights w are chosen so that the empirical error
of Hm is reduced as well. AdaBoost starts with
uniform weights w = (1, . . . , 1) and updates
them according to the rule

wi ← wie
−yiαmhm(xi ), i = 1, . . . , n. (3)

One intuitive interpretation of this rule is that
it gives more importance to examples that are
incorrectly classified. A formal justification is
given in the next paragraph.

AdaBoost as Stagewise Minimization Denote
by Fm(x) = ∑m

t=1 αtht (x) the additive combi-
nation of the first m weak hypotheses, so that
the classifier Hm(x) can be written as sign Fm(x).
AdaBoost performs a stagewise minimization of
the cost

1

n

n∑

i=1

e−yiFm(xi ).

This cost is known as the empirical exponential
loss and is a convex upper bound to the empirical
classification error of Hm, in the sense that:

ε(Hm)
.=1

n

n∑

i=1

[yi �=Hm(xi )]≤1

n

n∑

i=1

e−yiFm(xi ).

To understand the effect of the AdaBoost update
on the empirical exponential loss, let Fm(x) =
Fm−1(x) + αmhm(x) be the updated additive
combination at iteration m. As the parameters of
Fm−1 are fixed, the empirical exponential loss is
a function E of αm and hm:

E(αm, hm)
.= 1

n

n∑

i=1

wie
−yiαmhm(xi ),

where wi = e−yiFm−1(xi ). (4)

By taking the derivative of E with respect to
αm and by setting it to zero, one obtains the
optimality condition

0 =
n∑

i=1

wiyihm(xi )e
−yih(xi )eαm

=
∑

i:yi �=hm(xi )

wie
αm −

∑

i:yi=hm(xi )

wie
−αm

which results in the optimal coefficient given in
Eq. (2):

αm(hm) = 1

2
log

∑n
i=1 wi[yi = hm(xi )]∑n
i=1 wi[yi �= hm(xi )]

= 1

2
log

1 − ε(hm;w)

ε(hm;w)
.

By substituting this expression back in the
cost (4), one obtains

E(αm(hm), hm)

= 2
√

ε(hm;w)(1 − ε(hm;w))

n∑

i=1

wi

which achieves its smallest value when the empir-
ical classification error ε(hm;w) approaches
either 0, its minimum, or 1, its maximum.
Notice that if the error ε(hm;w) > 1/2, then
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the corresponding weight αm is negative. In other
words, when the weak hypothesis hm makes more
mistakes than correct classifications, AdaBoost
automatically swaps the sign of the output label
so that ε(−hm;w) < 1/2. Finally, the weight
update Eq. (3) follows from

wi ← e−yiFm(xi ) = e−yFm−1(xi )e−yiαmhm(xi )

= wie
−yiαmhm(xi ).

Applications

One of the main uses of AdaBoost is for the
recognition of patterns in data. Recognition can
be formulated as a binary classification problem:
Find whether data points match the pattern of
interest or not. In computer vision, AdaBoost was
popularized by its application to object detection,
where the task is not only to recognize but also
to localize within an image an object of interest
(e.g., a face). Most of the ideas summarized in
this section were first proposed by Viola and
Jones [6].

A common technique for object detection is
the sliding window detector. This method reduces
the object detection problem to the task of clas-
sifying all possible image windows (i.e., patches)
to find which ones are centered around the object
of interest. In practice, windows may be sampled
not only at all spatial locations but also at all
scales and rotations. This results in a very large
number of evaluations of the classifier function
for each input image. Therefore, the computa-
tional efficiency of the classifier is of paramount
importance.

Classifiers computed with AdaBoost can be
made very computationally efficient by using
weak hypotheses that are fast to compute and by
letting AdaBoost select a small set of hypotheses
most useful to the given problem. For example, in
the Viola-Jones face detector, a weak hypothesis
is computed by thresholding the output of a linear
filter that computes averages over rectangular
areas of the image. These filters are known as

Haar wavelets and, because of their special struc-
ture, can be computed in constant time by using
the integral image [6].

In order to further improve the speed of a
sliding window detector, AdaBoost classifiers are
often combined in a cascade [6]. A cascade
exploits the fact that the vast majority of image
windows are not centered around the object of
interest and that, furthermore, most of these neg-
ative windows are easy to recognize as such.
A cascade is built by appending one AdaBoost
classifier after another. Classifiers are evaluated
sequentially, and an image window is rejected as
soon as the response of a classifier is negative.
All the classifiers are tuned to almost never reject
a window that matches the object of interest
(i.e., high recall). However, the first classifiers in
the cascade are allowed to return several false
positives (i.e., low precision) in exchange for a
significantly reduced evaluation cost, obtained,
for instance, by limiting the number of weak
hypotheses in them. By using this scheme, the
computationally costly and highly accurate clas-
sifiers are evaluated only on the most challenging
cases: windows that resemble the object of inter-
est and that therefore contain either the object
(i.e., a positive sample) or a visual structure
that can be easily confused with it (i.e., a hard
negative sample).

Finally, since each weak hypothesis is usually
associated with an elementary feature, AdaBoost
is also often used for feature selection. In
some cases, feature selection improves the
interpretability of the classifier. For instance, in
the Viola-Jones face detector, the first few Haar
wavelets selected by AdaBoost usually capture
semantically meaningful anatomical structures
such as the eyes and the nose.
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Synonyms

Affine projection

Related Concepts

�Affine Projection
� Perspective Camera
� Perspective Transformation
�Weak Perspective Projection

Definition

An affine camera is a linear mathematical model
to approximate the perspective projection fol-
lowed by an ideal pinhole camera.

Background

Perspective projections give accurate models for
a wide range of existing cameras, especially after
calibration for a limited volume of workspace.
However, the relationship from a 3D point
to its 2D image point is nonlinear due to
a scalar factor dependent of each individual
point (see entry � “Perspective Camera” for
details). Affine cameras are introduced to make
the projection model more mathematically
tractable. An affine camera model is a first-order
approximation obtained from Taylor expansion of
the perspective camera model around a reference
point. The reference point can be any point, but
it may be set to the centroid of the 3D points,
which results in a more accurate approximation.
There are three important instances of an affine
camera when the camera’s intrinsic parameters
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are known: orthographic, weak perspective,
and paraperspective projections. The reader is
referred to entry � “Weak Perspective Projection”
for a detailed description of the affine camera
model and its three instances.

Affine Invariants

Michael Werman
The Institute of Computer Science, The Hebrew
University of Jerusalem, Jerusalem, Israel

Definition

Affine invariants are properties that are invariant
under an affine map.

Different images of the same object can be
different and undergo various transformations
depending on changes in the camera and its
settings, the lighting, and the object itself. One
of the ways to handle some of these changes, for
tracking, search, and understanding images, is to
use a description of the object that is oblivious
to some of the abovementioned transformations.
Affine invariants, due to their expressiveness-
simplicity trade-off, are commonly used for this
purpose.

Background

There is a vast literature relating to affine invari-
ants, and only a small selection will be mentioned
[4, 5, 11, 13, 16].

Affine Transformation

x ⇒ Lx + t

is an affine transformation of x, where x ∈ Rn is
a vector, L ∈ Rn×n a matrix, and t ∈ Rn a vector.
L is a linear transformation, and t is a translation
[2].

Affine transformations are used to describe
different changes that images can undergo, such
as an affine transformation of the (r, g, b) color
values of an object under different lighting con-
ditions or the transformation the shape of the
image of an object undergoes when the camera
and object are in different relative positions. The
affine transformation in these cases does not nec-
essarily model the exact physical distortion that
is seen but often is a good approximation.

Affine Invariant
In order to have a property of an object that
is invariant to an affine transformation, affine
invariants can be used.

Let f be a function such that f (a, b, . . .) =
f (T (a), T (b), . . .) for any affine transformation
T and a, b, . . . ∈ Rn, f is an affine invariant.

A d-dimensional affine transformation has
d2 +d parameters, so in order to have a nontrivial
affine invariant, one needs a function with at more
than that many arguments, where the result can
be computed using algebraic elimination [9]. For
example, two simplices in Rd have at least d + 2
different points which are d2 + 2d arguments.

In a certain sense, the number of independent
invariants is the #(of parameters of a configura-
tion) −(d2 + d).

Noise
Even though the group of affine transformation
may be only a subgroup of the possible trans-
formations, for example, projective transforma-
tions for an image of planar scene, being affinely
invariant may be an overkill as most of the radical
transformations never really happen. Thus, noise
can be explained by affine transformations mak-
ing too many things close to each other.

Examples

First example Let p, q, r be real numbers;
then an affine transformation is
of the form x ⇒ αx + β; it
is easy to check that for any
three numbers p, q, r and affine
transformation parameters α, β,
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p − q

p − r
= (αp + β) − (αq + β)

(αp + β) − (αr + β)

[15, 17]
Second example We can generalize the first

example to any dimension, d.
The ratio of the volume of two
d + 1 sets of vectors in Rn

is an affine invariant (constant
Jacobian, |L|) where the volume
is the d +1×d +1 determinant:

∣∣∣∣
p q . . . r

1 1 . . . 1

∣∣∣∣

Algebraic curves Not only points can be
used to define affine invariance;
other common examples are the
parameters of curves, such as
the equations of lines, conics,
or other algebraic curves.
For degree two curves in the
plane, all ellipses are affinely
equivalent.

Affine differential geometry There are affine
invariant analogues of arc length
and curvature. In general it is
possible to find affine invariants
involving points and their
derivatives [3, 10, 12, 14].

Other parameters of the object Fourier
coefficients and moments.

There are other properties that are affine
invariant, such as incidence, parallelism,
centroids, barycentric coordinates, convexity,
tangency, bi-tangency, Euler number, and
connectivity.

If an object’s area is A, then integrating by
the area element divided by A is affine invariant,
for example, 1

A

∫
Object g(I (x, y))dxdy is affine

invariant, g being any function of the pixel’s
color.

Moments have been used to make affine
invariants [21], and CNNs have been used to
learn affine independence [19, 20].

Applications

Affine Invariant Feature Detection
There are a number of affine invariant feature
detectors that find affine invariant local features
in an image [7, 16]. One of the successes in
recent practice of computer vision was the SIFT,
a similarity invariant feature, and its extension to
an affine invariant feature, ASIFT [6, 8].

Normalization
There are normalizations that can be done to an
object that remove all/some of the possible affine
variation.

The center of gravity is a linear invariant,
so it is possible to translate the object so that
the object’s center is at a fixed coordinate, thus
removing the translation term, changing the prob-
lem from one of finding an affine invariant to a
linear invariant.

The whitening transform canonically trans-
forms a set of points using an affine transforma-
tion so that the average is 0 and the covariance
matrix is the identity, I .

Grassmannians
The set of labeled points modulo affine transfor-
mations are isomorphic to Grassmannians; using
this one can define a geometry of affine invariant
point sets and, for example, measure the distance
between affine invariant point sets [1, 18].

Correspondence
Another thing to notice is that usually there needs
to be some correspondence of the objects in
order to use these invariants, namely, the order
of the arguments of the function f needs to be
known, and the way to overcome this problem
is summing over all permutations making this
function invariant both to permutations. Another
possibility is using permutation invariant fea-
tures, for example, moments, which are built
from summing over all the points.
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Synonyms

Affine camera

Related Concepts

�Affine Camera
� Perspective Camera
� Perspective Transformation
�Weak Perspective Projection

Definition

An affine projection is a linear mathematical
model to describe the projection performed by an
affine camera. See entry � “Affine Camera” for
details.
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Synonyms

Affine alignment

Related Concepts

�Affine Camera
� Image Alignment
�Rigid Registration

Definition

The goal of affine registration is to find the affine
transformation that best maps one data set (e.g.,
image, set of points) onto another.

Background

In many situations data is acquired at different
times, in different coordinate systems, or from
different sensors. Such data can include sparse
sets of points and images both in 2D and 3D,
but the concepts generalize also to higher dimen-
sions and other primitives. Registration means
to bring these data sets into alignment, i.e., to
find the “best” transformation that maps one
set of data onto another, here using an affine
transformation. For the sake of brevity, in this
entry only the registration of two data sets is
discussed, although approaches exist for finding
consistent transformations that align more than
two sets at once (e.g., [1]). While intuitively in 1D
affine transformations compensate for scale and
offset, in any dimension they can represent the
first-order Taylor approximation (local lineariza-
tion) for nonlinear functions.

For more complicated transformations, often a
first affine registration is used as an initial solu-
tion that roughly aligns the data sets, followed
by some (potentially local or nonlinear) search
for more complicated parameters. In contrast to
rigid registration, which allows only an offset
and a rotation between the data sets, the affine
model allows also for the full set of linear shape
changes, including (nonisotopic) scale and shear.
In particular, locally this approximates perspec-
tive effects or other nonlinear warps. On the
other hand, affine registration uses still a single
global transformation with a set of a few global
parameters, which makes it mathematically easier
to handle but also less powerful as compared
to general nonrigid registration of deformable or
articulated objects.

Theory

Two important cases can be distinguished for reg-
istration, the purely geometrical case, where two
(finite) sets of points have to be registered, or the
continuous/functional case, where the similarity
of two functions must be maximized by an affine
transformation of the functions’ domain.

The Purely Geometrical Case
Let X and Y be two sets of points from R

m and
R

n, respectively, and without loss of generality,
it is assumed that m ≥ n. For now it is assumed
that the sets are of the same size and that there
exists an (unknown) affine transformation, such
that each element in X is mapped to an element in
Y . Then, the goal of affine registration is to find
this transformation, i.e., the matrix A ∈ R

n×m

and the offset t ∈ R
n, such as to minimize an

energy:

Ed =
∑

x∈X

min

y∈Y

dg(Ax + t, y) (1)

Here dg(a, b) encodes the distance between a and
b. Usually the points in X or Y are not available
directly but only their noisy observations (e.g.,
when y are observed 2D projections of known

https://doi.org/10.1007/978-3-030-63416-2_100038
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3D points and the parameters of the affine camera
[2] are sought). In that case affine registration
is based on these observations, and dg should
be chosen according to the noise distribution. If
the sets are not of the same size or not each
point in X corresponds to a point in Y , or in
case there are gross errors in the data, still Ed

can be minimized, e.g., with a robust cost func-
tion dg to obtain some alignment between the
sets [3]. Intuitively, in all these cases, A and
t are sought which minimize the average dis-
tance for a transformed point of X to the closest
point in Y .

In case bounds on A and t are known, a simple
way to find an approximate solution is to sample
the (continuous) space of all possible matrices A

and offsets t , but this is usually computationally
intractable. If it is known which points in X

correspond to which others in Y , i.e., there is a
set of pairs (xi, yi), the energy can be rewritten
as

Ec =
∑

xi∈X

dg(Axi + t, yi) (2)

In case dg(a, b) = ||(a −b)||22, this can be solved
explicitly. A contains mn unknowns, t contains
n unknowns, and from each correspondence n

observations can be obtained, so from counting
it is clear that at least m + 1 correspondences
are required to uniquely determine a solution
(assuming they are in a general configuration
and not, e.g., only on a line). In case the cor-
respondences contain gross errors (mismatches,
outliers), then the solution can be obtained using
robust estimation techniques such as least median
of squares [4] or RANSAC [5].

In case correspondences are not known but
the data sets are already approximately aligned,
it can be assumed that the closest neighbors are
in correspondence. In this case the problem can
be solved by using the iterative closest points
(ICP) method [6–8]. Locally, for each point the
offset to the closest point in the other data set is
computed, and by collecting all the local offsets,
a global affine transformation is estimated that
aligns these sets (in a least squares sense accord-
ing to Eq. 2). This transformation is applied to
recalculate the nearest neighbor correspondences,

and the estimation step is repeated with these.
In [9] efficient implementations and practical
aspects of ICP have been studied. However, since
ICP relies on local neighborhoods, it cannot cope
well with situations where initially close points
must be moved far away.

A technique proposed for this is based on
normalization (as suggested, e.g., by [10]): Here,
the means of the data sets are computed individ-
ually and t is defined as the difference of the
means. Then, for each data set, the (unbiased)
covariance is computed, and the matrices AX,AY

are searched that bring the respective point dis-
tributions to a unit covariance matrix (whitening
of covariance). The two data sets now only differ
by an orthogonal matrix that may be obtained by
sampling or finding other characteristics in the
data (cf. also [11]). However, this normalization
approach assumes that the data sets overlap fully.

In general, similar concepts can be applied
as for rigid registration, however, with a slightly
different set of parameters.

The Continuous/Functional Case
Let I and J be functions (images) from R

n to
R

d , assigning some color value to each position,
typically in the plane or in space. The function
value will be referred to as the color hereafter,
regardless of its physical meaning. In this case
the affine registration can be stated as the mini-
mization of an energy:

E =
∫

x

dc(I (Ax + t), J (x))dx (3)

Here, dc is a distance between two colors that
should be chosen according to the expected mea-
surement uncertainty of the colors. Very similar
to the discrete case, a naive strategy to minimize
this energy would be sampling; however, this
is again computationally expensive and requires
bounds on the parameters.

A possible solution is to compute local image
features, such as corners, blobs, and so on (cf. to
[12]), and – if possible – find correspondences
among these features. There has been a huge
body of work to particularly define features that
can be detected reliably with affine changes of
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image coordinates. A comparison can be found
in [13]. Given those the discrete methods of the
previous section can be used to find an align-
ment A, t .

Afterward, or in case A and t were approxi-
mately known from the beginning and if I and J

are smooth, then the alignment can be performed
by local linearization as proposed by Lucas and
Kanade [14]. The assumption is that locally
the image can be represented by its first-order
Taylor approximation, i.e., the local color and the
gradient:

I (x) ≈ I (x0) + ∂I

∂x
(x0 − x)︸ ︷︷ ︸

�x

(4)

Consequently, given two almost aligned images,
at position x0

J (x0) − I (x0)︸ ︷︷ ︸
�I0

≈ ∂I

∂x

∣∣∣∣
x0

�x (5)

Stacking r of these equations on top of each other,
an equation system is obtained:

⎛

⎜⎜⎜⎜⎜⎝

�I0

�I1

. . .

�Ir−1

⎞

⎟⎟⎟⎟⎟⎠
≈

⎛

⎜⎜⎜⎜⎜⎜⎝

∂I
∂x

∣∣
x0

∂I
∂x

∣∣
x1

. . .

∂I
∂x

∣∣
xr−1

⎞

⎟⎟⎟⎟⎟⎟⎠
�x (6)

This can be solved in a least squares sense to
obtain �x.

Similar to the local image gradient with
respect to position, also the partial derivatives
with respect to affine transformation parameters
can be computed [14]. In this case, �x (and
also ∂x) contains n(n + 1) parameters (n2 for
the linear shape change and n for the offset).
At least n(n + 1) equations are required to
uniquely solve this. Often, to increase the basin
of convergence, coarse-to-fine registration is
applied. This can be implemented using image
pyramids in case the uncertainty lies mostly in the
offset parameters or by propagation of the affine
parameter uncertainty to position uncertainty in

the image and appropriate smoothing [15]. After
having applied the estimated update �x on the
parameters, the steps can be applied repeatedly
to register the two images. In [16] Baker and
Matthews compare different formulations of
such iterative, gradient-based image alignment,
particularly the question of how to compose and
parameterize the warps across multiple iterations.

On top of transformations on the domain of
the images, often the two images differ in target
(e.g., the colors of corresponding positions are
related by some brightness offset), in which case
also parameters for the change of color need to
be estimated. In case the corresponding image
colors are only statistically related but no explicit
transformation model between colors is known,
the concept of mutual information [17] might
be used, where the entropy of the joint color
histogram is minimized. An overview of image-
based alignment can be found in [18, 19].

Application

Affine cameras [2] approximate a real camera
by an affine mapping of 3D points to 2D image
coordinates. For tracking local regions through
videos, it has been shown [20] that keeping
track of the affine deformations of local regions
can help detecting tracking failures. Such affine
warps, or those implied by correspondences
of affine features between different images,
represent the local linearization of a potentially
nonlinear image warp (e.g., of perspective
effects). If the structure of this nonlinear warp is
known, the affine registration can allow inferring
the global warp directly [21] or provide more
constraints than just using the position of a region
correspondence. In general, affine registrations
often provide a reasonable solution to align mean,
linear shape, and orientation of data without
making the transformation too problem specific,
or the affine solution can serve as a basis for
further more advanced alignment. Furthermore,
multiple independent or coupled local affine
registrations can help in registering articulated
or deformable models.
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Synonyms

Implicit polynomial curve

Related Concepts

�Algebraic Surface

Definition

An algebraic curve is a curve determined by a
2-D implicit polynomial (IP) of degree n:

fn (x) =
∑

0≤i,j ;i+j≤n

aij x
iyj

= (
1 x . . . yn

)
︸ ︷︷ ︸

mT

(a00 a10 . . . a0n)︸ ︷︷ ︸
a

T = 0,

(1)

where x = (x, y)T is the coordinate of a point
on a curve. That is, the curve is always rep-
resented by fn’s zero level set: {x|fn(x) = 0}.
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The polynomial function is usually denoted by
an inner product between two vectors: monomial
vector m and coefficient vector a. For the entries
in these vectors, indices {i, j} can be arranged
in different orders, such as lexicographical order
or inverse lexicographical order. In addition, the
homogeneous binary polynomial of degree r in x
and y,

∑
i + j = r aij xi yj, is called the r-th degree

form of the IP. The form of degree n is called
the leading form. The degree of an algebraic
curve is the degree of the polynomial (e.g., n).
An algebraic curve of degree 2 is called a conic,
degree 3 a cubic, degree 4 a quartic, and so on.

Background

In computer vision, representing 2-D data sets
with algebraic curves has been studied exten-
sively for the past three decades. It is attractive
for vision applications due to its applicability to
object recognition, pose estimation, and regis-
tration. In contrast to the curves represented by
other functions such as splines, Fourier, rational
Gaussian, and radial basis function, algebraic

curve is superior in such areas as fast fitting,
few parameters, algebraic/geometric invariants,
and robustness against noise and occlusion. Alge-
braic curve is also capable of modeling non-star
shapes, open curves, curves that contain gaps,
and unordered curve data. However, algebraic
curve representation still suffers from some major
issues such as the lack of local accuracy and
global stability when representing a complex 2-D
shape (see [7]). Figure 1 shows some example
algebraic curves successfully used to represent
closed 2-D curves.

Application and Theory

Algebraic curve representation is mainly attrac-
tive for vision applications such as fast shape
registration or pose estimation [3, 6, 8, 9, 12]
and recognition [2, 4–6, 9–11]. To achieve these
purposes, many efforts have been made in three
topics: curve fitting, algebraic/geometric invari-
ants, and curve registration. The first is about
solving the problem of accurately and stably
fitting an algebraic curve to a complex shape, the

Algebraic Curve, Fig. 1 Examples of algebraic curves. Top row: original data sets; bottom row: represented algebraic
curves
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second is on extracting algebraic or geometric
invariants from the algebraic curve representing
a shape, and the third concerns estimating the
Euclidean transformation(s) between two or more
algebraic curves representing different instances
of the same shape.

Curve Fitting. There have been great improve-
ments concerning algebraic curve fitting with its
increased use during the late 1980s and early
1990s [8]. Recently, new robust and consistent
fitting methods like 3L fitting [1], gradient-one
fitting with Rigid regression [7], and degree-
adaptive fitting [13] that are suitable for vision
applications have been introduced.

Algebraic/Geometric Invariants. The main
advantage of the use of algebraic curves
for recognition is the existence of alge-
braic/geometric invariants, which are functions
of the polynomial coefficients that do not change
after a coordinate transformation. To some major
contributions, the global Euclidean invariants
are found by Taubin and Cooper [9], Teral
and Cooper [6], and Keren [2], which can
be expressed as simple explicit functions of
the IP coefficients. Wolovich et al. [11] also
introduced a set of invariants from covariant
conic decompositions of implicit polynomials.

Curve Registration. In prior literatures [6, 9],
global shape registration is performed through
a single (non-iterative) computation using the
central and oriented information extracted from
the polynomial coefficients of two algebraic
curves. Recently, an iterative method for aligning
partially matched curves that uses the distance
measurement of the polynomial gradient field
together with a fast polynomial transformation
has been introduced [12].

References

1. Blane M, Lei ZB, Cooper DB (2000) The 3L algo-
rithm for fitting implicit polynomial curves and sur-
faces to data. IEEE Trans Pattern Anal Mach Intell
22(3):298–313

2. Keren D (1994) Using symbolic computation to find
algebraic invariants. IEEE Trans Pattern Anal Mach
Intell 16(11):1143–1149

3. Keren D, Cooper D, Subrahmonia J (1994) Describ-
ing complicated objects by implicit polynomials.
IEEE Trans Pattern Anal Mach Intell 16(1):38–53

4. Oden C, Ercil A, Buke B (2003) Combining implicit
polynomials and geometric features for hand recog-
nition. Pattern Recogn Lett 24(13):2145–2152

5. Subrahmonia J, Cooper DB, Keren D (1996) Practical
reliable Bayesian recognition of 2D and 3D objects
using implicit polynomials and algebraic invariants.
IEEE Trans Pattern Anal Mach Intell 18(5):505–519

6. Tarel J, Cooper DB (2000) The complex representa-
tion of algebraic curves and its simple exploitation
for pose estimation and invariant recognition. IEEE
Trans Pattern Anal Mach Intell 22(7):663–674

7. Tasdizen T, Tarel J-P, Cooper DB (2000) Improv-
ing the stability of algebraic curves for applications.
IEEE Trans Imag Proc 9(3):405–416

8. Taubin G (1991) Estimation of planar curves, sur-
faces and nonplanar space curves defined by implicit
equations with applications to edge and range image
segmentation. IEEE Trans Pattern Anal Mach Intell
13(11):1115–1138

9. Taubin G, Cooper DB (1992) Symbolic and numeri-
cal computation for artificial intelligence, chapter 6,
Computational mathematics and applications. Aca-
demic, London

10. Unel M, Wolovich WA (2000) On the construction
of complete sets of geometric invariants for algebraic
curves. Adv Appl Math 24:65–87

11. Wolovich WA, Unel M (1998) The determination
of implicit polynomial canonical curves. IEEE Trans
Pattern Anal Mach Intell 20(10):1080–1090

12. Zheng B, Ishikawa R, Oishi T, Takamatsu J, Ikeuchi
K (2009) A fast registration method using IP and
its application to ultrasound image registration. IPSJ
Trans Comput Vis Appl 1:209–219

13. Zheng B, Takamatsu J, Ikeuchi K (2010) An adaptive
and stable method for fitting implicit polynomial
curves and surfaces. IEEE Trans Pattern Anal Mach
Intell 32(3):561–568

Algebraic Surface

Bo Zheng
Computer Vision Laboratory, Institute of
Industrial Science, The University of Tokyo,
Meguro-ku, Tokyo, Japan

Synonyms
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Related Concepts

�Algebraic Curve

Definition

Similar to an algebraic curve, an algebraic sur-
face is determined by a 3-D implicit polynomial
(IP) of degree n:

fn (x) = ∑
0≤i,j,k;i+j+k≤n

aijkx
iyj zk

= (
1 x y z . . . zn

)
︸ ︷︷ ︸

mT

(a000 a100 a010 a001 . . . a00n)
T

︸ ︷︷ ︸
a

= 0,

(1)

where x = (x, y, z) is a 3-D point on a surface,
that is, the surface is always represented by fn’s
zero level set: {x| fn(x) = 0}. The polynomial
function can be denoted by an inner product of
two vectors: monomial vector m and coefficient
vector a. For the entries in these vectors, indices
{i, j, k} can be arranged in different orders, such
as lexicographical order or inverse lexicograph-
ical order. In addition, the homogeneous binary
polynomial of degree r in x, y, and z,

∑
i + j + k = r

aijk xi yj zk, is called the r-th degree form of the
IP. The n-th form is also called leading form.
The degree of algebraic surface is the degree of
polynomial: n. An algebraic surface of degree 2 is
called a quadric surface, degree 3 a cubic surface,
degree 4a quartic surface, and so on.

Background

In computer vision, representing 3-D surface
data sets with algebraic surfaces has been
also well studied. It is attractive for vision
applications such as 3-D object recognition, pose
estimation, and registration. In contrast to other
surfaces represented by the functions such as
Splines, Fourier, Rational Gaussian, and radial
basis function, algebraic surface is superior in

such areas as fitting efficiency, few parameters,
convenience for calculating algebraic/geometric
invariants, and robustness against noise and
occlusion. Algebraic surface is also capable of
modeling nonstar shapes, open curves, curves
that contain gaps, and unordered curve data.
However, algebraic surface representation still
suffers from some major issues such as the
lack of accuracy and stability when representing
a complex 3-D shape. Figure 1 shows some
examples of algebraic surfaces representing for
3-D surface data sets.

Application and Theory

Algebraic surface representation is mainly attrac-
tive for vision applications such as 3-D object
registration or pose estimation [2, 4, 8, 10, 11,
13] and recognition [3, 6, 8, 11]. To achieve
those purposes, many efforts have been made in
three topics: surface fitting, algebraic/geometric
invariants, and 3-D object registration. The first
topic faces the problem of how to fit an algebraic
surface to a complex 3-D shape accurately and
stably; the second topic focuses on the problem of
how to extract algebraic or geometric invariants
from a 3-D shape-representing polynomial; and
the third topic concentrates on the task of how
to estimate the rigid transformation relationship
between two algebraic surfaces representing the
same object in different positions.

Surface Fitting
There have been great improvements concern-
ing algebraic surface fitting with its increased
use during the late 1980s and early 1990s [10].
Recently, new robust and consistent fitting meth-
ods such as 3L fitting [1], gradient-one fitting
with Rigid regression [5, 9], and degree-adaptive
fitting [14] have been proposed to make the
algebraic surface representation more feasible for
vision applications.

Algebraic/Geometric Invariants
The main advantage of algebraic surfaces
for recognition is the existence of algebraic/
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Algebraic Surface, Fig. 1 Examples of algebraic surfaces. Top row: original 3-D data sets of torus, simple shape with
noise, and bunny; bottom row: resulting algebraic surface fits of degree 4, 4, and 8, respectively

geometric invariants, which are functions
of the polynomial coefficients that do not
change after a coordinate transformation. The
algebraic/geometric invariants that are found by
Taubin and Cooper [11], Teral and Cooper [8],
and Keren [3] are global invariants and are
expressed as simple explicit functions of the
coefficients. Another set of invariants that have
been mentioned by Wolovich et al. is derived
from the covariant conic decompositions of
implicit polynomials [12].

3-D Object Registration
In prior literatures such as [7, 11], the global
shape registration is performed through single
(non-iterative) computation after obtaining the
central and oriented information extracted from
polynomial coefficients. An iterative method in
[13] is proposed by using the distance metric
generated from polynomial gradient field and fast
polynomial coefficient transformation.
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Synonyms

Active vision; Purposive vision

Definition

Animat vision is the computational study of the
visual systems used by animals, with special

attention to the binocular systems used by
humans. For human vision, the goal is to show
how the characteristics of the human eye move-
ment system can be used to make the computation
of needed information more efficient.

Background

The field of computer vision was given an
enormous impetus by the publication of
Rosenfeld’s seminal book Picture Processing
by Computer [28] in 1969, but in the 1970s
the research focus shifted to human vision with
the exciting new formulations of early vision
that recognized that the human visual system
devoted enormous resources to extracting cues
such as binocular disparity, color, and motion
from their composite representation in the initial
image. Two groups were especially influential:
the group at MIT headed by David Marr and
Tomas Poggio [21] and the group at SRI headed
by Harry Barrow and Martin Tanenbaum [8].
David Marr in particular had an enormous effect
on the field and his book, Vision, is a classic [20].

While the early vision paradigm had a won-
derful impact of defining computation in vision,
by the early 1980s it was apparent that the com-
putations defined on static images were mathe-
matically delicate and could only be tamed with
exceptional ingenuity. Thus the idea evolved that
perhaps a moving camera, with known move-
ment parameters, would help. An early effort was
undertaken at MIT, but the first complete working
system was built at the University of Pennsyl-
vania by Ruzena Bajcsy who coined the term
active perception to describe it [5]. That system
was unveiled at a computer vision conference in
northern Michigan run by Avi Kak and had an
instantaneous acceptance among the researchers
present.

Very shortly afterwards, Christopher Brown
and the author built a similar system that had a
significant advantage. Brown was tracking video
processing pipeline computers and realized that
this evolving computer architecture, when com-
bined with a servo-driven binocular camera sys-
tem, would allow the new computations to be
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Animat Vision, Fig. 1
The University of
Rochester real-time
servo-driven robotic
“head” mounted on its
large PUMA “body.”
Similar systems were built
at KTH in Stockholm,
Carnegie Mellon
University, MIT, the
University of
Pennsylvania, as well as
many other places

realized in real time. The complete system is
shown in Fig. 1. Subsequently the appearance of
video-rate graphics cards capable of doing real-
time image operations served to spur progress.
Originally driven by the needs of the computer
games industry, researchers quickly realized that
now a large amount of the expensive visual cal-
culations could be done in real time. The net
result is that animat/active vision moved to lower-
cost mobile robotic platforms with the result
that robots using a moving cameras on mobile
platforms are now commonplace.

Along the mainstream path of robotic ani-
mats, Rodney Brooks at MIT, perhaps inspired
by Shimon Ullman’s concept of visual routines,
realized that the jobs that vision had to do now
became preeminent and built MIT’s humanoid
robot Cog to focus on task-based vision. The
particular architecture advocated may not have
caught on, but the point was made and the system
has been enormously influential. Two diverse
communities – robotics and psychology – have
been working on cognitive architectures for man-
aging complex tasks that take a more integrated
approach to vision and action, and both have
recognized that the ultimate model architecture
will have a hierarchical structure, e.g., [3, 11,

12, 16, 23]. Robotics researchers have gravitated
to a three-tiered structure that models strategic,
tactical, and detailed levels in complex behavior
[10].

Theory

Animat vision, like its larger cousin active vision,
is a paradigm with a huge number of important
papers outstanding, with the consequence that it
is only possible to provide the barest of outlines
here. The interested reader is referred to some of
the early papers [2, 6, 32]. Here we will demon-
strate the impact on the calculation of early vision
and introduce some more recent developments.

Consequences for Early Vision
Consider the problem of computing just one of
the useful early vision representations, that of
optic flow. Three-dimensional motion due to a
moving observer induces the projection of two-
dimensional motion on the retina. If the time-
varying image function f(x, y, t) represents only
this effect, then the differential equations that
represent the relationship between optic flows
(u(x, y, t), v(x, y, t)) can be related to changes
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in photometric intensities ∂f
∂x

,
∂f
∂y

,
∂f
∂t

with the
equation, captured at the sensor to the image
intensity M by

∂f

∂x
u + ∂f

∂y
v + ∂f

∂t
= 0 (1)

The conundrum of early vision can be easily
apparent: At each point in the image x, y at time
t, there is a single equation in two unknowns u,
v. Poggio famously characterized this as an “ill-
posed problem.” A plethora of solution methods
were tried, but they almost all involved integrat-
ing information across the optic array, a very
delicate process. In contrast, moving the camera
view point immediately solves this problem. If
the motion is under the control of the human
observer, then, say for the case of horizontal
motion, to a first approximation one can assume
a reliable estimate for u, and of course the system
reduces to a well-behaved two equations in two
unknowns. This kind of simplification surfaces
again and again in early vision, and many novel
instances of this kind of constraint still remain to
be discovered.

The Importance of Eye Fixations
Yarbus’s original work in gaze recordings [37]
in the 1950s and 1960s revealed the enormous
importance of gaze in revealing the underlying
structure of human cognition. From this perspec-
tive, it is somewhat surprising that the first sig-
nificant computational theory of vision [20] post-
poned the study of gaze as well as any influence
of cognition of the extraction of information from
the retinal array. In his “principle of least com-
mitment,” Marr argued the case for the role of
the cortex in building elaborate goal-independent
descriptions of the physical world. Perhaps as
a consequence, when researchers took on the
task of defining the mechanisms for directing
gaze deployment, these turned out to be predom-
inantly image based [18, 19, 36]. These theories
have been compelling, but have many drawbacks.
They usually cannot predict the exact landing
points and typically leave more than 30% of the
fixations unaccounted for.

Recent experiments show that fixations are
extracting very specific information needed by
the human subject’s ongoing task [14, 34]. The
task context introduces enormous economies into
this process that are very obvious: If a subject
needs to pick up a red object, the search for
that object can be limited to just red portions of
the image; vast amounts of extraneous detail can
be neglected. The visual information-gathering
specificity of almost every portion of every task
will introduce similar economies. Knowledge of
task also has the promise of interpreting a sub-
stantial literature devoted to “change blindness.”
Subjects fail to notice large changes between
successive images or movie frames. While the
exact reason for this has been the subject of con-
troversy [22], the problem may be resolvable if
one has access to the viewer’s cognitive agenda.
On agenda changes are noticed and off agenda
changes are not.

Theoretical Breakthroughs in Task
Modeling
What experiments testing the information
extracted during a fixation have lacked is a
theory that accounts for the role of the cognitive
processes that are controlling the subject’s
behaviors. What form should such a theory take?
There have been several enormous theoretical
advances, mostly from the fast emerging field
of machine learning, that promise to have an
enormous impact on quantitatively testable
theories of cognition. The requirements of animat
vision suggest that such a cognitive theory will
have three important elements: (1) probabilistic
representations, (2) the use of reward in learning,
and (3) embodied cognitive architectures.

1. Probabilistic methods. There is rapidly
increasing recognition that the brain is a
probabilistic device and maintains a variety
of mechanisms for calculating the statistical
model of the world around it and its actions
upon that world. To handle this a major
new representational formalism has been
developed that goes under the name graphical
models. Originally developed by Pearl [26],
such models have seen refinement as a general
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way to factor complex statistical interdepen-
dencies into to locally calculable quantities.
The result is that the maintenance of elaborate
statistical dependencies has become practical.
Furthermore, Bayesian models of these
interdependencies have proven their worth
in characterizing many different observations
in visual perceptions [35, 38].

2. Reinforcement Learning. A second break-
through has been the development of model-
making algorithms that are programmed by
reward. It has long been appreciated that the
brain must have mechanisms to learn complex
behaviors and that these mechanisms must be
steered by some scalar affinity signal. For
the dominant effects the neurotransmitter
dopamine has been implicated as the major
signaling mechanism. Schultz, Glimcher,
and others have made the connection
between dopamine and reinforcement learning
algorithms [17, 27, 33], the latter which
by themselves have seen rapid development
[1, 9]. Reinforcement learning algorithms are
in their infancy but hold the promise of being
and integral part of a comprehensive theory of
animat vision learning.

3. Embodied Cognition. As emphasized by a
number of researchers, the brain cannot be
understood in isolation as so much of its
structure is dictated by the body it finds
itself in and the world that the body has to
survive in [7, 13, 24, 25, 29]. This has special
important implications, particularly for the
cognitive architectures, because the brain can
be dramatically simpler that it could ever be
without these encasing milieus. The reason is
that the brain does not have to replicate the
natural structure of the world or the special
ways of interacting with it taken by the body
but instead can have an internal structure
that implicitly and explicitly anticipates these
commitments. The brain just has to have an
interface that allows successful interactions
with the world, but does not have to explicitly
model all the detailed consequences of the
actions taken. This realization opens up a way
to address the challenge of making the leap
from the apparent simplicity of the observed

behaviors to the complexity of the brain-
body-world system that produces them and
that is to see the behaving body itself as
a laboratory instrument. From this vantage
point, the momentary disposition of the eyes,
head, and hands during the course of behavior
reveals essential details about the underlying
cognitive program that is making those
choices.

Open Problems

Although the importance of body in cognition has
been stressed at least since Merleau-Ponty, until
the middle of 1980s, it was only practical to study
very controlled circumstances such as those made
by an experimental subject seated in front of a
small display.

The research program at Rochester pioneered
the study of embodied, visually driven behav-
iors by the development of innovative labora-
tory equipment and techniques. With Pelz at
the Rochester Institute of Technology [4], they
were the first laboratory that were able to track
the eyes inside a head-mounted display. This
capability allowed the exploitation of another
recent development: Virtual Reality(VR). It is
now straightforward to render scenes in real time
from a moving observer’s vantage point that are
extraordinarily close to the real thing. Thus a
person can have the compelling illusion of being
in a fictional world that at the same time is
under experimental control. This capability, in
turn, has allowed researchers to address many
new experimental questions for the first time. For
example, one can study a person’s disposition of
visual resources in these virtual worlds by using
the eye trackers inside the head-mounted display
to manipulate the information that is available at
each fixation [14, 30, 34].

Now flexible portable instrumentation can
be attached to the body during the course
of extended natural behaviors. Eye tracking
capability that started out requiring subjects
to be restrained in a bite bar has evolved to
the point where portable trackers can be worn
during a squash match. Head, hand, and body



56 Animat Vision

movements, even those of the facial muscles
during expressions, can be reliably captured at
high data rates during tea making, athletics, and
everyday conversation. The new instrumentation
opens up the possibility of acquiring large
amounts of such data at millisecond time scales
during these natural behaviors and thus provides
access to the essential choices made in directing
behavior under natural circumstances.

Obtaining such data from behavior and mod-
eling it has led to another new question: How
does one become confident that the models one
builds are accurate? Answering this question has
led to another new development and that is sim-
ulated human modeling. It is now possible to
create models of humans that have the degrees
of freedom of the skeletal system and also the
capabilities of the binocular vision system [15,
31]. Thus one can build a human avatar that
acts out the cognitive models obtained by fitting
human data. A bonus is that one can test the
models in completely new situations that were
not part of the original human data gathering and
observe their performance. This in turn can lead
to an iterative refinement of the models and new
experiments. However the most important aspect
of this animat vision research avenue is the test-
ing of the embodied cognition hypothesis with a
suitably rich model. Our everyday experience and
introspection as to the nature of the execution of
everyday tasks has proven very misleading as to
the brain’s underlying representations owing to
the artfulness of conscious experience.
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Synonyms

Appearance-based pedestrian detection

Related Concepts

�Object detection

Definition

Human detection may be seen as a classi-
fication problem with two classes: human
and nonhumans, in which the latter class is
composed of background samples containing
anything but humans. When the appearance-
based human detection is employed, a large
number of examples of human and nonhumans
are considered to capture different poses,
backgrounds, and occlusion situations through
the extraction of feature descriptors so that a
machine learning method can be used to classify
samples as belonging to either one of the classes.

Background

Due to the large number of applications that
require information regarding people’s location,
such as autonomous vehicles, surveillance, and
robotics, finding people in images or videos
presents large interest of the community. Even
though widely studied in recent years [1], the
human detection problem is still a challenge
due to the wide variety of poses, clothing,
background, and partial occlusions, which
generate a large number of person’s appearances.
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Two main approaches have been explored in
the human detection literature. The first class
of methods consists of a generative process
that combines detected parts of the human
body according to a model. The second class
considers statistical analysis through the use
of machine learning techniques to classify a
feature vector composed of low-level feature
descriptors extracted from a detection window.
This approach, also referred to as appearance-
based, captures the appearance information and
focuses on the discrimination between human
and nonhuman samples.

Theory

Appearance-based human detection presents two
important aspects: feature extraction and classifi-
cation. Once both aspects have been considered,
the training and test (detection) steps can be
performed.

The feature extraction is responsible for
capturing the visual information from the
scene, such as the presence of strong vertical
edges, homogeneous textured clothing, or color
constancy in the face. Such characteristics, useful
for human detection, will be extracted using
low-level feature descriptors. It has been shown
that the combination of these characteristics
improves detection results [2]. Among the most
used feature descriptors are the histograms
of oriented gradients (HOG) [3], local binary
patterns (LBP) [4], and Haar wavelet-based
features [5].

The second relevant aspect is the choice of
a machine learning method capable of classify-
ing between humans and non-humans by giving
higher importance to those descriptors that best
distinguish between the two classes. Among the
most employed methods are the linear discrimi-
nant analysis (LDA), neural networks (NN), sup-
port vector machines (SVM), and partial least
squares (PLS).

Appearance-Based
Human Detection, Fig. 1
Example of the human
detection process. Image
sample extracted from the
INRIA Person dataset [3]
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The training step is responsible for learn-
ing parameters of the machine learning meth-
ods such that the differences between the two
classes can be properly captured. For that, fea-
tures are extracted from multiple samples from
both classes, and the descriptors are stored in
feature vectors. It is important to emphasize that a
good training set is important to assure that vari-
ations of the human appearances are captured.
Each classification method presents a different
way of learning the differences. For example,
while SVM finds support vectors that maximize
the margins between both classes, PLS will give
more weight to those dimensions of the feature
vector that best discriminate between the classes.
In addition, it is important to note that a good
training set is also important to assure that vari-
ations of the human appearances are captured.

Once the training has been performed, a slid-
ing window is passed in the image at multiple
scales to locate humans at different locations and
scales. For each location, features are extracted
and stored in a feature vector, which is then pre-
sented to the classifier. The output for each detec-
tion window is a value that reflects the probability
or confidence in which a human is located inside
the detection window. Figure 1 illustrates the
detection process of a typical appearance-based
human detection method.

Application

In general, the human detection is of interest
in any application that falls inside the Looking
at People [6] (domain which focuses primar-
ily in analyzing images and videos containing
humans). For example, a human detector can
be used to provide the location of each agent
in a scene so that tasks such as tracking, re-
identification, action, and activity recognition can
be executed by a surveillance system. In addition,
a human detector can be executed in the domain
on autonomous navigation, where the location of
the pedestrians will be used as information for
path planning. Furthermore, the use of human
detection systems embedded in vehicles may be
very useful to assure pedestrian safety [7].
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Synonyms

Human appearance modeling and tracking;
Human body tracking

Related Concepts

�Human Pose Estimation

Definition

Appearance-based human tracking is the task of
tracking the areas that belong to a person over a
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set of consecutive frames in a video, where the
measurements are made based on the appearance
of the human body such as color, intensity, edge,
gradient, texture, shape, and their combination.

Background

Various human tracking algorithms have been
proposed so far, but the focus of each algorithm
is different. Appearance-based human tracking
is an algorithm to track human based on the
similarity between the current appearance model
and the observation from an input image; the
control and search algorithms in tracking are
arbitrary. Several different features have been
employed including color, edge, gradient, tex-
ture, shape, etc., and multiple features are often
integrated together for more robust observations.
The appearance of human based on the fea-
tures is represented by density function, his-
togram, template, and feature descriptors. For
the representation of human body, the spatial
layout of the features is typically considered to
model the appearance of human. The appear-
ance models can be constructed for the entire
human body, a few subregions of the human body,
or the individual articulated human body parts,
depending on the target state spaces and tracking
algorithms.

Generic tracking algorithms can be employed
to track a blob-based human with a simple
appearance model in a low-dimensional state
space. However, in case of articulated human
body tracking, the dimensionality of target
state space is typically very high, and the
inference procedure of the complex human
body configuration is generally complex; more
efficient and specialized tracking algorithms are
required.

Theory

Methodologies of Appearance Models
Two aspects—integrated features and mathemat-
ical representation techniques—are considered to
characterize the appearance-based human track-
ing.

Features Integrated
The appearance for human tracking is modeled
with color [6, 9, 11], silhouette [3, 13], shape [5,
7, 14], edge [3, 10, 12], or texture.

Representation Methods
Some appearance modeling techniques assume
that the appearance of human body is consistent
horizontally. With the assumption, the human
body is represented with multiple histograms [9]
or density functions [6] based on a cylinder
model as in the left subfigure in Fig. 1. Another
method is a path-length model [15], where the
spatial variations are modeled by the distance
from the head along the shape of the person as
shown in the right subfigure in Fig. 1 and feature-
spatial distribution is constructed for appearance
modeling [4]. Template is also frequently used
[2, 8, 12], and probabilistic template is integrated
in [1].

With the assumption, the human body is rep-
resented with multiple histograms [9] or density
functions [6] based on a cylinder model as in the
left subfigure in Fig. 1.

Acquisition and Maintenance of
Appearance Models
The appearances may be fixed throughout the
sequence or adaptive to the variations of human
body appearance. The initialization of the appear-
ance can be performed based on (manual or auto-
matic) human detection. In [8,12], the appearance
of each body part of human is learned in an online
manner based on simple features obtained in off-
line process.

Tracking Control and Search
Human tracking can be classified into two types
based on the description method of human body;
one is blob-based tracking, and the other is
articulated human body tracking. In case of blob-
based tracking, tracking algorithm is simple,
and the state space of the target is typically low
dimensional. The algorithms in this type have no
big difference from generic tracking algorithms
for other objects; a major difference is that human
tracking algorithms often divide target into a few
subregions based on appearance consistency to
improve measurement accuracy. However, the
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Appearance-Based Human Tracking: Traditional
Approaches, Fig. 1 Some examples to model spatial
layout of a person in human appearance modeling. (Left)
The appearance model is developed for each height slice

of a person. (Fig. 2 in [9]) (Right) The path length is the
distance from the top of the head to a given point on the
path (Fig. 2 in [15])

articulated human body tracking involves very
high-dimensional state space (typically more than
20 dimensions) and complicated probabilistic
inference procedures; efficient tracking control
and search algorithms are required to handle the
challenges such as annealing [1, 3], message
passing [8], and covariance sampling [13] in
particle filter framework.

Application

Appearance-based human tracking has a lot of
potential applications such as in activity recogni-
tion, event detection, video understanding, visual
surveillance, autonomous driving, and vision-
based user interface in computer games.
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Synonyms

Visual potential graph

Related Concepts

�Aspect Graph

Definition

An aspect is defined as a set of topologically
equivalent views of a three-dimensional object.
An aspect graph of an object is a graph that
contains all aspects of the object as nodes with
edges connecting to adjacent aspects. It describes
transitions, referred to as visual events, between
aspects of the object in a three-dimensional
viewer’s space.

Theory

An aspect graph denotes segmentation of the
possible view space into regions based on the
topology of views of the object. Koenderink and
van Doorn originally proposed the concept of
aspects [11, 12]. A similar idea can be found in
the work of J. J. Gibson [5] and M. Minsky [14].
The work of Chakravarty and Freeman employs
a similar concept, referred to as characteristic
views [3].

For the sake of a simple explanation, let’s
consider the two-dimensional case of view-space
segmentation of a triangle (a convex polygon),
which consists of three edges (2-dimensional
faces), A, B, and C as shown in Fig. 1. A two-
dimensional observer in the view-space can only
move on the same two-dimensional plane of the
triangle and cannot depart from the plane. This
infinite 2D plane of the view-space is divided into
seven regions. One region is the original triangle,
with six additional regions defined by extending
the lines of the three edges as shown in Fig. 1.

Each region is characterized by the edges
(two-dimensional faces) visible from that region.
For example, from any point inside region A, the
observer can only see the edge A, while from any
point inside of region AB, the observer can see
both edge A and edge B. Each region corresponds
to one aspect of the triangle, defined as a view-
space sharing topologically equivalent views. A
graph that connects the nodes corresponding to
those aspects is referred to as the aspect graph of
the triangle. Each edge of the graph corresponds
to a visual event, defined as a transition between
two different regions [1].
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Aspect Graph, Fig. 1 Two-dimensional view-space segmentation and 2-dimensional aspect graph

Aspect Graph, Fig. 2 A tetrahedron and its three-dimensional aspect graph

We can extend this idea into the three-
dimensional view-space of a convex polyhedron.
In the three-dimensional view-space, each view
region is divided by the infinite planes of the
extensions of three-dimensional polyhedral faces.
Figure 2 shows the aspect graph of a tetrahedron
with face A, B, C, and D.

Researchers’ investigations have found a way
to estimate the number of aspects of an object
by counting the number of view-space regions.

Again, for the sake of a simple explanation,
let’s start with a two-dimensional convex polygon
with n edges. As in the previous discussion,
the possible viewpoints are located on the same
infinite plane as the polygon. The n edges of the
polygon generate F(n) regions on this plane by
extending those n edges. Let us modify the n-
polygon into (n + 1)-polygon by adding a new
edge in this n-polygon. This new edge forms a
new infinite straight line, which intersects the
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Aspect Graph, Fig. 3 View-space segmentation with a
n + 1 polygon A newline intersects previous n lines with
n intersection points and adds n + 1 new regions.

previous n lines with n points. See Fig. 3. As a
result, the infinite line is divided into (n + 1)

segments. Each segment divides one previous
region into two new regions. Thus, F(n + 1) =
F(n) + (n + 1). Apparently, F(3) = 7 regions,
including the original polygon as one region.
Thus, F(n) = (n+1)n

2 + 1 ∼ O(n2).
Let us suppose that we have a n-polyhedron

in the view-space which is divided into G(n)
three-dimensional regions with the extended
planes formed by n faces. When we add a
new infinite plane as the extension of a new
face of the n+1 polyhedron, this new plane
intersects the original n planes with n intersection
lines on the plane. On this plane, F(n) two-
dimensional regions exist between n intersection
lines. One two-dimensional region divides one
previous three-dimensional region into two
new three-dimensional regions at each two-
dimensional region on the plane. As a result,
it generates F(n) two-dimensional regions.
Thus, G(n + 1) = G(n) + F(n). Thus,

G(n) = n(n2+5)
6 + 1 ∼ O(n3).

The aspect graph of a non-convex polyhedron
requires introducing two view classes: general
and accidental views. A general view is defined
as a viewing point where any infinitesimal move-
ment around that viewing position preserves the
topology of views; the view is locally stable
within the neighborhood. An accidental view is
defined as a singular viewing point where even
infinitesimal movement changes the topology of
the view; the view only exists within an infinitely

small region. For example, in Fig. 4b one viewing
point’s vertex is aligned on the edge, making
this is an accidental view. In contrast, Fig. 4a,
4c shows viewing points with vertexes that do
not project to that edge, making them correspond
to general views. While accidental viewing posi-
tions of a convex polyhedron exist on an infinite
plane dividing the view space, the view itself is
included in one of the two views along the plane.
Plantinga’s work shows non-convex objects have
O(n6) regions under orthographic projection and
O(n9) regions under perspective projection [17].

Algorithms for automatically computing the
aspect graph of a non-convex polyhedron typi-
cally start by extracting accidental viewpoints [6,
17, 20]. This step corresponds to the drawing of
infinite planes in the view space when handling
a convex polyhedron. The difference between the
convex and non-convex case is the latter requires
more operations to compute the regions. Then,
all the visual events across the accidental view-
points are enumerated by examining the regions.
Finally, the aspect graph is obtained by traversing
the partitions between the regions in the view-
point space.

We can also define the aspect graph of a
curved-surface object [2,13,16,18,19]. The main
flow of a graph generation process follows the
same steps as polyhedral objects: accidental view
extraction and segmentation of the viewing space
into regions based on the accidental views and
then generating the graph by traversing the region
partitions. However, contour generator(s) on a
curved-surface object move(s) over the object
surface along the transition in the viewing direc-
tion. Thus, the first and second steps require
more complicated analysis than is required for a
polyhedral object.

In practical applications such as robotic object
manipulation or navigation, it often occurs that it
is not necessary to consider unstable accidental
views. First, they rarely occur. Secondly, even if
they occur, we can avoid them by adding small
active motions to the robot’s behavior during
observation and using only stable non-accidental
views. For such applications, several researchers
propose dividing the viewing directions into a
certain number of sampling directions based on
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Aspect Graph, Fig. 4 Accidental and general views

Aspect Graph, Fig. 5 View-direction sampling and aspect generation by the approximation method [8]

a higher degree of a semi-regular geodesic dome
and then generating appearances of an object at
the center of each mesh by using a CAD model of
the object [7, 8]. See Fig. 5. Once views from all
sampling directions are obtained, the algorithm
groups those views into clusters based on given
visible features and handles those clusters as a set
of aspects.

This approximation method can be extended
to include views from a particular sensor by
applying a model of the sensor to the view gen-
eration process [10]. In this case, even using the
same viewing directions, views are different from
each other due to the physical characteristics of
the sensor. Views from a Lidar sensor are differ-

ent from those captured by a common RGB or IR
camera and thusly, they extract different features.
As a result, aspect graphs generated using Lidar
view data are different from those generated by
RGB or IR camera views [10]. The approxima-
tion method can handle such cases by generating
views that consider the sensor model used from
each sampling direction and enumerating those
views into clusters.

Open Problems

Some researchers consider aspect graphs to be
non-practical [4]. Their arguments are based
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on their experiences and efforts to obtain com-
plete aspect graphs from the analysis of line-
drawings of an object. It is well-known that it
is extremely difficult to extract complete line-
drawings from images. As a result, generating
aspect graphs based on complete line-drawings
becomes impractical. However, this problem may
be overcome by relaxing the definition of aspects
to include views that share a common set of
features observable by a particular sensor. For
example, matching visible face color combina-
tions or numbers of visible regions detected by a
particular sensor could be included in the relaxed
definition of an aspect. Further, the approxima-
tion method can be used to help achieve practi-
cality with relaxed aspect definitions. Going for-
ward in this direction, it is necessary to consider
which visible features are effective for the object
recognition task at hand in order to enumerate and
classify the views.

The concept of the aspect graph indicates
that object recognition consists of two different
kinds of operations, aspect determination and
linear shape-change determination [9]. Aspect
determination conducts a labeling operation to
choose one particular aspect among all possible
aspects based on feature-matching within the set
of visible features. Linear shape-change determi-
nation conducts localization of the viewer’s posi-
tion and orientation by distorting the appearance
of model features to match the current sensed
appearance. In a human brain, it is believed that
the labeling operation is performed in the inferior
temporal cortex along the ventral system from
the parvocellular layer through V2 and V4 to
areas of the inferior temporal lobe [15]. The
localization operation is done along the dorsal
system from the primary visual cortex (V1) into
the parietal lobe. In parallel to this discussion, it
is of interest to analyze how recent convolutional
neural networks (CNN) handle aspect determi-
nation and linear shape-change determination in
their network structures.
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Synonyms

Surface scattering; Velvety reflectance

Related Concepts

�Retroreflection
�Lambertian Reflectance
� Surface Roughness

Definition

The “asperities” can be of various nature, hair-
tips, dust, “fluff”, local high curvature spots or
ridges (the term derives from scattering by pow-
dered materials where the “asperities” are sharp
edges like on broken glass).

Background

The reflectance of natural, opaque, and rough
surfaces [1, 2] can be described by the Bidirec-
tional Reflectance Distribution Function (BRDF)
[6]. BRDFs that are common and well-known
are those of Lambertian, perfectly diffusely scat-
tering surfaces and of specular surfaces. Such
surfaces scatter light in all directions (diffuse
scattering) or primarily in the mirror direction
(specular reflection). However, natural surfaces
can scatter light in many other ways. Asperity
scattering adds a “surface lobe” to the usual
diffuse, backscatter, and specular lobes of rough
surfaces. It is an important effect in many mate-
rials that are covered with a thin layer of sparse
scatterers such as dust or hairs. In the common
case that single scattering predominates, asperity
scattering adds important contributions to the
structure of the occluding contour and the edge

of the body shadow. This is the case because the
BRDF is inversely proportional to the cosines
of both illumination and viewing angles. The
BRDF is generally low (and typically negligible),
except when either the illuminating rays or visual
directions graze the surface.

Because asperity scattering selectively influ-
ences the edges in the image of an object, it
has a disproportionally (as judged by photomet-
ric magnitudes) large effect on (human) visual
appreciation. It is a neglected but often decisive
visual cue in the rendering of human skin. Its
effect is to make smooth cheeks to look “vel-
vety” or “peachy” (the appearances of both velvet
and “peachy” skin are dominated by asperity
scattering), that is to say, soft. This is a most
important aesthetic and emotional factor that is
lacking from Lambertian (looks merely dullish,
paperlike), “skin type” BRDF (looks like glossy
plastic), or even translucent (looks “hard”, vitre-
ous) types of rendering.

Theory

Asperity scattering is due to scattering by a sparse
“cloud cover” of the surface with essentially point
scatterers. In sparse distributions of scatterers,
one may assume that single scattering predomi-
nates. Then parameters of interest are the geom-
etry of the cloud and the nature of the single
scatterers. For this case, a physical, geometrical
optical model was derived [3] and experimental
data gathered [5].

It is also possible to fit asperity scattering
characteristics in a convenient, simplified for-
mula (note that basic physical constraints should
hold, e.g., non-negativity, energy conservation,
and Helmholtz reciprocity) [4]. For instance, for
a surface element with unit (outward) normal n,
irradiated from the direction (unit vector) i and
viewed from the direction (unit vector) j, the
following BRDF model

V (i, j,n, a) = 1

π

a

a + (i · n) (j · n)
, (1)

describes a “surface lobe” such as one observes in
black velvet cloth or peach skin. The parameter
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a determines the width of the lobe. (A similar
behavior results if one substitutes (i · n) + (j · n)
for (i · n)(j · n).) The albedo is found to be

AV (i,n, a) = 2a

(i · n)2

(
i · n + a log

a

a + i · n
)

,

(2)

which has a lowest value

2a

(
1 + log

(
a

1 + a

)a)
≈ 2a + 2 log aa2 + · · ·

(3)

at normal incidence and rises monotonically to
unity at grazing incidence. (For black velvet
a 
 1.) Other possibilities for simplified
formulations may be found in graphics as so-
called velvet shaders. However, care should be
taken that many of these rendering applications
do not fulfill the above mentioned basic physical
constraints.

Open Problems

BRDFs of natural surfaces can probably be cat-
egorized into about a dozen different modes.
Currently, only the forward, backward, diffuse,
and surface scattering modes have been described
by formal optical models.

Reflectance estimation from images suffers
from image ambiguities. Prior knowledge on the
reflectance statistics of natural materials plus for-
mal descriptive models for the common modes of
natural BRDFs can constrain this problem.
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Synonyms

Encoder-decoder architectures

Related Concepts

�Deep Generative Models
�Dimensionality Reduction
�Generative Adversarial Network (GAN)
�Manifold Learning
� Principal Component Analysis (PCA)
�Recurrent Neural Network

Definition

An autoencoder is a deep neural architecture
comprising two parts, namely, (1) an encoder
network that maps each input data point to a point
in a different (latent) space and (2) a decoder
network that maps the points in the latent space
back to the data space. The two components are
trained jointly in an unsupervised way, so that
their composition approximately preserves points
from a given training dataset.

http://www.cs.columbia.edu/CAVE/curet
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Background

Autoencoders are a very popular deep architec-
ture for unsupervised learning going back to at
least 1980s [1, 2]. Similar to other unsupervised
learning methods such as principal component
analysis [3], the objective of autoencoder
learning is to find some latent representation
of the points in a training dataset that preserves
the information contained in the data points,
while simplifying the data in a certain way.
In the case of autoencoder, the mapping from
the data points to their latent representations is
parameterized by a deep feedforward network
(an encoder). The learning also aims to recover
an approximate inverse mapping of the encoder
that is also parameterized as a deep network
(a decoder). Training the encoder and the
decoder in parallel ensures that the discovered
latent representation of the data preserves
most of the information contained in the data.
To uncover the latent (hidden) structure of
the dataset (or the underlying distribution),
certain constraints are usually imposed on the
architecture of the encoder and/or the decoder.
Once the autoencoder is trained, its components
or the discovered latent representations can be
used in various ways. In particular, the latent
representations of data points can often be used
as features for different machine learning tasks.

Theory

Autoencoders are deep architectures trained in
an unsupervised way for a dataset x1, x2, . . . , xN

in a certain data space X. In a probabilistic
setting, we may think of the dataset as a sample
from some underlying distribution pX defined on
X. Alternatively, we may think of the training
dataset as a set of samples from some manifold
(the data manifold M) that lies within the data
space and forms the support of the distribution
pX. Autoencoder learning can then be seen as a
way to find a suitable parameterization of the data
manifold and is thus related to manifold learning
methods.

An autoencoder (Fig. 1) includes an encoder
eφ with learnable parameters φ that maps each
example x to its latent representation z = eφ(x)

from a certain latent space Z. The structure of
X and Z may be arbitrary, e.g., X may contain
images of a certain size, and Z may correspond
to a Euclidean space of a certain dimensionality.

The second part of the autoencoder, the
decoder dθ with learnable parameters θ operates
in the reverse direction to the encoder. The
decoder thus maps points z ∈ Z to the data
space X. The full autoencoder network then
corresponds to the composition of the encoder
and the decoder:

aφ,θ = dθ ◦ eφ (1)

The exact structure of the encoder and the
decoder can also be arbitrary. In modern com-
puter vision, it is common to use convolutional
architectures [4] with multiple layers for both
networks.

An autoencoder is trained by approximating
the identity mapping on the dataset X. The

encoder decoder

data space latent space data space

data 
reconstructionsdata 

manifold
latent     
representations

Autoencoder, Fig. 1 The autoencoder architecture com-
prises the encoder that maps data to latent space and the
decoder that is trained in parallel with the encoder to
approximately invert it on the data points. The goal of the

learning is to obtain a latent representation of the data that
is in a certain way simpler or more amenable for further
processing than the original data representation
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training loss is therefore defined as:

L(φ, θ) = 1

N

N∑

i=1

Δ
(
xi, aφ,θ (xi)

)
(2)

where the function Δ measures the dissimilarity
between its arguments. In the simplest case,
one may use the squared Euclidean distance
Δ(x, y) = ‖x − y‖2

2, though more sophisticated
variants, such as perceptual dissimilarity [5],
are often used in recent works. The choice of Δ

plays an important role, since the autoencoders
are usually designed in a way that the training
loss cannot be minimized to zero, leaving some
mismatch between the training data points xi

and their reconstructions. The choice of the
dissimilarity measure Δ thus determines which
kind of dissimilarities between data points and
reconstructions are penalized more and which are
penalized less.

The training process of an autoencoder cor-
responds to the minimization of the loss (2)
using some variant of stochastic gradient descent.
As with many other unsupervised learning tech-
niques, the goal of the training is to learn some
latent representation of data that uncovers some
latent (hidden) structure in the data. This means
that the dataset z1, z2, . . . , zN , where zi = eφ(xi)

(and the underlying distribution pZ = eφ(pX)),
should have a form that is simpler in some sense
than the original dataset and the original distribu-
tion.

From the manifold viewpoint, learning
autoencoder essentially amounts to finding
the parametrization of the data manifold. One
indicator of success here (which is often used
by researchers to evaluate the quality of an
autoencoder) is the plausibility of interpolation
in the latent space. Thus, given two data samples
x1 and x2 and their latent representation z1 and
z2, the latent points lying on the line segment that
connects z1 and z2 in the latent space should be
mapped by the decoder onto the data manifold,
i.e., ∀λ ∈ [0; 1] dθ (λz1 + (1 − λ)z2) ∈ M .
When data are images of a certain kind, e.g., face
images, this condition can be verified by looking
at the reconstructions dθ (λz1 + (1 − λ)z2) and
checking whether they look like face images.

Note that a line segment connecting x1 and x2

in the original data space would typically not lie
on the data manifold M , as most data manifolds
have highly non-convex shape in the embedding
space.

Types of Autoencoders
Given enough capacity of the networks e and d
as well as large enough space Z, the autoencoder
is likely to learn to copy the data points into
the latent space (potentially with some trivial
injective transformation T ) and then to copy it
back to the original space (while reverting the
transformation T ). This is because such solution
achieves lowest possible (zero) loss. In this case,
the latent representation will not be in any ways
simpler than the original data representation, and
the data manifold will not be properly parameter-
ized. Below, we discuss several ways how autoen-
coders can be encouraged to learn simplified data
representation.

Autoencoders as architectures for nonlinear
dimensionality reduction. In this approach, the
dimensionality of Z is taken to be substantially
smaller than the dimensionality of X. In this
situation, learning an autoencoder effectively
amounts to dimensionality reduction, as the
learning process seeks to identify the most
important factors of variation in the data in order
to preserve them within the latent representations.

Regularized autoencoders Alternatively, or in
addition to having Z of small dimensionality,
it is common to impose certain regularization
on the learning process. For example, one may
penalize a certain norm of the latent vectors zi [6]
and/or penalize a certain norm of the network
parameters φ and θ [7]. Adding such regular-
ization effectively prevents the autoencoder from
learning the identity function and forces it to learn
a simplified latent representation of data.

Denoising autoencoders Alternatively, or in
addition to the above approaches, one can
regularize the training process by injecting
(adding) noise or performing some structured
corruption process on the training points, so that
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the autoencoder receives the corrupted versions
x̃i of the data points xi during training. In this
scenario, the autoencoder needs to combine
reconstruction with restoration, as the loss
function still computes the difference between
the reconstruction obtained from the corrupted
data and the original data points:

L(φ, θ) = 1

N

N∑

i=1

Δ
(
xi, aφ,θ (x̃i)

)
(3)

Once again, denoising autoencoder cannot attain
low training loss by simply copying the data
from the input to the output via the latent space,
since such copying will not remove the corruption
effect. Instead, the autoencoder has to learn to
project the corrupted examples onto the manifold
containing the original distribution [8] and there-
fore has to uncover the latent representation of
data, from which the original data points can be
reconstructed.

Variational autoencoders Variational autoen-
coders (VAEs) [9, 10] combine several of the
above ideas and do so in a probabilistic setting.
In a variational autoencoder, the encoder and the
decoder are thought as stochastic functions. The
encoder maps each data point to a distribution
in the latent space (which is usually taken to
be Gaussian with diagonal covariance matrix,
so that both the mean vector and the covariance
parameters are predicted by the encoder). The
decoder is also designed to map points in the
latent space to the (usually Gaussian) distribution
in the data space (though the covariance matrix
is often fixed and only the mean vector is
predicted). The autoencoding process inside VAE
corresponds to mapping a training data sample to
the distribution in the latent space, sampling from
the resulting distribution and mapping the sample
back to the data space. The minus log-likelihood
of the input data sample w.r.t. the resulting
distribution is then minimized. The learning is
regularized by penalizing the Kulback-Leibler
divergence between the encoding of each data
sample and the unit zero-mean Gaussian. When
the regularization coefficient equals one, the

total learning objective can be interpreted as
the maximization of the so-called evidence
lower bound on the log-likelihood of the data
points.

Related Models
Autoencoders have deep connections to a number
of models and tasks. Some of these connections
are discussed below.

Principal component analysis (PCA) PCA [3]
can be regarded as a particular type of an autoen-
coder with the encoder and the decoder having
the fully connected single-layer architecture
under additional constraints on the matrices
and biases of the layers and more efficient
training algorithms (namely, singular value and
eigenvalue decompositions). The usage patterns
discussed below are thus common to autoen-
coders and PCA, though autoencoders with
multiple convolutional layers in most circum-
stances attain much better performance for image
datasets.

Data compression When the dimensionality of
the latent space is lower than the original space or
if the latent representation of the dataset is more
amenable for compression algorithms, training an
autoencoder can be used for lossy data compres-
sion [11].

Generative adversarial networks (GANs)
GANs [12] are another kind of latent
models learned to approximate the data
manifold/distribution. In their original form,
GANs allow to map points from latent space to
data space (as do decoders within autoencoders),
but not vice versa. Multiple hybrid models
that combine autoencoders with GANs exist
[13, 14].

Generative latent optimization (GLO) The
recently proposed GLO model [15] is another
deep latent model learned to parameterize the
data manifold. GLO can be regarded as a
simplification of the autoencoder model, where
only the decoder network is trained and reused
after training.
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Applications

Autoencoders have a number of applications, and
below we provide examples of the most common
patterns of usage.

Feature extraction Once an autoencoder is
trained, its encoder part eφ can be used as a
feature extractor for various machine learning
tasks including supervised learning. In the semi-
supervised training scenario, a large amount
of unlabeled data {x′

i} can be used to train an
autoencoder, and a small amount of labeled data
{xi, yi} (where yi is a label of xi) can then be
used to train a predictor (e.g., a classifier) cψ with
learnable parameters ψ in the latent space, so that
yi ≈ cψ(eφ(xi)). Assuming that the training of
the autoencoder is successful, and the distribution
in the latent space has a simpler form than in the
data space, training such predictor in the latent
space Z will lead to better generalization than
training a predictor in the original data space X.
Note that the decoder dθ is effectively discarded
in such a scenario.

Pretraining generator networks It is common
to use the decoder part of a pretrained
autoencoder for conditional sampling/synthesis.
In more detail, consider a scenario when a limited
amount of aligned data {(xi, yi)} ⊂ X ⊗ Y (e.g.,
images from the image space X and their text
descriptions from the description space Y ) and
a large amount of unaligned samples {x′

j } ⊂ X

(e.g., images without descriptions) are given. In
order to learn image synthesis conditioned on text
description, one may first learn an autoencoder
on unaligned data {x′

j } with latent space Z and
then learn a mapping fτ from Y to the latent
space Z with learnable parameters τ , such that
its composition with the pretrained decoder dθ

maps xi close to yi (i.e., xi ≈ dθ (fτ (yi))). The
composition of the mapping fτ and the decoder
will thus provide a mapping from Y to X (text-
to-image in our example) that is trained both
on aligned and unaligned data. Such mapping is
likely to generalize to unseen data better than the
mapping learned solely on aligned data.

Disentangling of factors Under certain
circumstances, the latent distribution learned
by an autoencoder has some factor disentangling
properties so that a certain factor of variation
affects all or almost all dimensions in the original
space X but only a small subset of dimensions
in the latent space Z. For example, when
autoencoder is trained for face images, certain
latent dimensions may correspond to person
identity, while being invariant to expression (and
vice versa). Such disentagling is most common to
observe in a variational autoencoder (VAE) due
to the diagonal covariance structure imposed on
the latent distributions within VAE.

Data manipulation in latent space Even if fac-
tors of variation are not disentangled in the latent
space, it often happens that high-level (semantic)
editing is easier in the latent space than in the
data space. For example, given a dataset of face
images, it often happens that a change of a certain
attribute (e.g., changing neutral face expression
to smiling expression) can be easily modeled in
the latent space. Sometimes, such transformation
that is very complex in the data space can be well
approximated by a simple translation by a certain
vector in the latent space. The parameters of the
transformation in the latent space can be learned
from a small amount of extra annotation (e.g., in
the example above, the translation vector can be
learned as a difference between the mean of the
latent representations of several smiling faces and
the mean of the latent representations of several
neutral faces).

Unsupervised restoration and anomaly detec-
tion The ability of autoencoders to project data
on the data manifold can be used to restore cor-
rupted data as well as to identify outlier samples
that do not belong to the data manifold [16, 17].
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Synonyms

Generalized bas-relief (GBR) transformation

Related Concepts

� Illumination Estimation, Illuminant Estimation
�Lambertian Reflectance
� Photometric Stereo
� Shape from Shadows

Definition

Members of the equivalence class of convex
Lambertian surfaces that produce the same
set of orthographic images under arbitrary
combinations of distant point light sources

are related by elements of a three-parameter
subgroup of G L(3), called generalized bas-relief
(GBR) transformations. This inherent ambiguity
in determining the three-dimensional shape of an
object from shading and shadow information is
called the bas-relief ambiguity.

Background

For a surface f(x, y), the GBR-transformed sur-
face is given by f(x, y) = μx + vy + λf(x, y),
where μ, v ∈ R and λ ∈ R++. The orthographic
image of an object with Lambertian reflectance,
illuminated by an arbitrary set of distant point
light sources, remains unchanged when the object
shape is transformed by a GBR, with an inverse
transformation applied on the set of light sources
and a corresponding pointwise transformation on
the albedos. Further, any continuous transforma-
tion that preserves the shading and shadowing
configuration for a convex surface must belong
to the GBR group [1].

Thus, for a Lambertian surface, any recon-
struction or recognition algorithm based on shad-
ing and shadow information alone can at best
enunciate the shape, albedo, or lighting up to a
“bas-relief ambiguity.” The ambiguity derives its
name from the corresponding low-relief sculpture
technique (Italian: basso rilievo), which can be
understood as a special case of the GBR, where
λ < 1.

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
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Theory

Under orthographic projection, each point on a
surface may be represented as [x, y, f(x, y)]�,
where (x, y) ∈ R

2 is a point on the image plane
and f is a piecewise differentiable function. The
unit surface normal is given by

n̂ =
[−fx,−fy, 1

]�
√

f 2
x + f 2

y + 1
. (1)

A GBR transformation that maps a surface
f(x, y) to f (x, y) = μx + vy + λf (x, y) and the
corresponding inverse GBR transformation may
be represented as 3 × 3 linear transformations:

G =
⎡

⎣
1 0 0
0 1 0
μ v λ

⎤

⎦ ,G−1 = 1

λ

⎡

⎣
λ 0 0
0 λ 0

− μ −v 1

⎤

⎦ .

(2)

Under the matrix product operation, the set
of GBR transformations forms a subgroup of
G L(3), the group of 3 × 3 invertible linear
transformations. The unit surface normals of the
GBR-transformed surface f are G−�n̂‖G−�n̂‖ .

Shadows and Shading
The image formation equation at a point p = [x,
y, f(x, y)]� on a Lambertian surface is given by

I (x, y) = n�s (3)

where I is the intensity, n is the product of albedo
a and unit surface normal n̂, while s is the light
source direction, scaled by its strength. The point
p lies in an attached shadow if s�n̂ < 0, while
it lies on a cast shadow boundary if there exists a
point p ′ on the surface, with unit normal n̂′, such
that

s�n̂′ = 0,p − p′ = ks, for some k ∈ R++. (4)

A point p = [x, y, f(x, y)]� lies in an attached
shadow or on a cast shadow boundary in an image
produced by the light source s if and only if the

point p = Gp does so in an image produced
by the light source s = Gs, where G is a
GBR transformation given by Eq. (2). Further,
the image of a surface f(x, y) with albedo a(x, y),
when illuminated by a light source s, is equivalent
to the image under the light source s = Gs of
the GBR-transformed surface f , with a pointwise
albedo transformation given by

a = a

λ

(
(λfx + μ)2 + (

λfy + μ
)2 + 1

f 2
x + f 2

y + 1

) 1
2

. (5)

It follows that the set of images of a Lamber-
tian surface-albedo pair {f, a}, under all possible
combinations of distant light sources, is identical
to that of any GBR-transformed surface-albedo
pair

{
f , a

}
[1] (see Fig. 1). Thus, the illumination

cones of surfaces related by a GBR transforma-
tion are identical [2].

Existence and Uniqueness
It is shown in [1] that any two convex, smooth
surfaces with visible occluding contours that pro-
duce the same set of attached shadow boundaries
must be related by a GBR transformation. Thus,
the GBR transformation is the only one that
preserves the set of all images of an object.

While the existence result for the bas-relief
ambiguity does not explicitly require convexity
of the surface, in practice, the image forma-
tion model for concave regions must account for
interreflections. It has been shown that modeling
diffuse interreflections uniquely determines the
shape and lighting [3].

Integrability
In traditional photometric stereo, given images
of a point p under three or more known light
sources, one may recover its surface normal
n̂ using Eq. (3). However, in uncalibrated
photometric stereo where the light sources are
unknown, the surface normal and the light
sources can be recovered only up to an arbitrary,
invertible 3 × 3 linear transformation, since
n∗ = A� n and s∗ = A−1 s satisfy Eq. (3) for any
A ∈ G L(3).
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Bas-Relief Ambiguity,
Fig. 1 The left column
shows various GBR
transformations applied to
a surface, with the
corresponding inverse
transformation applied to
the light source direction.
The top row is the true
shape. The right column
shows that the shading and
shadows produced in an
orthographic image of the
surface are identical for
any GBR transformation.
(Figure reproduced in part
from [1], courtesy of the
authors)

For the recovered normal field to correspond
to a surface, it must satisfy the integrability
constraint [4]:

∂

∂y

(
n∗
1

n∗
3

)
= ∂

∂x

(
n∗
2

n∗
3

)
. (6)

It is shown in [1] that requiring the recovered
normal field to be integrable restricts A to lie in
the group of GBR transformations.

Generalizations
Under perspective projection, the shadows pro-
duced by an object under distant or proximal
point light sources are the same as those produced

by a surface transformed by a generalized per-
spective bas-relief (GPBR) transformation, with
an inverse transformation applied on the light
sources [5]. The GPBR is a three-dimensional
elation [6] and, in the limiting case of ortho-
graphic projection, reduces to the definition of
GBR in Eq. (2).

Under orthographic projection from an
unknown viewpoint, there exists an ambiguity
that corresponds to the group of three-
dimensional affine transformations, called the
Klein generalized bas-relief (KGBR) ambiguity,
such that the set of images of an object
is preserved under the action of a KGBR
transformation on the shape, lighting, albedos,
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and viewpoint [7]. In the limiting case of a fixed
viewpoint, the KGBR ambiguity reduces to the
bas-relief ambiguity.

Application

The bas-relief ambiguity in computer vision
explains psychophysical observations of similar
unresolved ambiguities in human visual
perception [8]. An important consequence of
the existence of the bas-relief ambiguity is that
any image-based computer vision algorithm,
relying on inference based solely on shading and
shadow information, can only describe the object
up to an arbitrary GBR transformation. Further,
it has been established that for any infinitesimal
motion of a surface f, there exists a motion for
the GBR-transformed surface f that produces
the same motion field [1]. Thus, an infinitesimal
motion does not provide additional cues for
disambiguation.

Surface reconstruction up to a GBR
transformation can be performed by imposing
integrability in uncalibrated photometric stereo
[9]. The bas-relief ambiguity may be resolved in
practice by incorporating additional information,
for instance, priors on albedo distribution
[10, 11]. Alternatively, the presence of non-
Lambertian effects – such as specular highlights
[12], a Torrance-Sparrow reflectance [13],
or a spatially unvarying, isotropic, additive
non-Lambertian reflectance component [14] –
eliminates the GBR ambiguity.
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Synonyms

Mesostructure; Microgeometry; Relief texture;
Solid texture; Surface roughness; Volumetric tex-
ture

Related Concepts

�Bidirectional Texture Function and 3D Texture
�Light Field
�Texture Recognition

Definition

In the context of computer vision, texture often
refers to a variation of image intensity or color,
where the variation exhibits some type of rep-
etition. The terms 2D texture and 3D texture
provide a more precise definition of texture. A
2D texturemay be a color or shade variation such
as a paisley print or zebra stripes. A textured
surface can also exhibit geometric variations on
the surface such as gravel, grass, or any rough
surface. This type of texture is termed 3D tex-
ture [1, 2]. Algorithms developed for 2D texture
are generally not useful for 3D texture because
appearance varies as a function of viewing and
illumination direction.

The difference between 2D and 3D texture is
readily apparent when considering photometric
effects due to illumination direction and geo-
metric effects due to viewing direction. Consider
Fig. 1 with four images of the same surface under
different surface tilt angles. The surface geometry

does not change, but the illumination and viewing
direction is different in each of the images. With
a 2D texture model, these changes could be
misinterpreted as changes in the texture class. As
shown in Fig. 2, the appearance of the texture
also changes significantly over the surface of a
3D object. The photometry of 3D texture causes
shading and shadowing that vary with illumina-
tion direction. The geometry of 3D texture causes
a variation in foreshortening and occlusions along
the imaged surface. Consider Fig. 3 which illus-
trates oblique viewing of a 3D-textured surface
patch. A similar oblique view of a 2D-textured
surface patch gives a uniformly compressed or
downsampled version of the frontal view. How-
ever, for an obliquely viewed 3D-textured sur-
face patch, there is a non uniform resampling
of the frontal view. Consequently, some texture
features are compressed in the oblique view,
while others expand. Computer graphics algo-
rithms for texture mapping traditionally charac-
terize the texture with a single image. To synthe-
size oblique views, these texture-mapping algo-
rithms apply a uniform resampling which clearly
cannot account for the spatially varying fore-
shortening and occlusions.

Background

Measurement of 3D texture with a bidirectional
texture function (BTF) was introduced in [1,
2]. This work created a database of 3D texture
called the CUReT database (Columbia-Utrecht
Reflectance and Texture database). This publicly
available collection of measurements from real-
world surfaces served as a starting point for
subsequent work in 3D texture.

Theory

Histogram Models for 3D Texture
Numerous texture models for 2D texture
have been developed since the early 1970s
and are used in areas like texture mapping,
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Bidirectional Texture Function and 3DTexture, Fig. 1 Four images of the same 3D-textured surface. As the surface
tilt and illumination direction varies, surface appearance changes

Bidirectional Texture Function and 3D Texture, Fig. 2
The local appearance of a 3D-textured object. Notice that
local foreshortening, shadowing, and occlusions change
across the texture because of the differences in global
surface orientation and illumination direction

texture synthesis, shape-from-texture, and
texture classification and segmentation. These
representations include co-occurrence matrices,
histograms, power spectra, Gabor filter outputs,
textons, wavelets, and Markov random fields. In
the late 1990s, the emphasis of texture research
expanded to include 3D textures. Analytical
models of intensity histograms of 3D-textured

Bidirectional Texture Function and 3D Texture, Fig. 3
Geometry of 3D texture. For oblique views of a 3D-
textured surface, the sampling rate of the surface depends
on the local geometry

surface are developed in [3] and [4]. Intensity
histograms are a very basic tool to represent
texture but are too simple for most computer
vision tasks. A standard framework for texture
representations consists of a primitive and
a statistical distribution (histogram) of this
primitive over space. Intensity is the simplest
primitive; however, image features are better
primitives to characterize the spatial relationship
of pixels. In order to account for changes
with imaging parameters (view/illumination
direction), either the primitive or the statistical
distribution should be a function of the imaging
parameters. Two methods to represent 3D texture
are the bidirectional feature histogram (BFH) [5]



Bidirectional Texture Function and 3D Texture 81

B

and the 3D texton method [6]. In the 3D texton
method, the primitive is a function of imaging
parameters, while in the BFH method, the
histogram is a function of imaging parameters.
The advantage of the BFH approach is that there
is no need for aligning images obtained under
different imaging parameters.

Appearance-Based Representations
In computer vision, the precise surface geometry
that comprises a 3D texture is often unknown.
Instead, images of the 3D texture, i.e., appear-
ance, are used to represent the textured surface.
The term bidirectional texture function (BTF) is
the appearance of texture as a function of viewing
and illumination direction. BTF is typically cap-
tured by imaging the surface at a set of possible
viewing and illumination directions. Therefore,
measurements of BTF are collections of images.
The term BTF was first introduced in [2, 7], and
similar terms have since been introduced includ-
ing BSSRDF [8] and SBRDF (spatial BRDF) [9].
SBRDF has a very similar definition to BTF, i.e.,
BTF is also a spatially varying BRDF.

BTF measurements can be very large because
the measurements typically consist of a high-
resolution image for every possible viewing
and illumination direction. Dense sampling of
the illumination and viewing space results in
extremely large datasets to represent the surface.
For example, if a 3 Mb image is captured for
each of the 100 sampled viewing directions
and 100 illumination directions, the resulting
dataset is 30 Gb. Compact representations of the
BTF are clearly important for efficient storage,
rendering, and recognition. Methods for compact
representations and compression of the BTF are
presented in [10–13].

Geometry-Based Representations
from Computer Graphics
In computer vision, image-based representations
are standard because the surface geometry is typ-
ically unknown. However, in computer graphics,
the precise geometry of the 3D-textured surface
may be known. Rendering 3D textures using a
volumetric representation of surface geometry

is a common approach. Many of the rendering
packages such as OpenGL and Blender use the
term 3D texture to refer to volumetric texture.
In this definition, the 3D texture is defined by
opacity in a volume, instead of the definition
here which refers to a surface height variation.
In recent work [14], a volumetric representation
is used for texture rendering, where the volume is
a stack of semitransparent layers obtained using
measured BTF data. Historically, volumetric tex-
ture methods are also referred to as solid texturing
[15–18].

Application

The main applications for 3D texture represen-
tations are in recognition, synthesis, and render-
ing. While many applications use image-based
representations, or assume a known geometric
model, other applications need to capture the
local geometry of 3D texture. Digital archiving
of art is an example of such an application where
fine-scale surface detail can enhance geometric
models. Often the 3D texture is not easily cap-
tured with standard laser scanning devices. For
example, in capturing the geometry of sculp-
tures, researchers devised ways to capture high-
resolution 3D texture such as tool marks [19–
21]. An additional method for capturing high-
resolution 3D texture geometry uses a specialized
texture camera based on the optical properties
of curved mirrors [22]. For texture recognition,
3D texture methods have been used in mate-
rial recognition [6, 23–25]. One of the popular
recognition tasks is the recognition of materials
from the CUReT database. Another real-world
recognition task is the measurement and recogni-
tion of skin texture [26–28]. For texture synthesis
and rendering, the main problem is to synthesize
the appearance of 3D texture. Several authors
have developed methods to synthesize and render
3D-textured surfaces using the BTF representa-
tion [29–35]. Other authors used an image-based
approach to capture and render complex surfaces
by direct photography of the full object under var-
ious illumination and viewing directions, simulta-
neously capturing object shape and surface light
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fields [36–38]. Synthesizing 3D textures via tex-
ture morphing enables creating and rendering
novel 3D texture [39]. In computer graphics, 3D-
textured surfaces were traditionally rendered by
bump mapping [40], albeit with limited realism.
In more recent years, several new methods have
been developed that can efficiently render 3D
texture detail. These include view-dependent dis-
placement mapping [41], relief texture mapping
[42], the polynomial texture map [43], and a
Blender-based rendering method [44].
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Synonyms

Binocular stereo vision; Stereo matching

Related Concepts

�Dense Reconstruction
�Epipolar Geometry
�Multiview Stereo
�Occlusion Handling
� Photo-Consistency
� Subpixel Estimation
�Wide Baseline Matching

Definition

Binocular stereo refers to the task of recovering
depths of a static scene using a pair of over-
lapping images captured from different view-
points. Binocular stereo systems usually use two
identical parallel cameras that are horizontally
separated by a certain distance, referred to as the
baseline. The task of binocular stereo amounts
to finding dense pixel correspondences between
the image pair along horizontal scan lines (called
epipolar lines) or estimating the disparity for
each pixel of the stereo images. The outcome
of binocular stereo takes a form of a depth map
that can be computed from disparity given the
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baseline and focal length of a stereo system or
instead of a disparity map itself.

Background

Binocular stereo is one of the oldest topics
in computer vision. Similar to the mechanism
of human depth perception, the principle of
binocular stereo is triangulation, which is
mathematically formulated based on the epipolar
geometry. However, due to ambiguous pixel
correspondences, binocular stereo typically
becomes ill-posed when scenes have no textures
or show repetitive patterns.

Wide baseline stereo refers to a particular
setting of binocular stereo where the two cam-
eras are widely separated. This leads to a more
difficult task because of larger disparity ranges,
lesser overlaps between image pairs, and a higher
likelihood of occlusions.

Occlusion is an inevitable problem in binocu-
lar stereo, which occurs when a part of an object
in one view is not present in the other view
because it is occluded by another object or is
out of the field of view in the other view. Since
occluded regions have no true visual correspon-
dence, they produce incorrect depth estimates
unless properly handled.

Binocular stereo can be seen as special or
simplified cases of other related computer vision
tasks. For example, multiview stereo uses two or
more images captured from calibrated but possi-
bly irregular viewpoints. In principle, multiview
stereo can achieve higher accuracy than binocular
stereo, because the use of multiple images can
reduce matching ambiguities and can also lead
to fewer occluded surfaces (as each surface point
has a better chance of being visible from at least
two views). However, multiview stereo is a more
complicated task, because images from irregular
viewpoints may contain low-overlapping image
pairs that have to be excluded from matching
via viewpoint selection. Also, surface patches
often undergo more significant distortions across
views, which makes accurate evaluations of patch
similarity difficult.

Optical flow is also a visual correspondence
estimation task between two images but involves
estimating more general motions of a dynamic
scene between two different temporal frame
images captured by a possibly moving monocular
camera. While pixel motions in binocular stereo
(disparities) are induced by factors of object
positions and the left-to-right camera motion,
optical flow involves more complicated motion
factors of object positions, an unknown camera
motion, and dynamic object movements. Because
of this complexity, estimation of pixel motions in
optical flow requires a 2D search space, which
is wider than 1D search spaces for disparities
and depths in binocular and multiview stereo.
The presence of dynamic object movements also
makes the occlusion reasoning more complicated
than stereo.

Binocular stereo can thus be considered as the
most fundamental dense visual correspondence
estimation task, which is built upon notions from
a wide range of computer vision areas such as
camera calibration, image filtering, and combi-
natorial optimization as explained in following
sections.

Theory and Application

We first discuss the mathematical foundation of
binocular stereo based on the epipolar geometry.
We then review classical methodologies of binoc-
ular stereo and also review recent learning-based
methodologies using neural networks.

a) Mathematical Principle
In this section, we explain how a 3D point can
be triangulated from a pair of corresponding
pixels, using a typical rectified setting of binoc-
ular stereo shown in Fig. 1. Here, two identical
pinhole cameras, both directed along the z axis
in the 3D world coordinate system, are posi-
tioned at the origin (0, 0, 0)T (left viewpoint)
and a horizontally shifted place (b, 0, 0)T (right
viewpoint) where b is baseline. Both cameras
are calibrated and have the following intrinsic
parameter matrix:
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Binocular Stereo, Fig. 1 Rectified setting of binocular stereo where two parallel cameras are horizontally placed

K =
⎡

⎣
f 0 cu
0 f cv

0 0 1

⎤

⎦ , (1)

where (cu, cv) is the principal point and f is
the focal length. Note that in reality it is dif-
ficult to setup such an ideally rectified stereo
capturing system. However, given a calibrated
stereo system (i.e., the relative pose and intrinsic
parameters of the two cameras are known), we
can transform unrectified stereo image pairs into
rectified ones using a technique of stereo image
rectification.

In this rectified setting, suppose there is a
surface shown at a pixel p = (u, v)T in the left
view image (reference image). Its unknown 3D
coordinate x = (x, y, z)T in question can be
represented as

x = K−1(zp̄), (2)

where p̄ is the homogeneous coordinate of p. This
3D point x can be projected to the right view
image at the following 2D location p′ = (u′, v′)T .

p′ = π(K
[
R t

]
x̄). (3)

Here, R is the identity rotation matrix, t =
(−b, 0, 0)T is the translation representing hori-
zontal baseline, and π is a function π(x, y, z) =

(x/z, y/z)T . Thus, by plugging Eqs. 2 into 3, we
obtain an expression for the point corresponding
to p in the right image as

p′ = p −
[
f b/z
0

]
. (4)

This result shows that for each pixel p in
the left image, its correspondence p′ in the right
image should be found at a horizontally shifted
position of p by shifting the pixel by the follow-
ing amount to the left.

d = f b/z. (5)

This horizontal shifting amount d is called dis-
parity. As shown by Eq. 5, once we obtain a dis-
parity d for a pixel (or obtain its correspondence
p′), we can obtain its depth z from the disparity
given the baseline b and focal length f of the
considered stereo system.

b) Classical Methodologies
Scharstein and Szeliski [11] provide a well-
known taxonomy of classical stereo algorithms
based on the following four steps of algorithms:
matching cost computation (photo-consistency),
cost aggregation, disparity computation and opti-
mization, and disparity refinement. In this sec-
tion, we discuss classical stereo algorithms in
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terms of design and minimization of the follow-
ing objective function:

E(D) =
∑

p

Cp(Dp) + R(D). (6)

Here, D represents a disparity map that we esti-
mate for an input stereo image pair. Cp(Dp) is a
matching cost term that evaluates a given dispar-
ity estimate Dp for a pixel p by measuring photo-
consistencies between the two images. R(D) is a
regularization term that enforces some notion of
smoothness on the disparity map D.

The disparity map D often takes a discrete
variable form D ∈ {d1, d2, . . . , dK }H×W , and
thus the objective function E(D) is optimized
using discrete (combinatorial) optimization algo-
rithms. This is because objective functions of
stereo are usually highly non-convex, and contin-
uous optimization methods can be easily trapped
at poor local minima.

Stereo algorithms can be broadly divided into
local and global methods. Local methods rely
only on the matching cost term and minimize the
objective function by a simple winner-takes-all
strategy. Global methods use a more complicated
objective function with explicit regularizers,
which involve computationally more expensive
optimization procedures. Below we review
important components and techniques of those
local and global stereo methods.

Photo-consistency As a critical component
of the matching cost term, photo-consistency
ρ(p,p′) is a scalar function that evaluates
dissimilarity between two pixels or image
patches at respective locations p and p′ in a
given image pair {I, I′}. The simplest photo-
consistency measure is SAD (sum of absolute
difference) that evaluates ρ(p,p′) = |Ip − I ′

p′ |,
but directly comparing image intensities is not
robust to illumination changes. As a more robust
measure, normalized cross correlation (NCC) is
used to compare two image patches. Zabih and
Woodfill [18] propose the CENSUS transform
that encodes an image patch into a binary feature
vector, whose dissimilarity can be efficiently
computed as the Hamming distance.

Cost aggregation Cost aggregation refers to a
technique to refine noisy raw photo-consistency
measures ρ(p,p′) by summing them over pixels
in a patch around p as

Cp(d) =
∑

s∈Wp

ωpsρ(s, s′d). (7)

Here, Wp is a support window centered at p in
the reference image, ωps is some weight func-
tion, and s′d = s − (d, 0)T . Cost aggregation is
often referred to as cost volume filtering, because
if we precompute raw matching costs ρ(p,p′

d)

for all pixels p and for all pre-defined dispari-
ties d ∈ {d1, d2, . . . , dK } as a 3D cost volume
V (p, d), then cost aggregation is carried out by
applying an image filter on 2D cost map slices
Vd(p) = V (p, d) with a filter kernel of ωps.
Although a naive implementation of cost aggre-
gation requiresO(|Wp|) of computations for each
term Cp(d), the notion of cost volume filtering
can allow O(1) of computations when using a
constant-time filter (e.g., a box filter ωps = 1).

Cost aggregation relies on an assumption that
the support pixels s in a window Wp have the
same disparity. However, as discussed in [3], this
assumption often breaks down in two cases: (1)
when there are depth boundaries in the window
and (2) when the window region shows a highly
slanted surface that has significantly varying dis-
parities.

The first issue causes boundary-flattening arti-
facts in resulting disparity maps, but it can be well
handled by adaptive window approaches [17] that
use soft support window weights ωps for cost
aggregation. Yoon and Kweon [17] propose to
use the joint bilateral filtering for cost aggrega-
tion as illustrated in Fig. 2.

The second issue causes staircase artifacts
at slated surfaces especially when large support
windows are used. For this, Bleyer et al. [3] pro-
pose a slanted patch-matching technique, which
approximates a surface in a support window by
linearly varying disparities (parameterized by a
disparity plane d = au + bv + c) instead of a
constant disparity and can thus relax the fronto-
parallel window bias. This approach imposes
a complicated inference task of pixelwise 3D
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continuous variables (a, b, c), which is solved by
inference techniques explained later in a section
on continuous disparity estimation.

Regularization Local methods that only rely on
the matching cost term often produce inaccurate
disparities due to low-feature regions or noises
of matching costs. Therefore, global methods
add a regularization term R(D) in the objective
function that is minimized by an optimization
algorithm.

A widely adopted regularization is the trun-
cated linear model

R(D) =
∑

(p,q)∈N

ωpqmin{τ, |Dp − Dq|}, (8)

where N is the set of neighboring pixel pairs,
ωpq is a contrast-sensitive weight for preserving
edges, and τ is a user-defined threshold parameter
for allowing depth jumps at object boundaries.
Because of its simple pairwise function form,
adopting this model can keep the optimization
quite tractable [13]. However, it is known to have
the fronto-parallel bias causing staircase artifacts
at slanted surfaces [16].

A variety of regularizers have been proposed
to handle the fronto-parallel bias. Woodford et al.
[16] propose a second-order smoothness term,
which evaluates |Dq − 2Dp + Dr| instead of
|Dp − Dq| for three consecutive pixels (q,p, r).
However, it imposes complicated optimization
due to the higher-order form of the objective
function and treatment of continuous disparities.
Olsson et al. [10] propose a powerful curva-
ture regularization term, which requires pixelwise
continuous disparity plane estimation but allows
an efficient pairwise function form. Scharstein
et al. [12] propose a scheme to encode pre-
estimated surface orientation priors into regular-
ization without increasing computational costs of
optimization.

Optimization Optimization is a necessary step
in global methods to minimize their objective
function with pairwise or higher-order interaction
terms for enforcing regularization.

When disparities are discrete variables and
the objective function has only up to their
pairwise interactions, then its optimization is well
established [13]; we can directly apply discrete
optimizers such as message-passing algorithms
(belief propagation) and the expansion move
algorithm using graph cuts to approximately
solve the combinatorial optimization problem. A
commonly used practical optimization method
is the semi-global matching (SGM) [5], which
has a good trade-off property between accuracy
and efficiency for real-time applications. It has
been shown to be a variant of message-passing
techniques [4].

Continuous disparity estimation Because dis-
parities inherently reside in a continuous space,
we need to infer continuous disparities for a more
accurate representation of 3D scenes.

One type of approaches to continuous
disparity estimation seeks continuous disparities
during optimization. Since discrete optimizers
cannot be directly applied for this purpose,
discrete-continuous optimization strategies are
often employed. For example, segment-based
stereo [2] optimizes the assignment of pre-
estimated disparity plane labels to each of
superpixel regions, which produces continuous-
valued but piecewise planar disparity maps
(Note that in segment-based methods, the
objective function in Eq. 6 is modified so that
each node p and variable Dp represents a
superpixel and its disparity plane assignment,
respectively.). Fusion-based methods [16] fuse
many continuous-valued disparity map proposals
to produce a better solution by solving a combi-
natorial optimization task using graph cuts, where
proposals are generated, e.g., by segment-based
methods using various patterns of superpixels
(see Fig. 3 for an illustration). PatchMatch stereo
[3] estimates pixelwise continuous disparity
planes using a randomized search scheme, which
no longer requires pre-estimated proposals. Its
variants using belief propagation [1] or graph
cuts [14] further add regularization into this
randomized search scheme.

Another type of approaches estimates contin-
uous disparities as post-processing by refining



88 Binocular Stereo

(a) Support window (b) Depth (e) Bilateral weights (c) Spatial weights (d) Color-based
weights

Binocular Stereo, Fig. 2 Adaptive support windows.
For (a) an support window with (b) depth boundaries,
the adaptive window method [17] computes (e) bilateral

support weights by combining (c) spatial weights and (d)
color-based weights

Binocular Stereo, Fig. 3 Segment-based disparity map proposals for fusion. (The image courtesy of Woodford et al.
[16])

initial discrete disparity estimates. Since it is
usually used to refine initial disparities at integer
pixels, this refinement process is often called sub-
pixel refinement. For example, techniques based
on gradient descent [8] or curve (parabola) fit-
ting [5] are often employed.

Occlusion handling Occlusion handling in
binocular stereo is usually done either as post-
processing using left right consistency check
[3, 5] or during optimization by incorporating
a occlusion model into the objective function
[7,15]. While the former approach can be adopted
for both local and global methods, the latter
can be only employed by global methods at
the cost of producing complicated higher-order
interactions in the matching cost term.

c) Learning-Based Methodologies
As an emerging trend in this field, learning-
based approaches to binocular stereo have been
gathering great interest. In particular, end-to-end
learning approaches using deep neural networks
are popular, which directly learn a mapping func-
tion f from an image pair to a disparity map as

D = f (I, I′;�). (9)

The function f is implemented as convolutional
neural networks (CNN), whose parameters � are
optimized so as to minimize some loss function
�(D) over a large amount of training data. The
loss is evaluated using ground-truth disparities in
supervised learning or using a criteria similar to
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Binocular Stereo, Fig. 4 Basic neural network architecture for end-to-end learning of binocular stereo

the classical objective function in Eq. 6 without
using ground truth in self-supervised learning.

Such learning-based methods are often advan-
tageous over classical methods in that they can
automatically handle difficulties of stereo such
as image patch distortions, illumination changes,
occlusions, rectification and calibration errors, by
data-driven approaches. Because computations
of CNNs are massively parallelizable on GPUs,
CNN based methods can perform quite efficiently
even for continuous disparity inference.

Analogously to the taxonomy of classical
stereo algorithms [11], we identify four stages
that neural network architectures for binocular
stereo often perform: feature extraction, volume
construction, cost volume learning, and disparity
computation and refinement. An example
architecture of such neural networks is shown
in Fig. 4. Based on this view, below we review
existing works on learning-based methods.

Feature extraction Early works on learning-
based methods use a neural network to compute
stereo matching costs. MC-CNN by Zbontar and
LeCun [19] extracts feature vectors from image
patches and computes matching costs using the
cosine distance (fast version) or fully connected
layers (accurate version). Learned matching costs
are then fed into classical stereo pipelines (SGM
[5]) for disparity estimation. Later, this feature
extraction is taken as the first stage of network
architectures in end-to-end learning approaches
[6, 9, 20], e.g., using feed-forward CNNs [9],

ResNet-like networks [6], spatial pyramid pool-
ing (SSP) layers, or 2D hourglass networks [20],
with the following subsequent stages.

Volume construction A seminal work byMayer
et al. [9] proposes DispNetC, which constructs a
matching cost volume and regresses out a con-
tinuous disparity map for end-to-end learning.
Volume construction is initially done in [9] by
correlating left and traversed right feature maps,
but it is later extended to concatenate feature
maps [6] or combine concatenation and group-
wise correlation.

Cost volume learning Kendall et al. [6] pro-
pose GC-Net, which processes a concatenation-
based cost feature volume (4D tensor) by a 3D
hourglass network using 3D Conv layers for cost
volume learning. Zhang et al. [20] propose semi-
global aggregation and local-guided aggregation
layers for cost volume learning, analogously to
classical techniques of SGM [5] and adaptive
window-based cost aggregation [17].

Disparity computation and refinement In
early works [9, 19], computing disparities is not
explicitly done in classification-based methods
[19] or done by treating a 3D cost volume as a
2D feature map for a scalar-map regression CNN
in DispNetC [9]. Kendall et al. [6] propose the
soft-argmin operator that can more effectively
output a continuous disparity map from a 3D
cost volume. Regressed disparity maps are often
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further processed by a shallow 2D CNN for
refinement.

Open Problems

Benchmarks and Datasets
As there is an increasing demand for large-
scale binocular stereo datasets for data-driven
approaches, we introduce benchmarks and
datasets that are popularly used in this area.

Middlebury benchmark (version 3) (http://
vision.middlebury.edu/stereo/) provides high-
resolution (1 to 6 MPix) stereo image pairs of
10 testing and 23 training indoor scenes with
highly accurate dense ground-truth disparities
obtained by using structured light scanning. An
example is shown in Fig. 5. The benchmark is
designed to contain some challenges such as
different exposures or illumination conditions

between image pairs and the presence of vertical
displacements due to imperfect rectification.

KITTI 2015 benchmark (http://www.cvlibs.net
/datasets/kitti/eval_scene_flow.php?benchmark=
stereo) provides 200 stereo image pairs of
376×1242 pixels (0.5 MPix) for each of training
and testing sets, recorded by a synchronized
stereo camera mounted on a vehicle running
on public roads. An example is shown in Fig. 6
(top). The training set images are provided with
ground-truth disparities for background (using
sparse depths measured by a LiDAR sensor) and
foreground regions (using 3D CAD models of
vehicles manually registered to the scenes).

KITTI 2012 benchmark (http://www.cvlibs.net
/datasets/kitti/eval_stereo_flow.php?benchmark=
stereo) provides stereo image pairs of 194
training and 195 testing scenes. The images and
ground-truth disparities are provided similarly to

Binocular Stereo, Fig. 5 Middlebury benchmark (an example scene image and its ground-truth disparity map)

Binocular Stereo, Fig. 6 KITTI 2015 and 2012 benchmarks

http://vision.middlebury.edu/stereo/
http://vision.middlebury.edu/stereo/
http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=stereo
http://www.cvlibs.net/datasets/kitti/eval_stereo_flow.php?benchmark=stereo
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Binocular Stereo, Fig. 7 ETH3D benchmark

Binocular Stereo, Fig. 8 SceneFlow dataset

the 2015 version. An example is shown in Fig. 6
(bottom).

ETH3D benchmark (low-res two-view)
(https://www.eth3d.net) provides 27 training and
20 testing stereo image pairs, covering both
indoor and outdoor scenes. Each image has
about 0.4 MPix. Training images are provided
with ground-truth disparities obtained by a laser
scanner. An example is shown in Fig. 7.

SceneFlow dataset (https://lmb.informatik.uni-
freiburg.de/resources/datasets/SceneFlowDatasets.
en.html) is a synthetic large scale dataset for
neural network training. It provides stereo image
pairs of totally 35, 454 training and 4, 370 testing
scenes, where each image has 960 × 540 pixels
(0.5 MPix), and is provided with the ground-
truth disparities for all the pixels. Both sets
contain randomly generated 3D scenes named
FlyingThings3D (see Fig. 8 for an example)
and the training set further contains additional
Monkaa (see Fig. 4) and Driving subsets.
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Synonyms

Thermal Radiator

Related Concepts

� Planckian Locus

Definition

A blackbody is an idealized object that absorbs
all electromagnetic radiation incident on it. The
absorbed energy is incandescently emitted with a
spectral power distribution that is a function of
its temperature. It is called a blackbody partly
because it appears black to the human observer
when it is cold, as it emits mostly infrared radia-
tion.

Background

Blackbody radiation, in general, stood as a major
challenge to the scientists in the nineteenth cen-
tury as they were pushing the limits of classi-
cal physics. Several physicists studied blackbody
radiators, including Lord Rayleigh, James Jeans,
Josef Stefan, Gustav Kirchhoff, Ludwig Boltz-
mann, Wilhelm Wien, and finally, Max Planck,
who arguably broke the way for quantum physics.
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Wien’s approximation is used to approxi-
mately describe the spectral content of radiation
from a blackbody. This approximation was
first derived by Wilhelm Wien in 1893 [8].
This law was found to be accurate only for
short wavelengths of emission spectra of
blackbody radiators and is used today only as
an approximation. Wien stated that the radiant
excitance of a blackbody may be given by

Me(λ, T ) = 2πhν3

c2
exp− hν

kT
(1)

= 2πhc2

λ5
exp− hc

kT λ
(2)

The above equation holds in the specific case
when exp− hc

kT λ
� 1, which typically occurs

when the wavelength is short. The work by Wien
was soon replaced by the findings of Max Planck,
in 1901.

Another important finding regarding black-
body radiators was made by Josef Stefan in
1879 and later formalized by Ludwig Boltzmann.
Known as the Stefan-Boltzmann law, it states that
the total radiant excitance of a blackbody radiator
is proportional to the fourth power of its absolute
temperature. In other words,

∫

λ

Me(λ, T ) = σT 4, (3)

where σ = 5.674×10−8W ·m−1 ·K−4 is known
as the Stefan-Boltzmann constant.

Max Planck, in 1901, stated a more gen-
eral law, known as Planck’s radiation law. This
describes the spectral distribution of radiant exci-
tance Me as a function of wavelength (These
equations are often given in terms of frequencies
instead of wavelength, as shown in this article.
This is easily converted back and forth using
ν · λ = c, where ν denotes frequency, λ the
wavelength, and c the speed of light in vacuum.)
λ and temperature T and is given by

Me(λ, T ) = c1

λ5
[
exp

(
c2
λT

)
− 1

] (4)

where c1 = 2πhc2 = 3.74183 × 10−16W · m−2,
c2 = h · c/k = 1.4388 × 10−2m · K (c is the
speed of light in vacuum: 2.99792458 × 108m ·
s−1, h is Planck’s constant: 6.62606896×10−34J·
s, k is Boltzmann’s constant: 1.38065 × 10−23J ·
K−1) [4], and the excitance is defined in units of
W · m−3 [3, 5, 6, 9].

Figure 1 shows the spectral power distribution
of various blackbody radiators from 1,000 to
10,000K, with all spectral power distributions
normalized to unity at 560 nm. As the blackbody
gets hotter (T increases), one can see that the
red content in the spectrum reduces and the
blue content increases – an indication of
the color as would be seen by the human
observer. Both Wien’s approximation and the
Stefan-Boltzmann law can be derived from
Planck’s law.

Wien’s displacement law may be derived
by differentiating the equation for Planck’s
law Eq. (4) with respect to wavelength λ and
equating the result to zero to find the maximum.
It states that the spectral distribution of the
spectral excitance of a blackbody reaches a
maximum at a wavelength λm and that the
product of the this maximum wavelength and
the temperature of a blackbody is a constant,
given by:

λm · T = h · c

4.965114 k
= 2.8977685× 10−3 (5)

where h denotes the Planck constant, c denotes
the speed of light in vacuum, and k denotes the
Boltzmann constant. The corresponding value of
the spectral excitance is given by:

Meλm = T 5 1.286673 × 10−5Wm−3 (6)

Blackbody radiators are the select few sources
of illumination that match “standard illuminant”
spectral power distributions – this may be seen as
valid in the case of the equivalence of standard
illuminant “A” and a blackbody with a tempera-
ture 2,856K.
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Acronyms

BID Blind Image Deconvolution
PSF Point Spread Function
BTTB Block Toeplitz with Toeplitz Blocks
ML Maximum Likelihood
MAP Maximum a Posteriori
MCMC Markov Chain Monte Carlo
AM Alternating Minimization

Synonyms

Deblurring; Deconvolution; Kernel estimation;
Motion deblurring; PSF estimation
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Related Concepts

�Denoising
� Image-Based Modeling
� Inpainting

Definition

Blind image deconvolution is the problem of
recovering a sharp image (such as that captured
by an ideal pinhole camera) from a blurred and
noisy one, without exact knowledge of how
the image was blurred. The unknown blurring
operation may result from camera motion, scene
motion, defocus, or other optical aberrations.

Background

A correct photographic exposure requires a trade-
off in exposure time and aperture setting. When
illumination is poor, the photographer can choose
to use a long exposure time or a large aperture.
The first setting results in motion blur when the
camera moves relative to objects in the scene
during the exposure. The second setting results in
out-of-focus blur for objects at depths away from
the focal plane. Furthermore, these effects may
be exacerbated by the user due to camera shake,
incorrect focus settings, or other distortions such
as atmospheric turbulence.

Under local approximations, these processes
can be modeled as convolution operations
between an ideal “sharp” image and a kernel or
point spread function (PSF). This PSF represents
how a point of light in the scene would be imaged
onto the camera’s sensor. In general, the PSF
may be space-varying or depth-varying, such that
each point in 3D space has its own response in
the kernel function. In general, the effect of the
kernel is to blur and remove information from the
image (see Fig. 1).

When the PSF is known, deconvolution
algorithms can be used to remove the effect
of these degradations. Deconvolution may be
performed using direct (e.g., Fourier-based) or
iterative (e.g., gradient descent or conjugate
gradient-based) algorithms. Essentially, a large
linear system must be inverted to recover the
sharp image, and depending on the conditioning
of the matrix representing the blurring, the
solution may be obtained to a greater or lesser
accuracy. Observation noise also hinders exact
invertibility, and for these reasons, regularization
of the solution is required. Such regularization
typically imparts prior knowledge about the
expected statistics of the sharp image, such
as smoothness, sparseness of its gradients, or
compressibility in some domain, and is typically
key to obtaining well-behaved solutions.

In practice, the PSF is rarely known from
calibration, and in a practical scenario, it must
be estimated from the blurred image itself. While
many algorithms have been proposed to tackle the

Photographed out-of-
focus image (on a plane)

Estimated PSF Restored image Actual in-focus image for
comparison

a b c d

Blind Deconvolution, Fig. 1 Example of blind decon-
volution using the method in [1] where a single image
on a plane has been captured by a defocused camera.

(a) Photographed out-of-focus image (on a plane). (b)
Estimated PSF. (c) Restored image. (d) Actual in-focus
image for comparison
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blind deconvolution problem with some success,
a universal solution is not yet available, and it is
still an active area of research. The difficulty owes
in part to the dimensionality of the unknowns
in the problem, and its extreme ill-posedness,
with the potential for multiple local solutions
arising from non-convex optimization problems.
Progress has been made in both priors to describe
images and blurs and better constrain the solution
and estimation methods to better approximate the
intractable inference problems.

There exist also methods to recover the sharp
image from multiple observations, e.g., a blurred
image and a sharp, but noisy image, or multiple
blurred images. In these cases, the problem is
much more well-posed, and the solution is more
readily obtained; this is also closely related to
the problem of super-resolution, where the sharp
image is estimated at a higher resolution than the
input images.

Theory

Imaging Model
The following linear spatially varying (LSV)
observation model represents the formation of a
general blurred image on the camera sensor:

g (x) =
∑

s∈Sf ,

with (x,s)∈SH

h(x, s)f (s) + w(x), (1)

where x ∈ Sg , f (s) is the true or sharp image,
g (x) the observed blurred image, w(x) is addi-
tive noise, and h (x, s) is the kernel function
describing the blur. The position x lies in the
blurred image support Sg ⊂ R

2, while the posi-
tion s lies in the true image support Sf ⊂ R

2.
Notice that SH ⊂ R

4 denotes the support of
the kernel h. In case the blur does not vary with
position s in the true image and the depth is con-
stant, the kernel may be reduced to a stationary
PSF, h (x, s) = h(x − s). Then the image model
becomes a convolution (denoted �):

g (x) = [h � f ](x) + w(x). (2)

With discretization and appropriate lexicographic
ordering or raster scanning of the images into
vectors, either Eq. (1) or Eq. (2) may also be
expressed in matrix-vector form:

g = Hf + w, or equivalently, (3)

g = Fh + w. (4)

With the spatially invariant degradation model,
the matrices F andH acquire a special structured
block form, termed block Toeplitz with Toeplitz
blocks (BTTB), with constant block entries on
each block diagonal and constant diagonals
within each block. Sometimes these matrices
are approximated as circulant, implying circular
convolution of the sharp image, and then they
may be diagonalized using the discrete Fourier
transform (DFT), enabling fast calculations to be
performed.

Probabilistic Formulation
With uncertainty in the observation model (3), it
is natural to estimate the most likely solution for
the sharp image using a probabilistic approach.
The Bayesian framework provides a unified way
to tackle such ill-posed inverse problems. Here a
likelihood p (g | · ) is specified from the imaging
model and combined with a prior p (f,h | · ) on
the image and blur to be estimated, ensuring
that only plausible solutions are obtained. The
resulting posterior distribution

p (f,h | g,� )

= p (g | f,h,� ) p (f | � ) p (h | � )

p (g)
(5)

is used for inference of the unknowns, where
� denotes hyperparameters of the model, such
as noise variances or regularization parameters;
these are usually considered known, but correctly
estimating them is often critical for accurate blind
deconvolution. The additive noise w is commonly
assumed to be Gaussian or sometimes Poisson
distributed. In the independent white Gaussian
noise (WGN) case with variance σ 2

w, the distri-
bution is pW (w) = N

(
w

∣∣ 0, σ 2
wI

)
. Thus, the

likelihood of g conditioned on h,f is given by:
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pG

(
g

∣∣∣f,h, σ 2
w

)
= pW (g − Hf )

= (2πσ 2
w)−

Lg
2 exp

[
− 1

2σ 2
w

‖g − Hf ‖2
]

,

(6)

where Lg is the size of the vector g.

Bayesian Inference Methods
Due to the complexity of the chosen prior models,
it may not be possible to obtain an exact analytic
solution of Eq. (5). A common approximation is
to compute a point estimate of the unknowns
f and h via an optimization procedure. How-
ever, these estimates work well only with highly
peaked distributions. With more uncertainty in
the parameters, it is better to estimate the whole
parameter distribution. Unfortunately, strategies
that do so in the Bayesian framework are typ-
ically more computationally demanding [2–4].
Finally, as the estimated posterior distribution of
the parameters must have a finite representation,
further approximations or simulations must be
introduced.

Maximum a Posteriori and Maximum
Likelihood
The maximum a posteriori (MAP) solution is
one common point estimate where it is possi-
ble to prescribe our prior knowledge about the
unknowns. It is defined as the values f̂, ĥ, and
�̂ that maximize the posterior probability den-
sity (5):

{f̂, ĥ, �̂}MAP = argmax
f,h,�

p (g | f,h,� ) p (f | � )

p (h | � ) p (�) . (7)

A very related method is maximum likelihood
(ML), where one looks for

{f̂, ĥ, �̂}ML = argmax
f,h,�

p (g | f,h,� ) . (8)

Notice that theMLmethod is essentially theMAP
method, where the prior distributions are uniform
(uninformative). Despite this equivalence, theML
is usually referred to as a non-Bayesian method.
The advantage of using theMAP approach is that

we can also encode the case where parameters
are entirely or partly known by using degener-
ate distributions (Dirac deltas), that is, p (�) =
δ (� − �0). Then, theMAP andML formulations
become, respectively,

{f̂, ĥ}MAP = argmax
f,h

p (g | f,h,�0 ) p (f | �0 )

p (h | �0 ) (9)

{f̂, ĥ}ML = argmax
f,h

p (g | f,h,�0 ) . (10)

Moreover, this formulation allows to easily
incorporate important constraints on the
unknowns, e.g., that the PSF is nonnegative and
that it integrates to 1, which have been shown to
play a fundamental role in the solution of blind
deconvolution [5].

The Bayesian framework can be used to
describe several deconvolution methods and to
emphasize their differences in terms of choice
of likelihood, priors on the image, blur, and
hyperparameters. Further differences can be
found in how the maximization problem is
solved.

A typical example of methods that can be
formulated in the Bayesian framework is regu-
larized approaches based on the L2 norm. One
such method is Tikhonov regularization, where
a linear system is solved in least-squares sense
by introducing an additional L2 constraint on the
unknowns. More in general, the blind deconvolu-
tion task is formulated as a constrained minimiza-
tion where several regularization constraint terms
are added.

A common choice is to always use a term in
the form of ‖g −Hf ‖2, called data fidelity term.
The additional regularization terms encode the
constraints on the unknowns. For example, one
may want to impose smoothness of the image and
the blur. To do so, a term that penalizes small
variations of the image and the blur can be used.
The regularization parameters are then used to
adjust the relative importance between the data
fidelity term and the regularization terms in the
solution.
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An important example that illustrates this pro-
cedure is [6]. In that work, the classical regu-
larized image deconvolution formulation [7, 8]
was extended to the blind image deconvolution
(BID) case by adding regularization on the blur
parameters. The problem is formulated as

f̂, ĥ = argmin
f,h

[
‖g − Hf ‖2

Q−1
w

+ λ1‖Lf f ‖2 + λ2‖Lhh‖2
]
,

(11)

where Q−1
w are local weights for the data fidelity

term, λ1 and λ2 are the Lagrange multipliers for
each constraint, and Lf and Lh are the regu-
larization operators. To avoid oversmoothing the
edges, each L operator is the Laplacian multi-
plied by space-varying weights. These weights
are obtained from the local image variance as in
[8–11].

Alternating Minimization or Iterated
Conditional Modes
One of the main difficulties in MAP is to simulta-
neously recover both f and h. The problem can
be already observed in the image model Eq. (1),
which is bilinear in both f and h. One com-
mon way to address this challenge is alternating
minimization (AM). When applied to Eq. (11), it
performs the minimization by working on one
variable at a time, while the others are fixed. As
a result, the minimization of Eq. (11) becomes a
sequence of least-squares problems, whose solu-
tions can be computed in closed form by solving
linear systems. A related method is iterated con-
ditional modes proposed by Besag [12].

Minimum Mean-Squared Error
As mentioned earlier on, the MAP estimate is
only a point estimate of the whole posterior PDF.
While this is not a problem when the posterior is
highly peaked about the maximum, in the case of
high observation noise or a broad (heavy-tailed)
posterior, this estimate is likely to be unreliable
(as chances of obtaining values that are different
from the maximum are very likely). Indeed, in a
high-dimensional Gaussian distribution, most of

the probability mass lies away from the probabil-
ity density peak [13].

One way to correct for this shortcoming is to
use the minimum mean-squared error (MMSE)
estimate. The rationale is to find the optimal
parameter values as those that minimize the
expected mean-squared error between the esti-
mates and the true values. This requires to com-
pute the mean value of p(f,h,�|g). However,
computing MMSE estimates analytically is gen-
erally difficult. A more practical solution is to use
sampling-based methods (see next paragraph).

Markov Chain Monte Carlo Sampling
A general technique to perform inference is to
simulate the posterior distribution in Eq. (5), by
drawing samples. Provided that we have obtained
enough independent samples, this strategy allows
us to deal with arbitrarily complex models in
high-dimensional spaces, where no analytic
solution is available. Markov chain Monte Carlo
(MCMC) sampling methods approximate the
posterior distribution by the statistics of samples
generated from a Markov chain. Widely used
MCMC algorithms are the Metropolis-Hastings
or Gibbs samplers (see, e.g., [2, 14–16]).

The samples can then be used in Monte Carlo
integration to obtain point estimates or other
distribution statistics. For instance, in the BID
problem, the MMSE estimate of the f can be
readily obtained by taking the mean of the sam-
ples, 1

n

∑n
t=1 f (t).

MCMC can provide better solutions than AM
or any other method. However, there are some
limitations. First, they are very computationally
intensive in comparison to the point estimate
methods. Second, convergence to the posterior
can be theoretically guaranteed, but in practice, it
can be hard to tell when this has occurred, and it
may require a long time to explore the parameter
space.

Marginalizing Hidden Variables
In the discussion so far, the aim was to recover
all the unknowns. However, in most cases, one is
interested in recovering only the sharp image f .
This leads to another approach to the BID prob-
lem where undesired unknowns are marginalized
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and inference is performed on the remaining
variables (i.e., a subset of f,h, and �). Therefore,
one can approach the BID inference problem in
two steps. First, one can calculate

ĥ, �̂ = argmax
h,�

∫

f

p(g|�,f,h)p(f,h|�)p(�)df

(12)
and, second, one selects the sharp image

f̂

∣∣∣
ĥ,�̂

= argmax
f

p(g|�̂,f, ĥ)p(f |�̂). (13)

Alternatively, one can also marginalize h and �
to obtain

f̂ = argmax
f

∫

h,�
p(g|�, f, h)p(f, h|�)p(�)dh · d�.

(14)

Deconvolution Under a Gaussian Prior
(MAP)
If the PSF is known and assuming a Gaussian
prior p

(
f

∣∣Σf

) = N
(
f

∣∣ 0,Σf

)
for f , with

a given covariance matrix Σf , the posterior for
f is found as

p (f | g ) ∝ p (g | f ) p
(
f

∣∣Σf

)
(15)

∝ exp
(

− 1

2

[
f T (σ−2

w H T H + Σ−1
f )

f − 2f T (σ−2
w H T g) + σ−2

w gT g
])

(16)

which is a Gaussian

p (f | g ) ∝ N
(
f

∣∣∣μf̂
,Σ

f̂

)
(17)

∝ exp
(

− 1

2

[
f T Σ−1

f̂
f

− 2f T Σ−1
f̂

μ
f̂

+ μT

f̂
Σ−1

f̂
μ

f̂

])
.

(18)

By comparing Eq. (16) to Eq. (18), we find that
the parameters are given as

Σ−1
f̂

= σ−2
w H T H + Σ−1

f (19)

μ
f̂

= Σ
f̂

(
σ−2
w H T g

)
. (20)

The mean of this distribution, which is also the
maximum, is just

f̂ = μ
f̂

=
(
H T H + σ 2

wΣ−1
f

)−1
H T g. (21)

In practice, as solving the above equation
involves inverting a large linear system, one
employs iterative methods.

Application

Blind deconvolution methods are commonly used
to restore images that have been distorted by
motion blur, out-of-focus blur, and turbulence. As
these methods provide an estimate of blur, other
uses include digital refocusing, that is, digitally
changing the focus setting of a camera after
the snapshot, changing the camera bokeh, and
obtaining a 3D model of the scene (from the out-
of-focus blur).
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Synonyms

Blur kernel estimation; Point spread function esti-
mation

Related Concepts

�Blind Deconvolution
�Motion Blur

Definition

Blur estimation is a process to estimate the blur
kernel (a.k.a. point spread function) from blurry
images so that it can facilitate the high-quality
sharp image restoration or evaluate the quality of
images.

Background

Blur usually occurs when taking a photo with
long exposure time or with wrong focal length.
This is because the lights captured for a pixel
are mixed with the lights captured for the other
pixels within a local neighborhood during the
exposure period. Such effect is modeled by the
point spread function which describes how the
lights are mixed during the exposure period.

In motion blur, the point spread function
describes the relative motions between the
camera and the scene. In the defocus blur, the
point spread function is related to the distance of
a scene point from the focal plane of the camera.
Blur often leads to information loss, and the
resulting image blur is usually undesirable. Esti-
mating blur from blurry images is an important
step for the restoration of high-quality images.

Theory

The Image Formation Model
Mathematically, the blur process can be modeled
by:

B(x) =
∑

y∈N(x)

I (x − y)kx(y) + n(x), (1)

where B denotes a blurry image, I denotes a
sharp image, kx denotes the blur kernel at pixel
x, n denotes image noise, and N(x) denotes a
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local neighborhood centered at pixel x. If the blur
kernel kx is spatially variant, the blur model (1)
is usually used to approximate those cases when
the camera exhibits rotational motion or the scene
has large depth disparity or contains a moving
object during exposure period.

While the blur kernel is spatially varying, the
variation of the blur kernel is spatially smooth.
Lots of previous works simplify the problem by
assuming that the blur kernel is spatially invariant
to model the camera motion blur. Thus, the blur
model will reduce to a convolution operation:

B = I ⊗ k + n, (2)

where ⊗ denotes the convolution operator.
As (2) cannot effectively model the blur

caused by camera rotation, several methods [1,2]
assume that the blurry image is the sum of lots
projectively transformed versions of sharp image:

B(x) =
∑

θ

I (Hθx)k(θ) + n(x), (3)

whereHθ denotes the homography induced at the
camera pose θ .

Methodology
Estimating a blur kernel from a blurry image is
highly ill-posed because only blurry image B is
available and many different pairs of I and k give
rise to the sameB. To solve this problem, existing
algorithms usually explore additional informa-
tion of blur kernels and sharp images and can
be categorized into hardware-based, prior-based,
and data driven-based methods.

Hardware-based methods If the effect of blur
is caused by the internal camera setting, such as
lens aberration, the blur kernel can be calibrated.

For example, the simplest method is to cap-
ture an image of a spotlight in a dark room.
When there is no blur, the image of the captured
spotlight (ideally) should occupy only one pixel.
When there is blur, the image of the captured
spotlight will occupy more than one pixel, and the
shape of the recorded spotlight is the blur kernel.
Similarly, for the defocus blur, the focal length of

the camera can be adjusted in order to obtain a set
of defocus blur kernel [3].

For the motion blur, Ben-Ezra and Nayer
[4] and Tai et al. [5] propose a hybrid camera
system which estimates the blur kernel through
integration of optical flows from the auxiliary
high-speed camera. In [6], Levin et al. develop
prototype camera to estimate spatially variant
blur kernels. The inertia sensors of cameras have
also been explored to facilitate the blur kernel
estimation [7–9].

Another line of research tackles blur kernel
estimation by exploring additional information.
For example, the noisy/blurry image pair by Yuan
et al. [10] and two consecutively captured blurred
images by Chen et al. [11]. Using specific devices
or additional information is able to simplify the
blur kernel estimation process and achieves favor-
able performance. However, designing specific
devices or experimental settings is often expen-
sive.

Prior-based methods As blur kernel estimation
is ill-posed, lots of methods explore the kinds
of priors to make the problem well-posed. Chan
and Wang [12] develop the total variation reg-
ularization to constrain both blur kernels and
sharp images. This method is further explored
by [13]. Fergus et al. [14] and Whyte et al.
[2] propose a multi-scale variational Bayesian
framework to estimate the uniform blur kernels
and non-uniform blur kernels, respectively. Shan
et al. [15] use a parametric model to model
the heavy-tail property of image gradients and
develop an alternating optimization method to
estimate the blur kernel. Levin et al. [16] show
that the variational Bayesian inference method
[14] is able to avoid trivial solutions, while naive
maximum a posterior based methods may not
[15]. They propose an improve maximum a pos-
terior for the blur kernel estimation [16]. In
addition, as the variational Bayesian approach is
computationally expensive, Levin et al. [17] pro-
pose an efficient marginal likelihood optimization
for blur kernel estimation.

As the maximum a posterior based methods
are likely to converge to trivial solution [16],
some edge prediction-based methods [18–21]
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have been proposed for blur kernel estimation. As
one of the earliest edge-based approach, Jia [22]
use alpha mattes to help blur kernel estimation.
In [23], Dai and Wu propose a new motion blur
constraint based on alpha matte. This constraint is
further extended by [24] for the motion blur esti-
mation in dynamic scenes. In addition, the alpha
mattes have been integrated into the maximum
a posterior-based deblurring framework to help
blur estimation in depth aware deblurring [25]
and dynamic scenes deblurring [26] problems.

Cho and Lee [18] develop an effective edge-
prediction method using heuristic filters and the
blur estimation can be solved efficiently. Xu and
Jia [19] develop an edge selection method to
remove small-scale edges for blur kernel estima-
tion. In [20], Sun et al. use a patch prior to refine
edges for blur kernel estimation. As demonstrated
by [27], these edge prediction-based methods
have been proven to be effective in real cases.

To overcome the limitations of the naive
maximum a posterior-based methods and avoid
the heuristic edge-prediction step, some effective
image priors have also been introduced for
blur kernel estimation, e.g., normalized sparsity
prior [28], L0-regularized prior [29–31],
internal patch recurrence [32], sparsity of dark
channel prior [33], blur normalization [34],
logarithmic image prior [35], and so on. Lai
et al. [36] evaluate the performance of some
aforementioned algorithms and show that using
the intensity information is able to help blur
kernel estimation [31].

Data driven-based methods The data driven
approach is developed for blur estimation. In
[37], Zuo et al. develop a discriminative learning
approach to adaptive learn priors for blur kernel
estimation. Motivated by the success of shrinkage
fields in image restoration [38], Xiao et al. [39]
extend [38] to blur kernel estimation in the text
image deblurring. The deep learning approach is
also employed to estimate blur kernels. In [40],
Sun et al. develop a deep convolutional neural
network to estimate the probabilistic distribution
of motion blur at the patch level. Gong et al. [41]
directly estimate the motion flow from the blurred
image through a fully convolutional deep neural

network and use the estimated optical flow as the
motion blur. Schuler et al. [42] and Pan et al. [43]
develop deep convolutional neural networks to
learn the key components that are used for blur
kernel estimation. In spite of achieving decent
results, the generalization ability of these meth-
ods is worth further investigation.

Application

Blur estimation has been an active research effort
in the vision and graphics communities within the
last decade due to its application on deblurring.
Since blur is a common artifact in imaging sys-
tem, its applications range from astronomy tele-
scope to satellite imaging, medical imaging, and
the common consumer-level cameras or mobile
phones. In addition to deblurring, the estimated
point spread function can also be used to evaluate
image quality and to identify moving objects
from a scene.
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Synonyms

Boosting algorithm

Related Concepts

�Adaboost

Definition

Boosting is an ensemble meta-learning algorithm
for supervised learning such as classification and
regression problems. In the boosting algorithm,
weak hypotheses are sequentially learned at each
stage and aggregated into a single highly accurate
hypothesis.

Background

Boosting is an important branch of ensemble
learning in machine learning. In the paradigm
of ensemble learning, many hypotheses learned
from observed samples are aggregated into a
single accurate hypothesis. The ensemble learn-
ing includes popular learning methods such as
bagging and random forest as well as boosting.
Boosting is, however, thought of as one of the
most promising ensemble methods for classifica-
tion and regression problems.

The study of boosting has started from the
following question: Is it possible to boost “weak
learner” into “strong learner”? which was given
by Kearns and Valiant in 1988. The weak learner
intuitively denotes a learning algorithm that
yields a classifier with prediction accuracy better
than the coin flip, and the strong learner produces
a high accurate classifier. Two years later,
Schapire cracked this conjecture by proposing
“boosting by filtering” [1] in binary classification
problems. After Schapire’s pioneering work,
some boosting algorithms were proposed by
some researchers. In 1997, eventually, Freund
and Schapire proposed Adaboost as an efficient
online learning algorithm with weighting
sampling scheme [2]. Soon after the appearance
of Adaboost, statisticians gave an intuitive
interpretation to Adaboost [3], i.e., Adaboost
is regraded as an optimization algorithm to
find an approximate maximum likelihood
estimator using generalized additive models. This
accessible interpretation had opened the door to
the flood of boosting-like learning algorithms and
wide applications to the analysis of real-world
data.
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Let us introduce the problem setup. The pur-
pose of statistical learning is to produce a hypoth-
esis f (x) based on samples consisting of input-
output pairs S = ((xn, yn), . . . , (xn, yn)). In
binary classification problems, the hypothesis is
trained such that the sign of f (xi ) matches the
binary output yi ∈ {+1,−1} for most samples. In
regression problems, f (xi ) should approximate
the real-valued output yi ∈ R to achieve highly
accurate prediction.

Algorithm

In this section we introduce boosting algorithms
according to [4]. The boosting algorithm con-
structs the hypothesis fT by the linear combina-
tion of T weak hypotheses, h1(x), . . . , hT (x) ∈
H, where H is a set of weak hypotheses. Com-
monly used weak hypotheses are the decision
stumps and regression trees implemented by rpart
and CART [5]. The hypothesis is updated in the
sequel manner, i.e., fT is determined from fT −1

and hT . Weak hypotheses are chosen so that a
loss function is approximately minimized.

Let us define �y(f (x)) = �(f (x), y)

as the loss function of the hypothesis f (x)

on the sample (x, y), and let the empirical
loss be L̂(f ) = 1

n

∑n
i=1 �yi

(f (xi )). In
binary classification problems, yif (xi ) should
take a large value. Thus, the logistic loss
�y(f ) = log(1 + e−yf ) or the exponential loss
�y(f ) = e−yf is commonly used. In multiclass
classification, the vector-valued hypothesis
and the corresponding logistic loss are used.
For regression problems, the squared error
�y(f ) = (y − f )2 is the standard choice. The

detailed formulation is provided in Section 4.6
of [4]. Taylor expansion of the empirical loss
L̂(f + αh) for α ≥ 0 is given by j

L̂(f + αh) = L̂(f ) − α

n

n∑

i=1

dih(xi ) + o(α),

where the weight di is defined as the negative
derivative −�′

yi
(f (xi )). From the above

expansion, a preferable weak hypothesis h is
given by the minimizer of the second term.
Once the preferable hypothesis h is determined,
the coefficient α is found by solving the
one-dimensional problem minα≥0 L̂(f + αh).
This is the generic boosting algorithm. The
learning algorithm of weak hypothesis over
H is denoted as WeakLearnH. For the input-
output pairs S = ((x1, y1), . . . , (xn, yn)) with
the weight d = (d1, . . . , dn), WeakLearnH
is regarded as the function mapping to H, i.e,
WeakLearnH(S, d) ∈ H. The generic algorithm
of the gradient boosting is shown in Algorithm 1.

Some examples of loss functions, hypotheses
sets, and WeakLearn are shown below.

Adaboost The problem is the binary classifica-
tion. For H ⊂ {h : X → {+1,−1}}, �y(f ) =
e−yf and di = yie

−yif (xi ), the equality

n∑

i=1

dih(xi ) =
n∑

i=1

|di |(1 − 2 · 1[h(xi ) 
= yi])

holds, where 1[·] is the indicator function. Weak-
Learn is the learning algorithm with weighted
misclassification error:

Algorithm 1 Boosting with WeakLearnH
Require: input-output paired samples S = ((x1, y1), . . . , (xn, yn))

1: f0 = 0 � Initialization
2: for t = 1 to T do
3: di = −�′

yi
(ft−1(xi )), i = 1, . . . , n and d = (d1, . . . , dn).

4: ht = WeakLearnH(S, d)

5: αt = argminα≥0 L̂(ft−1 + αht )

6: ft = ft−1 + αtht

7: end for
8: return fT
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WeakLearnH(S, d)

= argmin
h∈H

n∑

i=1

|di | · 1[h(xi ) 
= yi].

The decision trees or decision stumps, i.e., deci-
sion trees with depth one, are often used as H.

Gradient boost Gradient boost is applicable to
both classification and regression problems. Let
us define H ⊂ {h : X → R} and di =
−�′

yi
(f (xi )). WeakLearn is defined as

WeakLearnH(S, d) = argmin
h∈H

n∑

i=1

(h(xi ) − di)
2.

Note that the weak hypothesis h(xi ) that
approximates di over all samples maximizes∑n

i=1 dih(xi ) under the norm constraint. One
can incorporate the regularization term to the
above mean squared error. The regression trees is
used as H.

Implementation: Gradient Boosted
Decision Trees

An algorithmic bottleneck of boosting is to find
a weak hypothesis. A straightforward method
searches over all hypotheses in H, which takes
O(|H|n), which is prohibitive when the set H is
exponentially large, e.g., the set of all decision
trees with fixed size.

In this section we introduce XGBoost [6]
which is an efficient implementation of the gra-
dient boosted regression tree (GBRT). Learning
algorithm to learn weak hypotheses is imple-
mented by the decision tree,

hw(x) =
U∑

u=1

wu1[x ∈ Xu],

where {Xu; u = 1, . . . , U} is the partition of
the domain X = R

d and wu is the prediction
value of the output at each region Xu. To learn
the decision tree, the loss function �y(ŷ) with the
regularization term λ

∑
u w

2
u/2 is minimized. Let

us define fT = fT −1+h and ŷi = yi −fT −1(xi ).
Taylor expansion of the regularized loss R(w) :=
L̂(fT −1 + hw) + λ

2

∑
u w

2
u yields

R(w) ≈
∑

i

(
�yi

(ŷi ) + �′
yi

(ŷi )h(xi )

+1

2
�′′
yi

(ŷi )h(xi )
2
)

+ λ

2

∑

u

w2
u

=
∑

u

(
ruwu + su + λ

2
w2
u

)
+

∑

i

�yi
(ŷi ),

where ru= ∑
i∈k−th leaf �

′
yi

(ŷi ), su = ∑
i∈k-th leaf

�′
yi

(ŷi ). Hence, the optimal prediction value at
each region is w∗

u = −ru/(su + λ). Additional
regularization term such as λ′U, λ′ > 0 works to
determine the size of the decision tree. Concern-
ing the partition of the domain, the one that min-
imizes R(w∗) is preferable. Instead of searching
infinite possible partitions, one can grow the tree
greedily; (i) start from root node, (ii) each leaf is
split so as to maximize the gain, i.e., the change
of objective R(w∗) by adding the split.

For high-dimensional large-scale data, the
XGBoost is still unsatisfactory. The time-
consuming part is the learning of decision
trees. To reduce the computational cost, the
weighted subsumpling and exclusive feature
bundling are implemented in the LightGBM [7].
Besides LightGBM, efficient implementation
of WeakLearn is possible when H is intervals,
bookean conjunctions [8], subgraphs for graph
instances [9, 10], and substrings for text
instances [11].

Theory: Generalization Error

This section describes generalization bounds
related to boosting for binary classification
problems. The generalization ability of boosting
can be explained in terms of the “margin”
of the combined hypothesis. Suppose that
H ⊆ {h : X → [−1, 1]} be a finite set of
weak hypotheses. For the coefficient α ∈ R

|H|
with the 1-norm ‖α‖1 = ∑

h |αh|, the margin of
a combined hypothesis fα(x) = ∑

h∈H αhh(x)
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on an input-output pair (x, y) ∈ X × {−1, 1} is
defined by

y
∑

h∈H αhh(x)

‖α‖1 .

When ‖α‖1 = 1, the margin is given by yfα(x).
The margin has the geometric interpretation.

Given the hypothesis fα = ∑
h∈H αhh, the label

prediction of x is given by +1 (resp. −1) when∑
h αhh(x) > 0 (resp.

∑
h αhh(x) < 0) holds.

Hence, the prediction boundary is the hyperplane
{(gh)h∈H | ∑

h αhgh = 0} in R
|H|. Then, the

absolute value of the margin on the input-output
pair (x, y), i.e, |fα(x)|/‖α‖1, corresponds to the
∞-norm distance from the point (h(x))h∈H ∈
R

|H| to the decision boundary. Note that, for
SVMs, the margin is defined in terms of 2-norm
distance (Euclidean distance). See, e.g., [12] for
more details.

We discuss the relation between the margin
and the generalization performances of combined
classifiers in the framework of the statistical
learning theory. The generalization error of a
combined classifier fα is defined as

Pr
D

{sign(fα(x)) 
= y} = Pr
D

{yfα(x) < 0},

i.e., the probability that fα misclassifies an
instance x randomly drawn from unknown
distribution D over X × {−1, 1}.

Theorem 1 (Margin-based generalization
bound [13–15]) Let us define S as n input-
output pairs S = ((x1, y1), . . . , (xn, yn)) ∈
(X × {−1, 1})n that are independently and
identically distributed from D. Fix ρ > 0.
Then, for any δ (0 < δ < 1) with probability
at least 1− δ over the samples, for any combined
classifier fα such that ‖α‖1 = 1, it holds that

Pr
D

{yfα(x) < 0} ≤ Pr
S

{yifα(xi ) < ρ}

+ O

(√
log(|H|) log(n/|H|)

ρ2n
+

√
log(1/δ)

n

)

,

where PrS{yifα(xi ) < ρ} is the ratio of samples
in S for which fα has margin less than ρ.

The right-hand side of the bound becomes
small when PrS{yif (xi ) < ρ} is small for large
ρ. In other words, if the combined classifier has
large margin on S, its generalization error is small
with high probability. As shown in [13], aggre-
gated hypotheses produced by Adaboost have
such a property. Even when the size of the classH
is infinite, the bound above holds by replacing the
term log |H| with the VC dimension. For details,
see, e.g., Mohri et al. [15].

Theory: Regularization

The margin-based generalization bounds moti-
vate the following optimization problem:

max
α,ρ,ξ

ρ − 1

ν

n∑

i=1

ξi (1)

sub. to

yi

∑

h∈H
αhh(xi ) ≥ ρ − ξi (i = 1, . . . , n),

∑

h∈H
αh = 1, αh ≥ 0 (h ∈ H).

The problem is called the soft margin optimiza-
tion problem, which is about finding a convex
combination of weak hypotheses by directly max-
imizing the margin on samples while allowing
to have lower margins for some samples. The
parameter ν is fixed beforehand within the range
[1, n]. Intuitively, the parameter ν specifies the
maximum number of samples for which one gives
up to have large margins. More precise meaning
will be explained later. Since the soft margin
optimization problem is a linear programming
problem, the following dual problem has the
same optimal value,

min
d,γ

γ (2)

sub. to

n∑

i=1

yidih(xi ) ≤ γ (for h ∈ H)
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n∑

i=1

di = 1, 0 ≤ di ≤ 1

ν
(for i = 1, . . . , n).

We define the edge of the weak hypothesis
h ∈ H with respect to a distribution d over the
sample set S as

∑n
i=1 yidih(xi). The edge of h

w.r.t. d can be viewed as the weighted accuracy
(whose range is [−1, 1]). The dual problem (2) is
more intuitive. Note that the dual problem has a
constraint that the edge of each weak hypothesis
in H to be less than γ w.r.t. the distribution. So,
the dual problem is viewed as finding the “hard-
est” distribution so that the maximum edge w.r.t.
the distribution is minimized. In addition, the
dual problem has another constraints that di ≤
1/ν. These constraints ensure that the obtained
distribution does not put too much weight on a
particular sample.

According to the KKT optimality conditions,
the optimal solutions (α∗, ξ∗, ρ∗) and (d∗, γ ∗)
satisfy

α∗
h(γ ∗ −

n∑

i=1

yid
∗
i h(xi)) = 0,

α∗
h ≥ 0,

n∑

i=1

yid
∗
i h(xi) ≤ γ ∗,

d∗
i (yi

∑

h∈H
α∗

hh(xi) − ρ∗) = 0,

d∗
i ≥ 0, yi

∑

h∈H
α∗

hh(xi) ≥ ρ∗ − ξ∗
i ,

ξ∗
i (1/ν − d∗

i ) = 0, ξ∗
i ≥ 0, d∗

i ≤ 1/ν.

These conditions imply that (i) if the edge of h

on the distribution d∗ is less than γ ∗, then its
coefficient α∗

h is zero. (ii) If the final hypothesis
fα∗ has margin larger than ρ∗ on the sample
(xi , yi), then the corresponding weight d∗

i is zero.
(iii) If ξ∗

i > 0, then d∗
i = 1/ν. In particular,

(iii) further implies that the number of samples
whose margins are less than ρ∗ is at most ν.
This property makes the parameter setting of ν

intuitive.
These characterizations of the optimal

solution mean that, to solve the problem,

some samples with non-zero weights or some
weak hypotheses with non-zero coefficients are
sufficient. This motivates to solve smaller LP
subproblems repeatedly by adding seemingly
relevant hypotheses/samples, since in general, it
is often time-consuming to solve large-scale soft
margin optimization problems by standard LP
solvers.

The LPBoost [16] in Algorithm 2 is an algo-
rithm which approximately solves the soft margin
optimization problem (1) by repeatedly solving
the subproblems. Like standard boosting algo-
rithms, the LPBoost assumes a subroutine which,
when given a distribution d over the sample
set S, outputs a hypothesis h ∈ H, we call
WeakLearn. When H is moderately large, e.g., a
set of decision stumps, so that exhaustive search
over H is acceptable, let us define WeakLearn by

WeakLearnH(S, d) = argmax
h∈H

n∑

i=1

yidih(xi ).

(3)

This is nothing but the learning method with
weighted misclassification rate. In some cases
where the set H is large such as decision trees
or neural networks, however, the optimization
problem (3) cannot be solved exactly. Suppose
that WeakLearn returns a weak hypothesis whose
edge is larger than some γ > 0 for any input
distribution d. Under this weaker assumption,
it is possible to obtain a solution to (1) whose
objective value is at least γ −ε (see, e.g., [16–18]
for the details).

LPBoost is often faster than solving the soft
margin problem once by LP solvers. However,
there is no known iteration bound for LPBoost
(except the trivial upper bound |H|). Moreover,
in the worst case, it requires Ω(n/ε) iterations to
find an ε-approximate solution [17]. The Entropy
Regularized LPBoost [18], a modification of
LPBoost where the objective contains an entropic
regularization term, has an O(log n/ε2) iteration
bound. On the other hand, one has to solve an
entropy maximization problem rather than LP at
each trial, which requires more time than LP.
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Algorithm 2 LPBoost
Input: Training samples S = ((x1, y1), . . . , (xn, yn)) ∈ X × {+1,−1}.
1: Let d1 be the uniform distribution over S and γ1 = −1.
2: for t = 1 to . . . do
3: ht = WeakLearnH (S, d t )
4: Let γ̂t = ∑n

i=1 yidiht (xi ).
5: If γt > γ̂t − ε then T = t − 1 and break.
6: Solve the dual problem with Ht = {h1, . . . , ht }:

(d t+1, γt+1) = argmax
d,γ

γ (4)

sub. to

n∑

i=1

yidihτ (xi ) ≤ γ (for τ = 1, . . . , t)

n∑

i=1

di = 1, 0 ≤ di ≤ 1

ν
(for i = 1, . . . , n)

7: end for
8: return fT (x) = ∑T

t=1 αtht (x), where each αt is the Lagrange multiplier for ht in the last optimization problem.

Algorithm 3 SelfieBoost for deep learning
Input: Training samples (x1, y1), . . . , (xn, yn) ∈ X × {+1,−1}. Edge parameter ρ ∈ (0, 1/4).
1: Initial network f0 = f (x; Θ0) trained by a few SGD iterations � Initialization
2: for t = 1 to T do
3: Resampling m training samples according to the probability pi, i = 1, . . . , n defined by

pi ∝ e−yift−1(xi ).

4: Let S be the set of m resampled samples.
5: Use SGD or its variants to train the network f (x; Θ) based on the empirical loss over S,

∑

(x,y)∈S

yi(ft−1(xi ) − f (xi; Θ)) + 1

2

∑

(x,y)∈S

(f (xi; Θ) − ft−1(xi ))
2

6: Let ft be the trained network.
7: end for
8: return fT (x)

Boosting for Deep Learning

Deep learning is one of the most significant
developments in scientific community in the past
few decades. The stochastic descent gradient
(SGD) and its variants are commonly used to
train deep neural networks. However, further
improvement will be needed. In order to build
computationally efficient algorithms, some
boosting-like methods have been proposed. The
SelfieBoost in Algorithm 3 is a boosting method
for deep learning with a theoretical guarantee
[19]. Let us briefly introduce SelfieBoost.

In boosting methods, weak hypotheses are
combined to produce a single strong hypothesis.
In DNN, however, such a property of boosting
is not adequate, since the prediction using the
ensemble of DNN is computationally demanding.
In SelfieBoost shown below, a single network
f (x;Θ) with the parameter Θ for the binary
classification problems is repeatedly trained
using weighted samples.

The empirical loss in Step 5 of SelfieBoost
algorithm is an upper bound of the difference
of the exponential loss, log

( ∑
i e−yif (xi )

) −
log

(∑
i e−yift−1(xi )

)
. Shalev-Shwartz [19]
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derived an upper bound of the empirical error
e(fT ) := 1

m

∑m
i=1 1[yifT (xi ) < 0]. Suppose

that two conditions,

n∑

i=1

pi

[
yi(ft (xi ) − ft (xi ))

+1

2
(ft (xi ) − ft−1(xi ))

2
]

< −ρ,

|ft (xi ) − ft−1(xi )| ≤ 1, i = 1, . . . , n,

hold at every iteration of SelfieBoost. The first
condition means the DNN is sufficiently trained
in each step. The second condition implies that
the outcome of the DNN does not drastically
change from the one in the last step. Under
these conditions, we have e(fT ) ≤ e−ρT . The
exponential decrease of the empirical error holds
as well as Adaboost.
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Related Concepts

Edge detection

Definition

Boundary detection is the process of detecting
and localizing salient boundaries between objects
in a scene.

Background

Boundary detection is closely related to, but not
identical with, edge detection. Edge detection is
a classical problem in computer vision which
aims at finding brightness discontinuities. Edge
detection is usually viewed as a low-level pro-
cess of feature extraction that works under the
assumption of ideal edge models (such as step
and ridge edges).

In comparison, boundary detection is
usually viewed as a mid-level process of
finding boundaries of (and between) objects
in scenes, thus having close ties with both
grouping/segmentation and object shape. A large-
scale dataset of natural images with human-
marked groundtruth boundaries, the Berkeley
Segmentation Dataset (BSDS) [1, 2], was
established in 2001 and quickly became the
standard benchmark for both boundary detection
and segmentation (see examples in Fig. 1). The
Berkeley Segmentation Dataset helped defining
the problem of boundary detection and clarifying
several fundamental issues:

1. It directly addressed the complexities of real-
world scenes by using a variety of photos from
the Corel database.

2. It defined boundary detection as a perceptual
problem by using human-marked boundaries
as the groundtruth.

3. It showed that boundary detection is well
defined by demonstrating that boundaries
marked by human subjects are consistent.

4. It illustrated many challenges of boundary
detection, including those of real-world tex-

ture, complex object appearance, and low-
contrast boundaries.

By clarifying the task and establishing quan-
titative evaluation metrics, the Berkeley bench-
mark has witnessed and motivated large pro-
gresses in boundary detection in the recent years.

Local Boundary Detection

Early approaches to edge detection used local
derivative filters such as the Roberts, Sobel,
or Prewitt filters [3]. More advanced solutions
included that of the zero crossing of Marr and
Hildreth [4], the optimal filter design and non-
maximum suppression in the Canny detector [5],
and the use of quadrature filter pairs in oriented
energy [6]. Scale (of the filter) is an important
issue in edge detection and Lindeberg proposed a
mechanism for automatic scale selection [7].

The key concept in boundary detection is that
of contrast: regions on two sides of a boundary
tend to have different appearances; consequently,
there tends to be a high contrast at a bound-
ary location. To a large extent, this contrast can
be captured and measured locally in an image
neighborhood (e.g., a disk with a fixed radius).
Local contrast can be measured in a number of
ways, such as using linear filters or computing
distances between histograms. To handle real-
world scenes, modern boundary detectors uti-
lize contrast information from multiple chan-
nels (including brightness, color, and texture),
multiple orientations, and multiple scales (see
examples in Fig. 2). Good examples of these
contrast operators can be found in the Pb work
(probability-of-boundary) of Martin et al. [8] and
the gPb work (global probability-of-boundary) of
Arbelaez et al. [9] (Fig. 3).

Given the complexities of contrast cues and
the availability of labeled images, local boundary
detection is often formulated as learning a binary
classifier of boundary vs. non-boundary, which
will produce a soft boundary “likelihood” at each
pixel. Such a dense boundary map can be used
directly or converted to a sparse boundary map
through non-maximum suppression. A number
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Boundary Detection, Fig. 1 Examples of scenes in the
Berkeley Segmentation Dataset [1]. Each photo is labeled
by multiple human subjects, and the boundaries are shown

as being stacked together. There are variations across
human subjects, but the marked boundaries are largely
consistent especially for the salient ones

of supervised machine learning techniques were
used and tested in [8] to combine a small set
of handcrafted contrast cues. Others have taken
a more direct learning approach, such as using
boosting trees to combine thousands of simple
features over patches [10].

Global Boundary Detection

Boundaries are not local phenomena that occur
independently at pixels. In fact, boundaries are
defined at the object level, and boundary pixels
tend to form long, smooth contours, as evident
from the examples in Fig. 1. Considerable efforts
have been devoted to extracting boundaries glob-
ally, closely related to the classical problem of
contour completion in perceptual organization.
Algorithms for global boundary detection can be
quantitatively evaluated based on their precision
recall on the boundary detection task, same as for
local boundary detection.

A variety of very different formulations have
been proposed for global boundary detection and
contour extraction, including classical works
such as the Mumford-Shah functional [11].

Several recent approaches have successfully
demonstrated, through benchmarking, that
globalization greatly improves boundary
detection accuracy over local detectors. Ren et al.
[12] applied constrained Delaunay triangulation
(CDT) to decompose locally detected contours
into pieces and used conditional random fields
(CRF) and belief propagation to integrate local
contrast cues through interactions at junctions.
Zhu et al. [13] computed complex eigenvectors
of a normalized random walk matrix, using
circular embedding, to detect topologically
closed cycles. In the gPb work of Arbelaez et al.
[9], eigenvectors of the affinity matrix were first
computed, as in Normalized Cuts [14], and then
the gradients of these eigenvectors were added
to the local contrast cues to produce a single
contrast map.

[Optional]: One related but different form of global
boundary detection can be found in the case of top-
down object segmentation [15], where the algo-
rithm has access to the knowledge (such as shape
or texture) of the objects that are in the scene.
It is beyond the scope of the discussion here, as
boundary detection typically refers to the bottom-
up case where no high-level object knowledge is
needed.
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Boundary Detection,
Fig. 2 Boundary detection
combines multiple types of
contrast. (Courtesy of [9],
see details there).
Top-performing boundary
detectors integrate together
local contrast
measurements from
multiple channels (row 1,
brightness; 2 and 3, color;
and 4, texture, through
textons) and multiple
orientations (column 2,
vertical; and 3, horizontal).
Red color means high
probability being a
boundary and blue
otherwise. The combined
boundary contrast (last
row, last column) is much
better than any individual
channel

Application

Boundary detection is fundamentally connected
to both image segmentation and object shape,
and there should be no surprise that advances
in boundary detection have led to many

interesting applications in segmentation and
object recognition.

For image segmentation, the use of interven-
ing contour [16] allows one to convert any bound-
ary map to pairwise affinities for use in the
Normalized Cuts framework, and many systems
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BoundaryDetection, Fig. 3 Precision-recall curves and
F-measures of classical and modern boundary detection
algorithms on the Berkeley benchmark. (Courtesy of [9],
also see [1]). A variety of approaches have been pro-
posed and evaluated on the benchmark. One can typi-

cally observe qualitative improvements in the boundary
detection accuracy as the F-measure increases. State-of-
the-art boundary detectors perform much better than, for
instance, the Canny detector

(e.g., [17]) have been using modern boundary
detectors such as the Pb operator [8]. Pb is also
used in [18], combined with the Watershed algo-
rithm, to produce superpixels. Arbelaez et al. [9]
proposed a hierarchical segmentation algorithm
that, using the gPb boundary operator, produces
compelling segmentation results and at the same
time further improves the boundary detection
accuracy.

For object recognition, boundary detectors
such as Pb and gPb are often used to produce a
boundary map, which is in turn used to compute
shape descriptors. For instance, the work of
Berg et al. [19] used Pb boundary maps with
Geometric Blur for object and face recognition.
The work of Ferrari et al. [20] used Pb to produce
contour segments as a basis for shape matching.

There are many segmentation-based approaches
to recognition that also heavily rely on the quality
of boundary detection (e.g., [21]).

State-of-the-art boundary detectors are sophis-
ticated and require fairly intensive computation,
which limits their applicability. There have been
studies and efforts to speed up boundary detec-
tors. In particular, the GPU-based detector of
Catanzaro et al. [22] achieved a two-orders-of-
magnitude improvement of speed over gPb with-
out suffering any loss in boundary quality.
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Related Concepts

�Camera Calibration
�Hand-Eye Calibration

Definition

According to McGraw-Hill Encyclopedia of Sci-
ence and Technology [1], calibration is the pro-
cess of determining the performance parameters
of an artifact, instrument, or system by comparing
it with measurement standards. Adjustment may
be a part of a calibration, but not necessarily.
A calibration assures that a device or system
will produce results which meet or exceed some
defined criteria with a specified degree of confi-
dence.

Background

In computer vision, there are multiple calibration
problems. The most fundamental one is the cam-
era calibration, which determines the intrinsic
and extrinsic parameters of a camera. It is the first
step toward 3D computer vision. Other problems
include hand-eye calibration, color calibration,
and photometric calibration.

As stated in [1], two important measurement
concepts related to calibration are precision and
accuracy. Precision refers to the minimum dis-
cernible change in the parameter being measured,
while accuracy refers to the actual amount of
error that exists in a calibration. All measure-
ment processes used for calibration are subject
to various sources of error. It is common prac-
tice to classify them as random or systematic
errors. When a measurement is repeated many
times, the results will exhibit random statistical
fluctuations which may or may not be significant.
Systematic errors are offsets from the true value
of a parameter and, if they are known, corrections
are generally applied, eliminating their effect on
the calibration. If they are not known, they can
have an adverse effect on the accuracy of the
calibration. High-accuracy calibrations are usu-
ally accompanied by an analysis of the sources
of error and a statement of the uncertainty of the
calibration. Uncertainty indicates how much the
accuracy of a calibration could be degraded as a
result of the combined errors.
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Related Concepts

�Camera Calibration
�Camera Model
�Center of Projection
�Depth Distortion
�Extrinsic Parameters
� Intrinsic Parameters
� Projection

Definition

A non-single viewpoint system refers to a camera
for which the light rays that enter the camera
and contribute to the image produced by the
camera do not pass through a single point. The
analogous definition holds for models for non-
single viewpoint systems. Hence, a non-single
viewpoint camera or model does not possess a
single center of projection. Nevertheless, a non-
single viewpoint model (NSVM), like any other
camera model such as the pinhole model, enables
to project points and other geometric primitives
into the image and to back-project image points
or other image primitives, to 3D. Calibration of a
non-single viewpoint model consists of a process
that allows to compute the parameters of the
model.

Background

There exist a large variety of camera technologies
(“regular” cameras, catadioptric cameras, fish-
eyes, etc.) and camera models designed for these
technologies. Often, technologies are developed
in order to accommodate a desired model, for
example, to provide a uniform spatial resolution.

Most cameras used in computer vision and
other areas can be well modeled by so-called sin-
gle viewpoint, or central, camera models. These
usually model the 3D-to-2D mapping carried out
by a camera, via lines of sight (or camera rays)
that all pass through a single point (the center of
projection or optical center) and a mapping from
these lines of sight to the image points where they
hit the image plane.

Some camera types, especially some cameras
having a wide field of view, but not only these,
cannot be modeled very well using a single view-
point model. This may be the case because a
camera was designed to possess lines of sight that
do not pass through a single point. This is, for
example, the case for catadioptric cameras where
the mirror surface is of conical shape: even if the
camera looking at the mirror is positioned on the
mirror’s axis, the lines of sight of the system do
not converge to a single point; rather there exists a
viewpoint locus. Another example is a single-lens
stereo system consisting of a pinhole camera and
two planar mirrors, such that the obtained images
represent two perspective images acquired from
two different effective viewpoints.

A camera may also be unintentionally of the
non-single viewpoint type, for example, catadiop-
tric cameras that were designed to have a single
viewpoint but that due to a bad alignment of
the camera and the mirror of the system lose
the single viewpoint property. Another example
are fish-eye cameras; fish-eye optics are complex,
and in principle, one can probably consider them
as non-single viewpoint systems. However, in this
and the previous example, it is not clear without
further investigation of the actual system under
consideration, if a single viewpoint model or an
NSVM is better suited. This indeed depends on
“how much” the system deviates from having
a single viewpoint, how close the scene is in a

http://www.answers.com/topic/calibration
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typical application, how much image resolution
is available, and so forth. This issue is further
discussed in [1].

Finally, let us also note that it is possible to
treat a set of multiple cameras that are rigidly
attached to one another, as a single imaging
system [2]. In case the cameras are sufficiently
far from one another, the compound imaging sys-
tem can be described as an NSVM. Particularly
interesting is the case where there is no overlap in
the fields of view of the individual cameras [3].

In the following, it is supposed that calibration
is performed by acquiring one or several images
of a calibration object, whose geometry is known
and whose characteristic features (for simplicity,
points shall be considered) can be extracted and
identified in images.

Theory

There are different types of NSVMs. One usually
distinguishes parametric from non-parametric
such models. For example, for non-single
viewpoint catadioptric systems, if the shape
of the system’s mirror is known or is known
to belong to a parametric family of shapes,
then the entire system can be described by few
parameters: intrinsic parameters of the camera
looking at the mirror, relative pose of mirror
and camera, and, possibly, shape parameters
for the mirror. If such a parametric model is
considered, calibration is, conceptually speaking,
analogous to that of pinhole cameras. The main
difference to calibration of pinhole cameras
usually concerns the initialization process that
allows to compute initial estimates of the camera
parameters. Other than that, one may in general
formulate calibration by a bundle adjustment
type optimization of camera parameters, by
minimizing, for example, the reprojection
error, i.e., a measure related to the distance
between the predicted projections of points of
the calibration object and those extracted in
the images. Examples of parametric NSVMs
are the so-called two-plane and GLC models
[4–7], where lines of sight are parameterized by
linear or higher-order transformations applied to

points in two basis planes, other similar models
where lines of sight are parameterized by linear
transformations [8–11], models for pushbroom
and X-slit cameras [12–15], and others [16].

A different concept consists in using non-
parametric models to calibrate cameras. An
example is the raxel model introduced by
Grossberg and Nayar [17]. It essentially
associates, to each pixel, a ray in 3D supporting
the line of sight and possibly properties such as its
own radiometric response function. Importantly,
one may use such a model without making
any assumption about a parametric relationship
between the position of pixels and the position
and orientation of the associated lines of sight.
Rather, one may store the coordinates of the
lines of sight of all pixels, in a look-up table.
Simplified versions of this model (without
considering optical properties for individual
pixels) have been used in several similar
calibration approaches, for example [17–20].

The principle of these approaches is thus to
compute, for every camera pixel, a line of sight
in 3D. To do so, at least two images of a cali-
bration object are required. The simplest scenario
considers the case where the calibration object is
displaced by some known motion, between the
image acquisitions. For each image, one has to
estimate correspondences between camera pixels
and points on the calibration object. One way
of achieving such dense correspondences is to
use structured light principles, for instance, to
use as calibration object a computer screen and
to display a series of black-and-white patterns
on it that encodes each pixel of the screen by
a unique sequence of black-and-white intensi-
ties (e.g., Grey codes). Once correspondences
of camera pixels and points of the calibration
object (pixels of the computer screen in the above
example) are known, the lines of sight can be
computed by simply fitting straight 3D lines to
the matched points on the calibration object. To
do so, the latter must be expressed in the same 3D
coordinate system, which is possible since it was
assumed above that the motion of the calibration
object between different acquisitions is known.
This approach was proposed independently by
different researchers [17–19].
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The above approach requires a minimum
of two images, for different positions of the
calibration object, and knowledge of the object’s
displacements. An extension to the case of
unknown displacements was proposed in [20].
That approach requires at least three images;
from matches of camera pixels and points
on the calibration object, it first recovers the
displacements of the object using an analysis
of this scenario’s multi-view geometry and
then computes lines of sights as above. Other
approaches following this line are [21–23].

The above approaches compute, for each cam-
era pixel, an individual line of sight. If one
assumes that the relation between pixels and
lines of sight is particular, for instance, radially
symmetric about an optical axis, then alternative
solutions become possible. Such a possibility is
to use a non-parametric representation of the
distortion or undistortion function of a camera,
i.e., a function that maps viewing angles (angles
between lines of sight and the optical axis) to
distances in the image, between image points,
and the principal point or a distortion center. This
can be done for both single viewpoint and non-
single viewpoint models. In the former case, it
is assumed that all lines of sight pass through a
single center of projection, whereas in the latter
case, the model usually includes a mapping from
viewing angles to the position of the intersec-
tion between lines of sight and the optical axis.
Approaches of the latter type include [24, 25].
Besides making and using the assumption that the
camera is radially symmetric, these calibration
approaches resemble those explained above.

Different other approaches exist, for example,
one based on the “surface model” [26], where
the raxels of the model of Grossberg and Nayar
are interpolated through the help of spline sur-
faces, or the method of [27] which estimates
the refractive surface in front of a camera that
makes the compound imaging system a non-
central one. As for the case of multi-camera
systems modeled as NSVMs, mentioned under
“Background,” dedicated calibration approaches
have been developed especially for the case of
cameras with non-overlapping fields of view; see,
for instance, [28].

Application

All approaches described above, be they
parametric or non-parametric, allow to perform
3D-to-2D projection and/or 2D-to-3D back-
projection, the latter meaning the mapping from
an image point to the associated line of sight. By
definition, the parametric models give analytical
expression to perform these operations. As
for non-parametric ones, projection and back-
projection usually imply some interpolation
and, possibly, a search. For instance, if a non-
parametric model consists of a look-up table
that gives, for each pixel, its line of sight, back-
projection of an image point with non-integer
coordinates requires interpolation, whereas
projection of a 3D point requires the search of the
closest line(s) of sight in the look-up table and
again an interpolation stage.

Other than these particular aspects, NSVMs
can be used for many structure-from-motion
computations completely analogous to other
camera models, in particular the pinhole model.
Among the essential building blocks of structure-
from-motion, there are pose estimation, motion
estimation, and 3D point triangulation for
calibrated cameras. As for pose and motion
estimation (and other tasks), one usually requires
two types of methods in an application: so-called
minimal methods, which perform the estimation
task from the minimum required number of point
matches and which can be efficiently embedded
in robust estimation schemes such as RANSAC,
and non-linear optimization methods that refine
initial estimates obtained from minimal methods.
Minimal methods for pose [29–31] and motion
estimation [32–34] are formulated analogously
to those for the pinhole model, although their
algebraic and algorithmic complexity is generally
higher and the minimal configurations different
(such as the required number of point matches or
views).

Nevertheless, all that is essentially required
by these methods from the NSVM is to com-
pute lines of sight of interest points that are
extracted and matched to another image (for
motion estimation) or to a reference object (for
pose estimation). As for the non-linear optimiza-
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tion stage, the minimization of the reprojection
errors requires 3D-to-2D projections to be car-
ried out, which, as explained above, may require
search and interpolation, in which case the com-
putation of the cost function’s derivatives may
have to rely on numerical differentiation. Other
than that, there is no major conceptual difference
compared to pose/motion estimation with pinhole
cameras.

Another essential structure-from-motion task
is 3D point triangulation. Here again, suboptimal
methods work with lines of sight computed by the
camera model for interest points in the images,
and optimal methods perform the non-linear opti-
mization of reprojection errors, where the same
considerations hold as above for pose and motion
estimation.
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Calibration of Multi-camera Setups
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Synonyms

Multi-camera calibration

Related Concepts

�Camera Calibration
�Camera Parameters (Intrinsic, Extrinsic)

Definition

Calibration of multi-camera setups is a process to
estimate parameters of cameras which are fixed in
a setup. It usually refers to the process to find rel-
ative poses of the cameras in a single coordinate
system under the assumption of known intrinsic
camera parameters.

Background

Many computer vision methods including 3D
reconstruction from stereo cameras utilize the
multiple cameras in a system, assuming that the
relative poses of cameras in a single coordinate
system is already known. While the camera cali-
bration using a planar pattern [1] simplifies cali-
bration process for intrinsic and extrinsic param-
eters of each camera, estimating camera poses in
a fixed global coordinate system is still required.

The term “multi-camera setup” includes many
different camera configurations such as a stereo,
inward-looking cameras, outward-looking cam-
eras, or camera sensor networks. Because each
camera setup has different viewpoint and field of
view (FOV) configuration, one single calibration
method is not able to deal with all the multi-
camera setups. Depending on the camera config-
uration, different calibration approach should be
considered.

Theory

A projection matrix Pi of a camera i in a multi-
camera setup is given as

Pi = Ki [Ri Ti] . (1)

The matrices Ri and Ti represent the pose of
the camera i in a predetermined fixed coordinate
system. More specifically, the matrices express
a transformation between the fixed global coor-
dinate system and the local camera coordinate
system. The goal of the multi-camera calibration
is to estimate the matrices Ri and Ti for all i
in the system. The camera matrix Ki represents
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intrinsic parameters of the camera i, which can
be assumed to be known by calibrating the intrin-
sic parameters of each camera independently in
advance.

Multi-camera systems can be categorized into
three configurations: inward-looking cameras,
outward-looking cameras and large camera
networks.

Inward-looking cameras The case that all the
cameras in the system have a FOV shared.
A stereo camera is considered inward-looking
because the two cameras should see the same
scene.

Outward-looking cameras The case that all the
cameras in the system do not share their FOV.
Because no FOVs are overlapped, it is usually
called non-overlapping cameras.

Camera networks The case that some cameras
share their FOVs but there are no common
FOV for all cameras. Distributed cameras are
usually in this category. Most likely, nearby
cameras have a common FOV, farther cameras
can not see it.

Each camera configuration has different con-
straints used in the multi-camera calibration, and
the resulting calibration method becomes differ-
ent to each other.

Inward-Looking Cameras
When all the cameras in the multi-camera setup
have a common FOV, the multi-camera calibra-
tion is relatively simple. A calibration object is
placed in the common FOV as shown in Fig. 1
so that each camera can see it, and the pose of
the cameras with respect to the object coordi-
nate system is estimated by using conventional
pose estimation methods [2–4]. In this case, the
common coordinate system of the multi-camera
configuration is set to be the coordinate system
of the calibration object.

For pose estimation of each camera, a planar
pattern is preferable because it provides better
visibility for all cameras. Note that, however, it
is not limited to a planar pattern when the object
visibility from every camera is ensured.

Sinha et al. [5] present an automatic
calibration method using object silhouettes.

Calibration of Multi-camera Setups, Fig. 1
Calibration of inward-looking cameras

In this method, epipolar geometry between
cameras is estimated from dynamic silhouettes
and projective structure is recovered. Following
self-calibration completes the Euclidean recon-
struction. This aims especially for shape-from-
silhouette or visual hull reconstruction.

Outward-Looking Cameras
When the FOVs of cameras in the system are
not overlapped, it is impossible to place a cali-
bration object which is observable from multiple
cameras. The pose between cameras can be esti-
mated by utilizing the fact that the transformation
between cameras are fixed in motions called a
rigidity constraint [6].

Assume that the coordinate systems of cam-
eras i and j are transformed by a transformation
Rij and tij. When the camera i moves with a
transformation �Ri and �ti, the motion of the
camera jwith a rotation�Rj and a translation�tj
is given as

[
ΔRj Δtj
0� 1

]

=
[
Rij tij
0� 1

] [
ΔRi Δti
0� 1

] [
Rij tij
0� 1

]−1

,

(2)

and this equation can be rewritten in a AX = XB
form on the Euclidean group as
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[
ΔRj Δtj
0� 1

] [
Rij tij
0� 1

]

=
[
Rij tij
0� 1

] [
ΔRi Δti
0� 1

]
.

(3)

Solving the unknowns Rij and tij on the
Euclidean group is known as a hand-eye
calibration in the robotics community [7–9].
Two or more motions of the camera rig provide
enough number of constraints.

One practical problem is to estimate motions
�R and �t of each camera. One stable way
is to use calibration objects for each camera.
First place a calibration object for each camera
and take pictures while moving the camera rig.
At each time frame, the poses of each camera
can be estimated by using a conventional pose
estimation method. The motions of cameras are
computed by calculating the difference of the
poses at different time frames. Note that the geo-
metric relation between calibration objects is not
required in calculating each camera motions. The
only requirement is that the calibration objects
are fixed in motions. Figure 2 shows the calibra-
tion objects for three non-overlapping cameras.

By solving the AX = XB equation on the
Euclidean group, the transformation between two
cameras is obtained. If the multi-camera system

has more than two cameras, every camera can
be registered in the fixed global coordinate sys-
tem by chaining the transformations pairwisely.
However, the pairwise chaining of transformation
does not guarantee the globally consistent regis-
tration. In addition, the transformation between
cameras may be inconsistent depending on the
data provided to the AX = XB solver. Dai et al.
[10] represent a rotation averaging strategy to
improve the consistency of the estimated transfor-
mation, and use a global bundle adjustment [11]
for final polishing. Lebraly et al. [12] more focus
on an sparse implementation of the global bundle
adjustment to ensure the consistency in the fixed
global coordinate system.

Kumar et al. [13] present completely different
approach to use a mirror so that the cameras
can observe the mirrored calibration pattern, and
show successful calibration result for the ladybug
camera.

Camera Networks
One general configuration is a camera network,
which usually has many fixed cameras seeing in
different directions. When every camera shares
its FOV with any other camera in the network,
relative transformations between the cameras can
be estimated using calibration objects, and they
are registered by chaining the transformation. In

Calibration
of Multi-camera Setups,
Fig. 2 Calibration of
outward-looking cameras
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Calibration
of Multi-camera Setups,
Fig. 3 Calibration of a
camera network

fact, this calibration process is cast to a conven-
tional structure from motion problem. Once all
the relative transformations are obtained, glob-
ally consistent localization of the cameras in the
fixed coordinate system is achieved by using bun-
dle adjustment [11]. Figure 3 shows a possible
placement of calibration objects in calibrating a
camera network. Devarajan et al. [14] introduce
a vision graph to describe the feature visibility
between cameras, and try to optimize the graph
network by belief propagation.

Baker and Aloimonos [15] present a method
based on the multi-frame structure from motion
algorithm, and use a rod with two LEDs at each
end as a calibration object. The LEDs provides
accurate and easily detectable correspondences
for the precisely synchronized cameras by waiv-
ing the rod.

Svoboda et al. [16] propose a convenient and
complete self-calibration method using a laser
pointer including intrinsic parameter estimation.
The method is based on the stratification of the
transformations; at first projective reconstruction
is achieved by factorization and later upgraded
to Euclidean space by imposing geometric con-
straints such as a square pixel assumption. Their
source codes are available for public use.

If there is no camera sharing its FOV with
others, it is challenging to establish the common
global coordinate system. One idea is to use a
mobile robot carrying a calibration object [17].
The location of the object is estimated by the

SLAM of the mobile robot. However, this is not
stable enough for practical use yet.

Application

Multi-camera calibration is essential in construct-
ing a system using multiple cameras depending
on the applications and sensor configurations.
The inward-looking configuration is generally
used in many 3D reconstruction tasks such
as stereo and visual hull reconstruction. The
outward-looking configuration is useful to
enlarge the effective FOV of the system, and
especially for structure from motion applications.
The most general camera network has diverse
applications such as 3D reconstruction, surveil-
lance, environmental monitoring and so on. Note
that the camera network includes the inward-
looking configuration of cameras.
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Calibration of Projective Cameras
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Synonyms

Lens distortion correction

Related Concepts

�Calibration
�Camera Calibration
�Geometric Calibration
� Perspective Camera

Definition

Calibration of a projective camera is the process
of determining an adjustment on the camera so
that, after adjustment, it follows the pinhole or
perspective projection model.

Background

A projective camera follows pinhole or perspec-
tive projection, which is also known as rectilin-
ear projection because straight lines in a scene
remain straight in an image. A real camera usu-
ally uses lenses with finite aperture, especially for
low-end cameras (such as WebCams) or wide-
angle cameras. Lens distortion also arises from
imperfect lens design and manufacturing, as well
as camera assembly. A line in a scene is not seen
as a line in the image. A point in 3D space, its
corresponding point in image, and the camera’s
optical center are not collinear. The linear pro-
jective equation is sometimes not sufficient, and
lens distortion has to be considered or corrected
beforehand.
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Theory

According to [1], there are four steps in camera
projection including lens distortion:

Step 1: Rigid transformation from world coordi-
nate system (Xw, Yw, Zw) to camera one (X,
Y, Z):

[X Y Z]T = R
[
Xw Yw Zw

]T + t

Step 2: Perspective projection from 3D camera
coordinates (X, Y, Z) to ideal image coordi-
nates (x, y) under pinhole camera model:

x = f X
Z

, y = f Y
Z

where f is the effective focal length.

Step 3: Lens distortion:

x̆ = x + δx, y̆ = y + δy

where (x̆, y̆) are the distorted or true image
coordinates and (δx, δy) are distortions applied to
(x, y). Note that the lens distortion described here
is different from Tsai’s treatment. Here, we go
from ideal to real image coordinates, similar to
[2].

Step 4: Affine transformation from real image
coordinates (x̆, y̆) to frame buffer (pixel)
image coordinates (ŭ, v̆):

ŭ = d−1
x x̆ + u0, v̆ = d−1

y y̆ + v0,

where (u0, v0) are coordinates of the principal
point and dx and dy are distances between adja-
cent pixels in the horizontal and vertical direc-
tions, respectively.

There are two types of distortions:

Radial distortion: It is symmetric; ideal image
points are distorted along radial directions
from the distortion center. This is caused by
imperfect lens shape.

Decentering distortion: This is usually caused by
improper lens assembly; ideal image points

are distorted in both radial and tangential
directions.

The reader is referred to [3–6] for more details.
The distortion can be expressed as power

series in radial distance r = √x2 + y2:

δx = x
(
k1r

2 + k2r
4 + k3r

6 + · · ·
)

+
[
p1

(
r2+2x2

)
+2p2xy

] (
1+p3r

2+ · · ·
)

,

δy = y
(
k1r

2 + k2r
4 + k3r

6 + · · ·
)

+
[
2p1xy+p2

(
r2+2y2

)] (
1+p3r

2+ · · ·
)

,

where kis are coefficients of radial distortion and
pjs are coefficients of decentering distortion.

Based on the reports in the literature [1, 2, 4],
it is likely that the distortion function is totally
dominated by the radial components and espe-
cially dominated by the first term. It has also been
found that any more elaborated modeling not
only would not help (negligible when compared
with sensor quantization) but also would cause
numerical instability [1, 2].

Denote the ideal pixel image coordinates by
u = x/dx and v = y/dy. By combining Steps 3
and 4 and if only using the first two radial distor-
tion terms, we obtain the following relationship
between (ŭ, v̆) and (u, v):

ŭ=u+ (u − u0)

[
k1

(
x2+y2

)
+k2

(
x2+y2

)2]

(1)

v̆=v+ (v − v0)

[
k1

(
x2+y2

)
+k2

(
x2+y2

)2]
.

(2)

Lens distortion parameters can be determined
as an integrated part of geometric calibration
[7]. This can be done by observing a known
3D target [1, 2, 6], by observing a 2D planar
pattern [8], by observing a linear point pattern [9],
or by moving the camera through a rigid scene
[10]. The nonlinearity of the integrated projection
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and lens distortion model does not allow for a
direct calculation of all the parameters of the
camera model. Camera calibration including lens
distortion can be performed by minimizing the
distances between the image points and their
predicted positions, i.e.,

min
A,R,t,k1,k2

∑
i

‖mi − m̆ (A,R, t, k1, k2,M i )‖2

(3)

where m̆ (A,R, t, k1, k2,M i ) is the projection
of M i onto the image according to the pinhole
model, followed by distortion according to Eq.
(1) and Eq. (2). The minimization is performed
through an iterative approach such as using the
Levenberg-Marquardt method.

An alternative approach is to perform lens
distortion correction as a separate process. Invari-
ance properties under projective transformation
are exploited. One is the “plumb line” constraint
[4], which is based on the fact that a line in
a scene remains a line in an image. Another is
the cross-ratio constraint [2], which states that,
for four collinear points with known distances
between each other in 3D, their corresponding
image points are collinear, and their cross-ratio
remains the same. Due to lens distortion, projec-
tive invariants are not preserved, and we can use
the variance to compute the distortion.
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Definition

Calibration of radiometric falloff is the measure-
ment of brightness attenuation away from the
image center for a given camera, lens, and camera
settings.
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Background

Several mechanisms may be responsible for
radiometric falloff. One is the optics of the
camera, which may have a smaller effective
lens opening for light incident at greater off-
axis angles (i.e., irradiance toward the edges
of an image). Radiometric falloff also occurs
naturally due to foreshortening of the lens when
viewed at increasing angles from the optical axis.
A third cause is mechanical in nature, where light
arriving at oblique angles is partially obstructed
by camera components such as the field stop or
lens rim. Digital sensors may also contribute to
this falloff because of angle-dependent sensitivity
to light. The profile of the radiometric falloff field
varies with respect to camera, lens, and camera
settings such as focal length and aperture.

Many computer vision algorithms assume that
the image irradiance measured at the camera
sensor is equal to the scene radiance that arrives
at the camera. However, this assumption often
does not hold because of radiometric falloff. It
is therefore important to measure or estimate the
radiometric falloff, and remove its effects from
images.

Theory

Radiometric falloff, or vignetting, may be mod-
eled as a function f that represents the proportion
of image brightness I at an image position (x, y)
relative to that at the image center (x0, y0):

f (x, y) = I (x, y)

I (x0, y0)
. (1)

Because of approximate radial symmetry
in the optical systems of most cameras, the
radiometric falloff function may alternatively
be expressed in terms of image distance r from
the image center:

f (r) = I (r)

I (0)
, (2)

where r = √
x2 + y2. The purpose of radiomet-

ric falloff calibration is to recover f, so that its
inverse function f−1 can be applied to an image i,
recorded by the same camera and camera settings,
to obtain an image ĩ without radiometric falloff:

ĩ (x, y) = f −1 (i (x, y)) . (3)

The effect of radiometric falloff calibration is
illustrated in Fig. 1.

Methods
A basic method for calibration of radiometric
falloff is to capture a reference image consisting
of a uniform radiance field [1–4]. Since the scene
itself contains no brightness variation, intensity
differences in the image can be attributed solely
to radiometric falloff. It must be noted that in
these and other methods of falloff calibration, it
is assumed that the camera response function is
known.

Another approach examines image sequences
with overlapping views of an arbitrary static
scene [5–9]. In overlapping image regions,
corresponding points are assumed to have
the same scene radiance. Differences in their
intensities are therefore a result of different
radiometric falloff at their respective image
positions. From the positions and relative
intensities among each set of corresponding
points, the radiometric falloff field can be
recovered without knowledge of scene content.
Most of these methods are designed to recover
both the radiometric falloff field and the camera
response function in a joint manner [6–9].

The radiometric falloff field may alternatively
be estimated from a single arbitrary input image.
To infer the falloff field in this case, the intensity
variation caused by falloff needs to be distin-
guished from that due to scene content. This has
been done using a segmentation-based approach
that identifies image regions with reliable data
for falloff estimation [10], and by examining the
effect of falloff on radial gradient distributions in
the image [11].
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Orginal image Radiometric
falloff field

Calibrated image

Calibration of Radiometric Falloff (Vignetting), Fig. 1 Image calibrated for radiometric falloff

Application

Calibration of radiometric falloff is of importance
to algorithms such as shape-from-shading and
photometric stereo that infer scene properties
from image irradiance values. It is also essential
in applications such as image mosaicing
and segmentation that require photometric
consistency of the same scene point appearing
in different images, or different scene points
within the same image.

A measured radiometric falloff field may be
used to locate the optical center of the image,
since radiometric falloff generally exhibits
radial symmetry. The spatial variation of light
transmission may also be exploited in sensing,
such as to capture high dynamic range intensity
values of scene points viewed from a moving
camera [12].
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Definition

Camera calibration is the process of determining
certain parameters of a camera in order to fulfill
desired tasks with specified performance mea-
sures. The reader is referred to entry Calibration
for a general discussion on calibration.

Background

There are multiple camera calibration prob-
lems. The most common one, which almost
becomes the synonym of camera calibration, is
geometric calibration (see entry � “Geometric
Calibration”). It consists in determining
the intrinsic and extrinsic parameters of a
camera.

Other camera calibration problems include:

Stereo calibration. A stereo (or stereovision)
system consists of multiple cameras. Stereo
calibration determines the relative geometry
(rotation and translation) between cameras.
The intrinsic parameters of each camera
can be determined separately as in camera
calibration or jointly with the relative
geometry.

Photometry concerns the measurement of quan-
tities associated with light. Photometric cal-
ibration of a camera is a process of deter-
mining a function which converts the pixel
values to photometric quantities such as SI
(Système International in French) light units.
A test chart of patches with known relative
luminances is usually used for photometric
calibration.

Color calibration. The pixel values of a color
camera depend not only on the surface
reflectance but also on the illuminating source.
White balance is a common color calibration
task, which uses a standard test target with
known reflectance to remove the influence of
lighting on the scene. Another common task
is to calibrate multiple seemingly identical
cameras which are not due to tolerance in
fabrication.

Camera Extrinsic Parameters

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen,
China

Synonyms

Camera pose; Extrinsic parameters

Related Concepts

�Camera Parameters (Intrinsic, Extrinsic)
�Camera Pose
� Intrinsics

Definition

Extrinsic, short for extrinsic parameters, refer to
the parameters not forming the essential part of
a thing, which is usually a camera in computer
vision. The extrinsic parameters of a camera
include its pose (rotation and translation) with
respect to a reference coordinate system.

See entry � “Camera Parameters (Intrinsic,
Extrinsic)” for more details.

CameraModel
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China

Related Concepts

�Camera Calibration
�Camera Parameters (Intrinsic, Extrinsic)
� Intrinsics
� Perspective Camera
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Definition

A camera is a device that records lights com-
ing from the scene and saves them in images.
These images may be still photographs or moving
images (videos). The camera model describes
the mathematical relationship between the 3D
coordinates of a point in the scene from which
the light comes from and the 2D coordinates of its
projection onto the image plane. The ideal camera
model is known as the pinhole camera model
or perspective camera model, but other camera
models exist such as thin and thick cameras.

Background

The term camera comes from the camera obscura
(in Latin for “dark chamber”) [1]. A camera
obscura is a dark room, consisting of a darkened
chamber or box, into which light is admitted
through a pinhole (later a convex lens), forming
an image of external objects on a surface of
wall, paper, or glass. A modern camera generally
consists of an enclosed hollow with an opening
(aperture) at one end for light to enter and a
recording or viewing surface (such as a CCD or
CMOS sensor) for capturing the light on the other
end. A majority of cameras have a lens positioned
in front of the camera’s opening to gather the
incoming light and focus all or part of the image
on the recording surface.

A camera may work with the light of the
visible spectrum. If it records each of the red,
blue, and green primary colors at each pixel, then
the camera is called a color camera; if it only
records the shades of black and white (the grey
levels of the light intensity), the camera is called
a black and white camera.

A camera may also work with the light outside
of the visible spectrum, e.g., with the infrared
(IR) light, and the camera is called the IR camera.

Pinhole CameraModel

A pinhole camera can be ideally modeled as the
perspective projection. This is by far the most

popularly used model in the computer vision
community. The reader is referred to the entry
� “Perspective Camera” for details.

Thin and Thick Lens CameraModels

Although pinhole cameras model quite well most
of the cameras we use in the computer vision
community, they cannot be used physically in a
real imaging system. This is for two reasons:

– An ideal pinhole, having an infinitesimal aper-
ture, does not allow to gather enough amount
of light to produce measurable image bright-
ness (called image irradiance).

– Because of the wave nature of light, diffrac-
tion occurs at the edge of the pinhole and
the light spread over the image [2]. As the
pinhole is made smaller and smaller, a larger
and larger fraction of the incoming light is
deflected far from the direction of the incom-
ing ray.

To avoid these problems, a real imaging sys-
tem usually uses lenses with finite aperture. This
appendix aims at having the reader know that
there are other camera models available. One
should choose an appropriate model for a partic-
ular imaging device [3, Sect. 2.A.1].

For an ideal lens, which is known as the thin
lens, all optical rays parallel to the optical axis
converge to a point on the optical axis on the other
side of the lens at a distance equal to the so-called
focal length f (see Fig. 1).

The light ray through the center of the lens is
undeflected; thus a thin lens produces the same
projection as the pinhole. However, it gathers
also a finite amount of light reflected from (or
emitted by) the object (see Fig. 2). By the familiar
thin lens law, rays from points at a distance Z
are focused by the lens at a distance −F, and Z
and −F satisfy

1

Z
+ 1

−F
= 1

−f
, (1)

where f is the focal length.
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Camera Model, Fig. 1 Cross-sectional view of a thin lens sliced by a plane containing the optical axis. All light rays
parallel to the optical axis converge to a point at a distance equal to the focal length

Z

Z

O−f−F

Camera Model, Fig. 2 A thin lens gathers light from a finite area and produces a well-focused image at a particular
distance

If we put an image plane at the distance
−F, then points at other distances than Z are
imaged as small blur circles. This can be seen
by considering the cone of light rays passing
through the lens with apex at the point where

they are correctly focused [2]. The size of the
blur circle can be determined as follows. A
point at distance Ẑis focused if it is imaged
at a point −F̂ from the lens (see Fig. 3),
where
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CameraModel, Fig. 3 Focus and blur circles
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CameraModel, Fig. 4 Cross-sectional view of a thick lens sliced by a plane containing the optical axis

1

Ẑ
+ 1

−F̂
= 1

−f
.

It gives rise to a blur circle on the image plane
located at distance −F. The diameter of the blur
circle, e, can be computed by triangle similarity

e

d
=
∣∣∣F − F̂

∣∣∣
F̂

,

which gives

e = d

F̂

∣∣∣F − F̂

∣∣∣ = f d

Ẑ

| Z − Ẑ |
Z − f

,
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where d is the diameter of the lens. If the diameter
of blur circles, e, is less than the resolution of
the image, then the object is well focused and
its image is clean. The range of distances over
which objects are focused “sufficiently well” is
called the depth of field. It is clear that the
larger the lens aperture d, the less the depth of
field.

From (1), it is seen that for objects relatively
distant from the lens (i.e., Z � f), we have
F = f. If the image plane is located at
distance f from the lens, then the camera
can be modeled reasonably well by the
pinhole.

It is difficult to manufacture a perfect
lens. In practice, several simple lenses are
carefully assembled to make a compound
lens with better properties. In an imaging
device with mechanism of focus and zoom,
the lenses are allowed to move. It appears
difficult to model such a device by a pinhole
or thin lens. Another model, called the thick
lens, is used by more and more researchers
[4, 5].

An ideal thick lens is illustrated in Fig. 4.
It is composed of two lenses, each having two
opposite surfaces, one spherical and the other
plane. These two planes p1 and p2, called the
principal planes, are perpendicular to the optical
axis and are separated by a distance t, called
the thickness of the lens. The principal planes
intersect the optical axis at two points, called
the nodal points. The thick lens produces the
same perspective projection as the ideal thin
lens, except for an additional offset equal to the
lens thickness t along the optical axis. A light
ray arriving at the first nodal point leaves the
rear nodal point without changing direction. A
thin lens can then be considered as a thick lens
with t = 0.

It is thus clear that a thick lens can be con-
sidered as a thin lens if the object is relatively
distant to the camera compared to the lens thick-
ness (i.e., Ẑ � t). It can be further approxi-
mated by a pinhole only when the object is well
focused (i.e., F ≈ F̂ ), and this is valid only
locally.
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Definition

Camera parameters are the parameters used in
a camera model to describe the mathematical
relationship between the 3D coordinates of a
point in the scene from which the light comes
from and the 2D coordinates of its projection onto
the image plane. The intrinsic parameters, also
known as internal parameters, are the parameters
intrinsic to the camera itself, such as the focal
length and lens distortion. The extrinsic param-
eters, also known as external parameters or cam-
era pose, are the parameters used to describe
the transformation between the camera and its
external world.

Background

In computer vision, in order to understand the
environment surrounding us with a camera,
we have to know first the camera parameters.
Depending on the accuracy we need to achieve
and on the quality of the camera, some
parameters can be neglected. For example, with
a high-quality camera, the lens distortion can
usually be ignored in most of the applications.

Theory

In the entry � “Perspective Camera”, we describe
the mathematical model of a perspective camera

with only a single parameter, the focal length
f. The relationship between a 3D point and its
image projection is described by

sm̃ = PM̃, (1)

where s = S is an arbitrary nonzero scalar and P
is a projective projection matrix given by

P =
⎡
⎣f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦ .

Before proceeding, the reader needs to review
the entry � “Perspective Camera”.

Extrinsic Parameters
In the projective projection matrix described in
the entry � “Perspective Camera”, recapitulated
above, we assumed that 3D points are expressed
in the camera coordinate system. In practice, they
can be expressed in any 3D coordinate system,
which is sometimes referred as the world coor-
dinate system. As shown in Fig. 1, we go from
the old coordinate system centered at the optical
center C (camera coordinate system) to the new
coordinate system centered at point O (world
coordinate system) by a rotation R followed by a
translation t = CO . Then, for a single point, its
coordinates expressed in the camera coordinate

C

X

Y

I x

y

c

m

camera
coordinate system

O

Xw

Yw

world coordinate system

Zw

M

Z

(R, t)

Camera Parameters (Intrinsic, Extrinsic), Fig. 1 World coordinate system and camera extrinsic parameters
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system, Mc, and those expressed in the world
coordinate system, Mw, are related by

Mc = RMw + t,

or more compactly

M̃c = DM̃w, (2)

where D is a Euclidean transformation of the
three-dimensional space

D =
[
R t
0T
3 1

]
with 03 = [0, 0, 0]T . (3)

The matrix R and the vector t describe the ori-
entation and position of the camera with respect
to the new world coordinate system. They are
called the extrinsic parameters of the camera.

From (1) and (2), we have

m̃ = PM̃c = PDM̃w.

Therefore the new perspective projection
matrix is given by

Pnew = PD. (4)

This tells us how the perspective projection
matrix P changes when we change coordinate
systems in the three-dimensional space: We sim-

ply multiply it on the right by the corresponding
Euclidean transformation.

Intrinsic Parameters and Normalized
Camera
This section considers the transformation in
image coordinate systems. It is very important
in practical applications because:

– We do not know the origin of the image plane
in advance. It generally does not coincide with
the intersection of the optical axis and the
image plane.

– The units of the image coordinate axes are not
necessarily equal, and they are determined by
the sampling rates of the imaging devices.

– The two axes of a real image may not form a
right angle.

To handle these effects, we introduce an affine
transformation.

Consider Fig. 2. The original image coordinate
system (c, x, y) is centered at the principal point c
and has the same units on both x- and y-axes. The
coordinate system (o, u, v) is the coordinate sys-
tem in which we address the pixels in an image. It
is usually centered at the upper left corner of the
image, which is usually not the principal point c.
Due to the electronics of acquisition, the pixels
are usually not square. Without loss of generality,
the u-axis is assumed to be parallel to the x-axis.
The units along the u- and v-axes are assumed

Camera Parameters
(Intrinsic, Extrinsic),
Fig. 2 Camera intrinsic
parameters

o u

v

x

y

θ

m

c

u0

v0
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to be ku and kv with respect to the unit used in
(c, x, y). The u- and v-axes may not be exactly
orthogonal, and we denote their angle by θ. Let
the coordinates of the principal point c in (o, u, v)
be [u0, v0]T. These five parameters do not depend
on the position and orientation of the cameras and
are thus called the camera intrinsic parameters.

For a given point, let mold = [x, t]T be the
coordinates in the original coordinate system; let
mnew = [u, v]T be the pixel coordinates in the new
coordinate system. It is easy to see that

m̃new = Hm̃old,

where

H =
⎡
⎣ ku ku cot θ u0

0 kv/ sin θ v0
0 0 1

⎤
⎦ .

Since, according to (1), we have

sm̃old = PoldM̃,

we conclude that

sm̃new = HPoldM̃,

and thus

Pnew = HPold =
⎡
⎣f ku f ku cot θ u0 0

0 f kv/ sin θ v0 0
0 0 1 0

⎤
⎦ .

(5)

Note that it depends on the products fku and
fkv , which means that a change in the focal length
and a change in the pixel units are indistinguish-
able. We thus introduce two parameters αu = fku
and αv = fkv .

We will now define a special coordinate sys-
tem that allows us to normalize the image coor-
dinates [1]. This coordinate system is called the
normalized coordinate system of the camera. In
this “normalized” camera, the image plane is
located at a unit distance from the optical center
(i.e. f = 1). The perspective projection matrix of
the normalized camera is given by

PN =
⎡
⎣1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ . (6)

For a world point [X, Y, Z]T expressed in the
camera coordinate system, its normalized coordi-
nates are

x̂ = X
Z

ŷ = Y
Z

.

(7)

A matrix P defined by (5) can be decomposed
into the product of two matrices:

Pnew = APN, (8)

where

A =
⎡
⎣αu αu cot θ u0

0 αv/ sin θ v0
0 0 1

⎤
⎦ . (9)

The matrix A contains only the intrinsic
parameters and is called camera intrinsic matrix.
It is thus clear that the normalized image
coordinates are given by

⎡
⎣ x̂

ŷ

1

⎤
⎦ = A−1

⎡
⎣ u

v

1

⎤
⎦ . (10)

Through this transformation from the avail-
able pixel image coordinates, [u, v]T, to the imag-
inary normalized image coordinates,

[
x̂, ŷ

]T , the
projection from the space onto the normalized
image does not depend on the specific cameras.
This frees us from thinking about characteristics
of the specific cameras and allows us to think
in terms of ideal systems in stereo, motion, and
object recognitions.

The General Form of Perspective
Projection Matrix
The camera can be considered as a system that
depends upon the intrinsic and the extrinsic
parameters. There are five intrinsic parameters:
the scale factors αu and αv , the coordinates u0 and
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v0 of the principal point, and the angle θ between
the two image axes. There are six extrinsic
parameters, three for the rotation and three for
the translation, which define the transformation
from the world coordinate system to the standard
coordinate system of the camera.

Combining (4) and (8) yields the general form
of the perspective projection matrix of the cam-
era:

P = APND = A [R t] . (11)

The projection of 3D world coordinates
M = [X,Y, Z]T to 2D pixel coordinates
m = [u, v]T is then described by

sm̃ = PM̃, (12)

where s is an arbitrary scale factor. Matrix P has
3 × 4 = 12 elements but has only 11 degrees of
freedom because it is defined up to a scale factor.

Let pij be the (i, j) entry of matrix P. Elim-
inating the scalar s in (12) yields two nonlinear
equations:

u = p11X + p12Y + p13Z + p14

p31X + p32Y + p33Z + p34
(13)

v = p21X + p22Y + p23Z + p24

p31X + p32Y + p33Z + p34
. (14)

Camera calibration is the process of estimat-
ing the intrinsic and extrinsic parameters of a
camera or the process of first estimating the
matrix P and then deducing the camera param-
eters from P. A wealth of work has been car-
ried out in this domain by researchers either in
photogrammetry [2, 3] or in computer vision
and robotics [4–9] (see [10] for a review). The
usual method of calibration is to compute camera
parameters from one or more images of an object
of known size and shape, for example, a flat
plate with a regular pattern marked on it. From
(12) or (13) and (14), we have two nonlinear
equations relating 2D to 3D coordinates. This
implies that each pair of an identified image point
and its corresponding point on the calibration
object provides two constraints on the intrinsic

and extrinsic parameters of the camera. The num-
ber of unknowns is 11. It can be shown that, given
N points (N ≥ 6) in general position, the camera
can be calibrated. The presentation of calibration
techniques is beyond the scope of this book.
The interested reader is referred to the above-
mentioned references.

Once the perspective projection matrix P is
given, we can compute the coordinates of the
optical center C of the camera in the world
coordinate system. We first decompose the 3 × 4
matrix P as the concatenation of a 3 × 3 subma-
trix B and a 3-vector b, that is, P= [Bb]. Assume
that the rank of B is 3. In the entry � “Perspective
Camera”, we explained that, under the pinhole
model, the optical center projects to [0, 0, 0]T

(i.e. s = 0). Therefore, the optical center can be
obtained by solving

PC̃ = 0, that is, [B b]
[

C

1

]
= 0.

The solution is

C = −B−1b. (15)

Given matrix P and an image point m, we can
obtain the equation of the 3-D semi-line defined
by the optical center C and point m. This line is
called the optical ray defined by m. Any point
on it projects to the single point m. We already
know that C is on the optical ray. To define it, we
need another point. Without loss of generality, we
can choose the point D such that the scale factor
s = 1, that is,

m̃ = [B b]
[

D

1

]
.

This gives D = B−1
(−b + m̃

)
. A point on

the optical ray is thus given by

M = C + λ (D − C) = B−1 (−b + λm̃
)
,

where λ varies from 0 to ∞.
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Synonyms

Camera extrinsic parameters

Related Concepts

�Camera Calibration
�Camera Extrinsic Parameters

�Camera Parameters (Intrinsic, Extrinsic)
� Intrinsics
� Perspective Camera

Definition

Camera pose is referred to the position and ori-
entation of a camera with respect to a reference
coordinate system, which is usually known as the
world coordinate system.

Background

Determining the camera pose is usually a first
step toward perceiving the surrounding environ-
ment. In structure from motion where a camera
is moving through the environment, one needs to
determine the successive camera poses at differ-
ent instants in order to reconstruct the surround-
ing environment in 3D. In a multi-camera (two or
more) system, one needs to determine the relative
camera pose, i.e., how one camera is related to
other cameras.

The reader is referred to entry � “Camera
Parameters (Intrinsic, Extrinsic)” for details.

Camera Response Function

�Radiometric Response Function

Camera Sensor

� Image Sensors

Camera-Shake Blur

�Motion Blur
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Catadioptric Camera

Srikumar Ramalingam
Mitsubishi Electric Research Laboratories,
Cambridge, MA, USA

Synonyms

Catoptrics; Dioptrics

Related Concepts

�Center of Projection
� Field of View
�Omnidirectional Camera

Definition

A catadioptric system is a camera configuration
where both lenses and mirrors are jointly used
to achieve specialized optical properties. These
configurations are referred to as catadioptric,
where “cata” comes from mirrors (reflective) and
“dioptric” comes from lenses (refractive).

Background

In 1637, René Descartes observed that the refrac-
tive and reflective “ovals” (conical lenses and
mirrors) have the ability to focus light into one
single point on illumination from a chosen point
[1]. It was reported that the same results were
derived by Feynman et al. [2] and Drucker and
Locke [3]. In computer vision community, Baker
and Nayar presented the complete class of sin-
gle viewpoint catadioptric configurations with
detailed solutions and degenerate cases [4]. Some
of these results have been independently derived
by Bruckstein and Richardson [5]. Survey of
various catadioptric cameras, a review and details
of their calibration, and 3D reconstruction algo-
rithms can also be found in [6, 7].

Theory and Classification

The combination of mirrors and lenses provides
a wide range of design possibilities leading to
interesting applications in computer vision. Most
catadioptric configurations have larger field of
view compared to conventional pinhole cameras.
Other important design goals are compactness of
a sensor, a single effective viewpoint, image qual-
ity, focusing properties, or a desired projection
function. The catadioptric cameras may be classi-
fied in many ways. In [6], Sturm et al. classify the
catadioptric cameras in to five different types:

– Single-mirror central systems, having a single
effective viewpoint

– Central systems using multiple mirrors
– Noncentral systems
– Single-lens stereo systems
– Programmable devices

In what follows, catadioptric cameras are clas-
sified into central and noncentral systems. Most
of these catadioptric configurations were pro-
posed by researchers along with specified calibra-
tion and 3D reconstruction algorithms.

Central Catadioptric Configurations
It requires a very careful choice of the shape
of the mirrors and their positioning to obtain a
single effective viewpoint in catadioptric imag-
ing. The single viewpoint design goal is impor-
tant because it allows the generation of pure
perspective images from the catadioptric images.
Furthermore, it allows one to solve motion esti-
mation and 3D reconstruction algorithms in the
same way as perspective cameras:

– Planar mirror: In [4, 8], it can be observed that
by using planar mirrors along with a perspec-
tive camera, one can obtain a single viewpoint
configuration. Since planar mirrors do not
increase the field of view of the system, they
are not very interesting for building omnidi-
rectional cameras. Using four planar mirrors
in a pyramidal configuration along with four
perspective cameras, Nalwa [9] produced an
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omnidirectional sensor of field of view of 360◦
×50◦. The optical centers of the four cameras
and the angles made by the four planar faces
are adjusted to obtain a single effective view-
point for the system.

– Conical mirrors: By positioning the optical
center of a perspective camera at the apex of
a cone, one can obtain a single center con-
figuration. Nevertheless, the only light rays
reaching the camera after a reflection in the
mirror are those grazing the cone. This case
is thus not useful to enhance the field of view
while conserving a single center of projection.
However, in the work [10], it was proved that
conical mirrors can be used to construct a non-
degenerate single viewpoint omnidirectional
cameras. The outer surface of the conical
mirror forms a virtual image corresponding
to the real scene behind the conical mirror.
On placing the optical center of the pinhole
camera at the vertex of the cone, the camera
sees the world through the reflection on the
outer surface of the mirror. In other words, the
cone is not blocking the view. On the other
hand, the cone is the view.

– Spherical mirror: If the optical center of a
perspective camera is fixed at the center of a
spherical mirror, one can obtain a single view-
point configuration. Unfortunately, all that the
perspective camera sees is its own reflection.
As a result the spherical mirror produces a
degenerate configuration without any advan-
tage. Remember that by positioning the per-
spective camera outside the sphere, one can
obtain a useful noncentral catadioptric cam-
era.

– Parabolic mirror: Figure 1 shows a single
viewpoint catadioptric systemwith a parabolic
mirror and an orthographic camera. It is easier
to study a catadioptric configuration by con-
sidering the back projection rather than the
forward projection. Consider the back projec-
tion of an image point p. The back-projected
ray from the image pixel p, starting from the
optical center at infinity, is parallel to the axis
of the parabolic mirror. This ray intersects and
reflects from the surface of the mirror. The
reflection is in accordance with the laws of

Catadioptric Camera, Fig. 1 Parabolic mirror + ortho-
graphic camera [8]. P refers to the 3D scene point. F, the
focus of the parabolic mirror, is the effective viewpoint

Catadioptric Camera, Fig. 2 Elliptical mirror + per-
spective camera [4]. P refers to the 3D scene point. F and
F′ refer to the two foci of the mirror and p refers to the
image point. F is the effective viewpoint

reflection. This reflected light ray is nothing
but the incoming light ray from a scene point
P in forward projection. The incoming ray
passes through the focus F if extended on
the inside of the mirror. This point where all
the incoming light rays intersect (virtually) is
called the effective viewpoint.

– Elliptical mirror: Figure 2 shows a central
catadioptric system with an elliptical mirror
and a perspective camera. The optical center
of the perspective camera is placed at the
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Catadioptric Camera, Fig. 3 Hyperbolic mirror + per-
spective camera [4]. P refers to the 3D scene point. F and
F′ refer to the two foci of the mirror and p refers to the
image point. F is the effective viewpoint

upper focus of the elliptical mirror. By back-
projecting an image point p, one can observe
the following. The back-projected ray, starting
from the optical center at the upper focus
of the elliptical mirror, intersects and reflects
from the surface of the elliptical mirror. The
reflected back-projected ray, or the incoming
light ray, virtually passes through the lower
focus of the mirror. Thus, the lower focus (F)
is the effective viewpoint of the system.

– Hyperbolic mirror: In Fig. 3, a catadioptric
system is shown with a hyperbolic mirror and
a perspective camera. The optical center of the
perspective camera is placed at the external
focus of the mirror F′. The back-projected ray
of the image point p starts from the optical
center, which is the external focus F′ of the
mirror, of the perspective camera. Using the
same argument as above, one can observe that
the lower focus F is the effective viewpoint.
The first known work to use a hyperbolic
mirror along with a perspective camera at the
external focus of the mirror to obtain a sin-
gle effective viewpoint configuration is [11].
Later in 1995, a similar implementation was
proposed in [12].

Noncentral Catadioptric Cameras
Single viewpoint configurations are extremely
delicate to construct, handle, and maintain. By

relaxing this single viewpoint constraint, one
can obtain greater flexibility in designing novel
systems. In fact most real catadioptric cameras
are geometrically noncentral, and even the few
restricted central catadioptric configurations are
usually noncentral in practice [13]. For example,
in the case of para-catadioptric cameras, the
telecentric lens is never truly orthographic and it
is difficult to precisely align the mirror axis and
the axis of the camera. In hyperbolic or elliptic
configurations, precise positioning of the optical
center of the perspective camera in one of the
focal points of the hyperbolic or elliptic mirror
is practically infeasible. In [14], Ramalingam
et al. show that most of the practically used
catadioptric configurations fall under an axial
camera model where all the projection rays
pass through a single line rather than a single
point in space. A few noncentral catadioptric
configurations are mentioned below. Analogous
to the single viewpoint in central cameras, there
is a viewpoint locus in non-central cameras. It
can be defined as follows: a curve or other set of
points such that all projection rays cut at least one
of the points in the viewpoint locus. Usually, one
tries to find the “simplest” such set of points:

– Conical mirror: On using a conical mirror in
front of a perspective camera, one can obtain
an omnidirectional sensor [15, 16]. Neverthe-
less this configuration does not obey the single
viewpoint restriction (besides in the degen-
erate case of the perspective optical center
being located at the cone’s vertex). If the
optical center lies on the mirror axis, then the
viewpoint locus is a circle in 3D, centered
in the mirror axis (it can be pictured as a
halo over the mirror). An alternative choice of
viewpoint locus is the mirror axis. Otherwise,
the viewpoint locus is more general.

– Spherical mirror: On using a spherical mirror
along with a perspective camera, one can
enhance the field of view of the imaging
system [16–18]. Again this configuration
does not obey the single viewpoint restriction
(besides in the degenerate case of the
perspective optical center being located at
the sphere center).
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– Digital micro-mirror array: Another interest-
ing camera is the recently introduced pro-
grammable imaging device using a digital
micro-mirror array [19]. A perspective camera
is made to observe a scene through a pro-
grammable array of micro-mirrors. By con-
trolling the orientations and positions of these
mirrors, one can obtain an imaging system
with complete control (both in terms of geo-
metric and radiometric properties) over the
incoming light ray for every pixel. However,
there are several practical issues which make it
difficult to realize the full potential of such an
imaging system. First, current hardware con-
straints prohibit the usage of more than two
possible orientations for each micro-mirror.
Second, arbitrary orientations of the micro-
mirrors would produce a discontinuous image
which is unusable for many image processing
operations.

– Oblique cameras: An ideal example for a
noncentral camera is an oblique camera. No
two rays intersect in an oblique camera [20].
In addition to developing multi-view geome-
try for oblique cameras, Pajdla also proposed
a physically realizable system which obeys
oblique geometry. The practical system con-
sists of a rotating catadioptric camera that
uses a conical mirror and a telecentric optics.
The viewpoint locus is equivalent to a two-
dimensional surface or a set of points, where
each of the projection rays passes through at
least one of the points. Different catadioptric
configurations come with different calibration
and 3D reconstruction algorithms. Recently,
there has been a lot of interest in unifying dif-
ferent camera models and developing generic
calibration and 3D reconstruction algorithms
[21–24].

Application

Due to enhanced field of view, catadioptric cam-
eras are mainly used in surveillance, car navi-
gation, image-based localization, and augmented
reality applications.
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Center of Projection

Srikumar Ramalingam
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Synonyms

Optical center; Single viewpoint

Related Concepts

� Field of View

Definition

Center of projection is a single 3D point in space
where all the light rays sampled by a conventional
pinhole camera intersect.

Background

Albrecht Dürer, a German artist, published a trea-
tise on measurement using a series of illustrations
of drawing frames and perspective machines. On
the left side of Fig. 1, an apparatus for drawing
a lute is shown. One end of a thread is attached
to a pointer and the other end to a pulley on
a wall. The thread also passes through a frame
in between the lute and the pulley. When the
pointer is fixed at different points on the lute, the
vertical and horizontal coordinates of the thread,
as it passes through the frame, are marked. By
meticulously marking the coordinates for each
point on the lute, the perspective image of the lute
is created. It is obvious to see the intuition behind
this setup, i.e., its similarity to a pinhole camera.
The pulley is equivalent to the single viewpoint
or the center of projection, the frame replaces the
image plane, and finally, the thread is nothing but
the light ray emerging from the scene. Though
the principle is correct, the procedure is quite
complicated. On the right side of Fig. 1, another
perspective machine is shown. One can observe
an artist squinting through a peep hole with one
eye to keep a single viewpoint and tracing his
sitter’s features onto a glass panel. The idea is to
trace the important features first and then transfer
the drawing for further painting.

Theory

Pinhole Camera Model
Consider the perspective model that is shown in
Fig. 2. Every 3D scene point P(X, Y, Z) gets
projected onto the image plane to a point p(x, y)
through the optical center C.The optical axis is
the perpendicular line to the image plane passing
through the optical center. The center of radial
symmetry in the image or principal point, i.e.,
the point of intersection of the optical axis and
the image plane, is given by O. The distance
between C (optical center) and the image plane
is the focal length f. The optical center of the
camera is the origin of the coordinate system. The
image plane is parallel to the XY plane, held at a
distance of f from the origin. Using the basic laws
of trigonometry, one can observe the following:
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Center of Projection, Fig. 1 Left: One of Albrecht
Dürer’s perspective machines, which was used to draw
a lute in the year 1525 [1]. Right: An artist uses the

perspective principle to accurately draw a man sitting on a
chair, by looking at him through a peep hole with one eye,
and tracing his features on a glass plate

Center of Projection, Fig. 2 (a) Perspective camera model. (b) The relationship between (u, v) and (x, y) is shown

x = f X

Z
, y = f Y

Z

Once expressed in homogeneous coordinates,
the above relations transform to the following:

⎡
⎣x

y

1

⎤
⎦ ∼

⎡
⎣f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦
⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦
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where the relationship ∼ stands for “equal up to
a scale.”

Practically available CCD cameras deviate
from the perspective model. First, the principal
point (u0, v0) does not necessarily lie on
the geometrical center of the image. Second,
the horizontal and vertical axes (u and v) of the
image are not always perfect perpendicular. Let
the angle between the two axes be θ. Finally, each
pixel is not a perfect square and consequently,
fu and fv are the two focal lengths that are
measured in terms of the unit lengths along u and
v directions. By incorporating these deviations in
the camera model, one can obtain the following
scene (X, Y, Z) to image (u, v) transformation:

⎡
⎣ u

v

1

⎤
⎦ ∼

⎡
⎣fx fv cot θ u0 0

0 fv

sin θ
v0 0

0 0 1 0

⎤
⎦
⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦

In practice, the 3D point is available in some
world coordinate system that is different from the
camera coordinate system. The motion between
these coordinate systems is given by (R, t):

⎡
⎣ u

v

1

⎤
⎦ ∼

⎡
⎣fx fv cot θ u0

0 fv

sin θ
v0

0 0 1

⎤
⎦ [R − Rt]

⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦
(1)

M =
⎡
⎣fx fv cot θ u0

0 fv

sin θ
v0

0 0 1

⎤
⎦[R −Rt

]

K =
⎡
⎣fx fv cot θ u0

0 fv

sin θ
v0

0 0 1

⎤
⎦

The 3 × 4 matrix M that projects a 3D scene
point P to the corresponding image point p is
called the projection matrix. The 3 × 3 matrix K
that contains the internal parameters (u0, v0, θ, fx,

fy) is generally referred to as the intrinsic matrix
of a camera.

In back projection, given an image point p, the
goal is to find the set of 3D points that project to
it. The back projection of an image point is a ray
in space. One can compute this ray by identifying
two points on this ray. The first point can be the
optical center C, since it lies on this ray. Since
MC = 0, C is nothing but the right nullspace of
M. Second, the point M+ p, where M+ is the
pseudoinverse of M, lies on the back-projected
ray because it projects to point p on the image.
Thus, the back projection of p can be computed
as follows:

P (λ) = M+p + λC

The parameter λ allows to get different points
on the back-projected ray.

Caustics
In a single viewpoint imaging system, the geome-
try of the projection rays is given by the effective
viewpoint and the direction of the projection rays.
In a noncentral imaging system, caustic, a well-
known terminology in the optics community, can
be utilized for representing the geometry of pro-
jection rays [2]. A caustic refers to the loci of
viewpoints in 3D space to represent a noncentral
imaging system. Concretely, the envelope of all
incoming light rays that are eventually imaged
is defined as the caustic. A caustic is referred
to as diacaustic for dioptric (lens-based systems)
and catacaustic (mirror-based systems) for cata-
dioptric systems. A complete study of conic cata-
dioptric systems has been done [3]. Once the
caustic is determined, each point on the caustic
represents a light ray by providing its position
and the direction. Position is given by the point
on the caustic, and orientation is related to the
concept of tangent. Figure 3 shows the caustic
for several noncentral imaging systems. For a
single viewpoint imaging system, the caustic is
a degenerate one being a single point. Simple
methods exist for the computation of the caustic
from the incoming light rays such as local conic
approximations [4] and the so-called Jacobian
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Center of Projection, Fig. 3 Caustics for several imaging systems (a) Hyperbolic catadioptric system (b) Spherical
catadioptric system (c) Pushbroom camera

method [5], A few examples for caustics are
shown in Fig. 3.

Generalized and Multi-perspective
Imaging Models
Many novel camera models have multiple centers
of projection and they cannot be explained by
a simple parametric pinhole model. In computer
vision, there has been significant interest in gen-
eralizing the camera models to reuse the existing
calibration and 3D reconstruction algorithms for
novel cameras. In order to do this, first renounce
on parametric models and adopt the following
very general model: a camera acquires images
consisting of pixels; each pixel captures light that
travels along a ray in 3D. The camera is fully
described by:

– The coordinates of these rays (given in some
local coordinate system).

– The mapping between pixels and rays; this is
basically a simple indexing.

The generic imaging model is shown in Fig. 4.
This allows to describe all above models and
virtually any camera that captures light rays trav-
eling along straight lines. The above imaging
model has already been used, in more or less
explicit form, in various works [3, 6–16], and
is best described in [6]. There are conceptual
links to other works: acquiring an image with
a camera of the general model may be seen as
sampling the plenoptic function [17], and a light
field [18] or lumigraph [19] may be interpreted as
a single image, acquired by a camera of an appro-
priate design. More details of generic imaging

model, their calibration, and 3D reconstruction
algorithms can also be found in [20].

Taxonomy of Generic Imaging Models
Central Model: All the projection rays go through
a single point, the optical center. Examples are
mentioned below:

– The conventional perspective camera forms
the classical example for a central camera.

– Perspective+radial or decentering distortion.
– Central catadioptric configurations using

parabolic, hyperbolic, or elliptical mirrors.
– Fish-eye cameras can be considered as

approximate central cameras.

Axial Model [21]: All the projection rays go
through a single line in space, the camera axis.
Examples of cameras falling into this class are:

– Stereo systems consisting of 2, 3, or more
central cameras with collinear optical centers.

– Noncentral catadioptric cameras of the fol-
lowing type: the mirror is any surface of rev-
olution and the optical center of the central
camera looking at it (can be any central cam-
era, not only perspective) lies on its axis of
revolution. It is easy to verify that in this case,
all the projection rays cut the mirror’s axis of
revolution, i.e., the camera is an axial camera,
with the mirror’s axis of revolution as camera
axis. Note that catadioptric cameras with a
spherical mirror and a central camera looking
at it are always axial ones.

– X-slit cameras [22] (also called two-slit or
crossed-slit cameras), and their special case of
linear push-broom cameras [23].



Center of Projection 149

C

Center of Projection, Fig. 4 The main idea behind the generic imaging model: The relation between the image pixels
(p1, p2, p3, pn) and their corresponding projection rays (r1, r2, r3, rn) is non-parametric

Noncentral Cameras: A noncentral camera
may have completely arbitrary projection rays.
Common examples are given below:

– Multi-camera system consisting of 3 or more
cameras, all of whose optical centers are not
collinear.

– Oblique camera: This is an ideal example for
a noncentral camera. No two rays intersect in
an oblique camera [8].

– Imaging system using a micro-mirror array
[24]. A perspective camera is made to observe
a scene through a programmable array of
micro-mirrors. By controlling the orientations
and positions of these mirrors, one can obtain
an imaging system with complete control
(both in terms of geometric and radiometric
properties) over the incoming light ray for
every pixel.

– Noncentral mosaic: An image sequence is
captured by moving the optical center of a
perspective camera in a circular fashion [3].
The center columns of the captured images
are concatenated to create a noncentral mosaic
image.

– Center strip mosaic: The optical center of the
camera is moved [3]. The center columns of
the captured images are concatenated to form

a center strip mosaic. The resulting mosaic
corresponds to a noncentral camera.

These three classes of camera models may also
be defined as existence of a linear space of d
dimensions that has an intersection with all the
projection rays: d= 0 defines central, d = 1 axial,
and d = 2 general noncentral cameras.

A detailed survey of various camera models,
calibration, and 3D reconstruction algorithms is
given in [25].
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Synonyms

Normalcy modeling

Definition

A determination that there are significant differ-
ences between visual scenes

Background

Change detection is a key task for computer
vision algorithms. The goal is to compare two
or more visual scenes and report any significant
differences between scenes. As with many vision
tasks, the meaning of significant is application-
dependent. The change detection task can be ren-
dered less ambiguous by considering the types of
changes that are not typically of interest. Exam-
ples of changes that are usually irrelevant are:

• different camera viewpoint
• varying illumination
• wind-based motion, e.g., vegetation and flags
• weather, e.g., snow and rain

The implementation of algorithms that can
detect interesting changes while ignoring trivial
changes such as these is a very difficult prob-
lem, and only quite limited change detection
capabilities have achieved to date. It is also the
case that the change detection task, when viewed
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broadly, overlaps the scope of many other vision
tasks such as visual inspection and moving object
detection.

Early attempts at change detection were based
on simple strategies such as thresholding the
magnitude of intensity differences between a ref-
erence image and an image that manifests change.
This simple approach is only practical if the scene
and imaging conditions are closely controlled so
that the only scene changes are due to events of
interest. Such highly controlled conditions can
be found in industrial applications where the
lighting and camera pose are accurately main-
tained. For example, missing components in a
circuit board can be detected by comparing the
image intensity of a high-quality master board
with images of boards with potentially miss-
ing components or other flaws. In this appli-
cation, images are accurately registered to the
master image, so that intensity differences corre-
spond to physical differences in the boards. The
detected changes correspond to missing com-
ponents or additional material such as excess
solder.

A more advanced change detection principle
is to classify elements of a scene into categories
of interest. Then two scenes can be compared
as to the presence or absence of various cate-
gory instances. Change detection based on this
principle can be successful if the classification
process is insensitive to the types of irrelevant
scene variations mentioned above. This classifi-
cation approach has been applied extensively to
the detection of changes in multi-spectral aerial
and satellite imagery [1]. Multi-spectral images
typically have four or more color bands, so that
each pixel is a feature vector that can be sub-
jected to standard classifiers. Image regions are
classified into types such as roads, vegetation,
forest, and water. Images can then be compared
to determine the change in area of each cate-
gory. This approach requires pixel-level image-
to-image registration, which in turn is only effec-
tive if the viewpoint change between the images
is small and the spatial resolution of the images is
low. More recently, the segmentation of images
into semantic categories has been achieved by
neural networks. Changes are then detected in

terms of differences in categories produced by the
network. Examples of this approach are [2–4].

Given the complexity of scene appearance
and contextual variations, the great majority
of change detection algorithms have adopted a
learning approach based on the observation of
a number of images. In this learning paradigm,
it is assumed that changes are rare so that a
statistical model for normal image appearance
can be formed without removing regions of the
image that represent change. A good example of
this principle is learning the normal appearance
of a road surface in a set of images that depict
moving vehicles on the road. In any given
image, some of the road surface is visible and
contributes correct image appearance information
to the model. In other images, different parts
of the surface may be visible. The assumption
is that over a large set of training images, the
frequency of vehicle appearance at any given
road surface point will be small compared to the
frequency of the road appearance. This approach
can also be denoted as background modeling
because a model is being constructed for the
scene background rather than the moving or
changing objects, i.e., foreground. This approach
can also be considered as developing a model
for normalcy where changes are infrequent, i.e.,
abnormal.

This statistical modeling principle has
received widespread acceptance with the advent
of cheap computing power and the significance
of video data, which provides large training
samples. A classical reference is the work
of Stauffer and Grimson, who implemented
a moving object detection system in online
video streams [2]. An important aspect of
change detection in video is that illumination
and atmospheric properties vary relatively slowly
compared to the video frame rate. Under this
condition, statistical appearance models can
gradually adapt to such variations and not
manifest them as change.

The effects of viewpoint and illumination can
be overcome through the use of active 3-d range
sensors such as LIDAR (LIght Detection and
Ranging) or laser triangulation. Scene illumina-
tion is provided by the sensor itself and therefore
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has known direction and spatial extent. The result
is a 3-d point cloud of samples from scene sur-
faces and associated surface reflectance values.
In this approach, change is detected by measur-
ing the distance between two 3-d scene point
sets after they have been accurately registered
together. Missing points or points that are sig-
nificantly far from the reference point set are
considered to be change. Such change points can
be grouped into a connected region to further
characterize the change. An example of this strat-
egy is the work of Girardeau Montaut et al. [6].

Theory

The applications of change detection are so broad
that a complete theoretical background is beyond
the scope of an encyclopedia entry. Moreover, the
success of change detection is critically depen-
dent on accurate registration of the reference
and current scenes so that change is due solely
to the actual scene differences. However, the
registration of scene images or 3-d data is a
topic in its own right and will not be considered
here. Instead, two important statistical methods
will be described that have achieved considerable
success in image-based change detection: the
joint probability method by Carlotto [7] and the
background modeling method by Stauffer and
Grimson [5].

Joint Probability Method
This approach can accommodate scenes with
significant differences in illumination and even
between images taken with different sensor
modalities such as visible and IR wave lengths.
The method typically is applied to two images,
x1 (i, j) and x2 (i, j), where the pixel intensity
values, x, are considered to be random variables.
It is assumed that the images are registered and
the joint histogram,p (x1, x2), of the intensity
values at each pixel is accumulated. The expected
intensity of a pixel in image 2, given the image
value in image 1, is defined by

x̃2 (x1) =
∫

x2p (x2|x1) dx2

where

p (x2|x1) = p (x1, x2)

p (x1)
.

Change is then defined as values of

c21 (i, j) = ∥∥x2 (i, j) − x̃2 (x1 (i, j))
∥∥

that exceed a decision threshold. The same anal-
ysis can be applied in reverse to compute

c12 (i, j) = ∥∥x1 (i, j) − x̃1 (x2 (i, j))
∥∥

Gaussian Mixture Method
A second approach to modeling normal scene
appearance is to associate a probability distri-
bution with each image pixel location as shown
in Fig. 1. This distribution accounts for normal
variations in image intensity for each pixel across
a set of images. It is assumed that the images
are spatially registered so that a pixel in each
image corresponds to the same surface element
in the scene. An example of such registration
is provided by a fixed video camera viewing a
dynamic scene with moving objects and a station-
ary background.

The intensity of a given pixel will sometimes
be due to background and sometimes foreground
moving objects. Thus an appropriate distribution
for the overall appearance variation is a Gaussian
mixture distribution defined by,

p (x) =
∑

k

ωk√
2πσk

e
− 1

2
(x−μk)

2

σ2
k

The distribution parameters, ωk , μk , and
σk , are learned using a continuous online
update algorithm where a new intensity sample,
xn+1 (i, j), is associated with an existing mixture
component if it is within a few standard
deviations of the component mean or a new
mixture is initiated. The update procedure for a
scalar pixel intensity sample after n observations
is defined by the following equations.

ωn+1
k = nωn

k + 1

n + 1
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Change Detection, Fig. 1
The appearance of each
pixel is modeled by a
Gaussian mixture
distribution

p(x(i,j))
Intensity

x,(i,j)

μn+1
k = nμn

k + xn+1

n + 1

(
σn+1

k

)2 = n
(
σn

k

)2 + (xn+1 − μn
k

)2
n + 1

The update is applied if the sample xn+1 is
with a specified number of standard deviations
from one of the mixture component means. If
a new sample is not within the capture range
of one of the mixture components, then a new
mixture component is added with user-specified
default weight and standard deviation. When the
limit on the number of mixture components is
reached, the component with the smallest value
ofω

n
k
/
σn

k
is discarded. This component is the least

informative (greatest entropy) of the mixture.s
The update can be applied continuously over

a video sequence, and the mixture parameters
will adapt to the normal appearance of the
scene. Change is detected as pixel intensities
having low probability density according to the
mixture distribution. It is the case that such
change objects will introduce new modes into
the mixture. However, these modes will typically
have low weight compared to appearance mixture
components corresponding to the stable scene
background.

The probability of change can be computed
as a Bayesian posterior based on the scene back-
ground mixture. That is,

p (change | x)

= Pchange

Pchange + (1 − Pchange

)
p(x|background)

Here x is the observed intensity andp(x|backgro

und) is the Gaussian mixture learned from the
sequence of images. The probability Pchange is
the prior belief that the pixel exhibits change and
p (change | x) is the posterior belief after observ-
ing the current image intensity value. This result
is based on the assumption that image intensities
are normalized to the range [0, 1] and the proba-
bility density for foreground (change) intensities
is uniform, i.e.,p (x | change) = 1. Change is
detected for pixels having p (change | x) greater
than a threshold.

Open Problems

In spite of considerable research on change
detection, the current state-of-the-art algorithms
only perform well in scenes where appearance
is highly consistent and viewpoint variations
can be eliminated by using a fixed camera or
by direct comparison of 3-d data. One possible
way forward is the work of A. Osman Ulusoy
[8] where a 4-d representation is maintained in
a volumetric grid. As new images are observed,
the prior 3-d model appearances in the form of
Gaussian mixtures are replaced by the current
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Change Detection, Fig. 2 An example of 4-d modeling (a) A rendering of the 4-d model at time t. (b) A rendering of
the model at t’ where an object (light blue) has been added. (c) The 3-d change between t and t’ [9]

Change Detection, Fig. 3 Change detection based on joint probability. (a) Satellite image from May 2006. (b) Image
from November 2006. (c) Significant changes shown in white [10]. (Images copyright Digital Globe)

illumination conditions. The probability of
image appearance is then predicted using the
prior geometry and new appearance models.
Changes in scene structure become evident as low
probability regions in each image manifesting
the change. The change in 3-d structure can be
recovered from the multiple image observations,
and a new 4-d model instance is created. An
example is shown in Fig. 2. Note the significant
difference in illumination between time t and t’.

Experimental Results

An example of detected changes using the joint
probability method is shown in Fig. 3. Note that
significantly different appearance of the orchard
on the right and different overall image contrast
does not result in change since the differences are
accumulated into the joint probability distribu-
tion. The method does not completely account for
specular reflections of some of the building roofs
(e.g., center and lower left) since these occur
relatively infrequently. However, changes in the
location of cars in the roadway at the center are
detected with reasonable accuracy.

Change Detection, Fig. 4 An example of change prob-
ability computed using a Gaussian background mixture
model (a) A typical video frame (b) The value of
p (change | x) displayed with white = 1

An example of change detection using the
Gaussian mixture model is shown in Fig. 4.

In this example, a sequence of aerial video
frames are registered to a common ground plane
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and provide updates to the Gaussian mixture
model at each pixel. Some false change proba-
bility can be seen at occluding boundaries and
for metal building roofs that cause large variation
in image intensity as the viewpoint changes. The
actual changes in the scene are the moving vehi-
cles on the roadways, which exhibit highly salient
change probability values.
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Chromaticity
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Related Concepts

�Trichromatic Theory

Definition

Chromaticity is a representation of the tristimulus
values of a light (see entry on � “Trichromatic
Theory”) by only two numbers, computed so as
to suppress via ratios the absolute intensity of
the light. The two numbers (called chromaticity
coordinates) define a space (called chromaticity
space) in which any additive mixture of two
lights lies on a straight line between those two
lights.

Theory

Most often, chromaticity is derived from a stan-
dardized tristimulus coordinate system represent-
ing human vision (e.g., a CIE XYZ system [1, 2]).
If a light has tristimulus values X, Y, and Z,
its chromaticity coordinates are conventionally
defined as the ratios x = X/(X + Y + Z) and
y = Y/(X + Y + Z). More generally, the chro-
maticity coordinates could be defined as the ratios
q1 = (aX + bY + cZ)/(pX + qY + rZ) and
q2 = (dX + eY + fZ)/(pX + qY + rZ), where
a, b, c, d, e, f, p, q, r are constants that do not
depend on the light. The above mapping from
(X, Y, Z) to (q1, q2) is called a homogeneous
central projection. It has the property of showing
straight lines in (X, Y, Z) as straight lines in
(q1, q2). Hence it is obvious from looking at the
chromaticity coordinates of three lights whether
one of the lights could have been additively
mixed from the other two. This property is useful
for visualizing the color gamut (set of producible
colors) of a self-luminous trichromatic display
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such as a cathode-ray tube (CRT) or a liquid-
crystal display (LCD). The primaries (say, red,
green, and blue) for such displays define three
points in chromaticity space, and the triangle they
generate spans the chromaticities producible by
the display.

To illustrate the geometry of chromaticity,
the figure below shows the 1931 CIE (x,
y) diagram (Fig. 1). The horseshoe-shaped
curve (from 380 nm at the left-hand end to
720 nm on the right-hand end) is the set of all
monochromatic lights within the space, and
is called the spectrum locus. The straight line
connecting the ends of the curve is the line of
purples. (There are no monochromatic purples.)
Finally, the vertices of the triangle inside the
spectrum locus represent the R, G, and B display
primaries prescribed by ITU Recommendation
709. This set of primaries is only one example
of many prescribed by standards bodies [3],
and of even more sets manifested in real
displays.

Various useful constructions are possible in
chromaticity space. For example, the dominant
wavelength of a light is defined by the point on
the spectrum locus intercepted by a ray from

the agreed-upon white chromaticity through the
chromaticity of the light in question. Another
example is the set of lights defined by the black-
body radiators (parameterized by their tempera-
ture). These lights collectively define the black-
body locus, which of course lies within the spec-
trum locus. The set of conventional daylights also
forms a curve that is close to the blackbody locus.
As another example, it is possible to transform
from one tristimulus primary set to another such
set using only information in the chromaticity
domain [4].

Because a digital camera is a trichromatic
device, one can also think of a camera’s
response to light as having a chromaticity. Such
chromaticities are useful because they suppress
spatial variations of light intensity in an image
(e.g., at shadow boundaries) and thereby facilitate
image segmentation by object color (see entry
on Band Ratios). Of course, band-ratio pairs
are more general than chromaticities because
the ratios can be separately defined without the
mixture-on-a-straight-line constraint required for
a chromaticity.

It should be noted that camera chromaticity
is not at all the same as the human-vision chro-
maticity and must not be confused with it. In fact,
two lights that have the same human-vision chro-
maticity can have different camera chromatic-
ities, and vice versa. This effect is related to
metameric matching as noted in the entry on
Trichromatic Theory. It should also be noted that,
for the same reason, camera-derived values I, H,
S used by computer-vision and image-processing
applications are also not transformable to human
perceptual attributes (e.g., intensity, hue, and sat-
uration).

For both cameras and humans, chromaticity
generalizes to a non-trichromatic system (i.e.,
one that has a number of different sensor
types that is different from three). A sensor
system with N sensor types delivers N-
stimulus values for each light, the chromaticity
space has N-1 dimensions (so as to suppress
the light intensity), and the chromaticity
coordinates comprise a homogeneous central
projection out of the space of N-stimulus
values.
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Cognitive agent

Related Concepts

�Cognitive Vision

Definition

A cognitive system is an autonomous system
that can perceive its environment, learn from
experience, anticipate the outcome of events, act
to pursue goals, and adapt to changing circum-
stances.

Background

There are several scientific perspectives on
the nature of cognition and on how it should
be modeled. All fall under the general
umbrella of cognitive science which embraces
the disciplines of neuroscience, artificial
intelligence, cognitive psychology, linguistics,
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and epistemology. Among these differing
perspectives, however, there are two broad
classes: the cognitivist approach based on
symbolic information processing representational
systems, and the emergent systems approach,
encompassing connectionist systems, dynamical
systems, and enactive systems, all based to a
lesser or greater extent on principles of self-
organization [1–4]. A third class – hybrid
systems – attempts to combine something from
each of the cognitivist and emergent paradigms.
All three approaches have their origins in
cybernetics [5] which in the decade from 1943
to 1953 made the first efforts to formalize what
had up to that point been purely psychological
and philosophical treatments of cognition. The
intention of the early cyberneticians was to create
a science of mind, based on logic. Examples
of the application of cybernetics to cognition
include the seminal paper by McCulloch
and Pitts “A logical calculus immanent in
nervous activity” [6] and Ashby’s “Design for
a Brain” [7].

Theory

The initial attempt in cybernetics to create a
science of cognition was followed by the devel-
opment of an approach referred to as cognitivism.
The birth of the cognitivist paradigm, and its
sister discipline of Artificial Intelligence, dates
from a conference held at Dartmouth College,
New Hampshire, in July and August 1956 and
attended by people such as John McCarthy,
Marvin Minsky, Allen Newell, Herbert Simon,
and Claude Shannon. Cognitivism holds that
cognition is achieved by computation performed
on internal symbolic knowledge representations
in a process whereby information about the world
is abstracted by perception, and represented
using some appropriate symbolic data-structure,
reasoned about, and then used to plan and act in
the world. The approach has also been labeled by
many as the information processing or symbol
manipulation approach to cognition [1, 8–10].
In most cognitivist approaches concerned with
the creation of artificial cognitive systems, the

symbolic representations are the descriptive
product of a human designer. This is significant
because it means that they can be directly
accessed and interpreted by humans and that
semantic knowledge can be embedded directly
into and extracted directly from the system. In
cognitivism, the goal of cognition is to reason
symbolically about these representations in order
to effect the required adaptive, anticipatory, goal-
directed behavior. Typically, this approach to
cognition will deploy machine learning and
probabilistic modeling in an attempt to deal
with the inherently uncertain, time-varying, and
incomplete nature of the sensory data that is
used to drive this representational framework.
Significantly, in the cognitivist paradigm, the
instantiation of the computational model of
cognition is inconsequential: any physical
platform that supports the performance of the
required symbolic computations will suffice [8].
This principled separation of operation from
instantiation is referred to as functionalism.

In the emergent paradigm, cognition is the
process whereby an autonomous system becomes
viable and effective in its environment. It does so
through a process of self-organization by which
the system continually maintains its operational
identity through the moderation of mutual
system-environment interaction. In other words,
the ultimate goal of an emergent cognitive system
is to maintain its own autonomy. In achieving
this, the cognitive process determines what is
real and meaningful for the system: the system
constructs its reality – its world and the meaning
of its perceptions and actions – as a result of
its operation in that world. Consequently, the
system’s understanding of its world is inherently
specific to the form of the system’s embodiment
and is dependent on the system’s history of
interactions, i.e., its experiences. This mutual-
specification of the system’s reality by the
system and its environment is referred to as co-
determination [11] and is related to the concept
of radical constructivism [12]. This process of
making sense of its environmental interactions is
one of the foundations of the enactive approach
to cognition [13]. Cognition is also the means by
which the system compensates for the immediate
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nature of perception, allowing it to anticipate
environmental interaction that occurs over longer
time scales, i.e., cognition is intrinsically linked
with the ability of an agent to act prospectively:
to deal with what might be, not just with what
is. Many emergent approaches adhere to the
principle that the primary model for cognitive
learning is anticipative skill construction rather
than knowledge acquisition. Thus, processes
which guide action and improve the capacity
to guide action form the root capacity of all
intelligent systems [14].

As noted already, the emergent paradigm
embraces connectionist systems, dynamical
systems, and enactive systems. Connectionist
systems rely on parallel processing of non-
symbolic distributed activation patterns using
statistical properties, rather than logical rules,
to process information and achieve effective
behavior [15]. In this sense, the neural network
instantiations of the connectionist model are
dynamical systems that capture the statistical
regularities in training data [16]. Dynamical
systems theory has been used to complement
classical approaches in artificial intelligence
[17] and it has also been deployed to model
natural and artificial cognitive systems [10,
18, 19]. Although dynamical systems theory
approaches often differ from connectionist
systems on several fronts, it is better perhaps to
consider them complementary ways of describing
cognitive systems, dynamical systems addressing
macroscopic behavior at an emergent level, and
connectionist systems addressing microscopic
behavior at a mechanistic level [20]. Enactive
systems take the emergent paradigm even further.
Enaction [13, 21–23] asserts that cognition is a
process whereby the issues that are important
for the continued existence of a cognitive entity
are brought out or enacted: co-determined by
the entity and the environment in which it is
embedded. Thus, enaction entails that a cognitive
system operates autonomously, that it generates
its own models of how the world works, and that
the purpose of these models is to preserve the
system’s autonomy.

Considerable effort has gone into develop-
ing hybrid approaches which combine aspects

of cognitivist and emergent systems. Typically,
hybrid systems exploit symbolic knowledge to
represent the agent’s world and logical rule-based
systems to reason about this knowledge in order
to achieve goals and select actions, while at the
same time using emergent models of perception
and action to explore the world and construct
this knowledge. Thus, hybrid systems still use
cognitivist representations and representational
invariances but they are constructed by the sys-
tem itself as it interacts with and explores the
world rather than through a priori specification
or programming. Consequently, as with emer-
gent systems, the agent’s ability to understand
the external world is dependent on its ability to
interact flexibly with it, and interaction is the
organizing mechanism that establishes the asso-
ciation between perception and action.

Cognitivism and artificial intelligence
research are strongly related. In particular,
Newell and Simon’s “Physical Symbol System”
approach to artificial intelligence [8] has been
extremely influential in shaping how we think
about intelligence, natural as well as compu-
tational. In their 1976 paper, two hypotheses
are presented: the Physical Symbol System
Hypothesis and the Heuristic Search Hypothesis.
The first hypothesis is that a physical symbol
system has the necessary and sufficient means
for general intelligent action. This implies that
any system that exhibits general intelligence is a
physical symbol system and any physical symbol
system of sufficient size can be configured
to exhibit general intelligence. The second
hypothesis states that the solutions to problems
are represented as symbol structures and that a
physical-symbol system exercises its intelligence
in problem-solving by search, i.e., by generating
and progressively modifying symbol structures
in an effective and efficient manner until it
produces a solution structure. This amounts to an
assertion that symbol systems solve problems by
heuristic search, i.e., the successive generation
of potential solution structures. The task of
intelligence, then, is to avert the ever-present
threat of the exponential explosion of search.
Subsequently, Newell defined intelligence as the
degree to which a system approximates the ideal
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of a knowledge-level system [24]. A knowledge-
level system is one which can bring to bear all
its knowledge onto every problem it attempts
to solve (or, equivalently, every goal it attempts
to achieve). Perfect intelligence implies complete
utilization of knowledge. It brings this knowledge
to bear according to the principle of maximum
rationality which was proposed by Newell in
1982 [25] as follows: “If an agent has knowledge
that one of its actions will lead to one of its goals,
then the agent will select that action.” Anderson
[26] later offered a slightly different principle,
the principle of rationality, sometimes referred
to as rational analysis, stated as follows: “the
cognitive system optimizes the adaptation of the
behavior of the organism.” Note that Anderson’s
principle considers optimality to be necessary
for rationality, something that Newell’s principle
does not.

Cognitivist and emergent approaches are
normally contrasted on the basis of the symbolic
or non-symbolic nature of their computational
operation and representational framework.
Cognitivist systems typically use production
systems to effect rule-based manipulation of
symbol tokens whereas emergent systems exploit
dynamical processes of self-organization in
which representations are encoded in global
system states. However, the distinction between
cognitivist and emergent is not restricted to
the issue of symbolic representation and they
can be contrasted on the basis of several other
characteristics such as semantic grounding,
temporal constraints, inter-agent epistemology,
embodiment, perception, action, anticipation,
adaptation, motivation, autonomy, among
others [27].

The differences between the cognitivist and
the emergent paradigm can be traced to their
underlying distinct philosophies [28]. Broadly
speaking, cognitivism is dualist, functionalist,
and positivist. It is dualist in the sense that
there is a fundamental distinction between the
mind (the computational processes) and the
body (the computational infrastructure and, if
required, the physical structure that instantiates
any physical interaction). It is functionalist
in the sense that the actual instantiation and

computational infrastructure is inconsequential:
any instantiation that supports the symbolic
processing is sufficient. It is positivist in the
sense that they assert a unique and absolute
empirically-accessible external reality that is
apprehended by the senses and reasoned about
by the cognitive processes. In contrast, emergent
systems are neither dualist nor functionalist,
since the system’s embodiment is an intrinsic
component of the cognitive process, nor
positivist, since the form and meaning of the
system’s world is dependent in part on the system
itself. The emergent paradigm, and especially
the enactive approach, can trace its roots to the
philosophy of phenomenology [28, 29].

A criticism often leveled at cognitivist sys-
tems is that they are relatively poor at func-
tioning effectively outside well-defined problem
domains because they tend to depend on in-
built assumptions and embedded knowledge aris-
ing from design decisions. Emergent systems
should in theory be much less brittle because they
develop through mutual specification and co-
determination with the environment. However,
the ability to build artificial cognitive systems
based on emergent principles is very limited at
present, and cognitivist and hybrid systems cur-
rently have more advanced capabilities within a
narrower application domain.

Any cognitive system is inevitably going to
be complex. Nonetheless, it is also the case that
it will exhibit some degree of structure. This
structure is often encapsulated in what is known
as a cognitive architecture [30]. Although used
freely by proponents of the cognitivist, emer-
gent, and hybrid approaches to cognitive systems,
the term “cognitive architecture” originated with
the seminal cognitivist work of Newell et al.
[25]. Consequently, the term has a very spe-
cific meaning in this paradigm where cognitive
architectures represent attempts to create unified
theories of cognition [24, 31], i.e., theories that
cover a broad range of cognitive issues, such
as attention, memory, problem-solving, decision-
making, learning, from several aspects including
psychology, neuroscience, and computer science.
In the cognitivist paradigm, the focus of a cog-
nitive architecture is on the aspects of cognition



Cognitive System 161

C

that are constant over time and that are inde-
pendent of the task. Since cognitive architectures
represent the fixed part of cognition, they cannot
accomplish anything in their own right and need
to be provided with or acquire knowledge to
perform any given task. For emergent approaches
to cognition, which focus on development from
a primitive state to a fully cognitive state over
the lifetime of the system, the architecture of the
system is equivalent to its phylogenetic configu-
ration: the initial state from which it subsequently
develops through ontogenesis.

Open Problems

The study of cognitive systems is a maturing
discipline with contrasting approaches. Conse-
quently, there are several open problems. These
include the role of physical embodiment, the
need for development, the system’s cognitive
architecture, the degree of autonomy required, the
issue of symbol grounding, the problem of goal
specification, the ability to explain the rationale
for selection actions, the problem of generating
generalized concepts and transferring knowledge
from one context to another, and the interdepen-
dence of perception and action. The nature of
any resolution of these problems is inextricably
linked to the choice of paradigm: cognitivist,
emergent, or hybrid.

The role of physical embodiment in a cog-
nitive system [32–34] depends strongly on the
chosen paradigm. Due to their functionalist char-
acteristics, cognitivist systems do not depend
on physical embodiment to operate successfully
but there is nothing to prevent them from being
embodied if that is what the task in hand requires.
Emergent systems, by definition, require embod-
iment since the body plays a key role in the way
a cognitive system comes to understand – make
sense of – its environment. If a body is required,
the form of embodiment must still be specified
[35]. This is significant because, in the emergent
paradigm at least, the ability of two cognitive
agents to communicate effectively requires them
to have similar embodiments so that they have

a shared history of interaction and a common
epistemology.

The extent to which a cognitive system
requires a capacity for development and, if so,
the mechanisms by which development can take
place are both open problems. In natural systems,
growth is normally associated with development.
However, growth in artificial systems remains a
distant goal, although one whose achievement
would open up many avenues of fruitful enquiry
in cognitive systems. For current state-of-the-art
cognitive systems, one can define development as
the process by which a system discovers for itself
the models that characterize its interactions with
its environment. This contrasts with learning as
the process whereby the parameters of an existing
model are estimated or improved. Development,
then, requires a capacity for self-modification
[36] and in embodied emergent systems leads to
an increased repertoire of effective actions and
a greater ability to anticipate the need for and
outcome of future actions [27].

The capacity to develop introduces another
open issue: the minimal phylogenetic configu-
ration – the perceptual, cognitive, and motoric
capabilities with which a system is endowed at
“birth” – that is required to facilitate subsequent
ontogenesis – development and learning through
exploration and social interaction [27]. This issue
is related to the specification of the system’s
cognitive architecture and the necessary and suf-
ficient conditions that must be satisfied for cogni-
tive behavior to occur in a system. In addressing
these issues, there is a trade-off between the
initial phylogeny and the potential for subsequent
development. This trade-off is reflected by the
existence of two types of species in nature: preco-
cial and altricial. Precocial species are those that
are born with well-developed behaviors, skills,
and abilities which are the direct result of their
genetic make-up (i.e., their phylogenic configu-
ration). As a result, precocial species tend to be
quite independent at birth. Altricial species, on
the other hand, are born with poor or undevel-
oped behaviors and skills, and are highly depen-
dent for support. However, in contrast to pre-
cocial species, they proceed to learn complex
cognitive skills over their lifetime (i.e., through
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ontogenetic development). The precocial and the
altricial effectively define a spectrum of possible
configurations of phylogenetic configuration and
ontogenetic potential [37]. The problem is to
identify a feasible point in this spectrum that will
yield a cognitive system capable of developing
the skills we require of it.

Autonomy is a crucial issue for cognitive sys-
tems [38] but the degree of autonomy required is
unclear. To an extent, it depends on how auton-
omy is defined and which paradigm of cognition
is being considered. Definitions range from self-
regulation and homeostasis to the ability of a
system to contribute to its own persistence [39].
In the former case, self-regulation is often cast
as a form of self-control so that the systems can
operate without interference from some outside
agent, such as a human user. In the latter case,
autonomy is the self-maintaining organizational
feature of living creatures that enables them to
use their own capacities to manage their inter-
actions with the world in order to remain viable
[14]. Cognitivist systems tend to adopt the former
definition, emergent systems, the latter.

Broadly speaking, cognitivist systems exploit
symbolic representations while emergent systems
exploit sub-symbolic state-based representations,
with hybrid systems using both. The manner in
which cognitivist and hybrids systems ground
their symbolic representations in experience is
still an open issue [40], with some arguing for a
bottom-up approach [41] and others for a process
of learned association, where meaning is attached
rather than grounded [37].

The opening definition of a cognitive system
states that it can act to achieve goals. The spec-
ification of these goals poses a significant chal-
lenge due to the autonomous nature of cognitive
systems. It is more easily resolved for cognitivist
systems since the goals can be hard-wired into the
cognitive architecture. It is less clear how goals
can be specified in an emergent system since
the over-arching goal here is the maintenance
of the system’s autonomy. The goals of such
a system reflect its intrinsic motivations and its
associated value system [42]. The problem is to
understand how to engineer this value system to
ensure that the system is motivated to act in a

way that satisfies goals which are external to the
system and to decide how these goals can be
communicated to the system.

Ideally, in addition to the characteristics of
a cognitive system listed in the opening defi-
nition – autonomy, perception, learning, antici-
pation, goal-directed action, and adaptation – a
cognitive computer system should also be able to
say what it is doing and why it is doing it, i.e., it
should be able to explain the reasons for an action
[43]. This would enable the system to identify
potential problems which might appear when car-
rying out a task and it would knowwhen it needed
new information in order to complete that task.
Consequently, a cognitive system would be able
to view a problem in several different ways and
to look at different alternative ways of tackling
it. In a sense, this is something similar to the
issue discussed above about cognition involving
an ability to anticipate the need for actions and
their outcome. The difference in this case is that
the cognitive system is considering not just one
but many possible sets of needs and outcomes.
In a sense, it is adapting before things do not
go according to plan. From this point of view,
cognition also involves a sense of self-reflection.

Cognitive systems also learn from experience
and adapt to changing circumstances. To do this,
the system must have some capacity for gener-
alization so that concepts can be formed from
specific instances and so that knowledge and
know-how can be transferred from one context to
another. This capacity would allow the system to
adapt to new application scenarios and to explore
the hypothetical situations that arise from the
self-reflection mentioned above. It is unclear at
present how such generalized conceptual knowl-
edge and know-how should be generated, repre-
sented, and incorporated into the system dynam-
ics.

Perception and action have been demonstrated
to be co-dependent in biological systems. Per-
ceptual development depends on what actions
an infant is capable of and what use objects
and events afford in the light of these capa-
bilities. This idea of the action-dependent per-
ceptual interpretation of an object is referred
to as its affordance [44]. In neuroscience, the
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tight relationship between action and perception
is exemplified by the presence of mirror neu-
rons, neurons that become active when an action
is performed and when the action or a similar
action is observed being performed by another
agent. It is significant that these neurons are
specific to the goal of the action and not the
mechanics of carrying it out. The related Ideo-
motor Theory [45] asserts the existence of such a
common or co-joint representational framework
for perception and action. Such a framework
would facilitate the inference of intention and
the anticipation of an outcome of an event due
to the goal-oriented nature of the action. The
realization of and effective co-joint perception-
action framework remains an important challenge
for cognitivist and emergent approaches alike.

Although clearly there are some fundamental
differences between the cognitivist and the
emergent paradigms, the gap between the two
shows some signs of narrowing. This is mainly
due to (1) a recent movement on the part of
proponents of the cognitivist paradigm to assert
the fundamentally important role played by
action and perception in the realization of a
cognitive system [32]; (2) the move away from
the view that internal symbolic representations
are the only valid form of representation [2];
and (3) the weakening of the dependence
on embedded a priori knowledge and the
attendant-increased reliance on machine learning
and statistical frameworks both for tuning
system parameters and the acquisition of new
knowledge. This suggests that hybrid approaches
may be the way forward, especially if a principled
synthesis of cognitivist and emergent approaches
is possible, such as “dynamic computationalism”
[2] or “computational mechanics” [46]. Hybrid
approaches appear to many to offer the best
of both worlds – the adaptability of emergent
systems and the advanced starting point of
cognitivist systems – since the representational
invariances and representational frameworks
need not be learned but can be designed in and
since the system populates these representational
frameworks through learning and experience.
However, it is uncertain that one can successfully
combine what are ultimately highly incompatible

underlying philosophies. Opinion is divided, with
arguments both for (e.g., [2, 40, 46]) and against
(e.g., [47]).
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Related Concepts

�Cognitive System
�Visual Cognition

Definition

Cognitive vision refers to computer vision sys-
tems that can pursue goals, adapt to unexpected
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changes of the visual environment, and anticipate
the occurrence of objects or events.

Background

The field of cognitive vision grew from the
broader area of computer vision in response to
a need for vision systems that are more widely
applicable, that are able adapt to novel scenes and
tasks, that are robust to unexpected variations in
operating conditions, and that are fast enough
to deal with the timing requirements of these
tasks [1]. Adaptability entails the ability to
acquire knowledge about the application domain,
thereby removing the need to embed all the
required knowledge in the system when it is
designed. Robustness allows the system to be
tolerant to changes in environmental conditions
so that system performance is not negatively
impacted by them when carrying out a given task.
Speed and the ability to pay attention to critical
events are essential when providing feedback
to users and devices in situations which change
unexpectedly [2, 3].

While computer vision systems routinely
address signal processing of sensory data
and reconstruction of 3D scene geometry,
cognitive vision goes beyond this by providing a
capability for conceptual characterization of the
scene structure and dynamics using qualitative
representations. Having knowledge about the
scene available in conceptual form allows the
incorporation of consistency checks through
the use of, e.g., logic inference engines. These
checks can be applied both to the knowledge
that is embedded in the system at the outset and
the knowledge that the system learns for itself.
Consistency checking applies across several
scales of space and time, requiring cognitive
vision to have an ability to operate with past,
present, and future events. These consistency
checks are one way in which the robustness
associated with cognitive vision can be achieved
[4]. Furthermore, the conceptual knowledge
generated by cognitive vision can, if required,
be communicated to a human user in natural
language [5]. This linguistic communication
is one manifestation of an autonomous system

demonstrating its understanding of the visual
events in its environment [4].

Theory

Cognitive vision entails abilities to anticipate
future events and to interpret a visual scene in
the absence of complete information. To achieve
this, a cognitive system must have the capacity
to acquire new knowledge and to use it to fill
in gaps that are present in what is being made
immediately available by the visual sensors: to
extrapolate in time and space to achieve a more
robust and effective understanding of the underly-
ing behavior of the sensed world. In the process,
the system learns, anticipates, and adapts. These
three characteristics of learning, anticipation, and
adaptivity are the hallmarks of cognition, in gen-
eral, and cognitive vision, in particular [6, 7].

A key property of cognitive vision is its capac-
ity to exhibit a robust performance even in sce-
narios that were not anticipated when it was
designed. The degree to which a system can
deal with unexpected circumstances will vary.
Systems that can adapt autonomously to arbitrary
situations are unrealistic at present but it is plau-
sible that they should be able to deal with new
variants of visual form, function, and behavior,
and also incremental changes in context. Ideally,
a cognitive vision system should be able to recog-
nize and adapt to novel variations in the current
visual environment, generalize to new contexts
and application domains, interpret and predict
the behavior of agents detected in the system’s
environment, and communicate an understanding
of the environment to other systems, including
humans.

A cognitive vision system is a visually enabled
cognitive system, defined in this encyclopedia
as “an autonomous system that can perceive its
environment, learn from experience, anticipate
the outcome of events, act to pursue goals, and
adapt to changing circumstances.” Since cog-
nitive vision is principally a mode of percep-
tion, physical action – with the possible excep-
tion of the camera movements associated with
active vision – usually falls outside its scope.
However, speech acts may be involved when



166 Cognitive Vision

communicating an interpretation of the scene in
conceptual terms through language [8]. Since
cognitive vision is a particular type of cognitive
system, all the issues identified in the cognitive
system entry in this encyclopedia apply equally to
cognitive vision. They will not be revisited here
apart from noting that there are several scientific
perspectives on the nature of cognition and on
how it should be modeled. Among these differing
perspectives, there are two broad classes: the
cognitivist approach based on symbolic infor-
mation processing representational systems, and
the emergent systems approach, encompassing
connectionist systems, dynamical systems, and
enactive systems, all based to a lesser or greater
extent on principles of self-organization. A third
class – hybrid systems – attempts to combine
something from each of the cognitivist and emer-
gent paradigms. The vast majority of cognitive
vision systems adopt either a cognitivist or a
hybrid approach, with matching cognitive archi-
tectures [9].

The term visual cognition is strikingly similar
to the term cognitive vision. However, they are
not equivalent. Visual cognition is a branch of
cognitive psychology concerned with research
on visual perception and cognition in humans
[10–12]. It addresses several distinct areas
such as object recognition, face recognition,
scene understanding, visual attention (including
visual search, change blindness, repetition
blindness, and the control of eye movements),
short-term and long-term visual memory, and
visual imagery. It is also concerned with
the representation and recognition of visual
information currently being perceived by the
senses and with reasoning about memorized
visual imagery. Thus, visual cognition addresses
many visual mechanisms that are relevant to
cognitive vision but without necessarily treating
the entire cognitive system or the realization of
these mechanisms in artificial systems.

Application

Several applications of cognitive vision may
be found in [13–15]. Examples include natural

language description of traffic behavior [8],
autonomous control of cars [16], and observation
and interpretation of human activity [17, 18].

Open Problems

All of the open problems associated with cog-
nitive systems apply equally to cognitive vision.
Three which are particularly relevant are high-
lighted here.

The first concerns embodiment [19]. There
is no universal agreement on whether or not a
cognitive vision system must be embodied. Even
if it is, several forms of embodiment are possible.
One form is a physical robot capable of mov-
ing in space, manipulating the environment, and
experiencing the physical forces associated with
that manipulation. Other forms of embodiment do
not involve physical contact and simply require
the system to be able to change the state of its
visual environment, for example, a surveillance
system which can control ambient lighting. These
alternative forms of embodiment are consistent
with the cognitivist and hybrid paradigms of
cognition but do not satisfy the requirements of
the emergent approach.

Learning in cognitive vision presents several
significant challenges. Since cognitive vision
systems do not have all the knowledge required
to carry out their tasks, they need to learn. More
specifically, they need to be able to learn in
an incremental, continuous, open-ended, and
robust manner, with learning and recognition
being interleaved, and with both improving over
time. Since the learning process will normally
be effected autonomously without supervision,
the learning technique needs to be able to
distinguish between good and bad data, otherwise
bad data may corrupt the representation and
cause errors to become embedded and to
propagate. Furthermore, the use of learning in
several domains is required, including perceptual
(spatiotemporal) and conceptual (symbolic)
domains, as well as in mapping between them.
The mapping from perceptual to conceptual
facilitates communication, categorization, and
reasoning, whereas the mapping from conceptual
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to perceptual facilitates contextualization and
embodied action. Learning may be interpreted
in a restricted sense as the estimation of the
parameter values that govern the behavior of
models that have been designed into the system,
or in a more general sense as the autonomous
generation of mappings that represent completely
new models.

The identification and achievement of goals
in cognitive vision presents a further challenge.
With cognitivist approaches, goals are specified
explicitly by designers or users in terms of the
required outcome of cognitive behavior. With
emergent approaches, goals are more difficult to
specify since cognitive behavior is an emergent
consequence of the system dynamics. Conse-
quently, they have to be specified in terms of
constraints or boundary conditions on the system
configuration, either through phylogenetic con-
figuration or ontogenetic development, or both.
It is a significant challenge to understand how
implicit goals can be specified and incorporated,
and how externally communicated goals can be
introduced to the system from its environment
or from those interacting with it, e.g., through
some form of conditioning, training, or commu-
nication.
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Definition

Color constancy is the ability to perceive col-
ors as approximately constant even though the
light entering the eye varies with the illuminant.
Color constancy also names the field of research
investigating the extent of this ability, i.e., the
conditions under which a color is actually per-
ceived as constant and which factors influence
color constancy. Computer scientists working in
the field of color constancy try to mimic this
ability in order to produce images which are
independent of the illuminant, i.e., color constant.
Simple color constancy algorithms, also known
under the name automatic white balance, are used
in digital cameras to compute a color- corrected
output image. The input of a color constancy

algorithm is often one image taken under an
arbitrary illuminant, and the output of a color
constancy algorithm is frequently the image as it
would appear had it been taken with a canonical
illuminant such as CIE Standard Illuminant D65
or a spectrally uniform illuminant.

Background

An introduction to computational color constancy
is given by [1]. Color is a product of the brain [2].
When an observer perceives an object, processing
starts with the retinal sensors. The sensors in
the retina measure the light entering the eye.
However, the light entering the eye is dependent
on both the spectral characteristics of the illumi-
nant and the reflectance properties of the object.
Therefore, without any additional processing, the
measured light varies with the illuminant.

In the eye, two different types of retinal sen-
sors exist: rods and cones. The rods are used for
viewing when little light is available. The cones
are mostly used in bright light conditions for
color vision. Three types of cones can be distin-
guished which absorb light primarily in the red,
green, and blue parts of the spectrum. Similarly, a
digital sensor often measures the incident light in
three different parts of the spectrum and uses red,
green, and blue sub-sensors. However, cameras
with four sub-sensors, e.g., red, green, blue, and
cyan, also exist.

Suppose that an observer views a diffusely
reflecting surface which uniformly reflects the
incident light. Now assume that the surface is
illuminated by a candle. A candle emits more
light toward the red part of the spectrum. The
candle light will reach the surface where part of
the light will be absorbed and the remainder will
be reflected. Part of the reflected light enters the
eye where it is measured. The sensitivity function
of the sensors in combination with the amount of
light entering the eye will determine how strongly
the sensors respond. Now consider another illu-
minant with a higher color temperature, e.g.,
daylight or an electronic flash. Such an illuminant
will emit more light toward the blue spectrum
compared to the candle. If the same surface is
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viewed with an illuminant that has a high color
temperature, then the sensors shift their response
toward the blue part of the spectrum. Assuming a
normalized response of all three sensors, then the
reflected light will have a red color cast when the
surface is illuminated by a candle. The measured
light will appear white during daylight, and it will
have a blueish color cast for an illuminant with
a high color temperature. The observer however
will be able to call out the correct color of
the surface independent of the illuminant. Color
constancy algorithms try to mimic this ability by
computing an image which is independent of the
illuminant.

Theory

Let I (λ, x, y) be the irradiance captured by either
a digital sensor or by the eye at position (x, y) for
wavelength λ. Let Si(λ) be the response function
of sensor i. Then the response of the sensor
ci(x, y) at position (x, y) is given by

ci(x, y) =
∫

Si(λ)I (λ, x, y)dλ.

The integration is done over all wavelengths
to which the sensor responds. Assuming three
receptors with sensitivity in the red, green, and
blue parts of the spectrum, then i ∈ {r, g, b}.
In this case, the measurement of the sensor is a
three- component vector c = [cr , cg, cb].

The irradiance I falling onto the sensor is a
result of the light reflected from an object patch.
Let L(λ, x, y) be the irradiance falling onto a
diffusely reflecting object patch which is imaged
at position (x, y) of the sensor arrangement. Let
R(λ, x, y) be the reflectance of the imaged object
patch. Thus,

I (λ, x, y) = G(x, y)R(λ, x, y)L(λ, x, y)

where G(x, y) is a geometry factor which takes
the orientation between the surface and the light
source into account. For a diffusely reflecting
surface, G(x, y) = cosα where α is the angle
between the unit vector which points from the

surface into the direction of the light source and
the normal vector at the corresponding surface
position. Thus, the sensor response can be written
as

ci(x, y)=G(x, y)

∫
Si(λ)R(λ, x, y)L(λ, x, y)dλ.

From this equation, it is apparent that the sensor
response depends on the orientation of the patch
relative to the light source (because of G(x, y));
it depends on the sensitivity Si of the sensor i, on
the reflectance of the object patch R(λ, x, y), and
on the illuminant L(λ, x, y).

Color constancy algorithms frequently assume
that the sensitivity of the sensors is very narrow-
band. Assuming that they have the shape of a
delta function, Si = δ(λ − λi), it holds that

ci(x, y) = G(x, y)

∫
δ(λ − λi)R(λ, x, y)

L(λ, x, y)dλ,

ci(x, y) = G(x, y)R(λi, x, y)L(λi, x, y).

This equation is often written in the form

ci(x, y) = G(x, y)Ri(x, y)Li(x, y)

where the only difference to the previous equa-
tion is that the index i is used instead of the
parameter λi . In this treatment, sensor response,
reflectance, and the illuminant is considered only
for three distinct wavelengths, i.e., color bands,
with i ∈ {r, g, b}.

A color constancy algorithm tries to discount
the illuminant by computing a color constant
descriptor d(c) which is independent of the
illuminant L(x, y) = [Lr(x, y), Lg(x, y),

Lb(x, y)]. Geusebroek et al. [3] have derived
several different descriptors which can be
computed from c and are invariant to some
imaging conditions such as viewing direction,
surface orientation, highlights, illumination
direction, illumination intensity, or illumination
color. Apart from computing a color constant
descriptor, a color constancy algorithm usually
tries to output an image of the scene which would
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either correspond to the perception of a human
photographer observing the scene or it would
correspond to the image that would have resulted
if a spectrally uniform illuminant or illuminant
D65 had been used.

An ideal solution to the problem of color con-
stancy would be to computeR(x, y) = [Rr(x, y),
Rg(x, y), Rb(x, y)] from the sensor responses. It
is of course clear that this problem cannot be
solved without making additional assumptions,
because for each position on the sensor array, one
only has three measurements, but there are seven
unknowns (shading, reflectance, and illumina-
tion components). Note that the above model
for image generation is already a simple model
assuming narrowband sensor responses.

A frequently made assumption is that
the illuminant varies slowly over the image,
while reflectance is able to change abruptly
between sensor responses. Since color constancy
algorithms are based on certain assumptions,
they will not work correctly if the assumptions
are violated. In many cases, it is possible to find
images where the color constancy algorithm does
not perform as intended. The goal is to develop
algorithms which perform well on most everyday
scenes.

Simple Algorithms
If a single illuminant illuminates the scene uni-
formly, i.e., Li(x, y) = Li , then it suffices to
estimate a three-component vector L̃ from all the
measured sensor responses with L̃ ≈ L. Given an
estimate L̃(x, y), a color constant descriptor can
be computed by dividing the sensor response by
the estimate of the illuminant.

ci(x, y)

L̃i(x, y)
= G(x, y)Ri(x, y)Li(x, y)

L̃i(x, y)

≈ G(x, y)Ri(x, y)Li(x, y)

Li(x, y)

= G(x, y)Ri(x, y)

Such an output image will be a shaded reflectance
image. In other words, a diagonal color transform
suffices if the sensor response is very narrow-
band. Some color constancy algorithms, however,

also use a general 3 × 3 matrix transform or
work with higher polynomial base functions to
compute a color-corrected output image [4].

It is also possible to transform a given image
taken under one illuminant L to another image
taken under a different illuminant L′. This can be
done by multiplying each sensor response vector
by a diagonal matrix whose elements are set to

ki = L′
i

Li
. The coefficients ki are called von Kries

coefficients. Necessary and sufficient conditions
on whether von Kries chromatic adaptation gives
color constancy have been derived by [5].

A simple algorithm to estimate the color of the
illuminant is the white patch Retinex algorithm.
It is a simplified version of the parallel Retinex
algorithm [6]. In order to understand how this
algorithm works, suppose that a white patch, i.e.,
a uniformly reflecting patch, is contained in the
imaged scene which is uniformly illuminated.
Assuming a normalized sensor response, then
the response of the sensors on the white patch
will be an estimate of the illuminant. For the
white patch, it holds that Ri = 1 which leads
to ci(white patch) = GLi . The white patch
algorithm treats each color band separately and
searches for the maximum response which is
assumed to be an estimate of the illuminant.

L̃i = max
x,y

ci(x, y)

Instead of locating the maximum response, one
can also compute a histogram of the sensor
responses and then set the estimate of the
illuminant at some percentage from above.
This will lead to a more robust estimate of the
illuminant. Figure 1b shows the output of the
white patch Retinex algorithm for a sample image
shown in Fig. 1a. The illuminant was estimated
at 5% from above using a histogram approach for
each color band.

Another simple algorithm is based on the
gray-world assumption which is due to [7].
According to Buchsbaum, the world is gray
on average. Let ai be the global average of all
sensor responses for color channel i where n is
the number of sensors.
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Color Constancy, Fig. 1 (a) sample input image (b) results for the white patch Retinex algorithm using a histogram
(c) results for the gray-world assumption

ai = 1

n

∑
x,y

ci (x, y) = 1

n

∑
x,y

G(x, y)Ri(x, y)Li(x, y)

Assuming a uniform illuminant Li(x, y) = Li

and an independence between shading and
reflectance, then

ai = Li

1

n

∑
x,y

G(x, y)Ri(x, y)

= LiE[G(x, y)Ri(x, y)]
= LiE[G(x, y)][Ri(x, y)]

where E[x] denotes the expected value of x.
Suppose that a large number of differently col-
ored objects are contained in the scene. Thus, a
uniform distribution of colors is assumed. This
results in E[Ri(x, y)] = 1

n

∑
x,y Ri(x, y) = 1

2
assuming a range of [0, 1] for reflectances and
E[G(x, y)] = k where k is a constant. The result
is

ai = k

2
Li.

Hence, the illuminant is proportional to global
space average color Li ∝ ai , and an estimate of
the illuminant can be obtained by setting

L̃i = 2ai .

Using k = 1 assumes that all patches are frontally
oriented or alternatively that the geometry factor
is subsumed into a combined reflectance and
geometry factor. Figure 1c shows the results for
the gray-world assumption on a sample image.
Figure 2 shows the results for another image
where the assumption that a large number of
different-colored objects are contained in the
scene is not fulfilled. In this case, the gray-world
assumption will not work correctly.

Most color constancy algorithms estimate the
illuminant as a three-component descriptor L̃. If
the actual illuminant L is known for an image,
then it is possible to compute the angular error e
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Color Constancy, Fig. 2 (a) image of a leaf from a banana plant (b) results for the gray-world assumption

between the estimated illuminant and the actual
illuminant for a given image.

e = cos−1 L̃L

|L̃||L|

Van de Weijer et al. [8] have introduced the
gray-edge hypothesis. While the gray-world
assumption suggests that the world is gray
on average, the gray-edge hypothesis suggests
that image derivatives are gray on average.
Van de Weijer et al. also showed that several
seemingly different color constancy algorithms
can be treated using a uniform paradigm.
Only three parameters suffice to describe many
color constancy algorithms. Let Gσ (x, y) be a
Gaussian filter with scale parameter σ . Let p be
the Minkowski norm and let n be the order of the
derivative, then the illuminant L̃(n, p, σ ) can be
estimated using these three parameters

L̃(n, p, σ )

= 1

k

(∫ ∫
|∇nc(x, y) ⊗ Gσ (x, y)|pdx dy

) 1
p

where k is a scaling factor and ⊗ denotes con-
volution. Figure 3 shows which color constancy
algorithms correspond to which parameters. The
shades of gray algorithm uses the Minkowski
norm p. The higher the Minkowski norm p, the
higher the emphasis on larger measurements.

Brainard and Freeman [9] have addressed
the problem of color constancy using Bayesian

decision theory. Color constancy can also be
learned. Bianco et al. [10] have trained a con-
volutional neural network to predict scene illumi-
nation. Their approach estimates the illuminant
locally. If the local illuminant estimates are suffi-
ciently similar, then a uniform illuminant illumi-
nating the entire scene is assumed, and pooling
is used to arrive at a single illuminant. Cheng
et al. [11] trained regression trees to estimate
the illuminant based on simple image features.
Barron and Tsai [12] treat illuminant estimation
as a spatial localization task in the context of a
convolutional neural network. In turn, a complete
posterior distribution over illuminants is created
instead of computing a single illuminant esti-
mate. Because most natural scene illumination
is not arbitrary but biased (e.g., sunlight with
varying color temperatures or artificial lighting),
a color constancy algorithm based on learning
techniques can make use of this bias and achieve
state-of-the-art performance.

Uniform vs Nonuniform Illumination
Many color constancy algorithms assume that the
scene is uniformly illuminated by a single illu-
minant. If multiple light sources are distributed
over the scene, then it is assumed that these
light sources can be combined into a single aver-
age illuminant. This is possible provided that
the light sources are sufficiently distant from
the scene. If the illumination is uniform, then
only a three-component descriptor has to be esti-
mated from the input image. However, in prac-
tice, many scenes are illuminated nonuniformly.
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Color Constancy, Fig. 3
Classification of color
constancy algorithms based
on derivative number n,
Minkowski norm p and
gaussian smoothing σ

Algorithm n p σ

010noitpmussAdlroWyarG
0xeniteRhctaPetihW ∞ 0

0p0yarGfosedahS
p1egdEyarG σ

Local Space Average Color (with Gaussian Smoothing) 0 1 σ

Very often, one has several different illuminants.
For instance, daylight may be falling through
a window, while artificial lights have already
been turned on inside a building. Nonuniform
illumination may also be present outside during
a sunny day. Consider a family sitting in the
garden under a red umbrella and a photogra-
pher taking a photograph of the family mem-
bers. The family would be illuminated by light
reflected from the red umbrella, while the sur-
rounding would be illuminated by direct sun-
light. A digital camera usually corrects for a
single illuminant. Thus, either the family mem-
bers would have a red color cast to them or the
background colors would not look right in the
resulting image.

Algorithms have also been developed which
can cope with a spatially varying illuminant.
Land and McCann’s Retinex algorithm [6] is
a parallel algorithm for color constancy which
allows for a nonuniform illumination. They only
considered one-dimensional paths over the sen-
sor array. Horn [13] extended Land’s Retinex
algorithm to two dimensions. Barnard et al. [14]
extended the 2D gamut constraint algorithm to
scenes with varying illumination. Bianco et al.
[10] estimate illumination locally using a convo-
lutional neural network.

Ebner [1] developed a computational model
for color perception. Most computational color
constancy algorithms cannot be mapped read-
ily to the processing done by the human brain.
Apart from providing excellent color constancy
performance, a correct model also needs to be in
line with data from experimental psychology. For
instance, color perception seems to improve if an
observed object moves [15]. Of course all algo-
rithms based on neural networks can be mapped
to the human brain. Neurons responding strongly
whenever a patch with a certain color is presented
to an observer irrespective of the illumination

have been found in visual area V4 [2]. It appears
that the final stages of color constancy processing
are performed by the brain in V4. A review of cor-
tical mechanisms of color vision is given by [16].

Laterally connected neurons are able to esti-
mate the color of the illuminant locally using the
gray-world assumption [1]. Each neuron or pro-
cessing element receives the raw measurement ci

from the sensor. Using the lateral connections, it
is possible to compute local space average color.
Let ai(x, y) be the current estimate of local space
average color for a processing element located at
position (x, y). Each processing element receives
the estimate of local space average color from
neighboring elements and averages the neigh-
boring estimates to update its own estimate. A
small component from the sensor measurement
is then added to this estimate. Let p be a small
percentage and let N(x, y) be the neighborhood
of the processing element at position (x, y), then
the computation of a processing element consists
of the following two updates:

a′
i (x, y) = 1

|N(x, y)|
∑

(x′,y′)∈N(x,y)

ai(x
′, y′)

ai(x, y) = (1 − p)a′
i (x, y) + pci(x, y)

The two updates are carried out iteratively. This
process converges to local space average color
which is an estimate of the illuminant, L̃i(x, y) =
2ai(x, y). Figure 4 shows local space average
color after 0, 200 and 2000 iterations using p =
0.0001 given the input image shown in Fig. 5b.
The extent of the averaging is determined by
the parameter p, i.e., the strength of the lateral
connections. Figure 5c, d shows the output when
local space average color is used to estimate
the illuminant locally. Local average color was
computed for a down-scaled image (25% in each
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Color Constancy, Fig. 4 Local space average color after 0, 200 and 2000 iterations

Color Constancy, Fig. 5 (a and b) input images (c and d) results using local space average color

direction) the original image had 768 × 512
pixels.

However, other approaches may also be used
by the human visual system. Gao et al. [17]
suggest that a maximum operation on the output
of the double-opponent cells might be used.

Advanced Reflectance Models
The theoretical model of color image formation,
which has been given above, assumed that objects
diffusely reflect the incident light. This is not
the case for all surfaces, e.g., brushed metal or
plastics. Especially for plastic objects or objects

covered with gloss varnish a more elaborate
reflectance model is more appropriate. The
dichromatic reflection model [18] assumes that
reflectance is composed of interface reflectance,
which occurs at the boundary between the
object’s surface and air, and body reflectance
which is due to the scattering of light below the
object’s surface. In other words, the reflection
of light from the object’s surface is assumed to
be partially specular and partially diffuse. Color
constancy algorithms have also been developed
using the dichromatic reflection model. Some
algorithms also work with multispectral images
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and try to recover the full spectrum of the
illuminant (see [19]).

Application

Color constancy algorithms are ideal for color
correction in digital photography. In digital
photography, the goal is to obtain a color-
corrected image that corresponds nicely to
human perception. A printed photograph or a
photograph viewed on a computer display should
appear in exactly the same way that the human
observer (the photographer) perceived the scene.
Besides digital photography, color constancy
algorithms can be applied in the context of
most computer vision tasks. For many tasks,
one should try to estimate object reflectances.
For instance, image segmentation would not
be as difficult, if object reflectance could be
correctly determined. Similarly, color-based
object recognition is easier if performed on
reflectance information. Thus, color constancy
algorithms should often be applied as a pre-
processing step. This holds especially for
autonomous mobile robots equipped with a
vision system because autonomous mobile robots
need to operate in different environments under
different illuminants.

Experimental Results and Datasets

A comparison of computational color constancy
algorithms is given by [20] for synthetic
as well as real image data. Extensive com-
parisons are also given by [10–12]. Data
for computer vision and computational color
science can be found at the Simon Frasier
University, Canada (www2.cs.sfu.ca/~colour/
data/). A repository has also been created
by the color group at the University of East
Anglia, UK (colour.cmp.uea.ac.uk/datasets/).
A multi illuminant data set is available from
the Friedrich-Alexander-Universität Erlangen-
Nürnberg, Germany (www5.cs.fau.de/research/
data/multi-illuminant-dataset/).
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Definition

A color model is a mathematical model
describing the way colors are specified by

three-dimensional coordinates in such terms
as three numerical values, three perceptual
attributes, or three primary colors.

Background

The human retina contains three types of
cones L, M, and S as photoreceptors, which
respond best to light of long, medium, and short
wavelengths, respectively, in the visible range.
Since the perception of color depends on the
response of these cones, it follows in principle
that visible color can be mapped into a three-
dimensional space in terms of three numbers.

Trichromatic color vision theory is closely
related to such three types of color sensors. The
trichromatic theory by Young and Helmholtz sug-
gests that any colors and spectra in the visible
range can be visually matched using mixtures of
three primary colors. These primary colors are
usually red, green, and blue. Most image output
devices such as television screens, computer and
video displays, and image projectors create visi-
ble colors by using additive mixtures of the three
primary colors.

Digital cameras also capture color by using the
same principle of trichromatic color vision. They
usually use three different types of sensors which
primarily respond to the red, green, and blue parts
of the visible spectrum. Therefore, a color model
mathematically describing the color coordinate
system is crucial for analysis, evaluation, and the
rendering of color images.

Theory

Color Model for RGB Color Signals
Most color models used in computer vision and
image processing are based on the RGB pri-
maries. This is because color images captured
by digital cameras are all represented by the
RGB primaries, and image output devices such as
displays and projectors are based on an additive
mixture of the RGB primaries. Therefore, the
simplest color model (called RGB color space)
uses a Cartesian coordinate system defined by
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(R, G, B) triples. This system, however, is not
available for colorimetry, because the spectral-
sensitivity curves of cameras are generally not
coincident with the color-matching functions.

The RGB space is not a perceptually uniform
color space. In computer graphics and image
processing applications, approximately uniform
spaces derived from RGB are defined in terms of
the three attributes: hue (H), saturation (S), and
value (V) (representing lightness). For example,
the HSV model by Smith [9] was defined as a
nonlinear transform of RGB given in 8 bits:

H = tan−1

{ √
3(g − b)

(r − g) + (r − b)

}

S = 1 − Min
/
V

V = Max

(1)

where

r = R
/
255, g = G

/
255, b = B

/
255,

Max = max(r, g, b), Min = min(r, g, b).

This model represents a hexagonal color space
as seen in Fig. 1, where the saturation decreases
monotonically as the value decreases. Figure 2
represents the improved HSV model to a double
hexagonal space, which is defined as:

H = tan−1

{ √
3(g − b)

(r − g) + (r − b)

}

S = Max − Min

V = (R + g + b)
/
3

. (2)

Color Model for Colorimetry
The CIE-XYZ color system for colorimetry
was created by the International Commission
on Illumination (CIE). This color system was
derived from a series of visual experiments of
color matching [1]. The tristimulus values of
a color were used for representing the amounts
of three primary colors needed to match the
test color. The tristimulus values depend on
the observer’s field of view. Therefore, the CIE
defined the standard observer and a set of three
color-matching functions, called x̄(λ), ȳ(λ), and
z̄(λ). The chromatic response of the standard
observer is characterized by the three color-
matching functions. Figure 3 shows the CIE 1931
2◦ standard observer color-matching functions.

The tristimulus values for a color signal with
a spectral-power distribution L(λ) are then given
by:

X = k

∫
λ

L(λ)x̄(λ)dλ

Y = k

∫
λ

L(λ)ȳ(λ)dλ

Z = k

∫
λ

L(λ)z̄(λ)dλ

(3)

Color Model, Fig. 1
Single hexagonal color
space
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Color Model, Fig. 2
Double hexagonal color
space

Color Model, Fig. 3 CIE
1931 2◦ standard observer
color-matching functions

where the integration on the wavelength λ is
normally calculated over the range of visible
spectrum 400–700 nm, and the coefficient k is
a normalizing constant. In application to pho-
tometry, the Y tristimulus value becomes the
luminance of the color signal. In application to
object color, the tristimulus values become:

X = k

∫
λ

E(λ)S(λ)x̄(λ)dλ

Y = k

∫
λ

E(λ)S(λ)ȳ(λ)dλ

Z = k

∫
λ

E(λ)S(λ)z̄(λ)dλ

(4)
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where S(λ) is the surface-spectral reflectance of
the illuminated object, and E(λ) is the spectral-
power distribution of the light source illuminat-
ing the object. In this case, the Y tristimulus
value becomes the luminance factor of the object-
color stimulus. The constant factor is usually
chosen as:

k = 100

/∫
λ

S(λ)x̄(λ)dλ. (5)

The chromaticity coordinates (x, y) of a given
color are defined as:

x = X

X + Y + Z
, y = Y

X + Y + Z
. (6)

Figure 4 depicts the chromaticity diagram, where
all visible chromaticities are located within
the horseshoe-shaped region. The outer curved
boundary is the spectral locus, corresponding to
monochrome light with the most saturated color.
Less saturated colors are located in the inside of
the region with white at the center. The triangle
of sRGB represents the gamut of a standard RGB
color space proposed by HP and Microsoft in
1996 [10]. Recently, usual monitors, printers,
and the Internet are based on this standard
space. The triangle of Adobe RGB represents
the gamut of an RGB color space developed by
Adobe Systems in 1998 [11]. This color space,
improving the gamut of sRGB primarily in cyan-
green, is used for desktop publishing.

It should be noted that the CIE XYZ tris-
timulus values were not defined for color differ-
ences. Two colors with a constant difference in
the tristimulus values may look very different,
depending on where the two colors are located
in the (x, y) chromaticity diagram.

Color Model for Uniform Color Space
Many people believe that a uniform color space
is most useful for applications where perceptual
errors are evaluated. The CIE 1976 L*a*b* color
system (also called CIE LAB color system) was
designed to approximate a perceptually uniform
color space in terms of the tristimulus values

XYZ. It is defined as follows:

L∗ = 116(Y
/
Yn)

1/3 − 16

a∗ = 500[(X/Xn)
1/3 − (Y

/
Yn)

1/3]
b∗ = 200[(Y/Yn)

1/3 − (Z
/
Zn)

1/3]
(7)

where (Xn, Yn, Zn) are the tristimulus values
of the reference white point. This system pro-
vides an opponent-color space with dimension
L* for lightness and a* and b* for opponent-
color dimensions. L* = 0 and L* = 100 indicate
black and white, respectively. The axes of a* and
b* take the position between red and green and
the position between yellow and blue, respec-
tively.

The two-dimensional chromaticity diagram is
expressed in the orthogonal coordinate system of
(a*, b*). The chromaticity components can also
be expressed in a cylindrical system of chroma
and hue, where the chroma and hue angle are
defined respectively by:

C∗
ab = (a∗2 + b∗2)1/2

hab = arctan−1(b∗/a∗)
. (8)

The color difference between two color stimuli 1
and 2 is defined as follows:

�E∗
ab = [(�L∗)2 + (�a∗)2 + (�b∗)2]1/2, (9)

where �L∗ = L∗
1 − L∗

2, �a∗ = a∗
1 − a∗

2 ,
and �b∗ = b∗

1 − b∗
2. Figure 5 depicts the

Munsell color system with value 5 on the (a*,
b*) chromaticity coordinates under the reference
condition of illuminant D65. The color system
approximates roughly the Munsell uniform color
space.

Color Model for Color Order System
Color order systems were created to order
colors in terms of intuitive perceptual attributes.
Most colored samples, used as a reference
in many design and engineering applica-
tions, are made in equal steps of perceptual
attributes.
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Color Model, Fig. 4 CIE
1931 chromaticity diagram

Color Model, Fig. 5
Munsell color system with
Value 5 on the (a*, b*)
chromaticity coordinates

Value 5/

8
6

4

2

CIELAB

D65

5G

5B 5P

5R

500−50
−40

0

50

a∗

b∗

5Y

The Munsell color order system is one of the
most widely used systems in the world. This
system is based on the three perceptual attributes,
hue, value (representing lightness), and chroma
(representing saturation), and is organized in a
cylindrical coordinate system as shown in Fig. 6.
Hue is arranged as a circle, value as the axis
perpendicular to the hue circle and chroma as the
distance from the center.

The Munsell color samples are arranged in
equal steps of each attribute, where each sample
is described using a three-part syntax of hue
chroma/value. For example, 5YR 8/4 indicates a
color sample with the hue of 5YR (yellow-red),
the chroma of level 4, and the value of level
8. A conversion table to reproduce the Munsell
color samples in terms of the CIE tristimulus
values was given by Newhall et al. [12]. The table
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Color Model, Fig. 6 Organization of the Munsell color
system

contains the luminance factor Y and chromaticity
coordinates (x, y) equivalent to the Munsell reno-
tation system (H, V, C), under the condition of the
CIE standard illuminant C. It should be noted that
there is no formula for a color notation conversion
between the Munsell and CIE system, except for
the table. Therefore, the conversion was carried
out by interpolating the table data.

Obviously, this method is not efficient from
the point of view of mass data processing by com-
puters. Tominaga [13] developed a method for
color notation conversion, between the Munsell
and CIE systems by means of neural networks.
In the neural network method, it is not necessary
to use the special database of color samples. This
is because the knowledge of conversion between
the two color spaces is stored in a small set of the
weighting parameters in a multilayer feedforward
network.
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Definition

Color similarity is a measure that reflects the
strength of relationship between two colors.

Background

A measure of similarity between colors is needed
when one color region is matched to another
region among color images, for example, a purple
region is more similar to a blue region than a
green region. Therefore, the similarity between
two colors is an important metric in not only color
science but also imaging science and technology
(including computer vision). If color similarity
is measured, it allows people to determine the
strength of relationship in terms of numerical
values; otherwise, it will be determined in non-
numerical ways.

Thus, the benefit of color similarity is its
application to various techniques of image analy-
sis, such as noise removal filters, edge detectors,
object classification, and image retrieval.

Theory

Color similarity is usually represented in the
range of either interval [−1, 1] or interval [0, 1].
Let xi = [xi1, xi2, xi3] be a three-dimensional
vector specifying a color feature at location i in
a color image. The similarity measure s(xi , xj )

between two color features is a symmetric func-
tion whose value is larger when color features xi

and xj are closer. The color feature is specified by
three coordinates in color space (or color model).
Color space is defined in many different ways in
color and image science, where color spaces such
as RGB, L∗a∗b∗, L∗u∗v∗, YIQ, and HSI are often
used.

On the other hand, color dissimilarity is also
used for measuring the discrepancy between two
colors. This quantity is usually represented in a
positive range of [0, 1] because the dissimilarity
is measured by a “normalized distance” between
two colors. A dissimilarity measure d(xi , xj )

is a symmetric function whose value is larger

when color features xi and xj are more dissim-
ilar. Therefore, a relationship between two mea-
sures of color similarity and color dissimilarity is
given by:

s(xi , xj ) = 1 − d(xi , xj ), (1)

where the color similarity s(xi , xj ) is bounded
by [0, 1]. Note that when the color similarity is
one (i.e., exactly same), the color dissimilarity is
zero, and when color similarity is zero (i.e., quite
different), the color dissimilarity is one. If the
color similarity is defined in the range [−1, 1],
then:

s(xi , xj ) = 1 − 2d(xi , xj ). (2)

Note in this case that the color dissimilarity of
1 (i.e., quite different) corresponds to the color
similarity of −1, and when the color dissimilar-
ity of 0 (i.e., exactly same) corresponds to the
color similarity of 1. In many cases, measuring
dissimilarity is easier than measuring similarity.
Once dissimilarity is measured, it can easily be
normalized and converted to the similarity mea-
sure. Therefore, color dissimilarity measures are
first described in the following.

Color Dissimilarity Measures
The most commonly used dissimilarity measure
to quantify the distance between two color vec-
tors
xi and xj is the weighted Minkowski metric:

d(xi , xj ) = c

(
3∑

k=1

ξk

∣∣xik − xjk

∣∣L
)1/L

, (3)

where c is the nonnegative scaling parameter for
d(xi , xj ) ∈ [0, 1] and the exponent L defines the
nature of the distance metric. The parameter ξk ,
for
∑

k ξk = 1, measures the weight assigned to
the color channel k. Usually it is determined ξk =
1
/
3,∀k (e.g., [1,2]). In the case L = 1 in (3), the

measure is known as Manhattan distance, which
is also called city-block distance, absolute value
distance, and taxicab distance [3].
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d(xi , xj ) = c

3∑
k=1

∣∣xik − xjk

∣∣. (4)

The dissimilarity measure represents distance
between points in a city road grid. It examines
the absolute differences between a pair of colors.
In the case L = 2 in (3), the measure is known
as Euclidean distance which is the most common
use of distance.

d(xi , xj ) = c

(
3∑

k=1

(
xik − xjk

)2)1/2

. (5)

In the case L → ∞ in (3), the measure is known
as Chebyshev distance which is also called
Kolmogorov-Smirnov Statistic [4], chess-
board distance, and maximum value distance.
It examines the absolute magnitude of the
differences between coordinates of a pair of
objects.

d(xi , xj ) = cmax
k

∣∣xik − xjk

∣∣ . (6)

As a well-known dissimilarity metric based on
the Minkowski metric, [6] color difference ΔE∗

ab

is useful [5, 7]. ΔE∗
ab is the Euclidean distance

between two colors in CIEL∗a∗b∗ color space as
follows:

ΔE∗
ab(xi , xj ) =

((
L∗

i − L∗
j

)2 +
(
a∗
i − a∗

j

)2

+
(
b∗
i − b∗

j

)2)1/2
, (7)

where xi = [
L∗

i , a
∗
i , b∗

i

]
and xj =

[
L∗

j , a
∗
j , b∗

j

]
.

Please note thatΔE∗
ab is used as a “distance” with

c = 1 in (5). When ΔE∗
ab ≈ 2.3, it corresponds

to a just noticeable difference (JND) of sur-
face colors [8, 9]. Perceptual nonuniformities in
the underlying CIEL∗a∗b∗ color space, however,
have led to the CIE refining their 1976 definition
over the years. The refined color difference ΔE∗

94
is defined in the L∗C∗h color space [10]. Given
a reference color xi = [

L∗
i , C

∗
i , h∗

i

]
and another

color xj =
[
L∗

j , C
∗
j , h∗

j

]
, the difference is:

ΔE∗
94(xi , xj )=

⎛
⎝
(

L∗
i − L∗

j

KL

)2

+
(

C∗
i − C∗

j

1 + K1C∗

)2

+
(

h∗
i − h∗

j

1 + K2C∗

)2
⎞
⎠

1/2

(8)

where C∗ represents the geometrical average
of chroma, and KL, K1, and K2 represent
the weighting factors which depend on the
application (in original definition, KL = 1,
K1 = 0.045, and K2 = 0.015 for graphic arts).
Since the 1994 definition did not adequately
resolve the perceptual uniformity issue, the CIE
refined their definition, adding five corrections:

1. A hue rotation term (RT), to deal with the
problematic blue region

2. Compensation for neutral colors
3. Compensation for lightness
4. Compensation for chroma
5. Compensation for hue

The definition of the CIEDE2000 color difference
is explained in Ref. [11].

Color Similarity Measure
The simplest color similarity measure is an
angular separation similarity. It represents a
cosine angle between two color vectors, which is
often called as coefficient of correlation. In this
measure, similarity in orientation is expressed
through the normalized inner product as:

s(xi , xj ) = xi · xj

/|xi |
∣∣xj

∣∣ (9)

which corresponds to the cosine of the angle
between the two color vectors xi and xj . Since
similar colors have almost parallel orientations,
(while significantly different colors point in dif-
ferent directions in a 3-D color space) the nor-
malized inner product can be used to quantify ori-
entation similarity between the two color vectors.

The correlation coefficient is a standardized
angular separation by centering the coordinates
to their mean value. Let x̄i = 1

p

∑p

k=1 xik and

x̄j = 1
p

∑p

k=1 xjk; the correlation coefficient
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between these two vectors xi and xj is given as
follows:

s(xi , xj ) =
∑p

k=1 |xik−x̄i |
∣∣xjk−x̄j

∣∣
(∑p

k=1 (xik−x̄i )
2)1/2 (∑p

k=1

(
xjk−x̄j

)2)1/2 .

(10)

In (10) the color similarity between two points
is shown as p = 3 shows. Then the correlation
coefficient can be applied to color region similar-
ity, such as textured regions by setting p = 3× n

(where n is the number of pixels).
There are many other methods to measure the

similarity between two color vectors. So depend-
ing on the nature and the objective of the problem
at hand, it is possible that one method is more
appropriate than the other.

Application

The formulation of similarity between two color
vectors is of paramount importance for the
development of the vector processing techniques.
These include noise removal filters, edge
detectors, image zoomers, and image retrievals.
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Definition

A color space describes the range of colors – the
gamut – that an imaging device or software has
to work with. Consequently, the design of these
color spaces allows a user to modify images in a
predefined manner based on the specific needs of
the application.

Theory

Color spaces may be generally separated into
those that are defined for analysis of color by
color scientists (colorimetric color spaces) and
those that are used for image/color editing.
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Color Spaces for Colorimetric Analysis
Color spaces for colorimetric analysis are
typically based on the human observer. Central to
such color spaces is the CIEXYZ color matching
functions, which are based on CIERGB color
matching functions – based in turn on the LMS
cone fundamentals. CIE is an abbreviation for
the International Commission on Illumination
(Commission International de L’Eclairage) that is
the body that is responsible for standardization of
data in this field. However, the ability to directly
measure the cone functions of an observer is
only a recent development. Researchers had
originally inferred the cone functions based on
psychophysical experiments measuring the RGB
color matching functions. Consequently, the CIE
had standardized the color matching functions
long before the cone functions could be directly
measured. Details of how the color matching
functions were developed are well documented in
the book by Wyszecki and Stiles that is arguably
a cornerstone of colorimetry [27].

The RGB color matching functions, denoted
{r̄(λ), ḡ(λ), b̄(λ)}, are shown in Fig. 1a.

Note that these color matching functions have
negative excursions, due to the fact that there
are some colors that reside outside the triangle
formed by these three primaries – a negative
excursion in the primaries’ weights is the only
way to represent a color outside this triangle.
In order to address this problem, the CIE also
published a set of color matching functions with
nonnegative values, denoted x̄(λ), ȳ(λ), z̄(λ) and
shown in Fig. 1b. These are known generally as
the CIEXYZ color matching functions. Note that
these are now fictitious, nonphysical primaries.
The equations for computing these special “tris-
timulus” values, in XYZ color space, are:

X = k

∫
λ

x̄(λ)ir (λ)dλ

Y = k

∫
λ

ȳ(λ)ir (λ)dλ

Z = k

∫
λ

z̄(λ)ir (λ)dλ. (1)

where ir (λ) denotes the spectral power distribu-
tion of the light energy incident on the retina, and

k denotes a normalization factor that is set to 683
lumens/Watt in the case of absolute colorime-
try and to 100/

∫
λ
ȳ(λ)i(λ)dλ for relative col-

orimetry. In the case of relative colorimetry, this
means a value of Y = 100 denotes the brightest
color – the illuminant reflecting from a perfect
reflecting diffuser.

The first set of color matching functions
published by the CIE were originally empirically
determined for a 2◦ field – the bipartite field
used for matching a subtended 2◦ angle on
the observers’ retina. Following the 1931
publication, W. S. Stiles and J. M. Burch
conducted experiments [25] to measure color
matching functions for larger fields of view.
This was combined with the findings of
Speranskaya [24] into the publication by the CIE
of a 10◦ observer in 1964 [5]. The difference
between these two standard observers is
significant enough to warrant a clear specification
of which observer color matching functions are
used in experimental work. More specifically,
the 10◦ observer has noticeable shifts of the
color matching functions in the blue direction
due to the fact that the subtense of the stimulus
encompasses a larger portion of the retina and
hence more S cones and also increased macular
pigment absorption.

In the CIE colorimetric system, an XYZ
tristimulus value uniquely specifies a color.
However, a convenient 2D representation of the
tristimulus values led to the projection of the
tristimulus values by normalizing by the sum of
the three values. These “chromaticity” values are
given by:

x = X

X + Y + Z

y = Y

X + Y + Z
. (2)

A color may be specified uniquely by its (x, y)

chromaticity coordinates and its luminance Y,

and is often used to describe a color since
the tristimulus values are straightforward to
derive from the (x, y, Y ) values. The biggest
advantage of the (x, y) chromaticity coordinates
is that they specify a magnitude-independent hue
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Color Spaces, Fig. 1 (a)
RGB color matching
functions (b) XYZ color
matching functions
including Judd-Vos
modifications
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and purity of a color. A chromaticity diagram
(see Fig. 2) is typically used to specify a color
using its chromaticity coordinates. In Fig. 2, the
horseshoe-shaped locus denotes the locus of
monochromatic stimuli visible to the standard 2◦
observer (the gamut of visible colors). Shorter
wavelength stimuli (starting at 380 nm, eliciting

a relatively strong blue response) reside in the
lower left of this horseshoe shape while the
longer wavelengths (ending at 830 nm, eliciting a
relatively strong red response) reside on the lower
right, with the top of the horseshoe curve around
520 nm (eliciting a strong green response). The
line connecting the blue and red corners is
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Color Spaces, Fig. 2 CIE xy chromaticity diagram for a
2◦ observer

referred to as the line of purples. Colors on this
line, although on the border of the gamut, have
no counterpart in monochromatic sources of light
and hence have no wavelengths associated with
them.

The (x, y) chromaticity diagram is perceptu-
ally nonuniform: Unit vectors in the chromaticity
space do not correspond to a unit change in
perception even if the luminance is kept constant.
In an attempt to improve the uniformity of the
chromaticity diagram, in 1976, the CIE published
a uniform chromaticity scale (UCS) diagram that
scaled and normalized the XYZ tristimulus val-
ues [6]. This chromaticity diagram is denoted
by u′, v′ axes, which are related to the XYZ
tristimulus values by the following equations:

u′ = 4X

X + 15Y + 3Z

v′ = 9Y

X + 15Y + 3Z
. (3)

Figure 3 shows the UCS. Just as in the case
of Fig. 2, in this figure, the horseshoe-shaped
locus represents the gamut of visible colors.

The CIEXYZ color space does not have per-
ceptual correlates that would make it useful for
common use. In an attempt to add perceptual

0.10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4
u�

v�

0.5 0.6

Color Spaces, Fig. 3 CIE UCS u′v′ chromaticity dia-
gram for a 2◦ observer

behavior to color spaces, based on earlier works
of many researchers, the CIE proposed a light-
ness scale along with two chromatic scales. The
CIELAB color space is one such space, where the
axes are denoted by L∗ (Lightness), a∗ (redness–
greenness), and b∗ (yellowness–blueness). For a
stimulus given by a tristimulus value X, Y, and Z,
the CIELAB coordinates are given by:

L∗ = 116 f (Y/Yn) − 16

a∗ = 500 [f (X/Xn) − f (Y/Yn)]
b∗ = 200 [f (Y/Yn) − f (Z/Zn)], where

f (t) = t1/3, for t > 0.008856

f (t) = 7.787 t + 16/116 otherwise. (4)

In the above equations, the subscript n denotes
the tristimulus values corresponding to the
reference white chosen, which makes the
CIELAB color space a relative color space. Given
the CIELAB coordinates in a three-dimensional
space, correlates of chroma and hue may be
derived as follows:

C∗
ab = (a∗2 + b∗2)1/2 (5)

h∗
ab = tan−1 (b∗/a∗). (6)
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Under highly controlled viewing conditions, a
CIELAB ΔE difference of 1 correlates with a
single just noticeable difference in color. It is to
be noted though that the CIELAB color differ-
ence measure was designed for color differences
between uniform color patches in isolation.

In a similar construct, the CIE also recom-
mended a CIELUV color space, based on the
uniform chromaticity scale (UCS). This uses a
subtractive shift from the reference white instead
of the normalization based on division that is used
in the CIELAB space. The equations to transform
a tristimulus value from u∗,v∗ coordinates to
CIELUV are given by:

L∗ = 116 f (Y/Yn) − 16

u∗ = 13 L∗(u′ − u′
n)

v∗ = 13 L∗(v′ − v′
n), where

f (t) = t1/3, for t > 0.008856

f (t) = 7.787 t + 16/116 otherwise. (7)

The u′,v′ coordinates for a tristimulus value are
computed using (3). As in the CIELAB defini-
tions, the subscript n denotes the u′,v′ coordinates
of the reference white being used. The descrip-
tions of the u∗ and v∗ axes are similar to those in
CIELAB: approximating redness–greenness and
yellowness–blueness directions.

Based on these correlates, the CIE recom-
mends that color difference measures in the
two uniform-perception spaces CIELAB and
CIELUV be given by the Euclidean difference
between the coordinates of two color samples:

ΔE∗
ab =

[
(ΔL∗)2 + (Δa∗)2 + (Δb∗)2

]1/2

ΔE∗
uv =

[
(ΔL∗)2 + (Δu∗)2 + (Δv∗)2

]1/2
(8)

where the differences are given between the cor-
responding color coordinates in the CIELAB and
CIELUV spaces between the standard and test
samples.

Many improvements to this basic color differ-
ence measure have been proposed and adopted
over the years involving scaling the lightness,

chroma, and hue differences appropriately based
on the application and the dataset of samples
to which the color difference measure has been
adapted or improved [7]. Typically, color differ-
ence thresholds are dependent on application and
thresholds for perceptibility judgments are sig-
nificantly lower than thresholds for acceptability
judgments. These color spaces were designed for
threshold color differences and their application
to supra-threshold (larger than about 5 units of
ΔE) color differences is to be handled with
care [17]. Many other color difference mea-
sures have been proposed and more recently, the
CIE DE2000 has been adopted as a measure of
color difference, again for uniform color patches
under highly controlled viewing conditions, and
is slowly gaining acceptance [7, 15].

These color spaces provide a powerful tool
to model and quantify color stimuli and are
used both in color difference modeling for color
patches and, as well, have more recently been
used to describe color appearance (see [19]).
Models based on describing colors based on
lightness, chroma, and hue are powerful in
their abilities to enable communication of color
stimuli, as well.

Color spaces for colorimetric analysis have
the advantage that the need for communicat-
ing these colors to others can be done without
much ambiguity, if the viewing conditions (ref-
erence white) are specified and well controlled.
Arguably, the biggest disadvantage is that it is not
straightforward to understand what a certain color
coordinate in a certain color space would mean to
an observer without having to use mathematical
equations.

Color Spaces for Editing
Color spaces for editing are specifically designed
with the following key requirements:

– Colors have perceptual correlates that are eas-
ily understood, such as hue, saturation, bright-
ness, purity, etc.

– Colors described in these spaces are repro-
ducible – within reason – across different
media: monitors, printers, etc.
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– Colors in these spaces are defined based on
primaries – the axes:
· On the display side of the world of color

applications, these spaces are additive,
defined by red, green, and blue primaries:
Equal amounts of red and green will give
yellow.

· On the printing side, primaries are defined
roughly by cyan, magenta, yellow, and
black, and these spaces are subtractive:
Knowing the print surface, equal densities
of cyan and yellow will give green.

A Brief Note on “Gamma”
If a color system is linear, then for additive
combinations of colors, a unit input of a color
corresponds to a globally constant unit of the out-
put signal; whereas for nonlinear combinations,
a transfer function would determine the input–
output relationship. This nonlinearity is often
used in digital systems with limited available
bits and in signal compression systems to take
advantage of the available output signal bit depth
by stretching small input codes over a larger
range of output codes and compressing the larger
input codes into a smaller output dynamic range.
This is referred to as gamma encoding.

From an encoding perspective, in its simplest
form, the input–output relationship is typically
given by a gain-offset-gamma model, given by:

y = round

[(
2N − 1

)(
αx + β

)γ
]

(9)

where α denotes a scalar gain, N denotes the
number of bits in a system, β is a scalar offset,
γ denotes a power law with values larger than
1 (typically around 2.2), and x and y denote
the normalized input and output signals respec-
tively [1]. In encoding systems, the three chan-
nels typically have the same parameters α, β, γ ,
N . Display systems based on cathode ray tubes
(CRTs) have an inherent response that follows the
inverse relationship – large steps in input signal
at the low end of the input signal cause a small
change in output whereas at the upper end of
the signal range, small steps caused large output

changes. It so happens that gamma encoding
(using a power law of γ on the linear luminance
input) the input prior to transmitting the data
to a CRT display causes the display luminance
to follow similar steps resulting in a net unity
transfer function. This is also a useful means
of encoding data to maximize bit-depth usage
while reducing visibly apparent contouring on the
output data and display [10, 18]. In the case of a
quantized color space, for reasons of perceptual
uniformity, it is preferable to establish a nonlinear
relationship between color values and intensity or
luminance.

RGB Color Model
The specification of a color in the RGB color
space implies a linear (after gamma is removed)
or nonlinear (gamma applied) combination of
the red, green, and blue primaries in varying
strengths. In RGB color spaces, the manner in
which colors are reproduced varies from device to
device. For example, a color specified as an RGB
triplet is more than likely going to look different
from one display device to another when the
exact same RGB triplet is provided as input, due
to differences in the “color” of the primaries and
also differences in gamma curves. This makes
the RGB space a device-dependent color space.
Specifying colors in device-dependent color
spaces, although not preferred from a color-
reproduction perspective, is often resorted to due
to its ease in comprehension. An RGB color
model can represent any color within an RGB
color cube, as shown in Fig. 4. This color model
is most commonly used in display applications
where data is additive in nature.

For example, a full-strength yellow color is
specified by (1.0, 1.0, 0.0), denoting the use of
the red and green primaries at full strength and
the blue primary completely turned off. In an 8-
bit system, this will correspond to a code value of
(255,255,0). A three-primary display with three
independent color primaries (typically denoted
by their CIE x,y chromaticity values along with
that of white) is specified by:

[
xR xG xB xW

yR yG yB yW

]
. (10)
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An introduction to how specifications such as
those in (10) may be used to generate a transfor-
mation matrix from RGB to XYZ for linear RGB
is given in the book [18].

Different RGB color spaces differ in their
gamma values and the chromaticity coordinates
in (10). A useful compilation of various RGB
color spaces may be found in a Web site hosted
by Bruce Lindbloom [11].

A color mixing matrix for additive colors mix-
ing is shown in Table 1, stating, for example, that
a cyan color would be created using maximum
intensity of green and blue primaries and none of
the red primary.

CMY/CMYK Color Model
Printers, on the other hand, create colors using
inks that are deposited on paper, in which case
the manner in which they create color is called
subtractive color mixing. The inks selectively
absorb wavelengths of incident light and reflect

Color Spaces, Fig. 4 RGB color cube commonly used in
display applications

the remainder. As a beam of light passes through
an absorbing medium, the amount of light
absorbed is proportional to the intensity of the
incident light times the coefficient of absorption
(at a given wavelength). This is often referred to
as Beer-Lambert-Bouguer law and is given by:

A(λ) = log10 ε(λ)c(λ)l(λ) (11)

where ε(λ) is denotes absorptivity, c(λ) denotes
the concentration, and l(λ) denotes the path
length for the beam of light. Stated differently,
the higher the concentration or thickness or
absorptivity of a certain absorptive material, the
higher is absorption – the intensity of reflected or
transmitted beam of light will be reduced [20].
The simplest model for printer inks is called the
block-dye model, an idealized system where, for
example, cyan ink absorbs all the red but none
of the green or blue, with rectangular shapes for
absorptivity as a function of wavelength.

In a subtractive-color setup, different thick-
nesses of the three primary inks may be deposited
on top of each other to result in a final color
to the observer. The colorant amounts required
to print a stimulus designated by RGB emis-
sions are given by Y = 1 − X, where Y ∈
{C,M, Y } and X ∈ {R,G,B}, all normalized
to unity. Real primary inks, however, do not
correspond to these ideal functions and, hence,
more sophisticated models need to include not
just the spectral absorptions/reflectances of the
inks, but the density (or area) of the inks and the
characteristics of the media (paper) involved. The
Kubelka-Munk equations describe the absorption
and scattering of light as it passes through layers
of ink and the substrate, for example, paper. Var-
ious extensions are used in practice that account
for the shortcomings of the basic Kubelka-Munk
analysis, considering issues such as nonlinearities
in ink deposition, interactions between inks, etc.,

Color Spaces, Table 1
Color mixing matrix for
additive primaries

Color displayed

Primary
used

Red Green Blue Cyan Yellow Magenta White Black

Red 1 0 0 0 1 1 1 0

Green 0 1 0 1 1 0 1 0

Blue 0 0 1 1 0 1 1 0
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Color Spaces, Table 2
Color mixing matrix for
subtractive primaries

Color displayed

Primary used Red Green Blue Cyan Yellow Magenta White Black

Cyan 0 1 1 1 0 0 0 1

Yellow 1 1 0 0 1 0 0 1

Magenta 1 0 1 0 0 1 0 1

[8, 20]. In subtractive color mixing, the primaries
are typically cyan (C), yellow (Y), and magenta
(M). The color mixing matrix for subtractive
color is shown in Table 2.

Much like RGB color systems, where the
reference white made a difference in the appear-
ance of a certain color, depending upon the kind
of paper and inks used for printing, the ren-
dered color can be significantly different from
one printer to another.

Most printers use a “K” channel, denoting
black ink, primarily because a black generated by
mixing cyan, yellow, and magenta is not black
enough in appearance. Additionally, to compli-
cate matters, in order to print black, a printer
would need to lay cyan, magenta, and yellow inks
on top of each other, making ink drying a cause
for concern and additionally the limits of ink
absorption by the substrate, for example, paper.
Additionally, using 1 unit of black ink instead of
1 unit each of cyan, yellow, and magenta inks can
lead to significant cost savings.

HSL/HSV Color Model
In order to make the representation of colors
intuitive, colors may be ordered along three inde-

pendent dimensions corresponding to the percep-
tual correlates of lightness, hue, and chroma. In
device-dependent color spaces, there are many
commonly used variants of these perceptual cor-
relates: HSV is by far the most common. H stands
for the perceptual correlate of hue; S stands for
the saturation of a color, defined by the chroma
of a color divided by its luminance (the more
desaturated the color the closer it is to gray);
and V stands for value (a perceptual correlate of
lightness). This color model is commonly used in
image processing and editing software. However,
the HSV color model has two visualization repre-
sentations, one of which is a cylinder with black
at the bottom and pure full-intensity colors on the
top, and the other is a representation by a cone,
with black at the apex and white on the base. The
equations used to convert RGB data into the HSV
color space are given by:

V =max (12)

S =
{
0 if V = 0(
V − min

)
/V if V > 0

(13)

H =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if S = 0
60(G − B)/(max−min) if (max = R and G ≥ B

60(G − B)/(max−min) + 360 if (max = R and G < B

60(B − R)/(max−min) + 120 if max = G

60(R − G)/(max−min) + 240 if max = B

(14)

where max and min denote the maximum and
minimum of the (R,G,B) triplet. These two
representations are shown in Fig. 5. From the fig-
ure, it is apparent that saturation is not dependent
on the intensity of the signal. It is, however, often
useful in image processing applications to have
an indicator of saturation given by a function of
the intensity of the signal, resulting in a conical-

shaped HSV color space (Fig. 5). When the con-
ical representation is preferred, S is given by
(max−min)/(2N − 1) where 2N − 1 denotes
the largest possible value for R, G, or B. Other
variants of the HSV color space also exist and
are used as an intuitive link to RGB color spaces
(HSB, or HLS denoting various correlates of hue,
saturation, and brightness/lightness).
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Color Spaces, Fig. 5 The HSV color model represented as a cylinder and as a cone

Other Color Spaces
Color spaces designed for editing and commu-
nication needs are typically formulated such that
colors are encoded/transmitted in the color space
of a reference device. Colors spaces fitting such
a description include the sRGB color space, the
YCC, YUV, YIQ color transmission spaces, the
SWOP CMYK color space, Adobe RGB, and
ProPhoto RGB, to list a few.

A popular mechanism to standardize colors
across electronic devices such as printers, moni-
tors, and the Internet is the use of the sRGB color
space. Originally, this was proposed by Hewlett-
Packard and Microsoft, and was later standard-
ized by the International Electrotechnical Com-
mission under IEC 61966-2-1 [12]. There are
two primary parts to the sRGB standard: the
viewing conditions and the necessary colorimet-
ric definitions and transformations. The sRGB
reference viewing environment corresponds to
conditions typical of monitor display viewing
conditions and thus may not be as well suited
for print material, due to the various proprietary
gamut mapping algorithms in most printers that
take advantage of each printer’s color gamut.
The colorimetric definitions provide the trans-
forms necessary to convert between the sRGB
color space and the CIEXYZ tristimulus color
space as defined for a standard 2◦ observer. More
specifically, the standard is written for a standard
reference monitor that has Rec. 709 primaries
and a D65 white point. An overview of the
technical advantages and challenges of the sRGB
color space may be found in Refs. [21, 26]. As

was mentioned earlier, color spaces for video
directly make use of the gamma-corrected sig-
nals, denoted R′, G′, B′, from camcorders, with-
out any attempt to correlate to the linear signals
used in color science, such as those in (1). For
still imaging as well as video, this problem can
be mitigated by the use of the transform built into
the sRGB standard, which includes a function for
transforming from nonlinear signals I′ to linear
ones. On a scale of 0.0–1.0, for each of I =
R,G,B, the following function is applied:

⎧⎨
⎩

I = I ′/12.92, if I ′ < 0.04045;

I = ((I ′ + 0.055)/1.055)2.4 otherwise.
(15)

In the video industry, a common mode of
communication is the YCbCr color space (YPbPr
in the analog domain) that converts RGB signal
information into an opponent luma-chroma color
space. A nonlinear transfer function is applied to
linear-light R,G,B values and a weighted sum
of the resulting R′,G′, B ′ values is used in the
Y, Cb, and Cr signals. In the television domain,
these signals have dynamic ranges (on an 8-bit
scale) of 16–235 for the luma signal and 16–240
in the Cb and Cr signals. This is to allow for
signal noise and potential signal processing noise,
giving some head- and foot-room. The weights
are different depending upon the color space that
the data is being created for. For example, encod-
ing R′,G′, B ′ signals with a 16–235 dynamic
range into a color space defined by the NTSC
primaries (often referred to as ITU-R BT.601), is
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given by:

⎡
⎣Y

Cb

Cr

⎤
⎦=

⎡
⎣0.299 0.587 0.114

−0.169 −0.331 0.500
0.500 −0.419 −0.081

⎤
⎦
⎡
⎣R′

G′
B ′

⎤
⎦

+
⎡
⎣0128
128

⎤
⎦ (16)

whereas when using HDTV (referred to as ITU-R
BT.709) primaries, is given by:

⎡
⎣Y

Cb

Cr

⎤
⎦=

⎡
⎣0.213 0.715 0.072

−0.117 −0.394 0.511
0.511 −0.464 −0.047

⎤
⎦
⎡
⎣R′

G′
B ′

⎤
⎦

+
⎡
⎣0128
128

⎤
⎦ . (17)

A useful reference for further details on this
topic is a book by Keith Jack [14]. The Y chan-
nel typically contains most of the information
in the image, as defined by spatial frequencies,
and is hence sampled at much higher rates than
the chroma signals. This greatly helps in the
ability of the transmission system to compress
luma and chroma data with low overheads when
compared to luma-only systems. To aid com-
pression formats, color images in the JPEG and
JPEG2000 file formats also convert theR′,G′, B ′
information into the YCbCr color space prior to
compression.

In the printing industry, a commonly specified
color space is the SWOP (Specifications for Web
Offset Publications) CMYK color space. The
SWOP CMYK [2] is a proofing specification
that has a well-established relationship between
the CMYK input to a standard printer and its
CIELAB values (an approximation of the percep-
tual coordinates of a color) and for a standardized
dataset. Specifying images in the SWOP CMYK
color space allows the printing house and the
content creator to preview images on a common
baseline prior to printing. Most image editing
software available nowadays allows the user to
preview images in the SWOPCMYK color space.

Open Problems

Depending upon the application, color spaces
have their individual, optimized uses. Device-
independent color models like the CIEXYZ,
CIELAB, CIELUV, and their derivatives are used
most often to communicate color either between
devices or between different color processing
teams across the world. The International
Color Consortium (ICC) has been extremely
successful in standardizing device-independent
color spaces between displays, printers, and
capture devices [9, 13]. The color profiles that
are stored and communicated in ICC profiles use
an intermediate profile connection space (PCS)
such as CIEXYZ or CIELAB. ICC profiles also
store color transformation profiles to and from
different color devices (say, from an input device
such as a scanner to CIEXYZ, and from CIEXYZ
to an output device such as a printer). For
example, an sRGB ICC profile incorporates the
color space transform from sRGB to the PCS and
a SWOP CMYK ICC profile would incorporate
the color space transform from the PCS to
the CMYK output color space for a printer.
Furthermore, depending upon the rendering
intent (how the colors need to be represented
on the output device), different transformations
may be specified in the ICC profile. Interested
readers are referred to more detailed discussions
of this subject such as the comprehensive books
by Hunt [10], BillMeyer and Saltzman [1],
Kuehni [16], Fairchild [19], Sharma [23], and
Green and MacDonald [8].
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Synonyms

Compressed sensing

Related Concepts

�Dimensionality Reduction

Definition

Compressive sensing refers to parsimonious sens-
ing, recovery, and processing of signals under a
sparse prior.

Background

The design of conventional sensors is based heav-
ily on the Shannon-Nyquist sampling theorem
which states that a signal x band limited to W

Hz is determined completely by its discrete time
samples provided the sampling rate is greater
than 2W samples per second. This theorem is
at the heart of modern signal processing as it
enables signal processing in the discrete time
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or digital domain without any loss of informa-
tion. However, for many applications, the Nyquist
sampling rate is high as well as redundant and
unnecessary. As a motivating example, in modern
cameras, the high resolution of the CCD sensor
reflects the large amount of data sensed to capture
an image. A 10 megapixel camera, in effect, takes
10 million linear measurements of the scene.
Yet, almost immediately after capture, redundan-
cies in the image are exploited to compress the
image significantly, often by compression ratios
of 100:1 for visualization and even higher for
detection and classification tasks. This suggests
immense wastage in the overall design of the
conventional camera.

Compressive sensing (CS) refers to a sampling
paradigm where additional structure on the signal
is exploited to enable sub-Nyquist sampling rates.
The structure most commonly associated with CS
is that of signal sparsity in a transform basis.
As an example, the basis behind most image
compression algorithms is that images are sparse
(or close to sparse) in transform bases such as
wavelets and DCT. In such a scenario, a CS cam-
era takes under-sampled linear measurements of
the scene. Given these measurements, the image
of the scene is recovered by searching for the
image that is sparsest in the transform basis
(wavelets or DCT) while simultaneously satisfy-
ing the measurements. This search procedure can
be shown to be convex. Much of CS literature
revolves around the design of linear measurement
matrices, characterizing the number of measure-
ments required and the design of image/signal
recovery algorithms.

Theory

Compressive sensing [1–3] enables reconstruc-
tion of sparse signals from under-sampled linear
measurements. A vectors is termed K sparse if
it has at most K nonzero components, or equiva-
lently, if ‖s‖0 ≤ K , where ‖ · ‖0 is the �0 norm or
the number of nonzero components. Consider a
signal (e.g., an image or a video) x ∈ R

N , which
is sparse in a basis �, that is, s ∈ R

N , defined as
s = �T x, is sparse. Examples of the sparsifying
basis � for images include DCT and wavelets.
The main problem of interest is that of sensing
the signal x from linear measurements. With no
additional knowledge about x, N linear measure-
ments of x are required to form an invertible
linear system. In a conventional digital camera,
an identity sensing matrix is used so that each
pixel is sensed directly. For sensing reflectance
fields, optimal linear sensing matrices have been
designed [4].

The theory of compressive sensing shows that
it is possible to reconstruct x from M linear
measurements even when M � N by exploiting
the sparsity of s = �T x. Consider a measurement
vector y ∈ R

M obtained using an M × N

measurement matrix �, such that

y = �x + e = ��s + e = �s + e, (1)

where e is the measurement noise (see Fig. 1) and
� = ��. The components of the measurement
vector y are called the compressive measure-
ments or compressive samples. For M < N ,

NM

y
a b

y

K-sparse

Φ ΘΨ S S

x

==

Compressive Sensing, Fig. 1 (a) Compressive sensing
measurement process with a random Gaussian measure-
ment matrix � and discrete cosine transform (DCT)
matrix �. The vector of coefficients s is sparse with

K = 4. (b) Measurement process with y = �x. There are
four columns that correspond to nonzero si coefficients;
the measurement vector y is a linear combination of these
columns. (Figure from [6])
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estimating x from the linear measurements is an
ill-conditioned problem. However, when x is K

sparse in the basis�, then CS enables recovery of
s (or alternatively, x) fromM = O(K log(N/K))

measurements, for certain classes of matrices �.
The guarantees on the recovery of signals extend
to the case when s is not exactly sparse but
compressible. A signal is termed compressible if
its sorted transform coefficients delay according
to power law, that is, the sorted coefficient of s
decay rapidly in magnitude [5].

Restricted Isometry Property (RIP)
The condition for stable recovery for both sparse
and compressible signals is that the matrix �

satisfies the following property. Given S-sparse
vector s, ∃δS, 0 < δS < 1 such that

(1 − δS)‖s‖2 ≤ ‖�s‖2 ≤ (1 + δ)‖s‖2. (2)

Stable recovery is guaranteed when (2) is satisfied
for S = 2K . This is referred to as the restricted
isometry property (RIP) [2,7]. In particular, when
� is a fixed basis, it can be shown that using a
randomly generated sub-Gaussian measurement
matrix � ensures that � satisfies RIP with a high
probability provided M = O(K log(N/K)).
Typical choices for � (or equivalently �) are
matrices whose entries are independently gener-
ated using the Radeamacher or the sub-Gaussian
distribution.

Signal Recovery
Estimating K-sparse vectors that satisfy the mea-
surement equation of (1) can be formulated as the
following �0 optimization problem:

(P0) : min ‖s‖0 s.t. ‖y − ��s‖2 ≤ ε, (3)

with ε being a bound for the measurement noise e

in (1). While this is a NP-hard problem in general,
the equivalence between �0 and �1 norm for such
systems [8] allows us to reformulate the problem
as one of �1 norm minimization.

(P1) : ŝ = argmin ‖s‖1 s.t. ‖y − ��s‖ ≤ ε.

(4)

It can be shown that, whenM = O(K log(N/K)),
the solution to the (P1) – ŝ – is, with
overwhelming probability, the K-sparse solution
to (P0). In particular, the estimation error can be
bounded as follows:

‖s − ŝ‖2 ≤ C0‖s − sK‖/√K + c1ε, (5)

where sK is the bestK-sparse approximation of s.
There exist a wide range of algorithms that

solve (P1) to various approximations or refor-
mulations [9, 10]. One class of algorithms model
(P1) as a convex problem and recast it as a linear
program (LP) or a second order cone program
(SOCP) for which there exist efficient numerical
techniques. Another class of algorithms employ
greedy methods [11] which can potentially incor-
porate other problem-specific properties such as
structured supports [12].

Hardware Implementations

Compressive sensing has been successfully
applied to sense various visual signals such as
images [13, 14], videos [15], and light transport
matrices [16]. The single-pixel camera (SPC)
[13] for CS of images is designed as follows.
The SPC consists of a lens that focuses the scene
onto a digital micro-mirror device (DMD), which
takes the place of the CCD array in a conventional
camera. Each micro-mirror can be oriented in
one of two possible angles. Micro-mirrors that
are in the same angle/direction are focused onto
a photodetector (hence, the single pixel) using a
second lens (see Fig. 2). Each measurement that
is obtained corresponds to an inner product of
the scene with a set of 1s and 0s corresponding
to the state of the micro-mirrors. By flipping the
micro-mirrors randomly according to a Bernoulli
distribution, multiple compressive measurements
are obtained.

The SPC is most useful when sensing is costly.
One such example is in sensing at wavelengths
beyond the visible spectrum, where exotic and
costly materials are needed to detect light.
For such applications, the cost of building a
focal plane array of even VGA resolution is
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Compressive Sensing, Fig. 2 (a) Single-pixel, com-
pressive sensing camera. (b) Conventional digital camera
image of a soccer ball. (c) 64× 64 black-and-white image
of the same ball (N = 4, 096 pixels) recovered from

M = 1, 600 randommeasurements taken by the camera in
(a). The images in (b) and (c) are not meant to be aligned.
(Figure from [6])

prohibitive. However, the SPC needs only a single
photodiode tuned to the spectrum of interest, with
otherwise minimal changes to the underlying
architecture.

Implications for Computer Vision

Novel Sensors
Compressive sensing enables a new sensing
design that measures random linear projection
of a scene and subsequently reconstructs the
image of the scene using these measurements.
The reconstructed image is no different from one
captured from a suitably placed camera, barring
reconstruction artifacts. However, compressive
cameras enable parsimony in sensing – which
can be extremely useful in problems where
sensing is costly. This could be due to storage,
as in the data deluge problem in large sensor
networks. Compressive sensing is extremely
valuable in time-sensitive applications such as
medical imaging, sensing and modeling fluid
dispersions, time-varying reflectance fields, and,
in general, high-speed imaging. Finally, sensing

could be costly due to adverse effects caused by
the process of sensing. In electron microscopy,
there are fundamental limitations on the number
of images of a thin layer of tissue that comes
as the tissue is progressively destroyed in the
process of imaging. In all such applications,
where sensing is costly in some manner, CS
offers better trade-offs over traditional linear
sensing.

Tailoring Vision Algorithms for
Compressive Data
In many cases, it is beneficial to work on the com-
pressive measurements directly without recon-
structing the images. As an example, in back-
ground subtraction, the silhouettes are spatially
sparse and in many applications far sparser than
the original images (in a transform basis). Given
a static background image xs , silhouettes are
recovered by identifying (y − �xs) as com-
pressive measurements of the silhouettes [17].
This can lead to silhouette recovery at extremely
high compression ratios. Another example is in
video CS for dynamic textures, where the linear
dynamical system parameters of the scene can
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be recovered by a suitably designed acquisition
device [15].

Beyond Sparse Models
While the theory of CS relies on assumptions
of sparsity or compressibility of the signal in a
transform basis, it can be extended to signals
that exhibit additional structures. One such idea
is that of model-based CS [12] wherein the
signal exhibits sparsity in a space of models
which encompasses models such as block spar-
sity, union of subspaces, and wavelet tree models.
Another idea is in the use of non-sparse models
such as Markov random fields [18] for CS –
with the eventual goal of using the Ising model
for sensing images and background subtracted
silhouettes. Such progress hints at interesting
avenues for future research governed by the use
of rich models in existing vision literature for the
task of sensing.

Machine Learning and Signal Processing
on Compressive Data
Restricted isometry property (see (2)) for ran-
dom matrices implies that, for K-sparse signals,
distances are approximately preserved under ran-
dom projections. A host of machine learning and
signal processing algorithms depend on pairwise
distances of points as opposed to their exact
location. For such algorithms, almost identical
results can be obtained by applying them to
randomly projected data as opposed to the data
in the original space [19, 20]. This has tremen-
dous advantages as the random projected data
lies on a much lower-dimensional space and can
be directly obtained from a compressive imager.
Such ideas have been applied for detection and
classified of signals in compressed domain [21].
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Synonyms

Symmetry detection; Symmetry-based X

Definition

Symmetry is a mathematical concept as well
as a widely used word for describing observed
patterns. Formally:

Definition 1 Let S be a proper subset of
Rn. Then an isometry (a distance preserving
mapping) g is a symmetry of S if and only if
g(S) = S.

Computational symmetry is a branch of
research using computers to model, analyze,
synthesize, and manipulate symmetries in digital
form [41].

Background

Symmetry is a pervasive phenomenon presenting
itself in all forms and scales, from galaxies to
microscopic biological structures, in nature and
man-made environments. Much of one’s under-
standing of the world is based on the percep-
tion and recognition of recurring patterns that
are generalized by the mathematical concept of
symmetries [12, 14, 85]. Humans and animals
have an innate ability to perceive and take advan-
tage of symmetry in everyday life [22, 73, 80,
84], while harnessing this powerful insight for

Electronic Supplementary Material: The online version
of this article (https://doi.org/10.1007/978-3-030-63416-
2_640) contains supplementary material, which is avail-
able to authorized users.

machine intelligence remains a challenging task
for computer scientists.

Interested readers can find several influential
symmetry-related papers below to gain a historic
perspective: the wonderful exposition on the
role of symmetry in “Biological Shape and
Visual Science” by Blum in 1973 [6]; in 1977,
the “Description and Recognition of Curved
Objects” reported by Nevatia and Binford,
where bilateral symmetry of an object about
different axes is examined [65]; the method
of detecting angle/side regularities of closed
curves and plateaus in one-dimensional patterns
by Davis, Blumenthal, and Rosenfeld [7, 15];
the introduction of the term skewed symmetry
by Takeo Kanade in 1981 [29]; the exposition
on “Smoothed Local Symmetries and Their
Implementation” by Brady and Asada [8]; the
theory of recognition-by-components (RBC)
proposed by Biederman in 1985 [4]; “Perceptual
Grouping and the Natural Representation of
Natural Form” using superquadrics as restricted
generalized cylinders (GC) by Pentland in
1986 [72]; “Perceptual Organization and Visual
Recognition” by Lowe [60], where the non-
coincidental appearance of symmetry in the real
world was noted; and the “Symmetry-seeking
Models for 3D Object Reconstruction” (1987)
illustrated by Terzopoulos, Witkin, and Kass
[78].

A computational model for symmetry is par-
ticularly pertinent to computer vision, computer
graphics, robotics, and machine intelligence in
general, because symmetry is:

• Essential: intelligent beings perceive and
interact with the chaotic real world in the most
efficient and effective manner by capturing
its structures – the generators of symmetry
groups;

• Ubiquitous: both the physical and digital
worlds are filled with various forms of
symmetry patterns, albeit they are rarely
perfectly presented;

• Compact: the recognition of symmetries is the
recognition of redundancy and thus the first
step toward optimization in representation,
computation, and storage;

https://doi.org/10.1007/978-3-030-63416-2_640-2
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• Aestho-physiological: from a butterfly to an
elephant, from a teacup to a skyscraper, sym-
metry or deviation from symmetry has been a
time-honored principle for design (by nature
or by human) that can guide machine percep-
tion, detection, recognition, and synthesis of
the real world computationally.

Theory

From the spirit of Felix Klein’s Erlangen program
[23] that described geometry as the study of a
space that is invariant under a given transforma-
tion group to the Gestalt principles of perception
[1], symmetries and group theory play an impor-
tant role in describing the geometry and appear-
ance of an object. Informally, one may think of
symmetry as expressing the notion that a figure or
an object is made from multiple copies of smaller
units that are interchangeable. Mathematically,
this notion is formalized by examining the effect
of transformations on the object in a certain space
such that its sub-parts permute.

More formally, in a metric space M , a sym-
metry g ∈ G of a set S ⊆ M is an isometry
(a distance preserving transformation) that maps
S to itself (an automorphism), g(S) = S. The
transformation g keeps S setwise invariant while
permuting its parts. All symmetries of S, G,
form an algebraic structure: group {G, ∗}, closed
under transformation composition ∗, called the
symmetry group of S [14].

Basic Concepts Definitions of symmetry and
group theory can be found in most general mathe-
matic textbooks on modern algebra. In particular
the following books are recommended: Geome-
try by Coxeter [13]; Generators and Relations
for Discrete Groups by Coxeter and Moser
[14]; Symmetry by Weyl [85]; The Symmetries
of Things by Conway, Burgiel, and Goodman-
Strauss [12]; and Tilings and Patterns by Grün-
baum and Shephard [24]. Some key concepts and
computationally relevant definitions from [49]
are provided below:

Definition 2 A symmetry g for a set S ∈ Rn is
a primitive symmetry if and only if (1) g �= e

where e is an identity mapping and (2) if g =
g1g2, g1 �= e, g2 �= e, and neither g1 nor g2 is a
symmetry of S.

In 2D Euclidean space R2, for example, there
are four types of primitive symmetries g(S) = S

[12, 14, 85]. They are, given an image f (x, y) in
Fig. 1:

1. Reflection: f (x, y) = f (−x, y), its reflection
axis remains invariant under the reflection.

2. Rotation: f (x, y) = f (r cos(2π/n), r

sin(2π/n)), r = √
(x2 + y2), n is an integer

(n = 3 in the top-right of Fig. 1); its rotation
center point remains invariant under the
rotation.

3. Translation: f (x, y) = f (x + �
x, y + �

y),
for some

�
x,

�
y ∈ R, no invariant points on

the plane exist under a translation symmetry.
4. Glide Reflection: f (x, y) = f (x + �

x,−y),
for some

�
x ∈ R, no invariant points exist. A

glide reflection g can be expressed as g = tr ,
where t is a translation and r is a reflection
whose axis of reflection is along the direction
of the translation. Neither t nor r alone is a
symmetry of S; thus g is a primitive symmetry
of S by definition.

Definition 3 Let G be a non-empty set with a
well-defined binary operation ∗ such that for each
ordered pair g1, g2 ∈ G, g1 ∗ g2 is also in
G. (G, ∗) is a group if and only if:

1. There exists an identity element e ∈ G such
that e ∗ g = g = g ∗ e for all g ∈ G;

2. Any element g in G has an inverse g−1 ∈ G

such that g ∗ g−1 = g−1 ∗ g = e.
3. The binary operation ∗ is associative: a ∗ (b ∗

c) = (a ∗ b) ∗ c for all a, c, b ∈ G.

Using the composition of transformations on
Rn as the binary operation ∗, one can prove
that symmetries of a subset S ⊂ Rn form a
group, which is called the symmetry group of
S. Figure 2 and Table 1 illustrate the four distinct
types of discrete symmetry groups in R2.

Definition 4 All the symmetries of Rn form the
Euclidean group E.
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Computational Symmetry, Fig. 1 An illustration of
images with the four distinct primitive symmetries,
respectively, in 2D Euclidean space. Reflection symmetry
has the reflection axis as its point-wise invariance. Rota-
tion symmetry has the center of rotation as its invariant

point. Glide reflection g = t1/2r is composed of a transla-
tion t1/2 that is 1/2 of the smallest translation symmetry t

and a reflection r with respect to a reflection axis along the
direction of the translation t . There are no invariant points
under translation and glide-reflection symmetries

Definition 5 A point group G is a symmetry
group that leaves a single point fixed. In other
words, G = Gx , where Gx is the stabilizer
subgroup on x.

Definition 6 A space group is a group G of
operations that leave the infinitely extended, reg-
ularly repeating lattice pattern L ⊂ Rn invariant
while for all nontrivial g ∈ G, i.e., g �= e, and
x ∈ Rn, g(x) �= x.

Crystallographic Groups An n-dimensional
periodic pattern is formed by repeating a unit
pattern in equal intervals along k ≤ n directions.
A mature mathematical theory for symmetries of
periodic patterns in n-dimensional Euclidean
space has been known for over a century
[3, 16–18], namely, the crystallographic groups
[13, 24, 85]. An important mathematical dis-
covery is the answer to the first part of
Hilbert’s 18th problem [62]: regardless of
dimension n and despite an infinite number
of possible instantiations of periodic patterns,

the number of distinct symmetry groups for
periodic patterns in any Euclidean space Rn

is always finite. For 2D monochrome patterns,
there are 7 frieze-symmetry groups translating
along one direction (strip patterns) [13] (Fig. 2c)
and 17 wallpaper groups covering the whole
plane [16, 24] (Fig. 2d). In 3D, there are 230
different space groups [27] generated by 3
linearly independent translations (regular crystal
patterns).

Frieze-Symmetry Group A frieze pattern
is a 2D strip in the plane that is periodic
along one dimension. Any frieze pattern P
is associated with one of the seven unique
symmetry groups (Fig. 3). These seven symmetry
groups, denoted by crystallographers as
l1, lg,ml, l2,mg, lm,mm [13], are called
the frieze groups. Without loss of generality,
assuming the direction of translation symmetry
of a frieze pattern is horizontal, the frieze
pattern can then exhibit five different types of
symmetries (Fig. 3a):
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Computational Symmetry, Fig. 2 Sample images of
symmetry categorized by their respective ideal symme-
try groups: column (a) cyclic group containing rotation
symmetries only, (b) dihedral group (reflection and rota-
tion), (c) frieze group (translation plus reflection), and
(d) wallpaper group (translation, rotation, reflection, and

glide reflection). The top row contains synthetic patterns,
while the bottom row shows photos of real-world scenes
(bottom-right is an image of a transverse slice of skeletal
muscle magnified with a transmitter microscope 800,000
times)

Computational Symmetry, Table 1 Discrete symmetry groups in R2 (see Fig. 2 for sample images)

Name Group type Symbol Order Primitive symmetry Example

Cyclic Point Cn n Rotation Fig. 2a

Dihedral Point Dn 2n Rotation and reflection Fig. 2b

Frieze Space Gfrieze ∞ All four 2D-primitive symmetry types Fig. 2c

Wallpaper Space Gwallpaper ∞ All four 2D-primitive symmetry types Fig. 2d

1. Horizontal translation;
2. Twofold rotation;
3. Horizontal reflection (reflection axis is placed

horizontally);
4. Vertical reflection;
5. Horizontal glide reflection composed of a

half-unit translation followed by a horizontal
reflection.

The primitive symmetries in each group (the
Inner structure of a frieze group) and the rela-
tionship among the seven frieze groups (inter-
structure of frieze groups) are depicted in Fig. 3a
and 3b, respectively. Each frieze pattern is associ-
ated with one of the seven possible frieze groups,

subject to the combination of these five primitive
symmetries in the pattern (Fig. 3a).

Wallpaper Symmetry Group A wallpaper pat-
tern is a 2D periodic pattern extending along two
linearly independent directions [13, 74] (Fig. 4).
Any wallpaper pattern is associated with 1 of
the 17 wallpaper groups. Wallpaper group the-
ory [24] states that all translationally symmetric
patterns Pr can be generated by a pair of linearly
independent, shortest (among all possible) vec-
tors t1, t2 applied to a minimum tile. The orbits
of this pair of translation symmetry generator
vectors form a 2D quadrilateral lattice, which
simultaneously defines all 2D tiles (partitions the
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Computational Symmetry, Fig. 3 The five types of primitive symmetries (left table of (a)) and the inner (a) and
inter-structures (b) of the seven frieze groups

space into its smallest generating regions by its
translation subgroup) and a topological lattice
structure relating all tiles (Fig. 4a).

Figure 5 illustrates the 3D Euclidean group
and some of its important subgroups.

Motifs of Wallpaper Patterns

Definition 7 A motif of a wallpaper pattern is a
tile that is cut out by a lattice unit centered on the
fixed point of the largest stabilizer group.

When the translational subgroup of a periodic
pattern is determined, it fixes the size, shape,
and orientation of the unit lattice but leaves open
the question of where the unit lattice should be
anchored in the pattern. Any parallelogram of the
same size and shape carves out an equally good
tile that can be used to tile the plane. However,
from a perception point of view, some parallelo-
grams produce tiles that are better descriptors of

the underlying symmetry of the overall pattern
than others. For example, if the whole pattern
has some rotation symmetries, a tile located on
the rotation centers can represent the global sym-
metry property of the wallpaper pattern instantly
(Fig. 4a). Such motifs, as representative tiles of a
periodic pattern, can be defined mathematically
(and discovered computationally [43, 47]).

Applications

Automatic symmetry detection of primitive
symmetries (reflection, rotation, translation,
glide reflection) has been a lasting topic in the
history of computer vision. The earliest attempt
at an algorithmic treatment of bilateral reflection
symmetry detection predates computer vision
itself [5]. Interested readers can find a long
list of published symmetry detection algorithms
in [49]. The first quantitative benchmark on
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Computational Symmetry, Fig. 4 (a) A tile and a 2D
lattice (red) determined simultaneously by the generators
t1, t2 of the translation subgroup. (b) Sample wallpaper
patterns associated with the 17 distinct wallpaper groups.
(c) The symbols p1, p2, pm, pg, cm, pmm, pmg, pgg,
cmm, p4, p4m, p4g, p3, p31m, p3m1, p6, and p6m are
crystallographers’ representations for the 17 wallpaper
groups, respectively; the diagram is courtesy of [74]. The

diamond, triangle, square, and hexagon shapes correspond
to two-, three-, four-, and sixfold rotation centers. Solid
single line, dotted single line, and double parallel lines
denote unit translation, glide reflection, and reflection
symmetries, respectively. (d) The subgroup hierarchy,
where A → B means that B is a subgroup of A.
(Information extracted from [13])

reflection, rotation, and translation symmetry
detection algorithms can be found in [10, 69].
Three international competitions on symmetry
detection algorithms have been organized and
held at ICCV 2017, CVPR 2013, and CVPR
2011. The most recent “Detecting Symmetry
in the Wild Challenge” [19] has included 3D
symmetry detection and medial axis detection
algorithms. More information can be found on
these websites:

https://sites.google.com/view/symcomp17

http://vision.cse.psu.edu/research/

symComp13/index.shtml

http://vision.cse.psu.edu/research/

symmComp/index.shtml

Given the fact that automatic, general sym-
metry detection in computer vision is challeng-
ing, the first symmetry-based reCAPTCHA was
proposed and tested in [20]. Subsequently, a
neural net was trained to mimic human symmetry
perception with moderate success [21].

Some sample applications of computational
symmetry in computer vision and computer
graphics include:

Facial asymmetry CVPR 2020 best paper
award was given to Wu, Rupprecht, and
Vedaldi for Unsupervised Learning of Probably
Symmetric Deformable 3D Objects from Images
in the Wild [88], where 2D reflection symmetry
from a single image is used to recover 3D shapes
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Computational Symmetry, Fig. 5 The 3D Euclidean
group and its subgroup hierarchy, originally depicted
in Figure 3.4 of [40]. Gid is the identity group of
size 1, a.k.a. the trivial symmetry group: the symmetry
group of an asymmetrical state [49]. Most past work in
computer vision and human vision focuses on reflection
symmetries only (dihedral group of size 2) [49]. More
recent work addresses machine perception of discrete
planar symmetry groups colored in red. Zooming into
Gwallpaper, the subgroup hierarchy of the 17 distinct two-
dimensional crystallographic groups (symmetry groups of
all possible periodic patterns in 2D) is shown in Fig. 4d.
Similarly, zooming into Gfrieze, the subgroup hierarchy of
the seven one-dimensional crystallographic groups (sym-
metry groups of all possible periodic patterns along one
dimension) is shown in Fig. 3b

of human faces. Bilateral facial symmetry has
been used before for view morphing [76] in 3D
by Seitz and Dyer. Quantified facial asymmetry
has been proposed and validated as a biometric
[53, 54] and an expression and gender cue
[52, 63, 64], respectively.

Symmetry groups for periodic patterns The
first general-purpose, automatic frieze and
wallpaper group classification algorithm on real
images was published in [43, 47], followed by
the classification of skewed symmetry groups,
in particular wallpaper groups and rotation
symmetry groups from affinely and projectively
distorted images [31, 44]. Aiming at capturing
the translation subgroup of a wallpaper group,
several algorithms [26, 68, 70, 82] were develop-
ed for lattice detection (Fig. 4a) from various

locally and/or globally distorted, unsegmented
real images [VIDEO-1, VIDEO-2].

Texture Texture replacement in real photos
[81], static and dynamic near-regular texture
analysis, synthesis [VIDEO-3], replace-
ment/superimposition and tracking [35, 36, 50,
51,57,58], and image “de-fencing” [42,66] have
become a popular subject for various photo/video
editing applications [VIDEO-4].

Urban scenes This is a playground for compu-
tational symmetry applications including facade
matching between aerial and street views [39,86],
automatic geo-tagging [75], architectural facade
in-painting [30], multi-view 3D geometry [28],
and urban scene and architectural image analysis,
synthesis, and 3D reconstruction [11, 30, 67, 75,
87].

Multitarget tracking Spatiotemporal multitar-
get tracking has utilized the topological invariant
property of the 2D lattice, induced by the transla-
tion subgroup of the wallpaper groups [36, 71]
[VIDEO-5A, 5B, 6]. Subsequently, multitarget
tracking and symmetry pattern detection were
used for topology-varying spatiotemporal pat-
terns [37] [VIDEO-7].

General symmetry group detection and image
segmentation, grouping, categorization The
well-known reflection symmetry was generalized
and treated computationally as a special case
of curved glide reflection for the first time
in curved glide-reflection symmetry detection
[33]. Skewed rotation symmetry group detection
[32, 33] captures deformed rotation symmetries
in images. Symmetry-guided segmentation,
grouping, and fabric categorization are done
in [25, 34, 77, 89]. More recently, symmetry
detection was relaxed to detect recurring
patterns from a single image unsupervised [38]
[VIDEO 8]. In addition, symmetry was used for
transformation estimation in [2, 61, 83].

Biomedical applications Some sample applica-
tions include the following: human gait analy-
sis [46, 47], automatic detection of midsagittal
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plane in pathology brain images [45] for neural
image retrieval [48,59] and tumor detection [90],
quantified symmetry that has also been used to
measure symmetry of moving objects such as
molecules [91,92], pathological and degenerative
volumetric neuroradiology images [55, 56, 79],
and the firing fields of the grid cells of rats in the
context of computational neuroscience [9].

Experimental Results

VIDEO-1 [26] The method and some results for
finding texture regularity (deformed lattice) are
shown through many real image examples

VIDEO-2 [68] The process of deformed lat-
tice detection as a spatial tracking problem using
mean-shift belief propagation is illustrated on
several challenging real image examples

12001KBVIDEO-3 [51] The idea of near reg-
ular texture analysis and a synthesis example are
displayed in this SIGGRAPH fast-forward video

VIDEO-4 [42] A sample image de-fencing
result (by the first image de-fencing algorithm)
is illustrated

VIDEOS-5A, 5B [35, 36] Dynamic near reg-
ular texture tracking as deformed lattice on video
as a Markov Random Field Model, an effective
superimposing on video is demonstrated

VIDEO-6 [35, 36] Tracking underwater pat-
terns and texture replacement are shown

VIDEO-7 [37] It shows the tracking of topo-
logically varying patterns (PSU marching band
videos) with instant recognition of symmetry
types

VIDEO-8 [38] The dynamic process of how
to GRASP recurring patterns unsupervised is
demonstrated on a real photo
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Constrained Optimization

Shunsuke Ono
Tokyo Institute of Technology, Tokyo, Japan

Synonyms

Constrained minimization

Related Concepts

�Energy Minimization

Definition

Constrained optimization refers to the minimiza-
tion of an objective function subject to hard
constraint(s).

Background

Many computer vision problems have been
resolved by mathematical optimization, where
we try to optimize some criteria, called objective
function, with or without hard constraint(s)
that must be satisfied. This chapter focuses
on constrained optimization, i.e., optimization
problems involving hard constraint(s).

In general, constrained optimization is
much more difficult than unconstrained one
because algorithms must guarantee not only
the convergence of the objective function to
be minimized but also the satisfaction of given
hard constraints. On the other hand, it has been
recognized that the use of hard constraints brings
various benefits, such as facilitating the choice of
involved parameters and incorporating physical
properties/structure directly on the solution,
as addressed, for example, in the scenario of
imaging inverse problems [1, 7, 12].

In computer vision applications, the size of
optimization problems tends to be very large. In
addition, we often adopt nonsmooth functions in

optimization to exploit a priori knowledge, e.g.,
sparsity and low-rankness. Hence, it is important
to efficiently and flexibly manage various types
of constraints under such nonsmooth optimiza-
tion scenarios. This can be done by leveraging
the notion of metric projection (or projection)
together with the so-called proximal splitting
algorithms [8,14]. In what follows, we introduce
such techniques with several applications.

Theory andMethod

Basic Tools
A function f : R

N → (−∞,∞] is said to be
convex if ∀x, y ∈ R

N and λ ∈ (0, 1), f (λx +
(1−λ)y) ≤ λf (x)+ (1−λ)f (y). A set C ⊂ R

N

is called convex if ∀x, y ∈ C and λ ∈ (0, 1),
λx + (1 − λ)y ∈ C.

We introduce the metric projection (or projec-
tion) onto a closed convex set C as follows:

PC(x) := argmin
z∈C

‖x − z‖, (1)

which maps the input vector x to the vector
PC(x) ∈ C that is nearest from x. This operation
is a key in constrained optimization because a
wide range of useful hard constraints can be
written as (the intersection of) closed convex sets.

We also introduce the proximity operator (or
proximal mapping) [2] of a convex function f as
follows:

proxγf (x) := argmin
z

f (z) + 1

2γ
‖x − z‖2, (2)

where γ > 0. We call f proximable if the prox-
imity operator of f can be computed efficiently.

Let us define the indicator function of a closed
convex set C as

ιC(x) :=
{
0, if x ∈ C,

∞, otherwise.
(3)

Then, the proximity operator of ιC equals to the
metric projection onto C, i.e.,
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proxγ ιC
(x) = argmin

z
ιC(z) + 1

2γ
‖x − z‖2

= argmin
z∈C

‖x − z‖ = PC(x)

This implies that proximal splitting algorithms
can be a powerful choice for constrained opti-
mization.

Projection Examples
A number of examples of frequently used con-
straints represented by closed convex sets and
the associated projection calculations are shown
below.

– Nonnegative orthant. The definition is R
N+

and its projection is given by

P
R

N+ (x) = max{x, 0}. (4)

– Box constraint. The definition is [αi, βi]Ni=1
(αi < βi), and its projection is given by

P[αi ,βi ]Ni=1
(x) = [min{max{xi, αi}, βi}]Ni=1.

(5)
– Linear constraint. The definition is SA,b :=

{x ∈ R
N |Ax = b} (A ∈ R

M×N is a full row-
rank matrix), and its projection is given by

PSA,b(x) = x − A�(AA�)−1(Ax − b). (6)

– Half space. The definition is Ha,b := {x ∈
R

N |a�x ≤ b} (a ∈ R
N ), and its projection is

given by

PHa,b (x) = x − max{a�x − b, 0}
‖a‖2 a. (7)

– �2 ball. The definition is B
b,ε
�2

:= {x ∈
R

N |‖x − b‖ ≤ ε}, and its projection is given
by

P
B
b,ε
�2

(x) = b+ ε

max{‖x − b‖, ε} (x−b). (8)

– �1 ball. The definition is B
b,ε
�1

:= {x ∈
R

N |‖x − b‖1 ≤ ε}, and its projection can be
computed by fast algorithms [9, 10].

Problem Formulation and Algorithm
Consider a generic constrained convex optimiza-
tion problem:

min
x

K∑
k=1

gk(Akx) s.t.

⎧⎪⎪⎨
⎪⎪⎩
AK+1x ∈ C1
...

AK+Lx ∈ CL

, (9)

where gk are proximable convex functions, Cl

are projectable closed convex sets, and Ak are
matrices. Using the indicator functions of Cl , we
can immediately rewrite the problem as

min
x

K∑
k=1

gk(Akx) +
L∑

l=1

ιCl
(AK+1x). (10)

This problem can further be reformulated into the
following variable-splitting form:

min
x,z

K∑
k=1

gk(zk) +
L∑

l=1

ιCl
(zK+l ) s.t. z = Ax,

(11)

where z = (z�
1 · · · z�

K+L)� and A =
(A�

1 · · ·AK+L)�. What is important here is that
each proximable (projectable) function has own
independent variable zi (i = 1, . . . , K + L).
In general, the sum of two proximable function
g1+g2 is not proximable. This is also the case for
the projection ontoC1∩C2. The variable-splitting
structure in (11) circumvents the above difficulty
and thus enables us to leverage proximal splitting
algorithms for solving the problem.

Let us explain the case of ADMM (alternating
direction method of multipliers) [3,11], known as
a popular proximal splitting algorithm. ADMM
solves convex optimization problems of the
form:

min
x,z

f (x) + g(z) s.t. z = Bx, (12)
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where f and g are convex functions and B is
a matrix. The original algorithm of ADMM is
given as follows: for given γ > 0, y(0), and z(0),
iterate

⎧⎪⎪⎨
⎪⎪⎩
x(n+1) = argmin

x
f (x) + 1

2γ ‖z(n)−Bx−y(n)‖2

z(n+1) = proxγg(Bx
(n+1) + y(n))

y(n+1) = y(n) + Bx(n+1) − z(n+1)

.

(13)

Then, by letting f (x) := 0, g(z) :=∑K
k=1 gk(zk) + ∑L

l=1 ιCl
(zK+l ) and B := A,

Prob. (11) can be seen as an instance of
Prob. (12), and thus we can apply ADMM,
leading to the following algorithm: for given
γ > 0, y(0)

i , and z(0)
i (i = 1, . . . , K + L), iterate

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(n+1) = argmin
x

1
2γ

∑K+L
i=1 ‖z(n)

i −Aix−y(n)
i ‖2

for i = 1, . . . , K

z(n+1)
i = proxγgi

(Aix(n+1) + y(n)
i )

y(n+1)
i = y(n)

i + Aix(n+1) − z(n+1)
i

for i = K + 1, . . . , K + L

z(n+1)
i = PCi−K

(Aix(n+1) + y(n)
i )

y(n+1)
i = y(n)

i + Aix(n+1) − z(n+1)
i

.

(14)
The update of x is reduced to a quadratic mini-
mization and thus can be solved in closed form.
The update of z is decoupled for each zi , where
we only require the computation of the prox-
imity operator of gk or the projection onto Cl .
We should remark that it is better to adopt the
primal-dual hybrid gradient method [5] instead
of ADMM when the matrix inversion associated
with the update of x is computationally expen-
sive.

Application

Robust Principal Component Analysis
Principal component analysis (PCA) has played a
central role of extracting and analyzing the intrin-
sic low-dimensional structure underlying high-
dimensional data. PCA assumes that a given
data matrix M ∈ R

M×N , composed of N data
vectors of size M , can be well approximated by

a low-rank matrix (or a few number of principal
component vectors). However, PCA is known to
be very sensitive to outliers because error in the
data matrix is assumed to be Gaussian.

In order to resolve this problem, robust prin-
cipal component analysis (RPCA) [4] was pro-
posed. RPCA decomposes a given data matrixM
into a low-rank matrix L and a sparse error matrix
S by solving the following convex optimization
problem:

min
L,S∈RM×N

‖L‖∗ + λ‖S‖1 s.t.M = L + S, (15)

where ‖ · ‖∗ is the nuclear norm (the sum of
the singular values of ·) and ‖ · ‖1 is the �1
norm (the sum of the absolute values of all the
entries of ·). The nuclear norm and the �1 norm
are well-known low-rank and sparsity promoting
convex functions, respectively. Since the sparse
matrix S serves as removing outliers, RPCA has
been applied to many low-level computer vision
problems, such as foreground-background sepa-
ration, specular highlight removal [15], image
classification [17], and preprocessing in photo-
metric stereo [16].

Prob. (15) is a nonsmooth optimization prob-
lem with a linear constraint, where each term in
the objective function is proximable, and so it can
be solved by Alg. (14). First, Prob. (15) can be
reformulated as

min
L,S∈RM×N

‖L‖∗ + λ‖S‖1 + ι{M}(L + S), (16)

where {M} is the closed convex set consisting
only of M. Then, by introducing auxiliary vari-
ables Z1,Z2,Z3, we have a variable-splitting
form of Prob. (16) as follows:

min
L,S,Z

‖Z1‖∗+λ‖Z2‖1+ι{M}(Z3) s.t.

⎛
⎝vec(Z1)

vec(Z2)

vec(Z3)

⎞
⎠

=
⎛
⎝ I O
O I
I I

⎞
⎠(vec(L)

vec(S)

)
. (17)

Clearly, this is an instance of Prob. (11). The
resulting algorithm is
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L(n+1)= 1
3 (2(Z

(n)
1 − Y(n)

1 ) − Z(n)
2 + Y(n)

2 )

+Z(n)
3 − Y(n)

3 )

S(n+1)=Z(n)
1 − Y(n)

1 + Z(n)
3 − Y(n)

3 − 2L(n+1)

Z(n+1)
1 =proxγ ‖·‖∗(L

(n+1) + Y(n)
1 )

Z(n+1)
2 =proxλγ ‖·‖1(S

(n+1) + Y(n)
2 )

Z(n+1)
3 =P{M}(L(n+1) + S(n+1) + Y(n)

3 )

Y(n+1)
1 =Y(n)

1 + L(n+1) − Z(n+1)
1

Y(n+1)
2 =Y(n)

2 + S(n+1) − Z(n+1)
2

Y(n+1)
3 =Y(n)

3 + L(n+1) + S(n+1) − Z(n+1)
3

,

(18)

where the proximity operators of the nuclear
norm and the �1 norm can be computed by
applying soft-thresholding to the singular values
of L(n+1) +Y(n)

1 and the entries of S(n+1) +Y(n)
2 ,

respectively. The projection onto {M} is simply
given by P{M}(X) = M.

Constrained Signal Reconstruction
Signal reconstruction from incomplete and/or
degraded observation is a fundamental problem
in computer vision and related fields, such as
medical imaging, microscopy, tomography, spec-
tral imaging, and computational photography.

Consider the following observation model:

v = �ū + n, (19)

where ū is a latent signal to be reconstructed, � is
a matrix representing some observation process,
n is a sensor noise, and v is an observation vector.
For example, in compressive imaging scenarios
[6, 13], the matrix � expresses the compressive
measurement process (e.g., random coded sam-
pling), and we try to reconstruct the latent image
ū from the compressive measurements v.

Such a problem is often reduced to convex
optimization problems of the form:

min
u

R(�u) + λ

2
‖�u − v‖2 (20)

where the first term is a regularization term, mod-
eling some desirable properties on the signal of
interest, and the second term is an �2 data-fidelity
term, enforcing consistency with the observation
v, and λ > 0 is a balancing parameter. Here we

assume that R is a proximable convex function
and � is some linear transform.

On the other hand, we can also consider a
constrained counterpart of (20) as follows:

min
u

R(�u) s.t. ‖�u − v‖ ≤ ε, (21)

where ε > 0 controls the degree of data-fidelity.
The above constrained formulation (21) has a
clear advantage over the unconstrained one (20),
that is, ε can be determined based only on the
noise intensity, whereas λ depends both on the
noise intensity and the regularization choice.

By using the definition in (8), Prob. (21) can
be rewritten as

min
u

R(�u) + ιBv,ε
�2

(�u), (22)

which is an instance of Prob. (10). Thus, the
problem can be solved by Alg. (14), resulting in

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(n+1) = (��� + ���)−1(��(z(n)
1 − y(n)

1 )

+��(z(n)
2 − y(n)

2 )))

z(n+1)
1 = proxγR(�u(n+1) + y(n)

1 )

z(n+1)
2 = PB

v,ε
�2

(�u(n+1) + y(n)
2 )

y(n+1)
1 = y(n)

1 + �u(n+1) − z(n+1)
1

y(n+1)
2 = y(n)

2 + �u(n+1) − z(n+1)
2

.

(23)
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Synonyms

Convolutional dictionary learning; Convolutional
sparse representations

Related Concepts

� Sparse Coding

Definition

Convolutional sparse coding is the method of
learning sparse representations {xj } of a signal s,
which is reconstructed from the sparse represen-
tations’ convolution with a set of linear filters{dj }
(also known as templates or dictionaries):

s =
∑
j

dj ∗ xj (1)
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The signal can be an image, an audio clip, a
sequence of words, or even a video clip.

Background

Representation learning forms a cornerstone of
modern machine learning. Representing the data
in the relevant feature space is critical to obtain-
ing good performance in challenging machine
learning tasks in speech, computer vision, and
natural language processing.

Sparse Coding
Sparse coding is one of the most widely used
models for inverse problems in signal process-
ing [5]. It is a representation learning method
which aims at finding a sparse representation of
the input data in the form of a linear combination
of basic templates. Given a signal s ∈ R

n, sparse
coding is a representation learning method which
aims at finding a sparse representation of the
signal in the form of a linear combination (with
coefficients x = [x1, x2, . . . , xk]�) of basic tem-
plates (i.e., dictionary D = [D1,D2, . . . Dk]):

s = Dx =
k∑

i=1

xiDi (2)

where x ∈ R
k , D ∈ R

n×k . Using sparse coding
for images usually requires flatten the image as a
vector s. However, this model fails to incorporate
natural domain-specific invariances such as shift
invariance and results in highly redundant dictio-
nary elements, which makes inference in these
models expensive.

Convolutional Sparse Coding
These shortcomings can be remedied by incorpo-
rating invariances into the sparse coding model,
and such models are known as convolutional
models. Convolutional models are ubiquitous in
machine learning for image, speech, and sentence
representations [3, 9, 11], and in neuroscience
for modeling neural spike trains [4, 10]. Deep
convolutional neural networks are a multilayer
extension of these models with nonlinear activa-

tions. Such models have revolutionized perfor-
mance in image, speech, and natural language
processing [8, 11].

The model of convolutional sparse representa-
tions is proposed for translation-invariant sparse
representations. Specifically, the unstructured
dictionaryD is specified with a set of linear filters
{dj }. Given a signal s ∈ R

n×n′
, convolutional

sparse coding finds a sparse representation of the
signal in the form of a summation of activation
maps {xj } convolution with filters {dj }:

s =
∑
j

dj ∗ xj . (3)

Theory

Solving Convolutional Sparse Coding
Through Optimization
Given m independent samples of the input signal
{s(i)}, a square loss reconstruction criterion is
usually employed for learning the convolutional
sparse coding model in (3)

argmin
{dj },{x(i)

j }

m∑
i=1

∥∥∥s(i) −
∑
i∈[L]

dj ∗ x
(i)
j

∥∥∥2
2

+ λ

m∑
i=1

∑
j

‖x(i)
j ‖1 such that ‖dj‖ = 1

(4)

The constraints (‖dj‖ = 1) are required to
avoid the scaling ambiguity between the filters
and the activation maps; without the constraints,
the scaling can be exchanged between the filters
dj and the activation maps x

(i)
j . The regular-

ization term λ
m∑

i=1

∑
j

‖x(i)
j ‖1 is used to promote

sparsity on x
(i)
j . The filters or dictionaries dj

are shared across different samples s(i). Due to
shift invariance of the convolutional operator,
shifting a filter dj by some amount, and applying
a corresponding negative shift on the activation
x

(i)
j , leaves the objective in (4) unchanged.
A popular heuristic for solving (4) is based

on alternating minimization [2], where the filters
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dj are optimized, while keeping the activations

x
(i)
j fixed and vice versa. Each alternating update

can be solved efficiently (since it is linear in
each of the variables). However, the method is
computationally expensive in the large sample
setting since each iteration requires a pass over
all the samples, and in modern machine learning
applications, the number of samples can run into
billions. Moreover, alternating minimization has
multiple spurious local optima, and reaching the
global optimum of (4) is NP-hard in general.
This problem is severely amplified in the con-
volutional setting due to additional symmetries,
compared to the usual dictionary learning setting
(without the convolutional operation).

Solving Convolutional Sparse Coding
Through Spectral Methods
Tensor methods have emerged as a powerful
paradigm for consistent learning of many latent
variable models such as topic models, indepen-
dent component analysis, and dictionary learn-
ing [1,7]. Model parameters are estimated via CP
decomposition of the observed higher-order input
moments.

In [6], the authors extend tensor decompo-
sition framework to models with invariances,
such as convolutional dictionary models. The
tensor decomposition algorithm used in [6]
is based on the popular alternating least
squares (ALS) method, but with additional
shift invariance constraints on the factors. The
authors demonstrate that each ALS update can be
computed efficiently using simple operations
such as fast Fourier transforms and matrix
multiplications. The algorithm converges to
models with better reconstruction error and is
much faster, compared to the popular alternating
minimization heuristic, where the filters and
activation maps are alternately updated.
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Synonyms

Cook-Torrance BRDF

Definition

Cook-Torrance model is an analytic BRDF
model that describes the wavelength dependent
reflectance property of a surface based on the
principles of microfacet theory.

Background

Accurate descriptions of how light reflects off
a surface are a fundamental prerequisite for
computer vision and graphics applications. Real
world materials exhibit characteristic surface
reflectance, such as glossy or specular highlights,
anisotropy, or off-specular reflection, which
need to be modeled for such applications. The
surface reflectance of a material is formalized
by the notion of the Bidirectional Reflectance
Distribution Function (BRDF) [1], which
describes the reflected response of a surface in
a certain exitant direction to illumination from a
certain incident direction over a hemisphere of
directions.

Analytical reflection models attempt to
describe certain classes of BRDFs using a
mathematical representation involving a small
number of parameters. The Cook-Torrance model
[2] is an analytic isotropic BRDF model that
falls under the category of a physics-based
model and is based on the microfacet theory
of inter-reflection of light at rough surfaces. It
extends the Torrance-Sparrow reflectance model,
originally developed in the field of applied
optics [3], for modeling wavelength dependent

effects of reflection. The model predicts both
the directional distribution as well as spectral
composition of reflected light.

Theory

Given a light source, a surface, and an observer,
the Cook-Torrance model describes the intensity
and spectral composition of the reflected light
reaching the observer. The geometry of reflection
is shown in Fig. 1. An observer is looking at a
point P on a surface. V is the unit vector in the
direction of the viewer, N is the unit normal to the
surface, and L is the unit vector in the direction of
a specific light source. H is the normalized half-
vector between V and L given as

H = L + V

‖L + V ‖ , (1)

and is the unit normal of a microfacet that would
reflect light specularly from L to V. α is the angle
between H and N, and θ is the angle between H
and V, so that cos θ = V · H = L · H.

The main components of the reflectance model
are the directionally dependent diffuse and spec-
ular reflection terms, and a directionally inde-
pendent ambient term. The specular component
Rs represents light that is reflected from the
surface of the material. The diffuse component
Rd originates from internal scattering (in which
the incident light penetrates beneath the surface
of the material) or from multiple surface reflec-
tions (which occur if the surface is sufficiently
rough). The directional reflectance is thus give
as R = sRs + dRd where s + d = 1. The model
also includes a directionally independent ambient
term Ra to approximate the effects of global
illumination.

The total intensity of the light reaching the
observer is the sum of the reflected intensities
from all light sources plus the reflected inten-
sity from any ambient illumination. The basic
reflectance model then becomes

Ir = IiaRa +
∑

l
(sRs + dRd) Iil (N · Ll) dωil .

(2)
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Cook-TorranceModel, Fig. 1 The geometry of reflection [2]

This formulation accounts for the effect of
light sources with different intensities and dif-
ferent projected areas which may illuminate a
scene. The next two sub-sections consider the
directional and wavelength dependence of the
reflectance model.

Directional Distribution
The ambient Ra and diffuse Rd components of
the model reflect light independent of the view-
ing direction. However, the specular component
Rs does depend on the viewing direction. The
angular spread of the specular component can be
described by assuming that the surface consists
of microfacets, each of which reflects specularly
[3].

Only facets whose normal is in the direction H
contribute to the specular component of reflection
from L to V. The specular component is given as

Rs = F

π

D · G

(N · L) (N · V )
, (3)

whereD is the facet slope distribution function,G
is the geometric masking and shadowing attenua-
tion term, and F accounts for Fresnel reflectance.
The Fresnel term F describes the fraction of light
that is reflected from each smooth microfacet. It
is a function of incidence angle and wavelength
of incident light and is discussed in the next
section.

Microfacet Distribution
The facet slope distribution function D represents
the fraction of the facets that are oriented in the
direction H. Various facet slope distribution func-
tions have been considered by Blinn [4] including
the Gaussian model:

D = ce−(α/m)2, (4)

where c is the normalization constant.
Beckmann described a model that originated

from the study of scattering of radar waves from
rough surfaces [5], and is applicable to a wide
range of surface conditions ranging from smooth
to very rough. For rough surfaces, the Beckmann
distribution is

D = 1

m2cos4αe
e−[(tan α)/m]2 (5)

In both the facet slope distribution functions,
the spread of the specular component depends
on the root mean square (rms) slope m. Small
values of m signify gentle facet slopes and give
a distribution that is highly directional around the
specular direction, while large values of m imply
steep facet slopes and give a distribution that is
spread out with off-specular peak modeled by the
Beckmann distribution (see Fig. 2).

For general surfaces with two or more scales
of surface roughness, the slope m can be modeled
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Cook-Torrance Model, Fig. 2 (a) Beckmann distribution for m = 0. 2, (b) Gaussian distribution for m = 0. 2, (c)
Beckmann distribution for m = 0. 6, (d) Gaussian distribution for m = 0. 6 [2]

by using a convex weighted combination of two
or more distribution functions [6]:

D = ΣjwjD
(
mj

)
, (6)

wheremj is the rms slope and wj the weight of the
jth distribution respectively.

Geometric Attenuation The geometrical atten-
uation factor G accounts for the shadowing and
masking of one facet by another and is discussed
in detail in [3, 4]. The following expression is
derived for G for microfacets in the shape of v-
shaped grooves (see Fig. 3):

G = min

{
1,

2 (N · H) (N · V )

(V · H)
,

2 (N · H) (N · L)

(V · H)

}
.

(7)

Spectral Composition
The ambient, diffuse, and specular reflectances
all depend on wavelength. Ra, Rd, and the F
term of Rs may be obtained from the appropriate
reflectance spectra for the material. Reflectance
spectra of thousands of materials can be found in

the literature [7–10]. The reflectance data are usu-
ally for illumination at normal incidence. These
values are normally measured for polished sur-
faces and must be multiplied by 1/π to obtain
the bidirectional reflectance for a rough surface.
Most materials are measured at only a few wave-
lengths in the visible range (typically around 10–
15), so that values for intermediate wavelengths
must be interpolated.

The spectral energy distribution of the
reflected light is found by multiplying the spectral
energy distribution of the incident light by the
reflectance spectrum of the surface. An example
of this is shown in Fig. 4. The spectral energy
distributions of the sun and a number of CIE
standard illuminants are available in [11].

Fresnel Reflectance
The reflectance F may be obtained theoretically
from the Fresnel equation [12]. This equation
expresses the reflectance of a perfectly smooth,
mirrorlike surface in terms of the index of refrac-
tion n (for both metals and dielectrics) and the
extinction coefficient k (for metals only) of the
surface and the angle of incidence of illumination
θ. The Fresnel equation for unpolarized incident
light and a dielectric material (k = 0) is
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Cook-Torrance Model, Fig. 3 Geometric attenutation due to microfacets. (a) Masking. (b) Shadowing. (c) Inter-
reflection
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Cook-Torrance Model, Fig. 4 (a) Reflectance of a cop-
per mirror for normal incidence. Wavelength is in microm-
eters (b) Top curve: Spectral energy distribution of CIE

standard illuminant D6500. Bottom curve: Spectral energy
distribution of light reflected from a copper mirror illumi-
nated by D6500 [2]

F = 1

2

(g − c)2

(g + c)2

{
1 + [c (g + c) − 1]2

[c (g − c) + 1]2

}
, (8)

where c = cos θ = V · H and g2 = n2 + c2 − 1.
The dependence of the reflectance on wavelength
and the angle of incidence implies that the color
of the reflected light changes with the incidence

angle, from color of the material at normal inci-
dence to color of the illuminant at grazing inci-
dence.

In general, both n and k vary with wavelength,
but their values are frequently not known. On
the other hand, experimentally measured val-
ues of the reflectance at normal incidence are
frequently known. To obtain the spectral and
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Cook-Torrance Model, Fig. 5 Measured isotropic BRDFs [14] (top row) and their Cook-Torrance fits [15] (bottom-
row). Left to right: Nickel, Oxidized steel, Red plastic (specular), Dark red paint

Cook-Torrance Model, Fig. 6 Photograph-rendering pairs of Torrance-Sparrow BRDF fits for modeling spatially
varying specular reflectance on faces. Left-pair: [16]. Right-pair: [17]

angular variation of F, the following practical
approach is adopted: If n and k are known, the
Fresnel equation is used. If not, but the normal
reflectance is known, the Fresnel equation is fit
to the measured normal reflectance for a polished
surface. For nonmetals or dieletrics, for which
k = 0, this immediately gives an estimate of
the index of refraction n. For metals, for which
k is generally not 0, k is set to 0 to get an
effective value for n from the normal reflectance.
The angular dependence of F is then available
from the Fresnel equation. The above procedure
yields the correct value of F for normal incidence
and a good estimate of its angular dependence,

which is only weakly dependent on the extinction
coefficient k.

To illustrate this procedure, consider a dielec-
tric material (k = 0) at normal incidence. θ = 0,
so c = 1, g = n and Eq. 8 reduces to

F0 = (n − 1)2

(n + 1)2
. (9)

Solving for n gives the equation

n = 1 + √
F0

1 − √
F0

. (10)
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Values of n determined in this way can then
be substituted into the original Fresnel equation
to obtain the reflectance F at other angles of
incidence. The procedure may then be repeated
at other wavelengths to obtain the spectral and
directional dependence of the reflectance.

RGB Values
The laws of trichromatic color reproduction are
finally used to convert the spectral energy dis-
tribution of the reflected light to the appropriate
RGB values for a particular display device. Every
color sensation can be uniquely described by its
location in a three dimensional color space. One
such color space is called the XYZ space. A point
in this space is specified by three coordinates,
the color’s XYZ tristimulus values. Each spectral
energy distribution is associated with a point in
the XYZ color space and thus with tristimulus
values. If two spectral energy distributions are
associated with the same tristimulus values, they
produce the same color sensation and are called
metamers. The goal, then, is to find the pro-
portions of RGB that produce a spectral energy
distribution that is a metamer of the spectral
energy distribution of the reflected light.

These proportions are determined by calcu-
lating the XYZ tristimulus values that are asso-
ciated with the spectral energy distribution of
the reflected light [11], and then calculating the
RGB values (with a linear transform from XYZ
followed by a non-lienar transform based on dis-
play gamma curve) that produce a spectral energy
distribution with these tristimulus values [13].

Application

Being a physics-based reflectance model, the
Cook-Torrance model has been widely used
in computer vision and graphics to model the
appearance of real world materials. It has been
shown to well approximate the reflectance of
many measured isotropic BRDFs in the MERL
database [14] ranging from metals, plastics,
rubber and fabrics [15] (see Fig. 5). It has also
been successfully applied in computer vision to
the problem of uncalibrated photometric stereo

[18], and in computer graphics to model the
measured surface reflectance of human skin [16,
17] (see Fig. 6).
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Related Concepts

�Edge Detection

Definition

Corner detection is the process of locating points
in an image whose surrounding local neighbor-
hoods contain edges of different orientations that
intersect at those points.

Background

A corner can be viewed as a special type of
interest point. Interest points [1] are distinct local
image regions with well-defined positions that
are robust to various image deformations, such
as changes in viewpoint or lighting. Many corner
detection algorithms relax the strict requirement
of edge intersection and, for example, instead
locate centroids of windows containing high edge
energy in multiple directions.

Theory

Most corner detection algorithms operate by scor-
ing local image patches [2–6]. Nonmaximum
suppression and thresholding steps can then be
applied to localize corners by selecting the peak
responses and retaining only those deemed suffi-
ciently salient.

An early approach to corner detection scores
patches based on their similarity to neighbor-
ing patches [7]. Comparing a patch centered on
a corner to patches offset by several pixels in
any direction should produce a low similarity
score as the edges incident at the corner do not
align once shifted. In contrast, patches in uniform
regions are identical to their neighboring patches.
Comparing patches using the sum of squared
differences (SSD) yields score:

Su,v (x, y)

=
∑
xi

∑
yi

[
I (xi + u, yi + v) − I

(
xi, yi

)]2

(1)

for comparing the patch in image I centered at
pixel (x, y) to the one offset by u in the x-direction
and v in the y-direction. The summation is over
the pixels (xi, yi) belonging to the patch. An
optional weighting factor can be used to decrease
the importance of the outer patch region with
respect to the center. Since patches centered on
edge pixels which are not corners exhibit a large
SSD when displaced orthogonal to the edge, but
no difference when displaced along it, a robust
measure of corner strength C takes the minimum
over all possible displacements:

C (x, y) = min
u,v

Su,v (x, y) (2)

In the limit of small displacement, the differ-
ence in (Eq. 1) can be approximated by image
derivatives:

I (xi + Δx, yi + Δy) − I (xi, yi)

= Ix (xi, yi)Δx + Iy (xi, yi) Δy
(3)
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yielding:

S (x, y) = [Δx Δy]

[ ∑
xi ,yi

(Ix (xi, yi))
2 ∑

xi ,yi
Ix (xi, yi) Iy (xi, yi)∑

xi ,yi
Ix (xi, yi) Iy (xi, yi)

∑
xi ,yi

(
Iy (xi, yi)

)2
] [

Δx

Δy

]
(4)

Define:

A (x, y) =
[
∇I∇IT

]∣∣∣
(x,y)

(5)

The eigenvalues λ1 and λ2 of A(x, y) describe
the behavior of the local neighborhood of point
(x, y). This region is uniform if λ1 and λ2 are both
small, an edge if exactly one of λ1, λ2 is large,
and a corner if both are large.

The Harris corner detector [4] translates this
observation into a measure of corner strength
given by:

C (x, y) = λ1λ2 − k(λ1 + λ2)
2 (6)

where k is a parameter. Shi and Tomasi [8] instead
use:

C (x, y) = min (λ1, λ2) (7)

Lindeberg [5] extends the Harris detector to
operate across multiple scales and adds automatic
scale selection.

Wang and Brady [9] define corners in terms of
curvature using the score:

C (x, y) = ∇2I − k|∇I |2 (8)

where k is again a constant user-defined parame-
ter (Fig. 1).

Forstner and Gulch [3] take a different
approach to corner localization by finding
points p whose distance to edges in their local
neighborhood is minimal. Specifically,

p = argmin
(x′,y′)

∑
(xi ,yi )

D
(
(xi, yi) ,

(
x′, y′)) (9)

where D is the distance from point (x′, y′) to the
line passing through (xi, yi) with orientation

orthogonal to the gradient at (xi, yi). The
distance is further weighted by the gradient
magnitude. A similar technique can be used to
locate junctions with respect to discrete contour
fragments [10].

Application

Interest points, including corners, have found
use in a variety of computer vision applications
such as image matching, object detection and
tracking, and 3D reconstruction. The ability to
localize interest points in different views of the
same object makes matching and tracking fea-
sible. By design, corner and other interest point
detectors respond at locations with rich structure
in the surrounding image neighborhood. Thus,
these positions are natural choices at which to
compute informative feature vectors that describe
local image content. The ability to associate these
descriptors with interest points further facilitates
matching and detection algorithms. In general,
the choice of feature descriptor to compute at
corners can be application specific and may or
may not be coupled with the choice of corner
detection algorithm.

While a goal of corner and interest point
detectors is to localize the same physical sites
across different views, in practice this is only
accomplished in a statistical sense. There is
usually a significant chance of both missed and
spurious detections. Consequently, algorithms
built on these components must be robust to
errors in detecting individual corners, and instead
rely on average detector performance. A typical
approach is to utilize a large number of corners or
interest points per image for added redundancy.

It is not strictly necessary to use corners or
interest points in the process of extracting feature
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Corner Detection, Fig. 1 Corners detected using the Harris operator followed by nonmaximum suppression and
thresholding

descriptors from images. Alternatives include
computing features at sampled edge points or on
regions from a segmentation of the image. The
sliding window detection paradigm exhaustively
scans the image, computing features over all
possible image windows.
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Definition

Cross entropy is a concept in information theory
to measure the independence of two probability
distributions.

Theory

For two distributions p(x) and q(x) defined on the
same space, the cross entropy is defined as

H (p, q) = Ep

[− log q(X)
]

= Ep

[− logp(X)
]

+ Ep

[
log (p(X)/q(X))

]
= H(p) + KL(p, q) ,

where H(p) = Ep[− log p(X)] is the entropy
of p and KL(p, q) = Ep[log(p(X)/q(X))] is the
Kullback-Leibler divergence from p to q. The
Kullback-Leibler divergence is also called rela-
tive entropy.

The cross entropy method is a Monte Carlo
method for rare event simulation and stochastic
optimization [2].
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Curvature

Takayuki Okatani
Graduate School of Information Sciences,
Tohoku University, Sendai-shi, Japan

Synonyms

Curvedness

Related Concepts

�Geodesics, Distance Maps, and Curve Evolu-
tion

Definition

Curvature is a fundamental concept of differential
geometry that represents local “curvedness” of
some object such as a curve, a surface, and a
Riemannian space.

Background

Dealing with the shape of an object is a funda-
mental issue of computer vision. It is necessary,
for example, to represent the two-dimensional or

three-dimensional shape of an object, to extract
the object shape from various types of images,
and to measure similarity between two object
shapes. The application of differential geometry
to these problems is getting more and more com-
mon in modern computer vision. Curvature is one
of the most fundamental concept of differential
geometry, and its use can be seen throughout
all sorts of related problems. This entry explains
basic definitions of the curvature of a plane curve
and a surface in Euclidean space and summarizes
their applications to a few major applications. See
[1] for the definition of curvatures of a Rieman-
nian space.

Theory and Application

A plane curve C can be specified by the coordi-
nates (x(s), y(s)) of each point, where s is a mono-
tonic function of the arc length. Algebraically, the
curvature κ(s) of C at a point (x(s), y(s)) is defined
as

k(s) = ẋÿ − ẏẍ(
ẋ2 + ẏ2

)3/2 , (1)

where ẋ = dx/ds, ẍ = d2x/ds2, etc. Note that
the denominator becomes 1 when s is the arc
length itself. Let φ(s) be the orientation of the
tangent to C at (x(s), y(s)), that is, tan φ(s) =
ẏ/ẋ. If s is the arc length, the curvature can be
represented as k = φ̇(s).

Geometrically, the absolute value of κ is equal
to the reciprocal of the radius r of the circle oscu-
lating the curve C at the point, that is, �k � = 1/r,
as shown in Fig. 1a; r is called the radius of cur-
vature. The curve C can also be locally approxi-
mated by a second-order polynomial curve. Con-
sider the local coordinates XY defined by the
tangent and the normal vectors to C, as shown
in Fig. 2b. The approximating quadratic curve
will be given as Y = k X2/2. Note that there is
freedom in the choice of the sign of the curvature;
in its definition of Eq. (1), the sign depends on the
parametrization of s.

The curvature of a plane curve is effectively
used to analyze and/or represent two-dimensional
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Curvature, Fig. 1 (a) A plane curve (solid line) and an osculating circle (broken line). The curvature κ at P is the
reciprocal of the radius r of the circle. (b) The approximating quadratic curve at P (broken line)

a b

Curvature, Fig. 2 (a) The curvature scale space of a shape. (b) s − σ plot of the trajectories of the inflection points of
the shape

shapes. In [2], the curvature primal sketch is pro-
posed, in which significant changes in curvature
along a curve are detected and used for shape
representation. In [3], the concept of curvature
scale space (CSS) is presented, where the zero-
crossings of curvature (i.e., the inflection points
of the curve) are used to represent the structure
of the curve at varying levels of detail. This
technique has been applied to various computer
vision problems, such as feature extraction, shape
retrieval, and object recognition [4].

The CSS technique is summarized as follows.
Let X(s; σ) and Y (s; σ) be the convolutions of x(s)
and y(s) with a Gaussian kernel g(s, σ), respec-
tively, that is, X(s; σ) = x(s) ∗ g(s, σ) and Y (s;
σ) = y(s) ∗ g(s, σ). As shown in Fig. 2a, the curve
given by (X(s; σ), Y (s; σ)) gradually becomes
smoother, as σ increases. Figure 2b shows a s − σ

plot of the trajectories of the inflection points.

The horizontal axis indicates the normalized arc
length s that is scaled to the range [0–1].

The curvature of a plane curve serves
as a basic measure of its smoothness. A
smoother curve has smaller curvature at each
point. Curve evolution like the one in CSS
is used in many applications besides shape
analysis/representation, where this property with
curvature plays a central role.

The active contour model (ACM) [5] was
developed to detect the contour of an object in
an image by moving an elastic curve from a
given initial position to nearby the object contour.
This is performed by minimizing the sum of
two energy terms, an external term modeling the
similarity/dissimilarity to the image edges and
an internal term modeling the “elasticity” of the
curve. This latter term usually includes the arc
length as well as the curvature of the curve to
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obtain a smoother curve that is more desirable
in practice. ACM was later reformulated as a
problem of finding local geodesics in a space with
Riemannian metric computed from the image,
which is known as the geodesic active contour
model [6]. The same smoothing property associ-
ated with (Euclidean) curvature also plays a key
role there.

The evolution of a curve can be fully rep-
resented by specifying the normal speed of the
curve, that is, the evolution speed measured along
the normal vector at each point. Consider a closed
curve evolving with speed equal to its curvature,
where the sign of the curvature is chosen so that a
circle would shrink inward. Its generalization to
higher-dimensional space is known as the mean
curvature flow. This curve evolution has the prop-
erties of “smoothing”; the curve evolves so that
its high curvature parts are smoothed out in a
finite time. It is shown that any closed curve will
become a convex curve and then shrink to a point
(Grayson’s theorem [7]).

The level set method (LSM) [8] is a numerical
framework for computing such curve evolutions
(as well as surface/manifold evolution), which
has many advantages to previous methods, such
as being able to handle topological changes of
the curves. In LSM, a curve is represented as a
zero-level curve of an auxiliary function φ as φ(x,
y) = 0. Then, the curve evolution with normal
speed F is represented as ∂φ/∂t = − F � ∇ φ�,
a time-dependent evolution equation of φ. The
curvature κ of each point of the level curve is
computed using φ as

k = ∇ · ∇φ

|∇φ| (2)

where∇ is the gradient operator∇ = (∂/∂x, ∂/∂y).
Thus, the mean curvature flow is represented as
∂φ/∂t = − k � ∇ φ�.

In some problems, the evolution equations
of an image I(x, y), which are similar to those
of φ(x, y) above, are considered. An example
is the diffusion equation [9] represented as
∂I/∂t = ∇ · (c(x, y) ∇ I), which has many appli-
cations, for example, image denoising/restoration

[10] and image inpainting [11]. Although the
choice of c(x, y) depends on each application,
it often has a term of the curvature of the level
curves of I(x, y), which can be also computed by
Eq. (2) (When c(x, y) is constant, the resulting
image evolution coincides with the Gaussian
blurring).

The curvature of a smooth surface S in a
three-dimensional space is defined as follows.
Consider the tangent plane to S at a point P of
S (Fig. 3b). The normal vector of S at P should be
perpendicular to the tangent plane. Then consider
a plane containing this normal vector (Fig. 3c).
The intersection of the plane with S yields a plane
curve on it. The curvature of this plane curve
at P, defined in the same manner as above, is
called the normal curvature of S at P. The plane
has a one-dimensional rotational freedom around
the normal vector, and the normal curvature is
defined for each of such planes.

Let the maximum and minimum values of the
normal curvature at P be k1 and k2. They are
called the principal curvatures of S at P. Consider
a local coordinate frame XYZ whose origin is
located at P and Z axis coincides with the normal
vector. The surface is locally approximated by a
second-order polynomial surface

Z = 1

2
[X Y ]H

[
X

Y

]
, (3)

where H is a 2 × 2 symmetric matrix. Spec-
ifying a direction in the XY plane by a two-
dimensional normalized vector v (‖v‖2 = 1), the
normal curvature for the direction v is given by
v� Hv. The eigenvalues of H are the same as
the principal curvatures k1 and k2, and their asso-
ciated eigenvectors the corresponding directions
v’s. The Gaussian curvature of S at P is defined
as a product of principal curvatures k1 and k2,

k = k1k2, (4)

and the mean curvature of S at P is defined as
their mean,
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Curvature, Fig. 3 (a) A surface S. (b) The tangent plane to S at a point P in the center. (c) A plane containing the
normal vector of S at P. The intersecting curve on the plane gives the normal curvature of S at P

h = k1 + k2

2
. (5)

Local shapes of a surface are classified by
the signs of the principal curvatures k1 and k2,
as shown in Fig. 4a [12]. A point at which k1
and k2 have the same sign, that is, the Gaussian
curvature κ > 0, is called an elliptical point. If k1
and k2 have different signs, that is, κ < 0, then
the point is called a hyperbolic point. If either k1
or k2 vanishes, that is, κ = 0, then the point is
called a parabolic point. Using this classification,
a smooth surface may be segmented into finite
regions depending on the sign of the curvatures;
Fig. 4b shows examples of the surface segmenta-
tion based on the Gaussian curvature signs.

This classification method is used in all sorts
of applications. For example, it is used in the
detection of features such as corners and edges
in images, where the images or their variants

are regarded as the surface whose local shape
is classified; see, for example, [13]. In [14], the
shape of an object obtained as range data is
represented based on its curvature. It is shown in
[15, 16] that similar curvature-based shape repre-
sentation can be computed from multiple images
taken under different illumination directions but
without detailed knowledge on the process of the
image formation.

More advanced forms of curvatures, such as
the curvature of higher-dimensional subman-
ifolds and the Riemannian curvature tensors,
are used in recent studies. In [17], several
Riemannian metrics on the space of two-
dimensional shapes are studied. In [18], biases of
the maximum likelihood estimates derived for the
problems of estimating some geometric structure
from images (e.g., the epipolar geometry) are
related to the curvature of the hypersurfaces
given by the geometric structure.
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Curvature, Fig. 4 (a) Classification of local shapes
according to principal curvatures k1 and k2. The first and
third quadrants are where the surface point is elliptical,

and the second and fourth quadrants are where it is hyper-
bolic. (b) Examples of the surface segmentation based on
the sign of the Gaussian curvature
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Synonyms

Curves; Space curves

Related Concepts

�Curvature
�Differential Invariants
�Euclidean Geometry
�Osculating Paraboloids

Definition

Space curves are one-parameter manifolds
immersed in Euclidean 3D space r(s) ⊂ E

3,
where s ∈ R. One requires differentiability to

whatever order is necessary, and
∥∥∥ ∂r(s)

∂s

∥∥∥2 �= 0.

It is convenient to require
∥∥∥ ∂r(s)

∂s

∥∥∥2 = 1,

though this can always be achieved through a

reparameterization. Such curves are known as
“rectified” or “parameterized by arc-length,”
and one writes ṙ(s) for the partial derivative
with respect to arc-length (r′(t) will be used if
the parameter t is not arc-length). As discussed
below, in addition one requires r̈(s) �= 0 for
a generic space curve. The very notion of
“rectifiable” is of course Euclidean. Curves in
non-Euclidean spaces (affine, projective) have to
be handled in appropriate ways.

Background

The classical theory of curves starts with Newton
and Leibniz; it was brought in the form presented
here in the course of the eighteenth and nine-
teenth century.

Theory

In differential geometry the “shape” of a curve is
defined locally as a set of differential invariants
that are algebraic combinations of derivatives
{ṙ, r̈, ...r , . . . }, and that are invariant with respect
to Euclidean motions (notice that “congruencies”
would assign the same shape to helices of oppo-
site chirality). A complete set of such differ-
ential invariants, specified as a function of the
parameter s (arc-length), allows one to construct
the curve on the basis of this, up to arbitrary
motions. Such a specification of the curve is
known as its “natural equations.”

In performing coordinate-wise operations one
has to refer to a fiducial frame, most conve-
niently an orthonormal basis. All equations will
take on their simplest form in a frame that is
especially fit to the curve. The classical Frenet-
Serret frame is one way to achieve this. As one
moves along the curve the frame will rotate in
various ways. The simplest description expresses
the instantaneous motion of the frame in terms of
the frame itself. The differential invariants have
geometrically intuitive interpretations in such a
system. This insight is due to Elie Cartan, though
already implicit in the classical formulation.
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These are the basic insights of the classical
theory. A short derivation with appropriate geo-
metrical interpretations follows.

The first derivative of position r(s) with
respect to arc-length s is (by construction) a
unit vector known as the tangent to the curve,
denoted t(s) = ṙ(s). Geometrically the tangent
is the direction of the curve, it is the limit of
the difference of two points r(s1) − r(s2) (with
s1 > s2) of the curve divided by the chord-
length, that is, ‖r(s1) − r(s2)‖, as the points
approach each other infinitesimally. Thus the
expression r(s0) + (s − s0)t(s0) is a first order
approximation, the tangent line, to the curve.

Because the tangent is a unit vector, one has
ṫ · t = 0. (Note the Euclidean nature of this!)
Thus the second-order derivative r̈ is orthogonal
to the tangent. We write r̈ = kn, where the unit
vector n(s) is the “normal” to the curve, and κ(s)
the “curvature.” Notice that the normal would be
undefined in the case the tangent did not change
direction. For a generic space curve we have to
require κ > 0 throughout (though of course the
choice of sign is arbitrary). This is different from
planar curves for which a signed curvature makes
sense. Thus planar curves may have points of
inflection, whereas this notion makes no sense for
space curves (Fig. 1).

The normal and the tangent define a plane,
the so-called osculating plane of the curve. It is
the limit of the plane spanned by three points
of the curve as the points approach each other
infinitesimally. One might say that, at least
locally, the curve lies in its osculating plane
(remember that “to osculate” means literally
“to kiss”). The three points also define a circle
(lying in the osculating plane), whose radius
can be shown to be 1/κ. (An easy way to show
this is to write down the second order Taylor
development of the curve.) Thus, locally, the
curve is like a circular arc of radius 1/κ in the
osculating plane, moving in the tangent direction.
The curvature measures the degree to which the
curve veers away from the tangent direction, into
the direction of the normal. Notice that r̈ · n = k,
and that the curvature is a scalar that does not
depend upon the coordinate frame. The curvature
is the first example of a differential invariant.

In Euclidean space E
3 the tangent and the

normal imply a third vector orthonormal to them
both. It is b = t × n, known as the “binormal.”
This is again a very Euclidean construction, the
vector product being a Euclidean 3D concept.
The orthonormal frame {t,n, b} is the Frenet-
Serret frame. It is tightly connected to the curve
and a complete basis of E3. Thus it is perfectly
suited to describe the third order derivative

...
r .

The obvious move is to express ṅ in terms of the
tangent and the binormal (given the fact that the
normal is a unit vector this should be possible).
Thus one writes ṅ = −κt + τb, where τ is
another differential invariant known as the torsion
of the curve. The reason for the term − κ t is
that ṫ = κn: the frame turns about the binormal
with angular speed κ (Fig. 2). The third derivative
itself then is

...
r = −κ2t + κ̇n + τκb.

The torsion (sometimes called “second curva-
ture”) has a simple geometrical interpretation. It
is the angular rate of change of the attitude of the
osculating plane.

Notice that the metrical structure of E
3 is

used in an essential manner in all constructions
thus far. The classical theory of curves cannot be
used in spaces with different structures, even in
homogeneous spaces such as affine or projective
spaces. Of course, a theory of curves can be
developed for such spaces too, but the differential
invariants, although often denoted “curvature”
and “torsion,” will have meanings that are
completely distinct from the curvature or torsion
of curves in Euclidean space. The reader should
be keenly aware of this, as non-Euclidean spaces
occur frequently and naturally in computer vision
and image processing applications, the best
known being the affine and projective 3D spaces,
as well as “graph space.”

The structure found thus far can be appreciated
from a straightforward Taylor expansion:

r(s) = r(0) + ṙs + r̈
s2

2! + ...
r

s3

3! + O[s]4, (1)

which in terms of the Frenet-Serret frame is (the
“canonical representation”):
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Curves in Euclidean Three-Space, Fig. 1 At left
generic space curve. It is curved throughout and “winds”
in a single sense. This curve was defined via its natural

equations (see below), κ(s) = 1 + 3s, τ(s) = 1 + 5s,
0 < s < 1. At right the field of tangents along the curve

Curves in Euclidean Three-Space, Fig. 2 At left the
field of osculating planes along the space curve. Notice
how it rotates, revealing the curve to be a “twisted” one.

At right the field of Frenet frames along the curve. Again,
notice how it rotates as it moves along the curve
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r(0) +
(
s + κ2 s3

3! + · · ·
)
t

+
(
κ s2

2! + κ̇ s3

3! + · · ·
)
n +

(
κ τ s3

3! + · · ·
)
b,

(2)

from which the habitus of the curve is readily
gleaned: The projection on the osculating plane
is (approximately) a parabolic arc, on the normal
(n× b) plane a cusp, and on the tangential (b× t)
plane an inflection (Figs. 3 and 4).

Notice that the third order includes a term in
the rate of change of curvature, not merely the tor-
sion. The meaning of this becomes evident from
another geometrical construction. Four distinct
points define a sphere, and in the limit one obtains
the osculating sphere at a point of the curve.
When the curve is twisted at the point (τ �= 0),
the center of the osculating sphere is given by:

cosc = r(s) + 1

κ(s)
n(s) − κ̇(s)

κ(s)2τ(s)
b(s), (3)

and its radius of curvature �osc(s) by:

�osc =
√

�2(s) +
(

�̇(s)

τ (s)

)2

, (4)

where � is the radius of the osculating circle. Thus
only at “vertices” of the curve (κ̇ = 0) is the
osculating circle a great circle of the osculating
sphere. The osculating sphere always cuts the
osculating plane in the osculating circle though.

The geometrical structure is formulated rather
elegantly by the Frenet-Serret formulas (notice
the antisymmetry of the matrix):

⎛
⎝ ṫ
ṅ
ḃ

⎞
⎠ =

⎛
⎝ 0 +κ 0

− κ 0 +τ

0 −τ 0

⎞
⎠
⎛
⎝ t
n
b

⎞
⎠ . (5)

The “natural equations” simply specify κ(s)
and τ(s). Using the Frenet-Serret equations one
constructs the curve by integration, specifying
an arbitrary initial Frenet-Serret frame. Thus the
curvature and torsion specify the curve up to
arbitrary Euclidean motions.

A useful formalism that extends this is due
to Darboux (Fig. 5). The “Darboux vector” is
defined as d = τ t + κ b. Now one has ṫ = d× t,
ṅ = d × n, and ḃ = d × b, thus the Darboux
vector is the angular velocity of the “moving
trihedron” {t,n, b}. One immediately concludes
that the curvature is the rate of turning about
the binormal and the torsion the rate of turning
about the tangent. This nicely “explains” the

Curves in Euclidean
Three-Space, Fig. 3 At
left a view from the
binormal, at right a view
from the normal direction.
From the binormal
direction the curve shows
its curvature, from the
normal direction one sees
an inflection
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Curves in Euclidean Three-Space, Fig. 4 At center a view from the tangent direction. In this view the curve appears
as a cusp. At left and right views from nearby directions

Curves in Euclidean Three-Space, Fig. 5 At left osculating circles along the curve. At right the Darboux vector field
along the curve

geometrical meaning of the differential invariants
κ (the curvature) and τ (the torsion).

The Darboux formalism is by far the simplest
to commit to memory. It completely sums up the
structure of generic space curves in Euclidean
three-space. The Darboux vector also lets one
handle degenerate cases easily, for instance that
of planar curves (binormal constant), or straight
curves (or rather, lines; tangent constant). Finally,
the Frenet-Serret equations are written in an eas-
ily remembered (because of the cyclic t-n-b–
structure) form:

ṫ = d × (n × b) , (6)

ṅ = d × (b × t) , (7)

ḃ = d × (t × n) . (8)

There are a number of geometrical structures
related to a curve that are of occasional use. A
few of these are discussed below.

So-called spherical images are spherical
curves – that are curves on the surface of the unit
sphere – related to a curve (Fig. 6). One naturally
considers the tangent, normal, and binormal
spherical images that are the curves t(s), n(s), and
b(s) (notice that these curves are not rectified!).
Notice that for straight lines the tangent spherical
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Curves in Euclidean
Three-Space, Fig. 6 At
left the spherical images
associated with the curve
(red: tangent image; blue:
normal image; yellow:
binormal image). At right
an osculating sphere at the
curve

images degenerate to a point, whereas the other
spherical images are undefined. For planar curves
the tangent and normal spherical images are
degenerated to arcs of great circles, whereas
the binormal spherical image degenerates to a
point. Special points of the spherical images,
like inflections or cusps, relate to special points
of the original curve. For some problems of a
physical nature it is the spherical image, rather
than the curve itself that is of primary interest.
An example is that of specularities on tubular
surfaces like human hairs.

The surfaces described by the lines defined
by the tangent, normal, binormal, and Darboux
vector are also of occasional interest. These are –
by construction – ruled surfaces, though not nec-
essarily developable ones. Their singular fea-
tures, like the edge of regression in the case of
developable surfaces or the line of striction in the
case of skew surfaces, have useful geometrical
relations to the curve. The best known example
is the surface of tangent lines, which happens to
be developable, with the curve itself as the edge
of regression, and the surface of normal lines,
which is commonly used to describe surface
strips (Fig. 7).

Special points on the curve may also be
studied by direct means of course. Perhaps the
most obvious instance is that of a torsion zero
(Fig. 8). At a torsion zero the chirality of the
curve changes. Whereas the curve generically
osculates, but also pierces its osculating plane,
the curve merely osculates, but fails to pierce the

Curves in Euclidean Three-Space, Fig. 7 The surface
described by the tangents to the curve is a developable
surface, the curve being its edge of regression

osculating plane, it being “deflected” by it. Such
special points are often introduced by design
in telephone cords, and many vines also have
frequent torsion zeroes in their tendrils

Additional Problems

This entry describes the Euclidean differential
geometry of space curves. In many problems
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Curves in Euclidean Three-Space, Fig. 8 Example of a
torsion zero. Notice the opposite chirality of the parts of
the curves at either side of the torsion zero (which is at the
right in this picture)

the context is different from Euclidean though.
Because the differential invariants introduced
here are specific for the Euclidean transformation
group, one needs to develop the differential
geometry from scratch. Examples frequently
occur in computer vision, for instance, and
one often works in spaces with mere affine,
or even projective structure. Spaces with even
less structures are common. A common case

involves “isotropic differential geometry” in
“graph spaces.”
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Definition

Data augmentation is a Markov chain Monte
Carlo algorithm for sampling from a Bayesian
posterior distribution

Background

Data augmentation was originally developed by
Tanner and Wong [10] as a stochastic counterpart
of the EM algorithm [1], and it is closely related
to the Gibbs sampler [2]. Thus, the basic setup
of data augmentation is similar to the EM algo-
rithm.

Theory

Let y be the observed data and z be the missing
data or latent variable. Let p(y, z|θ) be the
probability distribution of the complete data
(y, z), with θ being the unknown parameter.
The marginal distribution of the observed data
y is p(y| θ ) = ∫

p(y, z| θ )dz. Let p(θ ) be the
prior distribution of θ . The goal is to draw Monte

Carlo samples from the posterior distribution
p(θ | y) ∝ p(θ )p(y| θ ).

The data augmentation algorithm is an itera-
tive algorithm. It starts from an initial value θ0.
Let (θ t, zt) be the values of θ and z sampled in
the t-th iteration. Then in the (t + 1)-st iteration,
it goes through the following two steps:

Imputation step: Sample zt + 1 ∼ p(z|y, θ t).
Posterior step: Sample θ t + 1 ∼ p(θ |y, zt + 1).

p(z|y, θ ) is the predictive distribution for
imputing the missing data z given y and θ .
p(θ |y, z) is the posterior distribution of the
complete-data model. The data augmentation
algorithm capitalizes on the fact that both the
p(z|y, θ ) in the imputation step and p(θ |y, z) in
the posterior step are often easy to sample from.

In correspondence to the EM algorithm, the
imputation step corresponds to the E-step, and the
posterior step corresponds to theM-step. The data
augmentation algorithm can also be viewed as a
two-component Gibbs sampler for sampling from
p(z, θ |y), but the emphasis of the data augmenta-
tion algorithm is that it augments the missing data
or latent variable z to simplify the computation.
In that sense, it is related to the auxiliary variable
algorithm [3], the most prominent example being
the Swendsen-Wang algorithm [9].

The rate of convergence of the data augmenta-
tion algorithm is determined by a quantity called
Bayesian fraction of missing information [5]. It
is the Bayesian version of the fraction of missing
information that determines the rate of conver-
gence of the EM algorithm [1].

© Springer Nature Switzerland AG 2021
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Meng and van Dyk [7] observed that for the
same marginal model p(y|θ ), it is possible to
construct a class of complete-data models pa(y,
z|θ ) indexed by a working parameter a so that∫
pa(y, z| θ )dz = p(y| θ ) for all a. One may then

optimize the fraction of missing information over
the working parameter a in order to devise the
EM or data augmentation algorithm with the
optimal rate of convergence.

Inspired by Meng and van Dyk [7], Liu, Rubin
and Wu observed that when augmenting the
data from y to (y, z), it is possible to expand
the parameter θ to θ , α so that the complete
model becomes p(y, z|θ , α), where both θ and α

are identifiable in the complete-data model, but∫
p(y, z| θ )dz = p(y| θ ) so that the parameter α

disappears in the observed-data model [6]. Based
on this observation, they proposed a parameter-
expanded EM (PX-EM) algorithm which has
faster convergence rate than the original EM
algorithm. Liu and Wu (2000) [4] proposed a
parameter-expanded data augmentation (PX-DA)
algorithm which has a faster convergence rate
than the original data augmentation algorithm.
Independently, Meng and van Dyk [8] proposed a
similar algorithm called marginal augmentation.

Application

The data augmentation algorithm and its exten-
sions can be used for sampling of posterior dis-
tributions from a wide range of Baysian models.
Practically for any EM algorithm for maximum
likelihood estimation, there is a corresponding
data augmentation algorithm for posterior sam-
pling. In fact, the imputation step of the data aug-
mentation algorithm can be easier to implement
than the E-step of the EM algorithm because it
is often easier to sample from a distribution than
calculating the expectation in closed form.
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Synonyms

Information fusion

Definition

Data fusion refers to combining data from multi-
ple sources for achieving better understanding of
a phenomenon of interest. Applications abound
in engineering and applied sciences, including
wireless sensor networks, computer vision, and
biometrics.
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Background
In several fields, combining different sets of
information has taken place, although a more
systematic study for the fusion of data is
emerging since a decade [1]. The human brain
is an example of a complex system which
integrates data or signals from different sensory
preceptors in the body. Building a machine-
based system that can meaningfully integrate data
from different sources for better understanding
of a phenomenon of interest is the challenge
faced in many fields. Since data emerges from
different sensors with varying accuracy and
coverage factors, benefits of data fusion include
improved system reliability and/or redundancy,
extended coverage, and possible shorter response
time. Applications in human-machine interface
area include robots in industrial automation,
surveillance in military and commercial fields,
battlefield management, medical diagnostics,
biometrics, satellite imaging, image under-
standing, computer vision, target detection and
tracking, wireless sensor networks, and wireless
communications.

Application

In many vision-related applications, a single
sensor will not provide complete information
with respect to the scene that is being sensed.
Also, sensors may have different fields of views
and different sensors, such as IR and optical,
may have different resolution capabilities. Better
results are obtained when data from sensors
are combined in an appropriate manner. For
imaging applications, fusion of images can
be done at various levels, viz., pixel, feature,
and decision. In general, the latter two entail
some loss of information as the fusion is
performed after extraction of information from
the original images. Pixel-level fusion methods
include Laplacian pyramid, discrete wavelet
transforms, and support vector machines [2].
In decision/classification systems, combining
features or decisions may be appropriate when
sensors are geographically dispersed, thereby
requiring distributed processing at sensor sites.

In video surveillance applications involving
tracking of objects or persons of interest,
fusion of data from multiple images would be
needed [3]. Similar situations arise in military
applications involving tracking of maneuvering
enemy aircrafts. Track-to-track fusion of target
position estimates derived from individual sensor
data is a possible approach [4, 5].

Detection and estimation of targets using a
set of geographically dispersed multiple sensors
necessitate distributed signal processing at sensor
sites [6, 7]. Although individual sensors process
sensed information and possibly make inference
regarding the presence or absence of a target (or
a phenomenon of interest), a final determination
that is based on the collective information is usu-
ally made at a central site called the fusion center.
It is conceivable that, in some applications, one of
the sensors could be the fusion center making the
final decision. Thus, the traditional signal detec-
tion (estimation) paradigm is naturally extended
to the situation of distributed processing. The ter-
minology “distributed detection,” “decentralized
detection,” or “distributed decision fusion” refers
to such situations. Depending on the flow of
information from the sensors to the fusion center
and between the sensors, several configurations
of sensor suites are possible: serial or tandem,
parallel, and tree [8]. Formulation of Neyman-
Pearson and Bayes optimization criteria leads
to fundamental theoretical solutions in this area.
Statistical correlation among sensor observations
can lead to some unexpected results as shown
first in [9]. Recent result shows how correlation
might be helpful in some signal configurations
for both centralized and decentralized detection
scenarios [10]. Asymptotic solutions involving a
very large number of sensors as well as computa-
tional approaches for obtaining optimal solutions
are available [6–8, 11]. Recently, there is interest
in the estimation of parameters using processed
data from multiple sensors [12].

In earlier works on distributed detection prob-
lems, the communication channels between the
sensors and the fusion center were assumed ideal
or error-free. However, with the pervasiveness
of wireless sensor networks, the assumption of
error-free links is not quite true. The inclusion
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of error-prone links in the distributed signal pro-
cessing systems has further broadened the liter-
ature to provide practically achievable as well as
theoretically possible solutions [13,14]. Channel-
aware solution paradigm leads to several sub-
optimal solutions depending on the availability
of knowledge of channel information. Although
some similarity to traditional diversity reception
in signal communication exists, the decentralized
detection in wireless sensor network is distinctly
different in the sense that the decisions made
by the sensors regarding a phenomenon of inter-
est need not all be identical unlike the case of
diversity reception. Thus, the maximal ratio com-
bining, which is optimal for diversity reception,
is generally inferior in wireless sensor network
case. Depending on the noisiness of the channel,
combining based on individual sensor decisions
arrived at the fusion center can outperform other
suboptimal combiners based on received sensor
data at the fusion center.

Cognitive radio has evolved over the last two
decades. Cognitive radio now could be a simple
receiver which senses and adapts to different
signal modulations to a more complex modem
where the radio is able to sense the non-presence
of a user in a spectral frequency range, thereby
adapting its operating frequency to be in that
range for achieving signal connectivity [15].
The problem faced by a secondary user is the
detection of the presence or absence of a pri-
mary licensed user through spectrum sensing.
The spectrum sensing is done cooperatively by
several secondary users in order to opportunis-
tically access the spectrum, when it becomes
available. Presence of distributed radios, inability
of some radios not being able to sense the pri-
mary user due to shadowing or “hidden terminal”
problem, limitations on communication capacity
between the secondary radios and the radio acting
as the fusion center, and availability of signal
processing capability within the radios have set
the stage for the application of decentralized
detection concepts to cognitive radios [16, 17].
Shadowed signal receptions at multiple cogni-
tive radios can lead to signal correlation thereby
requiring signal processing schemes that don’t
assume statistical independence among observa-
tions at different radios [16].

Biometrics is used for authentication purposes
in civilian and military applications. Biometrics
for person identification could be fingerprints,
facial image, voice, or iris. Use of several bio-
metrics, when appropriately combined, can lead
to better results than that can be obtained through
any one biometrics. Also, multiple samples of any
one biometrics can be combined for achieving
better results. Combining data from multimodal
biometrics is a challenging problem because of
the need for proper normalization of biometrics
scores before combining [18, 19]. The deter-
mination of optimal combining method needs
to take into account possible correlation among
different biometrics. Application of multivari-
ate copula distributions for combining heteroge-
neous data for biometrics is discussed in [20].
The authors of another paper, also involving a
multimodal biometric system, show that signifi-
cant classification improvement can be achieved
by employing social network analysis for the
fusion of decisions from individual biometrics
[21]. Challenges exist due to stringent require-
ments in surveillance applications where false
accept rates and false reject rates need to be kept
small. Moreover, biometrics identification sys-
tems need to be robust to the extent possible due
to possible fake biometrics posed by latex fingers,
face masks, etc. The fusion of biometric can be
at various levels: data, features, and classifiers
(decisions).
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Synonyms

Deconvolution

Related Concepts

�Blind Deconvolution
�Motion Blur

Definition

Deblurring is a process to recover sharp and clear
images from blurry images.

Background

Blur usually occurs when taking a photo with
long exposure time or with wrong focal length.
This is because the lights captured for a pixel
are mixed with the lights captured for the other
pixels within a local neighborhood during the
exposure period. Such effect is modeled by the
blur kernel (a.k.a., point spread function) which
describes how the lights are mixed during the
exposure period. The goal of deblurring is to
recover sharp and clear images of the scene
from the captured blurred images. Deblurring,
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however, is a severely ill-posed problem because
the number of unknowns exceeds the number of
equations that can be derived from the observed
data.

The problem of deblurring can be further
categorized into non-blind deblurring and blind
deblurring according to whether the blur kernel
is known or not. In non-blind deblurring, the blur
kernel is given and is used to recover the latent
image from a blurry image. The main problem
of non-blind deblurring is how to estimate high-
quality clear images with the given blur kernels.
In blind deblurring, the kernel is unknown. This
problem is quite more challenging as both the
blur kernels and clear images are needed to be
estimated. The conventional blind deblurring
process usually consists of two interdependent
steps: blur kernel estimation and latent image
restoration. Thus, the non-blind deblurring can be
regarded as an important step in blind deblurring.
In addition, benefiting from the deep learning
approach, the blind deblurring process can be
achieved by directly estimating high-quality clear
images from observed blurry images.

This chapter mainly reviews the single image
motion deblurring methods.

Theory

The Image Formation Model
Mathematically, the blur process can be modeled
by:

B(x) =
∑

y∈N (x)

I (x − y)kx(y) + n(x), (1)

where B denotes a blurry image, I denotes a
sharp image, kx denotes the blur kernel at pixel
x, n denotes image noise, and N (x) denotes a
local neighborhood centered at pixel x. If the blur
kernel kx is spatially variant, the blur model (1)
is usually used to approximate those cases when
the camera exhibits rotational motion or the scene
has large depth disparity or contains a moving
object during exposure period.

While the blur kernel is spatially varying, the
variation of the blur kernel is spatially smooth.
Lots of previous works simplify the problem by
assuming that the blur kernel is spatially invariant
to model the camera motion blur. Thus, the blur
model will reduce to a convolution operation:

B = I ⊗ k + n, (2)

where ⊗ denotes the convolution operator.
As (2) cannot effectively model the blur

caused by camera-rotation, several methods [1,2]
assume that the blurry image is the sum of
lots projectively-transformed versions of sharp
image:

B(x) =
∑

θ

I (Hθx)k(θ) + n(x), (3)

whereHθ denotes the homography induced at the
camera pose θ .

Methodology
Image deblurring is a long-standing problem.
This section mainly reviews the non-blind and
blind deblurring.

Non-blind Deblurring
Early representative non-blind deblurring
approaches mainly include the Richardson-Lucy
algorithm [3, 4] and Wiener deconvolution [5].
However, these algorithms usually generate the
results with undesirable artifacts such as ringing
and amplification of image noise. To solve this
problem, several algorithms develop different
image priors to regularize the latent image in
the restoration process. Such as total variation
regularization [6], hyper-Laplacian prior [7],
patch-based image prior [8], learning-based
image prior [9, 10], etc. Among these methods,
the methods using patch-based image priors or
learning-based image priors have achieved state-
of-the-art performance.

Blind Deblurring
As both blur kernels and latent images are
unknown, most existing methods first estimate
blur kernels and then use the non-blind deblurring
methods as mentioned above to restore high-
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quality clear images. Existing blind deblurring
methods can be roughly categorized into
hardware-based methods, statistical prior-based
methods, and data driven-based methods.

Hardware-based methods To better solve
blind deblurring, several methods design specific
devices or experimental settings. Ben-Ezra and
Nayer [11] and Tai et al. [12] propose a hybrid
camera system which estimates the blur kernel
through integration of optical flows from the
auxiliary high-speed camera. In [13], Levin
et al. develop prototype camera to estimate
spatially variant blur kernels. The inertia sensors
of cameras have also been explored to facilitate
the blur kernel estimation [14–16].

Another line of research tackles blur kernel
estimation by exploring additional information.
For example, the noisy/blurry image pair by Yuan
et al. [17] and two consecutively captured blurred
images by Chen et al. [18]. With the estimated
blur kernels, the clear images can be obtained by
the those above non-blind deblurring methods.
Using specific devices or additional information
is able to simplify the blur kernel estimation pro-
cess and achieves favorable performance in blind
deblurring. However, designing specific devices
or experimental settings is often expensive.

Statistical prior-based methods As blind
deblurring is ill-posed, lots of methods explore
the kinds of priors to make the problem well-
posed so that the blur kernels can be efficiently
estimated and then facilitate the clear image
restoration. Chan andWang [19] develop the total
variation regularization to constrain both blur
kernels and sharp images. Fergus et al. [20] and
Whyte et al. [2] propose a multi-scale variational
Bayesian framework to estimate the uniform
blur kernels and non-uniform blur kernels,
respectively. Shan et al. [21] use a parametric
model to model the heavy-tail property of
image gradients and develop an alternating
optimization method to estimate the blur kernel.
Levin et al. [22] show that the variational
Bayesian inference method [20] is able to
avoid trivial solutions while naive maximum a
posterior based methods may not [21]. They

propose an improved maximum a posterior for
the blur kernel estimation [22]. In addition, as the
variational Bayesian approach is computationally
expensive, Levin et al. [23] propose an efficient
marginal likelihood optimization for blur kernel
estimation and use the non-blind deblurring
method based on a hyper-Laplacian prior [24]
to restore clear images.

As the naive maximum a posterior based meth-
ods are likely to converge to trivial solution [22],
some edge prediction-based methods [25, 26]
have been proposed for blur kernel estimation.
As demonstrated by [27], these edge prediction-
based methods have been proven to be effective
in real cases.

To overcome the limitations of the naive
maximum a posterior-based methods and avoid
the heuristic edge-prediction step, some effective
image priors have also been introduced for
blur kernel estimation, e.g., normalized sparsity
prior [28], L0-regularized prior [29–31], internal
patch recurrence [32], sparsity of dark channel
prior [33], and so on.

Note that these above uniform deblurring
methods can be straightforwardly extended
to non-uniform deblurring according to some
modifications [34].

Data driven-based methods The data driven
approach is developed for blind deblurring. In
[35], Zuo et al. develop a discriminative learning
approach to adaptive learn priors for blur kernel
estimation.

The deep learning approach is also employed
to estimate blur kernels. In [36], Sun et al.
develop a deep convolutional neural network to
estimate the probabilistic distribution of motion
blur at the patch level. Gong et al. [37] directly
estimate the motion flow from the blurred image
through a fully-convolutional deep neural net-
work and use the estimated optical flow as the
motion blur. Schuler et al. [38] and Pan et al. [39]
develop deep convolutional neural networks to
learn the key components that are used for blur
kernel estimation. With the estimated blur kernel,
these methods usually employ existing non-blind
deblurring methods, e.g., [24], to restore clear
images.
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As the blur kernel estimation is complex, sev-
eral algorithms develop end-to-end trainable deep
convolutional neural networks to directly esti-
mate clear images from blurry images, e.g., [40].
In spite of achieving decent results, the general-
ization ability of these methods is worth further
investigation.

Application

The main application of deblurring is on image
restoration and enhancement. Since blur is a com-
mon artifact in imaging system, its applications
range from astronomy telescope, satellite imag-
ing, medical imaging, and common customer
level camera. The restored high-quality images
can facilitate intelligent analysis in these fields
and can be better visualized on high-definition
devices.
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Synonyms

Face identification; Face recognition; Face verifi-
cation

Definition

Automatic face recognition is the problem of
identifying a person from an image or a video.
The problem of face recognition can be divided
into face identification and face verification. The
standard approach for training a CNN for solving
these problems include four steps: face detec-
tion, alignment, representation, and classification
(Fig. 1). Identification is the problem of assigning
an identity to an image from a list of identities.
From another perspective, this can be considered
as trying to retrieve the best matching face from
a gallery for a given probe image. On the other
hand, face verification involves verifying whether
two face images are of the same person. This
is usually performed by computing the similar-
ity between feature representations of the two
faces. Both identification and verification have
benefited immensely from developments in deep
learning algorithms and more advanced CNN
architectures.
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Deep CNN-Based Face Recognition, Fig. 1 Standard approach for training a CNN for face verification and
identification

Background

Datasets for Face Recognition
A face recognition system starts with detecting
faces, then localizes landmarks which are used
to align the faces to canonical views, and then
classifies the detected faces. All three parts of
the system require different level of information
and data types. In this section, we explore some
recently released public datasets targeted these.

In the wild face recognition at a large scale
essentially started with the release of the Labeled
Faces in theWild (LFW) dataset [1]. Recent years
have seen several large datasets being released
to help the training of deep networks and to
provide stronger benchmarks. Some examples of
such include CelebA [2], CASIA-WebFace [3],
UMDFaces [4], MS-Celeb-1M [5], VGGFace
[6], VGGFace2 [7], DFW [8], etc. However,
these are still constrained because they only con-
tain still images of mainly celebrities. Such pho-
tos are typically frontal and taken under good
lighting. However, evaluation datasets like IJB-
A [9], IJB-B [10], IJB-C [11], IJB-S [12],
and MegaFace [13] contain videos and images
in varied conditions. To fill this gap, several
video datasets have been proposed over the years.
Among these, YouTube Faces (YTF) [14] and
UMDFaces Video [15] are currently the largest
publicly available annotated video datasets.

The most popular and the largest dataset for
training and evaluating face detection models is

the WIDER FACE dataset [16]. Another standard
benchmark is FDDB [17]. The IARPA Janus
Benchmark datasets [9–11] also contain a large
number of face annotations for evaluating face
detection and recognition in completely uncon-
strained settings. Due to the difficulty in labeling
and verifying facial keypoints in images, there are
only a few large-scale public datasets available
which include such annotations. These include
Annotated Face in the Wild (AFW) [18], 300
faces-in-the-wild dataset [19], Labeled Face Parts
in the Wild (LFPW) [20], and Annotated Facial
Landmarks in the Wild (AFLW) [21].

In addition to these, there are some 3D datasets
[22], age datasets [23, 24], attribute datasets [2,
25], and expression datasets [2].

Face Detection
Face detection is the process of finding a bound-
ing box for each face in an image. This is often
the first step in any face recognition or tracking
system. Counting the number of people in a
crowded scene [26, 27] can also benefit from
robust face and head detection. Large real-world
datasets like [16] and deep CNN-based represen-
tations have led to significant improvements in
face detection performance. Most of the popular
face detection methods have been adapted from
general object detectors and can be classified as
either proposal-based or single-stage detectors.

Proposal-based object detection methods start
with a class-agnostic object proposal generator
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like selective search [28], edge-boxes [29], or
a region-proposal network (RPN) [30]. These
proposals are then classified into object classes
by a CNN. Proposal-based face detectors follow
a similar approach and generate face proposals
which are then classified as face vs non-face by
a CNN. Examples of such face detectors include
All-in-One Face [31], Hyperface [32], Finding
Tiny Faces [33], and Supervised Transformer
Network [34].

Unlike proposal-based detectors, single-stage
object detectors do not contain an explicit pro-
posal generation step. Such detectors typically
include a single pass through a CNN and pro-
cessing multi-scale image pyramid or multiple
layers of a CNN. Single-shot multibox detector
(SSD) [35] and YOLO [36, 37] are examples
of recent single-stage object detectors. Several
recent face detectors adapt these methods. These
include DPSSD [38], SSH [39], CNN Cascade
[40], ScaleFace [41], and S3FD [42].

After a face has been detected, the step in
most face recognition pipelines in facial land-
mark detection and face alignment. Landmarks
determine the most discriminative locations on a
face. We refer the reader to the brief overview in
[38] and a comprehensive review in [43] for a
better coverage of the topic.

Theory

The loss function is an important factor in deter-
mining the performance of deep networks. Most
face recognition networks are trained to perform
a C−way classification of faces with the hope
that the learned features can be used as dis-
criminative representations. Many existing works
use the standard cross-entropy loss with softmax
for training face recognition networks. Variants
of the cross-entropy loss aim to address issues
like preference for high-quality images, early
saturation, lack of margin between intra- and
inter-class samples, etc. Some methods instead
focus on directly optimizing the features for face
verification. Metric learning approaches optimize
the features to reduce intra-class separation and
increase inter-class separation.

We start with a description of the standard
softmax-based cross-entropy loss. Suppose there
are M training samples in a batch. Let xi be the
ith face image in the batch with the label yi and
f (xi ) be the feature representation of the face.
The feature representation is typically a deep
CNN. The feature vectors are projected into logits
using weights W and bias b. Then, the softmax
loss is given by:

LSoftmax = − 1

M

M∑

i=1

log
e
WT

yi
f (xi )+byi

∑C
j=1 e

WT
j f (xi )+bj

(1)
where C is the total number of classes, Wj is
the j th column of the weight matrix W , and
bj is the corresponding bias. Note that the bias
term in (1) can be absorbed into the weights
by appending 1 to f (xi ). Now, since aT b =
‖a‖‖b‖ cos(θ), where θ is the angle between a
and b, the equation above can be rewritten as:

LSoftmax = − 1

M

M∑

i=1

log
e‖Wyi

‖‖f (xi )‖ cos(θyi
)

∑C
j=1 e‖Wj ‖‖f (xi )‖ cos(θj )

(2)
At test time, a probe face xp is compared to a

face in the gallery, xg , using cosine similarity:

s = f (xp)T f (xg)
T

∥
∥f (xp)

∥
∥
2

∥
∥f (xg)

∥
∥
2

(3)

Crystal Loss [44] adds the following constraint

‖f (xi )‖2 = α,∀i = 1, 2, . . . , M (4)

to the objective in (1). The authors argue that
the features obtained from networks trained with
softmax loss strongly prefer high-quality/high-
resolution images to low-quality images.

A-Softmax [45] incorporates an angular margin
to the softmax formulation. This is based on the
idea that at test time, we usually want dissimi-
lar features to be angularly separated (since our
distance metric is cosine distance). A-Softmax
starts by normalizing the weight vectors ‖Wj‖ =
1, ∀j . Let ‖f (xi )‖ = s, and then the A-Softmax
loss is given as:
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LSphereFace

= −1

M

M∑

i=1

log
es cos(mθyi ,i

)

es cos(mθyi ,i
) + ∑

j �=yi
es cos(θj,i )

(5)

where m is the size of the margin and θyi ,i is
in the range

[
0, π

m

]
. However, training a CNN

under this constraint is difficult. Therefore, the
authors in [45] propose to generalize cos(θyi ,i ) to
a monotonic angle functionψ(θyi ,i )which equals
cos(θyi ,i ) in

[
0, π

m

]
. So, A-softmax can be written

as:

LSphereFace

= −1

M

M∑

i=1

log
esψ(θyi ,i

)

esψ(θyi ,i
) + ∑

j �=yi
es cos(θj,i )

(6)

where ψ(θ) is a piecewise function:

ψ(θ)=(−1)k cos(mθ)−2k, θ∈
[
kπ

m
,
(k+1)π

m

]

and k ∈ [0,m − 1]
(7)

Large Margin Cosine Loss [46] uses an addi-
tive margin term instead of a multiplicative mar-
gin as used above. In addition to fixing ‖Wj‖ = 1
by L2 normalization, the authors propose to fix
‖f (xi )‖ = s. This puts the learned features on a

hypersphere where they need to be separable in
the angular space. Fixing the norm of the features
is a commonly used technique, e.g., [44]. Adding
the margin in (2) thus gives the formulation:

LCosFace

=− 1

M

M∑

i=1

log
es(cos(θyi ,i

)−m)

es(cos(θyi ,i
)−m)+∑

j �=yi
es cos(θj,i )

(8)

The margin m and the feature scale s are interde-
pendent.

Additive AngularMargin Loss [47] also starts
by normalizing Wyi

and scaling the feature such
that ‖f (xi )‖ = s. However, instead of directly
adding an additive cosine margin as in (8), [47]
proposes to use an additive angular margin. This
is again done with the aim of increasing inter-
class discrepancy and intra-class compactness.
The proposed loss can be written as:

LArcFace

= −1

M

M∑

i=1

log
es(cos(θyi ,i

+m))

es(cos(θyi ,i
+m))+ ∑

j �=yi
es cos(θj,i )

(9)

where m is the additive angular margin. Addi-
tionally, the authors also propose a loss which
combines SphereFace (5), CosFace (8), and the
proposed ArcFace (9):

LCombined = − 1

M

M∑

i=1

log

(
es(cos(m1θyi ,i

+m2)−m3)

es(cos(m1θyi ,i
+m2)−m3) + ∑

j �=yi
es cos(θj,i )

)

(10)

where m1,m2, and m3 are the corresponding
margins for SphereFace [45], ArcFace [47], and
CosFace [46].

Several other loss functions have been
proposed for training face recognition networks.
However, space limitations do not allow a
more detailed exposition of those methods.
We refer the reader to the original papers for
Noisy Softmax [48], Center Loss [49], Center
Invariant Loss [50], Range Loss [51], Centralized

Coordinate Learning [52], Ring Loss [53], Triplet
Loss [54].

Applications

In this section we describe some recent face
recognition applications which utilize some of
the techniques described above. We note that
both face identification and verification can be
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formulated as the same problem. In identification,
given a probe image, the goal is to find the
closest image from a gallery. This is achieved
by computing the similarities between the feature
representation of the probe image and feature
representations of the gallery images. The image
with the highest similarity with the probe images
is given as output. In verification, the aim is to
determine if a given pair of images belong to the
same person. This is also achieved by computing
the similarity between the feature representations
of the two images. The basic operation in both
identification and verification is to extract a fea-
ture representation and compare with representa-
tions of the other image/images. We focus on face
verification in this section. Similar methods can
be used for face identification too.

A typical face verification training and testing
pipeline is shown in Fig. 2. A training set of
aligned faces is used to train a deep network
for C−way classification. The layer before the
classification layer is used to extract a feature rep-
resentation for a face at test time. Representations
from two faces are compared using a similarity
metric.

DeepID [55] proposes to train a deep net-
work on a large number of classes to obtain
discriminative features which can be used for
face verification. It extracts features from 60 face
patches from different scales, different regions,
and RGB or gray channels. Features for each

patch and their flipped versions are extracted and
concatenated into a 19,200 dimension feature.
All neural networks are trained with softmax
loss over a training dataset containing 10,177
identities.

DeepFace [56] uses explicit 3D modeling,
starting from 2D keypoints, to apply a piecewise
affine transformation for aligning faces. The
aligned face is further warped to the image
plane of a generic 3D face shape. After the
alignment, DeepFace uses a nine-layer deep
network with 120 million parameters to learn
the face representation. The network is trained
using a dataset of four million images from over
4,000 identities. This network is trained with the
standard softmax cross-entropy loss.

FaceNet [54] uses a triplet loss to directly
optimize the embedding instead of using
the surrogate task of C−way classification.
The authors claim that this leads to greater
representational efficiency, and this feature
embedding can improve face verification and
clustering performance.

VGGFace [6] model uses a large dataset of over
2.6 million images from about 2,600 identities
to train a CNN with softmax loss. The features
obtained from this network are embedded using a
triplet loss similar to [57].

Deep CNN-Based Face Recognition, Fig. 2 A face ver-
ification training and testing pipeline. A dataset of aligned
faces is used to train a deep CNNwith a classification loss.

At test time, features are extracted from two faces, and
their similarity is computed to determine whether the two
faces are of the same person
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All-in-One Face [31] proposes a multi-task
learning approach for face detection, keypoint
detection, pose estimation, smile detection,
gender classification, age estimation, and face
recognition. The network contains several heads
which are responsible for learning different
functionalities. The idea is that each modality
will benefit from other modalities. The separate
heads are trained with the corresponding losses,
and gradients from all heads are accumulated
to train the trunk of the network. The face
recognition/feature learning branch uses a
standard softmax loss.

Fast and Accurate System [38] proposes a
better face detector (DPSSD) and uses an ensem-
ble of networks to extract features. The authors
argue that a good face detector leads to better
face verification performance by avoiding false
positives and missing faces. Each network in
the ensemble is a different architecture and is
trained with a combination of three large datasets:
UMDFaces [4], UMDFaces Videos [15], and
MS-Celeb-1M [5]. Crystal loss [44] is used to
train all networks. Such ensembles have also been
used for recognizing disguised faces [58] and for
clustering faces [59].

ArcFace [47] uses the Additive Angular Margin
Loss and the large-scale and clean MS1MV2
dataset to achieve state-of-the-art performance on
several face recognition and verification bench-
marks. The MS1MV2 dataset is a refined version
of the MS-Celebl-1M dataset and contains about
5.8M faces for 85,000 identities. ArcFace uses
the popular ResNet-100 network architecture.

Some other recent methods include [60–68].

Open Problems

Though immense progress has been made in
face recognition in the past few years, there are
still several unanswered questions. With the ever-
increasing size of training datasets, it is not clear
if there is a saturation point, i.e., if there is a
point at which additional data will not lead to
performance improvements. A related problem

is the use of unlabeled data. Semi-supervised
learning methods which use a little labeled data
along with large amounts of unlabeled data need
to be developed for face recognition.

Deep networks are still mostly trained with
aligned faces and need aligned faces during test-
ing. However, this cascade process introduces
an unnecessary source of error. Are there ways
which obviate the need for alignments? Can col-
lecting larger datasets help? Are there better ways
to align faces which do not require an additional
step? These questions are important and there are
no clear answers.

Another overlooked area is the presence of
biases in the datasets which leads to recognition
systems being biased. Most public datasets are
of celebrities. These images are taken by pro-
fessional photographers with good quality cam-
eras. Networks learn to be biased to such data.
Most datasets have been collected from a pre-
defined list of people. Many of these people are
Caucasian men. This introduces a gender and
racial bias in the networks. There have been
very few major attempts to remove such biases.
Merler et al. [69] recently released a diversity
dataset which is an important step toward this
problem. An interesting question is how do we
transfer knowledge from one kind of biased data
to another such that we end up with a network
which performs well for both categories.

These questions and more need to be answered
for even better face recognition systems in the
future and will give researchers something to
work on for the next few years.
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Synonyms

Deep generator networks

Related Concepts

�Deep Generative Models
� Inpainting

Definition

Deep generative models, or deep generator net-
works, refer to a family of deep networks that
take in an input tensor z and then output a

sample of certain patterns. In computer vision,
such patterns could be specific object categories,
such as cats, as shown in Fig. 1. The input tensor
z could be as simple as a randomly generated
vector. The deep generative model can be trained
with a set of images in an unsupervised way.
Two popular algorithmic formulations are the
generative adversarial networks (GANs) [9] and
the variational auto-encoder (VAE) [14].

Background

Generative models are a family of statistical mod-
els that model the joint distribution p(X,Y|�)

of an observable variable X and a target (or
hidden) variable Y, where both X and Y could
be multivariate and � represents the parameters
of the model. It could be used for classification
tasks if the target variable Y represents the class
labels. This is in contrast to discriminative mod-
els for classification, which directly models the
conditional distribution p(Y|X,�).

Some of the traditional and notable generative
models that have been widely adopted to
solve computer vision problems include
Gaussian mixture models (along with other
mixture models), Hidden Markov models [17],
Bayesian networks (BN) [16], Markov random
fields [2], Latent Dirichlet Allocation (LDA) [4],
Boltzmann machine [1] and its variants such as
restricted Boltzmann machine [11], and deep
belief networks [12], as well as energy-based
models (EBMs) [15]. Most of these traditional
generative models can all be unified under
probabilistic graphical models. Once a generative
model is formulated, learning and inference in
such a model are two fundamental problems to
be addressed.

Learning of these generative models is often
carried out by maximizing a data likelihood over
the parameters of the model. When the training
data is complete, i.e., both X and Y are observed
in each sample, such a maximization is often
quite straightforward. Nevertheless, a more inter-
esting problem is to learn the generative models
with incomplete data, where the target variable
is unknown in the training dataset. Under such a
setting, one is not able to directly maximize the
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G
Deep generator network

Input tensor Y

Output X

DeepGenerativeModels, Fig. 1 A deep generative model (a generator network) takes a tensor as an input and outputs
a sample following the distribution of certain patterns. The figure presents a generator network for cat images

joint data likelihood. Instead, we need to maxi-
mize the data likelihood L(X|�) of the observed
data. Such a problem of maximum likelihood
with incomplete data is often approached by the
seminal Expectation-Maximization (EM) algo-
rithm [6], where an E-step and an M-step are
iteratively conducted to maximize the incomplete
data likelihood.

The E-step, by its name, targets on obtain-
ing the expectation of data likelihood over the
distribution of the hidden or target variables. To
achieve this, we must first conduct an inference
step. That is to calculate the posterior probability
p(Y|X,�c) given the current parameter setting
�c. Then we may easily obtain an expectation

E(�|�c) =
∫

Y
p(X,Y|�)p(Y|X,�c)dY .

(1)

Then the M-step would solve an optimization
problem to maximize E(�|�c), i.e.,

�new
c = argmax

�
E(�|�c). (2)

These two steps would iterate until conver-
gence. This iteration represents a surrogate max-
imization process and guarantees that L(X|�)

would be monotonically non-decreasing. Since it
is upper bounded, the process is guaranteed to
converge. Ghahramani [8] derived a Bayesian
EM algorithm leveraging probabilistic variational
analysis.

Note that the inference of the posterior
probability p(Y|X,�c) would have an analytical

solution under limited cases, e.g., when the prior
distribution p(Y) and likelihood distribution
p(X|Y) are conjugate. Such conjugate priors are
common when the distributions are confined to
the conjugate-exponential family [8]. However,
for more general distributions, it is often
intractable to calculate the posterior in closed
form.

A common practice would be using Markov
chain Monte Carlo (MCMC) method, such as
the Gibbs sampling, to produce samples from
this distribution and then compute the integral in
Eq. 1 numerically. Hinton et al. [11] presented
a method, namely, contrastive divergence to use
one-step sampling to replace the full MCMC
sampling. It could significantly speed up the
learning process with a certain guarantee of con-
vergence.

The explosive development of deep learning
in the past 10 years has also led to new learning
paradigms that are able to more conveniently
learn generative models through standard back-
propagation in deep neural networks. Two fami-
lies of deep generative models are the generative
adversarial networks (GANs) [9] and the varia-
tional auto-encoder (VAE) [14]. They approached
to learning of the generative models in different
ways.

GANs add another convolutional neural net-
work (CNN) as a discriminator, which attempts to
conduct a binary classification task so as to best
differentiate the images produced by the genera-
tor network from the real images in training. In
the meantime, the generator network is trained in
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such a way to best fool the discriminator network.
This forms a two-player game in the training
stage. And asymptotically at the equilibrium, the
distribution of images produced from the genera-
tor network would match the distribution of real
images in training.

The mathematical foundation of VAEs is
rooted in theory of variational inference and
learning in probabilistic graphical models. This
naturally pairs an encoder network with the
generator network (a.k.a. the decoder network).
The encoder maps an input image to a latent
space and strives for following the posterior
distribution in the training phase. The latent
space by itself is constrained by a zero-mean
Gaussian prior. The generator takes a sample
from the latent space and maps it to an image.

This setting permits us to formulate the joint
learning of the encoder and generator (decoder)
as the maximization of a variational lower
bound of the incomplete data likelihood. The
whole optimization can hence be conducted
via back-propagation. At convergence, the
encoder maps to the inference process, while
the generator again would function as a sampler
which produces image samples that follow the
distribution of the images in training.

Theory

Here, we present the core mathematical formula-
tions of the generative adversarial networks and
variational auto-encoders. These two core fam-
ilies of deep generative models have had many
different variants, but the core theories remain the
same.

Generative adversarial networks As shown in
Fig. 2, GANs pair a generator network with a dis-
criminative network and formalize the learning as
a two-player adversarial game. Mathematically, if
we denote the generator network as G(·), the dis-
criminative network as D(·), and a sample from
the training images to be x, then the following
min-max problem is solved in GAN, i.e.,

min
D

max
G

[Ex∼pdata(x){logD(x)}

+ Ez∼pz(z){log(1 − D(G(z)))}]. (3)

This is assuming that the discriminative net-
work outputs a binary value with 1 indicating
the input image is a real image and 0 being a
generated image. The two steps of minimization
and maximization are conducted alternatively by
back-propagation through the two networks. The
idea of adversarial training can be traced back to
Tu’s work [19] in training generative models with
a discriminative method. But a more direct inspi-
ration of the formulation of GANs is believed to
be the noise contrastive estimator proposed by
Gutmann and Hyvarinen [10].

Variational auto-encoder As shown in Fig. 3,
VAEs use the generator G to model the condi-
tional likelihood probability pθ(x|z), where θ is
the parameter of the generator deep network. It
is paired with an encoder network E to model the
conditional posterior probability qφ(z|x), where
φ is the parameter of the encoder network. The
encoder network outputs a mean μ(x) and a
variance σ 2(x) of a Gaussian distribution given
an input x, from which the latent vector z is
sampled. We further impose a zero-mean and unit
variance multivariate Gaussian prior on the latent
vector z, i.e., z ∼ N(0, I).

The learning paradigm of VAEs is established
from the following equations [7], i.e.,

logpθ(x) − KL[qφ(z|x)||p(z|x)]
= Ez∼qφ(z|x)[logpθ(x|z)]

− KL[qφ(z|x)||p(z)], (4)

where p(z|x) is the true posterior of z given
x and KL[·||·] is the KL divergence between
two distributions. The left-hand side of Eq. 4 is
what we want to maximize, as the first term on
the left-hand side represents the data likelihood
that needs to be maximized and the second term
on the left side would be driven to zero as KL
divergence is not less than zero. This would
also naturally make qφ(z|x) to the true posterior
p(z|x). So the optimal solution of maximizing
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Deep Generative Models, Fig. 2 Generative adversar-
ial networks: the generator network outputs an image
given a random input vector and attempts to fool the dis-

criminative network, which tries to correctly differentiate
the generated images and real images

the left-hand side is exactly the maximum data
likelihood solution.

However, directly optimizing the left-hand
side of Eq. 4 is not computable as the true
posterior p(z|x) is unknown. But with Eq. 4,
we can equivalently maximize the right hand side
of Eq. 4. This leads to the following optimization
problem, i.e.,

max
θ,φ

Ez∼qφ(z|x)[logpθ(x|z)]−KL[qφ(z|x)||p(z)].
(5)

Both terms in Eq. 5 could be computed and
optimized by stochastic gradient descent. Since
pθ and qφ both are represented as a deep network,
this further leads to, after using a reparameter-
ization trick, an end-to-end stochastic gradient
descent algorithm through the generator network
G to the encoder network E.

Discussions GANs and VAEs both have their
cons and pros. In general, GANs tend to gener-
ate sharper images but may encounter the mode
collapse issue, where the generator got trapped
in one mode of the data distribution and hence
cannot generate diverse examples. In contrast,
VAEs in general may produce diverse images,
but the generated images tend to be more blurry.
Fortunately, these two optimization paradigms
could be combined to form the VAE-GAN family
of generative models, which leverage both an

encoder network and a discriminative network to
learn the generator network, so as to enjoy the
benefits of both.

Applications

Deep generative models have been applied to
solve many computer vision problems in real-
world applications, due to their high capacity
of fitting any data distributions and conveniently
sample from the modeled distributions, ranging
from image synthesis, image inpainting, image
enhancement, image stylization, domain adapta-
tion, semi-supervised recognition, etc. We selec-
tively discuss some of them.

Due to its superb capability of sampling
unseen image samples from the modeled image
distributions, deep generative models have been
widely applied for image synthesis, such as
generating realistic face images [3, 13]. Bao
et al. [3] proposed a hybrid structure exploiting
ideas from both VAEs and GANs for generating
faces while preserving their identities, even when
those identities are not present in the training
phase.

The central idea is to build two branches
of encoders to obtain disentangled identity and
attribute vectors from a face image. Figure 4
presents some open-set identity preserving face
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Deep Generative Models, Fig. 3 Variational auto-
encoder: VAEs pair the generator (decoder) network with
an encoder network. Through a reparameterization, it
allows end-to-end stochastic gradient descent to jointly

train the encoder and generator network. At convergence,
the joint log data likelihood is maximized and qφ(z|x) will
be approaching to the true posterior p(z|x)

Deep GenerativeModels, Fig. 4 Open-set identity pre-
serving face synthesis results using the identity of the
faces in (a) and attributes from the randomly drawn faces
in (b), to generate the face images in (c). Neither the face

images in (a) nor the face images in (b) appeared in the
training dataset. Result images are by courtesy of Bao
et al. [3] and from Figure 6 in their paper

synthesis results. One culmination of high-
resolution and high-fidelity face generation
results are produced from the award-winning
StyleGAN [13], invented by researchers at
NVIDIA Research. Some sample generated
images from StyleGAN are presented in Fig. 5.
Such vivid synthesized face images have caused
people to worry about faked images in news,
dubbed the name “Deep Fake.”

On the image enhancement side, deep
generative models, especially GANs, have been
adopted to effectively enhance astronomical
images [18]. It has successfully helped modeling
a lot of astronomical physical phenomena,
including dark matters, gravitational lensing,
and high-energy jet formation. It has also been

successfully applied to accelerate simulation
and improve simulation fidelity in particle
physics experiments. (https://en.wikipedia.org/
wiki/Generative_adversarial_network)

Other real-world applications include but are
not limited to

– fashion, art, and design, e.g., by creating pho-
tos of virtual models;

– video games, e.g., by efficiently synthesizing
high-resolution textures;

– 3D reconstruction, e.g., by regressing depth
maps through code slam [5], trained using
VAEs;

– domain matching or transfer, e.g., using Cycle
GAN [20].

https://en.wikipedia.org/wiki/Generative_adversarial_network
https://en.wikipedia.org/wiki/Generative_adversarial_network
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Deep GenerativeModels, Fig. 5 Sample generated images from StyleGAN [13]. (Images are by courtesy from their
GitHub site (https://github.com/NVlabs/stylegan) under a creative commons license)

Open Problems

Deep generative models have shown superb
results in fitting image distributions and sampling
from the modeled image distributions. It has been
known that the sampled images from the modeled
image distributions remain to be an interpolation
of the training images, no matter how they differ
from the training images. Such an interpolation
is conducted in a highly nonlinear space with a
compositional process. How we may build upon
the success of deep generative models and endow
future models the capability of extrapolation
beyond the training data remains to be an open
problem for us to explore.
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Synonyms

Machine learning for 3D vision

Related Concepts

�Deep CNN-Based Face Recognition
�Deep Learning Based 3D Vision
�Multiview Stereo
� Stereo Matching

Definition

The field of 3D vision covers a large range of
techniques developed to estimate 3D informa-
tion from one or multiple images, such as the
absolute or relative pose of a camera and the
3D structure of the scene. For instance, among
3D vision problems, visual odometry and visual
localization consist in estimating the pose of a
camera in the environment, while stereo matching
and multi-view stereo aim to reconstruct the 3D
structure of the scene from different viewpoints.
Conventional techniques developed to solve 3D
vision tasks traditionally rely on low-level image
features, such as sparse keypoints or dense pho-
tometric matching. These strategies are efficient
under favorable conditions but tend to be sen-
sitive to poorly textured scenes and usually do
not encapsulate contextual and semantic infor-
mation. Conversely, deep learning techniques are
known for their ability to extract high-level fea-
tures carrying relevant and useful information.
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Deep learning based 3D vision attempts to take
advantage of deep neural network architectures
to improve the robustness and reliability of 3D
vision tasks under challenging contexts.

Deep Visual Odometry/SLAM

Visual odometry (VO) consists in the joint esti-
mation of the camera motion and the local struc-
ture of the scene using one or multiple cameras.
Taking advantage of deep learning in the con-
text of VO is particularly relevant to improve
its robustness and applicability. Indeed, conven-
tional techniques are still limited in their ability
to reconstruct 3D at metric scale (in the monoc-
ular case) and remain particularly inefficient in
texture-less environments where semantic cues
can play a crucial role.

The first techniques applying deep learning
to the relative pose estimation problem focus on
the motion and depth estimation between two
images. It is, for instance, the case of DeMoN [1]
which iteratively refines the optical flow and
the motion estimation of the sensor through a
succession of encoder-decoder networks. This
work led to the development of multiple analo-
gous approaches dedicated to solve the motion
and depth in an end-to-end manner. If these
techniques are efficient, they are not specifically
designed for visual odometry and tend to accu-
mulate an important drift when a large sequence
of images is processed.

More ad hoc solutions have been designed to
cope with the drift issues by imposing temporal
constraints in the motion estimation process.
The first attempt to incorporate such an a priori
is DeepVO [2] which proposes to employ
a Recurrent Convolutional Neural Network
(RCNN) to learn the motion dynamics of the
sensor and to impose sequential information.
The proposed technique is straightforward
and can be described in two steps: features
extraction and Recurrent Neural Network 6DOF
pose estimation. For the features extraction,
two successive RGB images are concatenated
and processed through a Fully Convolutional
Network. The extracted features are pushed into

an LSTM network for every new image in order
to output the current pose of the camera. For
training, the proposed cost function is the Mean
Squared Error between the ground-truth pose and
the predicted translation and orientation vectors.
Despite its simplicity, this technique is functional
and resolves the scale problem inherent to
monocular odometry methods. However, the
generalization of such a technique to multiple
datasets has not yet been demonstrated. Finally,
this technique only permits to estimate the
motion of the camera while ignoring the depth
estimation which is often explicitly solved in
conventional VO/SLAM techniques. A follow-up
of DeepVO, called UnDeepVO [3] proposes to
solve together the motion and the depth in an
unsupervised manner. Unsupervised approaches
in the context of VO are very desirable since
accurately labeled motion and depth data still
requires expensive equipment, and, as a result,
only a few are publicly available. To train
UnDeepVO, a set a stereo images is sufficient
since the network learns the spatial and temporal
consistency by enforcing the photometric
and pose constraints between two successive
calibrated stereo views (via image warping and
inter-poses relationships). The advantage of this
approach is its ability to implicitly learn the scale
information from the stereo images training set.
As a result, the proposed technique demonstrates
competitive results against traditional monocular
algorithms. However, UnDeepVO only considers
two successive monocular views and does not
incorporate long-term temporal constraints;
therefore, this strategy is conceptually closer
to binocular depth and pose estimation
techniques [1]. Moreover, the resulting depth
map does not capture small details, and this
technique has exclusively proved to be effective
in the context of vehicular navigation which
questioned its transferability to other scenarios.

While UnDeepVO requires a set of calibrated
stereo images to be trained, SfMLearner [4] only
needs monocular video sequences to learn visual
odometry. To achieve this complex task, the pho-
tometric error between a target image and the
warped surrounding views is utilized to train
the network to predict the depth of the target
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image as well as the poses between the target and
the source images. This approach is particularly
flexible since it can be trained from any arbitrary
video sequence; however, it cannot recover the
scale of the reconstruction since it fully relies on
monocular data.

Despite promising results, the previously
presented techniques remain practically limited
by their data dependence, lack of transferability,
speed, and accuracy. Recently, Zhou et al. [5]
proposed a novel architecture to resolve some of
the aforementioned limitations. Their strategy,
entitled DeepTAM (for Deep Tracking and
Mapping), is largely inspired by conventional
direct SLAM approaches [6] where the tracking
and mapping are addressed separately. The
camera tracking process consists in an end-to-
end network predicting both the optical flow
(exclusively used to guide the training) and the
pose of the camera with respect to the closest
keyframe. On the other hand, the mapping is
performed by a second end-to-end network
inspired by plane-sweeping techniques [7] where
the 3D information is accumulated as a cost
volume and refined for every new keyframe.
This tracking and mapping strategy happens
to be particularly efficient in confined and
low textured environments where conventional
approaches tend to fail. Additionally, this
method generalized well to various indoor
datasets as a positive sign of transferability.
As a limitation, DeepTAM requires smooth
motions with sufficient overlapping between
successive frames. Moreover, the generalization
of this approach for large-scale mapping cannot
be readily achieved due to the rigidity of the
mapping process.

Aside from end-to-end approaches, multiple
works propose to integrate priors computed from
deep learning into the traditional SLAM pipeline.
A representative work successfully coupling
conventional SLAM with deep learning data
is CNN-SLAM [8], where a conventional dense
SLAM technique is enhanced using single image
depth estimation through a Bayesian filtering
strategy. The depth computed from the CNN
network allows to solve the following limitations
inherent to conventional techniques: pure

rotational cases (the depth cannot be computed
without baseline), low textured environment, and
metric scale estimation. Similarly, [9] proposes a
novel unsupervised network for monocular depth
estimation based on the computation of a virtual
disparity map trained with a set of stereo images.
The resulting single image depth prediction
is used in a standard dense visual odometry
framework in order to resolve the problem of
metric scale estimation. The reported results
demonstrate high performance with low-scale
drift, making this approach competitive against
stereo visual SLAM techniques.

Deep Visual Localization

Visual localization and absolute camera pose esti-
mation refers to as the localization of a camera
in a known scene (often modeled as a 3D map
or a set of pictures) given an input image. It
is an essential task to solve a large range of
problems including, SLAM, augmented reality,
and autonomous car navigation to cite just a few.

Conventional absolute camera pose estimation
approaches usually operate in two distinct phases;
first, a coarse appearance-based visual localiza-
tion [10] is utilized in order to reduce the search
range to a limited set of images. From this initial
assumption, a robust 2D-3D point-based match-
ing strategy is employed to estimate the position
and orientation of the camera in the 3D map
referential. In practice, this absolute pose esti-
mation is achieved via a RANSAC perspective-
n-point algorithm. Over the years, this two-stage
strategy proved to be computationally efficient
and accurate. However, the limitation of con-
ventional approaches lies in the matching stage
between the scene and the target image which
remains complex due to a bundle of factors,
including occlusions, different illumination con-
ditions, appearance changes (e.g., weather con-
ditions, day and night, etc.), repetitive structures,
and strong viewpoint differences.

Deep learning techniques represent a good
alternative to cope with the drawbacks of hand-
crafted approaches. The existing solutions taking
advantage of CNN can be categorized under two
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distinct groups: the two-stage techniques (which
essentially follows the philosophy of the tradi-
tional approaches) and the direct pose regres-
sion. The approaches which fall within this first
category attempt to improve the image retrieval
stage (also known as place recognition) to be
more robust to the aforementioned challenges.
Typically, these techniques focus on extracting a
compact and discriminant image representation
as a feature vector. Therefore, a queried image
can be retrieved in a large-scale dataset of pic-
tures by comparing their feature vectors. Usually,
this retrieval stage is speed up via various strate-
gies such as dimension reduction [10], effec-
tive nearest-neighbor search, or other machine
learning-based solutions [11].

One representative example of deep place
localization technique is NetVLAD [10] where
an end-to-end network inspired by the original
VLAD descriptor aggregation is proposed. To
provide enough data to train the network, the
authors propose to take advantage of the Google
Street View Time Machine to gather pictures
of similar places under different viewpoints,
occlusions, and illuminations. The drawback of
such data mining technique is the large number
of outliers contained in the dataset; therefore
an appropriate weakly supervised loss is used
to robustly train the network. This large-scale
picture retrieval strategy demonstrates high
reliability and robustness but does not allow
to estimate the 3D pose of the camera by itself.
For this purpose, an additional CNN-based [12]
or traditional registration technique is required.

The recent survey paper proposed by Piasco et
al. [11] contains additional information on these
techniques and their variations.

To solve the 3D camera localization problem
in a single step, multiple solutions have been
developed. On this matter, one of the pioneering
work is PoseNet [12], which proposes a
straightforward but effective strategy to regress
the 6DOF camera pose using an end-to-end
convolutional network. For training, PoseNet
takes a set of images of a target scene labeled
with their respective rotation and translation (a
standard off-the-shelf network is sufficient to
achieve this task). After training, the 3D pose of

a queried image can be predicted through a single
feed-forward. One benefit of such a technique is
the possibility to automatically generate labeled
data through standard Structure-from-Motion
techniques. To perform the supervised training,
the objective function to be minimized is the
Euclidean distance between the ground-truth
and the predicted translation vectors, as well as
a quaternion distance for the orientation. This
single stage CNN-based implementation has
multiple advantages; PoseNet achieves real-time
performances (a feed-forward typically requires
less than 10ms) and is robust to challenging
scenarios (i.e., motion blur, occlusion). Despite
the numerous advantages offered by this
technique, PoseNet does not ensure an accurate
pose estimation when put in comparison against
classical absolute camera pose estimation
methods. Finally, direct CNN-based absolute
pose regression lacks versatility since updating
the map requires a full retraining of the network.
For a comprehensive description of PoseNet,
its limitations and its variants, we recommend
reading [11, 13].

The current status of cameras’ pose estima-
tion using deep learning architectures is miti-
gated. While visual localization greatly benefits
from deep neural networks – thanks to its abil-
ity to capture features invariant to illumination
and viewpoint – direct absolute pose localization
techniques are not yet able to reach the level of
accuracy provided by traditional methods [13].
New research directions inspired by conventional
structure-based approaches [14] emerge as poten-
tial alternatives to direct pose regression.

Deep StereoMatching

Dense stereo matching is a central component
for many vision-based applications such as
obstacle detection, metric scale navigation,
and large-scale 3D reconstruction. Traditional
approaches solve the dense stereo matching
as a multi-stage optimization problem based
on handcrafted features. The large quantity of
calibrated stereo dataset has strongly contributed
to the popularization of deep learning based
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stereo matching which rapidly demonstrated
their superiority in extracting and comparing
discriminant features.

The first approach employing deep learn-
ing [15] is a patch-based matching technique
between the left and right image via a standard
epipolar line search strategy. To perform this task,
a Siamese structure is used to extract features
from the left and right candidate patches and
compute their matching score as the inner product
of the two embeddings. Despite its architectural
simplicity, this approach outperforms most exist-
ing conventional stereo-matching techniques;
however, its practicability remains limited
by its high computational cost. This method
paved the way toward faster and more accurate
techniques [16]; however, a final refinement from
traditional approaches remains needed to reduce
the noise of the final depth estimation.

Despite the improvement of patch-based
matching, these techniques remain relatively
inelegant and inefficient (slow and require
extra refinement), to cope with these problems,
DispNet [17] proposes a different approach
where the disparity is directly estimated
through an encoder-decoder network with
skip connections. This network inputs the
concatenated stereo image pair and is trained in a
supervised manner using a large-scale annotated
dataset. This end-to-end solution combines
multiple advantages, such as a significant speed
improvement and a competitive accuracy against
patch-based matching approaches. The idea
behind DispNet has been further improved
in [18] by cascading two encoder-decoder
structures. This network consists of two main
parts: DispFullNet (a DispNet which outputs
high-resolution disparity map with extra up-
convolution modules to preserve fine details)
followed by DispResNet which refines the output
of the first disparity estimation by minimizing
its residual error at multiple scales. This two-
stage network improves the results of the initial
DispNet even further.

More recently, a new generation of approaches
inspired by traditional cost-volume aggregation
strategies has shown high performances. The first
attempt in this direction is GC-Net [19] which

proposes to build a cost volume by concatenating
deep features extracted from both stereo images.
This cost volume is processed with a multi-
scale 3D encoder-decoder type to produce a
regularized cost-volume. The final disparity map
is computed from this volume using a differential
soft argmin function. A plethora of cost-volume-
based techniques have since been developed;
these approaches are currently leading most
stereo benchmarks.

DeepMulti-view Stereo

The previous 3D vision approaches introduced
aim to estimate either the relative (visual
odometery) or absolute pose (visual localization)
of the cameras. On the other hand, Multi-
View Stereo (MVS) consists in the pixel-
wise 3D reconstruction of the scene given a
set of unstructured images along with their
respective intrinsic and extrinsic parameters.
MVS algorithms output various types of scene
representations such as: point cloud, depth map,
or mesh [20]. In this short introduction, we
will particularly focus our attention on depth
maps’ estimation from multiple views since it
is the most commonly adapted strategy using
deep learning networks. To some extent, multi-
view stereo can be seen as a generalization
of stereo disparity estimation to a larger set
of images. If these two problems boil down
to the dense correspondence estimation across
images, MVS does not impose any restrictions
in terms of viewpoints nor in the size of the
input image set. Assuming that the projections of
an arbitrary 3D point in the calibrated views
share a common photometric profile, MVS
can be described as a constrained optimization
problem where the depth is estimated such
that the photometric consistency is maximized
across images. This photometric consistency is
traditionally computed via patch-based similarity
measures (such as Sum of Squared Differences,
Normalized Cross Correlation, or Census)
between images using plane-sweeping, epipolar
scanning, or local patches propagation [20].
Usually, the resulting photo-consistency can
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be modeled as a cost-volume or a set of depth
maps. Given this photo-consistency data, the
final output (e.g., 3D point cloud or a depth
map) is obtained via a succession of filtering
stages to reduce the noisy measurements and
to enforce the visibility constraints as well as
the spatial consistency of the 3D structure. The
interested reader can refer to [20] for a deeper
understanding of conventional MVS techniques.

Traditional approaches demonstrate par-
ticularly satisfying results under favorable
conditions, such as well-textured environments,
Lambertian surfaces, and large overlap between
views. However, they usually do not encapsulate
useful cues like semantic, shadow, or lighting
information. If some attempts to incorporate
such information in the traditional MVS pipeline
demonstrated improved performance, their
integration remains complex. Conversely, deep
learning strategies are known for their abilities
to automatically capture such features during
the training process. This versatility gives an
indisputable advantage to perform various tasks
including patch matching [15] or single image
depth estimation [21].

As an illustration, the early approaches
for CNN-based image matching have been
initially developed to solve the dense disparity
estimation problem from a pair of rectified stereo
images [15]. Alongside the development of
calibrated stereo disparity estimation, various
approaches designed for unconstrained two-
view depth estimation in an end-to-end manner
have been explored. A representative example
is DeMoN [1] which solves the pose and
structure problem jointly. To this end, the
proposed architecture alternatively refines the
optical flow and the depth/pose couple via a
succession of encoder-decoder networks. If these
techniques are generic (solving together the
structure and the motion) and computationally
effective, they are limited to only two views
while MVS – by definition – can process
an arbitrary number of images. In the past
years, numerous works have been proposed to
solve this particular case. Specifically, recent
techniques inspired by the plane-sweeping
strategy have shown competitive results. As

a first approach, DeepMVS [22] proposes to
emulate the plane-sweeping technique through
deep neural networks. Considering a reference
image, a plane swept patch volume is pre-
computed for each neighbor views of the scene.
Each plane swept patch volume is processed
individually by a neural network to compute
their initial cost-volume through a deep patch
matching technique. Thereafter, these initial
cost volumes are refined individually through an
encoder-decoder structure performing an intra-
volume feature aggregation by incorporating
the reference image VGG features during the
decoding stage. This process gives a set of cost
volumes which can be combined to perform the
final depth estimation. In order to accumulate an
arbitrary number of cost volumes, the authors
propose to use an element-wise max pooling
function to compute the output depth map. While
DeepMVS demonstrates effective results, the
approach is not strictly speaking an end-to-
end solution since it requires a final refinement
stage of the depth map via a conventional
Conditional Random Field technique. To fill
this gap, DPSNet [7] and MVSNet [23] propose
to mimic closely the standard MVS pipeline
(Cost volume computation, cost aggregation,
and depth estimation) through an end-to-end
trainable network. First, a deep features plane
sweep volume for each pair of reference/neighbor
images is computed. The resulting volumes
are thereafter processed individually via 3D
convolutions to provide a set of 3D cost volumes
which can be fused together by simple averaging
(allowing to incorporate from 2 to n images).
Given the reference image features, the final cost
volume is refined using a deep cost aggregation
to regularize the noisy estimations. Finally, the
depth map is computed using a softmax operation
and a weighted sum of each predicted label to
emulate the Winner-Takes-All methodology.
These approaches have demonstrated faster and
more accurate results than previous traditional
and deep learning based approaches. They also
generalized well to the various number of images
and are even competitive against techniques
specifically designed to handle two images such
as [1, 15].
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Overall, the recent research in deep learning
based MVS led to very efficient methods which
are drastically outperforming conventional tech-
niques. However, further research is needed to
improve their scalability to a large set of images.

Single Image Depth Estimation

While traditional techniques usually estimate
depth information from a set of multiple images
(i.e., Visual Odometry, Structure-from-Motion,
Multi-view Stereo), deep learning provides
the ability to estimate this information from a
single viewpoint. Due to the lack of geometric
information (camera parameters, prior on the
structure of the scene, etc.), this problem is
inherently ill-posed; however, deep neural
network-based methods have the ability to
automatically learn a certain number of useful
cues. Among these cues, we can refer to the
shading, texture gradient, linear perspective, and
the relative size between objects in the image.

The first approach dedicated to solve this par-
ticular problem using deep learning is [21], which
proposes a coarse-to-fine estimation of the depth
map. The proposed network is composed of two
main parts. Its first component is a coarse depth
prediction relying on an encoder and a fully
connected network to produce a rough and low-
resolution estimate of the depth. This initial esti-
mation is refined through a fully convolutional
network estimating a larger and more detailed
depth map. To train this model in a supervised
manner, a large-scale RGB-D dataset is utilized
to minimize the pixel-wise depth (scale-invariant)
mean squared error between the prediction and
the ground-truth. If this naive approach provides
a rather accurate approximation of the depth from
a single image, many cues are not explicitly
included during the estimation process.

To improve the reliability and scalability of
the technique, Chen et al. [24] propose to guide
the depth map estimation with human annotated
relative depth. To prepare the dataset, human
annotators are asked to label the relative depth
between two random points for each image in
the dataset. From this data, the single image

depth network is trained such that it respects the
ordinal relations between pairs of points. This
technique increases significantly the versatility of
the network to generalize to many scenarios such
as indoor and outdoor scenes.

Despite the flexibility provided by deep
ordinal networks [24] which allow learning
single image depth without RGB-D datasets,
this estimation remains very data dependent
and require large-scale and accurately labeled
datasets to ensure the transferability of these tech-
niques. MegaDepth [25] proposes a novel dataset
from multi-view Internet photo collections,
where the 3D reconstruction from a standard
structure-from-motion approach is refined and
enhanced with semantic segmentation. Training
existing networks with MegaDepth leads to
significant improvements in term of accuracy
and generalization.

To reduce the data dependency, other methods
propose fully unsupervised single image depth
estimation. For instance, in [4], the authors
propose to learn depth prediction from video
sequences by enforcing photo-consistency
constraints with surrounding views.

Open Problems

Over the past years, the 3D vision field has
significantly benefited from deep learning tech-
niques. In particular, the tasks relying on dense
features matching such as stereo disparity esti-
mation or multi-view stereo have shown signif-
icant improvements in terms of robustness and
accuracy when compared with handcrafted tech-
niques. Additionally, these approaches generalize
well to various environments, illuminations, and
camera’s configurations, making their deploy-
ment to practical/industrial applications realistic.

Other tasks, such as visual localization have
also gained significant efficiency in performing
large scale image retrieval under strong appear-
ance changes. Visual localization is inherently
more data dependent than image matching; there-
fore very large datasets are needed to train a
neural network to extract discriminant and robust
features. To alleviate these problems, multiple
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solutions including online data mining and semi-
supervised learning have been proposed. Thanks
to this progress, recent deep learning techniques
perform significantly better than their conven-
tional counterparts.

If deep learning have undeniably improved
the accuracy of traditional techniques for the
aforementioned tasks, a performance gap remains
for the problems related to camera pose esti-
mation (absolute or relative). Indeed, for these
particular cases, deep learning tends to be less
efficient than conventional approaches. This can
be understood by the limited quantity of labeled
data and the complexity of the task for deep learn-
ing architectures. This phenomenon has recently
been highlighted in [13] which demonstrates
that the mechanism behind the absolute camera
pose estimation using deep learning is actually
closer to visual localization than continuous pose
estimation.

Concerning the visual odometry problem
using deep learning, most existing approaches
have focused on successive images pose
estimation without explicitly enforcing temporal
or spatial consistency between a larger number
of views. Therefore, the drift reported by deep
learning techniques is usually higher than
conventional SLAM approaches. Moreover, very
few works propose a clear demonstration of their
transferability. Therefore, these approaches lack
of maturity and further research is needed before
a potential popularization of these methods for
practical applications.
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Synonyms

Deep image stylization; Deep visual stylization;
Neural style transfer

Related Concepts

�Texture Synthesis
�Bidirectional Texture Function and 3D Texture

Definition

Deep style transfer is an optimization technique,
which is characterized by its use of deep neural
networks (deep learning), used to manipulate dig-
ital images, or videos, to adopt the appearance or
visual style of another image. As shown in Fig. 1,
given a content image I , a style reference image
S (such as an artwork by a famous painter), the
output stylized image O will blend texture details
from S and the local structure of I , to look like
the content image, but “painted” in the style of
the style image S”.

Background

Style transfer is an example of image stylization,
a problem studied for over two decades within the
field of non-photorealistic rendering (NPR) [1,2],
which often aims to make an image appear to be
created by artists. These traditional NPR algo-
rithms are in most cases designed for a certain
type of styles (e.g., water colors, or brush strokes,
or stipples) and may fail to generate arbitrary
styles.

There exists an alternative path toward han-
dling the task of style transfer, via generalization
of texture synthesis algorithms – a representative
work called “image analogy” [3], which learns
the transformation between a training pair of
images, a photo and an artwork depicting that
photo, and reproduces a new image through tex-
ture synthesis. It is generalized to handle different
kinds of styles. The drawback of learning image
stylization based on low-level features is that it
is still limited to compose a complex interplay
between the content and style of an image as well
as human beings. Thus far there is no artificial
system with similar capabilities.
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content image style image stylized image

Deep Style Transfer, Fig. 1 Style transfer is to migrate the style/texture from the right style image to the left content
image

Recently, visual perception such as object and
face recognition with near-human performance
was demonstrated by deep learning. As the pio-
neer work of deep style transfer, an artificial
system [4] based on a deep neural network is
proposed to create artistic images of high percep-
tual quality. It is able to produce arbitrary styles
in general, beyond the capability of traditional
texture synthesis, or NPR algorithms. This sys-
tem [4] uses neural representations to decompose
content and style from images and recombine
them into a new image by using an optimization
algorithm. As the objective of optimization, the
stylized image is expected to have similar high-
level feature responses (from the late convolution
layer) as the content image while being as similar
as the style image in correlation matrices (Gram
matrices) of feature responses (from early to
middle layers).

However, this method [4] is unable to yield
plausible results for photorealistic styles, as men-
tioned in [5]. The key reason is that Gram
matrices only measure global statistics of textures
(or style patterns) and perform poorly in con-
straining their spatial layout. In other words, they
fail to establish spatial correspondences between
the content image and the style image explicitly.
Thus, it is still challenging to make such a styliza-
tion, with an accurate transfer in local semantic
regions, such as mapping style face to real face,
as shown in Fig. 3.

Inspired by texture synthesis approaches, Li
et al. [5] replace pixel-wise Gram matrices with
patch-wise Markov Random Field models. For
each target feature patch, their method will match
it to the best matching style patch. Another rep-
resentative work is “deep image analogy” [6],

which transfers visual attributes (such as color,
lighting, texture, and style) across semantically
related images. It adapts the notion of “image
analogy” [3] to a deep feature space for finding
semantically meaningful dense correspondences
between two input images. This method is widely
applicable for a variety of transfer tasks such as
content-specific stylization, style to photo, and
style to style. At some time, if an object is found
in one image but not the other, it is hard to find
proper matching between image pair [5, 6]. To
address this issue, a hybrid approach proposed
in [7] unifies global methods (e.g., [4]) and local
methods (e.g., [5, 6]) into one framework. For
regions that can find correct matching, it allows
the local semantic-level transfer. Otherwise, it
will degenerate to global style transfer.

These works [4–6] have shown that high-
quality images can be generated by a time-
consuming optimization procedure, which
imposes a big limitation in real applications.
To address this issue, more and more methods
start to directly learn a feed-forward network to
approximate the above optimization procedure
and make the runtime more efficient. According
to the numbers of styles generated by the
network, these fast solutions can be categorized
as Per-Style-Per-Modelmethods,Multi-style-Per-
Model methods, and Arbitrary-Style-Per-Model
methods.

Per-Style-Per-Model methods train a feed-
forward network for one specific style. During
the training, numerous content images are used to
train the network which shares the same objective
function to [4]. There are two representative
works (i.e., [8, 9]), and their differences are
mainly network architectures: auto-encoder with
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a series of residual blocks used in [8] and multi-
scale pyramid network used in [9]. Besides,
Li et al. [10] consider a Markovian generative
adversarial network to approximate another
optimization-based method [5].

Multiple-Style-Per-Model methods [11–13]
allow multiple styles being learnt in a single net-
work. It shows more advantages over Per-Style-
Per-Model methods, such as reducing model
size greatly in producing various stylization
results, supporting fast incremental training
of new styles, fusing different style effects
together naturally. There are two representative
works [11, 12]. Dumoulin et al. [11] find
that the scaling and shifting parameters in the
instance normalization layer [14] can respond to
a different style. Based on the observation, they
only learn scaling and shifting parameters of the
instance normalization layer for each style while
keeping other layers unchanged. “Stylebank”
proposed by [12] explicitly represents one style
with one set of filter banks. For each style, the
network shares the same encoder and decoder
parts but learns a set of different convolutional
kernels in the intermediate layer between the
encoder and the decoder. An interesting finding
is that the learnt filter banks might capture the
representative textons of the style images.

Arbitrary-Style-Per-Model methods [15–17]
aim to transfer arbitrary visual styles to content
images using a single network. Either Per-
Style-Per-Model or Multiple-Style-Per-Model
is mainly limited by inability of generalizing
to unseen styles. In contrast, Arbitrary-Style-
Per-Model tackles these limitations without the
requirement of training on pre-defined styles.
The key idea is that a series of feature transforms
(e.g., scaling and shifting [16], or whitening
and coloring [17]) are embedded in an image
reconstruction network. These transforms reflect
a direct matching of feature covariance of the
content image to a given style image, which
shares similar spirits with the optimization
of Gram matrix based cost in neural style
transfer [4]. A more straightforward way is
that each content feature patch is replaced by
the most similar style feature patch [15] in the
embedding space, which shares similar spirits

with “deep image analogy” [6]. In the end, a
new decoder will be trained with a large number
of style images to decode the transformed or
recomposing content features.

The extension of deep style transfer from
image to video, even to stereoscopic image
and video, is very appealing. Directly applying
image-based algorithms to each frame/view
independently will produce very flickering
results. Ruder et al. [18] address the flickering
problem in the optimization-based method
by using optical flow to constrain both the
initialization and loss function during the
stylization of next frame. It produces temporally
coherent stylization results but is a very time-
consuming optimization procedure. To speed up,
Chen et al. [19] design an unfolded recurrent
neural network. The underlying motivation
is that the previous stylization result should
be propagated to the next frame, if motion
estimation is reliable; otherwise, the current
frame should adopt new stylization result. The
final result will be a composition of propagated
result and new result based on a mask which
measures the confidence of motion estimation.
Chen et al. resort to feature-level propagation and
composition to make the results robust to errors
from flow estimation and image composition. A
similar idea is also utilized to stereoscopic image
and video style transfer [20].

Theory

Optimization-Based Methods
The pioneer work of deep style transfer [4] mod-
eled the stylization procedure as feature decom-
position and reconstruction. Given an image I ,
modern CNNs decompose it into hierarchical fea-
ture representations {F 1(I ), . . . , F n(I )}. Gatys
et al. observe that the reconstruction from feature
responses in higher layers (e.g., Fn(I)) maintains
the high-level content in terms of objects and the
reconstruction from the Gram matrices of feature
responses reproduces the exact styles or textures.

Therefore, as shown in Figure 2, the styliza-
tion procedure can be modeled as an optimization
problem: i.e., search a target image O which



272 Deep Style Transfer

gradient

forward

gram matrix

feature map

layer index

content image

style image

stylized image

Deep Style Transfer, Fig. 2 The neural style transfer
algorithm proposed by [4]. It decomposes an image into
feature maps using a pre-trained CNN and represents the
content and style of an image with its feature and the

Gram matrices of features respectively. By optimization,
the target image should have similar feature response as
the content image and similar Gram matrices as the style
image
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Deep Style Transfer, Fig. 3 Two sample transfer results given by [6]

has similar feature response as the content image
I (maintaining the structure) and similar Gram
matrices of feature response as the style image S

(maintaining the style). Thus, Gatys et al. define
an objective function consisting of two terms:

Ltotal(O, I, S) = αLcontent(O, I)

+ βLstyle(O, S), (1)

where α and β are the trade-off weights to control
the final stylization extent. Lcontent is the con-
tent loss that measures the mean square distance

between the content representation of the target
stylized image O and the content image I .

Lcontent(O, I) =
∑

l∈{lc}‖F
l(O) − F l(I )‖2,

(2)

where {lc} denotes the set of layers used for
content representation and F l(x) is the feature
maps of layer l.

Similarly, the style loss Lstyle is also defined
as the sum of mean square distance between the
Gram matrices (i.e., global correlations between
filter responses of different channels) between the
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target image O and the style image S of different
layers {ls}.

Lstyle(O, S)=
∑

l∈{ls }‖G(F l(O))−G(F l(S))‖2.
(3)

Here, the Gram matrix Gl(F ) represents the style
information of an input image and is defined as:

Gl(F ) = F l(F l)T , (4)

where F l ∈ RNl×HW is the feature maps of layer
l but is reshaped fromNl×H×W toNl×HW .Nl

is the channel number of layer l, andH,W are the
width and height of feature maps, respectively.
In this sense, Gram matrix neglects the spatial
information and is a global statistics.

In the implementation [4], the pre-trained
VGG network is used as the feature extractor F .
‘CONV4_2’ layer is used for content representa-
tion {lc} and ‘CONV1_1, CONV2_1, CONV3_1,
CONV4_1, CONV5_1’ are used for style repre-
sentation {ls}. To obtain the optimal solution O,
a gradient descent-based optimization procedure
is used in [4] to minimize the objective function
in Equation (1). An example produced by [4] is
shown in Fig. 1.

This method can produce more impressive
stylization results than traditional texture trans-
fer, since a CNN is effective in decomposing
content and style from images. However, since
Gram matrix is too weak in local constraint,
it often generates stylization results with tex-
ture that is randomly distributed. An alternative
way is patch-based style transfer by combining a
Markov Random Field (MRF) and a CNN [5]. It
replaces the global style loss in Equation (1) with
the MRF-based loss function to capture more
local texture details. Specifically, let Φ(F(x))

denote the list of all local patches extracted from
F(x); the new MRF-based style loss is defined
as:

L′
style(O, S) =

∑

l∈{ls }

m∑

i=1

‖Φi(F
l(O))

− ΦNN(i)(F
l(S))‖2. (5)

Here m is the total patch number extracted
from F l(O). For each patch Φi(F

l(O), the best
matching style patchΦi(F

l(S)) is found by using
the normalized cross-correlation distance:

NN(i)= argmin
j=1,...,ms

Φi(F
l(O)) × Φj(F

l(S))

‖Φi(F l(O))‖ × ‖Φj(F l(S))‖ .

(6)

This sets a data term to optimize pixel values of
the output image. It does not explicitly establish
the correspondence between two images.

In contrast, Liao et al. [6] transfer style in
a more structure-preserving manner by using
semantic-based dense correspondences. Figure 4
shows the system pipeline. Given an input image
pair A and B ′, they formulate style transfer as a
problem of image analogies [3]: A : A′ :: B : B ′,
where A′ and B are unknown latent images. This
analogy implies two constraints: 1) A and A′
(also B and B ′) correspond at the same spatial
position; and 2) A and B (also A′ and B ′) are
similar in appearance (style). In this way, the
difficult mapping problem from A and B ′ is
separated into one in-place mapping from A to
A′ and one similar-appearance mapping from A′
to B ′. The mapping from B ′ to A is achieved in
the same way with the help of B.

Based on this formulation, they firstly com-
pute deep features of A and B ′ through pre-
trained CNN and initialize feature maps of two
latent images A′/B at the coarsest CNN layer.
Then, at each layer, a forward Nearest Neighbor
Field (NNF) and an inverse NNF establish cor-
respondences between feature maps of A and B

as well as between feature maps of A′ and B ′.
The extracted NNFs together with feature maps
are used to reconstruct features of latent images
A′/B at the next CNN layer. The NNFs obtained
at the current layer are further upsampled to the
next layer as their initialization. These three steps
are repeated at each layer, updating correspon-
dences from coarse to fine. For style transfer,
A,B ′ can be set as the content and style image,
respectively. Two example results are given in
Fig. 3.
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Deep Style Transfer, Fig. 4 The system pipeline of deep image analogy [6]. Thanks to the courtesy of Liao et al., this
figure is directly borrowed from [6]

Feed-Forward Based Methods
Optimization-based methods help understand
the working principle of deep style transfer, but
their computational cost is quite high, which
makes it difficult for real applications, especially
on mobile devices with limited computation
resource. To speed up the optimization-based
methods, Per-Style-Per-Model methods [8, 9]
train a transform network H to approximate
the above optimization procedure. As shown
in Fig. 5, the feature extracting network in
Equation (1) is used as the loss network
L (by default, a VGG network pre-trained
on the image classification task). At each
training step, the stylized outputs of H together
with the corresponding content images and
the specific style image (only one) will be
fed into L to calculate the loss defined in

Equation (1). Thanks to the differentiability
of L, its gradient can be back-propagated into
H to guide its learning. By training with a
large number of content images, the transformer
H can learn the generality to stylize different
images.

Multi-style-Per-Model methods [11, 12]
further extend the capability of the network H
to learn multiple styles simultaneously. On one
hand, Dumoulin et al. [11] replace the instance
normalization layer in the network H with a new
conditional instance normalization (CIN) layer:

CIN(F (I), s) = γ s ∗
(

F(I) − μ(F(I))

σ (F (I))

)

+ βs,

(7)

which will learn a linear transformation that
aligns the mean μ(·) and the standard variance



Deep Style Transfer 275

D

Transform Network Loss Network

gradient

Deep Style Transfer, Fig. 5 The feed-forward based
style transfer algorithm, which uses a transform network
H to learn the optimization procedure in [4]. The learning

of H is guided by the gradient back-propagated from the
loss network L which has the same objective formulation
as [4]

σ(·) of content image features F(I) to the
style-specific scaling parameter γ s and shifting
parameter βs , respectively. Here, {γ s, βs}, (s ∈
S) represents one of different styles and can be
learnt by feeding different style images S to the
loss network L. Other layers of H are shared for
all style images.

On the other hand, Chen et al. [12] represent
each style s, (s ∈ S) with one specific filter bank
kernel Ks . Its network consists of an encoder E
and a decoder D. Given the input content image
I , E will first encode it into feature map E(I ). To
transfer a specific style s, E(I ) will be convolved
with its corresponding kernel Ks then decoded by
D to get the final stylization result Os , i.e.,

Os = D(Ks ⊗ E(I )). (8)

To fully decouple style and content information,
they further constrain that, without applying any
style kernel, the auto-encoder should reconstruct
the original content image I :

D(E(I )) −→ I. (9)

In this way, it guarantees that all the style infor-
mation is only represented by its style kernel Ks

but not absorbed into the encoder E and decoder
D.

For Arbitrary-Style-Per-Model methods, their
underlying idea is almost the same, i.e., transform
the content feature as the same statistics as the
style feature, for example, [16], which extends

the work [11]. Specifically, they first feed the
content image I and the style image S into a pre-
trained VGG network; then they use the adaptive
instance normalization (AdaIN) layer to directly
align the mean/standard deviation of the content
feature F(I) with those of style feature F(S):

AdaIN(F (I), S) = σ(F (S))

×
(

F(I) − μ(F(I))

σ (F (I))

)

+ μ(F(S)). (10)

Next, a decoder network D is trained with
a large number of style images and content
images to decode the transformed feature
AdaIN(F (I), S) into the final stylization result:
O = D(AdaIN(F (I), S)).

Open Problems

One may argue that to really achieve flexible style
transfer, we need to produce representations that
can totally disentangle visual styles and visual
content. This is along the line of representation
learning. We have made some limited progress
with deep learning. With such disentangled rep-
resentation of style and content, we may be able
to further answer the following open questions:

– What is the characterization of the manifold of
all existing visual styles?
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– While sampling from such a style manifold
is granted, are we able to extrapolate totally
new styles based on understanding of this style
manifold?

– Could the content representation from such a
disentanglement facilitate better visual recog-
nition, as it is invariant to styles?

– Are we able to decipher the aesthetics of all
painting styles with such disentangled repre-
sentation?

– Will research along this line eventually create
truly creative AI system for arts?

We hope continued research thrusts along this
would make arts more accessible to all people in
the world.
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Synonyms

Out of focus blur

Related Concepts

�Blur Estimation
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�Deconvolution
�Motion Blur

Definition

Defocus blur is a loss of sharpness that occurs due
to integrating light over the area of an aperture
when the source of the area being captured is not
on the image focal plane, i.e., the area is “out of
focus.” The amount of blur that is visible in an
image is a function of the lens aperture, the object
and focal depth, and the camera pixel (or grain)
size.

Background

Image blur can be described by a point spread
function (PSF). A PSF models how an imaging
system captures a single point in the world – it
literally describes how a point “spreads” across
an image. An entire image is then made up of
a sum of the individual images of every scene
point, where each point’s image is affected by
the PSF associated with that point. For an image
to be “in focus” means that one ideally does
not want any image blur at a particular depth
of the scene. Thus the PSF should be minimal,
i.e., a delta function, where each scene point
should correspond only to one image point. In

practice, PSFs can take on a range of shapes and
sizes depending on the properties of an imaging
system. When the PSF is large relative to the
camera pixel or film grain size, an image with
defocus blur is captured.

The fundamental cause of defocus blur is that
real cameras capture images by integrating the
light over a fixed opening in the lens, known as
an “aperture” which has a non-zero area. Defo-
cus blur is a function of aperture size and the
relative position between camera and objects in
the imaged scene. For very small apertures or
“pinhole”-sized apertures, the blur or PSF and
can be insignificant relative to the pixel size of the
camera. However, in light-limited situations or
when a particular photographic affect is desired,
such as shallow depth of field in a portrait photo,
larger apertures are used. With a large aperture,
the “depth of field” is shallow, and the PSF for
objects off the focal plane is larger. The amount
of blur is depth dependent: it depends on the focal
length of the lens and the focal depth, and it grows
with distance from the focal plane, as illustrated
in Fig. 1.

Theory

Image blur is described by a point spread function
(PSF). The PSF models how an imaging system
captures a single point in the world.

The most commonly used model for blur is
a linear model, where the blurred image b is
represented as a convolution of a kernel k, plus
noise:

b = i ⊗ k + n, (1)

where ⊗ is the convolution operation and n ∼
N(0, σ 2) represents an additive Gaussian noise
model. In this model, the blur is assumed to
be constant over the entire image, i.e., spatially
invariant; however, that is often not true in prac-
tice [1,2]. If there is depth variation in the scene,
the blur will change with that depth. Similarly, in
many lenses the shape of the blur changes across
the image plane, as illustrated in Fig. 1. In both
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Defocus Blur, Fig. 1 With defocus blur, the amount of
blur is depth dependent; it depends on the focal length of
the lens and the focal depth, and it grows with distance
from the focal plane. An example of defocus blur is shown

in the middle (From Joshi et al. [12]), and spatially varying
defocus kernels (From Joshi et al. [12]) are shown on the
right

of these cases, one can think of the blur kernel as
being a function of image position, i.e., k(x, y).

To model spatially varying blur, the spatially
invariant kernel and convolution in Equation 1
can be replaced by a sparse re-sampling matrix
that models the spatially variant blur, and the con-
volution process is now a matrix-vector product:

b = Ai + i. (2)

Each column of A is the unraveled kernel for
the pixel represented by that column. Thus the
blurred response at a pixel in the observed image
is computed as a weighted sum, as governed by
A, of the latent sharp image i formed into a
column-vector.

Representation: There are several common
assumptions made on the form of a defocus blur
kernel:

• The PSF is positive, i.e., all values in the
kernel are non-negative

• The PSF is energy conserving, i.e.,
∑

i ki = 1
• The PSF is symmetric – radially or along some

Cartesian axis
• The PSF is has a known parametric form

The assumptions are listed in order from least to
most restrictive. Positivity is a strong constraint
and the least restrictive in that it does not elim-
inate any truly valid kernels, i.e., no true blur
kernel can have negative values as blurring in is a
purely additive process. Another way of thinking

of this is that there is no “negative” light. Simi-
larly the second constraint is not very restrictive
in that blurring is generally not considered to
remove light, just spread it; thus, blur kernels
should be energy conserving. Thus the assump-
tions of positivity and energy conservation are
ones that can be used by virtually all PSF models.
In practice, whether a particular model uses them
depends on the nature of the other assumptions.

The second two assumptions are much more
restrictive. Symmetry is typically used when one
wants to generalize a 2D PSF from some 1D
cross section [3]. Assuming a parametric form
is also very restrictive as it assumes the entire
shape of the blur kernel can be modeled by a low
parameter mathematical model.

Defocus blur has two commonly used para-
metric models. A circular disk or “pillbox” func-
tion [4]:

k(x, y) =
{
0

√
x2 + y2 > r

1
πr2

√
x2 + y2 ≤ r

(3)

and a circularly symmetric 2D Gaussian [5]:

k(x, y) = Cexp

(

−x2 + y2

2σ 2

)

, (4)

where C is a normalization constant. In both
cases, a single parameter determines the PSF –
r for the pillbox and σ for the 2D Gaussian.
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Application

Often defocus blur is used for artistic affect in
photography, as a way to highlight the subject of
a photograph. Estimation and removal of defocus
blur constitutes an extensively researched area
[4,6–9]. Estimated blur kernels are typically used
for improving image quality by reducing blur
using image deblurring and deconvolution meth-
ods [1, 10–12]. Models of defocus blur are also
used in depth estimation methods such as depth
from defocus [11, 13, 14]. Recently, machine
learning approaches have been used to estimate,
characterize, and remove defocus blur [15–18].
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Definition

Image dehazing (or dehazing, for short) is a pro-
cess to visually improve the visibility of images
or videos degraded by haze or dust particles.
Defogging is a similar process yet focusing on
fog, which, unlike haze, is caused by water par-
ticles. Both dehazing and defogging are part of
algorithms to enhance visibility in bad weather
caused by light being scattered and absorbed
by atmospheric particles. Since haze/fog can be
present in day or night, dehazing/defogging algo-
rithms have been developed to handle these two
conditions.

Background

Poor visibility in outdoor scenes generates
significant problems for many applications
of computer vision. Most automatic systems
for surveillance, intelligent vehicles, object
recognition, etc. assume the input images have
clear visibility. Unfortunately, this assumption
does not always hold, particularly in bad weather.
Therefore, improving the degraded visibility is
practically important.

In outdoor scenes, poor visibility is caused by
the substantial presence of various atmospheric
particles that have significant density in the
participating medium (creating haze, fog, mist,
smoke, dust, etc.). Light from the atmosphere
and light reflected from objects are absorbed and
scattered by those particles, causing the visibility
of a scene to be degraded. Physically, fog is a
cloud of water droplets near the ground level,
reducing the horizontal visibility to less than
1 km [1]. Unlike fog, haze is not water droplets.
It is composed of dry particles (of dust or salt)
so small that they cannot be seen individually
with the naked eye, but the aggregate reduces
horizontal visibility and gives the atmosphere
an opalescent appearance (a bluish or yellowish
veil) [1]. In hazy scenes, the horizontal visibility
on the ground level is greater than 1 km but less
than 5 km [2].

Besides fog and haze, there is also mist. In
terms of visibility, mist is similar to haze (the
horizontal visibility on the ground level is greater
than 1 km but less than 5 km); however the par-
ticle type is the same as those of fog, which is
water droplets. With respect to the opalescent
appearance, mist can be discriminated from haze,
since it gives a grayish cast to the sky [1].

Theory

In the field of optics and atmospheric sciences,
there are a number of scattering models depend-
ing on the size of the particles and the complexity
of the formulas. Most of them are derived from
radiative transform (a physical phenomenon of
energy transfer in the form of electromagnetic
radiation, which is affected by absorption, emis-
sion and scattering processes) [3]. However, most
of these models are too complex to be applied
to computer vision algorithms (at least when
this articles is written). Hence, an approximated
optical model for both haze and fog is more
commonly used in computer vision (e.g., [4, 5]),
which is based on Lambert-Beer law [6] and
Koschmieder’s equation [7]:

I(x) = D(x) + A(x). (1)

The first term is the direct attenuation (D), and
the second term is the airlight (A):

D(x) = L1(x)ρ(x)e−βd(x) (2)

A(x) = L2(x)(1 − e−βd(x)). (3)

I is the image intensity. x is the 2D spatial loca-
tion. ρ is the reflectance of an object appeared in
the image. L1 is the atmospheric light arriving at
the objects.L2 is the atmospheric light that comes
to the medium and is reflected to the camera with-
out arriving at the objects. Further assumption
is that L1 = L2, and both of them represent
intensity of infinitely distant light sources and
thus are assumed to be globally constant. β is
the atmospheric attenuation coefficient. d is the
distance between an object in the image and
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Dehazing and
Defogging, Fig. 1 The
pictorial description of the
optical model

the camera. β in the equation is assumed to be
constant for different wavelengths. This assump-
tion is common in many methods dealing with
particles that the size is larger compared with
the wavelength of light [8], such as, fog, haze,
aerosol, etc. Moreover, β is constant for different
spatial locations in the input image [5, 9]. Note
that, I, L1, L2, ρ in the equation are color vector
(rgb), while the remaining variables are scalar.

D(x) in Eq. (2) is principally based on the
Lambert-Beer law [6] for transparent objects,
which states that light travels through a material
will be absorbed exponentially. Equation (1) is
basically Koschmieder’s equation [7] that takes
into account only a single scattering in the direc-
tion to the camera. Consequently, it likely fails
to capture the effects of highly scattering media.
Figure 1 shows the pictorial description of the
model.

In terms of degree of polarization (DOP),
airlightA is partially polarized. Hence, two polar-
ization directions of A can be obtained using a
polarizing filter attached to the camera, namely,
parallel and perpendicular polarization direction
with respect to the plane of incident [10–12].

ProblemDefinition

Based on Eq. (1), the problem can be gener-
ally described as follow: Given an image or a
sequence of images whose intensity represented
by I(x), estimate R(x) for every pixel, where
R(x) = L1ρ(x), is the scene radiance had there
not been particles along the line of sight.

Possible Assumptions and Solutions

For a single image, the problem described above
is ill-posed. In the literature, a few approaches
trying to tackle the problem have been proposed.
The first approach is based on polarizing filters
(e.g., [11, 12]). The main idea of this approach is
to exploit two or more images of the same scene
obtained by rotating a polarizing filter attached to
the camera. Having at least two different intensity
values of each pixel of the scene, [12] transforms
the problem into a form solvable using ICA. The
main assumption is that the scene is static while
the filter rotates.

Another approach is based on multiple images
of a scene taken in different weather conditions,
i.e., with different properties of the participating
medium (e.g., [4, 5]). By deriving two equa-
tions from Eq. (1), which represent the two input
images, [5] can obtain the absolute values of
airlight by assuming the presence of a totally
dark object in the scene. Different approaches
proposed by Tan and Oakley [13], Narasimhan
and Nayar [9], Hautiere et al. [14], and Kopf et al.
[15] are based on a single image, yet they require
geometric information about the input scene.

This requirement might be impractical, and
thus methods use in a single image and rely on
image priors are introduced [16, 17]. Following
these methods, many methods (e.g., [18–20])
are proposed. All the methods assume that
β in Eq. (1) is constant for across the light
spectrum, which is a reasonable assumption
[8]. Figure 2 shows the result of using the
method of [16], which basically estimates the
airlight, A(x), by maximizing local contrast.
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Dehazing and Defogging, Fig. 2 Left: an image plagued by fog. Right: the result of enhancing visibility using the
method introduced in Tan [16]

More comprehensive survey on the developments
can be found in this paper [21], which discusses
dehazing/defogging methods published up to
2016. A deep learning based dehazing method
was introduced in [22]; and since then, many
methods based on deep learning are proposed
(see [23] for more comprehensive discussion).
Most of these methods are designed to deal
with daytime dehazing/defogging. As for the
nighttime dehazing/defogging, the problem is
more complex, due the presence of glow, low-
light regions, noise, and also multiple light
colors due to man-made light sources. Several
methods have been proposed to tackle the
problem of nighttime dehazing/defogging, e.g.,
[24–26].

Open Problems

Despite the rapid development in the recent years,
the problem of dense haze or fog is still prob-
lematic. Given an image with considerably dense
haze/fog, we do not know whether it is pos-
sible to extract the background scene behind
the haze/fog. In other words, if the haze/fog
is so thick, there are no methods to determine

whether there is information (or extractable infor-
mation) of the background in the input image.
This problem becomes more complex for night-
time haze/fog images.
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Synonyms

Noise removal

Related Concepts

� Image Enhancement and Restoration: Tradi-
tional Approaches

Definition

Denoising is the process of recovering a refer-
ence signal that has been corrupted by noise. In
computer vision, the reference signal is typically
assumed to be the undistorted image of an object
or scene, and noise is introduced as a result of
the imaging process. The amount and type of
noise changes from application to application. An
example of a typical noisy image and the result
of performing image denoising on it are shown in
Fig. 1.

Background

Noise is an unavoidable consequence of the imag-
ing process. Sources of noise include measure-
ment and quantization errors introduced during
signal acquisition and processing, thermal noise
from the sensor and electronics in digital imaging
systems, photographic grain in the case of film,
and the physical nature of light itself.

The importance of denoising stems from the
fact that noise in the input image can adversely
affect the result of all subsequent visual pro-
cessing. The value of image-dependent quantities
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Denoising, Fig. 1 Left original, noisy MRI scan. Right result after denoising

such as brightness gradients, the accuracy in
the localization of image features, the presence
or absence of object boundaries, and even the
subjective perceptual properties of the image are
all affected to some degree by noise. Applications
such as medical imaging, astronomy, low-light or
high-speed photography, and synthetic aperture
radar (SAR) imaging are typically characterized
by larger amounts of noise relative to the refer-
ence signal.

Depending on the application, preprocessing
the input with a denoising algorithm can improve
the results obtained from further stages of visual
processing. However, the denoising method
should be selected with care since the denoising
process is imperfect and will invariably destroy
part of the information contained in the reference
signal.

Theory

For a grayscale image, the perceived image
brightness can be approximated by [1]

I = f (L + ns + nc) + nq, (1)

where I is the observed brightness value, f(·)
is the sensor response function, L is the image

irradiance, ns represents the noise contribution
from brightness-dependent sources, nc represents
a constant noise factor, and nq is the quantization
noise.

Estimating all the quantities in this model is
too complex a problem if only I is known, so
in practice the simplified relationship I= Ir + N
is used instead where I is the observed image
brightness, Ir is reference image that the denois-
ing process must estimate, and N is the noise
component. Since there is only one known value
(the observed brightness) and two unknowns, the
problem is under-constrained.

Additional external constraints must be placed
on the properties of Ir and N so that a solution can
be computed. Typically N is assumed to be i.i.d.
noise, and most denoising methods assume a zero
mean Gaussian distribution with fixed standard
deviation. Depending on the constraints placed
on the properties of Ir, we can group denoising
methods into a handful of major classes.

Classes of Denoising Algorithms
The first class of image denoising methods is
based on averaging the value of pixels within
small image neighborhoods under the assumption
that the brightness away from image edges
should be uniform. These algorithms perform
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anisotropic smoothing, so called because it has
strong tendency to smooth uniform-looking
regions in the image while preserving strong
brightness discontinuities [2]. The original
anisotropic smoothing algorithm [3], the bilateral
filter [4], methods based on minimizing total
variation [5], and the stochastic denoising
algorithm [6] are all examples of denoising
methods based on maximizing brightness
uniformity across homogeneous regions.

A second class of algorithms is based on the
analysis of image statistics. The underlying prin-
ciple is that the statistical properties of natural
images can be modelled and that given the model,
denoising can be carried out by examining the
statistics of a noisy image and transforming the
image so that its statistics match those of learned
model [7]. Common models include distributions
of filter responses and pooled statistics for col-
lections of image patches. Algorithms such as
Gaussian scale mixtures [8], fields of experts [9],
the nonlocal means method [10], and the block
matching algorithm [11] rely on exploiting the
statistical regularities of images or small image
patches.

A third class of image denoising methods
specifically designed to remove salt and pepper
noise is based on outlier detection. The process
involves estimating a distribution of brightness
values around image neighborhoods and using
this distribution to identify and remove outliers.
The median filter [12] is an example of this class
of denoising algorithms.

Regardless of the method, the goal of denois-
ing is to remove as much of the noise as possible
while preserving the information contained in
the reference signal. For this reason, denoising
algorithms are often evaluated using peak signal
to noise ratio (pSNR) or the structured image
similarity index (SSIM) [13] on images for which
the noise-free reference is known.

Application

Denoising can be a useful preprocessing step
for images from domains such as medical imag-
ing, astronomy, or synthetic aperture radar. It is

also applicable to digital photography under low
illumination conditions and to the restoration of
archival footage and photographs. Image editing
and image processing programs typically include
denoising modules.

Experimental Results

The quality of the results produced by differ-
ent algorithms changes from image to image
and across different domains. But recent bench-
marks [14] indicate that the block matching algo-
rithm achieves better performance overall on nat-
ural images with different amounts of Gaussian
noise.
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Dense Reconstruction
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Synonyms

Dense 3D modeling; Multiview stereo

Related Concepts

� Structure-from-Motion (SfM)

Definition

Dense reconstruction aims on determining the
complete 3D geometry of a static environment
solely from a set of provided images.

Background

Correspondences between images depicting a
static scene cannot only be established for a
small set of visually salient regions but can
be also extended to the entire image domain
(i.e., to all pixels). Under the assumption of a
static environment (or equivalently, a rigidly
moving scene captured by a static camera),
corresponding points in images together with

known camera calibration induce a 3D point.
Thus, a dense set of correspondences implies
a densely sampled surface in 3D. Establishing
per-pixel correspondences between only two (or
any small number of) narrow-baseline images
is usually referred as computational stereo.
Dense reconstruction addresses the more general
problem of obtaining the full 3D geometry from
a larger collection of images. In contrast to
computational stereo, the returned surfaces are
not 2.5D depth maps (as in stereo) but can possess
arbitrary topology.

Theory

Determining the dense 3D geometry of a static
scene from images can be achieved via direct or
via indirect approaches:

– Direct approaches estimate the dense 3D
geometry by using all available images
simultaneously.

– Indirect methods estimate partial 3D models
from a subset of (usually narrow-baseline)
images (e.g., via computational stereo) and
subsequently merge the partial models into a
globally consistent geometry.

Direct Methods

Direct methods estimate the likelihood of
the 3D surface being at a particular position
via computation of a photo-consistency score
incorporating all given images. Typically the
3D region of interest � ⊆ R

3 is discretized
as a voxel space, and photo-consistency is
computed with respect to the voxels. Since
accurate visibility is not yet known, the photo-
consistency score must be robust against
potential occlusions. Approximate visibility
of a surface patch in the images can be
determined e.g., by view frustum and backface
culling, and when a coarse estimate of the 3D
geometry (e.g., the corresponding visual hull)
is available. By traversing the voxel space in a

http://www.cs.utoronto.ca/~strider/Denoise/Benchmark
http://www.cs.utoronto.ca/~strider/Denoise/Benchmark


Dense Reconstruction 287

D

conservative order with respect to visibility and
computing photo-consistency by only using
certainly unoccluded images, one obtains the
space carving method [1]. Sufficiently photo-
inconsistent voxels are declared as empty and
influence the visibility of not-yet-visited voxels in
the images. Under certain assumptions, the set of
occupied voxels (which is called the photo hull)
contains the true 3D geometry. For objects with
little texture, the space carving results are not
satisfactory, and spatial smoothness assumptions
need to be added. The volumetric graph cut
approach [2] can be interpreted as regularized
space carving. Since the state of a voxel
(empty or occupied) is determined by a global
optimization method, a robust photo-consistency
score for each voxel is computed using static and
approximate visibility information.

The knowledge of sparsely sampled surfaces,
e.g., by triangulating correspondences between
interest points, can be used to discretize � more
adaptively by a general tetrahedral mesh. In such
a representation, it is possible to employ a higher-
resolution discretization where the true surface is
expected [3, 4].

The task of determining the 3D geometry con-
sistent with all given images can be formulated
as mesh evolution approach, which is inspired,
e.g., by deformable contour approaches used in
image segmentation. The evolution of the mesh
is guided by external forces based on the photo-
consistency and optionally on silhouette data and
internal forces regularizing the mesh [5, 6]. One
drawback of such methods is that the obtained
result may strongly depend on the initial mesh
and only local minima of the underlying energy
are usually reached.

Indirect Approaches

This set of methods first computes a collection
of depth maps from a suitable narrow-baseline
subset of images and fuses these depth images
into a consistent 3D model. Since knowing the
exact visibility of 3D locations in the images is
not required for photo-consistency computation
in a small baseline setting, these methods do

not need a coarse geometry to estimate potential
occlusions. Furthermore, sophisticated compu-
tational stereo methods are available to gener-
ate high-quality depth maps ultimately yield-
ing photo-realistic reconstructions. On the other
hand, indirect methods do not utilize the available
image data to the full extent, since the original
images are usually not considered in the depth
map fusion step.

Merging multiple depth maps can be identified
as a particular instance of surface fitting from
unorganized point data (e.g., [7, 8]), but it is
clearly beneficial to exploit the specific structure
in the input data. The mathematical formula-
tions employed for depth map fusion can be
tracked back to the problem of merging partial
range scans obtained by an active sensor device,
e.g., laser data or from structured light. Early
approaches use an explicit polygonal represen-
tation [9], but more current methods are usually
based on implicit volumetric surface representa-
tions capable of handling surfaces with arbitrary
genus. It is a common aspect of all volumetric
approaches that they return watertight meshes,
i.e., surfaces may be hallucinated in occluded
regions. In general, depth map fusion using a
volumetric representation can be formalized as
determining a minimizer u : � → {−1, 1} of a
functional E,

E(u) = φ (u; {di}) + ψ(u),

where � ⊂ R
3 is the region of interest (usually

a 3D bounding box), φ(u; {di}) is a compatibility
(data fidelity) function measuring the agreement
of the solution u with the set of input depth maps
{di}, and ψ(·) denotes the spatial regularization of
u. The interpretation of u is that u(x) = 1 if the 3D
location x is occupied (solid) and u(x) = −1 if x
corresponds to empty space. Often u is allowed
to attain fraction values, e.g., u : � → [−1, 1].
In the following, let Di : � → R be the signed
distance transform induced by the depth map di,
and F : � → R

3 is a 3D vector field with F(x)
corresponding to a (smoothed) surface normal
induced by the sampled depth maps. F(x) = 0 if
x is distant to any of the depth map surfaces. By
appropriate choice of φ and ψ, one obtains
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– Volumetric range image integration [10]
(with φ(u; {di}) = ∫

Ω
Σi(u(x) − Di(x))2 dx

and ψ ≡ 0)
– Poisson surface reconstruction [11]

(with φ (u) = ∫ ‖F = ∇u‖2 d x and ψ ≡ 0)
– Global shape fitting [12]

(with φ (u) = ∫
FT∇u d x and ψ(u) =∫ ‖∇ u‖ d x

.= TV(u))
– TV-L1 depth map fusion [13]

(with φ(u; {di}) = ∫
Ω

Σi |u(x) − Di(x)| dx

and ψ(u) = TV(u))

The above mentioned methods use a
uniformly sampled voxel space to discretize
the domain �. Determining a minimizer u for
these energies is relatively simple due to their
intrinsic convexity and amounts, e.g., to per-voxel
averaging [10] or solving a sparse linear system
of equations [11]. The final triangular mesh
can be extracted from the implicit volumetric
representation as the zero-level set, e.g., via the
marching cubes method [14].

Application

Dense reconstruction plays a fundamental role
in fully automatic 3D content creation from
image data. Its application ranges from 3D
city modeling and cultural heritage preservation
to obstacle avoidance in autonomous systems
navigation and 3D face reconstruction for
character animation. Dense reconstruction can
achieve an accuracy comparable to actively
measured geometry (using laser range scanners
or structured light) by relying only on passive
imaging sensors [15, 16]. Accurate dense
scene geometry can be augmented with texture
images or more general appearance properties
enabling photo-realistic rendering of virtual 3D
representations.
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Related Concepts

�Active Stereo Vision
�Camera Calibration
� Perspective Camera

Definition

Depth distortion refers to the distortion on the
recovered structure from motion or from stereo
due to imprecision or errors in the cameras’
intrinsic and extrinsic parameters.

Background

In structure from motion, when a camera’s intrin-
sic parameters are imprecise or even erroneous,
the estimated motion is not accurate, and the
structure inferred from motion will be a distorted
version of the true structure in the environment.
In stereo, when the cameras’ intrinsic and extrin-
sic parameters are imprecise or even erroneous,
the reconstructed 3D scene will be a distorted
version of the true scene in the environment.

Theory

As an example, Fig. 1 illustrates a case where
the focal length is misestimated. The top view of
two cameras is shown. The line segment BE is
the true structure in the environment. It is pro-
jected to the images according to the true optical
center O1 and O2, respectively. However, if the
estimation of the focal length is not accurate, the

reconstructed structure will be distorted. In the
figure, the optical centers are estimated to be at
O1

′ and O2
′. Then, the reconstructed structure

will be B′E′, which is clearly different from the
true one BE.

In general, given N views of a scene, the 3D
reconstruction of a point M is a function of its
image points {m1, . . . ,mN}, the cameras’ intrin-
sic parameters {c1, . . . , cN}, and the cameras’
extrinsic parameters {p1, . . . , pN}. That is,

M = f
(
m1, . . . ,mN ; c1, . . . cN ;p1, . . . ,pN

)
.

(1)

If a parameter, say c1, is misestimated by �c1,
i.e., c′

1 = c1 + Δc1, then the reconstructed 3D
point will be

M ′ = f (m1, . . . ,mN ; c1

+Δc1, . . . , cN ;p1, . . . ,pN

)
,

(2)

which is a distorted version of M and is different
from M.

If the error in the parameter is small, we can
use Taylor expansion and ignore the high-order
terms. The first-order approximation of the error
in 3D reconstruction due to �c1 will be

M ′ − M = ∂

∂c1

(
f (m1, . . . ,mN ; c1)

+ Δc1, . . . , cN ;p1, . . . ,pN ))

Δc1 ≡ Jc1Δc1,

(3)

where Jc1 is the Jacobian matrix of f(·) with
respect to c1. In practice, the exact error in the
parameters is usually unknown. If the error can
be modeled as a Gaussian, then the error in 3D
reconstruction can also be approximated as a
Gaussian. Let the error in c′

1, �c1, be a Gaussian
with mean 0 and covariance matrix

∑
c1
, then the

covariance matrix of the 3D reconstruction M
′
is

given by
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Depth Distortion, Fig. 1
Illustration of depth
distortion due to imprecise
focal length

Camera 1

Camera 2

∑

M
= Jc1

∑

c1
JT
c1

. (4)

The reader is referred to [1–3] for details.
The impact of the error in a camera’s different

intrinsic parameters on 3D reconstruction is not
necessarily the same in magnitude. For exam-
ple, the error in the coordinates of the principal
point has little effect in 3D reconstruction [4, 5].
Cheong and Peh [6] provides a more detailed
discussion on depth distortion due to calibration
uncertainty.
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Synonyms

2.5D estimation; Depth imaging, distance estima-
tion and three dimensional estimation; Distance
estimation; Three dimensional estimation

Related Concepts

�Multiple View Geometry
� Plane Sweeping
�Triangulation

Definition

Depth estimation describes the process of mea-
suring or estimating distances from sensor data,
typically in a 2D array of depth range data. The
sensors may be either optical camera configu-
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rations (monocular, stereo, or multiview stereo
camera rigs), active projector-camera configura-
tions, or active range cameras.

Background

Depth estimation is one of the fundamental
computer vision tasks, as it involves the inverse
problem of reconstructing the three-dimensional
scene structure from two-dimensional projec-
tions. Given a 2D image of a 3D scene, the
goal of depth estimation is to recover, for every
image pixel, the distance from the camera center
to the nearest 3D scene point along the pixel’s
viewing direction. The resulting 2D array of
distance values is called the depth map, which is
aligned with the camera coordinate system. The
challenge of depth estimation is to recover, with
sufficient accuracy, the depth map from the given
image. Depth estimation can be accomplished
in three principal ways: by triangulation from
different viewpoints, by coaxial methods along
the camera viewing direction, or by a learning
system, which learns the mapping from the image
to the depth map from data. For the first two
cases, estimation methods may be either passive,
based on image data alone, or active, with
additional sensor control or scene illumination as
supporting data. Binocular stereo, for example, is
representative for a passive triangulation method,
while laser interferometry is a typical active
coaxial method.

As the depth map is organized in a regular 2D
image grid and contains the depth value for each
pixel, it is sometimes also called 2.5Dmodel. The
depth map is not a full 3D shape representation,
as it contains depth to the nearest visible 3D scene
elements only and does not handle regions that
are occluded from the camera’s viewpoint. Exten-
sions to layered depth images (LDI) exist that
can handle multiple depth values for occluded
scene elements [20], but LDIs are still restricted
to the camera viewpoint and do not handle full
3D data. Full 3D surface estimation from arbi-

trary viewpoints is the topic of 3D modeling of
surfaces and volumetric 3D reconstruction meth-
ods, which can be obtained by merging multiple
2.5D depth maps or by tomographic methods that
actively scan a volume with multiple projections
and reconstruct the 3D volume surface density.
For tomographic methods, which are common in
3D medical and material science volume anal-
ysis, and for 3D modeling, refer to the related
concepts. A good overview and bibliography on
all related concepts to depth estimation can be
found in [21].

Theory

Triangulation
Triangulation is the most common approach for
depth estimation. At least two images from dif-
ferent viewpoints observe the same 3D scene,
and a 3D scene point is triangulated from the
observed 2D projections of the scene point by ray
intersection of the viewing rays; see Fig. 1 (left).
The depth d is the length of the viewing ray
from camera center to ray intersection. It can
be computed easily from the triangulation trian-
gle, given the length between the camera centers
(baseline b) and the two angles α and β between
the viewing rays and the baseline. This requires
that the cameras are calibrated w.r.t. each other in
a calibrated stereo rig configuration and that the
corresponding 2D projections of the observed 3D
scene point can be related to each other. The latter
causes most of the problems in depth estimation,
because the 2D search of corresponding projec-
tion pairs in the 2D images is difficult.

The correspondence problem can be simpli-
fied to a one-dimensional search when the relative
orientation between the cameras, the epipolar
geometry, is utilized [10]. The spatial triangula-
tion plane or epipolar plane, which is constructed
by the camera baseline b and the viewing ray
sl of one camera, intersects the image plane of
the other camera in a line, the epipolar line.
Hence the correspondence search is confined to
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Depth Estimation, Fig. 1 Depth estimation principles.
Left: depth estimation by stereo triangulation of corre-
sponding projections. Center: active time-of-flight depth

estimation by phase shift correlation. Right: coaxial depth
estimation by focal plane shift

this line and called disparity estimation. Disparity
estimation is further simplified if the epipolar line
corresponds to horizontal image scan lines. This
is the case in standard stereo geometry where
both cameras are aligned in identical orientation
and shifted in horizontal scan line direction only.
Stereo cameras with convergent configurations
can be rectified to a virtual alignment by a rec-
tifying homography or with other, more general
transformations [16]. A generalization to recti-
fication is the plane sweep, where the images
of multiple calibrated cameras are compared by
projecting onto a common 3D reference plane.
Shifting the plane throughout the depth volume
allows multi-camera depth estimation [3].

Passive Correspondence Analysis
Passive correspondence estimation relies on
image data alone and requires that the image
contains sufficient intensity variations to obtain a
unique correspondence match. Correspondences
are found by evaluating a cost function of
the local intensity data along the search
range. There exist a large variety of cost
functions and evaluation schemes, ranging from
data-driven evaluation of local cost function
minimization [9], over semiglobal optimization
along epipolar lines [11], to global optimization

schemes including smoothness constraints [2].
A good source for algorithms and benchmarking
is the Middlebury database and their evaluation
test scenario [18] and more recently the KITTI
database for stereo and optical flow[7].

Active Correspondence Analysis
The main drawback of image-based correspon-
dence analysis is the dependency on sufficient
intensity variation in the images. One way out is
to replace one of the cameras with an active video
projector and to project unique patterns, which
are easily identified by the other cameras, into the
scene. There exist a variety of approaches. Coded
light projectors project a time series of determin-
istic codes for unique correspondence, or a statis-
tically distributed pattern is projected for optimal
correspondence search. The patterns might be
projected either in visible or in near-infrared light
range. Stripe projection systems generate stripes
of spectrally colored light [1], or even single
laser light stripes are used for easy identification
in industrial depth inspection systems. One very
successful variant of an active depth triangulation
system is the Kinect 1 (a trademark of Microsoft)
sensor device that couples an infrared pattern
projector and corresponding infrared camera for
fast depth estimation with a visual color camera
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for simultaneous color and depth capture. Such
systems deliver reliable dense depth maps for
many scenes but are restricted in depth range to a
few meters. Depth estimation in the longer range
may be obtained by triangulating laser scanning
devices that scan the scene with a rotating mirror
laser reflected into the sensing camera.

Coaxial Depth Estimation
One drawback of the triangulation method is
that the scene is observed from different view-
points, and hence occlusion might occur at object
boundaries. If the baseline between the cam-
eras is small, then fewer occlusion boundaries
occur, but the depth measurement is not very
accurate due to the small triangulation angle. If,
on the other hand, a large baseline is chosen,
then the triangulation may be accurate but the
correspondence problem is more difficult due to
the changing perspective. Coaxial methods do
not suffer from such problems, as they measure
depth from one viewpoint only. Active coaxial
depth estimation has its foundations in classical
interferometry systems. A coherent laser beam is
sent out, reflected back at the 3D scene point, and
received at the sensor. The distance the light wave
has traveled causes a phase shift between emitted
and returning light and hence interference. Due
to the short wavelength of light, this principle
is very accurate but covers only a very small
unambiguous depth range. Recently, a novel class
of depth sensors has emerged that either exploits
the traveling time of a very short light impulse
to measure the time of flight directly or that
modulates an infrared LED light source with a
periodic signal amplitude and measures the signal
phase shift by correlation between outgoing and
reflected light. The correlation sensor is a 2D
image array of photonic correlation mixers that
allows to directly estimate depth in a range of
meters, depending on the modulation frequency;
see Fig. 1 (center). Typical depth ranges are up
to 10m. Such time-of-flight range cameras [19]
are active coaxial depth estimation devices that
in principle may deliver dense and accurate depth
maps in real time and can be used for depth
estimation of dynamic time-varying scenes [12].

One very popular device has been the Kinect
2.0 (a trademark of Microsoft) that has been
discontinued but very recently been resurrected
in 2019 as cloud-connected Azure Kinect DK
in connection with the Microsoft HoloLens 2
device.

Another option to estimate depth from a coax-
ial view is to change camera parameters and to
relate the observed image changes to depth. This
principle is observed by depth from focus algo-
rithms. A series of images with different focal
settings and aperture is recorded, and depth is
computed from image sharpness variations [15].
This principle has been applied very successfully
in depth-of-field microscopy, where a 3D volume
of semitransparent objects like biological cells
is scanned with shifting focal planes and very
narrow depth-of-field settings; see Fig. 1 (right).
Thus, a 3D stack of slices is obtained for 3D
analysis, very much like 3D tomography.

Learned Depth Estimation
Machine learning techniques use data examples
to infer the underlying structure and pattern of
the processed data as a mathematical function.
After the training on a huge amount of examples,
the algorithms learn to generalize and can be
evaluated on new inputs. Similar to semantic
segmentation, where each pixel is assigned a
class label, machine learning methods are trained
to estimate the depth value of each pixel of an
arbitrary monocular input image. In contrast to
semantic segmentation, however, the difficulty in
depth estimation lies in the inherent ambiguity.
Since the projection of the 3D scene onto the
2D image has irretrievably discarded the depth
information, theoretically an infinite number of
3D scenes can be considered as the origin of the
projection. To resolve this ambiguity, the used
techniques need to evaluate the global context
of the entire image content in addition to local
image information to determine the depth values.
Solutions have been proposed with Markov ran-
dom fields [17], neural networks [4, 13], or a
combination of both [14].

In classical supervised learning based on
huge data sets of monocular images and the
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corresponding depth maps [7], the error functions
have to be selected carefully to take also the
scaling ambiguity into account. For example, the
relation between different points in the image
can be evaluated instead of the absolute distance
[4]. Alternatively, the error function is based
on a spacing-increasing discretization, and the
optimizer executes an ordinal regression [5]. In
order to exploit the advantages of the existing
even larger data sets of stereo images without
depth maps, unsupervised approaches are also
used. For example, the disparity estimation
of individual image positions can be learned
from existing stereo image pairs. By warping
the second stereo image from the disparities
into the first image, visualization errors can be
measured and used as a loss function [6, 8]. The
disparity map can then be transformed into a
depth map via triangulation. This new field of
learned depth estimation shows very promising
results and huge potential for monocular depth
conversion, but care must be taken that sufficient
numbers of training images including depth are
available.
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Synonyms

Dehazing

Related Concepts

�Dehazing and Defogging
�Underwater Effects

Definition

The process of descattering refers to enhancing
images acquired in scattering media.

Background

Imaging in scattering media poses special con-
cerns for computer vision methods. Examples
for such media include haze or bad weather,
water, blood, and body tissue. Light propagating
in such media is scattered and attenuated. When
imaging, some light from the source is scattered
back from the medium toward the camera, before
ever reaching the object. This light is an additive
radiance component in the image that veils the
object. In air, this additive component is often
termed airlight, and in water and tissue, it is
termed veiling-light or backscatter (this term will
be used further on). The backscatter hampers
visibility by reducing contrast and signal-to-noise
ratio (SNR) in the images [1]. The backscatter
increases the measured radiance, which increases
the photon noise, without increasing the signal
value. Thus, there are methods that aim to descat-
ter the image, i.e., reduce the effects of scattering.
This sometimes has the effect of extending the
visibility range.

Correcting for backscatter in a single image
is inherently ill-posed. When observing a single
pixel, it is impossible to know what percent-
age of its intensity is reflected from the object
and how much is contributed by the backscatter.
Moreover, the backscatter value in a pixel is an
accumulation of light scattered by the medium
between the object and the camera. Thus, the
accumulated backscatter increases with the object
distance, which generally changes spatially in
the image. This is a nonuniform effect which
complicates recovery. However, the coupling of
backscatter and the 3D structure of the scene also
provides an opportunity since recovering either
the backscatter or the distance can imply the
other. After removal of the estimated backscatter,
some methods also try to compensate for light
attenuation. Reference [2] provides elaborate
physical theory of scattering media. The reader is
referred to the “Dehazing and Defogging” entry
in this encyclopedia and to [3] for vision in
the atmosphere and to [4, 5] for imaging under
artificial illumination.
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Descattering, Fig. 1 (a) Setup for descattering by polar-
ized artificial illumination [5]. (b) Setup for the descatter-
ing by structured illumination [19]. (c) Result from single

underwater image descattering [10]. Raw image, descat-
tered image, and range map (left to right). (Reproduced
with permission from the authors)

Methods

Because of the ill-posed nature of the problem,
some descattering methods use auxiliary infor-
mation or specialized hardware. Alternatively,
single image methods use image priors or con-
strains or use deep neural networks.

A known range map was used in [6]. In [7],
the extreme values of the scene range are used,
together with user indication of an airlight area in
the image. Instead of range information, Ref. [7]
relies on user indication of an area in the image
that is not affected by the medium. In [3], the
authors use images of the same scene under
different weather conditions.

Single-image descattering methods rely on
either smoothness constraints [8, 9] and different
image priors [10, 11] (example in Fig. 1a) or use
deep neural networks. Some of them first estimate
the optical properties of the medium [12].
The reader is referred to [13, 14] for very
comprehensive reviews of the growing body
of research on single-image descattering. So far,

single-image methods have been demonstrated
on images acquired under natural ambient
illumination.

In highly scattering media, natural illumina-
tion has a limited range. Thus, several types of
specialized hardware and instrumentation have
been deployed. Time gating [15] exploits the fact
that the light from the object arrives to the sensor
in a different time than the scattered light, as they
travel different optical path lengths. By opening
the shutter for a very short period of time, the
light reflected off an object can be separated
from the scattered light. This requires strong laser
illumination and a gated (streak) camera, with
high temporal resolution [16]. The time of arrival
of the object reflectance also reveals its distance.
Recent developments in single-photon avalanche
diode (SPAD) detectors show promising results
with this respect [17].

Rather than scanning the time of flight, vari-
ous methods perform spatial scanning. Laser line
scan methods use a highly collimated laser source
that scans the scene. The laser source is imaged
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by a synchronized narrow field of view. Such
systems have been shown to be very efficient,
with a range of up to 6 attenuation lengths [18].
Structured light [19–22] methods capture a wide
field of view with various illumination patterns.
Figure 1b shows an example for a structured light
setup. To overcome ambient illumination [23],
synchronize the sensor’s rolling shutter with the
illumination such that they adhere to the epipolar
constraint.

Another approach modulates light by polar-
ization. It has been shown that high degrees
of polarization can be observed in backscatter.
Therefore, polarization discrimination has been
used to reject scattered light in images taken in
haze, underwater, and also through the skin. The
light can be polarized naturally by scattering [24,
25] or be actively polarized [5, 26]. Figure 1c
illustrates a setup of active polarized illumination.
Some works assume the light reflected from the
object is less polarized than the backscatter. Oth-
ers assume the light from the object (often metal
ones) is more polarized. When polarizing the
light source, linear polarization or circular polar-
ization can be chosen to optimize the backscatter
degree of polarization in the specific medium.

Often, acoustic waves are less scattered than
light in a medium and therefore can penetrate
much deeper into the scattering media. However,
sonic and ultrasonic images have less resolution
than optical images and suffer from speckles. In
photoacoustic microscopy, a pulsed laser beam is
focused into biological tissue. The laser pulse cre-
ates sudden thermal expansion, generating ultra-
sonic waves, which are then detected to form
an image. In this method, the light has to travel
only half of the optical path while enabling high
resolution [27].

Fluorescence is emission of light following
excitation by light of a different wavelength. This
phenomenon is used in microscopy to optically
separate (using appropriate filters) the desired
signal from scattered light that has the illuminant
color [28].

The process of optical scattering is time
reversible. Thus, in [29], the authors have shown
that they can back propagate the scattering by a
phase conjugate mirror.
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Synonyms

Concept languages; Terminological logics

Definition

Description logics (DLs) is a family of logic-
based knowledge representation formalisms for
characterizing object classes and relationships
between them.

Background

DLs have been developed to provide well-
founded tools for knowledge representation and
reasoning. Modern systems offer expressive
concept languages with highly optimized
reasoners, for example, for concept subsumption,
instance classification or consistency checks.
DLs have gained additional importance due to
OWL-DL, the standardized DL for the Semantic
Web. Mature software tools exist to support
the development of OWL-DL knowledge bases,
notably the editor Protégé.

Theory

Knowledge representation in DLs is based on
unary predicates called concepts (or concept
terms), binary predicates called roles (or role
terms), and so-called individuals. A concept is
interpreted in a set-theoretical semantics as a set
of elements from a domain of discourse (also
called universe), a role is interpreted as a set
of pairs of elements from the domain, and an
individual denotes a particular element of the
domain. The elements in the second position of
a role pair are called role fillers. Functional roles
which map each first argument into at most one
role filler are called features.

To construct a knowledge base, one has to
fix a set of concept names, a set of role names,
and a set of individuals. Names can be used to
build complex concept and role terms. This is
accomplished with the help of operators whose
meaning is precisely defined in terms of the set-
theoretical semantics.
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Important concept operators supported by DLs
include:

– Concept union, intersection, and negation
– Existential qualification, cardinality restric-

tion
– Role axioms (e.g., reflexivity, disjointness,

transitivity, inverse roles)

Definitions of concepts and roles and their
relationships to each other form the TBox
(terminological box), assertions about individuals
in terms of unary and binary relationships form
the ABox (assertional box). Typically, the TBox
contains taxonomical hierarchies as background
knowledge for a domain of discourse, while the
ABox describes concrete facts. Modern DLs
are designed to be decidable, i.e., to allow
sound and complete reasoning processes. This
limits their expressivity to a subset of first-order
logic (FOL). The computational complexity
of DL reasoning services has been shown to
depend critically on the expressivity of the
language.

Concrete domain predicates offer an inter-
esting way to integrate quantitative data from
low-level signal processing with symbolic
high-level interpretations. Several DL systems
allow predicates over natural and real numbers
for concept definitions involving numerical
restrictions.

One of the first Computer Vision applications
developed with knowledge representation using
a DL-like formalism was VEIL [1] which
employed Loom for deductive reasoning in
high-level image interpretation. Loom is a very
expressive experimental system, but different
from modern DLs, Loom fs deductive procedures
are not rigorously complete. The usefulness of
DLs for Computer Vision applications is still
being explored. In principal, DLs may offer a
well-founded formalism for connecting vision
to higher-level knowledge and may provide
reasoning facilities for an artificial cognitive
system. But there are also aspects which limit the
usefulness for Computer Vision.

One problematic aspect is the limited
expressivity of DLs which may prohibit intuitive
concept formulations for symbolic scene
interpretation. For example, in applications
such as activity monitoring or situation recog-
nition, it is desirable to define compositional
hierarchies where concepts describe aggregates
of constituents meeting certain constraints.
Unfortunately, constraints cannot be expressed
except in simple cases, and powerful constraint
reasoners are not provided by DL systems.

Another problematic aspect is the limited sup-
port for the scene interpretation process which
can be provided by the deductive reasoning ser-
vices of DLs. Scene interpretation is known to
be basically equivalent to abduction or logical
model construction; hence none of the usual DL
reasoning services is immediately applicable.

It has been shown, however, that DLs can
be extended or combined with other systems in
useful ways. An interesting extension is by a
rule system. While the unrestricted use of rules
may jeopardize decidability, their employment
for ABox reasoning (as “DL-safe rules”) can be
supported without losing the advantages of a DL
system.

In [2] rules are used to model the abduction
process for multimedia interpretation, for exam-
ple, to provide deep annotations for multimedia
web pages. ADL TBox represents background
knowledge, and a DL ABox represents a low-
level description of a multimedia document. The
rules describe which higher-level hypotheses can
be entertained to explain the low-level facts.

In [3] an OWL ontology of activity concepts,
extended by SWRL rules (SWRL is the Semantic
Web Rule Language proposed for OWL), is used
as the DL kernel of a system for activity recogni-
tion. The concept definitions of the ontology are
translated into compositional hierarchies repre-
senting hypothetical activities and into rules and
constraints in JAVA and JESS (the JAVA Expert
System Shell). Using rule engines in parallel, the
interpretation system tries to instantiate activity
hypotheses based on scene observations, this way
generating scene descriptions at higher composi-
tional levels.
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Application

Applications areas of DL systems include:

– Semantic Web (e.g., logic-based information
retrieval)

– Electronic Business (e.g., reasoning about ser-
vice descriptions)

– Medicine, Bioinformatics (e.g., representing
and managing biomedical ontologies)

– Process Engineering (e.g., formal representa-
tion of chemical processes)

– Software Engineering (e.g., representing the
semantics of UML class diagrams)

– High-level Computer Vision (e.g., defining
high-level concepts for scene interpretation)

– Cognitive Robotics (e.g., for representing an
activity ontology)

Open Problems

The scalability of DL reasoning services is still a
challenge, and new optimization techniques are
developed to deal with large knowledge bases.
Practical experiences, in particular with OWL-
DL, have also revealed the need for more expres-
sivity. SWRL (Semantic Web Rule Language)
and its successor RIF (Rule Interchange Format)
provide extensions in terms of rule expressions
similar to Datalog. Computer Vision applications
are mainly restricted to symbolic interpretation
processes; DL system support for powerful inter-
faces to quantitative descriptions has yet to be
developed.

References

1. Russ TA, Macgregor RM, Salemi B, Price K, Nevatia
R (1996) VEIL: combining semantic knowledge with
image understanding. In: ARPA image understanding
workshop, Palm Springs, pp 373–380

2. Gries O, Möller R, Nafissi A, Rosenfeld M, Sokolski
K, Wessel M (2010) A probabilistic abduction engine
for media interpretation. In: Alferes J, Hitzler P,
Lukasiewicz T (eds) Proceedings of the international
conference on web reasoning and rule systems (RR-
2010), Bressanone

3. BohlkenW, Neumann B, Hotz L, Koopmann P (2011)
Ontology-based realtime activity monitoring using
beam search. In: Crowley JL, Draper BA, Thon-
nat M (eds) Proceedings of ICVS 2011. Springer,
Berlin/New York, pp 112–121

Detection and Localization

�Action Recognition in Real-World Videos

Dichromatic ReflectionModel

Shoji Tominaga
Department of Computer Science, Norwegian
University of Science and Technology, Gjøvik,
Norway
Nagano University, Ueda, Nagano, Japan

Definition

The dichromatic reflection model is a model
that describes light reflected from an object’s
surface as a linear combination of two compo-
nents. These components are the body (diffuse)
reflection and the interface (specular) reflection.

Background

Reflection models are used for image analysis
and object recognition in computer vision, as
well as image rendering in computer graphics.
Shafer proposed the dichromatic reflection model
for inhomogeneous dielectric materials [13]. The
first body reflection component provides the char-
acteristic object color, and the second interface
reflection component has the same spectral com-
position as illumination. Thus, according to the
dichromatic reflection model, all color values
on a uniform object surface are described as
a linear combination of two color vectors: the
illumination color vector and the body color vec-
tor. Tominaga and Wandell proposed a method



Dichromatic Reflection Model 301

D

for testing the adequacy of the model. They
show that under all illumination and viewing
geometries, the spectral reflectance function is
described as the weighted sum of two functions
of the constant interface reflectance and the body
reflectance [19]. This model is called the standard
dichromatic reflection model of Type I. More-
over, Tominaga extended this model to describe
surface-spectral reflectances of a variety of mate-
rials [15].

Theory

Standard Dichromatic Reflection Model

Model for Inhomogeneous Dielectrics (Type I)
The radiance of light reflected from an object’s
surface, Y (θ, λ), is a function of the wavelength
λg and the geometric parameters θ where λ

ranges over a visible wavelength and θ includes
the illumination direction angle, the viewing
angle, and the phase angle. The dichromatic
reflection model for an inhomogeneous dielectric
object describes the reflected light as the sum of
interface and body reflections, as shown in the
following formula:

Y (θ, λ) = cI (θ)LI (λ) + cB(θ)LB(λ) (1)

where the terms LI (λ) and LB(λ) are the spectral
power distributions of the interface and body
reflection components, respectively. These com-
ponents are unchanged as the geometric angles
vary, and then the weights cI (θ) and cB(θ) are
the geometric scale factors. Let SI (λ) and SB(λ)

be the surface-spectral reflectances for the two
components, and let E(λ) be the spectral power
distribution of the incident light to the surface. So
we derive

Y (θ, λ) = cI (θ)SI (λ)E(λ)+ cB(θ)SB(λ)E(λ)

(2)

The total reflectance is defined by dividing the
color signal Y (θ, λ) by E(λ) as

S(θ, λ) = cI (θ)SI (λ) + cB(θ)SB(λ) (3)

The standard dichromatic reflection model incor-
porates the Neutral Interface Reflection (or Con-
stant Interface Reflection) assumption [9], which
means that the interface reflection component
SI (λ) is constant and can be eliminated from
Eq. (3). This is shown as follows:

S(θ, λ) = cI (θ) + cB(θ)SB(λ) (4)

The Neutral Interface Reflection assumption is
applied to most materials, such as plastics and
paints, because the interface reflection follows
Fresnel’s law [1] where the index of refraction is
approximately constant for oil and water across
the visible spectrum. For such surfaces, the spec-
ular reflection appears to have the same color as
the illumination.

Extended Dichromatic Reflection Models

Model for Cloth (Type II)
There are many kinds of cloth materials such
as silk, wool, rayon, polyester satin, cotton, vel-
veteen, and velour. It is observed that the cotton
and velveteen include little specular reflection
from the surfaces, while the silk, wool, satin,
and velour include gloss on the cloth surfaces,
which show dichromatic reflection. The satin,
however, is not described in Type I, because
surface reflectance for such a material is dichro-
matic; but the specular reflection at the interface
includes no illumination color. Therefore, the
surface-spectral reflectance function is described
as the generalized dichromatic reflection model
of Type II seen below

S(θ, λ) = cI (θ) SI (λ) + cB(θ)SB(λ) (5)

where the interface reflectance component is not
necessarily constant on wavelength.
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Model for Metal (Type III)
Metals have quite different reflection properties
from dielectric materials, because they only
have interface reflection. If the surface is shiny
and stainless, body reflection of the reflected
light is negligibly small. So a sharp specular
highlight is observed only at the viewing
angle of the mirror direction. This type of
reflection follows Fresnel’s law, and the surface-
spectral reflectance function depends on the
incidence angle of illumination. It is pointed
out that the surface-spectral reflectances of some
metals are described by two interface reflection
components, one of which is the constant spectral
reflectance [15]. Therefore, the dichromatic
reflection model of Type III is defined (for
approximating the surface-spectral reflectance
function of a metal) as

S(θ, λ) = cI1(θ) SI (λ) + cI2(θ) (6)

The right-hand side in Eq. (6) represents two
interface reflection components. The first com-
ponent corresponds to the specular reflection at
the normal incidence, which produces the major
object color of a metallic surface. The second
component is constant on wavelength, which cor-
responds to the grazing reflection at the hori-
zontal incidence where the spectral reflectance is
whitened.

Application

The dichromatic reflection models are useful in a
variety of image processing, such as color image
understanding [6, 7, 10], object identification and
segmentation [5, 14, 18, 20], highlight and gloss
detection [8], and color constancy and illumi-
nant estimation [3, 17]. Most reflection models
in computer graphics are based on the standard
dichromatic reflection model [2, 4, 11, 12, 16].
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Definition

Differential geometry studies spatial entities
in local (infinitesimal) neighborhoods. This
approach enables one to exploit the power of
(multi-)linear algebra. Geometrical entities are
differential invariants, the generic example being
the curvature of planar curves. The number of
relevant differential invariants increases in more
complicated settings like – in this entry – that of
surfaces in three-dimensional Euclidean space.

Background

The differential geometry of surfaces in three-
dimensional Euclidean space is often called
“classical differential geometry” as its history
goes back to the founding fathers of infinitesimal

calculus, Newton and Leibnitz. There exists a
huge literature, although novel additions are still
forthcoming. This entry reviews the basics. There
is ample literature for those needing to delve
deeper.

Theory

Surfaces are smooth, two-parameter manifolds
immersed into Euclidean three-space E

3. One
requires that all partial derivatives are defined,
and one often requires some form of “genericity.”
For instance, many of the constructions discussed
here will be undefined for planar surfaces, or
spheres, and so forth.

There are many ways to represent surfaces,
many of them useful in particular contexts. Per-
haps the most commonly useful representation is
by means of a parameterization x(u, v), where
x ∈ E

3 and {u, v} ∈ R
2. That is to say, the surface

is treated as a two-parameter manifold immersed
in Euclidean three-space. This representation is
used here.

Unlike the case of space curves, there is no
obvious way to introduce a parameterization akin
to “arc length parameterization,” as this would
limit the discussion to “developable surfaces,”
surfaces that are metrically (“can be rolled out
into”) planes. Most surfaces are intrinsically
curved though; the sphere is an example. Thus
the parameterization is assumed to be general,
although regular, that is to say, the parameter
curves are supposed to mesh like the weave and
weft of a cloth.

One objective is to describe surfaces purely in
terms of their “shape,” disregarding their spatial
attitude and location. This is akin to the “natural
equations” of space curves, which are fully char-
acterized by their curvature and torsion. The case
of surfaces is more complicated because one can-
not simply characterize them by their curvatures,
but needs certain additional constraints. Unlike
curves, not anything goes (see below).

The Metrical Description of Surfaces
One naturally attaches a moving frame to a sur-
face, much like the Frenet frame in the case of
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curves. For a surface one has two tangents, xu
and xv , and in E3 this immediately gives rise to
a third vector xu × xv , thus yielding a complete
frame (see Figs. 1 and 2). The third vector is
usually normalized as n(u, v), the surface normal.
It is orthogonal to the tangent plane spanned by
the two tangents. The metric of the tangent plane
is conventionally expressed in terms of the First
Principal Form

I(du, dv) = dx · dx = Edu2 + 2Fdudv + Gdv2,
(1)

where

E(u, v) = xu · xu, (2)

F(u, v) = xu · xv, (3)

G(u, v) = xv · xv. (4)

Because the First Principal Form is positive def-
inite, one necessarily has E > 0, G > 0, and
EG − F2 > 0. Knowing I(u, v) allows one to
calculate the lengths of curves on the surface,
the surface area of patches of the surface, angles
between directions on the surface, and so forth.
Specifically, the area element is

dA(u, v) =
√

EG − F 2dudv = ‖xu × xv‖ dudv.

(5)

The First Principal Form is independent of the
representation, that is to say I(u, v) = I

′
(u

′
, v

′
),

although the coefficients E, F, and G are not.
The curvature of the surface has to do with the

second-order derivatives xuu, xuv, and xvv. One

conventionally introduces the Second Fundamen-
tal Form

II(du, dv) = −dx · dn = d2x · n
= Ldu2 + 2M dudv + N dv2,

(6)

where
L(u, v) = −xu · nu = xuu · n, (7)

M(u, v) = −1

2
(xu · nv + xv · nu) = xuv · n,

(8)

N(u, v) = −xv · nv = xvv · n. (9)

The Second Principal Form, like the First Prin-
cipal Form, is independent of the representation,
that is, II(u, v) = II

′
(u

′
, v

′
), if the normal has

the same direction (otherwise II changes sign),
although the coefficients L, M, and N are not.

The Second Principal Form describes the
shape of the surface in the sense that the distance
of the point x(u+ du, v + dv) to the tangent plane
at x(u, v) is (to the second order in {du, dv}) equal
to 1

2 IIu,v(du, dv), the surface 1
2 IIu,v(du, dv) being

the osculating paraboloid at {u, v}.
It is convenient to introduce Dupin’s indicatrix

(Figs. 3, 4, and 5)

IIu,v(du, dv) = ±ε2, (10)

with ε � 1, which, generically, is an ellipse
or hyperbola. One thinks of the indicatrix as
the outline of the wound that is inflicted if you
take a chip off the surface with a flat knife. If
the indicatrix is an ellipse, the surface is called
elliptic; if it is a hyperbola, it is called hyperbolic
at that point. In case LN − M2 = 0, one has the
degenerate parabolic case.
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There are various ways to conceive of the
curvature of surfaces. One common way is to
consider the curvatures of its normal sections
(Fig. 6) that are the curves of intersection with
planes that contain the normal direction. The
normal curvature depends on the direction du :
dv, the normal curvature being given by

kn(du, dv) = II(du, dv)

I(du, dv)

= Ldu2 + 2Mdudv + Ndv2

Edu2 + 2Fdudv + Gdv2
.

(11)

The principal curvature varies between two
extreme values, the principal curvatures κ1,2.
The principal curvatures are the solutions of the
quadratic equation

k2 − 2Hk + K = 0, (12)

where

H = EN + GL − 2FM

2
(
EG − F 2

) = 1

2
(k1 + k2) , (13)

K = k1k2 = LN − M2

EG − F 2 . (14)

The differential invariant H(u, v) is known as
the mean curvature, and the invariant K(u, v) as
the Gaussian curvature. One easily shows that
points with K > 0 are elliptic and points with
K < 0 hyperbolic. For points with K = 0, one
or both of the principal curvatures vanish. In the
latter case, one has planar points (the osculating
paraboloid being degenerated to a plane); in the
former case, a cylindrical point (the osculating
paraboloid being degenerated to a cylinder).

The “mean curvature” is not just the mean
of the principal directions. One can easily show
that the mean of the normal curvatures of arbi-
trary mutually perpendicular normal sections also
equals the mean curvature.

Another way to understand the Gaussian cur-
vature is through the relation

K = nu × nv dudv

xu × xv dudv
= dΩ

dA
, (15)

where d� is the solid angle subtended by the
bushel of normals inside the patch of area dA.
This is the direct analogon of the definition of
the curvature of curves as the rate of change of
direction with respect to arc length. One often
introduces the Third Principal Form III = dn · dn
through the relation

III − 2H II + K I = 0. (16)

Notice that III equals the First Principal Form of
the unit sphere. The mapping of the surface x(u,
v) on the unit sphere n(u, v) is known as the
Gauss map, or spherical image. Its area magni-
fication is the Gaussian curvature, and the mag-
nification in an arbitrary direction is the normal
curvature in that direction. The Gauss map is a
very convenient tool in a great many applications
(Figs. 7, 8, 9, 10 and 11).

The directions du: dv of the principal sections
are evidently special; they are known as the
principal directions of curvature (see Fig. 12).
One easily shows them to be mutually orthog-
onal. Curves for which the tangents coincide
with directions of principal curvature are lines of
curvature. A patch of the surface free of umbilical
points (points where Dupin’s indicatrix is a cir-
cle, thus where the principal directions are unde-
fined) can be covered with a mesh of two mutu-
ally orthogonal families of lines of curvature. For
such a parameterization, one has F = M = 0,
a most “natural” representation of the surface
for many purposes. In that case, the principal
curvatures are κ1 = L/E, κ2 = N/G. An intu-
itive, because geometrical, characterization of the
principal directions is dn × dx = 0. In such
a case, one has dn = − kdx, the formula of
Rodriguez. On the Gaussian sphere, conjugate
directions map on mutually orthogonal direc-
tions. Euler’s theorem kn = k1cos2 ϕ + k2 sin2
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Differential Geometry
of Surfaces
in Three-Dimensional
Euclidean Space, Fig. 3
Dupin’s indicatrix can be
understood as the shape of
the “wound” inflicted to a
surface by a cut parallel to
the tangent plane. Such
curves may have arbitrary
shapes, but generically one
obtains the cases shown in
Fig. 5 for infinitesimally
small wounds

Differential Geometry
of Surfaces
in Three-Dimensional
Euclidean Space, Fig. 4
Dupin’s indicatrix (the
“wound”) in the case of an
elliptic (top) and a
hyperbolic (bottom)
surface point. In the case of
the elliptic point, the
indicatrix has only one
branch; in the case of the
hyperbolic point it has two

Differential Geometry of Surfaces in Three-
Dimensional Euclidean Space, Fig. 5 Dupin’s indica-
trices for convex and concave elliptic, and for a hyperbolic

surface point. The principal directions are dashed, the
asymptotic directions drawn in yellow. The red and blue
curves represent the two branches of the indicatrix

ϕ relates the normal curvature in the direction
φ with respect to the first principal direction to
the principal curvatures. Notice that it trivially
applies to umbilical and planar points too.

In the case of a hyperbolic point, the principal
curvatures are of opposite sign and, by Euler’s

theorem, there apparently exist directions for
which the normal curvature vanishes. These
directions are given by II(du, dv) = 0, and are
known as asymptotic directions. At generic
hyperbolic points, there exist apparently two,
mutually transverse, asymptotic directions. They
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Differential Geometry
of Surfaces
in Three-Dimensional
Euclidean Space, Fig. 6
A series of normal
sections. The normal
planes contain the surface
normal. They cut the
surface in planar curves,
the “normal sections.” The
curvature of these normal
sections depends on the
orientation of the normal
plane. The orientations that
yield extremes of normal
curvature are the principal
directions

Differential Geometry
of Surfaces
in Three-Dimensional
Euclidean Space, Fig. 7
The field of surface
normals. The Gauss map,
or spherical image, is
obtained by moving all
normals to the origin.
Hence, one obtains a map
from the surface to the unit
sphere

Differential Geometry of Surfaces in Three-
Dimensional Euclidean Space, Fig. 8 At left, the so-
called “shoe surface” {u, v, u3/3 − v2/2}; at right, its
spherical image. Notice the fold in the spherical image.

The fold is image of the parabolic curve u = 0. The points
with parameters {±u, v} have parallel normals and thus
map on the same point of the unit sphere
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Differential Geometry
of Surfaces
in Three-Dimensional
Euclidean Space, Fig. 9
As seen from a tangent to
the parabolic curve, the
outline of the shoe surface
has an inflection. This is
generic

Differential Geometry of Surfaces in Three-
Dimensional Euclidean Space, Fig. 10 At left, the
“Menn’s surface” {u, v, au4 + u2v − v2}; at right, its

spherical image. Here the Gaussian image has a cusp;
in the neighborhood of the cusp point, one has triples of
parallel normals at distinct points of the surface

Differential Geometry of Surfaces in Three-
Dimensional Euclidean Space, Fig. 11 At the cusp
of Menn’s surface, the surface is very flat; from this

viewpoint, the curvature of the outline is zero. Such points
are generically isolated points on parabolic curves

are bisected by the principal directions. A
curve whose tangents are asymptotic directions
is known as an asymptotic curve. In the
neighborhood of a hyperbolic point, one may
cover the surface with a mesh of two mutually
transverse families of asymptotic lines. In such a
case, one has II(du, dv) = M dudv. The curvature
vector k of an asymptotic curve is perpendicular
to the normal; typically the osculating plane is
tangent to the surface. In such cases, the torsion

satisfies τ2 + K = 0, the formula of Beltrami–
Enneper (Fig. 13).

Directions du: dv and δu: δv are called mutu-
ally conjugate in case one has dx · δn= δx · dn= 0.
This condition can also be written in the form
Lduδu + M(duδv + δudv) + Ndvδv = 0, which
formally looks like a scalar product. At a generic
point, each direction has a conjugate mate. The
directions of principal curvature are mutually
conjugate, whereas the asymptotic directions
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Differential Geometry
of Surfaces
in Three-Dimensional
Euclidean Space, Fig. 12
At top left, a field of
tangent planes along a
curve: notice the rotations
of the plane. At top right,
the tangent planes along a
curve of principal
curvature. Here the tangent
planes rotate about axes at
right angles to the curve.
At bottom, a field of
tangent planes along an
asymptotic curve. Here the
tangent planes rotate about
the tangents of the curve

are self-conjugate. The conjugate directions are
important in computer vision because they relate
the occluding contour to the viewing direction.

Like in the case of curves, one would like to
attach a “moving frame” to the surface (Fig. 14).
Classically, one has the Gauss equations

⎛

⎝
xuu
xuv
xvv

⎞

⎠ =
⎛

⎝
Γ 1
11 Γ 2

11 L

Γ 1
12 Γ 2

12 M

Γ 1
22 Γ 2

22 N

⎞

⎠

⎛

⎝
xu
xv

n

⎞

⎠ , (17)

and the Weingarten equations

(
nu
nv

)

=
(

β1
1 β2

1
β2
1 β2

2

) (
xu
xv

)

, (18)

where the Γ k
ij are the Christoffel symbols of the

second kind, and

β1
1 = MF − LG

EG − F 2
(19)

β2
1 = LF − ME

EG − F 2 (20)

β1
2 = NF − MG

EG − F 2
(21)

β2
2 = MF − NE

EG − F 2 . (22)

The Christoffel symbols of the second kind
depend on the coefficients of the First Principal
Form and their derivatives. One has

Γ 1
11 = GEu−2FF u+FEv

2(EG−F 2)
Γ 1
12 = GEv−FGu

2(EG−F 2)

Γ 1
22 = 2GFv−GGu−FGv

2(EG−F 2)

Γ 2
11 = 2EFv−EEv+FEu

2(EG−F 2)
Γ 2
12 = EGu−FEv

2(EG−F 2)

Γ 2
22 = EGv−2FFv+FGu

2(EG−F 2)
.

(23)
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From the Gauss equations, the geometrical
interpretation of the Christoffel symbols of the
second kind is obvious: the symbol Γ k

ij is the
k-component (k = u, v) of the rate of change
of the tangent xi (i = u, v) when transported
over xj (j = u, v). Although the notation Γ k

ij

might suggest that the geometrical object � is a
tensorial quantity, this is really not the case; its
transformational properties are different.

In analogy with the case of space curves, one
might guess that the “natural equations” of a
surface are simply the coefficients of the First and
Second Principal Forms as a function of {u, v}.
However, this is not the case, the reason being
the equality of mixed partial derivatives (i.e.,
(xu, v)uv = (xu, v)vu). One has to impose the addi-
tional constraints (“compatibility equations”),

Lv − Mu = LΓ 1
12 + M

(
Γ 2
12 − Γ 1

11

)
− NΓ 2

11,

(24)

Mv − Nu = LΓ 1
22 + M

(
Γ 2
22 − Γ 1

12

)
− NΓ 2

12,

(25)

the Codazzi–Mainardi equations, and

LN − M2 = Fuv − 1
2Evv − 1

2Guu+

+ 1
EG−F 2

⎛

⎝det

∣
∣
∣
∣
∣
∣

0 Fv − 1
2Gu

1
2Gv

1
2Eu E F

Fu − 1
2Ev F G

∣
∣
∣
∣
∣
∣

− det

∣
∣
∣
∣
∣
∣

0 1
2Ev

1
2Gu

1
2Ev E F
1
2Gu F G

∣
∣
∣
∣
∣
∣

⎞

⎠ ,

(26)

which, by changing LN − M2 into K(EG −
F2), is known as Gauss’ Theorema Egregium.
It expresses the Gaussian curvature in terms of
the metric and its first-order derivatives, a major
result of classical differential geometry. Now we
have the result that I and II, satisfying the com-
patibility equations, and with E, G, EG − F2 > 0,
determine the surface up to Euclidean move-
ments.

With special parameterizations, these formu-
las may simplify greatly. For instance, in terms

of a parameterization with lines of curvature, the
Codazzi–Mainardi equations can be written as

∂k1

∂v
= 1

2

Ev

E
(k2 − k1) ,

∂k2

∂u
=1

2

Gv

G
(k1 − k2) .

(27)

An important special case in many appli-
cations is the description of the surface as
a Monge patch xex + yey + z(x, y)ez, where
ex, y, z are an orthonormal Cartesian basis of E3.
One can conventionally write p = zx, q = zy
for the first- and r = zxx, s = zxy, t = zyy
for the second-order partial derivatives of the
“height function” z(x, y). Then the tangents
are tx = ex + pez and ty = ey + qez, the
normal n = (−pex − qey + ez

)
/
√

g, where
g = 1 + p2 + q2 is the squared area element EG
− F2. The First Fundamental Form is

I(dx, dy) =
(
1 + p2

)
dx2 + 2pq dxdy

+
(
1 + q2

)
dy2,

(28)

the Second Principal Form

II(dx, dy) = r dx2 + 2s dxdy + t dy2

√
g

, (29)

whereas the Christoffel symbols become

Γ 1
11 = pr

g
, Γ 1

12 = ps
g

, Γ 1
22 = pt

g
,

Γ 2
11 = qr

g
, Γ 2

12 = qs
g

, Γ 2
22 = qt

g
,

(30)

and the coefficients of the Weingarten equations

β1
1 = spq−rq2−r

g3/2
, β1

2 = tpq−sq2−s

g3/2
,

β2
1 = rpq−sp2−s

g3/2
, β2

2 = spq−tp2−t

g3/2
.

(31)

Expression for many types of surface repre-
sentations (e.g., implicit form of the type F(x,
y, z) = 0) or special forms (e.g., surfaces of
revolution) are readily found in the literature.

Of course, one often has to deal with data
that are not in some convenient analytical form.
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Differential Geometry
of Surfaces
in Three-Dimensional
Euclidean Space, Fig. 14
The “moving frame” of a
surface. The rotations and
deformations of the frame
as it moves over the surface
are described by the
equations of Gauss and
Weingarten

This calls for methods of numerical analysis and
computational geometry.

Open Problems

In this section, we described the classical
differential theory of surfaces. Many settings
in computer vision and image processing do
not involve a Euclidean structure though. Cases
include affine and projective spaces, as well
as (especially important in image processing)
“isotropic differential geometry” in “graph
spaces.” In such cases, one needs to substitute
the appropriate differential geometry. Examples
abound where authors failed to take this into
account and used expressions from Euclidean
differential geometry inappropriately. The reader
should beware.
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Synonyms

Local invariants

Related Concepts

�Algebraic Curve

Definition

Invariants are entities that do not change
under the action of a transformation group,
e.g., projective invariants are unchanged under
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projective transformations. One can distinguish
between differential and algebraic invariants.
Algebraic invariants involve algebraic forms such
as points, lines, conics, etc., while differential
invariants involve general differentiable curves
and surfaces.

Background

This entry concentrates on differential invariants
of curves, mostly in the plane. Also touched on
are differential invariants of space curves and
surfaces and of fields such as optic flow and
shading.

Projective differential and algebraic invariants,
well developed in the mathematical literature,
were both introduced into computer vision in [1]
in order to eliminate the search for the correct
viewpoint when trying to recognize an object.
Compared to algebraic invariants, the advantages
of differential invariants are as follows: (i) Differ-
ential invariants can describe any arbitrary curve
visible in the image. Algebraic curves in images
are quite limited. While ellipses are common
as projections of round objects, other algebraic
curves are rare. (ii) Algebraic invariants require
whole curves to be visible and are thus suscep-
tible to occlusions. Differential invariants can be
extracted from any visible parts of the curve. The
disadvantage is that the differential invariants are
harder to extract from the image reliably.

Wilczynski’s method [2–4] was the first to
obtain closed-form formulas for projective invari-
ants of curves and surfaces. While interesting
mathematically, it has proved difficult to imple-
ment in vision because of the high order of
derivatives involved.

Cartan’s “moving frame” method [5] is easily
applied to transformations that have a natural arc
length, such as Euclidean or unimodular affine
transformations (i.e., area preserving, with |T | =
1). In the latter case, one can obtain the affine arc
length and affine curvature. However it is hard to
apply it to transformations (such as projectivities)
which do not admit a natural arc-length parame-
ter.

The determinants method [6] takes advantage
of the invariant properties of determinants under
linear transformations and is also very useful for
algebraic invariants. Here it is used to obtain the
affine arc length and curvature more simply than
in Cartan’s method.

All the above methods depend on the
availability of derivatives of the curve x(t)
w.r.t. the parameter t . These can be hard to
extract reliably. The canonical method [7, 8]
dispenses with both the derivatives and the
curve parameter. The parameter is not really
a part of the geometry of the curve; it is an
artifact introduced for convenience. It turns out
that while no method can reduce the number
of descriptors that one needs to extract, the
canonical method provides descriptors that are
more robust and easier to extract. In a nutshell, an
auxiliary implicit curve (i.e., a function f (x, y)

without a parameter) is fitted around a point of
the data curve. Then the coordinate system is
transformed to a canonical, or standard system,
in which this auxiliary curve has a standard
simple form. All quantities in this system are
invariant.

Another important issue is the connection
between 2-D images and 3-D objects. It has
long been known that (in general) the projection
from a 3-D shape to a single 2-D image
does not have invariants. There is simply not
enough information in a 2-D image to make
up for the missing depth information by purely
geometric means. The invariants described above
are 2-D to 2-D (or n-D to n-D). However,
there are useful invariant constraints between
invariants of 3-D curves and those of their 2-
D projections [9]. These can identify a shape
with the help of information from known
models.

As differential invariants often involve deriva-
tives, a method is described for obtaining accu-
rate derivatives [10]. The common methods yield
incorrect results even in the analytic noiseless
case. This systematic error is analyzed and cor-
rected. This method has wider applicability than
to invariants.
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Theory

It is useful in projective geometry to replace the
normal Cartesian coordinates (x, y) of a point in
the plane by a triplet

x = (x1, x2, x3)
t = λ(x, y, 1)t (1)

with an arbitrary factor λ. The t denotes the trans-
pose. To these one adds points with x3 = 0 which
have no corresponding Cartesian coordinates but
can be thought of as the points at infinity. The
point (0,0,0) is excluded from the space. The
homogeneous coordinates are also convenient in
the affine subgroup of the projective transforma-
tion group. In this case one sets λ = 1 and
x3 = 1.

In these coordinates a projective transforma-
tion (projectivity) can be written as a linear trans-
formation of x to x̃:

x̃ = λ(x)T x (2)

with T being a constant 3×3 matrix. The factor λ

can change arbitrarily from one point to another.
A shape can be described in different ways

by various shape descriptors sk . A curve can
be expressed parametrically as x(t), in which
case the descriptors are usually derivatives with
respect to t . It can also be expressed implicitly as
a function f (x, sk) = 0, with the descriptors sk
being constant coefficients, e.g., of a conic. They
transform to s̃k .

A relative invariant I of weight w is defined
as a function of the shape descriptors sk that
transforms as

I (s̃k) = J−wI (sk) (3)

J is the Jacobian of the transformation. There are
in general different weights for different J s: J of
the coordinate transformation is the determinant
|T |, and there is also J of a parameter change,
that is, dt̃/dt . A change can also result from
multiplication of sk homogeneously by a factor λ.
This is of importance in projective homogeneous
coordinates. In this case the invariant can change
as

I (λsk) = λdI (sk) (4)

with d being the degree of the invariant.
An invariant of weights and degree zero is

absolute.
The Jacobians and λ can vary from one point

to another, namely, they depend on x, t , but they
do not depend on the descriptors sk of the shape
itself.

General Properties
Among the general properties of interest here
are whether there is a set of invariants that are
necessary and sufficient to describe a shape. For
differential invariants the completeness theorem
holds ( [5], p. 144):

Theorem 1 All differential invariants of a (tran-
sitive) transformation group in the plane are
functions of the two lowest-order invariants and
their derivatives.

This is equivalent to saying that the original
curve can be reconstructed from the two lowest-
order independent invariants that exist at each
point, up to the relevant transformation. This is
because these invariants contain all the informa-
tion about the curve except for a group transfor-
mation.

This completeness makes it possible to create
an invariant “signature” of a curve. For exam-
ple, in the Euclidean case, all invariants can be
derived from the curvature and the arc length
(Euclidean invariants) at each point, κ(τ). Thus,
one can use the signature, namely, the plot of
the curvature vs. the arc length, to recognize the
curve up to a Euclidean transformation. Similar
quantities can be derived in the affine case as
described later. In the projective case, there is no
natural arc length or curvature, but there are still
two independent invariants at each curve point
that can be plotted against each other. Since this
signature is invariant to the viewpoint, the curve
can be recognized without a search for the correct
viewpoint. This is done without having to find the
point correspondence along the curve, a common
and difficult problem.
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Another general property is that the more gen-
eral the transformation is, the more descriptors
one needs to extract from the image to find
invariants. The general projectivity in the plane
has eight coefficients that need to be eliminated,
so to obtain two invariants, one needs to extract
from the image at least ten descriptors per point.
The affine subgroup has only six coefficients
to eliminate and the Euclidean has three. Thus
more general invariants lead to using higher-order
derivatives or higher-order implicit curves.

A 1-D Projective Differential Invariant
First it is worth mentioning a well-known one-
dimensional differential invariant, namely, the
Schwarzian derivative [6]. Consider a particle
moving along a straight line, with its position
at a time t measured by a (nonhomogeneous)
coordinate x(t). The Schwarzian derivative Sx is
defined as

Sx ≡
(

x′′(t)
x′(t)

)′
− 1

2

(
x′′(t)
x′(t)

)2

(5)

and it is invariant under projective transforma-
tions of the line, given by x̃ = (ax + b)/(cx +
d), with arbitrary a, b, c, d, as can be verified
directly.

Furthermore, the differential equation

Sx = g(t) (6)

(where g(t) is given) determines the function x(t)

up to 1-D projectivity. The Schwarzian derivative
is not invariant to change of the parameter t ,
except by a 1-D projectivity similar to that of x.

It is interesting that this invariant can be
obtained as an infinitesimal limit of the well-
known 1-D cross ratio.

Wilczynski’s Method
This method finds invariants of the projective
transformation (2) in stages. First it finds invari-
ants to the linear part T of the transformation, and
from those it derives invariants to λ and then to
change in the curve parameter t .

Given a plane curve x(t), invariants to T can
be obtained by solving the linear algebraic system
of equations

x′′′ + 3p1x′′ + 3p2x′ + p3x = 0 (7)

for the three unknowns p1, p2, p3 at point t . It is
easy to show, by multiplying the equation through
by T , that these solutions pi are invariant to T . (In
fact, pi are expressible as determinants which fit
the determinants method.) However, they are not
invariant to change in the arbitrary factor λ(x(t))
nor to change in the curve parameter t . From
these pi one constructs the “semi-invariants”:

P2 = p2 − p2
1 − p′

1 (8)

P3 = p3 − 3p1p2 + 2p3
1 − p′′

1 (9)

These remain unchanged under multiplication
of the coordinates by a factor λ(x), but not under
change of the parameter t .

The full invariants are

Θ3 = P3 − 3

2
P ′
2 (10)

Θ8 = 6Θ3Θ
′′
3 − 7(Θ ′

3)
2 − 27P2Θ

2
3 (11)

Under change of the parameter t , they trans-
form as Θ̃w = (dt̃/dt)−wΘw, and thus w is the
weight (Eq. (3)). The subscript corresponds to the
weight w.

Θ3 is the only linear invariant and 3
√

Θ3 can
be called the projective arc length. All other
invariants can be derived from Θ3,Θ8 and their
derivatives. This is a special case of the com-
pleteness Theorem 1. The original curve can be
derived from these up to a projectivity. The above
two invariants can thus be called a complete set
of independent invariants.

These two invariants still contain the unknown
weights, which vary from point to point. To elim-
inate them the method uses the invariant Θ12 =
3Θ3Θ

′
8 − 8Θ ′

3Θ8. This leads to the two absolute
invariants [1]:

I1 = Θ8
3

Θ3
8

, I2 = Θ4
3

Θ12
(12)
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These can be plotted against each other in
an invariant plane with coordinates I1, I2. This
yields an invariant signature curve identifying the
original curve up to a projectivity.

Since these invariants contain the eighth
derivative, they are not very practical. The semi-
invariant P2 above contains the fourth derivative
only. The other, P3, contains the fifth but it can
be replaced by

P ∗
3 = P3 − P ′

2 (13)

which again contain only fourth derivatives.
One can clearly see the burden that the curve

parameter imposes on the method. The semi-
invariants P2, P

∗
3 are invariant to the projec-

tivity and contain only fourth derivatives. It is
the requirement of invariance to the change of
parameter t that pushes the number of derivatives
needed to eight. Thus, if the parameter can be
eliminated, there will be fewer local quantities
needed, and the robustness of the invariance will
increase.

The Canonical Method
As was seen above, the need to eliminate the
parameter t pushes the order of derivatives
needed from four to eight. The canonical method
[7, 8, 11] does not have a parameter in the first
place. It can be applied quite generally but here
the application to projectivities is described.

The basic idea is to transform the given coordi-
nate system to a “canonical,” or standard system,
which is determined only by the shape itself.
Since this canonical system is independent of
the original system, it is invariant. All quantities
defined in it are thus invariant.

An important simple example is the Euclidean
invariants. To find an invariant at a given point
x1 on a curve, one attaches a circle at that point
so that the tangent (first derivative) of the circle
coincides with that of the curve at x1 (Fig. 1).
Also, the radius of the circle is set so that second
derivatives of the circle and the curve are equal
at x1. Thus one obtains three so-called points of
contact between the given curve and the circle
at x1 that are infinitesimally close and linearly
independent.

The next step is to move x1 to the origin and
rotate the curve so that its tangent coincides with
the x-axis. Now x1 and the derivative dy/dx

vanish there (Fig. 1). By this one has exhausted
all the Euclidean transformations (translations
and rotation) and arrived at a “canonical”
Euclidean coordinate system. In this system
all quantities are Euclidean invariants as they
cannot be changed by any further Euclidean
transformation. In particular, the distance from
x1 to the center of the circle (which now lies
on the y-axes) is invariant. This is the radius of
curvature which is thus proved invariant.

Although derivatives were mentioned, there is
no need to actually find them. Instead one can
fit a circle, (x − x0)

2 + (y − y0) = R2, to the
curve around point x1. The coefficients of this
circle, R, x0, y0, can be found without derivatives
or a curve parameter. In principle one needs only
three data points to fit a circle, but in practice one
wants a wider window around x1. It is convenient
to fit a conic in this window. A conic can be
expressed as a matrix of coefficients A, satisfying
xtAx = 0. This is easier to fit because the conic is
linear in its coefficients A. One can then find the
appropriate circle from this conic algebraically.
After moving to the canonical system, the new
conic coefficients Ã are all invariants.

This method can be generalized to the projec-
tive case. Instead of the circle, one uses a more
general “osculating curve” with more points of
contact with the given curve at x1. To eliminate
the eight projective coefficients, one needs an
osculating curve with at least eight contact points.
A suitable choice for projectivities is the “nodal
cubic” [7] (Fig. 1). After moving to a Euclidean
canonical system, this can be expressed as

fosc=c0x
3+c1y

3+c2xy2+c3x
2y+c4y

2+xy=0
(14)

This curve intersects itself at the origin so it
has two tangents there, one lying along the x-
axis. The other tangent is called the “projective
normal” [4].

The image curve is given as data pixels so one
needs to fit a differentiable curve to it. Instead
of fitting a conic A around x1 as before, one fits
a higher-order form such as a cubic or a quartic
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Curve fitted
to data

Osculating
curve

R

Differential Invariants, Fig. 1 Osculating curves: circle (left) and folium (leaf) of Descartes (right)

f (x) = 0. In principle, a cubic f will do, having
nine coefficients plus the point’s position on the
curve. In practice, however, it was found [11]
that a wide window is necessary for robustness to
noise, and this requires a higher-order curve such
as a quartic

f (x, y) = a0 + a1x + . . . + a14y
4 = 0 (15)

(Not all its coefficients need be independent.)
After finding f above by fitting to the data,

one finds the osculating nodal cubic (14) from it
algebraically. The goal is now to transform the
coordinates so that this nodal cubic (14) takes on
the simple coefficient-free form

x3 + y3 − 3xy = 0 (16)

known as a folium of Descartes, Fig. 1, using
projective transformations.

One obtains it, in a nutshell, as follows. Three
of the eight projectivity parameters were already
eliminated by moving to a Euclidean canonical
frame, namely, moving the origin to x1 and rotat-
ing so that the x-axis is tangent to the curve there.
Thus one already has the x-axis of the canonical
system. The canonical y-axis is now chosen as
the other tangent of the nodal cubic, the projective
normal. One now skews the system so that this

projective normal becomes perpendicular to the
x-axis. This will eliminate the term with c4 in the
nodal cubic (14). Next, the coefficients c0, c1 are
eliminated by scalings in the x and y directions.
One obtains

x̃3 + ỹ3 + c̃2x̃ỹ2 + c̃3x̃
2ỹ + x̃ỹ = 0 (17)

The coefficients in this system, c̃2 and c̃3,
are differential affine invariants because one has
reached an affine canonical system – all possi-
ble affine transformations (translations, rotation,
skewing, scalings) have been used to eliminate
all the possible affine transformation coefficients.
The remaining coefficients cannot be changed
by any further affine transformation so they are
affine invariants.

A projective canonical system is obtained by
eliminating the last two coefficients c̃2, c̃3 using
the remaining projective transformations of tilt
and slant, obtaining the folium of Descartes (16).
One then transforms the original fitted curve f ,
Eq. (15), to this new system and obtains new
coefficients ãi for it. Since this system is projec-
tively invariant, these ãi are invariants. One can
choose some suitable combinations of them as
invariants I1, I2.

In summary, the canonical method with
implicit curves was used to eliminate the
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high-order derivatives and the curve parameter.
Further details can be found in [11].

The Method of Determinants
The method of determinants is the main tool for
deriving invariants of algebraic forms. It can also
be used to derive differential affine and Euclidean
invariants.

This method takes advantage of the proper-
ties of determinants under linear transformations.
Many geometric entities can be cast in the form of
determinants of points in homogeneous coordi-
nates. In 1-D, the distance between points x1, x2
is

D12 = x1 − x2 =
∣
∣
∣
∣
x1 x2
1 1

∣
∣
∣
∣ (18)

Similarly in 2-D, the area of a triangle can be
written as

S123 = 1

2

∣
∣
∣
∣
∣
∣

x1 x2 x3
y1 y2 y3
1 1 1

∣
∣
∣
∣
∣
∣

(19)

In the projective case, the coordinates can
be multiplied by arbitrary factors, e.g., xi =
λi(xi, yi, 1)t . Thus the projective transformation
(2) transforms a determinant by multiplying it by
|T | and λi :

|x̃1, x̃2, x̃3| = λ1λ2λ3|T ||x1, x2, x3| (20)

Thus, a determinant of points in homogeneous
coordinates is a relative projective invariant of
weight 1 in |T | and degree 1 in each λi . It is a
relative affine invariant with λi = 1.

The above properties are used to find invari-
ants of various algebraic forms. The main trick
is to find ratios of various determinants (e.g.,
lengths, areas) in which all the factors λi as well
as |T | cancel out, so one gets absolute invariants.
When ratios cannot do the trick, then “cross
ratios,” or ratios of ratios, usually do. Beyond
points, determinants of higher-order forms such
as conics and cubics are also easily obtained, e.g.,
for two conics [6]. The duality of points and
lines in the projective case makes it possible to
interchange their roles in the determinants.

Explicit Differential Affine Invariants
In the canonical method, one obtains implicit
(parameter-less) invariants. Here one obtains
explicit differential affine invariants by using
the determinants of the derivative vectors x′, x′′,
etc. at point t . The affine case is simpler than
the projective case. First, it is assumed that
λ = 1 so λ does not have to be eliminated.
Second, the third coordinate is now x3 = 1,
and it is involved only with translations.
Since the derivatives eliminate any translation
coefficients, it is sufficient now to deal with a 2-
D nonhomogeneous coordinate transformation:

x̃ =
(

x̃

ỹ

)

= T

(
x

y

)

=
(

a b

c d

) (
x

y

)

(21)

For this transformation the 2-D determinant
|x′, x′′| is a relative invariant of weight 1 in |T |,
analogous to Eq. (20). It can thus be used to
define the affine arc length [5]:

τ =
∫ t

t0

|x′, x′′|1/3dt (22)

It is absolute w.r.t. t̃ ′ but relative w.r.t. |T |.
It will now be used as an invariant parameter
for all the differentiation, denoting derivatives
as, e.g., xτ . Although an arc length depends on
a starting point t0, the derivatives with respect
to it do not. Higher-order relative invariants can
now be obtained as further determinants. One
immediately obtains the affine curvature:

κaf = |xττ , xτττ | (23)

involving the fourth-order derivative w.r.t. t .
The affine curvature is constant along conics

and only conics. It is related to the conic area, a
relative invariant, πκ

3/2
af . Thus one can interpret

the affine curvature geometrically as the area of a
conic that osculates the curve at x(τ ).

For unimodular affine transformations, i.e.,
with |T | = 1, all these relative invariants become
absolute. They have been obtained by Cartan in
the moving frame method [5].



Differential Invariants 321

D

Explicit Differential Euclidean Invariants
In this case T is orthonormal, and one has a
new invariant, namely, the differential arc length
x′t · x′. This can be used to define the integral
Euclidean arc length:

τ =
∫

(x′t · x′)1/2dt (24)

Using derivatives w.r.t. this parameter, one can
define the Euclidean curvature

κ = |xτ , xττ | = xτ yττ − yτ xττ (25)

The Euclidean invariants are all absolute as
|T | = 1.

Projection from 3-D to 2-D
The above invariants involve the transformation
from 2-D to 2-D shapes. Similar invariants can be
derived in n-D spaces. In vision one is more often
interested in the projection from 3-D objects to
2-D images. It has been shown that there are no
invariants to such transformations because one
looses the depth dimension.

However it has been shown [9, 12] that there
exist invariant constraints, i.e., quantities in the
image that constrain the 3-D corresponding
invariants to a subspace of their full invariant
space. In particular, for given five 2-D image
points, the corresponding 3-D invariants are
constrained to lines in a 3-D invariant space.
These constraints were obtained by analyzing
the projection properties of determinants. Similar
methods have been used to obtain constraints
in the differential case for the projection of 3-D
curves to 2-D [9].

Such constraints are very useful in combi-
nation with given 3-D models of the objects.
These models provide additional constraints that,
together with the invariant constraints, identify
an object uniquely. This was applied in [12] to
images of vehicles.

Related Invariants
Euclidean and affine differential invariants
of space curves and surfaces are the subject
of differential geometry, e.g., [5]. Projective
differential invariants of surfaces are derived
in [3]. Semi-differential invariants, combining

differential and algebraic invariants, reduce the
number of derivatives at the price of adding
points or lines with unknown correspondence.
They are described in [8, 13, 14]. Invariants of
field flows are described in [15] and are applied
to shape from shading in [16]. The evolution of
invariants in scale space is studied in [13, 15].
Invariant differentiation, based on constructing
invariants of mesh points along curves, is studied
in [17, 18].

Accurate Differentiation
Many of the methods described above depend on
obtaining derivatives of the image data. Given
the noise and digitization errors in the image,
derivatives can be quite inaccurate, especially at
high orders. It is shown below that the current
differentiation methods are inaccurate even for a
first-order derivative in noiseless data. It is shown
how to obtain accurate derivatives of any order in
the noiseless case and how to mitigate the effect
of the noise. Details are in [10].

To overcome the noise, it is common to con-
volve the image with a smoothing filter S such
as a Gaussian. For a differentiable S, it is easy
to show, using integration by parts, that the n-th
derivative of the image data, f (n), smoothed by
S, can be obtained as a convolution with the n-th
derivative S(n) of the filter S:

f (n)
s = S ⊗ f (n) = S(n) ⊗ f (26)

where f
(n)
s is the smoothed version of f (n). In

practice it is common to use a version of the filter
S(n) that is truncated on a finite interval, S

(n)
trunc.

However this truncated filter is not differentiable
at its ends so the above equation is not valid for it.
This is more than a technicality. A quick check of
the above equation with simple polynomial data,
f = xk , will immediately reveal that a truncated
Gaussian filter yields erroneous derivatives even
in this analytic, noiseless case. The error gets
much worse for higher-order derivatives.

To solve the problem, the truncated filter can
be replaced by a differentiable approximation of
it such as a spline [10]. For the n-th derivative,
one can use an n-th-order differentiable spline.
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In practice, there is no need to really calculate
the splines. It is well known that the n-th-order
derivative of an n-th-order polynomial spline,
defined on given n + 1 points, at the center of the
spline, is nothing but the n-th-order central differ-
ence of the given points. (For an even number of
points, this holds between the two central points).
The first-order differencing can be applied as a
filter D = (−1, 1). Applying this filter n times
yields the corrected filter for smoothed n-th-order
differentiation [10]:

S[n] = D ⊗ D ⊗ D ⊗ . . . ⊗ S = Dn ⊗ S (27)

This difference-based filter replaces the
erroneous derivative-based filter S

(n)
trunc, and the

invalid differentiation equation (26) is replaced
by

f (n)
s = Dn ⊗ S ⊗ f = S[n] ⊗ f (28)

Unlike the old filter, this new filter yields accu-
rate derivatives for polynomials up to order n+1,
namely, f

(n)
s = f (n), for the non-smoothing

filter S = δij . For higher-order polynomials, the
derivatives will be smoothed by the spline, but
there will be no errors from filter truncation.

It is easy to show that the Dn are equal to the
standard central difference filters, e.g.:

D = (−1, 1) (29)

D2 = (1,−2, 1) (30)

D3 = (−1, 3,−3, 1) (31)

D4 = (1,−4, 6,−4, 1) (32)

For a pixel distance of h, the above filters are
divided by hn.

Regardless of the smoothing filter S, it was
shown [10] that better noise suppression is
obtained when it is applied over a larger window,
namely, to more data points, because in a larger
sample, random errors tend to cancel out.

Applications

Object Recognition by Contours
In [11] various objects are recognized by finding
invariants of their contours. For each contour an
invariant “signature” curve is obtained. This sig-
nature is unique to the contour up to the relevant
transformation by Theorem 1.

In this case the contour is an implicit curve,
f (x, y) = 0. The canonical method described
above is appropriate for this case. Invariants are
found at each point of the contour by fitting an
implicit quartic curve to the contour data around
that point and finding the invariants of this quartic
at that point. Two invariants are then plotted
against each other to obtain the invariant signa-
ture. As in the explicit case, one needs a wide
window around each point to reduce noise, which
requires a higher-order curve such as the quartic
to better fit to the data, even though the analytic
invariants only need a cubic curve. In [19], a
similar approach was used to recognize logos,
which usually comprise of well-defined curves.
A hierarchical approach was used for feature
extraction, page segmentation, and indexing.

Recognizing Surfaces
This application deals with surfaces that have
been scanned and digitized in 3-D. The output of
such scanning is often some curves on the surface
rather than the surface range data. Therefore it is
useful to recognize space curves in order to rec-
ognize the surface. In [20] differential invariants
of space curves are used to recognize geometric
primitives such as spheres, cylinders, cones, and
tori. A 3-D version of the canonical method is
used.
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Synonyms

Diffuse shading; Diffusely scattered reflectance;
Lambertian reflectance

Related Concepts

�Lambertian Reflectance

Definition

Diffuse reflection is a qualitative term to describe
the relative, low-pass responses of different mate-
rials to incident illumination.

Background

Diffuse reflection can be described in relation
to its opposite, specular (i.e., mirror) reflection.
While an object with specular reflection allows
direct measurement of the light that strikes the
surface of the object, diffuse reflection destroys
(i.e., “blurs”) the illumination information. With-
out scene priors, it is generally impossible to
accurately recover the incident illumination on
a diffuse scene from measured intensities, even
if the surface geometry, viewing direction, and
object BRDF are known. A large class of mate-
rials can be described by diffuse reflectance mod-
els which, although usually low parametric, are
diverse in nature and do not follow any fixed
analytic form.

Theory

Ramamoorthi et al. [1] have described the diffuse
reflectance as containing lower frequencies in the

https://doi.org/10.1007/978-0-387-31439-6_534
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(a)

Incident ray

Viewing ray

Sub-surface 
pigments

Micro-facet structures

(b)

Incident ray

Viewing ray

Diffuse Reflectance, Fig. 1 The two diagrams depict
diffuse reflection for a scene point with a vertical surface
normal. In (a), color pigments under a smooth, non-
specular surface scatter the incident illumination back into

the viewing direction. In (b), reflection off microfacets
can also cause diffuse reflection, even if the individual
microfacets exhibit specular reflection

appropriate dual space. Generally, this implies
that a low number of bases can fully describe the
diffuse reflectance function, although the exact
number depends on the analytic form of the
reflectance function.

Diffuse reflectances from smooth non-
specular surfaces are modeled as rays of light
that penetrate into the surface of a materials,
reflecting off of and being absorbed by flakes
of color pigments, as shown in Fig. 1a. Such
a physical explanation describes the popular
Lambertian model [2] and a variety of extensions
such as through microfacets [3]. Rough specular
surfaces can also exhibit diffuse reflection, and
these can be accounted for through microfacet
modeling [4] as shown in Fig. 1b.

Since diffuse reflection is a subjective term,
many scene effects that exhibit the property
of “blurring” the incident illumination are
commonly termed as diffuse effects. These
include global illumination effects in the scene
such as sub-surface scattering and interreflections
in skin and marble [5–7]. Strictly speaking,
however, such effects are high parametric and
global in nature and should not be incorrectly
modeled as local, diffuse reflectance.

Computational Tractability

The main popularity of diffuse reflectance mod-
els is that they are low parametric and there-
fore have been used for inferring scene geome-

try (photometric stereo [8], shape from shading
[9]). The high-frequency and global effects of the
scene are modeled as noise in these approaches
and usually ignored. Diffuse reflection has been
shown as a good prior for scene recovery [10,11].
Psychophysical experiments have also confirmed
that humans can accurately estimate scene and
illumination properties [12], and much work has
been done to replicate this for machine vision,
tracing its roots back to retinex theory [13].

With scene priors, recent efforts have shown
that inverse rendering is possible not only with
diffuse reflectance but also with scenes exhibiting
complex reflectances [14]. The strategy has been
to focus on scenes where large amounts of data
are available and learn deep priors that allow
mapping between even single images and all
scene properties, such as surface normals and
material effects. These recent trends may force a
redefinition of the relative term “diffuse” to mean
reflectances for which priors exist, possibly from
large amounts of data.
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Synonyms

Anisotropic diffusion; Diffusion; Diffusion
PDEs; Nonlinear diffusion

Related Concepts

�Denoising

Definition

Diffusion filtering is a smoothing technique moti-
vated by equilibration processes in physics that
allows for structure-preserving smoothing.

Background

Many problems in computer vision require
smoothing or spatial aggregation of information.
The most basic problem is image denoising,
where noise ought to be removed from an image
while preserving its relevant structures. Diffusion
filtering is one among several methodologies
that are capable of removing noise without
blurring and dislocating image edges. The
strong relationships to other filters with similar
capabilities, such as wavelet shrinkage, the
bilateral filter, and variational regularization,
have been shown in various papers [1–3].

Theory

Diffusion filtering is motivated by the concept of
diffusion in physics. Diffusion leads to equilibra-
tion of concentrations, for instance, in fluids. It is
by definition a mass preserving process. Mass can
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move to locally change the concentration levels,
but it cannot appear or disappear.

In diffusion, a concentration gradient∇u cre-
ates a flux j as described by Fick’s law:

j = −D∇u, (1)

where D is a positive definite, symmetric diffu-
sion matrix, which describes the magnitude and
orientation preference of the flux. Combining
Fick’s law with the mass preservation property
leads to the diffusion partial differential equation
(PDE)

∂u

∂t
= − div j = div (D∇u) . (2)

In image processing, we can interpret image
intensities as concentrations and use the same
diffusion PDE to smooth these image intensities.
The initial condition is set by the input image

u (x, y, t = 0) = I (x, y) . (3)

For t → ∞, diffusion yields the equilibrium
state, i.e., a constant value image, where the value
is the mean of the input image.

Depending on the choice of the diffusion
matrix D, one can distinguish different cases:

– If D is the identity matrix, we obtain homoge-
nous diffusion, where mass is equally dis-
tributed in all directions with a magnitude that
only depends on the gradient. The correspond-
ing PDE is also known as the heat equation,
and there exists an analytic solution, which
corresponds to convolution with a Gaussian
kernel with variance σ2 = 2t.

– IfD is a diagonal matrix with identical entries,
it degenerates to a scalar g, often called diffu-
sivity, and leads to isotropic diffusion. There is
no orientation preference, but the magnitude
of the flux may vary from point to point
independent of the gradient. The diffusivity
can be chosen as a decreasing function of the
image gradient, for instance,

g (|∇I |) = 1

| ∇I | +1
, (4)

which leads to a reduction of diffusion across
edges and hence edge-preserving smoothing.

– In case of a general matrix D, the diffu-
sion process is called anisotropic diffusion,
as there is also a preference with regard to
the orientation of smoothing. For instance,
it is quite common to smooth along edges,
but not across them. There is some confusion
about terminology in the literature, as many
papers, among them the original work on dif-
fusion filtering by Perona andMalik [4], speak
of anisotropic diffusion, although they use a
scalar diffusivity rather than the full diffusion
tensor.

Diffusion filters can further be separated into
linear and nonlinear diffusion filters. In case of
linear filters, the diffusion matrix D or diffusivity
g does not depend on the smoothed image u but
on some external quantity, usually the gradient
of the input image I. This leads to PDEs that
are linear in u. In case of nonlinear diffusion
filters, the diffusion matrix or diffusivity depends
on u and thus lead to nonlinear PDEs. Usually,
nonlinear diffusion filters should be preferred as
they take the enhanced image u into account
when defining the areas where smoothing should
be reduced, whereas linear diffusion relies on
noisy measurements in the input image.

The diffusion PDEs can be solved numerically
using iterative schemes. Most common is an
explicit time discretization, which leads to the
update equation

uk+1 = uk + τ div
(
D

(
uk

)
∇uk

)
, (5)

where τ is a time step size, which must not be
too large for the scheme to be stable. Details
about discretization, stability, and many other
properties of diffusion filters can be found in [5].
For fast implementations, it is also recommended
to look into the works on AOS and FED schemes
[6, 7].
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Diffusion Filtering, Fig. 1 Left: noisy color image. Right: result after applying nonlinear isotropic diffusion

Application

Diffusion filters are mainly used for image
denoising. The corresponding PDEs, however,
can be found in numerous other computer
vision applications, especially in the context
of variational methods. The Euler-Lagrange
equation of the regularizer in variational models
leads to a diffusion PDE of the general form

div (D∇u) = 0, (6)

where u in this case is the modeled function
that should minimize the variational energy. Very
popular is the total variation regularizer [8]

∫
|∇u| dxdy (7)

the Euler-Lagrange equation of which is

div

( ∇u

| ∇u |
)

= 0. (8)

A (linear) diffusion process is implicitly also
part of Laplacian eigenmaps and spectral cluster-
ing [9, 10].

Experiment

Diffusion processes can be easily extended to
vector-valued images, such as color images.
Figure 1 shows a noisy color image and the
enhanced version after applying total variation
flow

∂uk

∂t
= div

⎛

⎝ ∇uk√∑3
l=1 |∇ul |2

⎞

⎠ . (9)
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Synonyms

Relation between objects and their digital images

Definition

Digitization is a mathematical model of con-
verting continuous subsets of the plane or space
(representing real objects) to digital sets in Z

2

or Z
3 or similar grids (representing segmented

images of these objects). This definition can be
generalized to any dimension n > 3: Digitization
converts (transforms) continuous subsets of Rn

to digital sets in Z
n or, equivalently, to functions

from Z
n to {0, 1}.

Background

A fundamental task of knowledge representa-
tion and processing is to infer properties of real
objects or situations given their representations.
In spatial knowledge representation and, in par-
ticular, in computer vision and medical imaging,
real objects are represented in a pictorial way as
finite and discrete sets of pixels or voxels. The
discrete sets result in a quantization process, in
which real objects are approximated by discrete
sets. In computer vision, this process is called
sampling or digitization and is naturally realized
by technical devices like computer tomography
scanners, CCD cameras, or document scanners.
Digital images obtained by digitization are suit-
able to estimate the real object properties like vol-
ume and surface area. Therefore, a fundamental
question addressed in spatial knowledge repre-
sentation is: Which properties inferred from dis-
crete representations of real objects correspond
to properties of their originals, and under what
conditions this is the case? While this problem
is well-understood in the 2D case with respect to
topology [1–5], it is not as simple in 3D, as shown
in [6]. Only recently a first comprehensive answer
to this question with respect to important topolog-
ical and geometric properties of 3D objects has
been presented in [7, 8].

Some recent works done for the general case
are shown below. It is proven in [9] that although
Gauss digitized boundaries of subsets of Rn, for
n ≥ 3 may not be manifolds, non-manifoldness
may only occur in places where the normal vector
is almost aligned with some digitization axis,
showing that although an object and its digitiza-
tion are close in the Hausdorff sense through the
projection map, they may not be homeomorphic.
Nevertheless, in that entry, the authors prove
the validity of the digital surface integral as a
multigrid convergent integral estimator of subsets
of Rn, for n ≥ 3, as long as the digital normal
estimator is also multigrid convergent. In addi-
tion, [10] is a short survey on digital analytical
geometry where the main idea is to analytically
characterize digital sets to describe its continuous
counterpart in R

n, for n ≥ 3 and related trans-
form. This way, digital subsets of Zn are defined
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by a list of inequalities and not by an enumer-
ation of points in Z

n. Finally, in [11], a modus
operandi is proposed to model a digital subset of
Z

n as a cubical complex proving that the digital
fundamental group of a digital subset of Z

n is
isomorphic to the fundamental group of its corre-
sponding cubical complex, ensuring the topolog-
ical correctness of the approach. Thus, properties
of digital subsets of Zn can be computed on their
corresponding cubical complexes using powerful
algebraic-topological tools. Observe that this last
approach “closes" a loop: starting from a con-
tinuous subset of R

n, a digital subset of Z
n is

obtained and used to compute a cubical complex
whose embedding in R

n is again a continuous
subset of Rn.

The description of geometric and, in particu-
lar, topological features in discrete structures is
based on graph theory, which is widely accepted
in the computer science community. A graph
is obtained when a neighborhood relation is
introduced into a discrete set, e.g., a finite subset
of Z2 or Z3, where Z denotes the integers. On
the one hand, graph theory allows investigation
into connectivity and separability of discrete
sets (e.g., for a simple and natural definition of
connectivity, see [12, 13]). On the other hand, a
finite graph is an elementary structure that can
be easily implemented on computers. Discrete
representations are analyzed by algorithms based
on graph theory, and the properties extracted are
assumed to represent properties of the original
objects. Since practical applications, for example,
in image analysis, show that this is not always
the case, it is necessary to relate properties of
discrete representations to the corresponding
properties of the originals. Since such relations
can describe and justify the algorithms on
discrete graphs, their characterization contributes
directly to the computational investigation
of algorithms on discrete structures. This
computational investigation is an important
part of the research in computer science and,
in particular, in computer vision [14], where
it can contribute to the development of more
suitable and reliable algorithms for extracting
the required shape properties from discrete
representations.

It is clear that no discrete representation can
exhibit all features of the real original. Thus
one has to accept compromises. The compro-
mise chosen depends on the specific applica-
tion and on the questions which are typical for
that application. Real objects and their spatial
relations can be characterized using geometric
features. Therefore, any useful discrete represen-
tation should model the geometry faithfully in
order to avoid false conclusions. Topology deals
with the invariance of fundamental geometric
features like connectivity and separability. Topo-
logical properties play an important role, since
they are the most primitive object features and
human visual system seems to be well-adapted to
cope with topological properties.

However, one does not have any direct access
to spatial properties of real objects. Therefore,
real objects are represented as bounded subsets
of the Euclidean space R

3 and their 2D views
(projections) as bounded continuous subsets of
the plane R

2. Hence, from the theoretical point
of view of knowledge representation, the goal is
to relate two different pictorial representations
of objects in the real world: a discrete and a
continuous representation.

Already two of the first entries in computer
vision deal with the relation between the con-
tinuous object and its digital images obtained
by modeling a digitization process. Pavlidis [1]
and Serra [2] proved independently in 1982 that
an r-regular continuous 2D set S (the defini-
tion follows below) and the continuous analog
of the digital image of S have the same shape
in a topological sense. Pavlidis used 2D square
grids and Serra used 2D hexagonal sampling
grids.

In 3D this problem is much more complicated.
In 2005 it has been shown in [6] that the con-
nectivity properties are preserved when digitizing
a 3D r-regular object with a sufficiently dense
sampling grid, but the preservation of connec-
tivity is much weaker than topology. Stelldinger
and Köthe [6] also found out that topology
preservation can even not be guaranteed with
sampling grids of arbitrary density if one uses
the straightforward voxel reconstruction, since
the surface of the continuous analog of the digital
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image may not be a 2D manifold. The question
on how to guarantee topology preservation dur-
ing digitization in 3D remained unsolved until
2007.

The solution was provided in [7], where
the same digitization model as Pavlidis and
Serra is used, and also r-regular sets (but in
R
3) are used to model the continuous objects.

As already shown in [6], the generalization of
Pavlidis’ straightforward reconstruction method
to 3D fails since the reconstructed surface
may not be a 2D manifold. For example,
Fig. 1a, b shows a continuous object and its
digital reconstruction whose surface is not a
2D manifold. However, it is possible to use
several other reconstruction methods that all
result in a 3D object with a 2D manifold surface.
Moreover it is also shown in [7] that these
reconstructions and the original continuous
object are homeomorphic and their surfaces are
close to each other.

The first reconstruction method, majority
interpolation, is a voxel-based representation
on a grid with doubled resolution. It always leads
to a well-composed set in the sense of [15],
which implies that a lot of problems in 3D digital
geometry become relatively simple.

The second method is the most simple one.
It just uses balls with a certain radius instead
of cubical voxels. When choosing an appropriate

radius, the topology of an r-regular object will
not be destroyed during digitization.

The third method is a modification of the well-
known marching cubes algorithm [16]. The orig-
inal marching cubes algorithm does not always
construct a topologically sound surface due to
several ambiguous cases [17, 18]. As shown in
[7] and [8], most of the ambiguous cases can not
occur in the digitization of an r-regular object and
that the only remaining ambiguous case always
occurs in an unambiguous way, which can be
dealt with by a slight modification of the original
marching cubes algorithm. Thus the generated
surface is not only topologically sound, but it
also has exactly the same topology as the original
object before digitization. Moreover it is shown
that one can use trilinear interpolation and that
one can even blend the trilinear patches smoothly
into each other such that one gets smooth object
surfaces with the correct topology. Each of these
methods has its own advantages making the pre-
sented results applicable to many different image
analysis algorithms.

In the general case, well-composed digital
subsets of Z

n do not present topological para-
doxes. They also have very interesting proper-
ties and practical applications. Different “flavors"
of well-composedness (WC) are present in the
literature: WC based on equivalence of connec-
tivities (EWC), digital WC (DWC), WC in the

Digitization, Fig. 1 The digital reconstruction (b) of an r-regular object (a) may not be well-composed, i.e., its surface
may not be a 2D manifold as can be seen in the magnification
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Alexandrov sense (AWC), and WC in the con-
tinuous sense (CWC). All these definitions are
equivalent in 2D. For the 3D case, we have DWC
⇔ AWC ⇔ CWC. For the nD case, n ≥ 3, we
have EWC ⇐ DWC. The rest of equivalences for
the case n > 3 are open problems nowadays.
The definition of well-composedness has also
been extended to arbitrary grids and multivalued
images (AGWC) (see [19]).

Methods for repairing digital subsets of Z
n,

for n > 3, to convert them in well-composed
ones are a complicated open problem. A first
step in this direction is done in [20] in which a
combinatorial method is given for computing a
simplicial complex homotopy equivalent to the
cubical complex associated to a given digital
subset of Zn. This simplicial complex is contin-
uously well-composed for n ≤ 3 and weakly
well-composed for n > 3 in the sense that for
any two n-simplices incident to a common vertex
v, there always exists a face-connected path of
n-simplices incident to v. A graphical diagram
of the method is given in Fig. 2. Observe that
cubical and simplicial complexes derived from
that method are also stored as digital subsets of
Z

n, so that later calculations on the elements of
the complex can be done efficiently.

Theory

The (Euclidean) distance between two points x

and y in R
n is denoted by d(x, y), and the

(Hausdorff) distance between two subsets of Rn

is the maximal distance between each point of
one set and the nearest point of the other. Let
A ⊂ R

n and B ⊂ R
m be sets. A function

f : A → B is called homeomorphism if
it is bijective, and both it and its inverse are
continuous. If f is a homeomorphism, then A

and B are homeomorphic. Let A and B be the
two subsets of R

n (particularly, n = 2 or 3).
Then a homeomorphism f : Rn → R

n such that
f (A) = B and d(x, f (x)) ≤ r , for all x ∈ R

n,
is called an r-homeomorphism of A to B, and A

and B are r-homeomorphic. A Jordan curve is a
set J ⊂ R

n which is homeomorphic to a circle.
Let A be any subset of Rn. The complement of A

is denoted by Ac. All points in A are foreground,
while the points in Ac are called background. The
open ball in R

n of radius r and center c is the
set B0

r (c) = {x ∈ R
n | d(x, c) < r}, and the

closed ball inRn of radius r and center c is the set
Br (c) = {x ∈ R

n | d(x, c) ≤ r}. The boundary
of A, denoted ∂A, consists of all points x ∈ R

n

Digitization, Fig. 2 We start from I = (Zn, FI ) being
FI a digital subset of Zn (in fact, FI ⊂ 4Zn). The digital
subset FJ of Zn encodes the cells of the associated cubical
complex Q(I) (blue is used for 0-cells, red for 1-cells,
and green for 2-cells). Now, we “repair" FJ to obtain the
digital subset FL of Zn by “thickening" the critical points

of FJ . Then, we compute the simplicial complex PS(I)

whose set of vertices is FL, satisfying that there exists a
face-connected path of n-simplices in PS(I) joining any
two n-simplices incident to a common vertex in PS(I),
that is, PS(I) is weakly well-composed (see [20])
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with the property that if B is any open set of Rn

such that x ∈ B, then B∩A �= ∅ and B∩Ac �= ∅.
An open ball B0

r (c) is tangent to ∂A at a point
x ∈ ∂A if ∂A ∩ ∂B0

r (c) = {x}. An open ball
B0

r (c) is an osculating open ball of radius r to ∂A

at point x ∈ ∂A if B0
r (c) is tangent to ∂A at x and

either B0
r (c) ⊆ A0 or B0

r (c) ⊆ (Ac)0, where A0

is a maximal open subset of A, i.e., A without its
boundary.

Definition 1 A set A ⊂ R
n is called r-regular if,

for each point x ∈ ∂A, there exist two osculating
open balls of radius r to ∂A at x such that one
lies entirely in A and the other lies entirely in Ac.
Examples illustrating 2D and 3D cases are shown
in Fig. 3.

Note that the boundary of a 3D r-regular set
is a 2D manifold surface. Any set S which is a
translated and rotated version of the set 2·r ′√

3
Z
3 is

called a cubic r ′-grid and its elements are called
sampling points. Note that the distance d(x, p)

from each point x ∈ R
3 to the nearest sampling

point s ∈ S is at most r ′. The voxel VS(s) of a
sampling point s ∈ S is its Voronoi region R

3:
VS(s) = {x ∈ R

3 | d(x, s) ≤ d(x, q), ∀q ∈
S}, i.e., VS(s) is the set of all points of R3 which
are at least as close to s as to any other point in
S. In particular, note that VS(s) is a cube whose
vertices lie on a sphere of radius r ′ and center s.

Definition 2 Let S be a cubic r ′-grid, and let
A be any subset of R3. The union of all voxels

with sampling points lying in A is the digital
reconstruction of A with respect to S, Â =⋃

s∈(S∩A) VS(s).

This method for reconstructing the object from
the set of included sampling points is the 3D
generalization of the 2D Gauss digitization (see
[13]) which has been used by Gauss to compute
the area of discs and which has also been used by
[1] in his sampling theorem.

For any two points p and q of S, VS(p)∩VS(q)

is either empty or a common vertex, edge, or
face of both. If VS(p) ∩ VS(q) is a common
face, edge, or vertex, then VS(p) and VS(q) are
face-adjacent, edge-adjacent, or vertex-adjacent,
respectively. Two voxels VS(p) and VS(q) of Â

are connected in Â if there exists a sequence
VS(s1), . . . ,VS(sk), with k ∈ Z and k > 1, such
that s1 = p, sk = q, and si ∈ A (or equivalently,
VS(si) ⊂ Â), for each i ∈ {1, . . . , k}, and VS(sj )

and VS(sj+1) are face-adjacent, for each j ∈
{1, . . . , k − 1}. A (connected) component of Â

is a maximal set of connected voxels in Â.

Definition 3 Let S be a cubic r ′-grid, and let
T be any subset of S. Then

⋃
t∈T VS(t) is

well-composed if ∂(
⋃

t∈T VS(t)) is a surface
in R

3 or, equivalently, if for every point x ∈
∂(

⋃
t∈T VS(t)), there exists a positive number r

such that the intersection of ∂(
⋃

t∈T VS(t)) and
B0

r (x) is homeomorphic to the open unit disk in
R
2, D = {(x, y) ∈ R

2 | x2 + y2 < 1}.

Digitization, Fig. 3 For each boundary point of a 2D/3D, r-regular set exists an outside and an inside osculating open
r-disc/ball
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Well-composed digital reconstructions can be
characterized by two local conditions depending
only on voxels of points of S. Let s1, . . . , s4
be any four points of S such that

⋂4
i=1 VS(si)

is a common edge of VS(s1), . . . ,VS(s4).
The set {VS(s1), . . . ,VS(s4)} is an instance
of the critical configuration (C1) with respect
to

⋃
t∈T VS(t) if two of these voxels are

in
⋃

t∈T VS(t) and the other two are in
(
⋃

t∈T VS(t))c and the two voxels in
⋃

t∈T VS(t)

(resp. (
⋃

t∈T VS(t))c) are edge-adjacent, as
shown in Fig. 4a. Now, let s1, . . . , s8 be any
eight points of S such that

⋂8
i=1 VS(si) is a

common vertex of VS(s1), . . . ,VS(s8). The
set {VS(s1), . . . ,VS(s4)} is an instance of
the critical configuration (C2) with respect
to

⋃
t∈T VS(t) if two of these voxels are in⋃

t∈T VS(t) (resp. (
⋃

t∈T VS(t))c) and the other
six are in (

⋃
t∈T VS(t))c (resp.

⋃
t∈T VS(t))

and the two voxels in
⋃

t∈T VS(t) (resp.
(
⋃

t∈T VS(t))c) are vertex-adjacent, as shown
in Fig. 4b. The following theorem from [15]
establishes an important equivalence between
well-composedness and the (non)existence of
critical configurations (C1) and (C2).

Theorem 1 ( [15]) Let S be a cubic r0-grid and
let T be any subset of S. Then,

⋃
t∈T VS(t) is

well-composed if the set of voxels {V(s)|s ∈
S} does not contain any instance of the critical

configuration (C1) nor any instance of the critical
configuration (C2) with respect to

⋃
t∈T VS(t).

A simple consequence of the 2D digitization
theorem by [1] is that the reconstruction of
an r ′-regular set is well-composed. The main
difficulty of 3D digitization as compared to
2D lies in the fact that digital reconstruction
Â of A with respect to S is not guaranteed
to be well-composed. An example is provided
in Fig. 5. Therefore, it is necessary to repair Â

in order to ensure the topological equivalence
between A and repaired Â. The first topology-
preserving repairing method has been proposed
in [7], where also the following theorem
is proven. It is an interesting observation
that it took 25 years to obtain this 3D
theorem.

Theorem 2 ( [7]) If A is an r-regular object and
S is a cubic r ′-grid with 2r ′ < r , then the result of
the topology-preserving repairing method of the
reconstruction Â is r-homeomorphic to A.

Application

A complete understanding of the loss of informa-
tion due to the digitization process is fundamen-
tal for the justification of any computer vision
application. If the relevant information is not

Digitization, Fig. 4 (a) Critical configuration (C1). (b) Critical configuration (C2). For the sake of clarity, only the
voxels of foreground or background points are shown
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Digitization, Fig. 5 The
surface of an object only
needs to have an arbitrarily
small but nonzero
curvature in order to make
occurrences of the critical
configuration (C1) possible
in the digital reconstruction

contained in the digital image, there is no way to
reconstruct it without using context knowledge.
Thus, whenever one needs to have guarantees
for the correct behavior of some computer vision
algorithm, one has to be aware of what happens
during digitization. This entry gives an exemplary
insight to the topic, the related problems, and the
way to solve them.

Open Problems

The analysis of the effect of digitization to the
information being extractable from an image
is a challenging research area. The newest
results approximate real acquisition processes
and thus give direct implications for many
computer vision algorithms which rely on precise
information of the structures being approximated
by the digital image. However, in reality the
digitization process is still more complicated
than the models which are used for topological
or geometric sampling theorems. The goal is
to derive guarantees for digitization models
approximating real digitization processes.

For the case n ≥ 3, the equivalences between
the different definitions of well-composedness
(EWC, DWC, AWC, EWC, AGWC) is an open
problem together with a general method for
repairing non-well-composed digital sets in Z

n.
Besides, the study of which properties well-

composed images own in Z
n that reflect the

continuous world is a promising line of research,
such as the link between critical points andMorse
theory [21] or topological persistence [22] and
tree of shapes. A more exhaustive list can be
consulted in [19, Section 10].
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Synonyms

Dimension reduction; Dimensional compression;
Dimensional embedding; Feature Selection

Related Concepts

� Feature Selection

Definition

Dimensionality reduction is the process of reduc-
ing the dimension of the vector space spanned by
feature vectors (pattern vectors). Various kinds of
reduction can be achieved by defining a map from
the original space into a dimensionality-reduced
space.

Background

The feature space, i.e., the vector space spanned
by feature vectors (pattern vectors) defined on d-
dimensional space, can be transformed into a vec-
tor space of lower-dimension d ′(< d) spanned
by d ′-dimensional feature vectors through linear
or nonlinear transformation. This transformation
allows feature vectors to be represented by lower-
dimensional vectors, and various kinds of vec-
tor operations and statistical analysis, such as
multivariate analysis, machine learning, cluster-
ing, and classification, become less expensive
to perform. Moreover, it tackles the “curse of
dimensionality,” the various problems created by
dealing with data of high dimensionality.

https://doi.org/10.1016/j.ins.2018.06.005
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Theory and Application

The most common linear approaches for dimen-
sionality reduction are principal component
analysis (PCA) and linear discriminant analysis
(LDA). PCA, LDA, and related techniques have
been used for pattern recognition and computer
vision. It is generally considered that PCA offers
reduction for information representation, while
LDA offers reduction for classification (Fig. 1).

PCA find principal axes so as to maximize the
variance of the pattern vectors’ distribution in a
dimensionality-reduced space. It is theoretically
identical to a discrete and finite case of Karhunen-
Loève transform. In PCA, d ′ principal axes
are obtained as eigenvectors �1, . . . , �d ′ ,
which are eigenvectors corresponding to the
d ′ largest eigenvalues of �, λ1, . . . , λd ′ . � is
the covariance matrix of feature vectors and is
defined as

� = 1

n

∑

x

(x − m)(x − m)T (1)

where x are d-dimensional feature vectors, n is
the number of feature vectors, and m is the mean
of feature vectors (i.e., m = 1

n

∑
x).

LDA realizes a linear transform into (c − 1)-
dimensional space so as to maximize the
between-class distance, which is the distance
between the pattern distribution of each class; c

is the number of classes (categories). The bases
of the transformed space are obtained as the
eigenvectors of �−1

W �B , where �W is within-
class covariance matrix and �B is the between-
class covariance matrix. They are written as

�W =
c∑

i=1

⎛

⎝1

n

∑

x∈Xi

(x − mi )(x − mi )
T

⎞

⎠ (2)

�B =
c∑

i=1

ni

n
(mi − m)(mi − m)T (3)

where mi is the mean of the feature vectors
that belong to ith class Xi and m represents the

total mean of all feature vectors. As the rank of
matrix �B is (c − 1), the dimension of the space
determined by LDA is not more than (c − 1).

PCA- and LDA-based techniques such
as class-featuring information compression
(CLAFIC) [17] and learning subspace method
(LSM) [10] have been studied and widely
applied to various pattern recognition tasks like
character recognition and phoneme classification.
More recently, they have been applied to more
complicated tasks, such as face recognition [2,16]
and 3D object recognition [9].

Multidimensional scaling (MDS) is another
classic technique for reconstructing a subspace to
represent pattern distribution. Given only the dis-
similarities (distances) between any pairs of pat-
terns (objects, samples), MDS outputs basis vec-
tors that minimize the distance errors in the sub-
space spanned by the bases. Distance matrix D,
whose (i, j) element is the distance between xi

and xj , is transformed by the Young-Householder
transformation into matrix H as follows:

H = −1

2
JnDJn (4)

Jn = In − 1

n
1n (5)

where In denotes an n-dimensional identity
matrix and 1n denotes a square matrix, all
of whose elements are 1. The principal axes
minimizing the distance errors are obtained as
the eigenvectors of matrix H.

Nonlinear dimensionality reduction is a pow-
erful tool for pattern recognition and computer
vision despite of its higher computational cost
than linear methods. Conventional linear dimen-
sionality reduction methods have been extended
to nonlinear equivalents through the kernel tech-
nique, i.e., kernel PCA [14] and kernel version
of LDA [1, 8]. By replacing the inner products
of feature vectors (xi , xj ) to k(xi , xj ) in the
procedure of linear methods, where k is any
kernel function, various nonlinear transforms can
be achieved depending on the kernel function
selected and its parameters.
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Dimensionality Reduction, Fig. 1 (a) Distribution of
pattern vectors (gray region) and the first principal axis.
(b) Distribution of two-dimensional feature vectors clas-

sified as class 1 (open circle) and 2 (closed circle) and the
principal axes determined by PCA and LDA

Manifold of “Mr.A”

Manifold of “Mr.B”
Manifold of “smile”

a b

Dimensionality Reduction, Fig. 2 (a) Distribution of
two-dimensional pattern vectors and a principal axis deter-
mined by linear (solid line) and nonlinear (dotted line)

dimensionality reduction (b) Various embedded manifolds
in a face space

Many novel techniques of nonlinear dimen-
sionality reduction have been proposed; they are
collectively called manifold learning [4, 11].
Pioneering works of manifold learning are
Isomap [15] and locally linear embedding (LLE)
[12, 13] (Fig. 2).

Isomap is a manifold learning algorithm that
preserves the geodesic distance between all
feature vectors. The distance is approximately
obtained as the shortest path distance by tracking
nearest neighbors. In Isomap, these pair-wise
geodesic distances between feature vectors are
applied to classic MDS (Fig. 3).

LLE, on the other hand, targets low-
dimensional manifolds that preserve local
geometric relationships between neighbors, so
as to minimize cost function E(w),

E(w) =
∑

i

⎛

⎝xi −
∑

j

wijxj

⎞

⎠

2

(6)

where xij denote neighbors of xi and vwij denote
the linear weights that satisfy

∑
j wij = 1. Each

point xi in the d-dimensional space is mapped
onto point yi in the d ′-dimensional space by
minimizing the cost function C(y),

C(y) =
∑

i

⎛

⎝yi −
∑

j

wijyj

⎞

⎠

2

(7)

where wij are the weights that minimize E(w).
Isomap, LLE, and graph Laplacian [3] are
variations of kernel PCA with special kernel
functions [6].

Another nonlinear method is the feed-forward
neural network trained to approximate the iden-
tity function [5,7]. When the trained network has
fewer hidden layer units than input and output
layer units, the output signals of the hidden layer
units can be considered as an encoded vector of
the original input pattern vector.
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A

B

Dimensionality Reduction, Fig. 3 Euclidean distance
between A and B (arrow) and geodesic distance (solid
line) in three-dimensional feature distribution
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Definition

Discriminative random fields (DRFs) are
probabilistic discriminative graphical models for
classification that allow contextual interactions
among labels as well as the observed data using
arbitrary discriminative classifiers.

Background

Natural image data shows significant dependen-
cies that should be modeled appropriately to
achieve good classification of image entities such
as pixels, regions, objects, or the entire image
itself. Such dependencies are commonly referred
to as context in vision. For example, due to
local smoothness of natural images, neighboring
pixels tend to have similar labels (except at the
discontinuities). Different semantic regions in a
scene follow plausible spatial configurations, for
example, sky tends to occur above water or veg-
etation. For parts-based object recognition, dif-
ferent parts of an object such as handle, keypad,
and front panel in a phone are related to each
other through geometric constraints. In fact, the
contextual interactions for object recognition are
not limited to the parts of an object. These may
include interactions among various objects them-
selves. For example, the presence of a monitor
screen increases the probability of having a key-
board or a mouse nearby. The challenge is how
to model these different types of context, which
include complex dependencies in the observed
image data as well as the labels, in a principled
manner. Discriminative graphical models provide
a solid platform to achieve that.

Traditional generative graphical models, that
is, Markov random fields (MRFs) suffer from
three main problems, which are overcome by
DRFs: First, for computational tractability, the
observations are assumed to be conditionally
independent in MRFs. This assumption is too
restrictive for many natural image analysis
applications. Second, interaction among labels
in MRFs arises from prior over labeling and
hence do not depend on the observed data. This

prohibits one from modeling data-dependent
interactions in labels that are necessary
for a variety of tasks. For example, while
implementing local smoothness of labels in
image segmentation, it may be desirable to
use observed data to modulate the smoothness
according to the image intensity gradients.
Further, in parts-based object detection to model
interactions among object parts, one needs
observed data to enforce geometric constraints.
DRFs allow interactions among labels based on
unrestricted use of observations as necessary.
This step is crucial to develop models that can
incorporate interactions of different types within
the same framework.

Finally, MRFs are used in a probabilistic gen-
erative framework that models the joint proba-
bility of the observed data and the correspond-
ing labels. However, for classification purposes,
one needs to estimate the posterior over labels
given the observations, that is, P(x| y), where y
is observed data and x are corresponding labels.
In a generative MRF framework, one expends
efforts to model the joint distribution p(x| y),
which involves implicit modeling of the observa-
tions. In a discriminative framework, one models
the distribution P(x| y) directly. A major advan-
tage of doing this is that the true underlying
generative model may be quite complex even
though the class posterior is simple. This means
that the generative approach may spend a lot
of resources on modeling the generative models
which are not particularly relevant to the task of
inferring the class labels. Moreover, learning the
class density models may become even harder
when the training data is limited. The discrimina-
tive approach saves one from making simplistic
assumptions about the data.

Discriminative Random Field (DRF)

Discriminative random fields (DRFs) are discrim-
inative graphical models based on conditional
random fields (CRFs), originally proposed by
Lafferty et al. [1] in the context of segmentation
and labeling of 1D text sequences. CRFs are
discriminative models that directly model the
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conditional distribution over labels, that is,
P(x| y) as a Markov random field. This approach
allows one to capture arbitrary dependencies
between the observations without resorting to any
model approximations. DRFs are 2D versions
of 1D CRFs, which allow the use of arbitrary
discriminative classifiers to model different types
of interactions in labels and data, leading to more
flexible and powerful generalization of CRFs.
These were introduced in vision by Kumar and
Hebert [2, 3].

Let the observed data from an input image be
given by y = {yi}i ∈ S where yi is the data from
ith site and yi ∈ �c. The corresponding labels at
the image sites are given by x = {xi}i ∈ S. In a
binary classification problem, xi ∈ {−1, 1}. It is
easy to extend the formulation to multiclass label-
ing problems as mentioned later. The random
variables x and y are jointly distributed, but in
a discriminative framework, a conditional model
P(x| y) is constructed from the observations and
labels, and the marginal p(y) is not modeled

explicitly. DRFs follow the definition of CRFs
given by Lafferty et al. [1].

Definition 1 CRF: Let G= (S, E) be a graph such
that x is indexed by the vertices of G. Then (x, y)
is said to be a conditional random field if, when
conditioned on y, the random variables xi obey
the Markov property with respect to the graph:
P

(
xi |y, xS−{i}

) = P
(
xi |y, xNi

)
, where S − {i}

is the set of all the nodes in the graph except the
node i, Ni is the set of neighbors of the node i in
G, and x� represents the set of labels at the nodes
in set �.

Thus, a DRF is a random field globally
conditioned on the observations y. The condition
of positivity requiring P(x| y) > 0, ∀ x has been
assumed implicitly. Using the Hammersley-
Clifford theorem [4] and assuming only up to
pairwise clique potentials to be nonzero, the
conditional distribution over all the labels x given
the observations y in a DRF can be written as

P (x|y) = 1

Z
exp

⎛

⎝
∑

i∈S

Ai (xi, y) +
∑

i∈S

∑

j∈Ni

Iij

(
xi, xj , y

)
⎞

⎠ , (1)

where Z is a normalizing constant known as
the partition function, and -Ai and -Iij are the
unary and pairwise potentials, respectively. With
a slight abuse of notation, refer Ai as the associa-
tion potential and Iij as the interaction potential.

Assuming the random field given in Eq. (1) to
be homogeneous, the functional forms of Ai and
Iij are independent of the location i. Furthermore,
assuming the field to be isotropic implies that

the label interactions are nondirectional. In other
words, Iij is independent of the relative locations
of sites i and j. Thus, subsequently, one can
drop the subscripts and simply use the notation
A and I to denote the two potentials. In fact, the
assumption of isotropy can be easily relaxed at
the cost of a few additional parameters. Hence-
forth, consider the DRF model of the following
form:

P (x|y) = 1

Z
exp

⎛

⎝
∑

i∈S

A (xi, y) +
∑

i∈S

∑

j∈Ni

I
(
xi, xj , y

)
⎞

⎠ . (2)

Figure 1 illustrates a typical DRF for an exam-
ple image analysis task of man-made structure
detection. Given an input image y shown in the

bottom layer, suppose the goal is to label each
image site (in this case a 16 × 16 image block)
whether it contains a man-made structure or not.
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Discriminative Random
Fields, Fig. 1 An
illustration of a typical
DRF for an example task
of man-made structure
detection in natural images.
The aim is to label each
site, that is, each 16 × 16
image block whether it is a
man-made structure or not.
The top layer represents
the labels on all the image
sites. Note that each site i
can potentially use features
from the whole image y
unlike the traditional MRFs

The top layer represents the labels x on all the
image sites. Note that each site i can potentially
use features from the whole image y unlike the
traditional MRFs. In addition, DRFs allow to use
image data to model interactions between two
neighboring sites i and j. The following sections
describe how the unary and the pairwise poten-
tials are designed in DRFs.

Association Potential
In the DRF framework, the association potential,
A(xi, y), can be seen as a measure of how likely
a site i will take label xi given image y, ignoring
the effects of other sites in the image (Fig. 2).
Suppose f(·) is a function that maps an arbitrary
patch in an image to a feature vector such that
f : Yp → �l . Here, Yp is the set of all possible
patches in all possible images. Let ωi(y) be an
arbitrary patch in the neighborhood of site i in
image y from which a feature vector f(ωi(y)) is
extracted. Note that the neighborhood used for
the patch ωi(y) need not be the same as the label
neighborhood Ni . Indeed, ωi(y) can potentially
be the whole image itself. For clarity, denote
the feature vector f(ωi(y)) at each site i by fi(y).
The subscript i indicates the difference just in
the feature vectors at different sites, not in the
functional form of f(·). Then, A(xi, y) is modeled
using a local discriminative model that outputs
the association of the site i with class xi as

A (xi, y) = log P ′ (
xi |f i (y)

)
, (3)

where P
′
(xi| fi(y)) is the local class conditional

at site i. This form allows one to use an arbitrary
domain-specific probabilistic discriminative
classifier for a given task. This can be seen as
a parallel to the traditional MRF models where
one can use arbitrary local generative classifier to
model the unary potential. One possible choice of
P′(.) is generalized linear models (GLM), which
are used extensively in statistics to model the
class posteriors. Logistic function is a commonly
used link in GLMs, although other choices such
as probit link exist. Using a logistic function, the
local class conditional can be written as

P ′ (
xi = 1|f i (y)

) = 1

1 + e−(
w0+wT

1 f i (y)
)

= σ
(
w0 + wT

1 f i (y)
)

,

(4)

where w = {w0,w1} are the model parameters.
This form of P′(.) will yield a linear decision
boundary in the feature space spanned by vectors
fi(y). To extend the logistic model to induce
a nonlinear decision boundary, a transformed
feature vector at each site i can be defined as
hi(y) = [1,φ1(fi(y)), . . . ,φR(fi(y))]T where φk(.)
are arbitrary nonlinear functions. These functions
can be seen as explicit kernel mapping of the
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Discriminative Random
Fields, Fig. 2 Given a
feature vector fi(y) at site i,
the association potential in
DRFs can be seen as a
measure of how likely the
site i will take label xi,
ignoring the effects of
other sites in the image.
Note that the feature vector
fi(y) can be constructed by
pooling arbitrarily complex
dependencies in the
observed data y

xi

fi(y)

i

y

original feature vector into a high dimensional
space. The first element of the transformed vector
is kept as 1 to accommodate the bias parameter
w0. Further, since xi ∈ {−1, 1}, the probability in
Eq. (4) can be compactly expressed as

P ′ (xi |y) = σ
(
xiwT hi (y)

)
. (5)

Finally, for this choice of P′(.), the association
potential can be written as,

A (xi, y) = log
(
σ

(
xiwT hi (y)

))
(6)

This transformation ensures that the DRF is
equivalent to a logistic classifier if the interaction
potential in Eq. (2) is set to zero. Besides GLMs,
discriminative classifiers based on SVM, neural
network, and boosting have been successfully
used in modeling association potential in the liter-
ature. Note that in Eq. (6), the transformed feature
vector at each site i, that is, hi(y) is a function of
the whole set of observations y. This allows one

to pool arbitrarily complex dependencies in the
observed data for the purpose of classification.
On the contrary, the assumption of conditional
independence of the data in the traditional MRF
framework allows one to use data only from
a particular site, that is, yi, to design the log-
density, which acts as the association potential.

Interaction Potential
In the DRF framework, the interaction potential
can be seen as a measure of how the labels
at neighboring sites i and j interact given the
observed image y (Fig. 3). In contrast to gener-
ative MRFs, the interaction potential in DRFs is
a function of observations y. Suppose ψ(.) is a
function that maps an arbitrary patch in an image
to a feature vector such that Yp → �γ . Let
�i(y) be an arbitrary patch in the neighborhood
of site i in image y from which a feature vector
ψ(�i(y)) is extracted. Note that the neighborhood
used for the patch �i(y) need not be the same
as the label neighborhood Ni . For clarity, denote
the feature vector ψ(�i(y)) at site i by ψi(y).
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Discriminative Random
Fields, Fig. 3 Given
feature vectors ψi(y) and
ψj(y) at two neighboring
sites i and j, respectively,
the interaction potential
can be seen as a measure of
how the labels at sites i and
j influence each other. Note
that such interaction in
labels is dependent on the
observed image data y,
unlike the traditional
generative MRFs

xi

ij

xj

ψj (y) ψi (y)

y

Similarly, denote the feature vector at site j by
ψj(y). Again, to emphasize, the subscripts i and j
indicate the difference just in the feature vectors
at different sites, not in the functional form of
ψ(.). Given the features at two different sites, the
basic idea is to learn a pairwise discriminative
model P′′(xi = xj| ψi(y),ψj(y)). Note that by
choosing the function ψi to be different from fi,
used in Eq. (4), information different from fi can
be used to model the relations between pairs of
sites.

For a pair of sites (i, j), let μij(ψi(y),ψj(y)) be
a new feature vector such that μij : �γ×�γ→�q.
Denoting this feature vector as μij(y) for simpli-
fication, the interaction potential is modeled as

I
(
xi, xj , y

) = xixjv
T μij (y) , (7)

where v are the model parameters. Note that
the first component of μij(y) is fixed to be 1 to
accommodate the bias parameter. There are two
interesting properties of the interaction potential

given in Eq. (7). First, if the association potential
at each site and the interaction potentials for all
the pairwise cliques except the pair (i, j) are set
to zero in Eq. (2), the DRF acts as a logistic
classifier which yields the probability of the site
pair to have the same labels given the observed
data. Of course, one can generalize the form in
Eq. (7) as

I
(
xi, xj , y

) = log P ′′ (
xi, xj |ψi (y) , ψj (y)

)
,

(8)

similar to the association potential and can use
arbitrary pairwise discriminative classifier to
define this term. The second property of the
interaction potential form given in Eq. (7) is
that it generalizes the Ising model. The original
Ising form is recovered if all the components of
vector v other than the bias parameter are set
to zero in Eq. (7). A geometric interpretation
of interaction potential is that it partitions the
space induced by the relational features μij(y)
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between the pairs that have the same labels and
the ones that have different labels. Hence, Eq. (7)
acts as a data-dependent discontinuity adaptive
model that will moderate smoothing when the
data from the two sites is “different.” The data-
dependent smoothing can especially be useful
to absorb the errors in modeling the association
potential. Anisotropy can be easily included in
the DRF model by parameterizing the interaction
potentials of different directional pairwise cliques
with different sets of parameters v.

Parameter Learning and Inference

For 1D sequential CRFs proposed by Lafferty
et al. [1], exact maximum likelihood parameter
learning is feasible because the induced graph
does not contain loops. However, in typical
DRFs, the underlying graph contains loops,
and it is usually infeasible to exactly maximize
the likelihood with respect to the parameters.
Therefore, a critical issue in applying DRFs
to image-based applications is the design of
effective parameter learning techniques that can
operate on arbitrary graphs.

Maximum Likelihood Parameter Learning
Let θ be the set of unknown DRF parameters
where θ = {w, v}. Given M i.i.d. labeled training
images, the maximum likelihood estimates of
the parameters are given by maximizing the log-
likelihood l (θ) = ∑M

m=1 log P (xm|ym, θ), that
is,

θ̂ = argmax
θ

M∑

m=1

{
∑

i∈Sm

log σ
(
xm
i wT hi (ym)

)

+ ∑

i∈Sm

∑

j∈Ni

xm
i xm

j vT μij (ym) − logZm

}

,

(9)

where the partition function for the mth image is

Zm = ∑

x
exp

{
∑

i∈Sm

log σ
(
xiwT hi (ym)

)

+ ∑

i∈Sm

∑

j∈Ni

xixjv
T μij (ym)

}

.

Note that Zm is a function of the parameters
θ and the observed data ym. For learning the
parameters using gradient ascent, the derivatives
of the log-likelihood are

∂l (θ)

∂w
= 1

2

∑

m

∑

i∈Sm

(
xm
i − 〈xi〉θ;ym

)
hi

(
ym

)
,

(10)∂l (θ)

∂v

=
∑

m

∑

i∈Sm

∑

j∈Ni

(
xm
i xm

j − 〈
xixj

〉
θ;ym

)
μij

(
ym

)
.

(11)

Here, 〈·〉θ;ym denotes expectation with
P(x| ym, θ). Ignoring μij(ym), gradient ascent with
Eq. (11) resembles the problem of learning in
Boltzmann machines.

For arbitrary graphs with loops, the expec-
tations in Eqs. (10) and (11) cannot be com-
puted exactly due to the combinatorial size of the
label space. Sampling procedures such as Markov
Chain Monte Carlo (MCMC) can be used to
approximate the true expectations. Unfortunately,
MCMC techniques have two main problems: a
long “burn-in” period (which makes them slow)
and high variance in estimates. Although sev-
eral techniques have been suggested to approxi-
mate the expectations, two popular methods are
described below (see [5] for other choices and a
detailed comparison).

Pseudo-marginal Approximation (PMA)
It is easy to see if true marginal distributions
Pi(xi| y, θ) at each site, i, and Pij(xi, xj| y, θ) at each
pair of sites i and j ∈ Ni are known, one can
compute exact expectations as

〈xi〉θ;y =
∑

xi

xiPi (xi |y, θ) and
〈
xixj

〉
θ;y

=
∑

xi ,xj

xixjPij

(
xi, xj |y, θ

)
.
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Since computing exact marginal distributions
is in general infeasible, a standard approach
is to replace the actual marginals by pseudo-
marginals. For instance, one can use loopy belief
propagation (BP) to get these pseudo-marginals.
It has been shown in practice that for many
applications, loopy BP provides good estimates
of the marginals.

Saddle Point Approximation (SPA)
In saddle point approximation (SPA), one makes
a discrete approximation of the expectations
by directly using best estimates of labels at a
given setting of parameters. This is equivalent to
approximating the partition function (Z) such that
the summation over all the label configurations
x in Z is replaced by the largest term in the
sum, which occurs at the most probable label
configuration. In other words, if

x̂ = arg max
x

P (x|y, θ) ,

then according to SPA,

Z ≈ exp

{
∑

i∈S

log σ
(
x̂iwT hi (y)

)

+ ∑

i∈S

∑

j∈Ni

x̂i x̂jv
T μij (y)

}

.

This leads to a very simple approximation to
the expectation, that is, 〈xi〉θ;y ≈ x̂i . Further
assuming a mean-field type decoupling, that
is, 〈xixj〉θ; y = 〈xi〉θ; y〈xj〉θ; y, it also follows
that

〈
xixj

〉
θ;y ≈ x̂i x̂j . Readers familiar with

perceptron learning rules can readily see that
with such an approximation, the updates in Eq.
(10) are very similar to perceptron updates.

However, this discrete approximation raises
a critical question: Will the gradient ascent of
the likelihood with such gradients converge?
It has been shown empirically that while the
approximate gradient ascent is not strictly con-
vergent in general, it is weakly convergent in that
it oscillates within a set of good parameters or
converges to a good parameter with isolated large

deviations. In fact, one can show that this weak-
convergence behavior is tied to the empirical
error of the model [5]. To pick a good parameter
setting, one can use any of the popular heuristics
used for perceptron learning with inseparable
data. For instance, one can let the algorithm run
up to some fixed number of iterations and pick the
parameter setting that minimizes the empirical
error. Even though lack of strict convergence
can be seen as a drawback of SPA, the main
advantage of these methods is very fast learning
of parameters with performance similar to or
better than pseudo-marginal methods.

Inference
Given a new test image y, the problem of infer-
ence is to find the optimal labels x over the image
sites, where optimality is defined with respect
to a given cost function. Maximum a posteriori
(MAP) solution is a widely used estimate that is
optimal with respect to the zero-one cost function
defined as

C
(
x, x∗) = 1 − δ

(
x − x∗)

, (12)

where x∗ is the true label configuration, and
δ(x − x∗ ) is 1 if x = x∗ , and 0 otherwise. The
MAP solution is defined as

x̂ = arg max
x

P (x|y, θ) .

For binary classifications, the MAP estimate
can be computed exactly for an undirected
graph using the max-flow/min-cut type of
algorithms if the probability distribution meets
certain conditions [6]. For the DRF model,
since max-flow algorithms do not allow negative
interaction between the sites, the data-dependent
smoothing for each clique is set to be vTμij(y) =
max {0, vTμij(y)}, yielding an approximate MAP
solution.

An alternative to the MAP solution is the max-
imum posterior marginal (MPM) solution which
is optimal for the sitewise zero-one cost function
defined as
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C
(
x, x∗) =

∑

i∈S

(
1 − δ

(
xi − xi

∗))
, (13)

where xi∗ is the true label at the ith site. TheMPM
solution at each site is defined as

x̂i = arg max
xi

Pi (xi |y, θ) , where Pi (xi |y, θ)

=
∑

x−xi

P (x|y, θ) ,

and x − xi denotes all the node variables
except for node i. The MPM computation
requires marginalization over a large number of
variables which is generally NP-hard. However,
as discussed before, one can use loopy BP to
obtain an estimate of the MPM solution.

Application

DRFs and related models have been applied
to a wide variety of problems in computer
vision to incorporate context in, for example,
image denoising, scene segmentation and region
classification, object recognition, and video
tagging.

Experimental Results

Here is an application of binary DRFs to the prob-
lem of man-made structure detection in natural
scenes. It is a difficult problem due to presence
of significant clutter and wide variability in the
appearance of man-made structure as well as
the background. The training and the test set
contained 108 and 129 images, respectively, from
the Corel image database. Each image is divided
into nonoverlapping 16 × 16 pixels blocks. Each
block forms a site in the graph. The whole train-
ing set contained 36,269 blocks from the non-
structured class and 3,004 blocks from the struc-
tured class. Histograms over gradient orienta-
tions were used to extract heaved central-shift

moment-based 14-dimensional feature vector. In
the unary classifier, an explicit quadratic kernel
is used to map the feature vector into a 119-
dimensional space. The pairwise data vector is
obtained by concatenating the unary vectors at
two sites. The parameters of the DRF model were
learned using the maximum likelihood frame-
work as described before.

For an input test image given in Fig. 4a, the
structure detection results from three methods
are shown in Fig. 4. The blocks identified as
structured have been shown enclosed within an
artificial boundary. It can be noted that for similar
detection rates, the number of false positives
have significantly reduced for the DRF-based
detection. Locally, different branches may yield
features similar to those from the man-made
structures. The logistic classifier does not enforce
smoothness in labels, which led to increased iso-
lated false positives. However, the MRF solution
with Ising model simply smooths the labels with-
out taking observations into account resulting in
a smoothed false-positive region around the tree
branches.

To carry out the quantitative evaluations, the
detection rates and the number of false posi-
tives per image for each technique are compared.
At first data, interactions are not allowed for
any method by extracting features from individ-
ual sites. The comparative results for the three
methods are given in Table 1 next to “MRF”,
“Logistic−” and “DRF−”. For comparison pur-
poses, the false-positive rate of the logistic clas-
sifier is fixed to be the same as the DRF in all
the experiments. For similar false positives, the
detection rates of the traditional MRF and the
DRF are higher than the logistic classifier due to
the label interaction. However, the higher detec-
tion rate of the DRF in comparison to the MRF
indicates the gain due to the use of discriminative
models in the association and interaction poten-
tials. In the next experiment, to take advantage of
the power of the DRF framework, data interaction
was allowed for both the logistic classifier as well
as the DRF (“Logistic” and “DRF” in Table 1).
The DRF detection rate increases substantially,
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Input image

a b

c d
Logistic

MRF DRF

Discriminative RandomFields, Fig. 4 Structure detection results on a test example for different methods. For similar
detection rates, DRF reduces the false positives considerably. (a) Input image, (b) logistic, (c) MRF, and (d) DRF

Discriminative Random Fields, Table 1 Detection
rates (DR) and false positives (FP) for the test set
containing 129 images (49, 536 sites). FP for logistic
classifier were kept to be the same as for DRF for DR
comparison. Superscript ‘−’ indicates no neighborhood
data interaction was used

MRF Logistic− DRF− Logistic DRF

DR (%) 58.35 47.50 61.79 60.80 72.54

FP
(per image)

2.44 2.28 2.28 1.76 1.76

and the false positives decrease further indicating
the importance of allowing the data interaction in
addition to the label interaction.

Extensions and RelatedWork

A large number of extensions of the basic binary
DRFs have been proposed. For instance, multi-

class DRFs allow label sets consisting of more
than two labels and hierarchical DRFs incor-
porate context at multiple levels [7]. For exam-
ple, for parts-based object detection, local con-
text is the geometric relationship among parts
of an object, while the relative spatial configura-
tions of different objects (e.g., monitor, keyboard,
and mouse) provides the global context. Learn-
ing in DRFs was extended to a semi-supervised
paradigm by Lee et al. [8], while a Hidden-DRF
model with latent variables was proposed in [9].

Open Problems

Hierarchical DRFs are of great interest since such
models are quite powerful and can parse scenes at
multiple levels of granularity. Robust parameter
learning and inference in such models is a very
challenging open problem.
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Synonyms

Transfer learning

Related Concepts

�Object Recognition
� Sparse Representation

Definition

In practical applications, classification or detec-
tion algorithms trained on a particular dataset do
not generalize well to novel datasets. Domain
adaptation methods try to reduce the performance
degradation due to domain shift [1, 2].

Background

The study of sparse representation of signals and
images has attracted tremendous interest over
the last decade. This is partly due to the fact
that signals or images of interest, though high
dimensional, can often be coded using few rep-
resentative atoms in some dictionary. Olshausen
and Field in their seminal work [3] introduced
the idea of learning dictionary from data instead
of using off-the-shelf bases. Since then, data-
driven dictionaries have been shown to work
well for both image restoration and classification
tasks [4].

Given a set of examples Y = [y1, · · · , yn],
the goal of dictionary learning algorithms such
as KSVD and the method of optimal directions
(MOD) [4] is to find a dictionary D and a sparse
matrix X that minimize the following representa-
tion error:
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D

(D̂, X̂)= argmin
D,X

‖Y−DX‖2F s. t. ‖xi‖0≤T0 ∀i,

(1)
where xi represent the columns of X, ‖A‖F

denotes the Frobenius norm of A, and T0 denotes
the sparsity level and ‖x‖0 := #{j : xj �= 0}, which
is a count of the number of nonzero elements in x.
Both MOD and KSVD are iterative methods that
alternate between sparse-coding and dictionary
update steps [4]. First, a dictionary D with �2
normalized columns is initialized. Then, the main
iteration is composed of the following two stages:

– Sparse coding: In this step, D is fixed, and the
following optimization problem is solved to
compute the representation vector xi for each
example yi :

i=1, · · · , n, min
xi

‖yi−Dxi‖22 s. t. ‖xi‖0≤T0.

– Dictionary update: This is where both MOD
and KSVD algorithms differ. The MOD algo-
rithm updates all the atoms simultaneously
by solving an optimization problem whose
solution is given by D = YX†, where X†

denotes the Moore-Penrose pseudo-inverse.
Even though theMOD algorithm is very effec-
tive and usually converges in a few iterations,
it suffers from the high complexity of the
matrix inversion step as discussed in [4].

In the case of KSVD, the dictionary update
is performed atom-by-atom in a computation-
ally efficient way rather than using a matrix
inversion. It has been observed that the KSVD
algorithm requires fewer iterations to con-
verge than the MOD method.

Theory

The efficiency of dictionaries in a wide range of
computer vision and image processing applica-
tions can be attributed to the robust discriminant
representations that they provide by adapting to
particular data samples. However, the learned
dictionary may not be optimal if the target data
has a different distribution than the data used
for training. Several dictionary learning-based

methods have been proposed in the literature to
deal with this domain shift problem [5–10].

In particular, when designing dictionaries,
training and testing domains may be different,
e.g., different viewpoints and illumination
conditions. As a result, dictionary designed
for one domain might not be optimal for
another. In [5], a function learning framework
is presented for the task of transforming a
dictionary learned from one visual domain to
the other while maintaining a domain-invariant
sparse representation of a signal. An overview of
this method is shown in Fig. 1.

Denote P signals observed in N different
domains as {Y1, . . . ,YN }, where Yi =
[yi1, . . . , yiP ], yip ∈ R

n. Thus, yip denotes
the pth signal observed in the ith domain. Let Di

denote the dictionary for the ith domain, where
Di = [di1 . . . diK ], dik ∈ R

n. The domain
dictionary learning problem can be formulated as

arg
{Di }Ni ,X

min
N∑

i

‖Yi−DiX‖2F s.t. ∀p ‖xp‖o≤T0,

(2)

where X = [x1, . . . , xP ], xp ∈ R
K , are the

sparse codes and T0 is a sparsity constant. The set
of domain dictionary {Di}Ni learned through (2)
enable the same sparse codes xp for a signal yp
observed across N different domains to achieve
domain adaptation.

A parametric function is used to model
domain dictionaries Di as follows:

Di = F(θi,W), (3)

where θi denotes a vector of domain parame-
ters, e.g., viewpoint angles, illumination condi-
tions, etc., andW denotes the dictionary function
parameters [5]. Applying (3) to (2), one can for-
mulate the domain dictionary function learning as
follows:

arg
W,X

min
N∑

i

‖Yi − F(θi,W)X‖2F

s.t.∀p ‖xp‖o ≤ T0. (4)
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Domain Adaptation Using Dictionaries, Fig. 1
Overview of the domain-adaptive dictionary learning
approach proposed in [5]. Consider example dictionaries
corresponding to faces at different azimuths. (a) shows
a depiction of example dictionaries over a curve on
a dictionary manifold. Given example dictionaries,

the approach presented in [5] learns the underlying
dictionary function F(θ,W). In (b), the dictionary
corresponding to a domain associated with observations
is obtained by evaluating the learned dictionary function
at corresponding domain parameters

Source Domain

D0

ΔD0 ΔD1 ΔDK-1

D1 D2 DK-1 DK

Intermediate Domains

Target Domains

• • •

Domain Adaptation Using Dictionaries, Fig. 2 An overview of the dictionary-based domain adaptation method [7]

Various linear and nonlinear dictionary function
learning models are considered in [5], and the
optimization problem is solved using a simple
three-step procedure. See [5] for more details on
the optimization of (4) and experimental results
on various datasets.

Another dictionary-based domain adaptation
method was proposed in [7]. Given labeled data
in the source domain and unlabeled data in the
target domain, the idea is to lean a set of inter-
mediate domains and target domain to capture
the intrinsic domain shift between two domains.
Figure 2 shows an overview of this method.

Starting from the source domain dictionary
D0, the intermediate domain dictionaries {Dk}Kk=1
are sequentially learned to gradually adapt to
the target data. The final dictionary DK which
best represents the target data in terms of
reconstruction error is taken as the target domain
dictionary. Given the kth domain dictionary
Dk, k∈[0,K−1], the next domain dictionary

Dk+1 is learned based on its coherence with Dk

and the remaining residue of the target data.
Specifically, the target data Tu are decomposed
with Dk , and the residue Jk are obtained by
solving the following optimization problem:

Xk = argmin
X

‖Tu − DkX‖2F s.t. ∀‖xi‖0 ≤ T0,

(5)

Jk = ‖Tu − DkXk‖2F , (6)

where Xk are the sparse coefficient, xi is a col-
umn ofXk , and T0 is the sparsity parameter.Dk+1

is then obtained by estimating ΔDk which is the
adjustment in the dictionary atoms between Dk+1

and Dk:

min
ΔDk

‖Jk − ΔDkXk‖2F + λ‖ΔDk‖2F , (7)
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D

Domain Adaptation Using Dictionaries, Fig. 3 An
illustration of domain adaptation using a sparse and hier-
archical network (DASH-N) algorithm [8]. The source
domain is RGB images, and the target domain is halftone
images. First, images are divided into small overlapping
patches. These patches are vectorized while maintain-
ing their spatial arrangements. (a) Performing contrast
normalization and dimensionality reduction using PS for
source images and PT for target images. The circular

feedbacks between PS and PT indicate that these two
transformations are learned jointly. (b) Obtaining sparse
codes using the common dictionary D1. (c) Performing
max pooling. The process then repeats for layer 2 (d
and e), except that the input is the sparse codes from
layer 1 instead of pixel intensities. At the final stage,
spatial pyramid with max pooling are used to create image
descriptors. Classification is done using linear support
vector machine

where λ is a parameter. An efficient optimization
scheme is proposed for solving the above opti-
mization problem. More details can be found in
[7].

Another recent work for visual domain
adaptation using hierarchical networks was
recently proposed by Nguyen et al. in [8].
Their method jointly learns a hierarchy of
features together with transformations that
address the mismatch between different domains.
This method was motivated by [11] in which
multilayer sparse coding networks are proposed
for building feature hierarchies layer by layer
using sparse codes and spatial pooling. Figure 3
shows an overview of the sparse hierarchical
domain adaptation method [8]. The network
contains multiple layers, each of which contains
three sub-layers. The first sub-layer performs
contrast normalization and dimensionality
reduction on the input data. Sparse coding is
carried out in the second sub-layer. In the final
sub-layer, adjacent features are max-pooled
together to produce a new feature. Output from
one layer becomes the input to the next layer. This
method can be viewed as a generalization of the
domain-adaptive dictionary learning framework
[6] using hierarchical networks. Extension of this

method to multiple source domains has also been
presented in [8].

Open Problems

Theoretical analysis of domain adaptation using
dictionaries is an interesting and open research
problem.
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Synonyms

Dynamic optimization

Definition

Dynamic programming is a paradigm used in
algorithms for solving optimization problems. It
relies on the construction of nested subproblems
such that the solution of the main problem can be
obtained from the solutions of the subproblems.

Background

The paradigm was introduced by the mathemati-
cian Richard Bellman in the 1940s and applied in
control theory [1].

Theory

The applicability of the paradigm relies on the
following two assumptions.

Optimal substructure means that a system of
nested subproblems can be constructed in such a
way that the solution of the main problem can be
obtained from the solutions of these subproblems.

Overlapping subproblems mean that the
smaller subproblems in the next level are only
slightly smaller, and moreover the set of these
subproblems is small as well. This distinguishes
DP from “divide-and-conquer” methods.

The method starts by solving the smallest sub-
problems directly. The obtained results are stored
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D

and used for solving the bigger subproblems in
the next higher level. Applying this principle for
each step avoids expensive recursions.

The following two algorithms illustrate appli-
cations of the DP paradigm.

Viterbi Algorithm
The task is to find the maximal value of a func-
tion F which depends on n discrete variables
x1, x2, . . . , xn ∈ K with finite domain K . The
function has the form

F(x1, . . . , xn) = f1(x1, x2) + f2(x2, x3) + . . .

+ fn−1(xn−1, xn). (1)

An appropriate nested system of subproblems is
defined by

φi(k) = max
x1,..xi

[
f1(x1, x2) + . . . + fi(xi, k)

]
(2)

for all i = 1, . . . , n − 1 and all k ∈ K . It is
quite obvious that the solutions for φi+1() can be
obtained from those for φi() by

φi+1(k) = max
k′∈K

[
φi(k

′) + fi+1(k
′, k)

]
(3)

The solutions of the simplest subproblems φ1(k)

are found simply by enumeration, and similarly,
the solution of the main problem is eventually
obtained by solving maxk φn−1(k).

Additional memory space is required if the
task is to calculate a maximizer (x∗

1 , . . . , x
∗
n) of

f rather than its maximal value. In such a case, a
“pointer”

pi+1(k) = argmax
k′∈K

[
φi(k

′) + fi+1(k
′, k)

]
(4)

has to be stored for each i = 1, . . . , n − 1 and
each k ∈ K . The required maximizer is found
simply by backtracking in this list, i.e., x∗

i =
pi+1(x

∗
i+1).

Floyd Warshall Algorithm
The task is to compute the shortest paths for all
pairs of vertices in a weighted graph (V ,E,w).
It is assumed for simplicity that all nonexistent

edges are included but have infinite length. Let
S(i, j), i, j ∈ V , denote the length of the shortest
path connecting vertex i with vertex j . The nested
system of subproblems is defined as follows.
Let S(i, j, k) denote the length of the shortest
path connecting vertex i with vertex j which is
passing only through vertices of the subset Vk =
{1, 2, . . . , k} ⊂ V . In other words, S(i, j, k) is
the length of the shortest path connecting i and j

in the subgraph induced by the vertex set {i, j} ∪
Vk . Again, it is easy to see that S(i, j, k + 1)
can be computed from S(., ., k). The sought-after
shortest path either passes through vertices from
Vk only or otherwise is composed from a first part
connecting vertices i and k + 1 and a second part
connecting vertices k + 1 and j . This leads to

S(i, j, k + 1) = min
{
S(i, j, k), S(i, k + 1, k)

+ S(k + 1, j, k)
}
. (5)

The solutions of the smallest subproblems are
obviously S(i, j, 0) = w(i, j).

The algorithm has time complexity O(|V |3)
and space complexity O(|V |2) and provides the
lengths of the shortest paths between all pairs of
vertices. A simple modification of the algorithm
allows to reconstruct the shortest path for each
pair of vertices. The key idea is to store an
additional matrix of size |V | × |V |, whose ele-
ments represent the largest index of intermediate
vertices in the shortest path connecting vertices
i and j . This matrix is initialized and updated
along with matrix S. Once calculated, it allows
to reconstruct the shortest path between each pair
of vertices recursively.

A more comprehensive analysis of DP and
other examples can be found, e.g., in [2, 3].
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Related Concepts

�Boundary Detection
� Scale Selection

Definition

Edge detection is the process of label the image
pixels that lie on the boundaries where abrupt
intensity discontinuity occur.

Background

The light projected from a visual scene into an
eye or camera is typically piecewise smooth as a
function of visual angle. Since nearby points on a
surface tend to have similar attitude, reflectance,
and illumination, the pixels to which these sur-
face points project tend to have similar intensity.
This rule is broken when two adjacent pixels
project from points on either side of an occlusion
boundary, since the points now project from dif-
ferent surfaces that may well have different atti-
tude, reflectance, and illumination, and typically

an abrupt change in image intensity results. Inten-
sity edges also arise when neighboring pixels
project from points on the same surface that
happens to straddle a surface crease, pigment
change, or shadow boundary.

Since these abrupt changes in image inten-
sity correspond to significant physical events in
the scene, the problem of reliably detecting and
localizing these edges is an important and fun-
damental early vision problem. While detection
of object boundaries (occlusion edges) is some-
times seen as the main goal, reliable detection
of surface creases and reflectance edges also
has clear importance for shape estimation and
object recognition, and even cast shadows pro-
vide important information about relief, surface
contact, and scene layout.

Since edges are sparse, edge detection is also
motivated from a differential image coding view-
point: a large fraction of the information in an
image can be captured by coding just the loca-
tions, 2D orientations, and intensity changes of
these edges.

The problem of edge detection dates back to
the first days of computer vision: back to Roberts’
thesis at least [20].In its simplest form, the goal
is to label the image pixels that lie on (or very
near) a step discontinuity in the image. This
definition has been generalized in a number of
useful ways: to allow for possible blurring of
the step discontinuity, due to shading or defocus,
for example, and to require an estimate of the
local 2D orientation of the edge as well as its
location.

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
https://doi.org/10.1007/978-3-030-63416-2
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• Biological basis [9]
• History [20]
• Problem definition [1, 2, 5, 6, 13, 15, 18]

Theory and Application

Roberts based his edge detector on a simple
2 pixel ×2 pixel discrete differential operator
related to the gradient magnitude (Fig. 1). Since
the operator relies upon only 4 pixels, the results
are highly sensitive to noise and are dominated
by the fine structure of the image. Over the
intervening years, most edge detection algorithms
have continued to rely on a first stage of local dif-
ferential filtering but have innovated in the design
of smoothing kernels to increase signal-to-noise
ratio, in the order of the differential operators
used, and in how they are combined. This local
differential filtering approach aligns well with
physiological data showing that neurons early in
the primate visual pathway can to some degree be
approximated as stabilized low-order differential
operators [9].

By far the most popular smoothing kernel
has been the 2D Gaussian G(x, y) =

1
2πσ 2 exp

(
− x2+y2

2σ 2

)
. Marr and Hildreth [17]

proposed the use of second-order isotropic
Laplacian-of-Gaussian (“Mexican hat”) filters
∇2G(x, y). The ∇2G filter produces a signed
response that crosses zero precisely at the

location of an (ideal) step edge, and Marr and
Hildreth proposed that edges thus be identified
with such zero crossings. Due to the isotropy
of the ∇2G filter, the response is invariant to
the orientation of the edge, a desirable property,
since edges can occur at any orientation. Marr
and Hildreth also observed that different edges
occur at different scales, and so employed ∇2G
filters over a range of scales σ. Observing that
spurious zero crossings at a single scale can
occur due to interference between multiple
distinct edges, Marr and Hildreth proposed a
scale combination rule: edges are deemed valid
only if zero crossings at the same location and
orientation are found at more than one scale.

Marr and Hildreth obtained orientation
invariance by using isotropic filters and appro-
ximate scale invariance by combining informa-
tion across scales. However, these invariance
properties came at the price detection and
localization performance. This became clear
partly through the work of John Canny [2], who
used a variational approach to determine an edge
detector that would be (nearly) optimal precisely
in terms of detection rate and localization perfor-
mance, while avoiding multiple responses to the
same edge. The outcome was a an edge detection
filter that is well approximated by a first-
derivative-of-Gaussian function. Canny used two
such filters to estimate stabilized partial deriva-
tives and hence the local gradient vector ∇G:

r
P

a b X

Y

P

Edge Detection, Fig. 1 Edge detection example [4–6].
Top left: Original greyscale image. Top right: Edge map.
Bottom left: Reconstruction of original image from bright-

ness and contrast stored only at edge locations. Bottom
right: Reconstruction including edge blur information
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∇G =
(

Gx

Gy

)
,where Gx = ∂G

∂x
and Gy = ∂G

∂y

The first-derivative-of-Gaussian filter can be
shown to be steerable [7]: the filter can be synthe-
sized at any orientation from a linear combination
of the two basis filters Gx and Gy. Thus, Canny’s
approach amounts to computing the first deriva-
tive in the gradient direction at every pixel of
the smoothed image. In this sense, the approach
still enjoys the orientation invariance property
emphasized by Marr and Hildreth: a rotation
of the edge in the image will not change the
estimated gradient magnitude. Canny’s approach,
however, delivers higher signal-to-noise because
the filter more closely approximates the shape of
an extended edge in the tangent direction. While
Marr and Hildreth’s ∇2G operator computes the
second derivative along the edge, Canny’s ∇G
operator locally integrates along the edge over the
support of the Gaussian kernel.

While Marr and Hildreth localized edges at
the zero crossings of the ∇2G response, Canny
localized edges at maxima of the gradient mag-
nitude, taken in the gradient direction, found
using a process called non-maximum suppres-
sion. Since not all of the resulting maxima cor-
respond to significant edges, a threshold on the
gradient magnitude must be applied to reduce the
false positive rate. Canny devised a clever heuris-
tic technique, dubbed thresholding with hystere-
sis, that removes many false positives without
unduly affecting the hit rate (proportion of cor-
rect detections). The technique exploits the fact
that real weak edges are often chain-connected
along a contour to stronger edges, while false
positives are more likely to be isolated. The
technique employs two thresholds: all edges that
are above the low threshold and chain-connected
to edges above the high threshold are identified as
edges.

The Canny edge detector may well be the most
widely used algorithm in the history of computer
vision. Its early adoption is likely derived in part
from the open availability of the source code, but
it’s continuing widespread use reflects the fact
that it continues to perform well in comparison
to more recent algorithms.

While most versions of Canny’s algorithm
in use detect edges only at a single scale, in
fact both Marr and Hildreth and Canny recog-
nized the problem of scale, but dealt with it in
slightly different ways. While Marr and Hildreth
conjunctively combined responses across scale
(zero crossings of the ∇2G response must be
found at multiple scales at the same location and
orientation to signal an edge), Canny proposed
to disjunctively combine edges detected at dif-
ferent scales. This raises the multiple response
problem: how do we know whether two extremal
responses, at different scales but similar locations
and orientations, signal two distinct edges in
the image, or a single edge corrupted by noise?
Canny proposed a feature synthesis method to
deal with this problem, that signals the larger
scale edge only if it could not be satisfactorily
explained by the smaller scale responses in a local
neighborhood.

Canny’s proposed technique localizes edges
using the smallest scale at which they are
detected, an approach that Canny justified based
upon his variational optimization, and this
motivated the later development of edge focusing
techniques [1] in which edges are detected at
coarse scales and then tracked through scale
space to finer scales for better localization. As
it turns out, Canny’s one-dimensional analysis
does not generalize to two dimensions: Elder and
Zucker [5, 6] later showed that for an ideal step or
blurred step edge corrupted by noise, localization
improves monotonically with increasing scale.
This result highlights the difference between
theory and practice: since edges in real images
are always finite in extent, often curved, and
surrounded by other kinds of image structure,
neither detection nor localization is likely to be
optimized by maximizing scale.

Elder and Zucker pointed out that while it is
difficult to model all of the real-world effects that
limit the effectiveness of large filters, the small-
scale problem is tractable, since performance is
limited by noise that can be modeled as white,
and for which parameters can be estimated. Based
on this observation, they proposed a method for
selecting the scale of differential operators called
local scale control, in which scales are search
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from fine to coarse to determine the minimum
reliable scale, that is the smallest scale at which
the sign of the derivative measurement is sta-
tistically reliable. This approach avoids spurious
responses to noise, while minimizing bias due
to the finite extent of the edge, curvature, and
interference from neighbouring image structure.
They also demonstrated methods for subpixel
localization down to roughly 1 / 20 of a pixel
precision [5].

A different scale selection approach for edge
detection was proposed at roughly the same time
by Lindeberg [15]. Lindeberg’s method selects
the scale maximizing the response of so-called
γ-normalized differential operators. This
approach has the property that the scales selected
for an ideal, noise-free, isolated, blurred straight
edge of infinite extent will be proportional to
the blur scale of the edge, and independent of
the edge contrast. Thus, small scales should be
selected for sharp edges, and larger scales for
blurred edges. Unlike the local scale control
approach of Elder and Zucker, the selection of
scale is not related to the signal-to-noise ratio:
in general a large-scale filter will have a smaller
response to an ideal edge than a small-scale filter,
even when the signal-to-noise for the two filters
is the same. As a result of this bias to smaller
scales, many noisy edges are detected, and these
must be eliminated using some form of post hoc
thresholding.

These studies also raised issues around the
order of differential operators to employ. While
Canny localized edges at gradient maxima, Elder
and Zucker localized edges at zero crossings
of the second derivative, steered in the gradi-
ent direction. Specifically edges are localized
at the boundary between two pixels where the
sign of the second derivative changes from pos-
itive to negative in the gradient direction (this
avoids detections of minima in the gradient mag-
nitude). Where the same scales used for these
two operators, the results would be identical.
However, the Elder and Zucker approach tunes
the scales of the two operators independently,
based upon the signal-to-noise properties of the
operators, and as a result the gradient maxima and
second derivative zero crossings are decoupled.

While the statistical testing method cannot be
used to distinguish real and spurious maxima,
it can be used to test for response sign, and
hence to detect zero crossings. Thus, the use
of the second derivative here is critical. Lin-
deberg [15] has argued for explicit calculation
and testing of the sign of the third derivative,
but this is equivalent to checking the sign of
the second derivative on either side of the zero
crossing. However, Elder and Zucker do show
that explicit computation of the third derivative
is useful for estimating the blur of an edge,
which may be useful for discriminating different
types of edges, and for recovering depth from
defocus.

In their 1980s paper [17], Marr and Hildreth
speculated about the possibility that the loca-
tions and gradient magnitudes at oriented zero
crossings over multiple scales might constitute
a complete encoding of the image, allowing, in
principle, for the image to be perfectly recon-
structed from the edge representation. While this
may seem to be going in the wrong direction from
a computer vision point of view, the question is
important because it addresses whether an edge
code could serve as a complete early visual repre-
sentation, providing sufficient information for all
higher-level algorithms.

Since Marr and Hildreth’s original conjecture,
there have been numerous theoretical and
empirical studies exploring the possible
completeness of an edge code. Mallat and Zhong
[16] demonstrated excellent reconstruction
results based upon such a code. However, since
edges are represented at many scales, and at the
finest scales edge density is very high, this code is
highly overcomplete. More compact codes can be
derived, but at the expense of noticeable artifact
in the reconstruction.

Elder [4] explored an alternative reconstruc-
tion approach based upon their edge represen-
tation. Rather than storing information from all
scales at each edge point, only the location, 2-bit
orientation, contrast, brightness, and blur of each
edge point were stored, resulting in a far more
compact code. Reconstruction is excellent as long
as both the intensity and the blur information are
employed in the reconstruction.
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Since edge detection is often just the first
computational step in a computer vision pipeline,
and applications may have real-time require-
ments, efficiency has always been a factor in the
design of edge detection algorithms. Both Marr
and Hildreth [17] and Canny [2] deliberately
employed filters that were x− y separable,
allowing 2D convolutions to be computed by
composing much cheaper 1D convolutions.
Rachid Deriche [3] further improved upon these
efficiency by developing recursive filters based
upon Canny’s original design criteria, allowing
very fast implementation on sequential hardware.
More recent algorithms have tended to rely upon
steerable filters [7] that allow oriented operators
to be implemented using only a few basis
functions.

While linear filtering forms the front end
of most edge detection algorithms, a number
of interesting non-linear techniques have been
studied. In fact this has a long tradition, going
back to early work that sees the problem as model
fitting [10] and includes active contour (“snake”)
methods for fitting semi-local deformable
contour models to visual data [12]. While
effective in many applications, active contour
methods tend to have more parameters to tune,
and results are sensitive to these and to initial
conditions.

Still to include:

• Scale [13]
• Color edge detection [14]
• Nonlinear filtering [11]
• Nonlocal methods [19]
• Evaluation [8, 13, 18]
• Redefinition in terms of “salient” boundaries

[13, 18]
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Synonyms

Visualized locus method

Definition

Stacking up a sequence of images in the order
of shooting time, a 3D image having a time
axis which is the thickness direction of just one
book is obtained. This 3D image is called a
spatiotemporal image. If the temporal change of
the image is slow, the spatiotemporal image has
continuity in the time axis direction as strong as
in the image axis directions. An epipolar plane
is composed of two camera viewpoints at the
start and end times of the moving images and
a 3D point on the object. If the camera moves
in translation, this object point is constrained
on the epipolar plane. When the spatiotemporal
image is cut along the epipolar plane, the pro-
jection of the object point draws a locus on this
cross section. This spatiotemporal cross-sectional
image is called an epipolar plane image (EPI).
By analyzing the EPI, it is possible to track the
objects and recover the 3D structure of the scene
by the ego-motion of the camera.

Background

Digital image processing, which began in the
1960s, was mainly performed for static images,
and moving image analysis emerged as a chal-
lenging theme in the late 1970s. Correspondence
of successive images and reconstruction of a
3D scene have been recognized as the main
issues of the moving image analysis. At that

time, image pattern matching and spatiotemporal
gradient methods were considered to be effec-
tive means for finding correspondence between
images, but both became difficult when the appar-
ent shape of the object changed due to occlusion.

Theory

The EPI analysis appeared in 1981 as a tracking
method that does not use apparent image patterns
[1]. We show basic idea of this method on object
tracking and structure from ego-motion.

Suppose that a video camera is set at the
roadside and a moving image of the vehicles
moving from side to side is captured. Make a
spatiotemporal image from this moving image as
shown in Fig. 1a. In the spatiotemporal image, the
vehicle pattern constitutes a 3D sweeping area. In
the horizontal cross section of the spatiotemporal
image, the locus of the feature points appears as
a striped pattern as shown in Fig. 1b. This locus
can be traced with edge detection. Despite the
apparent change of the tracking object due to
occlusion, make it possible to perform tracking
on a pixel-by-pixel basis by edge detection on the
spatiotemporal cross-sectional image. Also, the
apparent movement speed can be measured by
finding the inclination of the locus with respect
to the time axis.

The spatiotemporal cross-sectional image
which is an EPI obtained from the actual
outdoor scene is shown in Fig. 2b, and one
frame of the outdoor scene is shown in Fig. 2a.
This spatiotemporal cross-sectional image was
taken around 1979. At that time, technology for
inputting moving images to a computer was not
established, and scenes were shot with a 16mm
movie camera, and each frame was input to the
computer with a drum scanner. The horizontal
axis of the EPI is the x-axis of the image, and the
vertical axis is the time axis. The resolution is low
and the image quality is not good. Despite this, it
can be seen that the black band in the middle is
the loci of the black vehicle, and the white band
from the upper right to the lower left is the loci
of the light color vehicle. By following these loci



Ego Motion and EPI Analysis 361

E

Ego-Motion and EPI Analysis, Fig. 1 (a) A spatiotemporal image by stacking up a moving image in the order of
shooting time. (b) An epipolar plane image (EPI) obtained from horizontal cross section of the spatiotemporal image

Ego-Motion and EPI Analysis, Fig. 2 (a) One frame of
the moving image in outdoor traffic scene. (b) An EPI
from horizontal cross section of the spatiotemporal image.
(c) Loci are obtained from the edge detection. By tracing
the locus, it is possible to track the vehicle in pixel by

pixel despite pattern change by the occlusion. Moreover,
the behavior of the traffic scene can be interpreted from
the loci. That is, a light-colored vehicle is passing behind
a parked black vehicle. (From [1])

detected as Fig. 2c, tracking can be performed on
the pixel basis. As a result, it can be interpreted
that the light color vehicle is passing behind the
parked black vehicle.

By moving the camera with respect to the
static scene, the 3D structure of the scene can be

obtained [2]. In Fig. 3a, two cubes are placed in
front of the camera. An EPI is obtained via a spa-
tiotemporal image taken while moving the cam-
era from left to right. Motion parallax appeared in
this EPI. That is, the inclination of the locus with
respect to the time axis on the EPI is inversely
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Ego-Motion and EPI Analysis, Fig. 3 (a) The camera is
moving from left to right while looking at the two cubes.
At this time, motion parallax is seen on EPI. (b) A monitor

as a target object. (c) Reconstructed point cloud of the
monitor and their projections on the bottom, side, and
back views (©1986IEICE [2])

proportional to the depth from the camera to the
object. Therefore, the depth of the scene can be
obtained by measuring the inclination of the loci.
A depth can also be obtained from a pair of stereo
images viewed at the start and end points of the
camera. However, the apparent arrangement of
the two cubes is reversed in the two images. This
makes stereo correspondence point search diffi-
cult. EPI analysis is an approach that circumvents
this difficulty.

Actually, recovery of the 3D shape of a mon-
itor by this method is shown in Fig. 3c. The 3D
point cloud of the restored monitor is plotted in
the 3D space and is projected on the bottom,
side, and back coordinate planes. However, a

horizontal edge of the object does not appear
on the horizontal EPI when moving the camera
in the horizontal direction. This horizontal edge
appeared on the vertical EPI of the spatiotempo-
ral image when the camera moves in the vertical
direction. A complete 3D structure of the monitor
is obtained by integrating 3D point clouds recov-
ered from the horizontal and vertical EPIs.

Applications

The conditions under which feature points appear
as loci on the spatiotemporal cross-sectional
image have been clarified in detail in [3]. That
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Ego-Motion and EPI Analysis, Fig. 4 (a) EPI from the left camera, (b) EPI from the right camera, (c) Loci on the left
EPI, (d) Loci on the right EPI. (From [4])

is, when the camera translates in the scene, the
locus of the feature point appears on the cross-
sectional image of spatiotemporal image cut by
the epipolar plane created from the point on the
object and the viewpoints of the camera. Due
to this, the spatiotemporal cross-sectional image
in which the locus of feature points appears is
named EPI. Since the late 1980s, many applied
researches on EPI have been launched. Out of
them, let’s introduce stereo matching, 3D map
of town, modeling whole object, and dynamic
panorama.

Perspective of the objects can be qualitatively
known from the occluding relationship of loci

on the EPI. However, to know quantitatively, a
stereo camera is required. Assume a standard
stereo camera with parallel optical axes. The EPIs
from the left and right cameras are shown in (a)
and (b) of Fig. 4, respectively. The corresponding
loci of passing pedestrians extracted on the left
and right EPIs are drawn in (c) and (d) of Fig. 4,
respectively. Suppose that a point xl on the left
image corresponds to a point xr on the right
image, xl > xr . Since this relationship holds on
anytime, xl(t) > xr(t) where t denotes time.
The locus L2 on the left EPI can correspond to
the loci R2, R3, and R4 on the right EPI at the
initial time, as they satisfy the condition xl > xr .
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However, with the passage of time, R3 and R4

cannot satisfy xl(t) > xr(t), and eventually L2

corresponds to only R2. By using loci on EPI, the
correspondence problem between stereo images
can be solved without using image patterns [4].

The buildings, trees, and streetlights extend
vertically. Knowing the location of these vertical
lines on the ground, we can get an approximate
map of the town. If the brightness on the vertical
line is constant, its projection draws a locus on the
EPI, and the locus becomes a clue to know the
position of the vertical line. Usage of a straight
line instead of a 3D point is an alleviation of
the establishment condition of EPI. This can be
done with a perspective camera, but using an
omni-camera, we can efficiently build 3D map
of a large-scale scene such as an urban city
[5]. The omni-camera is a system in which a
scene projected on a hyperbolic convex mirror
is captured with a normal camera, and if the
mirror’s symmetry axis is directed right down, an
omni-dimensional image of the scene is obtained.
When the omni-camera mounted on the vehicle
has moved, an omni-directional spatiotemporal
image is shown in Fig. 5a. In the image, a ver-
tical ridge of a building and a roadside tree are
projected as a straight line toward the center
of the image. Cutting this omni-directional spa-
tiotemporal image by a plane parallel to the time
axis and moving direction, the vertical ridge and
tree appear as linear loci on the spatiotemporal

Ego-Motion and EPI Analysis, Fig. 5 (a) Omni-
directional spatiotemporal image, (b) A spatiotemporal
cross-sectional image of the omni-directional spatiotem-
poral image. (From [5])

cross-sectional image as shown in Fig. 5b. The
positions of building corner and trees can be
obtained from the slope and intercept of the loci.

To obtain the entire shape of an object, use the
moving image obtained by rotating the camera
around the object like the moon rotating around
the earth or self-rotating the object in front of
the camera. If the rotational speed is constant,
a feature point on the object draws a sinusoidal
curve on the EPI. However, in order for a locus
to appear on the EPI, it is necessary to keep the
camera sufficiently apart from the object so that
the camera would be modeled by orthographic or
weak perspective projection.

A sinusoidal curve is expressed by amplitude
and phase. Although it is conceivable to directly
fit the sinusoidal curve to the EPI to obtain the
two parameters, it is easier to use the Hough
transformation to the 2D parameter space [6].
The amplitude and phase of the extracted sinu-
soidal curve is a polar coordinate representation
of the object shape.

If the specular reflection component of the
object surface is prominent, it is observed as a
highlight. Since the highlight does not correspond
to a particular point on the object surface, its
locus on the EPI does not generally draw a sinu-
soidal curve. As the object rotates, the highlight
position moves on the surface of the object and
is a function of the rotation angle. Thus, this
function represents the shape of the object. This
function is known to satisfy first-order differ-
ential equation [7], which has a closed form
solution. However, an initial value is required.
When the highlight locus intersects the sinusoidal
locus on the EPI, the shape value obtained from
the sinusoidal locus is used as the initial value.
Figure 6b shows curves corresponding to feature
points and highlights, and (d) shows reconstruc-
tion of the object with a specular reflection.

There are various usages in cross sections
other than EPI of spatiotemporal images. One of
them is a slit photography used in the judgment
of arrival order in horse racing. Shoot the goal
post through the vertical slit, and roll up the film
at the same time as the horse passes, and the
images of each horse will be taken in order. This
image is the same as a vertical cross-sectional
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Ego-Motion andEPIAnalysis, Fig. 6 (a) A target object
with a specula reflection. (b) On the EPI, a sinusoidal
curve corresponds to a black slit pattern on the object

surface, while a highlight draws the white curve which is
not sinusoidal. (c) The highlight curve. (d) The recovered
target object. (From [7])

image of the spatiotemporal image from a camera
shooting the goal. However, depending on the
speed of the horse, the image will stretch or
shrink in the direction of move. That is, the image
shrinks if the horse is fast and stretches if it is
slow. The stretch and shrink can be corrected by
measuring the velocity from the horizontal EPI of
the spatiotemporal image.

Mosaicing is a technology for creating a
panoramic image with a wide field of view by
combining images in a moving image obtained
by panning or tilting a camera. In [8], a moving
image is shot by tilting a camera from bottom
to top of a tree. If the horizontal cross-sectional
image of the spatiotemporal image is corrected at
the tilt speed, a panoramic image of the entire
tree can be obtained. A panoramic moving
image can be obtained by shifting the cross
section position in the up direction. This is called
dynamosaicing [9].

Open Problems

EPI may also serve to elucidate human visual
function. In the primary visual cortex in the
human brain, there is a column that selectively
responds to the slope of the stripe with visual
stimuli from a static image [10]. It is also known
that there is a column that selectively responds to
the magnitude of the speed by visual stimulation
from a moving image [11]. However, the mech-
anism of each column is not clear. According to

Occam’s razor principle that a simple explanation
is excellent, suppose an EPI is to be made in the
brain from the temporal stimuli, the mechanism
of the two columns may be explained by one
principle.

As a post-EPI approach, if a 3D region cor-
responding to a target object in a spatiotemporal
image can be directly extracted, it is possible to
track freely moving objects unconstrained by EPI
conditions. This idea [12] has been proposed ear-
lier but is not a general approach. This approach
should be further developed as there are many
potential applications.
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Synonyms

Methods of image recognition in a low-dimen-
sional eigenspace

Related Concepts

�Dimension Reduction
�Eigenspace Methods
� Principal Component Analysis (PCA)

Definition

The eigenspace method is an image recogni-
tion technique that achieves object recognition,
object detection, and parameter estimation from
images using the distances between input and
gallery images in a low-dimensional eigenspace.
Here, the eigenspace is constructed based on
a statistical method, such as principal compo-
nent analysis or Karhunen-Loève transform, so
that the variation in the appearances of target
objects can be represented in a low-dimensional
space efficiently. In particular, a technique called
the parametric eigenspace method represents the
rotation and translation of a target object or a light
source as a manifold in an eigenspace. Accord-
ingly, this method performs object recognition
and parameter estimation using distances in the
manifold.

Background

Appearance-based object recognition is a tech-
nique that recognizes a target object by matching
between input and preregistered gallery images.
One of the simplest methods to achieve this
image matching calculates the distances between
the pixel values of these images. However, it
is difficult for many applications to apply this
method due to two problems: (1) Processing time
needed to calculate the distance between images
increases depending on the size of the images. (2)
Memory space needed to store the gallery images
of target objects grows depending on the number
of the objects.

Principal component analysis (PCA) can be
used as one of the unsupervised dimensionality
reduction techniques that transform a sample set
of high-dimensional vectors to the set of low-
dimensional vectors with minimum information
loss. This technique first calculates eigenvectors
that are at right angles to each other and
maximizes the variances in their directions; it
then constructs a low-dimensional eigenspace
defined by a small number of eigenvectors.
The low-dimensional vectors are obtained by

http://www.vision.huji.ac.il/dynmos/page2.html
http://www.vision.huji.ac.il/dynmos/page2.html
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projecting the high-dimensional vectors to the
eigenspace. An eigenspace method constructs a
low-dimensional eigenspace from preregistered
gallery images of target objects and calculates
the distances between input and gallery images in
the low-dimensional space. Thus the eigenspace
method can reduce the processing time and
memory space efficiently without degrading the
recognition performance.

Theory

An image recognition procedure using an
eigenspace method is divided into learning and
recognition stages. The learning stage, which
is performed beforehand, constructs a low-
dimensional eigenspace from a large number
of learning images of target objects and then
projects each learning image to the eigenspace.
On the other hand, the recognition stage projects
an input image of a target object to the eigenspace
and then recognizes the input object by matching
between input and learning images in the low-
dimensional space.

Learning stage For each learning image, the
method first normalizes the image size so that the
number of pixels can be N , and it represents them
as N -dimensional vectors x1, . . . , xM . M repre-
sents the number of learning images. Here, we
assume that each target object has one learning
image; therefore, M also represents the number
of target objects. A matrix X is constructed as
follows:

X =
[

x1 − c

||x1 − c|| · · · xM − c

||xM − c||
]

, (1)

c = 1

M

M∑
m=1

xm. (2)

Eigenvectors are obtained by solving the follow-
ing eigenequation:

XXTui = λiui , (3)

where ui represents an eigenvector of XXT

corresponding to an eigenvalue λi . Eigenvectors
u1, . . . ,uN are arranged in descending order
of their eigenvalues. The method constructs
a low-dimensional eigenspace from k(� N)

eigenvectors corresponding to the k largest
eigenvalues and then obtains k-dimensional
vectors f m by projecting N -dimensional vectors
xm to the eigenspace using the following
equation:

f m = [u1 · · · uk]
T xm − c

||xm − c|| . (4)

Consequently, the memory space needed to store
the learning images can be greatly reduced.

Recognition stage In the same manner as in the
learning stage, the method first normalizes the
image size of an input image and represents it
as an N -dimensional vector y. The method then
obtains a k-dimensional vector g by projecting y

to the low-dimensional eigenspace constructed in
the learning stage using the following equation:

g = [u1 · · · uk]
T y − c

||y − c|| . (5)

The method recognizes the input object as an
object m̂ that minimizes the distance between the
input image g and the learning image f m using
the following equation:

m̂ = argmin
m

||g − f m||2. (6)

Accordingly, the processing time needed to cal-
culate the distance between the images can be
greatly reduced.

Based on an efficient representation of human
face images using PCA as proposed by [1,2] pro-
posed a method using “eigenfaces” to detect and
recognize human faces in images. This method
calculates a small number of eigenvectors from a
large number of learning face images and mea-
sures the distances between input and learning
face images in a low-dimensional eigenspace.
The eigenvectors calculated from the face images
are called eigenfaces. Since this method was
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EigenspaceMethods, Fig. 1 Image samples in an object image set containing object images with different horizontal
poses

reported, image recognition using the eigenspace
method has become an active area of research.

Murase and Nayar [3] proposed a “parametric
eigenspace method” for recognizing three-
dimensional objects and estimating their poses
simultaneously. This method constructs a mani-
fold as a smooth curved line approximated from
a point set in an eigenspace for each target object.
The point set is obtained by projecting learning
images with various poses to the eigenspace.
Object recognition and pose estimation are
achieved by calculating the distances between
an input image and manifolds. In order to
achieve object recognition and pose estimation
simultaneously, two types of eigenspaces are
constructed: a universal eigenspace from the
learning images of all target objects and an
object eigenspace for each target object. The
method first recognizes an object in the universal
eigenspace and then estimates a pose of the object
in the object eigenspace. Figure 1 shows samples
in an object image set containing object images
with different horizontal poses, and Fig. 2 shows
eigenvectors that were calculated from the image
set. On the other hand, the closed smooth curve

shown in Fig. 3 represents a manifold in the
object eigenspace that was constructed from the
eigenvectors. The manifold was approximated
from the points that were obtained by projecting
the image in the image set shown in Fig. 1 to the
eigenspace.

Ohba and Ikeuchi [4] proposed a method using
“eigen window” to recognize partially occluded
objects accurately and estimate their poses. The
method extracts multiple local regions with high
detectability, uniqueness, and reliability from an
object region in each learning image. Eigen win-
dows are constructed from the extracted local
regions by PCA. Object recognition and pose
estimation are achieved by matching between the
eigen windows and local regions extracted from
an input image in a similar way.

In addition to the approaches described above,
there have been a number of techniques related
to the eigenspace method. These include tech-
niques of density estimation of samples in a
high-dimensional space [5], non-linear expansion
of PCA [6, 7], image recognition using two-
dimensional PCA [8], and image recognition
using high-order tensors [9].
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4th eigenvector 5th eigenvector
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Eigenspace Methods, Fig. 2 Eigenvectors calculated from the object image set shown in Fig. 1. (a)–(f) represent the
first through sixth eigenvectors, respectively

EigenspaceMethods,
Fig. 3 A manifold in the
object eigenspace
constructed from the
eigenvectors shown in
Fig. 2. Transition of object
appearances according to
the horizontal pose
parameter θ1 draws a
closed smooth curve in the
eigenspace

Application

The eigenspace method is used as a fundamental
technique in arbitrary computer vision applica-
tions, such as object recognition, detection, and
tracking, because the method works effectively
despite its algorithm being quite simple.
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Eight-Point Algorithm
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Related Concepts

�Eight-Point Algorithm
�Epipolar Geometry
�Essential Matrix
� Fundamental Matrix

Definition

The 8-point algorithm is a linear technique to
estimate the essential matrix or the fundamental
matrix from eight or more point correspondences.

Background

When dealing with multiple images, it is essen-
tial to determine the relative geometry between
them, which is known as the epipolar geometry.
Between two images of a scene, given a pair of

corresponding image points
(
mi ,m′

i

)
, the follow-

ing epipolar constraint must be satisfied:

m̃′T
i Mm̃i = 0, (1)

where m̃i =
[
mi

1

]
is point mi in homoge-

neous coordinates. Similarly, m̃′
i is point m′

i in
homogeneous coordinates. Matrix M is a 3 × 3
matrix. If the images are calibrated with known
intrinsic camera parameters and the image points
are expressed in the normalized image coordinate
system, then matrix M is known as the essential
matrix, and is usually denoted by E; otherwise,
matrixM is known as the fundamental matrix and
is usually denoted by F. Both essential matrix and
fundamental matrix must satisfy certain proper-
ties, but the common property is that it is a rank-2
matrix, i.e., the determinant of matrix M is equal
to zero.

Theory

The 8-point algorithm ignores the constraints
on the elements of matrix M and treats them
independently. Let us define a 9-D vector x using
the elements of matrix M such that

x = [M11,M21,M31,M12,M22,M32,M13,

M22,M33]
T ,

(2)

where Mij is the (i, j) element of matrix M. Let
m = [u, v]T. Then, the epipolar constraint (Eq. 1)
can be rewritten as

aT
i x = 0, (3)

where

ai =
[
ui m̃′T

i , vim̃
′T
i , m̃′T

i

]T

. (4)

It is clear that x can only be determined up to
a scale factor.
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Given eight or more point correspondences, x
can be determined as follows. Each point corre-
spondence yields one epipolar equation (Eq. 1).
With N (N ≥ 8) point correspondences, we can
stack them together into a vector equation as
follows:

AT x = 0, (5)

with A = [a1, . . . , aN]. The solution to x can be
obtained by minimizing the least squares, subject
to ‖x‖ = 1. With Lagrange multiplier, this is
equivalent to minimizing

‖AT x‖2 + λ
(
1 − ‖x‖2

)
. (6)

With simple algebra, it can be found that the
solution to x is the eigenvector of the 9× 9 matrix
AAT associated with the smallest eigenvalue.

When the image coordinates (ui, vi) are in
pixels, the elements of matrix A have orders of
difference in value, and matrix AAT may not be
well conditioned. One remedy is to pre-normalize
the image points, and several solutions are exam-
ined in [1]. One simplest approach is to perform
a scaling and translation such that all image
coordinates are within [− 1, 1]. Compared with
using directly the pixel coordinates, significant
improvement in accuracy has been observed.

The matrix M estimated above is obtained by
ignoring its property. For example, the estimated
M is usually not rank-2. To obtain the closest
rank-2 matrix, “closest” in terms of Fronobius
norm, we perform a singular value decomposition
on M, i.e.,

M = USV, (7)

where S = diag (s1, s2, s3) with s1 ≥ s2 ≥ s3 ≥ 0.
Replacing the smallest singular value by zero,
i.e., Ŝ = diag (s1, s2, 0), then

UŜV ≡ M̂ (8)

is the optimal rank-2 matrix.
For more details about the epipolar geometry,

the reader is referred to [2, 3]. The reader is

referred to [4] for a review of various meth-
ods for determining the epipolar geometry (the
essential matrix and the fundamental matrix),
to [5] for a study of the relationship between
various optimization criteria, and to [6] for how to
obtain a more robust Euclidean motion and struc-
ture estimation via the estimation of fundamental
matrix.
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Synonyms

Ellipse matching

Definition

Fit one or more ellipses to a set of image points.
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Background

Fitting geometric primitives to image data is a
basic task in pattern recognition and computer
vision. The fitting allows reduction and simplifi-
cation of image data to a higher level with certain
physical meanings. One of the most important
primitive models is ellipse, which, being a projec-
tive projection of a circle, is of great importance
for a variety of computer vision-related applica-
tions.

Ellipse fitting methods can be roughly divided
into two categories: least square fitting and vot-
ing/clustering. Least square fitting, though usu-
ally fast to implement, requires the image data
pre-segmented and is sensitive to outliers. On the
other hand, voting techniques can detect multi-
ple ellipses at once and exhibit some robustness
against noise, but suffers from a heavier compu-
tational and memory load. Furthermore, most of
standard ellipse fitting methods cannot be directly
used in real-world applications involving a noisy
environment. Thus, the arc finding based tech-
niques will also be described in the entry, with
emphasis on ellipse fitting in complicated images,
though, strictly speaking, they cannot be taken as
a counterpart of the above two categories.

Due to space limitation, there are some other
techniques that cannot be covered by the entry,
but with some references listed in the recom-
mended reading, such as the moment [1] and
genetic algorithm [2] based methods.

Theory

Least Square Fitting
Least square fitting is realized by minimizing
some distance measure between ellipse and
image data as follows:

� = argmin
�

N∑
i=1

D(�, xi )
2, (1)

where D(�, xi ) denotes some distance between
pixel xi = [xi, yi]T and the ellipse specified
by �.

There are two main distance measures for
ellipse fitting: geometric distance and algebraic
distance. In efficiency, the algebraic distance
based techniques outperform its counterpart
because a direct solution of Eq. (1) is obtainable
by using algebraic distance. However, the
algebraic fitting suffers from the drawback of bias
estimation and unclear physical interpretations
on the estimated errors and fitting parameters.
For instance, some algebraic fitting results are
not invariant to the coordinates transformation of
image data.

Geometric Fitting
An ellipse takes the following equation:

[(x − x0) cosφ + (y − y0) sinφ]2
a2

+ [(x − x0) sinφ + (y − y0) cosφ]2
b2

= 1, (2)

where x0, y0 are coordinates of center, φ is the
orientation, and a, b are the semiaxis, as shown in
Fig. 1. Geometric distance, also known as short-
est or orthogonal distance, is defined by the
distance between one image point and its orthog-
onal projection upon the ellipse, as illustrated
by D1(xi ) = ‖xi − xi1‖ in Fig. 1. In such
a setting, the ellipse fitted becomes actually a
principal curve, which is best in the sense of mean
square reconstruction error minimization. How-
ever, the distance D1 is analytically intractable.
There exist some techniques to tackle the prob-
lem, unavoidably involving some iterative numer-
ical algorithm.

Ahn et al. [3] use a Gaussian-Newton algo-
rithm for geometric fitting, by implicitly describ-
ing the orthogonal projection point x1. A tem-
porary coordinate system uv is introduced as
follows:

u = R(x − x0), (3)

where R =
(

cosφ, sinφ

− sinφ, cosφ

)
is a rotation

matrix. In coordinate system uv, the ellipse is
transformed with center at the origin and without



Ellipse Fitting 373

E

rotation, i.e., with the simple formulation as

f1(u, v) = u2

a2
+ v2

b2
− 1 = 0. (4)

For a data point ui , the tangent line through its
projection point ui1 on the ellipse is perpendic-
ular to the line connecting the two points ui and
ui1:

f2(u, v) = b2u(vi − v) − a2v(ui − u) = 0 (5)

Then, a generalized Newton method is employed
to find ui1 as follows:

QnΔu = −f(un)

un+1 = un + Δu (6)

where f � (f1, f2)
T , and the Jacobian matrix

Q =
(

b2u, a2v

(a2 − b2)v + b2vi, (a2 − b2)u − a2ui

)
.

(7)

It is noted several solutions (maximum to 4)
could be found by the iteration above. In order to
get the right one, one can choose a proper initial
value as

u0 = 0.5(ui2 + ui3),

where ui2 = ui
ab√

b2u2i +a2v2i

and ui3 =
{

(ui , sign(vi)
b
a

√
a2 − u2i )

T if |ui | < a,

(sign(ui )a, 0)T else.
, as

illustrated in Fig. 1.
Once u1 has been found, through a backward

transformation of Eq. (3), the error distance vec-
tor becomes

D1(xi ) = xi − xi1 = R−1(ui − ui1) (8)

By implicitly describing the orthogonal projec-
tion u1 through f1 and f2 defined by Eqs. (4)
and (5), the Jacobian matrix with respect to the
five parameters θ = (x0, y0, a, b, φ)T is as fol-
lows:

Jxi1,θ = (R−1Q−1B)|u=u1 , (9)

where Q is given by Eq. (7), and
B = (B1,B2,B3,B4,B5) with

B1 = (b2u cosφ − a2v sinφ, b2(vi − v) cosφ

+ a2(ui − u) sinφ)T ,

B2 = (b2u sinφ + a2v cosφ, b2(vi − v) sinφ

− a2(ui − u) cosφ)T ,

B3 = (a(b2 − v2), 2av(ui − u))T ,

B4 = (b(a2 − u2),−2bu(vi − b))T ,

B5 = ((a2 − b2)uv, (a2 − b2)(u2 − v2

− uui + vvi))
T .

Finally, based on equations (8) and (9), the fit-
ting can be accomplished by a Gaussian-Newton
iteration as

θn+1 = θn + λJ−1
xi1,θ

D1(xi ), (10)

where λ denotes a step-size.
Instead of the shortest distance, an alternative

approach was proposed to use radial distance, as
illustrated by D2(xi ) = ‖xi − xi2‖ in Fig. 1,
where xi2 is the intersection of the ellipse and
the radial line passing through xi . Distance D2

is analytically obtained as [4]

D2(�, x) = | ab√
(κ)

− 1|
√

(x − x0)2 + (y − y0)2

(11)

with κ � a2(cosφ(y − y0) − sinφ(x − x0))
2 +

b2(cosφ(x−x0)+sinφ(y−y0))
2. However, solu-

tion of Eq. (1) can still not be directly reached.
Usually, some iterative technique is still required
to get the fitting results, such as stochastic gradi-
ent algorithm.

Some other developments on geometric fitting
are referred to [5, 6].
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Ellipse Fitting, Fig. 1 An
ellipse with center at
(x0, y0), orientation φ and
semiaxis a and b. The
projection of point xi , or ui

in coordinate system uv,
upon the ellipse is the point
with the shortest distance
on the ellipse, denoted by
xi1 (ui1)

xi2/ui2

v

a

b

xi/ui
xi1/ui1

y

x

φ
(x 0,y

0)

u

ui3

Algebraic Fitting
In fact, a more commonly used distance measure
for ellipse fitting is algebraic distance, which
defines the distance by the second order polyno-
mial

D(�,u) = ax2+bxy+cy2+dx+ey+f, (12)

with the constraint

b2 − 4ac < 0, (13)

and with � = [a, b, c, d, e, f ]T . The problem
of Eq. (1) with the distance measure given by
Eq. (12) has been extensively studied in the name
of conic fitting. In order to fit an ellipse, though
the general problem of conic fitting could be
solved directly, the constraint of Eq. (13) gener-
ally makes the methods iterative. By constraining
b2 − 4ac = −1 and by transferring the problem
to solving a generalized eigensystem, Fitzgibbon
et al. [7] propose a fast and direct ellipse fitting
method. Specifically, the problem is reformulated
as

min
�

‖D�‖2 subject to �T C� = 1, (14)

where D=[u1,u2, . . . uN ]T with ui=[x2, xy, y2,

x, y, 1], and the constraint matrix C is defined as

C =

⎛
⎜⎜⎝

0 0 2 0 0 0
0 −1 0 0 0 0
2 0 0 0 0 0

0

⎞
⎟⎟⎠ , (15)

where 0 ∈ R
3×6 is a null matrix. By introducing

Lagrange multipliers λ and differentiating, the
conditions for the optimal � become

S
 = λC
,

�T C� = 1, (16)

where S = DT D. Thus, problem (14) can be
solved by finding the eigenvector�i of the gener-
alized eigensystem defined by Eq. (16). It is also
noted that there are six solution-pairs (λi,�i ).
By definition, the one corresponding to the mini-
mal positive eigenvalue λi is chosen as the solu-
tion, because

‖D�‖2 = �T DT D� = �T S� = λ�T C� = λ.

(17)

Some other developments on algebraic fitting
are referred to [8, 9].

Voting Based Techniques
Different from the least square fitting techniques
which can fit only one primitive, the voting
based methods, consisting of mainly the Hough
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Ellipse Fitting, Fig. 2
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transform, can detect multiple primitives at
once. Even for single ellipse fitting, the Hough
transform based techniques are more robust
against outliers. On the other hand, however,
Hough transform usually suffers from a larger
computational and memory load, due to the
fact that an ellipse involves five parameters.
To alleviate the problem, there exist some
modifications of the original method.

One popular way to tackle the problem is
to decompose the five-dimensional space into
several sub-space with lower dimensions, thanks
to some special geometric features of ellipse. A
common decomposition method is first to locate
the center of the ellipse and then to specify the
remaining three parameters. The center of an
ellipse can be located in several ways, based on
different geometric features of ellipse.

One geometric feature of ellipse frequently
used is described as follows [10]. Let xi and xj

be the two points on an ellipse, and find their
midpoint mij = 1

2 (xi + xj ) and the intersection
point tij of their tangent lines, as illustrated in
Fig. 2. Then, the line connecting the two points
mij and tij is a radial line that passes through the
center of the ellipse. That is, any point pairs on
an ellipse with unparallel tangents can produce
a radial line. Consequently, the center candidates
can be located in the following way:

1. generate the radial lines based on every point
pairs in the image;

2. define a two-dimensional histogram on x − y

plane of the image, and record each radial line
by incrementing the histogram bin through
which the line passes;

3. find all local maxima in the two-dimensional
histogram as the center candidates.

Another interesting feature of ellipse arises
from its symmetry [11]. For two horizontal lines
hi and hj , their intersections with an ellipse are
denoted by xli , xri and xlj , xrj , respectively, as
illustrated in Fig. 3. The line xmixmj will pass
through the center of the ellipse, where the mid-
point xmi � 1

2 (xli + xri ) and xmj � 1
2 (xlj + xrj ).

Similarly, for two vertical lines vi and vj , the
line ymiymj also passes through the center of the
ellipse, where line ymiymj is gotten in a similar
way as xmixmj . Thus, intersection of the two lines
xmixmj and ymiymj gives the center of the ellipse.
Based on the geometric feature, a center detection
method is given as follows:

1. fully horizontally scan the image, and find the
midpointsmhi of every possible point pairs on
each scanning line;

2. a two-dimensional Hough transform is applied
to find all of the lines lh formed by the mid-
points mhi (i = 1, 2, . . .);

3. all lines lv are found in a similar way as above
on vertical scanning;

4. every intersection of lh and lv gives a center
candidate.
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Ellipse Fitting, Fig. 3
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Once the center candidates have been
extracted, detection of the three remaining
parameters can be reached through a standard
voting process in an accumulator space or
can be further decomposed into detection of
orientation and semiaxis, respectively. A typical
decomposition strategy for the three parameters
is to find first axis ratio a

b
and orientation φ, and

then axis length [12]. Axis ratio and orientation
satisfy the following relationship:

a2

b2
= (xi − x0) cosφ + (yi − y0) sinφ

(xi − x0) sinφ − (yi − y0) cosφ
tan(θi −φ + π

2
),

(18)

where θi denotes the angle of the tangent line
through xi , and x0, y0 have been extracted in the
previous stage. Thus, a two-dimensional plane
can be built based on Eq. (18) for each point
on the ellipse, and consequently the axis ratio
and orientation can be estimated by finding the
maxima in the plane. It is noted that, for each
one center candidate, only the data points that
participate in the extraction of center are used in
the above voting process.

Finally, ellipse fitting can be accomplished by
specifying a or b. Taking a as an example as
follows, this satisfies

a =
√

(xi − x0)2 + γ (yi − y0)2 (19)

where γ � a
b
is gotten in the previous step.

Hence, voting on a one-dimensional accumulator
by the data points pertaining to each candidate
will retrieve the axis length of the target.

There are also some improvements of the
Hough transform that are used to alleviate the
computational load, such as the randomized
Hough transform. Because discussion on the
variants of Hough transform is out of the scope
of the current entry, readers are referred to some
other related entries or some recommended
readings such as [13].

Some other developments on voting based
fitting are referred to [14, 15].

Arc Finding Based Techniques
Arc finding based techniques accomplish ellipse
fitting by finding elliptic arcs in the edge map.
Thus, they in general require edge detection as a
preprocessing. Arc finding is of particular interest
for ellipse fitting, thanks to the fact that any
fragment/elliptic arc (longer than five pixels) of
an ellipse can retrieve the whole one. This makes
such techniques suitable for ellipse fitting in com-
plicated image because it is usually easier to
extract arcs than a whole ellipse from an edge
map. Arc finding based ellipse fitting generally
takes the following three steps: arc finding, arc
fitting and grouping, and ellipse fitting.
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Ellipse Fitting, Fig. 4 The beginning and ending angles
of an elliptic arc

In order to extract ellipse, the arc found should
be a neat curve without any branches. A simple
approach to get neat curve is described as follows
[4]: first, a thinning operator is applied to make
the edge with one pixel width; second, delete
those pixels that have more than two pixels in its
8-neighbor field; finally, a standard chain finding
algorithm is used to find neat curves.

Each curve is further fitted by an ellipse, by
using a geometric fitting technique mentioned
above. The reason for choosing geometric fitting
lies in that, first, geometric fitting provides a
proper criterion (error measure) to evaluate the
curve to be a qualified elliptic arc or not, and
second, geometric fitting gives a more accurate
result than algebraic fitting and Hough transform
on a small elliptic fragment, which is frequently
encountered since the neat curve finding tends
to break the curves with branches into several
shorter ones. Finally, each curve is characterized
by an 8-dimensional vector

[x0, y0, a, b, φ, e, θ1, θ2]T , (20)

where e = 1
N

∑N
i=1D(�, xi )

2 denotes the mean
square fitting error and θ1 and θ2 denote its
beginning and ending angles, i.e., its direction,
as illustrated in Fig. 4. The curves whose fit-
ting error is smaller than a pre-defined threshold
are chosen as qualified elliptic arcs. The ellip-
tic arcs belonging to one same ellipse are then
grouped together according to the following two
rules:

• their positions and shapes are close to each
other, by the first five parameters;

• they are mutually complementary in direction
to form an entire ellipse, by the last two
parameters.

During the arc grouping, the data points
belonging to each single ellipse are also
segmented. Consequently, each ellipse can be
finally fitted by least square fitting on these
segmented point sets individually.

It is noticed that the arc finding methods
employ an integrated framework since its
fitting technique comes from least square
fitting. However, such integration seems to be
unavoidable in real applications, especially in
unstructured environments that usually involve
heavy noises.

Some other developments on arc finding based
techniques are referred to [16, 17].

Open Problems

Statistical bias of algebraic fitting make the fit-
ting results tend to shrink, especially on small
fragments or on data points with heavier noises.
Although there are some works on general conic
fitting to remove the bias [18], discussion on
direct ellipse fitting is lacking. Since direct alge-
braic fitting seems to be the fastest algorithm for
ellipse fitting, it is of theoretical and practical
significance to make some progress on removing
bias in the fitting process.
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On the other hand, although there are some
methods proposed for ellipse fitting in compli-
cated images, it still remains a big challenge to fit
ellipse in uncontrolled real-world environments.

Experimental Results

It is not intended to demonstrate all of the algo-
rithms described above. Only two experimental
results are given, with the first one to demonstrate
the bias of algebraic fitting on a small elliptic

arc and the second one to give one glimpse of
state-of-the-art real-world application in noisy
environments of ellipse fitting.

Image points used in the first experiments are
fetched from a small elliptic fragment, as shown
in Fig. 5. The dash ellipse is the fitting result of
algebraic fitting, which shrinks to be smaller than
the right one as denoted by the bigger solid ellipse
that is resulted from geometric fitting.

Two real-world applications of ellipse fitting
on holes of gear and blood cells are shown in
Figs. 6 and 7, respectively.

Ellipse Fitting, Fig. 5
Fitting results of a small
elliptic fragment: in the
image on the right side,
dash ellipse is gotten by
algebraic fitting and solid
ellipse by geometric fitting

Ellipse Fitting, Fig. 6
Real-world application:
ellipse fitting results on
gear image
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Ellipse Fitting, Fig. 7
Real-world application:
ellipse fitting results on
blood cell image
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Synonyms

Convex optimization; Convex minimization;
Discrete optimization

Related Concepts

�Constrained Optimization

Definition

Energy minimization is a subtopic of optimiza-
tion, where we minimize some energy/cost func-
tion by suitable algorithms. The type of energy is
twofold: continuous and discrete.

Background

In computer vision problems, we often encounter
situations of minimizing energy functions (or cost
functions) that are designed to estimate, recon-
struct, or process something. There are two major
categories of energy minimization. One is that
the target can be represented as a vector in the
N -dimensional Euclidean space, i.e., the case of
continuous energy. For example, if the target is
a gray scale image and if each pixel value is
handled as a real value, then the image can be
treated as an N -dimensional vector, where N

is the number of the pixels. The other is that
the target takes a discrete value, i.e., the case
of discrete energy. A typical example is image
segmentation with discrete labels.

The research on continuous energy minimiza-
tion algorithms has a long history, and there exist
many types of algorithms. Roughly speaking,
they can be divided into first-order and second-
order methods. In general, the convergence rate
of second-order methods is faster than that of
first-order ones. However, since the dimensions
of the problem tend to be large in computer vision
applications, first-order methods are mainly used
thanks to their scalability. In addition, we often
adopt nonsmooth functions, such as �1 norm, to
leverage a-priori knowledge and structure, e.g.,
sparsity and low-rankness, for characterizing rea-
sonable results. Therefore, minimization algo-
rithms should be flexible in handling such non-
smooth functions. In this chapter, we review pop-
ular algorithms that satisfy these requirements.

For discrete energy minimization, there are
two major algorithms for solving the problem
in an exact or approximate manner; one is a
graph cut algorithm, and the other is a message
propagation algorithm. Each algorithm has a long
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history, and their superiority also depends on
the formulation of the concrete problem. Hence,
it is significant to know an overview of both
algorithms to efficiently solve discrete energy
minimization problems in computer vision. This
chapter also summarizes the procedure of these
algorithms and some simple guidelines for choos-
ing them.

Continuous EnergyMinimization

Theory and Method

Basic Tools
A function f : R

N → (−∞,∞] is said to be
convex if ∀x, y ∈ R

N and λ ∈ (0, 1), f (λx+(1−
λ)y) ≤ λf (x) + (1 − λ)f (y). We also introduce
the proximity operator (or proximal mapping) [2]
of a convex function f as follows:

proxγf (y) := argmin
x

f (x) + 1

2γ
‖y − x‖2, (1)

where γ > 0. We call f proximable if the
proximity operator of f can be computed effi-
ciently. A typical example is the �1 norm, i.e.,
f (x) = ‖x‖1 := ∑N

i=1 |xi |. In this case the
proximity operator is reduced to the so-called
soft-thresholding operator, given by

[proxγ ‖·‖1(x)]i = sign(xi)max{|xi |−γ, 0}. (2)

In what follows, we introduce the so-called
proximal splitting algorithms, which have been
used in many computer vision applications. Basi-
cally, we assume that energies to be minimized
are convex. It should be noted that these algo-
rithms can also be applied to nonconvex energies,
but in this case their global convergence is not
guaranteed in general.

Proximal Gradient Method
Consider the following minimization problem:

min
x

f (x) + g(x), (3)

where f is a smooth convex function and its gra-
dient ∇f is β-Lipschitz continuous (β > 0) and
g is a proximable convex function. The proximal
gradient method (or proximal forward-backward
splitting method) [8, 17] solves Prob. (3) by the
following procedure: for given γ ∈ (0, 2

β
) and

x(0), iterate

x(n+1) := proxγg(x
(n) − γ∇f (x(n))). (4)

If we set g := 0, then the algorithm is reduced
to the well-known steepest descent method. The
proximal gradient method can be accelerated by
Nesterov’s optimal gradient scheme, where the
resulting algorithm is called FISTA [3].

Alternating Direction Method of Multipliers
Consider a more involved minimization problem:

min
x

f (x) + g(Lx), (5)

where f is a quadratic function, g is a proximable
convex function, and L is a linear operator (or
simply a matrix). We show the algorithm of
the alternating direction method of multipliers
(ADMM) [4,10] for solving Prob. (5) as follows:
for given γ > 0, y(0) and z(0), iterate

⎧⎪⎪⎨
⎪⎪⎩

x(n+1) =argmin
x

f (x) + 1
2γ ‖z(n)−Lx−y(n)‖2

z(n+1) = proxγg(Lx
(n+1) + y(n))

y(n+1) = y(n) + Lx(n+1) − z(n+1)

. (6)

In Algorithm (6), step 1 is the minimization of
the sum of g and a quadratic function. We should
note that the matrix L is applied to the objective
variable x in the quadratic function. If L is an
identity matrix I, then from the definition of the
proximity operator, step 1 is identical to proxγf .
However, in many cases we have to treat L �= I,
so f must be a quadratic or simpler function in
order to solve this subproblem in closed form.
Even for such a simple f , we need to calculate
the operator inversion associated with L, which
might be computational bottleneck.
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Primal-Dual Splitting Method
Consider a more general case of Prob. (5), where
f is (possibly) nonsmooth but proximable. A
primal-dual splitting method (or primal-dual
hybrid gradient method) [7] can handle the case
by the following algorithm: for given γ1, γ2 > 0
satisfying γ1γ2‖L‖2 < 1, x(0) and y(0), iterate

{
x(n+1) = proxγ1g

(x(n) − γ1L�y(n)))

y(n+1) = proxγ2h
∗(y(n) + γ2L(2x(n+1) − x(n)))

.

(7)

Here, ‖L‖ is the operator norm of L. The function
h∗ is the convex conjugate of h, and its proxim-
ity operator can be computed via the proximity
operator of h as follows:

proxγ h∗(x) = x − γ prox 1
γ

h
( 1
γ
x). (8)

It is worth noting that the algorithm does not
require any operator inversion associated with L,
which is a clear advantage over ADMM. On the
other hand, the empirical convergence speed of
the primal-dual splitting method is a bit slower
than that of ADMM.

Application

LASSO
Let us consider the following linear regression
model:

y = Xβ̄ + n, (9)

where β̄ is an unknown parameter vector we wish
to estimate/learn, X is a feature matrix, y is an
observation vector, and n is an error vector. Here
we assume that β̄ is sparse, meaning that only a
few number of entries of β̄ have large absolute
values and the others are exactly or nearly zero.

Then, LASSO (least absolute shrinkage and
selection operator) [21] estimates β̄ by solving
the following convex optimization problem:

min
β

1

2
‖Xβ − y‖2 + λ‖β‖1, (10)

where the first term is the least-square criterion
and the second term is a sparse regularization via

the �1 norm, i.e., the sum of the absolute values
of the entries of β. The hyperparameter λ > 0
controls the degree of sparsity.

Although the structure of Prob. (10) appears
to be simple at first glance, it cannot be solved
by gradient descent-type algorithms because the
�1 norm is not differentiable. In addition, in
computer vision applications, the dimension of
β is often very large, which limits the use of
algorithms that require complex procedures.

This difficult situation was broken by the so-
called iterative shrinkage and thresholding algo-
rithm (ISTA) [9], known as a typical realiza-
tion of the proximal gradient method. By setting
f (β) := 1

2‖Xβ − y‖2 and g(β) := ‖β‖1 in
Prob. (3), ISTA is given by

β(n+1)=proxγ λ‖·‖1(β
(n)−γ (X�Xβ(n+1)−X�y)),

(11)

where the proximity operator of the �1 norm is
reduced to the soft-thresholding operation in (2).

LASSO and its extensions, such as group
LASSO and fused LASSO, have been widely
used in computer vision applications, for exam-
ple, sparse coding [14], foreground modeling
[22], and saliency detection [19].

Total Variation Regularization
Regularization for natural images plays an impor-
tant role in many low-level computer vision prob-
lems, such as denoising/smoothing, deblurring,
and computational imaging.

Total variation (TV) [18] would be one of the
most popular regularization techniques, which is
defined, for an image u ∈ R

N of N pixels, by

TV(u) := ‖Du‖1,2 =
N∑

i=1

√
d2
v,i + d2

h,i , (12)

where D : R
N → R

2N is a local difference
operator and dv,i and dh,i are the local vertical
and horizontal differences at the i-th pixel,
respectively. Here, ‖ · ‖1,2 denotes the mixed
�1,2 norm, which is used for taking the �2 norm
of the two differences at each pixel and then
summing them up by the �1 norm. TV models
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piecewise-smooth structure in natural images,
i.e., only differences around edges take large
absolute values and otherwise nearly zero.

Consider imaging inverse problems of the
form:

v = �ū + n, (13)

where ū is a latent image we wish to estimate, �
is a matrix representing observation/degradation
process, n is a sensor noise, and v is an observa-
tion vector.

Then, total variation regularization for imag-
ing is formulated as follows:

min
u

1
2‖�u − v‖2 + λTV(u), (14)

where the first term is �2 data-fidelity and λ > 0
controls the smoothness of the estimated image.

Since this problem looks similar to Prob. (10),
one may think that this problem can also be
solved by the proximal gradient method. How-
ever, Prob. (14) is indeed much more difficult
than Prob. (10) because the proximity operator
of TV cannot be computed in closed form. For-
tunately, ADMM and the primal-dual splitting
method can handle such a problem by leveraging
the matrix L in (5).

Specifically, in the case of ADMM, by letting

f (u) := 1
2‖�u − v‖2, (15)

g(z) := λ‖z‖1,2, (16)

L := D, (17)

the resulting algorithm is given by

⎧⎪⎪⎨
⎪⎪⎩

u(n+1) = argmin
u

1
2‖�u − v‖2 + 1

2γ ‖z(n) − Du − y(n)‖2

z(n+1) = proxγ λ‖·‖1,2(Du
(n+1) + y(n))

y(n+1) = y(n) + Du(n+1) − z(n+1)

. (18)

The update of u is reduced to a quadratic
minimization, where we need to solve matrix
inversion involving ��� + 1

γ
D�D. This can be

efficiently calculated if the matrix can be
diagonalized via a fast transform, e.g., FFT.
Otherwise, this step might be a computational
bottleneck because the size of the matrix is very
large in imaging applications. The update of z is
the computation of the proximity operator of the
�1,2 norm, which is equivalent to a group-wise
soft-thresholding operation. The general form is
given as follows:

[proxγ ‖·‖1,2(x)]g = max
{
1 − γ

‖xg‖ , 0
}
xg, (19)

where xg denotes a non-overlapped subvector of
x with an index g (G is the set of all indices).
In the TV regularization case, each subvector
consists of the vertical and horizontal differences
at each pixel, i.e., xg ∈ R

2.

In the case of the primal-dual splitting method,
by letting

f (u) := 0, (20)

g(y1, y2) := 1
2‖y1 − v‖2 + λ‖y2‖1,2, (21)

L := (�� D�)�, (22)

the resulting algorithm is given by

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u(n+1) = u(n) − γ1(�
�y(n)

1 + D�y(n)
2 )

ỹ(n+1)
1 = y(n)

1 + γ2�(2u(n+1) − u(n))

ỹ(n+1)
2 = y(n)

2 + γ2D(2u(n+1) − u(n))

y(n+1)
1 = ỹ(n+1)

1 − γ2prox 1
2γ2

‖·−v‖2(
1
γ2
ỹ(n+1)
1 )

y(n+1)
2 = ỹ(n+1)

2 − γ2prox λ
γ2

‖·‖1,2(
1
γ2
ỹ(n+1)
2 )

.

(23)

The update of y1 is reduced to a very simple
quadratic minimization without matrix inversion,
and the update of y2 is given in (19). What should
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be noted is that this algorithm is completely free
from matrix inversion unlike the ADMM case.

The extensions of TV to color and multichan-
nel images have been widely studied in the com-
puter vision field [6, 11, 16], and these advanced
regularization methods can also be optimized by
ADMM and the primal-dual splitting method.

Discrete EnergyMinimization

Theory and Method
We introduce the algorithms for minimizing a
discrete energy function used in computer vision.
Although obtaining a global optimum solution of
a discrete energy function is generally hard, if
a given discrete energy function satisfies several
conditions described later, the global optimal
solution for the minimization problem can be
computed in polynomial time with “graph cut”
and “min-sum.” Also, even if the given discrete
energy function does not satisfy these conditions,
the minimization problem of the energy function
can be approximately solved by applying the
above-mentioned algorithms.

To solve the discrete minimization problem
using these algorithms, we need to design a
discrete energy function to which the above meth-
ods can be applied. In the following we discuss
the form of the discrete energy function which
is a premise of these algorithms. Suppose N

variables and define the set of them as x =
{x1, x2, . . . , xN }. Using these variables we also
introduce an undirected graph representing the
correlation between variables as G = {V, E}.
V = {1, . . . , N} represents a set of nodes, and
each element of V corresponds to the index of
variable xi . (i, j) ∈ E represents a set of edges
in the graph. If there is an edge between nodes
i and j , it indicates that they have an influence
on each other. With this graph notation, a discrete
energy function can be represented by

E(x) =
∑
i∈V

fi(xi) +
∑

(i,j)∈E
fij (xi, xj ), (24)

where fi(xi) is called “data term” or “unary
potential” and defines how each node is easy to

take state xi . fij (xi, xj ) is called a “smoothness
term” or “pairwise potential” and describes the
relationship between nodes i and j . The discrete
algorithms introduced in the following focus on
the minimization problem of energy functions
defined in this way.

Graph Cut
Graph Cuts are well-known algorithms for
efficiently solving discrete energy function
minimization problems [5]. Originally, in the
domain of graph theory, several algorithms such
as Edmonds-Karp and Ford-Fulkerson were
known as methods for efficiently solving the
minimum cut problem of a flow network. Graph
cut focuses on these algorithms, replaces the
minimization problem of the discrete energy
function with the minimum cut problem of the
equivalent flow network, and solves the energy
minimization problem indirectly by applying the
above algorithms.

One of the interesting properties of graph
cuts is that if the given discrete energy function
satisfies a specific condition, its global optimum
can be efficiently computed. Suppose a discrete
energy function where all variables in a graph
take binary values (i.e., xi ∈ {0, 1} for all i).
If the smoothing term fij (xi, xj ) satisfies the
following inequality, the global optimum of the
energy function can be obtained with the graph
cut algorithms:

fij (0, 0) + fij (1, 1) ≤ fij (0, 1) + fij (1, 0)
(25)

The energy function that satisfies the above
inequality is called a “submodular” energy
function.

If the given energy function satisfies the above
condition, the energy function of any binary
energy function can be transformed into a flow
network. See [13] for the specific method of this
transformation.

Min-Sum Algorithm
Min-sum is a type of generalized algorithm called
belief propagation and finds the minimization
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problem of a given energy function exactly (or
approximately).

All the algorithms of belief propagation
including min-sum indirectly solve problems
by computing an abstract function on an edge
of an undirected graph of a given graphical
model called “message.” Specifically, in the
belief propagation, there exist two messages
mij (xj ) and mji(xi) at the edge on nodes i and
j . By computing these messages according to the
updating equation described later, we can solve
the minimization problem of the given energy
function.

As an important property of the belief propa-
gation, it is well-known that the belief propaga-
tion can compute the exact solution if the given
graphical model does not contain any loops (i.e.,
the graph has a tree structure). Also, even if the
given graphical model contains loops, it is empir-
ically known that it can compute the approximate
solution by updating all the messages iteratively
according to a specific procedure.

Application

α Expansion, α-β Swap
Even when a given energy function is multi-
label energy function where each variable takes
L discrete values represented as xi ∈ {1, . . . , L},
we can compute the approximate solution of
this minimization problem by iteratively applying
graph cut algorithms for binary energy function.

One of the most famous algorithms is α expan-
sion. The α expansion first initializes all xi’s
with appropriate values and then solves the binary
problem of whether the current xi is in the current
state or transitions to α. That is, while xi takes a
discrete L value in the original energy function,
α expansion gives this xi a new constraint where
it can only take the current value or α. Repeating
this procedure until convergence while changing
α, we finally obtain an approximate solution of
the discrete energy function.

Since the converted binary energy functions
used in α expansion also needs to fulfill the
submodular condition, regarding α expansion the
smoothness term must be satisfied the following
inequality for all xi , xj , and α:

fij (xi, xj ) + fij (α, α) ≤ fij (xi, α) + fij (α, xj ).

(26)

Similar to α expansion, α-β is another famous
algorithm for approximately solving the mini-
mization problem of the discrete energy func-
tion by choosing the target label appropriately
for each iteration. The specific procedure is as
follows. First, it initializes all xi’s with appro-
priate values. Next, it chooses the two labels
represented by α and β, extracts variables in
which the current value is α or β, and solves
the binary optimization problem of whether the
current xi is in the current state or transition to
a different state. Finally, it repeats this procedure
until convergence while changing α and β.

Min-Sum in the Case Where Graph Is a Tree
Structure
As we described before, the min-sum is an algo-
rithm for finding the value that minimizes the
given energy function. The min-sum algorithm
can be derived by specialization of generalized
distributive law [1] or taking the limit on a
temperature parameter of sum-product algorithm
[12]. For simplicity, we only describe the process
of computing messages. Suppose that there is
an undirected edge between node i and j . The
min-sum algorithm defines a directed message
mij (xj ) from i to j and another directed message
mji(xi) from j to i. These messages can be
computed by the following equation:

mij (xj ) ← min
xi

fi(xi) + fij (xi, xj )

+
∑

k∈Ni\j

mki(xi), (27)

where Ni is a set of nodes adjacent to node j .
Thus, Ni\j means a set obtained by removing j

from Ni .
The computation of the messages is divided

into the following two paths: (i) a path in which
the message propagates from the leaf node to
the root and (ii) a path in which the message
propagates from the root node to the leaf. If the
node i is a leaf, the message mij can be computed
exactly since Ni\j in Equation (27) is an empty
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set. Once mij is determined, the message from
leaf node to root can be calculated from this
message as well. After repeating these procedures
and calculating all messages from leaves to the
root, the min-sum algorithm computes messages
from the root to leaves in the same manner.

Finally, it computes x∗ that minimizes the
given energy function from all the messages. The
element of node i of x∗ can be computed by

x∗
i = argmin

xi

fi(xi) +
∑
k∈Ni

mki(xi). (28)

The Viterbi algorithm is known as an algorithm
for MAP estimation of hidden Markov models,
and it is equivalent to the min-sum algorithm
in the case where the graph is a chain. That is,
the min-sum algorithm can also be regarded as a
generalization of the Viterbi algorithm.

Loopy Belief Propagation
The belief propagation was originally proposed
as an algorithm for a graphical model without
a loop, but later Murphy et al. pointed out that
it is possible to get an approximate solution by
iteratively repeating the procedure similar to the
belief propagation even for a graphical model
containing loops. This method is generally called
“loopy belief propagation” (LBP).

We describe the concrete procedure of LBP.
The LBP first initializes all the messages mij

with appropriate distributions. Next, it updates
all messages according to the Equation (27) and
repeats this procedure a number of times until
the messages converge. Finally, it estimates the
minimum value of the given energy function with
Equation (28).

The convergence of messages in the LBP-
based methods, including the min-sum algorithm,
is not generally guaranteed. Thus, depending on
the structure of the graphical model, the message
update by Equation (27) may oscillate without
convergence.

Comparison Between Graph Cut and Min-Sum
Algorithm
Graph cut and min-sum have different strength
areas. The min-sum algorithm can find a global

optimal solution of the minimization problem
regardless of the property of the energy function
if the graphical model is a tree structure. On the
other hand, if the energy function is binary and
satisfies the above submodularity, the graph cut
can find the global optimum regardless of the
structure of the graphical model.

It is reported that the graph cut showed better
performance than min-sum in the area where
both algorithms do not work well, i.e., when
the energy function is a multi-valued one and
the corresponding graphical model contains loops
[15]. However, when using tree-reweighted belief
propagation (an extension of min-sum), its per-
formance is comparable to that of the graph cut.

When solving real problems in computer
vision, how to design data terms and smoothness
terms is often more important than which
algorithm to use [20]. In particular, the design
of the data terms has a major impact on the
overall performance, so many practical studies
in computer vision focuses on the data term,
and actual optimization itself uses graph cut or
min-sum.
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Environment Mapping

� Image-Based Lighting

Epipolar Constraint

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen, China

Synonyms

Coplanarity constraint

Related Concepts

�Epipolar Geometry

Definition

Epipolar constraint states that in stereovision
with two cameras, given a point in one image,
its corresponding point in the other image must
lie on a line, known as the epipolar line. This
constraint arises from the fact that the pair of cor-
responding image points and the optical centers
of the two cameras must lie on a plane (known
as coplanarity constraint), and the intersection of
this plane with the image plane is the epipolar
line.

Background

See entry � “Epipolar Geometry” for details.

Epipolar Geometry

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen, China

Synonyms

Multiple view geometry; Multiview geometry
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Related Concepts

�Epipolar Constraint
�Essential Matrix
� Fundamental Matrix

Definition

Epipolar geometry describes the geometric rela-
tionship between two camera systems. It is cap-
tured by a 3 × 3 matrix known as essential
matrix for calibrated cameras and as fundamental
matrix for uncalibrated cameras. It states that
for a point observed in one camera, its corre-
sponding point in the other camera must lie on
a line. This is known as the epipolar constraint.
It reduces the search space of correspondences
from two dimensions to one dimension. In motion
and structure from motion, this constraint is also
known as coplanarity constraint because the opti-
cal centers of the cameras and a pair of corre-
sponding image points must lie in a single plane.

Background

The epipolar geometry exists between any two
camera systems. Consider the case of two cam-
eras as shown in Fig. 1. Let C and C′ be the
optical centers of the first and second cameras,
respectively. Given a point m in the first image,
its corresponding point in the second image is
constrained to lie on a line called the epipolar
line of m, denoted by l′m. The line l′m is the
intersection of the plane Π, defined by m, C,
and C′ (known as the epipolar plane), with the
second image plane I′

. This is because image
point m may correspond to an arbitrary point
on the semi-line CM (M may be at infinity) and
that the projection of CM on I′

is the line l′m.
Furthermore, one observes that all epipolar lines
of the points in the first image pass through a
common point e′, which is called the epipole.
Epipole e′ is the intersection of the line CC′ with
the image plane I′

. This can be easily understood
as follows. For each point mk in the first image
I, its epipolar line l′mk

in I′
is the intersection

of the plane Πk, defined by mk, C, and C′, with
image plane I′

. All epipolar planes Πk thus form
a pencil of planes containing the line CC′. They
must intersect I′

at a common point, which is
e′. Finally, one can easily see the symmetry of
the epipolar geometry. The corresponding point
in the first image of each point m′

k lying on l′mk

must lie on the epipolar line lm′k, which is the
intersection of the same plane Πk with the first
image plane I. All epipolar lines form a pencil
containing the epipole e, which is the intersection
of the line CC′ with the image plane I. The
symmetry leads to the following observation. If
m (a point in I) and m′ (a point in I′

) correspond
to a single physical point M in space, then m,
m′, C, and C′ must lie in a single plane. This is
the well-known coplanarity constraint in solving
motion and structure frommotion problems when
the intrinsic parameters of the cameras are known
[1].

The computational significance in matching
different views is that for a point in the first
image, its correspondence in the second image
must lie on the epipolar line in the second image,
and then the search space for a correspondence is
reduced from 2 dimensions to 1 dimension. This
is called the epipolar constraint.

If the line linking the two optical centers is
parallel to one or both of the image planes, then
the epipole in one or both of the images goes
to infinity, and the epipolar lines are parallel to
each other. Additionally, if the line linking the
two optical centers is parallel with the horizontal
scanlines of the cameras, then the epipolar lines
become horizontal, too. This is the assumption
of many stereo algorithms which have horizontal
epipolar lines.

Theory

Before proceeding further, the reader is referred
to the entry � “Camera Parameters (Intrinsic,
Extrinsic)” for the description of camera perspec-
tive projection matrix and intrinsic and extrinsic
parameters. It is assumed that the reader is famil-
iar with the notation used in that entry.
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Assume that the second camera is brought
from the position of the first camera through a
rotation R followed by a translation t. Thus, any
point (X, Y, Z) in the first camera coordinate
system has coordinates (X′, Y′, Z′) in the second
camera coordinate system such that

⎡
⎣

X

Y

Z

⎤
⎦ = R

⎡
⎣

X′
Y ′
Z′

⎤
⎦ + t (1)

where

R =
⎡
⎣

r11 r12 r13
r21 r22 r23
r31 r32 r33

⎤
⎦ and t =

⎡
⎣

tX
tY
tZ

⎤
⎦ .

R has nine components but there are only three
degrees of freedom. There are six constraints on
R. Indeed, a rotation matrix R must satisfy

RRT = I, (2)

and

det (R) = 1. (3)

See, for example [2], for more details on the
different representations of the rotation and its
properties.

In the following, we first derive the epipolar
equation with the normalized image coordinates,
then extend it to include the pixel image coordi-
nates, and finally formulate in terms of camera
perspective projection matrices.

Working with Normalized Image
Coordinates
The two images of a space point X = [X,Y, Z]T

are [x, y, 1]T and [x′, y′, 1]T in the first and
second normalized images, respectively. They
are denoted by x̃ and x̃′. Let X′ = X′,Y′,Z′
be the coordinates of the same space point in
the second camera coordinate system. From the
pinhole model, we have

x̃ = X/Z,

x̃′ = X′/Z′.

Eliminating the structure parameters X and X
′

using Eq. (1), we obtain

x̃ = 1

Z

(
Z′Rx̃′ + t

)
,
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which contains still two unknown structure
parameters Z and Z′. The cross product of the
above equation with vector t yields

t × x̃ = Z′

Z
t × Rx̃′.

Its dot product (or inner product) with x̃ gives

x̃T t × (
Rx̃′) = 0. (4)

Here, the quantity Z′/Z has been removed.
Equation (4) is very important in solving

motion and structure from motion. Geometri-
cally, it is very clear. The three vectors CC′, Cx̃,
and C′x̃′ are coplanar. When expressed in the
first camera coordinate system, they are equal
to t, x̃, and Rx̃′, respectively. The coplanarity of
the three vectors implies that their mixed product
should be equal to 0, which gives Eq. (4).

Let us define a mapping [·]× from a 3D vector
to a 3 × 3 antisymmetric matrix (also called skew
symmetric matrix):

⎡
⎣

x1
x2
x3

⎤
⎦

×
=

⎡
⎣

0 −x3 x2
x3 0 −x1

− x2 x1 0

⎤
⎦ . (5)

It is clear that

[t]× = −[t]T×. (6)

Using this mapping, we can express the cross
product of two vectors by the matrix multiplica-
tion of a 3 × 3 matrix and a three-vector: t× x̃ =
[t]×x̃,∀x̃. Equation (4) can then be rewritten as

x̃T Ex̃′ = 0, (7)

where

E = [t]×R. (8)

We call this equation the epipolar equation.
Matrix E is known under the name of

the essential matrix. It was first proposed by
Longuet-Higgins [1] for structure from motion.
The essential matrix is determined completely

by the rotation and translation between the two
cameras. Because [t]× is antisymmetric, we have
det([t]×) = 0. Thus, we have

det (E) = det
(
[t]×

)
det (R) = 0. (9)

For more properties of the essential matrix, see
[3, 4].

Before gaining an insight of Eq. (7), we recall
how to represent a line in a plane. Any line can
be described by an equation of the form

ax + by + c = 0. (10)

Thus, the line can be represented by a three-
vector l = [a, b, c]T such that a point x̃ =
[x, y, 1]T on it must satisfy

x̃T 1 = 0. (11)

Of course, the three-vector l is only defined up
to a scale factor. Multiplying l by any nonzero
scalar λ gives λl, which describes exactly the
same line. If a line goes through two given points
x̃1 and x̃2, we have

x̃T
1 1 = 0 and x̃T

2 1 = 0,

and it is easy to see that the line is represented by

1 = x̃1 × x̃2, (12)

that is, the cross product of the two point vectors.
For point x̃′ = [

x′, y′, 1
]T in the second

image, its corresponding point X
′
in space must

be on the semi-line C′X′∞ passing through x̃′,
where X′∞ is a point at infinity. From the pinhole
model, point X

′
can be represented as

X′ = λx̃′ = λ

⎡
⎣

x′
y′
1

⎤
⎦ , λ ∈ (0,∞) .

This is in fact the parametric representation of
the semi-line C′X′∞. If we express this point in
the coordinate system of the first camera, we have

X = RX′ + t = λRx̃′ + t, λ ∈ (0,∞) .
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The projection of the semi-line C′X′∞ on the
first camera is still a line, denoted by lx′ , on which
the corresponding point in the first image of point
x must lie. The line lx′ is known as the epipolar
line of x′. The epipolar line can be defined by
two points. The first point can be obtained by
projecting X with λ = 0, which gives ẽ = 1

tZ
t,

where tZ is the Z-component of the translation
vector t. This is in fact the projection of the
optical center C of the second camera on the first
camera and is called the epipole in the first image.
The second point can be obtained by projecting X
with λ = ∞, which gives x̃∞ = 1

rT3 x̃
′Rx̃

′, where
r3 is the third row of the rotation matrix R. As
described in the last paragraph, the epipolar line
lx′ is represented by

1x′ = ẽ × x̃∞ = t × Rx̃′ = Ex̃′. (13)

Here we have multiplied the original vector by
tZ and rT

3 x̃
′ because, as we said, a three-vector for

a line is only defined up to a scalar factor.
If now we reverse the role of the two camera,

we find that the epipolar geometry is symmetric
for the two cameras. For a given point x in the
first image, its corresponding epipolar line in the
second image is

1′
x = ET x̃.

It is seen that the transpose of matrix E, ET,
defines the epipolar lines in the second image.

From the above discussion, Eq. (7) says noth-
ing more than that point x is on the epipolar line
lx′ , that is,

x̃T 1x′ = 0 with 1x′ = Ex̃′,

or that point x′ is on the epipolar line l′x, that is,

1′T
x x̃′ = 0 with 1′

x = ET x̃,

The epipoles are intersections of all epipolar
lines. That is, epipoles satisfy all the epipolar line
equations. Let the normalized coordinates of the
epipole in the first image be e. Then, from Eq. (7),
e satisfies

ẽT Ex̃′ = 0 (14)

regardless of x′. This means,

ẽT E = 0T (15)

at anytime. That is,

ẽT E = ẽT [t]×R = 0T . (16)

Since R is an orthonomal matrix, we have

ẽT [t]× = 0. (17)

The solution is

ẽ =
[
tX

tZ
,
tY

tZ
, 1

]T

. (18)

This is exactly the projection of the optical
center of the second camera onto the first images
plane, as we have already explained geometri-
cally. For the second image, we have

Eẽ′ = [t]×Rẽ′ = 0. (19)

Thus,

Rẽ′ = t. (20)

The position of the epipole can then be deter-
mined as

ẽ′ = 1

r′
3 · tR

T t =
[
r′
1 · t
r′
3 · t ,

r′
1 · t
r′
3 · t , 1

]T

, (21)

where r′
i = [r1i, r2i, r3i]T, and i = 1, 2, 3 are the

column vectors of R.
For the epipole in the first image to go to

infinity, we must have

tZ = 0. (22)

This means that the translation of the camera
has to be within the focal plane of the first
camera. For both epipoles in the two images to
go to infinity, then
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r′
3 · t = 0. (23)

This implies that the optical center of the
first camera lies in the focal plane of the second
camera. Furthermore, if we require the two focal
planes to be a single one, then besides tZ = 0, r13
and r23 have to be 0. Since r′

i = 1, we have

r33 = 1. (24)

Thus R is in the form of

R =
⎡
⎣
cos θ sin θ 0
− sin θ cos θ 0
0 0 1

⎤
⎦ . (25)

This means that the rotation can be only
around the optical axis of the cameras.

Substituting Eq. (22) and (25) for (8), we have

E = [t]×R

=
⎡
⎣

0 0 tY
0 0 −tX

− tY cos θ − tX sin θ −tY sin θ + tX cos θ 0

⎤
⎦ .

(26)

If we expand the above equation, it is clear
that there is only linear terms of the image coor-
dinates, rather than quadric terms in the original
form. That means the epipolar lines are parallel in
both images and the orientations are independent
of the image points.

Working with Pixel Image Coordinates
If two points m and m′, expressed in pixel image
coordinates in the first and second camera, are in
correspondence, they must satisfy the following
equation

m̃T Fm̃′ = 0, (27)

where

F = A−T EA′−1
, (28)

and A and A′ are respectively the of the first and
second camera. Equation (27) is easily verified.
From the pinhole camera model, the x are related
to the pixel coordinates m by x̃ = A−1m̃.
Plunging it into Eq. (7) yields Eq. (27). This is
a fundamental constraint for two pixels to be in
correspondence between two images.

As with the normalized image coordinates,
the above Eq. (27) can also be derived from
the pinhole model. Without loss of generality,

we assume that the world coordinate system
coincides with the second camera coordinate
system. From the camera perspective projection
model, we have

sm̃ = A [R t]
[
M′
1

]

s′m̃′ = A′ [I 0]
[
M′
1

]
.

Eliminating M
′
, s, and s′ in the above two

equations, we obtain, not at all surprising, Eq.
(27).

The 3 × 3 matrix F is called the fundamental
matrix. With this fundamental matrix, we can
express the epipolar equation for two unnormal-
ized images in the same form as for the normal-
ized images. Since det(E) = 0,

det (F) = 0. (29)

F is of rank 2. Besides, it is only defined
up to a scalar factor. If F is multiplied by an
arbitray scalar, Eq. (27) still holds. Therefore,
a fundamental matrix has only seven degrees
of freedom. There are only seven independent
parameters among the nine elements of the fun-
damental matrix.
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We now derive the expression of the epipoles.
The epipole e in the first image is the projection of
the optical center C′ of the second camera. Since
C′ = 0, from the pinhole model, we have

seẽ = A [R t]
[
0
1

]
= At, (30)

where se is a scale factor. Thus, the epipole
ẽ is equal to At divided by its third element.
Similarly, the epipole e′ in the second image is
the projection of the optical center C of the first
camera. The optical center is determined by

A [R t]
[

C

1

]
= 0,

which gives

C = −R−1t.

Therefore, the epipole e′ is given by

s′
eẽ

′ = A′ [I 0]
[

C

1

]
= −A′R−1t, (31)

that is, it is equal to − A′ R−1 t divided by the
third element of the vector.

Now we show, for a given point m′ in the
second image, how to compute the correspond-
ing epipolar line lm′ in the first image. It is
determined by two points. Besides the epipole
e, we need another point. This point can be the
projection of any point M̂′ on the optical ray〈
C′, m̃′〉. In particular, we can choose M̂′ such that

m̃′ = A′ [I 0]
[
M̂′
1

]
= A′M̂′,

that is, the scale factor is equal to 1. This gives
M̂′ = A′−1

m̃′. The projection of this point in the
first camera, m̂, is given by

sm ˜̂m = A [R t]
[
M̂′
1

]
= A

(
RA′−1m̃′ + t

)
,

where sm is the scale factor. As already described
in Eq. (10) on page 241, a line can be represented

by a three-vector defined up to a scale factor.
According to Eq. (12), the epipolar line lm′ is
given by

1m′ = sesmẽ × ˜̂m
= (At) ×

[
A

(
RA′−1

m̃′ + t
)]

= (At) ×
(
ARA′−1

m̃′) .

It can be shown that (Ax)× (Ay)= det (A)A−T

(x × y) for all vectors x and y if matrix A is
invertible. Therefore, we have

1m′ = A−T
[
t ×

(
RA′−1

m′)] = Fm̃′

with F given by Eq. (28). Then any point m on
the epipolar line of m′ satisfies m̃T Fm̃′ = 0,
and this is exactly Eq. (34). Therefore, we obtain
geometrically the same equation.

Now we reverse the role of the two images
and consider the epipolar line 1′

m in the second
image for a given pointm in the first image. Line
l′m goes through the epipole e′. We choose the
projection of a point M̂′ on the optical ray

〈
C, m̃

〉
such that

m̃ = A [R t]
[
M̂′
1

]
,

that is, the scale factor is chosen to be 1. This
gives

M̂′ = (AR)−1 (
m̃ − At

)
.

Its projection in the second camera gives

s′
m

˜̂m′ = A′ [I 0]
[
M̂′
1

]

= A′(AR)−1 (
m̃ − At

)

= A′R−1 A−1m̃ − A′R−1t.

The epipolar line l′m is thus represented by
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1′
m = s′

es
′
mẽ

′ × ˜̂m′,

= −
(
A′R−1t

)
×

(
A′R−1A−1m̃

)

= −
(
A′R−1

)−T (
t × A−1m̃

)

= −A′−T

RT [t]× A−1m̃

= FT m̃.

In the above, we have used the following
properties:

• (Ax) × (Ay) = det (A)A−T(x × y), ∀ x, y if
matrix A is invertible.

• (AB)−1 = B−1A−1 if matrices A and B are
invertible.

• RT = R−1 if R is a rotation matrix.
• [t]T× = −[t×] if [t]× is an antisymmetric

matrix.

It is thus clear that if F describes epipolar
lines in the first image for points given in the
second image, then FT describes epipolar lines
in the second image for points given in the first
image. The two images play a symmetric role in
the epipolar geometry.

We now compute the epipoles from a different
point of view. By definition, all epipolar lines in
the first image go through the epipole e. This
implies

ẽT Fm̃′ = 0, ∀m′,

or in vector equation form

FT ẽ = 0. (32)

Pludging Eq. (28) into the above equation
gives

A′−T

RT [t]×A−1ẽ = 0.

Because [t]× t = 0, up to a scale factor, we
have seA−1ẽ = t, and thus seẽ = At. This is
exactly Eq. (30). Similarly, for the epipole e′ in
the second image, we have

Fẽ′ = 0 (33)

or

A−T [t]×RA′−1
ẽ′ = 0.

This gives s′
e RA′−1

ẽ′ = −t, or s′
e ẽ′ = −A′

R−1t. This is exactly Eq. (31).

Working with Camera Perspective
Projection Matrices
In several applications, for example, in the case of
calibrated stereo, the camera perspective projec-
tion matrices are given, and we want to compute
the epipolar geometry. Let P and P′ be the pro-
jection matrices of the first and second camera.
Furthermore, the 3 × 4 matrix P is decomposed
as the concatenation of a 3 × 3 submatrix B and
a three-vector b, that is, P = [B b]. Similarly,
P′ = [B′ b′].

From the pinhole model, we have

sm̃ = [B b]
[
M′
1

]

s′m̃′ = [
B′ b′]

[
M′
1

]
.

Assume that B and B′ are invertible, we can
compute M

′
from each of the above equations:

M′ = sB−1m̃ − B−1b
M′ = s′B′−1

m̃′ − B′−1
b′.

The right sides of the above equations must be
equal, which gives

sB−1m̃ = s′B′−1
m̃′ + B−1b − B′−1

b′.

Multiplying both sides by B gives

sm̃ = s′BB′−1
m̃′ + b − BB′−1

b′.

Performing a cross product with b − BB′−1 b′
yields
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s
(
b − BB′−1

b′) × m̃

= s′ (b − BB′−1
b′) × BB′−1

m̃′.

Eliminating the arbitrary scalars s and s′ by
multiplying m̃T from the left (i.e., dot product)
gives

m̃T Fm̃′ = 0, (34)

where

F =
[
b − BB′−1

b′]
×BB

′−1
. (35)

We thus obtain the epipolar equation in terms
of the perspective projection matrices. Again, it
is clear that the roles ofm andm′ are symmetric,
and we have m̃′T FT m̃ = 0.

Now let us show how to compute the epipoles.
The epipole e in the first image is the projection
of the optical center C′ of the second camera, and
the optical center C′ is given by

C′ = −B′−1
b′.

We thus have

seẽ = P
[

C′
1

]
= b − BB′−1

b′, (36)

where se is a scale factor. Thus, epipole e is equal
to (b − BB′−1b′) divided by its third element.
Similarly, the epipole in the second image, e′,
is equal to (b′ − B′ B−1b) divided by its third
element.

Next, we show how, for a given point m′ in
the second image, to compute the corresponding
epipolar line lm′ in the first image. The epipolar
line must go through the epipole e. We thus need
another point to determine it. This point can be
the projection of any point M̂′ on the optical ray〈
C′, m̃′〉. In particular, we can choose M̂′ such that

m̃′ = P′
[
M̂′
1

]
= B′M̂′ + b′,

that is, the scale factor is equal to 1. This gives
M̂′ = B′−1 (

m̃′ − b′). According to the pinhole
model, the image m̂ of this point is given by

sm
˜̂m = P

[
M̂′
1

]
= BB′−1

m̃′ +
(
b − BB′−1

b′) ,

where sm is the scale factor. As already described
in Eq. (10) on page 241, a line can be represented
by a three-vector defined up to a scale factor.
According to Eq. (12), the epipolar line lm′ is
given by

1m′ = sesmẽ × ˜̂m

=
(
b−BB′−1

b′)×
[
BB′−1

m̃′+
(
b−BB′−1

b′)]

=
(
b − BB′−1

b′) ×
(
BB′−1

m̃′) ,

or

1m′ = Fm̃′, (37)

where F is given by Eq. (35). Then any point m
on the epipolar line of m′ satisfies m̃T Fm̃′=0,
and this is exactly Eq. (34). Therefore, we obtain
geometrically the same equation. Because of
symmetry, for a given point m in the first image,
its corresponding epipolar line in the second
image is represented by the vector FT m̃.

Now, we show that if the images are
calibrated, then the F is reduced to the E. Since
the images are calibrated, the points m can be
expressed in normalized coordinates, that is,
m = x. Without loss of generality, the world
coordinate system is assumed to coincide with
the second camera coordinate system. From
the perspective projection model, we have the
following camera projection matrices:

P = [R t] and P′ = [I 0] .

This implies that B = R, b = t, B′ = I,
and b′ = 0. Pludging them into Eq. (35) gives
F = [t]× R, which is exactly the essential matrix
Eq. (8).

In the above derivation of the fundamental
matrix, a camera perspective projection matrix
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P is decomposed into a 3 × 3 matrix B and a
three-vector b, and B must be invertible. Later,
we provide a more general derivation directly in
terms of the camera projection matrices P and P′.

Fundamental Matrix and Epipolar
Transformation
We examine the relationship between the funda-
mental matrix and the (i.e., the transformation of
the epipoles and the epipolar lines between the
two images).

For any point m′ in the second image, its
epipolar line l′m in the first image is given
by 1′

m = Fm̃′. It must go through the ẽ =
[e1, e2, e3]T and a point m̃ = [u, v, s]T , that is,
1′
m = ẽ × m̃ = Fm̃′. Here, we use the for the
image points. Symmetrically, the epipolar line
in the second image 1′

m of point m is given by
1′
m = FT m̃ and must go through the epipole

ẽ′ = [
e′
1, e

′
2, e

′
3

]T and a point m̃′ = [
u′, v′, s′]T ,

that is, 1′
m = ẽ′ × m̃′ = FT m̃. In other words, the

epipole e′ is on the epipolar line l′m for any point
m; that is,

ẽ′T 1′
m = ẽ′T FT m̃ = 0 ∀m,

which yields

Fẽ′ = 0. (38)

Let c1, c2, and c3 be the column vectors of F,
and we have e1′ c1 + e′

2 c2 + e′
3 c3 = 0; thus

the rank of F is at most two. The solution to the
epipole ẽ′ is given by

e′
1 = F23F12 − F22F13

e′
2 = F13F21 − F11F23

e′
3 = F22F11 − F21F12,

(39)

up to, of course, a scale factor. Similarly, for the
epipole in the first image, we have

FT ẽ′ = 0, (40)

which gives

e1 = F32F21 − F22F31

e2 = F13F21 − F11F32

e3 = F22F11 − F21F12,

(41)

also up to a scale factor.
Now let us examine the relationship between

the epipolar lines. Once the epipole is known, an
epipolar line can be parameterized by its direction
vector. Consider 1′

m = ẽ′×m̃′; its direction vector
u′ can be parameterized by one parameter τ ′ such
that u′ = [1, τ ′, 0]T. A particular point on l′m is
then given by m̃′ = ẽ′ +λ′u′, where λ′ is a scalar.
Its epipolar line in the first image is given by

1m′ = Fm̃′ = Fẽ′ + λ′Fu′ = λ′Fu′

= λ′

⎡
⎢⎣

F11 + F12τ
′

F21 + F22τ
′

F31 + F32τ
′

⎤
⎥⎦ .

(42)

This line can also be parameterized by its
direction vector u = [1, τ , 0]T in the first image,
which implies that

1m′ ∼= ẽ × (
ẽ + λu

) = λẽ × u

= λ

⎡
⎢⎢⎢⎣

− (F11F22 − F21F12) τ

F11F22 − F21F12

(F32F21 − F22F31) τ − F31F12 + F11F32

⎤
⎥⎥⎥⎦ ,

(43)

where ∼= means “equal” up to a scale factor and
λ is a scalar. By requiring that Eq. (42) and Eq.
(43) represent the same line, we have

τ = aτ ′ + b

cτ ′ + d
, (44)

where

a = F12

b = F11

c = −F22

d = −F21.

(45)

Writing in matrix form gives
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ρ

[
τ

1

]
=

[
a b

c d

] [
τ ′
1

]
,

where ρ is a scale factor. This relation is known
as the homography between τ and τ ′, and we say
that there is a homography between the epipolar
lines in the first image and those in the second
image. The above is, of course, only valid for the
epipolar lines having the nonzero first element in
the direction vector. If the first element is equal to
zero, we should parameterize the direction vector
as [τ , 1, 0]T, and similar results can be obtained.

At this point, we can see that the epipo-
lar transformation is defined by the coordinates
ẽ = [e1, e2, e3]T and ẽ′ = [

e′
1, e

′
2, e

′
3

]T of the
epipoles and the four parameters a, b, c, and
d of the homography between the two pencils
of the epipolar lines. The coordinates of each
epipole are defined up to a scale factor, and the
parameters of the homography, as can be seen in
Eq. (44), are also defined up to a scale factor.
Thus, we have in total seven free parameters.
This is exactly the number of parameters of the
fundamental matrix.

If we have identified the parameters of the
epipolar transformation, that is, the coordinates
of the two epipoles and the coefficients of the
homography, then we can construct the funda-
mental matrix, from Eq. (39), (41), and (45), as

F11 = be3e
′
3

F12 = ae3e
′
3

F13 = − (
ae′

2 + be′
1

)
e3

F21 = −de3e
′
3

F22 = −ce3e
′
3

F23 = (
ce′

2 + de′
1

)
e3

F31 = (de2 − be1) e′
3

F32 = (ce2 − ae1) e′
3

F33 = − (
ce′

2 + de′
1

)
e2 + (

ae′
2 + be′

1

)
e1.

(46)

The determinant ad − bc of the homography
is equal to the determinant of the first 2 × 2

submatrix of F, F11 F22 − F12 F21, which is zero
when the epipoles are at infinity.

General Form of Epipolar Equation
for Any ProjectionModel

In this section, we will derive a which does not
assume any particular projection model.

Intersecting Two Optical Rays
The projections for the first and second cameras
are represented respectively as

sm̃ = PM̃, (47)

and

s′m̃′ = P′M̃ ′, (48)

where m̃ and m̃′ are augmented image coordi-
nates and M̃ and M̃′ are augmented space coor-
dinates of a single point in the two camera coor-
dinate systems. Here both projection matrices do
not include the extrinsic parameters.

The same point in the two camera coordinate
systems can be related by

M̃ = DM̃′, (49)

where

D =
[
R t
0T
3 1

]

is the Euclidean transformation matrix compactly
representing both rotation and translation. Now
substituting Eq. (49) for (47), we have

sm̃ = PDM̃′. (50)

For an image point m̃′, Eq. (48) actually
defines an optical ray on which every space point
M̃′ projects onto the second image at m̃′. This
optical ray can be written in pamametric form as

M̃′ = s′P′+m̃′ + p′⊥, (51)



398 Epipolar Geometry

where P′+ is the pseudoinverse matrix of P′:

P′+ = P′T (
P′P′T )−1

, (52)

and p′⊥ is a four-vector that is perpendicular to
all the row vectors of P′, that is,

P′ p′⊥ = 0. (53)

There are an infinite number of matrices that
satisfy P′P′+ = I. Thus, P′+ is not unique. See [5,
6] for how to derive this particular pseudoinverse
matrix.

It remains to determine p′⊥. First note that
such a vector does exist because the difference
between the row dimension and column dimen-
sion is one, and the row vectors are generally
independent of each other. Actually, one way to
obtain p′⊥ is

p′⊥ = (
I − P′+P′)ω, (54)

where ω is an arbitrary four-vector. To show that
it is perpendicular to every row vector of P′, we
multiply P′ and p′⊥:

P′ (I−P′+P′)ω=
(
P′−P′P′T(P′P′T )−1

P′
)

ω=0

which is indeed a zero vector.
Actually, the following equation always

stands, as long as the of the 3 × 4 matrix P′
is 3:

I − P′+P′ = I − P′T (
P′P′T )−1

P′ = p′⊥|p′⊥T

∥∥p′⊥∥∥2 .

(55)

The effect of matrix I − P′+ P′ is to transform
an arbitrary vector to a vector that is perpendic-
ular to every row vector of P′. If P′ is of rank 3
(which is usually the case), then p⊥ is unique up
to a scale factor.

Equation (51) is easily justified by projecting
M

′
onto the image using Eq. (48), which indeed

gives m̃′. If we look closely at the equation,
we can find that p′⊥ actually defines the optical

center, which always projects onto the origin, and
P′+m̃′ defines the direction of the optical ray
corresponding to image point m̃′. For a particular
value s′, Eq. (51) corresponds to a point on the
optical ray defined by m′.

Similarly, an image point m̃ in the first image
also defines an optical ray. Requiring the two
rays to intersect in space means that a point M̃′
corresponding to a particular s′ in Eq. (51) must
project onto the first image at m̃. That is,

sm̃ = s′PDP′+m̃′ + PDp′⊥, (56)

where PDp
′⊥ is the e in the first image.

Performing a cross product with PDp
′⊥ yields

s
(
PDp′⊥)

× m̃ =
(
PDp′⊥)

×
(
s′PDP′⊥m̃′) .

Eliminating s and s′ by multiplying m̃T from
the left (equivalent to an inner product), we have

m̃T Fm̃′ = 0, (57)

where

F =
[
PDp′⊥]

×PDP
′⊥ (58)

is the general form of fundamental matrix. It is
evident that the roles that the two images play are
symmetrical.

Note that Eq. (58) will be the essential matrix
E if P and P′ do not include the intrinsic parame-
ters, that is, if we work with normalized cameras.

We can also include all the intrinsic and extrin-
sic parameters in the two projection matrices P
and P′, so that for a 3D point M̃′ in a world
coordinate system, we have

sm̃ = PM̃′, (59)

s′m̃′ = P′M̃′. (60)

Similarly we get

sm̃ = s′PP′+m̃′ + Pp′⊥, (61)
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The same line of reasoning will lead to the
general form of epipolar equation

m̃T Fm̃′ = 0,

where

F =
[
Pp′⊥]

×PP
′+. (62)

It can also be shown that this expression is
equivalent to Eq. (35) for the full perspective
projection (see next subsection), but it is more
general. Indeed, Eq. (35) assumes that the 3 × 3
matrix B′ is invertible, which is the case for full
perspective projection but not for affine cameras,
while Eq. (62) makes use of the pseudoinverse
of the projection matrix, which is valid for both
full perspective projection as well as affine cam-
eras. Therefore the equation does not depend
on any specific knowledge of projection model.
Replacing the projection matrix in the equation
by specific projection matrix for each specific
projection model produces the epipolar equation
for that specific projection model.

The Full Perspective Projection Case
Here we work with normalized cameras. Under
the full perspective projection, the projection
matrices for the two cameras are the same:

Pp = P′
p =

⎡
⎢⎢⎢⎣

1 0 0 0

0 1 0 0

0 0 1 0

⎤
⎥⎥⎥⎦ . (63)

It is not difficult to obtain

P′+
p = PT

p ,

and

p′
p⊥ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Now substituting the above equations for Eq.
(58), we have obtained the essential matrix

Ep =
[
PpDp′⊥

p

]
×PpDp′⊥

p = [t]×R, (64)

which is exactly the same as what we derived in
the last section.

For the full perspective projection, we can
prove that Eq. (62) is equivalent to Eq. (35). From
definitions, we have

[
B′ b′] p′⊥

p = 0,
[
B′ b′]P′+

p = I.

It is easy to show

Pp′⊥
p = λ

(
b − BB′−1

b′) ,

P′+
p =

[
B′−1 − B′−1

b′qT

qT

]
,

where λ is a nonzero scalar and q is a nonzero
arbitrary three vector. Substituting them for Eq.
(62) yields

F = λ
[
b − BB′−1

b′]
×(

BB′−1 −
(
b − BB′−1b′) qT

)

= λ
[
b − BB′−1b′]

×BB
′−1

,

(65)

which completes the proof as F is defined up to a
scale factor.

The reader is referred to [5, 6] for the epipo-
lar geometry between affine cameras and for a
general expression of the fundamental matrix
for both perspective and affine cameras. The
reader is referred to [7, 8] for various algorithms
of determining essential matrix and fundamental
matrix from point correspondences. The reader
is referred to [9, 10] for a general treatment of
geometry across multiple cameras.
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Essential Matrix

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen, China

Related Concepts

�Epipolar Geometry
� Fundamental Matrix

Definition

Essential matrix is a special 3 × 3 matrix which
captures the geometric relationship between two
calibrated cameras or between two locations of a
single moving camera.

Background

See entry � “Epipolar Geometry” for details.

Theory

Because the cameras are calibrated, we use the
normalized image coordinates. The two images
of a space point X = [X, Y, Z]T are [x, y, 1]T

and [x′, y′, 1]T in the first and second images
and are denoted by x̃ and x̃′. Assume that the
second camera is brought from the position of
the first camera through a rotation R followed by
a translation t. From the epipolar geometry, we
have the following equation

x̃T Ex̃′ = 0, (1)

where

E = [t]×R. (2)

And [t]× is a 3 × 3 antisymmetric matrix
defined by vector t. This equation is called the
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epipolar equation, and matrix E is known as the
essential matrix.

Essential matrix has a number of properties,
including:

1. detE = 0, because [t]× is an antisymmetric
matrix.

2. ETt = 0, because
(
[t]×R

)T
t = RT [t]T×t =

−RT (t × t) = 0.
3. EET = (ttt)I − ttT, because EET = ([

t]×R)([t]×R)T = [t]×RRT[t]×T = − [ t]×2.
4. ‖E‖2 = 2 ‖t‖2. Here, ‖E‖ is the Frobenius

norm of matrix E, i.e., ‖E‖2 = ∑
i, jEij

2.

It can be shown that a real 3 × 3 matrix
can be decomposed into the multiplication of an
antisymmetric matrix T and a rotation matrixR if
and only if one of E’s singular values is 0 while
the other two are equal.

Euclidean Geometry

Gunnar Sparr
Centre for Mathematical Sciences, Lund
University, Lund, Sweden

Related Concepts

�Algebraic Curve
�Camera Calibration

Definition

Euclidean geometry deals with properties of geo-
metric configurations that are preserved under
isometric (or length preserving) transformations.
Alternatively, it may be characterized as a math-
ematical theory based on an axiom system (that
can be traced back to Euclid) expressing, in mod-
ern terminology, incidence, order, congruence,
continuity, and parallelity. Euclidean geometry is
today a special case of many geometric theories

(projective, affine, and Riemannian geometries,
Hilbert spaces . . . ).

Historical Background

Euclidean geometry has a long and glorious his-
tory (cf. [1, 2, 3]), having lived at the core of
the development of science and culture since
antiquity. It is today not an area of research per
se, but still plays an important role in many
contexts.

Euclidean geometry is one of the oldest man-
ifestations of humans in science. The latter part
of the word geometry originates from the Greek
word metri’a for measure, and the subject devel-
oped in the antiquity as an empirical science for
surveying. It was given a scientific formulation by
the Greek mathematician Euclid in Alexandria,
about 300 B.C. Starting from a small set of
intuitively appealing axioms, in his monumen-
tal treatise, the Elements, he deduced a large
number of propositions about geometrical figures
(cf. [8]). In the Elements, plane geometry was
presented in essentially the way it is today taught
in secondary school. Also the solid geometry of
three dimensions was addressed. Two other big
contributors to ancient geometry, both active in
the third century B.C., were Archimedes, with
equations for, e.g., the circumference of the circle
and the area of the sphere, and Apollonius, with
investigations of conic sections.

For over 2,000 years, the attribute Euclidean
was unnecessary, because no other kind of
geometry was conceived of. Early, however, the
fifth of Euclid’s axioms, the parallel axiom,
was met with challenge, and many unsuccessful
efforts were made to deduce it from the other
axioms. However, it took until the nineteenth-
century before its independence was settled
by the construction of consistent geometric
models with other parallelity concepts. Some
contributors to such non-Euclidean geometries
were Gauss, Bolyai, and Lobachevsky.

By today’s standard of rigor, the treat-
ment of Euclid is not without objections,
using some assumptions and concepts not
explicitly accounted for. Beginning in the
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nineteenth-century, several categorical axiom
systems were presented, e.g., by Hilbert in 1899
(cf. [9, 6]).

Also other geometric systems were discovered
and developed, like affine geometry, beginning
with Euler in the eighteenth-century, and pro-
jective geometry, through Poncelet, von Staudt,
a.o. in the nineteenth-century. While in affine
geometry, parallelity plays a prominent role; in
projective geometry, the concept does not exist,
in that every pair of lines intersect.

In contrast to the then prevalent synthetic
approach to geometry, based on geometric
constructions, in the seventeenth century,
Descartes introduced coordinate systems and
founded the analytic geometry. Also de Moivre
made significant contributions. The use of
coordinates enabled the study of geometry by
means of algebra and calculus. In this formalism,
in a natural way, Euclidean geometry can be
generalized to higher dimensions, by means of
the notion of Euclidean space; see below.

From a more modern mathematical point of
view, geometry in some space is the study of
properties of configurations that are preserved
under some group of one-to-one transformations
of the space in question (cf. [1, 2, 3]). This view-
point was first formulated by Klein 1872 in the
so-called Erlanger program, cf. [6]. It has been
the key to a fruitful interplay between geometry,
algebra, analysis, and topology. For Euclidean
geometry, the characterizing transformation
group is the group of isometric transformations,
reflecting, e.g., the crucial property of congru-
ence, that two triangles are congruent if one of
them can be moved rigidly onto the other one.

Theory and Applications

The topic of Euclidean geometry today has
branched out in many directions. Below, we
focus on a few of relevance to computer vision.

Synthetic Euclidean Geometry
The synthetic approach to Euclidean geometry
(the one used by Euclid) starts from the basic
concepts of point, line, and surface. The rules

for interaction between these are described by
axioms. Euclid used five axioms (cf. [8]):

1. Through any two points, there is exactly one
line.

2. A finite line segment can be extended to a line.
3. A circle can be drawn with any center point

and any radius.
4. All right angles are equal to another.
5. The parallel postulate: If a straight line falling

on two straight lines make the interior angles
on the same side less than two right angles,
the two straight lines, if produced indefinitely,
meet on that side on which are the angles less
than the two right angles.

For a rigorous exposition of Euclidean geom-
etry, see [9], built on Hilbert’s system of 20
axioms in five main groups: combination, order,
parallelity, congruence, and continuity.

From the beginning, Euclidean geometry
mostly dealt with squares and rectangles, right-
angled triangles, trapezia, and circles. Some
well-known examples of results from Euclidean
geometry are the theorem of Pythagoras, the
theorem stating that the sum of angles in a
triangle equals two right angles, and the theorem
stating that the periphery angle corresponding to
an arch of a circle equals half the angle at the
center.

The proofs in this tradition were constructive.
Questions were raised about the possibility of
generally solving geometric problems by ruler
and compass. Using advances in algebra, the
inherent impossibility of such constructions for
some famed problems was proved, e.g., the tri-
sectioning of an angle, the doubling of the cube,
and the squaring of a circle.

Analytic Geometry: The Space Rn

In the analytic geometry, as learned at school,
points in the plane are represented by coordinates
as (x1, x2), and points in space as (x1, x2, x3).
This inspires to consider n-tuples of real num-
bers (x1, x2, . . . , xn), which together build up
Rn. This space forms the scene for geometry,
not only in 1, 2, and 3 dimensions, but also
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in higher dimensions. The elements are called
points X : (x1, x2, . . . , xn).

The set Rn can be provided with different
structures:

Linear Space. Equip Rn with the operations of
addition, x+ y= (x1, . . . , xn)+ (y1, . . . , yn)=
(x1 + y1, . . . , xn + yn), and multiplication
with a scalar λx = (λx1, . . . , λxn). Then, in
a way known from introductory courses in
linear algebra, the notion of linear space is
introduced. The elements of Rn are called
vectors. The notion of dimension is defined,
giving Rn the dimension n.

Affine Space. Combining the point and vector
interpretations of Rn, affine spaces are defined
in a way such that, loosely speaking, it is
possible to subtract points to get vectors and
add a vector to a point to get another point.
(On the contrary, it is not possible to add
points.) For a thorough presentation, see [1].
For affine spaces, the notation An will be used
below.

Euclidean Space. Known from linear algebra is
also the notion of scalar product on Rn, being
a function x · y such that for all vectors x, y,
and all scalars λ:

– x · y = y · x..
– x · (λ1 y1 + λ2 y2) = λ1 x · y1 + λ2 x · y2.
– x · x ≥ 0 with equality if and only if x = 0.

Given a scalar product, a norm on the linear
space Rn is defined by ‖x‖ = √

x · x. Two
vectors x and y are orthogonal if x · y = 0. An
orthonormal basis e1, . . . , en is characterized by
ei · ej = 0 for i �=j and = 1 for i = j.

Having a scalar product, the affine space An

can be provided with a metric, by which the
distance between points is given by d(X, Y)= ‖u‖
where u is the vector from X to Y. In particular,
in an orthonormal basis, the distance between the
points X : (x1, . . . , xn) and Y = (y1, . . . , yn) is

– |XY| = ((x1 − y1)2 + . . . (xn − yn)2)1/2

(in agreement with the theorem of Pythagoras in
the planar case).

The scalar product also makes it possible to
define the angle θ between two vectors x and y as

x · y = ‖x‖ ‖y‖ cos θ.

Provided with a scalar product for vectors, An

becomes a Euclidean space, below denoted En.

Euclidean Geometry and Transformation
Groups
Given a set S, consider the group Bij(S) consisting
of all one-to-one transformations f : S → S.
According to the view of the Erlanger program, to
impose a geometry on S is the same as to specify
a subgroupG of Bij(S) and to say that two subsets
A, B of S are equivalent if there is an f ∈ G such
that fA = B. See [1, 2, 3].

Two important such transformation groups on
R
n are GL(n), consisting of all non-singular n×n-

matrices, and O(n), consisting of all orthogonal
n×n-matrices.

For planar Euclidean geometry, S is the affine
space A2 and G is the group of all isometric
transformations, i.e., transformations such that
for any points X, Y ∈ R

2, d(TX, TY) = d(X, Y). In
fact, it can be proven that every mapping T with
this property can be written as

T : X → QX + b,with Q ∈ O(n).

In particular, T is an affine map, mapping
lines onto lines. Thus, it also maps triangles onto
triangles, after which the isometric property guar-
antees congruence. In higher dimensions holds
the analogous formula for T.

In Euclidean geometry, also the notion of sim-
ilarity plays a prominent role, which could moti-
vate the use of similarity transformations above
(where Q is replaced by cQ, c�=0). Note that the
isometric transformations form a subgroup of the
similarity transformations.

The example of planar Euclidean geometry is
so crucial that it is worthwhile to comment further
on the structure of its transformation group. The
formula above shows that an isometric transfor-
mation is composed by a rotation around the
origin (expressed byQ), followed by a translation
(by b). Furthermore, it is possible to prove that
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any such transformation is equal to either the
identity, or a translation, or a rotation (around
some point), or a reflection in some line, or a so-
called glide reflection (a translation followed by
a reflection in a line parallel to the translation).
Also in R

3, it is possible to make an analogous
characterization, where a type screw (composi-
tion of a rotation and a translation) is added. Note
in particular that in this way, isometries onR2 and
R
3 are characterized by geometric constructions

only, without use of any particular coordinate
system.

On the Stratum of Euclidean, Affine
and Projective Geometry
Euclidean geometry is one of the layers in a
hierarchy of structures that can be imposed on
R
n and which are of high relevance to computer

vision. With a term introduced by Faugeras [5],
these form a geometric stratum. For more details
on the respective geometries, see [1, 2, 3, 10].

Affine Geometry. For the linear space Rn, a par-
ticular role is played by linear subspaces of
the form a1 x1 + . . . + an xn = 0, called
hyperplanes (always passing through the ori-
gin). As a linear space, its dimension is n −
1. Analogously, in the affine space An, one
considers affine hyperplanes a1 x1 + . . . +
an xn = a (which for a�=0 do not pass through
the origin). In the case n = 2, one talks about
lines instead of hyperplanes.

For affine geometry on Rn, the characterizing
transformations are

T : X → AX + b,with A ∈ GL (n) .

By such transformations, affine hyperplanes
are mapped onto affine hyperplanes. Two non-
intersecting hyperplanes are mapped onto two
nonintersecting hyperplanes. Hence, the property
of parallelity is preserved and is thus a concept
within affine geometry. On the contrary, distance
is not preserved and is an alien concept for affine
geometry. However, it is possible to compare
distances along a line (e.g., saying that M is the
midpoint of a line segment PQ), but it is not
possible to measure and compare distances on

nonparallel lines. Neither does the concept of
angle live in affine geometry, in lack of a scalar
product.

Also affine geometry can be built up from
axioms. Compared to Euclidean geometry, one
way of doing this is by replacing the parallel
axiom by an axiom “for any point P and any
line �, not through P, there is at least one line
through P which does not meet �,” plus another
one, involving seven-point configurations, named
after Desargues.

Projective Geometry. By a point in the so-
called projective space P

n is meant a line
through the origin in R

n + 1. In other words,
a point is represented by any of the vectors
λ(x1, x2, . . . xn + 1), λ �= 0. This is called
homogeneous coordinates for the point in P

n.
By a projective transformation T is meant
a mapping represented by GL(n + 1) in
homogeneous coordinates, i.e., y = λTx for
some λ.

Looking in particular at plane projective
geometry, where points are represented by lines
through the origin in R

3, a projective line is
represented by a plane through the origin in R

3.
Since every pair of such planes intersect in a line
through the origin, i.e., a point in P2, the notion of
parallelity does not exist in projective geometry.

The projective space Pn, embedded in R
n + 1,

can also be visualized by means of an affine
hyperplane in R

n + 1, e.g., Π : xn + 1 = 1. Every
line not parallel to Π intersects Π in a unique
point. Besides these, Pn contains points corre-
sponding to lines parallel to Π . The latter points
of P

n are called points at infinity and may be
identified with directions in Π . The set of points
at infinity is called the line at infinity. To sum up,
the projective space P

n can be visualized by a
model formed by an n-dimensional affine space
extended with points at infinity.

Perspective Transformations: Multiple
View Geometry
For computer vision, perspective transformations
play a crucial role. Specializing to three dimen-
sions, consider two affine 3-dimensional hyper-
planes Π and Π ′ in R

4. If C is a point outside Π
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andΠ ′, a mapping P :Π → Π
′
is defined by con-

sidering the intersections of lines through C with
Π and Π ′. Then C is called the focal point of the
perspective transformation P. In particular, one
notes that if Π and Π ′ is nonparallel, then point
at infinity of Π is mapped onto ordinary points
of Π ′ and vice versa. If Π and Π ′ are parallel,
then points at infinity are mapped onto points at
infinity, and the perspective transformation is an
affine transformation.

To sum up, Euclidean geometry is a special
case of affine geometry, as follows from the fact
that the group of isometries is a subgroup of the
affine group. Affine geometry is a special case
of projective geometry, since the affine trans-
formations form a subgroup of the projective
ones, characterized by leaving the line at infinite
invariant.

Of particular importance to computer vision
is the case of perspective transformations from
three dimensions to two. These are singular, i.e.,
not one to one, contrary to the ones discussed
above. They may be visualized by letting C tend
to the plane Π ′, which in the limit gives a map-
ping Π → Π ∩ Π

′
, from three to two dimen-

sions. Moreover, the ambient space R
4 becomes

superfluous and can be replaced by the three-
dimensional affine space Π .

Multiple view geometry deals with the
situation where a number of such two-
dimensional perspective images are known of a
common three-dimensional object (cf. [4, 7]).
With no further information, reconstruction
is possible up to projective transformations.
Having more geometric structure available, e.g.,
Euclidean information on the image planes and
focal points, more structure can be obtained for
the reconstruction, ideally making it Euclidean.
This situation is termed camera calibration;
see [7].

Some Other Geometries Embracing
Euclidean Geometry
Algebraic Geometry. Besides hyperplanes,

crucial roles in the study of Euclidean (as well
as projective and affine) geometry are played
by conics. While hyperplanes have equations

involving first-order polynomials, conics are
described by second-order polynomials. In
two dimensions, this leads to the analytic
geometry of conic sections, representing
ellipses, hyperbolas, and parabolas. Algebraic
geometry is the generalization of this to higher
dimensions and higher-order polynomials,
where Euclidean geometry thus falls out as a
special case.

Riemannian geometry. Riemann geometry lives
on a so-called Riemannian manifold, which,
loosely speaking, is a space constructed by
deforming and patching together Euclidean
spaces according to certain rules, guarantee-
ing, e.g., smoothness. Such a space enjoys
notions of distance and angle but behaves in
a curved, non-Euclidean manner. The sim-
plest Riemannian manifold consists ofRn with
a constant scalar product, leading to classi-
cal Euclidean geometry. Riemannian geome-
try plays a prominent role in general relativity.

Hilbert Spaces. Considering infinite sequences
(x1, x2, . . . ) instead of finite ones, (x1, x2,
. . . , xn), will lead to convergence problems
whenever forming sums. Restricting oneself
to sequences with

∑∞
1 x2

i finite, a prototype
of so-called Hilbert spaces is obtained. In
a natural way, a scalar product is defined,
leading to a distance measure, by means
of which it is possible to prove, e.g., the
infinite-dimensional analogue of the theorem
of Pythagoras and many other theorems of
Euclidean geometry.
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Event Recognition

�Action Recognition in Real-World Videos

Evolution of Robotic Heads

Michael Jenkin
Department of Electrical Engineering and
Computer Science, Lassonde School of
Engineering, York University, Toronto, ON,
Canada

Related Concepts

�Active Sensor (Eye) Movement Control
�Active Stereo Vision

Definition

Robotic heads are actively controlled camera
platforms, typically designed to mimic the
head and camera (eye) motions associated with
humans. Early designs were typically built to
study the role of eye and head motion in active
vision systems [1]. Later designs are also used in
the study of human-robot interaction.

Background

Cameras have a finite field of view and thus
must be actively controlled in order to bring out
of view portions of the scene into view and to
track dynamic scene events. The need for active
control of camera geometry becomes even more
critical when multiple cameras are involved as
changes in relative camera geometry can simplify
stereo image processing and can be used to bring
specific scene features within the tuning range of
multiple camera scene reconstruction algorithms.

The development of single camera robotic
heads can be traced back to the 1970s [2],
the Stanford Cart [3], and the robot musician
“WABOT-2” [4]. Binocular systems began to
appear in the mid-1970s, and a number of designs
appear in the late 1980s and early 1990s (e.g.,
[5–12]). By the late 1990s, head designs were
beginning to be driven by research interest
in human-robot interaction (e.g., [13, 14]).
Current head designs are typically designed to be
anthropomorphic (e.g., [15]) or to meet specific
requirements of the sensors or the application
(e.g., [16]) (see Fig. 1 for examples).

Theory

Although there is a wide range of different head
designs, stereo robotic heads are perhaps the most
common. Either such systems have fixed relative
geometry between the two cameras or the rela-
tive geometry is controllable. Individual cameras
may also be equipped with controllable intrinsic
camera settings. Heads are typically mounted on
pan and tilt “necks” that drive the entire head to
look at different portions of the scene. Control-
lable parameters can include:

– Head pan. Pan angle introduced by a robotic
neck.

– Head tilt. Tilt angle introduced by a robotic
neck.
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Evolution of Robotic Heads, Fig. 1 The evolution of
robotic heads. (a) Appears with the kind permission of J.
Clark. (b), (c), (i), (j) and (l) Appear courtesy of M.
Jenkin. (d) Appears with the kind permission of P.

Sharkey. (e) Appears courtesy NAS/JPL-Caltech. (h)
Appears with the kind permission of Bielefeld University.
(k) Appears with the kind permission of B. Tripp.

– Baseline. The displacement between the left
and right cameras.

– Fixation point. The point at which the optical
axes of the left and right cameras intersect.
The fixation point can be defined in various
ways including the individual pan directions

of the left and right cameras and the vergence/
version angles.

– Cyclotorsion. The roll of each camera about
its optical axis.

– Zoom/focus/aperture. Intrinsic settings of
each camera.
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Being able to control the relative pose of the
two cameras provides the sensor the ability to
bring different portions of space into alignment
so that objects appear at the same position in
both cameras. As stereo image processing is
typically performed only over a limited range
of disparities (image differences), changing the
relative geometry between the cameras leads to
the camera system attending to different regions
of space. The region of space that is brought into
alignment is known as the horopter (see [17]
for a review of the geometry). Typically stereo
heads are developed with common camera tilt and
utilize camera pan to select a binocular fixation
point. Cyclotorsion (see [18, 19]) warps the zero
disparity surface so that it tilts away from or
toward the robotic head – a useful property if
surfaces such as the ground plane is to be imaged.
For robotic heads designed to be used for human-
robot interaction, it is common to provide some
level of simulated facial animation in order to
simulate emotional states (see [20]).

Early designs were strongly constrained by the
mass of available camera housings and especially
the mass of controllable focus/zoom lenses. This
is particularly evident in the early designs shown
in Fig. 1. More recent designs have taken advan-
tage of the decreased size and mass of camera
systems. Figure 1m places these heads and others
in a timeline. Recent advances in 3D printing
have simplified the construction of robot heads,
and it is now possible to “roll your own” without
the need of a dedicated research machine shop
(see [21]).

Many modern robotic heads have been devel-
oped to help study aspects of human-robot inter-
action. Such “social robots” are designed to not
only use multiple sensors to reconstruct 3D envi-
ronments, but they often also provide a range
of actuators to simulate human facial responses.
For example, the android Kannon shown in Fig. 1
uses a range of realistic facial and body motions
to help communicate the teachings of Buddha.
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Expectation-Maximization
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Synonyms

EM-algorithm

Related Concepts

�Maximum Likelihood Estimation

Definition

The expectation-maximization algorithm itera-
tively maximizes the likelihood of a training
sample with respect to unknown parameters of a
probability model under the condition of missing
information. The training sample is assumed to
represent a set of independent realizations of a
random variable defined on the underlying prob-
ability space.

Background

One of the main paradigms of statistical pat-
tern recognition and Bayesian inference is to
model the relation between the observable fea-
tures x ∈ X of an object and its hidden state y ∈
Y by a joint probability measure p(x, y). This
probability measure is, however, often known
only up to some parameters θ ∈ Θ . It is thus
necessary to estimate these parameters from a
training sample, which is assumed to represent
a sequence of independent realizations of a ran-
dom variable. If, ideally, these are realizations
of pairs (x, y), then the corresponding estimation
methods are addressed as supervised learning. It
is, however, quite common that some of those
variables describing the hidden state are latent
and never observed in the training data. It is
therefore necessary to marginalize over them in
order to estimate the unknown parameters θ .
Corresponding estimation methods are known
as unsupervised learning. Moreover, especially
in computer vision, the observation x and the
hidden state y both may have a complex structure.
The latter can be, e.g., a segmentation, a depth
map, or a similar object. Consequently, it is often
not feasible to provide the complete information
y for the realizations in the sample. This means to
estimate the parameters in the situation of miss-
ing information. The EM algorithm is a method
searching for maximum likelihood estimates of
the unknown parameters under such conditions.

Theory

All the situations described in the previous sec-
tion can be treated in a uniform way by assuming
the training sample as a set of independent real-
izations of a random variable.

Let Ω be a finite sample space, F be its power
set, and pθ : F → R+ be a probability measure
defined up to unknown parameters θ ∈ Θ . Let
X : Ω → X be a random variable and T =
{xi | i = 1, 2, . . . , n} be a sample of independent
realizations of X (see, e.g., [1, 2] for a formal
definition of independent realizations). The max-
imum likelihood estimator provides estimates of
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the unknown parameters θ by maximizing the
probability of T

θ∗ = argmax
θ

n∏
i=1

pθ(Ωi), (1)

where Ωi denotes the pre-image {ω ∈ Ω |
X(ω) = xi}. Taking the logarithm, the task reads

θ∗ = argmax
θ

L(T , θ)

= argmax
θ

n∑
i=1

log
∑
ω∈Ωi

pθ (ω). (2)

Remark 1 It is often assumed that Ω is a Carte-
sian product Ω = X × Y and that X simply
projects onto the first component X(x, y) =
x. Then the probability pθ(Ωi) = pθ(xi) =∑

y∈Y pθ(xi, y) is nothing but the marginaliza-
tion over all possible y. This special case will be
considered in the example below. ��

The optimization task (2) is often complicated
and hardly solvable by standard optimization
methods – either because the objective function
is not concave or because θ represents a set
of parameters of different natures. Suppose,
however, that the task of parameter estimation
is feasible if complete information, i.e., a set
of realizations of ω ∈ Ω , is available. This
applies in particular if the corresponding simpler
objective function

∑
i logpθ(ωi) is concave with

respect to θ or if the task decomposes into
simpler, independent optimization tasks with
respect to individual components of a parameter
collection.

The key idea of the expectation-maximization
algorithm is to exploit this circumstance and to
solve the optimization task (2) by iterating the
following two feasible tasks:

(1) given a current estimate of θ , determine the
missing information, i.e., pθ(ω|Ωi) for each
element xi ∈ T and

(2) given the complete information, solve the
corresponding estimation task, resulting in an
improved estimate of θ .

To further substantiate this idea of “iterative
splitting” of the task (2), it is convenient to
introduce nonnegative auxiliary variables αi(ω),
ω ∈ Ωi , for each element xi of the learning
sample T such that they fulfill

∑
ω∈Ωi

αi(ω) = 1,∀i = 1, 2, . . . , n. (3)

These variables αi can be seen as (so far arbitrary)
posterior probabilities p(ω|Ωi) for ω ∈ Ωi ,
given a realization xi . The log-likelihood of a
realization xi can be written by their use as

logpθ(Ωi) =
∑
ω∈Ωi

αi(ω) logpθ(Ωi) =

=
∑
ω∈Ωi

αi(ω) logpθ(ω)

−
∑
ω∈Ωi

αi(ω) log
pθ(ω)

pθ (Ωi)
, (4)

where the first equality follows directly from (3).
The log-likelihood of the training sample can be
therefore expressed equivalently as

L(T , θ) =
n∑

i=1

∑
ω∈Ωi

αi(ω) logpθ(ω)

−
n∑

i=1

∑
ω∈Ωi

αi(ω) logpθ(ω|Ωi). (5)

The expression as a whole does not depend on
the specific choice of the auxiliary variables α,
whereas the minuend and subtrahend do. More-
over, note that the minuend is nothing but the
likelihood of a sample of complete data, if the
α are interpreted as the missing information, i.e.,
posterior probabilities for ω ∈ Ωi given the
observation xi .

Starting with some reasonable choice for the
initial θ(0), the likelihood is iteratively increased
by alternating the following two steps. The
(E)xpectation step calculates new α such that
θ(t) becomes a maximizer of the subtrahend.
Changing θ subsequently can thus only decrease
its value. The (M)aximization step relies on this



Expectation-Maximization Algorithm 411

E

and maximizes the minuend only, avoiding to
deal with the subtrahend.

E-step α
(t)
i (ω) = pθ(t)

(
ω|Ωi

)
(6)

M-step θ(t+1) = argmax
θ

n∑
i=1

∑
ω∈Ωi

α
(t)
i (ω) logpθ(ω). (7)

From the conceptual point of view, the E-step can
be seen as inference – it calculates the missing
data, i.e., the posterior probabilities pθ(t)

(
ω|Ωi

)
for each element xi in the training sample. The
M-step utilizes these posterior probabilities for
a supervised learning step. The names them-
selves stem from a rather formal view: the E-
step calculates the α and therefore the objec-
tive function in (7) which has the form of an
expectation of logpθ(ω). The computation of this
objective function is sometimes considered to be
a part of the E-step. The name for the M-step is
obvious.

It is easy to see that the likelihood is monoton-
ically increasing: The choice (6) for α guarantees
that the subtrahend in (5) can only decrease
whatever new θ will be chosen in the subsequent
M-step. This follows from the inequality

∑
ω∈Ωi

pθ (ω|Ωi) log
pθ(ω|Ωi)

pθ ′(ω|Ωi)

= DKL (pθ (ω|Ωi)‖pθ ′(ω|Ωi)) � 0, (8)

where DKL denotes the Kullback-Leibler diver-
gence. Since the M-step chooses the new θ so as
to maximize the minuend, the likelihood can only
increase (or stay constant). Another convenient
way to prove monotonicity of the EM algorithm
can be found in [3, 4]. These tutorials consider
the EM algorithm as the maximization of a lower
bound of the likelihood. It is obtained from (4)
by adding and subtracting the entropy of the
distribution αi(ω), which gives

logpθ(Ωi) =
∑
ω∈Ωi

αi(ω) log
pθ(ω)

αi(ω)

− DKL (αi(ω)‖pθ(ω|Ωi)) . (9)

The first term is thus a lower bound of the
likelihood, which becomes tight if the KL diver-
gence vanishes. This lower bound (summed over
the training data) is then maximized by block
coordinate ascent, resulting in the same algorithm
as described by (6), (7).

It remains unclear whether the global optimum
of the likelihood is reached in a fixed point of the
algorithm. Moreover, it happens quite often that
the M-step is infeasible for complex models pθ .
Then a weaker form of the EM algorithm is used
by choosing θ(t+1) so as to guarantee an increase
of the objective function of the M-step.

The derivation of the concept of the EM algo-
rithm was given here for a discrete probability
spaces and discrete random variables. It can be
however generalized to uncountable probability
spaces and random variables X with continuous
probability densities.

Example 1 The EM algorithm is often consid-
ered for the following special case. The sampling
space Ω is a Cartesian product Ω = X × Y,
and the random variable X simply projects onto
the first component X(x, y) = x. The parame-
ters θ ∈ Θ of the probability pθ(x, y) are to
be estimated given a sequence of independent
realizations of x. In this special case, the log-
likelihood has the

L =
n∑

i=1

log
∑
y∈Y

pθ(xi, y). (10)

Its decomposition (5) is

L =
n∑

i=1

∑
y∈Y

αi(y) logpθ(xi, y)

−
n∑

i=1

∑
y∈Y

αi(y) logpθ(y|xi). (11)
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The EM algorithm itself then reads

E-step α
(t)
i (y) = pθ(t) (y|xi) (12)

M-step θ(t+1) = argmax
θ

n∑
i=1

∑
y∈Y

α
(t)
i (y) logpθ(xi, y). (13)

History and Applications
The classic paper [5] is often cited as the first one
introducing the EM algorithm in its general form.
It should be noted, however, that the method was
introduced and analyzed substantially earlier for
a broad class of pattern recognition tasks in [6]
and for exponential families in [7].

A comprehensive discussion of the EM algo-
rithm can be found in [8] and in the context
of pattern recognition in [9] and [10]. Stan-
dard application examples are parameter esti-
mation for mixtures of Gaussians [8] and the
mean shift algorithm [11]. Another important
application is parameter estimation for hidden
Markov models. This model class is extensively
used for automated speech recognition. The cor-
responding EM algorithm is known as Baum-
Welch algorithm in this context [12]. Rather
complex applications of the EM algorithm arise
in the context of parameter estimation for Markov
random fields [13].
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Synonyms

Concurrent mapping and localization (CML);
Visual SLAM
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Related Concepts

� Structure-from-Motion (SfM)

Definition

Exploration refers to gathering data about an
environment through sensors in order to discover
its structure. A fundamental technique for explo-
ration of an unknown environment is Simultane-
ous Localization and Mapping (SLAM). SLAM
is a technique that supports the incremental build-
ing of a 3-D map representation of an environ-
ment while also using the same incremental map
to accurately localize the observer in order to
minimize errors in the map building. SLAM tech-
niques can be implemented with laser range find-
ers, monocular vision, stereo vision, and RGB-D
cameras.

Background

An accurate representation of an environment is
highly useful for autonomous and human assis-
tive applications. Such a representation can be
a high level minimalistic map derived from a
sparse set of landmarks or a detailed dense 3-D
model (e.g., Fig. 1). An accurate map can be used
to perform useful tasks such as answering the
question, “Where am I ?” and enables navigation
and guiding tasks such as “How to get there?.”
When dealing with unknown environments, the
map representation must be acquired through an
exploration phase. With SLAM the map can be
built through a data gathering or map building
phase, by either online or off-line methods. In
online methods, the map is incrementally built,
and location within the map is simultaneously
calculated. With off-line methods the data is col-
lected and then post-processed to yield an accu-
rate map representation.

The key process of SLAM is an optimization
algorithm. Noisy observations are made about
the landmarks from different viewpoints (poses),
and the task is to solve the optimization problem
of estimating the position of each landmark and

Exploration: Simultaneous Localization and Map-
ping (SLAM), Fig. 1 A 3-D map generated by RGB-D
Mapping by Henry et al. [1]. (Copyright 2012 SAGE.
Reprinted by Permission of SAGE)

the set of camera viewpoints which best explain
the observations. In off-line mapping this is a
global optimization problem where all observa-
tions are available (e.g., Bundle Adjustment (BA)
[2] applied to a full image dataset). In online
mapping this is performed sequentially, using
observations available up to and including the
current observation. Thus, in online mapping, an
incremental version of the map is available as the
map is being constructed.

Two different methods are used in online
mapping, namely, filtering-based and keyframe-
based methods. Filtering-based methods are
based on the following nature of sequential
mapping. As camera observations/measurements
are noisy, there is induced error in the newly
identified landmarks. Later when one localizes
with respect to the current map, again there is
induced error in this new pose estimate due
to error in observation and error in these new
landmarks. So in subsequent new landmark
additions to the map, there will be error in
landmarks due to both measurement errors and
the camera viewpoint estimation error. Due to the
common error associated with camera viewpoint,
estimates of the landmarks are all necessarily
correlated with each other [3]. Therefore
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a consistent full solution to the combined
localization and mapping problem requires a
joint state composed of the camera pose and
every landmark position, to be updated following
each landmark observation and hence the name
Simultaneous Localization And Mapping.

In contrast keyframe-based methods do not
propagate a probability distribution over time
but employ a subset of image frames, called
keyframes, in the map to perform efficient global
optimization of the map and keyframe poses
within a practical time limit. Although non
keyframes are discarded in the optimization, it
permits a large number of image observations per
keyframe to be efficiently processed.

Visual SLAM is possible with both monocular
and stereo cameras, and these systems are termed
monoSLAM and stereoSLAM, respectively. In
addition, RGB-D Mapping [1] which generates a
dense 3-Dmap with RGB-D cameras has recently
been introduced. It should be noted that, despite
the computational effort, the use of cameras pro-
vides several unique advantages over other sensor
types such as laser rangefinders and sonars. They
are inexpensive, low power, compact, and capture
scene information up to very large distances.

Theory

A complete SLAM system performs following
operations in a cycle. First a set of new landmarks
are identified in the environment, initialized (new
landmark/feature initialization), and inserted into
the map. Upon moving to a new location, obser-
vations are made and matched with the map
landmarks, and this is referred to as data asso-
ciation. Here, relocalization methods are used to
recover from possible tracking failures. Next, a
prior estimate of the observer motion is obtained
(motion estimation). Then the estimates of land-
mark positions and sensor pose that best explains
the data are sought (optimization). If reobserv-
ing a previously mapped portion of the envi-
ronment, care should be taken to ensure correct
closure of the trajectory loop and consistency of
the map (loop closure). Algorithm 1 illustrates
this process (Note that as online mapping is an

Algorithm 1 SLAM operation

incremental process, Algorithm 1 assumes for
generality some initial map is available. This may
be the result of a single observation and new land-
mark initialization from the starting position).

An example situation is illustrated by Fig. 2.
At time k, the true state of the observer is given
by xk. The observer makes observations zk, i, zk, j,
zk, p of static landmarks whose true states are
given by mi, mj, andmp, respectively. In the
landmark selection process, it also discovers a
new landmark whose true state is given by mq.
Based on the corresponding measurement zk, q,
the state of this new landmark is then initialized
and inserted into the map. At time k + 1, the
observer has moved to a state xk + 1 under the
control input uk + 1. The observer has been able
to reobserve two existing landmarks in the map,
namely, mp and mq. Both the corresponding
measurements zk + 1, p, zk + 1, q and control input
uk + 1 can be utilized to obtain a prior estimate of
the incremental motion of the observer between
time k and k + 1.

At time k + n, the observer has travelled along
a long trajectory loop and is revisiting a previ-
ously mapped part of the environment, namely,
landmarks mi and mj. However, as can be seen
from Fig. 2, the estimated state of the observer
might not show a closed loop. Loop closure
methods detect this situation and correct the state
of the observer and the states of landmarks in the
map.

The following subsections details the key
stages of the SLAM system operation as given in
Algorithm 1.
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estimated state of observer
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xk

xk+2

xk+n
uk+2

uk

uk+1

mj

xk−1
xk+1

zk,i
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mq

mr

zk+1,p

zk+1,q

zk,j

zk+1,r
zk+n,i

zk,p

mi

zk,q

zk+n,j

Exploration: Simultaneous Localization andMapping (SLAM), Fig. 2 SLAM problem

Observation
A new image frame is fetched from the camera
and features (e.g., interest points, lines) which
can be potential landmarks are extracted.

Data Association
Data association refers to finding correspon-
dences between observations and landmarks.
There are a number of methods in this regard. The
active search/covariance-driven gating approach
projects individual covariance predictions of
landmarks into the observation image and
limits the observation area based on suitable
Mahalanobis distance. The Joint Compatibility
Branch and Bound (JCBB) method [4] uses
the fact that observation prediction errors

are correlated with each other and hence
calculates the joint probability of any set of
correspondences. Active matching [5], on the
other hand, considers the joint distribution
and uses information theory to guide which
landmarks to measure and when to measure them.

Relocalization

In case of rapid (unmodelled) motion, blur, and
occlusion, camera pose tracking can fail and will
result in subsequent corruption of the map. Relo-
calization refers to automatically detecting and
recovering from such tracking failures to preserve
the integrity of the map. Tracking failure can be
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detected by considering the percentage of unsuc-
cessful observations and large uncertainty in the
camera pose. The pose of the camera is recov-
ered by establishing correspondence between the
image and the map and solving the resulting
perspective pose estimation problem [6].

Motion Estimation
The observer’s movement can be predicted based
on odometry information or by making smooth
motion assumptions (e.g., a constant velocity
motion model). This information stands as a prior
estimate of the observer state and covariance
which is used later in the optimization stage.
An example of such observer-state covariance
computation is given by 5.

Optimization: Filtering-Based SLAM
Probabilistically the SLAM problem requires the
computation of the joint posterior density of the
landmark locations and observer (camera) state
at time k, given the available observations and
control inputs up to and including time k, together
with the initial state of the observer [7–9].

This probability distribution can be stated as
P(xk,m|Z0 : k,U0 : k, x0) where the quantities are
defined as below (see Fig. 2).

xk = observer state vector
m = vector describing the set of all landmark

locations, i.e., landmark states mi

Z0 : k = set of all landmark observations Zi, k

U0 : k = history of control inputs uk

Given an estimate for the problem at time
k − 1 (i.e., P(xk − 1,m|Z0 : k − 1,U0 : k − 1)) a
recursive solution to the problem can be obtained
by employing a state transition model and an
observation model which characterize the effect
of the control input and observation, respectively.

Motion model: P(xk| xk − 1,uk)
Observation model: P(zk| xk,m)

Therefore, the SLAM algorithm can now be
expressed as a standard two-step recursive pre-
diction (time update) correction (measurement
update) form as below:

Time Update

P (xk,m|Z0:k−1,U0:k, x0) =
∫

P (xk|xk−1,uk)

×P (xk−1,m|Z0:k−1,U0:k−1, x0) d xk−1

(1)

Measurement Update

P (xk,m|Z0:k,U0:k, x0)

= P (zk|xk,m) P (xk,m|Z0:k−1,U0:k, x0)
P (zk|Z0:k−1,U0:k)

(2)

Two main solution methods to the prob-
abilistic SLAM problem include Extended
Kalman Filter (EKF)-based SLAM [3] and
Rao-Blackwellized Filter (RBF)-based SLAM
[10, 11].

Extended Kalman Filter (EKF)-Based SLAM
As noted, the solution to the SLAM problem
requires a joint state composed of the observer
state and the state of every landmark, to be
updated following each landmark observation.
This motivates to use the Kalman filter which
provides a recursive solution to the discrete data
linear filtering problem. When the motion model
and measurement errors/noise are independent
white Gaussian, the Kalman filter computes
an optimal gain which minimizes mean-square
error of the posterior estimate of the system. The
Gaussian distribution is completely characterized
by its mean and covariance. Here correlations
between observer state and different landmarks
can be properly represented in the total system
covariance matrix of the Kalman filter. As
the system would generally be nonlinear, the
Extended Kalman Filter (EKF) is used.

Propagation of Uncertainty A fundamental
problem in estimating covariance matrices is how
to propagate uncertainty through a function. Con-
sider a nonlinear function f which acts on the
vector a of input variables to produce the output
vector b:

b = f (a) (3)



Exploration: Simultaneous Localization and Mapping (SLAM) 417

E

Under affine approximation, the error
covariance of the output vector Pbb is obtained
in terms of the error covariance of the input
vector Paa by 4 (The covariance between
two arbitrary vectors a and b is defined as
Pab = E[(a − E[a])(b − E[b])T]):

Pbb = ∂f

∂a
Paa = ∂f

∂a

T

(4)

State Prediction The general form of the EKF
prediction steps can be customized for SLAM to
yield faster computation. Note that there is no
need to perform a time update for landmark states
mi : i = 1 . . . n if the landmarks are stationary.
Hence, only the observer’s state, xk, is predicted
ahead. The new error covariance of the observer’s
predicted state should also be computed. In addi-
tion, though there is no change in error covariance
of landmarks, there will be change in error covari-
ance between each landmark and observer state
(since observer state changed). Given below are
the new time update equations for the covariance
items that require an update.

Notation:

{.}− = time update (prior) estimate
n = observer motion model noise
Pnn = observer motion model noise covariance
fv = observer state transfer function xk + 1 =

fv(xk,n) such that x−
k+1 = fv (xk, 0)

P −
xk+1 xk+1

= ∂fv

∂xk

Pxk xk

∂fv

∂xk

T

+ ∂fv

∂n
Pnn

∂fv

∂n

T

(5)

P −
xk+1 mi

= ∂fv

∂xk

Pxk mi
(6)

The computational complexity of the EKF-
SLAM solution grows quadratically with the
number of landmarks. This is due to the
calculations involved in the EKF update steps.

Rao-Blackwellized Filter (RBF)-Based SLAM
Rao-Blackwellized filter based SLAM methods
include FastSLAM [10] and FastSLAM 2 [11]
algorithms. The algorithms utilize a key point in

SLAM, i.e., given the observer path/trajectory (if
the observer path is assumed correct), different
landmark measurements are independent of each
other. So a particle filter is used to estimate
the observer’s path and for each particle a map
is maintained. Since landmarks within this map
are independent/uncorrelated, they can be rep-
resented with separate low-dimensional EKFs.
Therefore, it has linear complexity rather than the
quadratic complexity of EKF-SLAM.

Landmark Representation As noted, proba-
bilistic SLAM (EKF/RBF SLAM) requires the
uncertainty of landmarks to be modelled. A land-
mark’s uncertainty modelling depends upon the
parameterization used to represent its state. The
simplest way to parametrize a landmark is by
the common three-dimensional Cartesian coordi-
nates mcar

i = (Xi, Yi, Zi)
T . This is applicable

in stereo camera SLAM systems where the land-
mark state can be obtained by triangulation, and
the uncertainty follows the common Gaussian
assumption. However, in single camera SLAM
systems, in which it is not possible to estimate
a landmark’s state from a single measurement,
there is large uncertainty in the depth direction
which cannot be modelled as Gaussian. There-
fore, alternative parameterizations are proposed
to alleviate this issue.

Civera et al. [12] represent a feature using
inverse depth parameterization as

mi dp
i = (xi, yi, zi , θi , φi, ρi)

T , (7)

where xi, yi, zi represent the camera position
from which the feature was first observed, θ i, φi

represent the azimuth and elevation of the corre-
sponding ray, and ρi represents the inverse depth
to the landmark along this ray. The relationship
of mi dp

i tomcar
i is as follows:

mcar
i =

⎛
⎝

Xi

Yi

Zi

⎞
⎠

=
⎛
⎝

xi

yi

zi

⎞
⎠ + 1

ρi

⎛
⎝

cos φi sin θi

− sin φi

cos φi cos θi

⎞
⎠ .

(8)
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Marzorati et al. [13] use the homogenous coor-
dinates

mi sp
i = (xi, yi, zi , ωi)

T , (9)

which relates withmcar
i as

mcar
i =

⎛
⎝

Xi

Yi

Zi

⎞
⎠ = 1

ωi

⎛
⎝

xi

yi

zi

⎞
⎠ (10)

where ωi is the inverse scale.
Although the number of parameters per land-

mark has increased from three of the minimal
representation (mcar

i ),mi dp
i andmi sp

i are able to
represent the landmark uncertainty as Gaussian
and make the measurement equation more linear.

Optimization: Keyframe-Based SLAM
Keyframe-based SLAM splits camera pose
tracking and mapping into separate processes.
The accuracy of camera pose estimation is
increased by using measurements from large
numbers of landmarks per image frame. The
map is usually estimated by performing bundle
adjustment/optimization over only a set of frames
(keyframes) since measurements from nearby
image frames provides redundant and therefore
less information for a given computational budget
[14]. Here a new keyframe can be selected and
inserted to the map based on a sliding window
of most recent camera poses or by ensuring a
minimum distance to the pose of the nearest
keyframe already in the map.

Loop Closure
Ideally when a SLAM system reobserves a previ-
ously mapped region of an environment, it should
correctly recognize the corresponding landmarks
in the map. However, particularly in long trajec-
tory loops, landmark states in two such regions
of the map can be incompatible given their uncer-
tainty estimates. Therefore, loop closure methods
are utilized to align such regions and make the
map globally coherent. These include image-to-
image matching [15], image-to-map matching
[16], and hybrid methods [17].

New Landmark Initialization
Significant and distinguishable parts of the envi-
ronment are selected as landmarks/features. In
visual SLAM, these typically include interest
points and edges/lines in the observed image.
Upon selecting suitable landmarks, their position
states and covariances are initialized and inserted
into the map. Adding a new landmark mnew to
the map is a function of observer pose xk and
new landmark observation z which is given by
mnew = fnew(xk, z). To add a new landmark, one
needs to know the error covariance of the new
landmark with other landmarks moth and the
observer xk. This can be calculated using the
system uncertainty at that time as below:

Pmnew mnew = ∂fnew

∂xk

Pxk xk

∂fnew

∂xk

T

+ ∂fnew

∂z
R

∂fnew

∂z

T
(11)

Pxk mnew = Pxk xk

∂fnew

∂xk

T

(12)

Pmoth mnew = Pmoth xk

∂fnew

∂xk

T

(13)

Note R denotes the error covariance of the
observation z.

Application

Visual SLAM approaches have been successfully
used in large scale outdoor environment map-
pings, and due to the human-like visual sensing
of the camera, it has found applications in aug-
mented reality applications [18] (see Fig. 3).

Open Problems

Despite recent work [19], the performance of
visual SLAM is not sufficiently robust in dynamic
environments where multiple moving objects are
present in the scene. This is similar to the motion
segmentation problem in computer vision. In
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Exploration: Simultane-
ous Localization and
Mapping (SLAM),
Fig. 3 Wearable SLAM
system for augmented
reality by Castle et al.
[18] – (1) handheld display
with camera mounted on
the back (2) active camera
capable of pan and tilt.
(Reprinted from [18], with
permission from Elsevier)

Exploration: Simultaneous Localization and Map-
ping (SLAM), Fig. 4 A snapshot from MonoSLAM [20]
as a humanoid robot walks in a circular trajectory. Here
rectangular patches on the camera image (left) denote
landmarks which are tracked interest points. In the 3-D

map (right), yellow trace is the estimated robot trajec-
tory and ellipsoids show landmark location uncertainties.
(Copyright © 2007 IEEE. All rights reserved. Reprinted,
with permission, from [20])

addition, mapping with RGB-D cameras [1] is
an emerging field with the recent introduction of
affordable RGB-D cameras.

Experimental Results

Figure 4 gives a snapshot of one of the first real-
time MonoSLAM system in operation [20].

References

1. Henry P, Krainin M, Herbst E, Ren X, Fox D (2012)
RGB-D mapping: using Kinect-style depth cameras
for dense 3D modeling of indoor environments. Int J
Robot Res 31(5):647–663

2. Hartley RI, Zisserman A (2004) Multiple view geom-
etry in computer vision, 2nd edn. Cambridge Univer-
sity Press, Cambridge. ISBN 0521540518

3. Smith R, Self M, Cheeseman P (1990) Autonomous
robot vehicles. In: Estimating uncertain spatial
relationships in robotics. Springer, New York,
pp 167–193

4. Neira J, Tardos JD (2001) Data association in
stochastic mapping using the joint compatibility
test. IEEE Trans Robot Autom 17(6):
890–897

5. Chli M, Davison AJ (2008) Active matching. In: Pro-
ceedings of 10th European conference on computer
vision (ECCV’08), Marseille

6. Williams B, Klein G, Reid I (2007) Real-time SLAM
relocalisation. In: Proceedings of IEEE 11th inter-
national conference on computer vision ICCV 2007,
Rio de Janeiro, pp 1–8

7. Durrant-Whyte H, Bailey T (2006) Simultaneous
localization and mapping: part I. IEEE Robot Autom
Mag 13(2):99–110



420 Extended Gaussian Image (EGI)

8. Bailey T, Durrant-Whyte H (2006) Simultaneous
localization and mapping (SLAM): part
II. IEEE Robot Autom Mag 13(3):
108–117

9. Thrun S, Burgard W, Fox D (2005) Probabilistic
robotics. In: Intelligent robotics and autonomous
agents. MIT, Cambridge

10. Montemerlo M, Thrun S, Koller D, Wegbreit
B (2002) FastSLAM: a factored solution to the
simultaneous localization and mapping problem.
In: Proceedings of the AAAI national confer-
ence on artificial intelligence, Edmonton. AAAI,
pp 593–598

11. Montemerlo M, Thrun S, Koller D, Wegbreit B
(2003) FastSLAM 2.0: an improved particle filtering
algorithm for simultaneous localization and mapping
that provably converges. In: Proceeding of the inter-
national conference on artificial intelligence (IJCAI),
Acapulco, pp 1151–1156

12. Civera J, Davison AJ, Montiel J (2008) Inverse depth
parametrization for monocular SLAM. IEEE Trans
Robot 24(5):932–945

13. Marzorati D, Matteucci M, Migliore D, Sorrenti DG
(2009) On the use of inverse scaling in monocular
SLAM. In: Proceedings of IEEE international confer-
ence on robotics and automation ICRA’09, Kobe, pp
2030–2036

14. Strasdat H, Montiel JMM, Davison AJ (2010)
Real-time monocular SLAM: why filter? In:
Proceedings of IEEE international robotics
and automation (ICRA) conference, Anchorage,
pp 2657–2664

15. Cummins M, Newman P (2008) FAB-MAP:
probabilistic localization and mapping in the
space of appearance. Int J Robot Res 27(6):
647–665

16. Williams B, Cummins M, Neira J, Newman P,
Reid I, Tardos J (2008) An image-to-map loop
closing method for monocular SLAM. In: Pro-
ceedings of IEEE/RSJ international conference on
intelligent robots and systems IROS 2008, Nice,
pp 2053–2059

17. Eade E, Drummond T (2008) Unified loop closing
and recovery for real time monocular SLAM. In:
BMVC 2008, Leeds

18. Castle RO, Klein G, Murray DW (2010) Combining
monoSLAM with object recognition for scene aug-
mentation using a wearable camera. J Image Vision
Comput 28(11):1548–1556

19. Migliore D, Rigamonti R, Marzorati D, Matteucci
M, Sorrenti DG (2009) Use a single camera for
simultaneous localization and mapping with mobile
object tracking in dynamic environments. In: Pro-
ceedings of international workshop on safe naviga-
tion in open and dynamic environments application
to autonomous vehicles, Kobe

20. Davison AJ, Reid ID, Molton ND, Stasse O
(2007) MonoSLAM: real-time single camera SLAM.
IEEE Trans Pattern Anal Mach Intell 29(6):
1052–1067

Extended Gaussian Image (EGI)
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Synonyms

Surface orientation histogram (discrete version of
EGI)

Related Concepts

�Extended Gaussian Image (EGI)

Definition

The extended Gaussian image (EGI) of a 3-D
object is a function defined on a unit sphere. The
value of the EGI at a point on the unit sphere is
the inverse of the curvature at the corresponding
point on the object – where the corresponding
point is the one that has the same surface ori-
entation. In the case of a polyhedral object, the
value on the sphere is zero except for impulses
at points on the sphere corresponding to faces
of the polyhedron. The “size” or volume of each
impulse is equal to the area of the corresponding
face. The mapping from a 3-D polyhedron to the
EGI is illustrated in Fig. 1. Figure 2 shows the
mapping for a 3-D piecewise smooth object.

Background

Object recognition and determination of
object pose (orientation and translation) are
two fundamental, interlinked tasks in 3-D
computer vision and robotics. The shape of
an object can be measured directly using,
for example, a rangefinder or binocular
stereo techniques or indirectly using, say,
photometric stereo. A representation for that
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n1
n1

A1

A1

EGI

mapping

Extended Gaussian Image (EGI), Fig. 1 The EGI of a polyhedron. Left: cube with surface normals. Right: arrows on
the unit sphere represent impulses corresponding to faces of the cube

EGI 

mapping

Extended Gaussian Image (EGI), Fig. 2 The EGI of a
piecewise smooth object. Left: piecewise smooth object.
Right: the two flat ends map to two impulses while the

conical surface maps to a small circle, and the cylindrical
surface maps to a large circle on the sphere

shape is needed that makes recognition and
attitude determination relatively easy. One
requirement is that the representation transforms
in a simple way when the object is rotated.

Theory

EGIs can be used to represent both smoothly
curved objects as well as polyhedra. For ease of
explanation, the convex polyhedra are discussed
first. Minkowski [11] showed in 1897 that a con-
vex polyhedron is fully specified (up to transla-
tion) by the areas and orientations of its faces (see
also [10, 14]). The area and orientation of faces
can be represented conveniently by point masses
(i.e., impulses of mass density) on a sphere.
The extended Gaussian image of a polyhedron is
obtained by placing a mass equal to the area of

each face at a point on the sphere with the same
surface orientation as the face.

More specifically, the Gaussian image of an
object is obtained by mapping from a point on
the surface of the object to the point on the
unit sphere that has the same surface normal.
In the case of a convex object, this mapping is
invertible – only one point on the object’s surface
corresponds to a point on the unit sphere. This
mapping extends in a natural way to curves and
surface patches. The Gaussian curvature is the
limit of the ratio of the (signed) area of a patch
on the unit sphere to the area of the corresponding
patch on the surface of the object, as the size of
the patches becomes smaller and smaller. The
Gaussian curvature is everywhere nonnegative
in the case of a convex object. The extended
Gaussian image (EGI) associates a value with a
point on the unit sphere equal to the inverse of the
Gaussian curvature at the corresponding point on
the object.
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A.D. Alexandrov showed that a smoothly
curved convex object is fully specified by
curvature given as a function of surface
orientation [1]. So the EGI representation is
unique for both smoothly curved convex objects
and convex polyhedra. Note, however, that
neither of the proofs is constructive and thus
they do not provide a basis for reconstructing an
object from its EGI. Importantly, reconstruction
is not required for recognition and orientation
determination.

The discrete and continuous versions of the
EGI can be related as follows: An object with
planar faces can be thought of as the limit of
an object with patches of spherical surfaces as
the radius of the curvature of the patches get
larger and larger. A spherical patch of radius
R contributes a constant value R2 (its Gaussian
curvature) to an area of the unit sphere cor-
responding to all of the surface orientations at
points in that patch. As the radius tends to infinity,
the value increases, at the same time that the area
on the sphere shrinks. So the EGI of a polyhedron
consists of a set of impulses, each of which has
“volume” equal to the area of the corresponding
face. It is convenient to treat these impulses as
weights (or arrows of varying length) placed on
the unit sphere. This is the discrete EGI. Con-
versely, the continuous EGI can be viewed as
the limit of point mass density on the sphere as
an approximation of a smoothly curved surface
using a tessellation consisting of planar facets is
made finer and finer.

The EGI has the following properties:

– Translation invariance. The EGI is not
affected by object translation.

– Rotation tracking. Rotation of the object
induces an equal rotation of the EGI since the
unit surface normals rotate with the object.

– Total mass equals total surface area. Follows
directly from the definition.

– Center of mass at origin. If the object is closed
and bounded, the center of mass of the EGI is
at the center of the Gaussian sphere.

– Uniqueness. There is only one closed convex
object that corresponds to a particular EGI
[1, 15].

If the object is not convex, more than one point
on the object will contribute to a given point on
the Gaussian sphere. One way of extending the
definition of the EGI in the non-convex case is
to use the sum of the inverses of the absolute
values of the Gaussian curvature of all points
on the surface that have the same orientation.
While still useful in recognition and orientation
determination, multiple non-convex objects may
have the same EGI. For example, the EGI of all
tori with the same surface area (4π2 Rρ) and
axis orientation is 2Rρ sec η, while there is but
one convex object with that EGI. (Here R and ρ

are the major axis and minor axis, respectively,
while η is the angle between the surface normal
and the plane perpendicular to the axis of the
torus.)

In generating an EGI from an object, explicit
information on shapes of faces and their
adjacency relationships is not kept. Interestingly,
a convex polyhedron can be recovered from
its EGI [6, 9] as well as face adjacency and
edge length information [12]. For a much more
detailed treatment on EGIs, see [4]. The EGI has
also been examined more broadly in the context
of orientation-based representations [8].

The original version of the EGI is transla-
tion invariant. While it allows orientation to be
extracted without regard to translation, a separate
step is required to compute the translation. A
variant of the EGI, the Complex EGI [7], uses
complex mass to represent area (magnitude) and
distance (phase). This decouples translation from
rotation, allowing rotation to be determined in the
usual fashion using the magnitudes while phase
is subsequently used to compute translation. A
support-function-based representation described
in [13] encodes descriptors that are both local
(tangent plane) and global (position and orienta-
tion of tangent plane).

Other extensions of the EGI address another
inherent feature of not explicitly coding
structural information. For example, the CSG-
EESI (Constructive Solid Geometry-Enhanced
Extended Spherical Image) [17] has two levels.
The higher level contains the CSG tree which
describes who the various subparts form the
body, while the lower level describes the subparts
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using enhanced spherical images similar to that
of [15]. Another tree-like representation is that of
Hierarchical Extended Gaussian Image (HEGI)
[18]. An HEGI description can be constructed
as a tree where each leaf node corresponds to
an Extended Gaussian Image (EGI) description
of a convex part resulting from the recursive
convex hull decomposition of an object. The
COSMOS system described in [3] uses support
functions based on Gaussian curvature and
mean curvedness; connectivity information is
maintained as a list.

Application

The EGI has been used for recognition and bin-
picking of topmost objects (e.g., [2, 5, 6, 19]).
It has also been used for symmetry detection [16]
(for both reflectional and rotational symmetries).

In practice, the continuous EGI of a smoothly
curved object is numerically approximated. The
surface of the object may be divided into many
patches, each of which is approximated by a
planar facet of known area and orientation. The
unit sphere may also be tessellated into cells, in
each of which a total is accumulated of the areas
of facets that have orientations falling within
the range of orientations of that cell. Regular
and semiregular tessellations of the sphere can
be obtained by projecting regular polyhedra
(Platonic solids) or semiregular polyhedra
(Archimedean solids). Unfortunately there are
only 5 regular solids, with the icosahedron having
20 facets, which is not a fine enough tessellation.
There are 13 semiregular solids, but again there
are relatively few faces in these tessellations, the
truncated icosahedron, for example, having only
32 faces. Finer, but less regular, tessellations can
be obtained by subdividing faces of the regular
and semiregular tessellations.

In typical practical applications, the object is
only partially observed. Assuming the object is
not occluded by other objects, the EGI of an
observed convex object has information on at
most one hemisphere. For a non-convex object,
there is the issue of self-occlusion, so that the
weight distribution for a set of tracked surface

normal may change with object orientation. The
most obvious solution is that of brute force search
through the space of possible discrete orienta-
tions (e.g., as was done in [7]), but this is com-
putationally expensive. Ikeuchi [6] reduces the
search space by computing the ratio of the surface
area to the projected area and constraining the
freedom of rotation (since this ratio is inde-
pendent of planar rotation for a given line of
sight).
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Definition

Face alignment refers to transforming a given
face image to a canonical coordinate system.
This is done by automatically detecting facial
fiducial points also called facial landmarks or
keypoints and then using standard transformation
methods such as affine/similarity transformation.
These fiducial points are predefined points on the
face image which are mainly located or centered
around facial parts such as the eyes, nose, chin,
and mouth corners as shown in Fig. 1.

Background

While face detection (localizing faces in a
given image) is regarded as the starting point
for any face analysis task, face alignment is

an essential intermediary step for solving tasks
such as expression recognition, face recognition,
face modeling, etc. In recent years, facial
landmark extraction, subsequently used for
aligning the face images, has received significant
interest from the research community. Methods
developed using convolution neural networks
have been able to localize facial landmarks with
great precision even in unconstrained settings,
which in turn have set new benchmarks in
face recognition, identification, and emotion
recognition tasks. A brief description of
the evolution of facial landmark localization
methods is presented in section “Theory and
Applications.”

A large number of approaches have been
proposed to tackle the problem of face alignment
of 2D images with varying degrees of success.
From an overall perspective, face alignment
can be formulated as searching over the face
image for the pre-defined facial points (also
called facial landmarks, fiducial, keypoints, or
face shape). Most of the methods in literature
start from an initial estimate and proceed to
refine the estimate incrementally. Typically, two
different sources of information are used: local
appearance features and shape constraint. The
shape constraints exploit the relationships among
different landmark points to ensure that the
estimated facial landmark points forms a valid
shape.

© Springer Nature Switzerland AG 2021
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Face Alignment, Fig. 1 Sample results for facial land-
mark localization task. First image shows the landmarks
when all the facial components are visible. (Image taken
from iBug dataset [1]). Second image taken from COFW

dataset [2] shows the landmarks when face parts are
invisible due to occlusion. Third image from AFW dataset
[3] shows typical keypoints used for face alignment after
localization. All results generated using Kumar et al. [4]

Theory and Applications

Existing methods for facial landmark extraction
are categorized into two prominent categories:
generative and discriminative.

• Generative methods: These methods build a
generative model for face shape and appear-
ance. They typically formulate face alignment
as an optimization problem to find face shape
and appearance parameters that generate the
appearance model that best fits the test face.
The appearance model can be characterized by
the whole face or local patches.

• Discriminative methods: These methods
directly infer the target location of keypoints
from facial appearance. This is done by
learning local descriptors or a set of regressors
for each facial point or a global shape
model which implicitly enforces the shape
constraints. Many recent works including the
works based on convolution neural networks
fall into this category.

Generative Methods
Typically, faces are modeled as deformable
objects which can vary in terms of shape and
appearance. Generative face alignment develops
parametric models for both face shape and
appearance and seeks to find the best model
parameters that can reconstruct the test face
well, during testing. Active Appearance Models

(AAMs) proposed by Cootes et al. [5], which are
linear statistical models of both the shape and
appearance, are arguably the most well-known
family of generative methods and have been used
and studied extensively over the last 20 years.
Generative models in general are defined by
three components, i.e., shape model, appearance
model, and motion model. The shape model is
built from a set of manually annotated N facial
points s = (xT

1 . . . xT
N)T describing the face

shape, where xi = (xi, yi) is the 2-D location
of the ith point. Then the shape model can be
mathematically expressed as:

s(p) = s0 + Sp (1)

where s0 ∈ R
〈2N,1〉 is the mean shape and S ∈

R
〈2N,n〉 and p ∈ R

n are the shape eigenvectors
and parameters. Similarly, the texture model is
defined as follows:

A(c) = a0 + Ac (2)

where a0 ∈ R
〈F,1〉 is the mean appearance and

A ∈ R
〈F,m〉 and c ∈ R

m are the appearance
eigenvectors and parameters. Given a test image
I, the goal is to find the optimal parameters p
and c. Formally, let I[p] = I(W(p)) denote the
vectorized version of the warped image, warped
using W , defining how given a shape, the image
should be warped into a canonical frame of
reference. The optimization problem can then
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be formulated as:

argmin
p,c

‖I[p] − a0 − Ac‖2 (3)

This optimization problem is solved using an iter-
ative process that updates the model parameters
in each update. Subsequently, significant devel-
opments have been made in solving the afore-
mentioned problem, by using nonlinear regressor
or the Gauss-Newton method.

Part-based generative models build generative
appearance models for facial parts constrained
by a generic face model governing the defor-
mations. A notable example is the well-known
original Active Shape Models (AAM) [6] that
combine the generative appearance model for
each facial part and a global shape model. A
second approach is to simultaneously construct
generative models for all facial parts as in Gauss
Newton Deformable Part Models (GN-DPM) [7].

Discriminative Methods
Discriminative models seek to learn discrimina-
tive functions that directly map the facial appear-
ance to the target facial points. One of the early
methods used for discriminative fitting is Con-
strained Local Models (CLMs) which aim to
learn independent local detectors for each facial
part and a shape model to impose the shape
constraint. The task of the local detectors is to
estimate pseudo-probability that the target point
occurs at a particular position. In the literature,
different types of classifiers have been studied:
logistic regression [8], support vector machines
[9], and local neural fields [10]. Exemplar-based
model fitting proposed by Belhumeur et al. [11]
can also be interpreted under the conventional
CLM framework. Tree structure models are a nat-
ural choice to model deformable objects, and one
can find optimal solutions using efficient dynamic
programming algorithms. The main drawback
that a single tree structure model is insufficient to
capture various face shapes has been addressed
in the seminal work of Ramanan et al. [3] by
designing different part models for faces in dif-
ferent poses.

Cascade Regression
Several methods based on the discriminative
approach exist in the literature. One such
approach is the method of cascade regression.
The motivation behind this being that performing
regression from image features to face shape in
one step is challenging and, hence, the regression
process is divided into stages, by learning a
cascade of regressors. Formally, given an image
I and an initial shape s0, the face shape s is
progressively refined by estimating a shape
increment �s stage by stage. In a generic form, a
shape increment �s at stage t is regressed as:

�st = Rt (Φt (I, st−1)) (4)

where st−1 is the shape estimated in the previous
stage, Φt is the feature mapping function, and
Rt is the stage regressor. Note that Φt(I, st−1) is
referred to as the shape-indexed feature [12] that
depends on the current shape estimate and can
be either designed by hand [13, 14] using Local
Binary Patterns [15] or SIFT [16] or by learning
[17–20]. In the training phase, the stage regres-
sors (R1,R2, . . . .Rt ) are sequentially learned to
reduce the alignment errors on the training set,
during which geometric constraints among points
are implicitly encoded.

Convolution Neural Networks
Deep neural networks, especially deep convolu-
tion neural networks, have dramatically improved
the performance of landmark localization meth-
ods both in terms of precision and speed. Many
cascade neural regression-based methods have
been adopted to incorporate deep features to learn
the local detectors. Multistage methods such as
[17, 19, 21] directly model the keypoint loca-
tions. However, single-stage methods based on
encoder-decoder architecture such as [4,22] have
proven to be efficient in terms of speed and
localization error. These models learn the inher-
ent relationships among the different landmark
points so as to maintain the shape constraints.
Some methods such as [23, 24] also make use of
the 3D structure of the face to model large pose
variations and occlusion, whereas methods such
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as the ones in [4] model large pose variations
implicitly through modified loss functions.

Open Problems

Under constrained or laboratory settings, the
problem of landmark detection has been well
addressed [7–9], and in many cases methods
achieve close to human performance. However,
real-life scenarios cast a new set of challenges,
due to large facial appearance variability caused
either by intrinsic dynamic features of the facial
components such as the eyes, mouth, and chin or
by ambient environmental changes. In general,
the following factors could significantly influence
the local and global facial features:

• Pose: The appearance features vary greatly
between different camera poses, for example,
some facial components can be completely
occluded in a profile face image.

• Occlusion: In unconstrained settings, occlu-
sion due to external circumstances happens
quite often and brings great challenges to land-
mark extraction and hence face alignment. For
instance, eyes may be occluded by hair or
sunglasses.

• Illumination: In the age of mobile devices,
images are taken in varying lighting condi-
tions (outdoors in sunny or cloudy conditions
or indoors under fluorescent light), which sig-
nificantly alter the appearance of whole face
and make the detailed textures of the compo-
nents missing.

• Expression: Some facial features such as
the eyes and mouth are sensitive to varying
expressions. For example, laughing may cause
the eyes to shut completely.

• Low Resolution: Low resolution causes facial
details to get obscured, and hence methods
which rely on local appearance face great
difficulty in localizing the keypoints with pre-
cision.
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Synonyms

Face localization

Related Concepts

�Object Detection

Definition

Face detection refers to the detection of face
instances in an image.

Background

Face detection is a fundamental step to all facial
analysis algorithms, including face alignment,
face parsing, and face recognition. Given an arbi-
trary image, the goal of face detection is to
determine the presence of faces in the image and,
if present, return the location and extent of each
face in an image.

As in object detection, early work in face
detection took a sliding window paradigm, in
which a classifier is applied on a dense image
grid. Following this paradigm, early progress in
face detection is closely related to the combined
use of handcrafted features and classifiers, e.g.,
Haar-like features with boosting [1,2], Histogram
of Oriented Gradients (HOG) with Support Vec-
tor Machine (SVM) [3, 4], and multiple channel
features with boosting [5]. Most early detectors
perform well in constrained scenarios where near
frontal faces are assumed but encounter problems
in dealing with images in the wild due to large
appearance variations.

Contemporary face detectors are based on
deep Convolutional Neural Network (CNN),
in which the feature extractor and classifier
are jointly trained in an end-to-end manner.
These detectors perform much better than
approaches based on handcrafted features due
to the capability of deep CNNs in extracting
discriminative representation from data. Modern
face detectors based on deep CNNs can easily
detect faces under moderate variations in pose,
scale, facial expression, occlusion, and lighting
condition. Consequently, deep learning-based
face detectors are now widely used in a myriad
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of consumer products, e.g., video surveillance
systems, digital cameras, and social networks.

Current research efforts are devoted to solv-
ing extreme cases such as finding tiny faces
in crowded scenes, coping with wide range of
face scales more efficiently and effectively, and
handling intricate factors such as extreme pose,
exaggerated expressions, and large portion of
occlusion.

Theory and Applications

Face detection [6,7] has seen significant progress
after the seminal work by Viola and Jones [1, 2],
who popularize the framework of boosted cas-
cade with simple Haar-like features represented
as integral images. The simple nature of such
features allows efficient evaluation of large num-
ber of window candidates, while the boosted
cascade permits fast detection with low false-
positive rates. Many studies thereafter follow the
boosted cascade framework with more advanced
features [8–11], boosting algorithms [12,13], and
cascade structures [14, 15].

Deformable Part Model (DPM) [16] has also
been widely applied for face detection [4]. In
general, a DPM represents the appearance of
parts as well as the connections between them in
a pictorial structure. Methods have been proposed
to improve the vanilla DPM by training tree-
structured DPM by treating every facial landmark
as a part [17, 18] or using a multi-scale model
with elaborated features like integral channel fea-
tures [4, 19]. Some variants were proposed to
reduce the computational complexity of DPM-
based methods [20, 21].

Some of the earlier work on face detection
employed neural networks [22–24], but they were
soon replaced by boosted cascade and DPM-
based approaches. A new wave of interests of
applying Convolutional Neural Networks (CNN)
for face detection [25–33] is sparked by the
success of deep learning in ImageNet Large
Scale Visual Recognition Challenge 2012. There
are various design variations in the literature.
Recent face detection methods typically follow
the paradigm of a two-stage detector, e.g., Faster

R-CNN [34], or a single-stage detector like
Single Shot MultiBox Detector (SSD) [35]
and You Only Look Once (YOLO) [36].
Different variants are developed with the aim
to improve the performance in detecting faces of
a wide range of scales and the efficiency of the
aforementioned networks for face detection.

Detection across scales A major challenge in
face detection is to detect faces of a wide range
of scales. This issue remains despite the use of
deep CNNs. Detection across scales cannot be
fully resolved by just using deeper networks. On
one hand, more convolution layers are required
to learn highly representative features that can
distinguish faces with large appearance varia-
tions, i.e., pose, expression, and occlusion from
clutter background. On the other hand, by going
deeper, the spatial information, which is essential
to finding tiny faces, would lose through pooling
or convolution operations. The aforementioned
problem can be partially alleviated by using a
dilation operation [37] and reducing the number
of pooling operations. However, the computation
will dramatically increase with high spatial reso-
lution of feature maps in the network, making it
difficult to meet practical runtime speed.

Existing studies perform detection across
scales by either performing image pyramid
prediction using a single-scale detector or
building different detectors for different face
scales. It is possible to make use of both
coarse image pyramid together with multiple
scale-specific detectors too [25]. To reduce the
computational cost introduced by using multiple
scale-specific detectors, one can divide a network
into a few specialized subnetworks/layers,
each of which has their depth, spatial pooling,
or anchors (regression references to predict
proposals for two-stage detectors) carefully
designed to optimize the detection of faces
that fall onto a particular range of size. This
technique has been shown effective on two-stage
detectors [31] and single-stage detector [33, 38].

Contextual information plays an important
role in face detection, especially in the detection
of small faces. One can make use of additional
local context around faces to improve the
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detection performance [25, 38, 39], either by
enlarging the window around the candidate
proposals or using larger filters to increase the
receptive field.

Cascading In many applications it is important
to have swift face detection while still maintain-
ing the detection performance. Cascading is a
common technique to reduce the computational
time of face detection. The common practice is
to combine a few successively more complex
classifiers in a cascade structure so that early-
stage classifiers can quickly eliminate easy back-
ground regions while detecting almost all pos-
itive instances, and subsequent classifiers focus
on evaluation of a small number of challenging
candidates.

The first cascading classifier for face detection
was proposed by Viola and Jones [1]. Stages in
the cascade are constructed by training classifiers
using AdaBoost [40] and then adjusting the
threshold to minimize false negatives. The notion
of cascading can also be applied on deep CNN-
based face detectors [27, 32]. Specifically, a
cascade is usually constructed such that in
early stages candidate windows are quickly
produced through a shallow CNN with low-
resolution images; the subsequent stages refine
the windows by rejecting a large number of non-
face windows through more complex CNNs.
There exist alternative ways of constructing
cascaded networks, for instance, by using a
face attribute recognition network in the first
stage to generate high-quality proposals by face
responses and using a multitask network for face
classification and bounding box regression in the
second stage [30].

Loss functions The typical loss used for train-
ing a deep network-based face detector is �2
loss, measuring the localization error between
the coordinates of a bounding box’s corners and
the ground truth coordinates. Some studies have
proposed alternative losses to train a detector. For
instance, Smooth �1 loss [33] is used so that the
training is less sensitive to outliers. Intersection
over Union (IoU) Loss [41] aims at regressing
the four corners of a predicted box as a whole

unit. Unlike �2 loss, this loss considers the cor-
relation of object boundaries. Multitask learning
introduces auxiliary losses to further improve
the performance of a face detector. For instance,
training a face detector jointly with facial land-
mark detection is shown to considerably improve
the face detection performance [32].

Hard example mining It is always desirable to
perform hard example mining during the training
to improve the robustness of a face detector.
Traditional face detection methods select hard
examples in an off-line manner, i.e., the iden-
tification of hard examples (samples that are
misclassified) and retraining are conducted in
an alternate manner. Due to the nature of deep
learning which requires hundreds of thousands
of stochastic gradient descent (SGD) steps on
millions of examples, hard example mining is
shifted to an online paradigm [31, 32, 42]. For
instance, this can be done by sorting the samples
in each mini batch by their losses during the
forward propagation and select those with the
highest loss as hard samples. Only gradients of
hard samples are back-propagated [32].

Other considerations Other techniques that
have shown effective on general object detection,
e.g., Deformable Convolution [43], Guided
Anchoring [44], and Feature Pyramids [45],
can also be used to improve the performance
of a face detector. Data augmentation such as
random crops, horizontal flip, and color jitter is
found useful to enrich the data for training a deep
network for face detection.

Benchmark Databases and
EvaluationMetrics

Benchmark databases In the past decades,
many benchmark databases have been con-
structed to evaluate the performance of face
detection. Some of the popular ones include
FDDB [46], AFW [18], PASCAL FACE [17],
and IJB-A [47]. These databases have contributed
to spurring interest and progress in face detection
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Face Detection, Fig. 1 Example images and annotations from the WIDER FACE dataset [48]

research. However, as algorithm performance
improves, more challenging datasets are needed
to catalyze new approaches. These face detection
datasets typically contain a few thousand faces,
with limited variations in pose, scale, facial
expression, occlusion, and background clutter.
The assessment results of a detector on these
datasets are typically far from its real-world
performance. In 2016, a new large-scale face
detection dataset called WIDER FACE [48]
was presented. It consists of 32, 203 images
with 393, 703 labeled faces, which is 10 times
larger than the IJB-A dataset [47]. As shown in
Fig. 1, the faces in WIDER FACE vary largely in
appearance, pose, and scale, making the dataset
a good platform for developing and testing face
detection algorithms.

Evaluation metrics The quality of a face detec-
tor is generally measured by its recall, false-
positive rate, and speed (which is typically mea-
sured in frame per second, FPS). To measure
recall and false-positive rate, an object is consid-
ered detected if the IoU between the predicted
bounding box and ground truth bounding box
is no less than 0.5. The overall performance of
a face detector is characterized by the receiver
operating characteristic (ROC) curve, which is
widely used to evaluate the recall against the
false-positive rate of a face detection system
at various threshold settings. Average precision
(AP) is also typically used for characterizing the
performance of a face detector. The mean value
of AP is obtained by averaging over multiple IoU

values. Averaging over IoUs rewards detectors
with better localization [28].
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Synonyms

Face reconstuction; Structure-from-Motion
(SfM); Three dimensional face modeling

Definition

Face modeling usually refers to the problem of
recovering 3D face geometries from one or more
images, though the recovery of lighting and skin
reflectance is sometimes considered as face mod-
eling as well.

Background

Because the face is a special type of object which
people are all familiar with, there have been
tremendous interests among researchers in the
problem of 3D face reconstruction. The most reli-
able and accurate way to obtain face geometries
is by using active sensors such as laser scan-
ners and structured light systems. So far, laser
scanners are the most commonly used and most
accurate active sensors. Structured light systems
are becoming more popular because they are
capable of capturing continuous motions. Some
structured light systems use visible light sources,
while others use invisible light sources such as
infrared lights. Visible light systems give better
signals, but they are intrusive.

The disadvantage of active sensors is that
they are usually expensive and not widely avail-
able. Recently, Microsoft released a depth cam-
era, called Kinect, which uses active sensors. The
device works with both game consoles and PCs
and has popularized the use of depth cameras in
many applications including face modeling.

Given that cameras are everywhere, it is not
surprising that researchers have been fascinated
by the problem of 3D face reconstruction from
images. This can be thought of as a special
case of the classical computer vision problem of
3D structure recovery from images. One could
directly apply a generic 3D reconstruction tech-
nique to face images. It usually does not work
very well because face skins are usually smooth
making it difficult to find accurate matchings
across images. Since all human faces are similar
in terms of their rough shape and topology, a lot
of the research has been devoted to developing
techniques that leverage the prior knowledge on
faces. For example, one can start from a generic
face mesh and try to adjust the vertex posi-
tions of the mesh to fit the image observations.
To reduce the number of degrees of freedoms
involved in the fitting process, people have pro-
posed to use a linear space of face geometries to
constrain the parameter space. One can use a set
of pre-captured or hand-designed face geometries
as the examples. Any face is assumed to be a
linear combination of the example faces.
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Theory

Face modeling techniques can be divided
into two categories based on whether the
illumination effects are modeled or not.
The methods that belong to the first cat-
egory do not model illumination effects
[1–4]. They have origins from structure
from motion or stereovision. The methods in
the second category takes illumination into
account [5–8]. In fact, they leverage the shading
information for the geometry reconstruction.
These techniques can be traced to shape from
shading. For a more detailed and systematic
descriptions of face modeling techniques and
applications, the readers are referred to the
book [9].

Regardless of which method is used, the first
question is how to represent a face. As mentioned
earlier, linear space representation has been
shown to be an effective way to constrain the
parameter space. There are two different ways to
construct a linear space representation.

The first, called a morphable model, was pro-
posed by Blanz and Vetter in their seminar paper
[5]. They used a set of existing face meshes
obtained by laser scanners. These meshes must be
aligned so that there is a correspondence between
the vertices of different meshes.

Let Vi = (Xi, Yi, Zi)
T , i = 1, . . . , n, denote

the vertices of a face mesh. Its geometry is repre-
sented by a vector:

S = (VT
1 , . . . ,VT

n )T

= (X1, Y1, Z1, . . . , Xn, Yn, Zn)
T . (1)

Suppose there are m + 1 face meshes which
are obtained by using laser scanner or some other
means. Let Sj denote the geometry of the j th
mesh, j = 1, . . . , m + 1. These faces generate
a linear space of face geometries:

F =
⎧
⎨

⎩

m+1∑

j=1

αjS
j :

m+1∑

j=1

αj = 1

⎫
⎬

⎭
. (2)

Let S0 denote the average face geometry, that
is: S0 = 1

m+1

∑m+1
j=1 Sj . Denote δSj = Sj − S0,

j = 1, . . . , m + 1. Note that these vectors are
linearly dependent. Principal component analysis
can be performed on the vectors δS1, . . . , δSm+1.
Let σ 2

1 , . . . , σ 2
m denote the eigenvalues with σ 2

1 ≥
σ 2
2 ≥ . . . ≥ σ 2

m. Let M1, . . . ,Mm denote the
corresponding eigenvectors. Then any face S ∈ F

can be represented as the average face S0 plus a
linear combination of the eigenvectors, that is:

S = S0 +
m∑

j=1

cjMj . (3)

cj are the geometry coefficients. The prior prob-
ability for geometry coefficients c1, . . . , cm is
given by:

Pr(c1, . . . , cm) = e
− 1

2

∑m
j=1

c2
j

σ2
j . (4)

The second approach is to manually design the
average mesh S0 and a set of deformation vectors
which act as δSj as proposed in [2, 10]. Each
deformation vector corresponds to an intuitive
way of deforming the face. For face modeling
purpose, the deformation vectors are used in
almost the same way as the eigenvectors. The
only difference is that for eigenvectors, there is
a prior probability for the geometry coefficients
(see (4)). For deformation vectors, one can pre-
define a valid range for each model coefficient.

Given the face representation as shown in
(3), the problem of face reconstruction becomes
searching for the model coefficients cj . As men-
tioned earlier, the method of solving for the
model coefficients can be divided into two cat-
egories depending on whether they model illumi-
nation effects or not.

The methods that belong to the first category
typically assume there are two or more input
images corresponding to different views of a
face. If the camera motions corresponding to the
views are not known, one can use structure-from-
motion techniques to estimate the camera motion
and obtain a set of 3D points, which are usually
quite sparse and noisy. After that, one can solve
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for the model coefficients and the head pose by
minimizing the total distances of the 3D points to
the model. Numerically, one can solve it through
an iterative closest point (ICP) procedure. For
details, the readers are referred to [2].

If the camera motions corresponding to the
views are known such as in a stereo rig, one can
perform dense stereo matching and obtain a depth
map of the face. One such system was developed
by Chen and Medioni [11]. The obtained depth
map is usually quite noisy and has spikes. One
could use a face model to fit the obtained depth
map or inject a face model representation in the
stereo reconstruction process in a way similar to
the model-based bundle adjustment formulation
in [12], but the camera motions are no longer
variables anymore in this case.

Another approach is to use two orthogonal
views [13–15]: one frontal view and one side
view. The frontal view provides the information
relative to the horizontal and vertical axis, while
the side view provides depth information. Since
the number of feature points that can be detected
on the two views is usually quite small, one could
use a linear space face representation to fit the
detected feature points and obtain a complete face
geometry.

The methods that belong to the second cate-
gory only require a single view. Since the pub-
lication of Blanz and Vetter’s paper [5] which
assumed a single light source, researchers have
extended their technique to handle more general
lighting conditions. These techniques leverage
shading information, and they typically recover
the shape, reflectance, and lighting simultane-
ously. Most techniques assume the face skin is
Lambertian. Similar to linear space representa-
tion for face geometry, the diffuse reflectance
components (also called albedo or texture) can
also be represented as a linear combination of
example face albedos. In this way, the unknowns
for the reflectance are the albedo (also called
texture) coefficients. One effective tool to model
the lighting is the spherical harmonics repre-
sentation which was proposed by Ramamoorthi
and Hanrahan [16] and Basri and Jacobs [17].
The basic idea is that the irradiance can be well
approximated by using a linear combination of a

small number of spherical harmonic basis func-
tions. They showed that with nine spherical har-
monic basis functions, the average approximation
error is no more than 1%. The coefficients of the
spherical harmonic basis are called lighting coef-
ficients. Given the pose, geometry model coef-
ficients, albedo coefficients, and lighting coeffi-
cients, one can synthesize an image of the face.
The objective is to solve for these parameters
so that the synthesized image matches the input
image. The optimization problem can be solved
through an iterative procedure. For details, the
readers are referred to [8].

In the past few years, there has been a lot of
interests in using deep convolutional neural net-
works (CNN) for 3D face reconstruction [18–23].
Many of the deep learning-based approaches use
the linear space representation where the model
coefficients are regressed by CNNs [18, 20–23],
while others have proposed direct reconstruction
schemes without the linear space representation
[19, 24].

Application

Face modeling has many applications. The tech-
niques allow people to create personalized avatars
which can be used in chatting rooms, e-mails,
greeting cards, and games. Many human-machine
dialog systems use realistic-looking avatars as
visual representation of the computer agent that
interacts with the human user [25–28]. Face
models are useful for 3D head pose tracking and
facial expression tracking. In teleconferencing,
face modeling techniques can be used for eye-
gaze correction to improve videoconferencing
experience [29]. Face modeling techniques are
useful for face recognition to handle pose vari-
ations [30] and lighting variations [31].
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Synonyms

Face classification; Face recognition; Deep
CNN-Based Face Recognition

Related Concepts

�Deep CNN-Based Face Recognition
� Face Identification
� Face Verification

Definition

Face recognition is a biometric technique that
identifies or verifies a person by comparing and
analyzing the visual patterns from the person’s
facial image. Face recognition can be divided
into two types of tasks, face verification and face
identification.

Face verification aims to determine whether
two given face images are from the same person
or not. Face identification aims to determine
the identity of a query face image from a
number of registered persons. Usually, the query
image is compared with the face images of all
the registered persons to identify the similar
ones. Face identification involves one-to-many
matches, while face verification involves one-to-
one matches. As the number of registered persons
in the database increases, both the accuracy and
the efficiency of face identification decrease.
However, the performance of the face verification
is not much affected by the size of the database.

Background

Face recognition is a fundamental yet impor-
tant problem in computer vision with wide
applications to surveillance, law enforcement,
human-computer interaction, image and video
search, and so on. Face recognition had
been studied as early as the 1960s and has
been receiving extensive research interests
from the computer vision society. Face
recognition is one of the most important
biometric technologies. Compared with other
biometric attributes, face images are easy
to be captured in a nonintrusive way. Face
identification has higher compatibility with other
systems.

The challenge of face recognition may
come from several aspects, including large
intrapersonal variations, small interpersonal
variations, high dimensionality of face images,
and open set recognition problem. Face images
of the same person may appear very differently
because of variations of poses, illuminations,
aging, occlusions, makeups, hairstyles, and
expressions. On the other hand, the face images
from different persons may look quite similar.
It is critical for face recognition algorithms to
effectively extract discriminative features which
effectively capture the interpersonal variations
and depress the intrapersonal variations. The
input face images usually have a high dimension,
while each person registered in the database
only has a few face images for training. So one
needs to address the curse of dimensionality in
face recognition. In practice, face recognition
is an open set recognition problem that,
in the training phase, we don’t have facial
images from the persons who need to be
recognized in test. Many face recognition
system solves this problem by learn a model
to extract features from any facial images
and exploit a metric, e.g., cosine distance, to
measure the similarity between facial images
for identification and verification. Detailed
surveys of face recognition methods can be found
in [39].
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Method and Application

Face Recognition with Handcrafted
Features

Feature Extraction Geometric features, holistic
features, local features, and semantic features
are four types of handcrafted features widely
used for face recognition. Geometric features
measure the sizes of facial components and the
distances between different components. How-
ever, geometric features are not always discrimi-
native and different to calculate, which limit their
application. Holistic features are extracted by the
whole face regions. Holistic features are usually
high-dimensional vectors (e.g., concatenation of
all pixels) with redundancy. Local features are
obtained by characterizing the texture patterns
within local regions (a regular grid or the neigh-
borhoods around detected landmarks). Among
local features, Gabor responses [34] and local
binary patterns (LBP) [1] are most widely used.

Gabor responses are obtained by the convolu-
tion of local face regions with a set of predefined
Gabor kernels. Gabor kernels are characterized
as localized, orientation selective, and frequency
selective, and they are similar to the receptive
field profiles in cortical simple cells. A Gabor
kernel is the product of a Gaussian envelope and
a plane wave:

�k(x) = ‖k‖
σ 2 · e

‖k‖2‖x‖2
2σ2 · [eik·x − e− σ2

2 ]. (1)

x = (x, y) is the variable in the spatial domain
and k is the frequency vector, which determines
the scale. The orientation of the Gabor kernel is
k = kse

iΦd , where ks = kmax
f s , f = 2, s =

0, . . . , L − 1 and Φd = (π · d)/8, for d =
0, . . . ,M − 1. There are totally L × M Gabor
kernels at L different scales along M different
orientations. The number of oscillations under
the Gaussian envelope function is determined by
δ = 2π . The term exp(−σ 2) is subtracted to
make the kernel DC-free, and thus, the Gabor
responses are insensitive to illumination. Given

an image I (x), the Gabor response at location x0
is computed by convolution:

�k ∗ I (x0) =
∫

Ψk(x0 − x)I (x)d2(x). (2)

Since the phases of Gabor responses change
drastically with translation, usually only the mag-
nitudes of the responses at landmarks or on a grid
are used as local features for face identification.
Gabor responses are robust to illumination varia-
tions and can tolerate the misalignment caused by
variations of poses and expression to some extent.

LBP [21] is a powerful texture descriptor. As
shown in Fig. 1a, it is calculated according to the
neighborhood of a pixel p by uniformly sampling
N pixels along the circle centered at p with
radius R. The pixels in the neighborhood are
assigned with binary numbers by thresholding
against the value of pixel p, as shown in Fig. 1b.
These binary numbers are converted to a decimal
number, which which indicates the local binary
pattern of pixel p. A local binary pattern is
called uniform if it contains at most two bitwise
transitions from 0 to 1 or vice versa when the
binary string is considered circular. For example,
00011110 is a uniform pattern and 00010100 is
not. It is observed that uniform patterns appear
much more frequently than nonuniform patterns.
Both accuracy and computational efficiency of
face identification can be improved if only uni-
form patterns are kept and all the nonuniform
patterns are mapped to a single label.

Local binary patterns are treated as words of
a codebook. The face region is divided into local
regions by a grid as shown in Fig. 1c. The his-
tograms of uniform patterns inside the local local
regions are used as LBP features for face recog-
nition. LBP can characterize a large set of edges
and has high discrimination power. If the values
of centered pixels and their neighborhoods are
under the same monotonous transformation, local
binary patterns do not change. Therefore, LBP is
robust to lighting variations. Since the histograms
within local regions are used as features, they are
robust to misalignment and pose variations.
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Face Recognition, Fig. 1 LBP operator. (a), the neighborhood of a pixel. (b), the local binary pattern is labeled as
01001010 = 74. (c) The face region is divided into local regions

Semantic features were proposed for face
identification. Specially, two types of semantic
features, attribute and simile, were proposed in
[13]. To extract the attribute features, a set of
binary classifiers are trained to recognize the
presence or absence of describable aspects of
visual appearance (e.g., does the face has double
chin? and does the face have high cheekbones?).
The output of each classifier is a score between
1 and −1. The raw outputs of attribute classifiers
are concatenated to form the feature vector for
face identification. The simile features of a face
image are the similarities between this face image
and a set of reference people. Semantic features
are high-level visual features. They are inspired
by the process of face identification by human
beings, since human beings often describe a face
using some attribute terms or using its similarities
with some known people. Semantic features
are more insensitive to the variations of poses,
illuminations, and expressions.

Classification Methods
The extracted features are usually in very high-
dimensional spaces and include large intraper-
sonal variations and noise. It is inaccurate and
inefficient to directly use them for face identi-
fication. They are typically projected into low-
dimensional spaces or fed into trained classifiers
in order to compare two face images. PCA [25]
is widely used for dimension reduction. In face
recognition, intrapersonal variations are the main

factor deteriorating the identification accuracy
and may be larger than interpersonal variations.
However, they cannot be depressed by PCA.
Therefore, although PCA can improve the iden-
tification efficiency, it cannot effectively improve
the accuracy.

Bayesian face recognition [20] effectively
models the intrapersonal variations using the
intrapersonal subspace, which is spanned by
the eigenvectors {ek} and eigenvalues {λk} of
covariance matrix:

Σ =
∑

�(xi )=�(xj )

(xi − xj )(xi − xj )
�, (3)

where xi is the feature vector and �(xi ) is its
identity. The distance between two feature vec-
tors x and x′ is computed as

d(x, x′) =
∑

(y2
k /λk), (4)

where yk is the projection of x−x′ on eigenvector
ek . Since the intrapersonal variations concentrate
on the first few eigenvectors with the largest
eigenvalues λk , they are effectively depressed by
weighting the inverse of λi . Therefore, Bayesian
face recognition can effectively improve the
accuracy by reducing the intrapersonal variations.
In Bayesian face recognition, the projection of the
distance between a given face pair may reduce
the separability. To alleviate this problem, Chen
et al. [5] propose a joint Bayesian approach to
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directly model the joint distribution of two faces
with a prior face representation: each face is the
summation of intrinsic variable for identity and
intrapersonal variable for with-person variation.

LDA [2] is another widely used subspace
method. LDA tries to find the subspace that best
discriminates different face classes by maximiz-
ing the between-class scatter matrix Sb while
minimizing the within-class scatter matrix Sw in
the projective subspace. Suppose there are L per-
sons in the training set and Xc is the set of feature
vectors of person c. Sw and Sb are defined as

Sw =
L∑

c=1

∑

xi∈Xc

(xi − mc)(xi − mc)
�. (5)

Here, Sb = ∑L
c=1 nc(mc − m)(mc − m)�

and mc is the mean of vectors in Xc, nc is the
number of feature vectors in Xc, and m denotes
the mean of all the feature vectors in the training
set. LDA subspace is spanned by a set of vectors
W satisfying

W = argmax

∣
∣
∣
∣
W�SbW

W�SwW

∣
∣
∣
∣ . (6)

Feature vectors are projected into the LDA
subspace for calculating the distance between
face images. W can be computed as the eigen-
vectors of S−1

w Sb. However, because of the small
sample size problem, S−1

w is often singular and
it is easy for W to overfit the training set. Many
improvements of LDA, such as dual-space LDA
[29], null-space LDA [3], and direct LDA [37],
have been proposed to address this problem.

PCA and LDA are linear subspace methods
and assume a Euclidean structure of the face
space. Manifold learning [8] assumes that
face images reside on a manifold structure and
obtains a face subspace using locality preserving
projections. It is used to reduce the variations of
poses, expressions, and illuminations. Besides
subspace methods, other classifiers such as SVM
[9], boosting [31], and sparse representation
[35] were also exploited for face identification.
Using �1 regularization, sparse representation
effectively handles errors due to occlusion and
corruption by exploiting the fact that these errors

are often sparse. LDA was also extended to non-
parametric discriminant analysis assuming that
the distribution of face data is non-Gaussian [14].

Face Recognition with Deep Learning
Models
Deep CNN integrates feature extraction and clas-
sification in a unified framework which can be
trained end-to-end. For face recognition, deep
CNNs can learn very discriminative features with
much better performance than hand-crafted fea-
tures [24, 36]. Network architectures, loss func-
tions, and databases are three key parts which
play key roles in training accurate deep face
recognition models.

Deep Network Architectures Face images
consist of parts such as the eye, nose, and
mouth, with different local statistics. The weight-
sharing scheme of classical CNNs may not be
efficient for face recognition. Several works
[24, 36] addressed this problem by adopting
locally connected convolutional layers to learn
a different set of filters for different face regions.
Besides locally sharing scheme, DeepID [36]
directly connects the output of convolutional
layer to the last fully connected layer so that
the latter can see multi-scale features and the
possible information loss can be reduced. The
of DeepID is shown in Fig. 2. DeepID [36] also
adopts model ensemble strategy which integrates
networks trained for different face regions to
improve the performance. FaceNet [23] explored
deeper architectures with inception modules and
found that 128-dimensional face feature is proper
for face recognition. Recent advanced deep
CNNs, e.g., ResNet [7] and SENet [10], also
yield effective architectures for face recognition.

Training Loss Functions Recent studies wit-
nessed well-designed loss functions can improve
the performance of deep face recognition [4, 15–
17, 23, 26, 27, 38, 39]. Because face recognition
is essentially an open set recognition problem
where the testing identities are usually different
from identities in training data, most deep
learning-based face recognition approaches
utilize CNNs to extract feature vectors from facial
images and then adopt a metric to measure their
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Face Recognition, Fig. 2 The architecture of DeepID [36]. “C” means convolutional layer, “P” means pooling layer,
and “F” means fully connected layer

similarity between face pair during inference.
Hence, there is a gap between training which
uses softmax cross-entropy losses to separate
the training identifiers and testing which uses
similarity metric. To mitigate such gap between
training and testing, many effective loss functions
were proposed to reduce intra-identity variations
and enlarge inter-identity variations.

Contrastive Loss and Triplet Loss DeepID
[36] introduces the contrastive loss which takes
two facial images as input and tries to minimize
their distance in feature space if they are from the
same identity and enlarge it if not. Later triplet
loss was proposed in FaceNet [23]. Contrastive
loss and triplet loss are usually used together with
softmax to train deep face networks. Triplet loss
utilizes triplets of matching and mismatching face
images sampled using an online triplet mining
method from the whole training dataset. In triplet
loss, three samples, namely, anchor, positive,
and negative, are input to calculate the loss. The
anchor input is compared to the positive input and
the negative input. The distance from the anchor
input to the positive input is to be minimized, and
the distance from the anchor input to the negative
input is to be maximized. Suppose xi ∈ R

d is the
deep feature representing a specified facial image
and xa

i , x
p
i , and xn

i are the anchor, positive, and
negative inputs, respectively, the triplet loss is
defined as

LT =
N∑

i

max
(∥
∥xa

i −x
p
i

∥
∥2
2 − ∥∥xa

i −xn
i

∥
∥2
2 +α, 0

)
,

(7)

where N is the number of triplets in the training
set and α is a margin that is enforced between
positive and negative pairs. Effective triplet
selection is important to ensure fast convergence.
For a given xa

i , triplet loss tends to select a hard-

positive x
p
i such that argmaxx

p
i

∥
∥xa

i − x
p
i

∥
∥2
2 and

hard-negative xn
i such that argminxn

i

∥
∥xa

i − xn
i

∥
∥2
2.

Since selecting such hard-positive and hard-
negative is infeasible over the training set, triplet
losses use an online triplet generation algorithm
which computes the argmax and argmax within a
mini-batch.

Center Loss Softmax loss does not explicitly
encourage the intra-class compactness of the
facial features. The resulting features are
separable but not discriminative [33]. The
discriminative power here characterizes features
in both the inter-class separability and the intra-
class compactness. To address this problem,
center loss [32, 33] is proposed as

LC = 1

2n

n∑

i=1

∥
∥xi − cyi

∥
∥2
2 , (8)

where n is the sample size and vector cyi
∈

R
d is the center for deep features xi of yi th

class. With the above formulation, center loss can
effectively characterize the intra-class variations
by penalizing the Euclidean distances between
the deep features and their centers. Center loss
is usually jointly used with softmax loss LS with
total loss as L = LS + λLC . λ is the weight for
balancing the two loss functions. Features learned
by center Loss with different λ are visualized in
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FaceRecognition, Fig. 3 The feature distributions of the
joint supervision of center loss and softmax loss. λ is the
loss weight for center loss. Different sizes of λs lead to

different deep feature distributions (a) λ = 0.001. (b)
λ = 0.01. (c) λ = 1

Fig. 3 [32, 33]. These figures show that different
values of λ lead to different deep feature distri-
butions. With proper λ, the learned features show
clear intra-class compactness.

Cosine Distance-Based Softmax Loss In the
testing phase of face recognition, cosine dis-
tance is a popular measure of similarities between
facial images due to its good performance in
practice. Therefore, directly adding cosine dis-
tances in loss function is an intuitive option
in training deep face models. In [17] and
[27], cosine softmax loss is proposed to apply
cosine similarities in softmax cross-entropy loss.
In general, the inputs of cosine softmax loss are
cosine logits, while the inputs of conventional
softmax loss are inner product logits. Suppose
f (xi ,wj ) is the logit between feature xi and
class weight wj , inner product logits in softmax
loss are f (xi ,wj ) = wT

yi
xi . In cosine softmax

loss, feature xi and class weight wj are nor-
malized by their norms, respectively, leading to
cosine logit f (xi ,wj ) = s · wj‖wj‖2

· xi‖xi‖2 . The for-
mulation of cosine distance-based softmax loss
(Cosine loss) is presented as

Lcos = −1

n

n∑

i=1

log
ef (xi ,wyi

)

∑c
j=1 ef (xi ,wj )

= −1

n

n∑

i=1

log
e
s· w�

yi‖wj‖2
· xi‖xi‖2

∑c
j=1 e

s· w�
j‖wj‖2

· xi‖xi‖2

= −1

n

n∑

i=1

log
es·cos θi,yi

∑c
j=1 es·cos θi,j

, (9)

where cos θi,j are the cosine distances between
feature xi and all class weights wj and s is a
scaling hyperparameter that can enlarge the range
of cosine distance from [−1, 1] to [−s, s] to
enhance the training efficiency. In cosine softmax
loss, the cosine distance cos θi,yi

between xi and
its corresponding class weight wyi

is maximized,
while {cos θi,j } are minimized for j 
= yi .

Margin-Based Softmax Loss Another effective
way to enhance the discrimination ability of fea-
tures is adding margin hyperparameters in soft-
max loss. Large margin softmax loss, aka L-
softmax, was firstly proposed in [16]. Com-
pared with conventional softmax loss, L-softmax
sets the margin hyperparameter m as the factor
of angles between feature xi and corresponding
class weight wj . L-softmax is defined as follows:

LL = − 1

n

n∑

i=1

log

⎛

⎝
e

∥
∥wyi

∥
∥‖xi‖ψ

(
θi,yi

)

e

∥
∥wyi

∥
∥‖xi‖ψ

(
θi,yi

)

+∑
j 
=yi

e

∥
∥wj

∥
∥‖xi‖ cos θi,j

⎞

⎠ ,

(10)

where ψ(θ) = (−1)k cos(mθ) − 2k,(θ ∈[
kπ
m

,
(k+1)π

m

]
) , m is an integer that makes the

classification more harder, and k ∈ [0,m − 1] is
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also an integer. ψ(θ) is smaller than cos θ which
leads to lower classification probabilities and
makes the classification task harder.

Along this line, angular softmax [15], namely,
A-softmax, adds margin in a normalized weight
hypersphere (class weights are normalized to 1).
Its formulation is presented as follows:

LA = − 1

n

n∑

i=1

log

⎛

⎝
e‖xi‖ψ

(
θi,yi

)

e‖xi‖ψ
(
θi,yi

)

+∑
j 
=yi

e‖xi‖ cos θi,j

⎞

⎠ .

(11)

A-softmax maps all class weights wj to a hyper-
sphere in order to get rid of the effect of weight
norms and learns discriminative deep features
with angular margin factor.

The margin idea can also be integrated into
cosine softmax. In CosFace [28] and AM-
softmax [26], margin hyperparameter is added in
cosine distances as follows:

LAM=− 1

n

n∑

i=1

log

⎛

⎝
es·(cos θi,yi

−m
)

es·(cos θi,yi
−m

)

+∑j 
=yi
es·cos θi,j

⎞

⎠ .

(12)

Compared with L-softmax and A-softmax, there
is one more scale hyperparameter s in the large
margin cosine softmax loss (LMCL).

Another option is adding margin directly to
angle θi,yi

as in ArcFace [4]. Because the embed-
ding features are distributed around their cor-
responding class weights on the hypersphere,
an additive angular margin penalty m is added
between xi and wyi

to simultaneously enhance
the intra-class compactness and inter-class dis-
crepancy. Therefore, ArcFace is defined as fol-
lows:

LAF

= − 1

n

n∑

i=1

log

⎛

⎝
es·cos (θi,yi

+m
)

es·cos (θi,yi
+m

)

+∑
j 
=yi

es·cos θi,j

⎞

⎠ .

(13)

Range Loss
Large -scale face datasets collected from the
Internet usually exhibit long-tail distribution, i.e.,

a small number of identities have large number
face images while a large number of identities
only have small number of samples. Range loss
[38] is designed for the longtail problem.

Longtail distribution has negative effect in
deep face models: with the increment of longtail
data, the final recognition performance decreases.
Analyzing features extracted by model trained
with longtail data, the kurtosis of the intra-class
features (the 4th order statistic) is significantly
higher. Range loss is proposed to resist the
increase of kurtosis and restrains the extension
of inter-class distance. Range loss is defined as
follows:

LR = αLRintra + βLRinter,

LRintra =
∑

i⊆I

Li
Rintra

=
∑

i⊆I

k
∑k

j=1
1
Dj

,

LRinter = max (M − DCenter, 0)

= max
(
M − ∥

∥cQ − cR
∥
∥2
2 , 0

)
,

(14)

where I denotes the complete set of identities in
current mini-batch, Dj is the j th largest distance,
DCenter is the shortest distance between the cen-
ters of two classes, andM is the max optimization
margin of DCenter. Q and R are the two nearest
classes within the current mini-batch, while cQ
and cR represent their centers. α and β are two
loss weights in range loss.

Benchmark Databases

Along with the successes of deep networks
for face recognition, several large-scale face
databases have been developed in the last years.
More details are as follows:

Early benchmark databases include FRGC
[22], multi-PIE [6], LFW [11], XM2VTS [19],
and CUFS [30]. Among existing databases,
FRGC [22] and multi-PIE [6] are in larger
scales and are widely used. Face images in
most early databases were collected in controlled
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environments. In recent years, there has been an
increasing interest in studying face recognition
in uncontrolled environments. It was shown
that the performance of many existing face
recognition approaches dropped significantly in
such uncontrolled environments. The LFW [11]
database 13,233 face images of 1,040 from the
Internet, and these face images were collected in
uncontrolled environments. LFW has drawn a lot
of attentions in the field of face recognition in
recent years. Besides the 2D face photo images,
some databases include other types of face data.
For example, FRGC includes both 2D and 3D
face data. XM2VTS [19] includes face video
sequences for the evaluation of face identification
using videos as queries. The CUFS database [30]
includes face photos and face sketch drawings of
606 subjects and is used for the research of face
sketch recognition.

MegaFace Challenge 1 MegaFace [12]
Challenge 1 is released as a testing benchmark
to evaluate the performance of face recognition
algorithms at the million scale of distractors.
The MegaFace identification dataset includes
1M images of 690K different individuals (from
Flickr) as the distractor set and 100K photos
of 530 unique individuals from FaceScrub as the
probe set. The identification accuracy is evaluated
with different size of distractors from 101 to 106,
and state-of-the-art performance has achieved
over 99.9% on 106 distractors (http://megaface.
cs.washington.edu/results/facescrub.html).

IARPA Janus Benchmark Dataset (IJB)
IARPA Janus Benchmark [18] contains many
unconstrained in-the-wild face images. The IJB-
C distribution contains all three IJB challenges
(including images and testing protocols), namely,
IJB-A, IJB-B, and IJB-C. IJB testing protocols
includes both 1:1 face verification and 1:N face
identification. The biggest IJB-C dataset contains
about 3,500 identities with a total of 31,334
still facial images and 117,542 unconstrained
video frames. For face verification, there are
19,557 positive matches and 15,638,932 negative
matches, which allow us to evaluate TARs at
various FARs (e.g., 10−7).

Face Recognition Vendor Test (FRVT) Face
Recognition Vendor Test (FRVT) is an ongoing
evaluation organized by the National Institute
of Standards and Technology (NIST). Different
from aforementioned benchmarks, FRVT only
provides API documents for participants to build
their own software, and then test the submission
is under NIST’s services. Therefore FRVT is
much comprehensive. The latest FRVT 2018
includes both large-scale 1:1 verification and
1:N identification tasks (https://www.nist.gov/
programs-projects/face-recognition-vendor-test-
frvt-ongoing). The variations in FRVT evaluation
are abundant, including wild photos, visa, mug
shot, and lifetime photos. FRVT 1:1 verification
includes comparisons like visa against visa, mug
shot against mug shot, and wild photo against
wild photo. In the comparisons of visa photos
against visa photos, the number of genuine
comparisons is on the order of 104, while the
number of impostor comparisons is on the
order of 1010. The comparisons between mug
shot photos are on the order of 106 and 108,
respectively, and the comparisons between wild
photos are on the order of 106 and 107.
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Definition

We present a survey of attribute recognition
research in the computer vision community
over the past decade. Most of our attention is
given to facial attributes, but attributes of objects,
pedestrians, and actions are considered as well.

Background

Facial attributes – human-describable features of
faces – were introduced to the computer vision
community in 2008, with their first application
being image search [1]. Kumar et al. identified
a problem with the image search engines of
the time, realizing that simple descriptive search
terms would not produce expected face image

results. Attributes were then used for face recog-
nition and verification as well as, again, for image
search and retrieval [2–4] before attribute recog-
nition itself became the focus of research. Facial
attribute recognition is related to the problem of
soft biometrics [5], which is focused on identifi-
cation using these so-called soft traits rather than
recognizing them for purely descriptive purposes.

Well before the introduction of facial
attributes, recognition of gender and age from
faces were well-established problems in the
computer vision community [6–8]. One of
the earliest works on gender recognition from
faces utilized a neural network that predicted
sex directly from image pixels [9]. This method,
like many others, required the face images to be
scaled, aligned, and cropped in order to perform
well. In [10], the authors also took a holistic
view of the face, creating so-called holons –
reduced feature vectors learned via an auto-
encoder – to perform identity, emotion, and
gender recognition. Research has shown that
both age and ethnicity play a big role in gender
recognition. For example, gender recognition
performance has been shown to degrade when
models are trained on a mixture of ethnicities,
rather than focused on a target ethnicity [11].
In addition, gender recognition performance
significantly depends on age, with young males
and older females posing challenges for the
models [12, 13].

One of the earliest works on age recogni-
tion focused on craniofacial development the-
ory, developing models to describe the changing
shape of the face as it aged [14]. Focusing
on texture as well as shape, active appearance
models – statistical models – were developed for
age recognition from face images [15]. Success
was also found in age estimation by considering
a collection of images from an individual in order
to determine the aging pattern for that person
[16]. Age estimation from face images remains a
very challenging problem in the computer vision
community because each person ages differently,
and so it is a profoundly individual problem
[17]. Adding to the challenge of age recognition
problems, they can be considered a categorical
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classification problem (e.g., to what age group
does this face belong?) or a regression problem
(e.g., what is the age of this face?), depending on
the context and data available.

Attributes exist in domains other than faces,
including pedestrians, objects, and actions. An
attribute is simply a describable feature, and so it
lends itself nicely to many problems in computer
vision. Pedestrian attributes can include clothing,
gender, hair color and length, as well as part
visibility and pose [18]. Attributes of objects can
include multiple categories: shape, color, texture,
part, and material as well as global or local
presence of the attributes [19, 20]. Attributes
of actions include pedestrian attributes, object
attributes, as well as action-specific attributes
such as environment and motion [21].

The problem of attribute recognition has
gained a lot of attention in the research
community over the past decade, mostly due
to the wide applicability of attribute prediction
for real-world applications. Pedestrian attributes
have been used in surveillance for re-identifying
individuals and searching for suspects based on
description of their visual attributes [50]. The
application of attribute detection to surveillance
is ultimately an image search problem where
a query of attributes is provided and the most
relevant results are returned. Thus, most image
search techniques can directly correlate with
surveillance, and many have utilized facial
attributes [4, 22]. Applying attribute recognition
to surveillance can lead to quicker identification
and save a significant amount of human hours.

Another application of attribute recognition
is in human computer interaction (HCI). Many
applications that involve HCI benefit from knowl-
edge of the user. For example, proper greetings
rely on gender information (e.g., Mr., Ms.). A
user’s expression can determine whether or not
they are enjoying an application (e.g., smiling
or frowning). More specifically, attributes have
been used by companies such as Facebook in
order to improve accessibility of their platform,
providing image descriptions to those with visual
impairments [23]. Other applications of facial
attributes in HCI include active authentication,
the process of continuously authenticating a user

on a device. Attributes have already been success-
fully deployed for this problem [24–26]. Being
describable features by definition makes facial
attributes widely applicable to many real-world
problems.

Focus in attribute research has been dedicated
to the general discovery of attributes for building
datasets and vocabularies for preexisting data.
Note that these approaches operate in a broader
scope than just facial attribute recognition. Berg
[20] made strides to automatically aggregate
and label data from noisy internet sources.
They cite work that uses gender, race, and
other attributes to improve face verification and
search. Expanding on this concept, the authors
mine websites that have diverse images and
automatically label the images based on captions.
This allows for diverse vocabulary discovery
and improved predictions across multiple object
types. A similar approach, with the goal of
learning attributes in large datasets, draws
connections between semantically unrelated
objects by looking at their visually describable
attributes [27]. For example, zebras, beetles, and
street crossings all share the stripes attribute.
With the development of several large-scale-
labeled datasets for the problem of facial attribute
recognition, the field has grown significantly.

In the following sections, we detail the
research in facial attribute recognition from
images and videos. We will also present work
in the general field of attribute recognition, when
applicable. All the while we will be introducing
datasets and discussing methods based on
traditional machine learning and computer vision
as well as those based on deep learning. Our
survey will conclude with a discussion of open
problems in the field.

Related Research

Attributes are not solely applicable to faces. They
have been successfully applied to objects, pedes-
trians, and actions. Here we provide a brief his-
tory of each field, from early works to state of the
art.
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Objects
Attributes of objects include textures, colors, pat-
terns, shapes, and many other describable fea-
tures. Early methods for attribute recognition
were focused on aiding object recognition. These
initial works recognized basic patterns, textures,
and colors [28–31]. As researchers became more
active in the field, the focus shifted to describing
objects, rather than simply naming them [19,32].
Many researchers utilized object attributes for
few and zero-shot learning as they provide a com-
pact description of objects that a system may not
have seen previously. In [33], Wang et al. focused
on dependencies between objects and attributes,
improving both attribute and object recognition.
[34] identifies attributes (e.g., shape, color, mate-
rial) of 3D objects with the goal of helping
autonomous robots understand and interact with
the world around them. In [35], the authors
present a dataset (AirplanOID) and a method for
understanding objects in fine-grain detail, using
attributes. The dataset contains attributes such as
facing direction, is-airline, location, etc. More
recently, Wang et al. further explore attributes for
object recognition [36]. Their approach utilizes
attributes as additional information during model
training, requiring no attribute labels at test time.

Actions
Attributes of actions include descriptive features
such as environment, pose, objects involved, etc.
that can be used to break an action down into
its component parts. One of the first works in
action attribute recognition modeled the human
visual cortex. This was accomplished by applying
motion-direction sensitive units to video inputs,
thereby recognizing human body, head, hand, and
general animal actions [37]. Liu et al. [21], Yao
et al. [38], Sharma et al. [39] all focused on iden-
tifying action parts in still images. In [21], the
authors used attributes of a scene to understand
actions. Yao et al. used a combination of given
action verbs (e.g., bending, squatting, riding, etc.)
along with poselets and objects to predict actions
from still images [38]. In [39], the authors
presented a method which learns a template for
a variety of actions in order to localize actions
in a frame. Zhang et al. presented a multitask

learning method in which attributes and actions
are learned simultaneously [40]. Tahmoush [41]
and Cai et al. [42] focused on attributes for action
recognition in 3D. State-of-the-art methods rely
on supervised deep learning in order to recognize
attributes of actions [43, 44].

Pedestrians
Attributes of pedestrians include whole-body
attributes such as clothing, pose, as well as facial
attributes. Identifying attributes in this context
can be challenging due to viewpoint and extreme
pose changes. With a focus on gait analysis, Zaki
and Sayed [45] used K Nearest Neighbors and
spectral clustering to identify attributes such as
gender and age from gait information including
speed, acceleration, rhythm, etc. In work done
by Deng et al. support vector machines were
trained on a large-scale dataset to recognize
attributes of pedestrians [46, 47]. The authors
collected the PETA dataset for these works,
which is still a benchmark in the field [46].
In recent years, deep learning has become the
standard for pedestrian attribute recognition,
with the focus on convolutional and recurrent
neural networks [48–52]. Convolutional neural
networks are useful for localization of pedestrian
attributes, while recurrent neural networks are
successful in identifying attribute relationships.
Automatic recognition of pedestrian attributes
has applications in soft biometrics, surveillance,
and autonomous vehicle guidance.

Theory and Application

We review work on facial attribute recognition
from images and video and separate work into
two categories: traditional methods and deep
learning.

Attribute Recognition with Traditional
Methods
Prior to the advent of deep learning in all
aspects of computer vision, other traditional
methods, such as support vector machines, were
used for attribute recognition. In 2008, Kumar
et al. built a face search engine that they called
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FaceTracer [1]. This search engine operated
on user queries involving one or more of the
available attributes. For example, “smiling Asian
men with glasses.” The search engine would
then return images face images that exhibited the
desired traits. The search engine was built on a
set of attribute classifiers, capable of identifying
binary facial attributes in an image. The attribute
classifiers were built on four feature sets: face
region, pixel data color space (e.g., RGB, HSV),
normalization method, and data aggregation
method. Support vector machines (SVMs) were
then trained for every region, feature type, and
parameter combination. Adaboost is then run
on this set of “local SVMs” to generate a set of
strong classifiers. Finally, a global SVM is trained
by finding the union of the strong classifiers.
Along with the FaceTracer search engine, Kumar
et al. introduced a dataset by the same name. At
the time of publication, the dataset consisted of
over 3.1 million face images, 17,000 of which
were manually labeled with 10 attributes: age,
gender, race, hair color, eyewear, mustache,
expression, blurry, lighting, and environment.
Sample images from the FaceTracer dataset are
shown in Fig. 1.

A year later, the same group shifted their
research focus toward face verification using
attributes [2]. Face verification aims to address
the following question: given two images, do
they belong to the same person? The authors
developed two different methods to generate
descriptions of faces, using attribute and simile
classifiers. SVMs are used as attribute classifiers,

trained on a collection of low-level features,
similar to the previous work [1]. They introduced
additional low-level features such as edge
magnitudes and gradient directions. As a part of
this work, the authors introduced a new dataset,
PubFig, for face verification. Sample images
from the PubFig dataset are shown in Fig. 2.
Additional data was collected in order to train
facial attribute classifiers. 1000 images were
labeled for each of 65 binary attributes using
Amazon Mechanical Turk. Simile classifiers
were used as well to identify the similarity of a
face to a set of reference faces. For each reference
individual, a classifier is trained on each region to
distinguish that region from the same region on
other faces. These simile classifiers allowed for
comparisons between faces without requiring
additional labels. The final face verification
system utilized a hybrid of attribute and simile
classifiers and achieved state-of-the-art accuracy.
After the release of PubFig, the authors tested
their attribute classifiers on all images in the
dataset, providing 65 attribute scores for each
image along with the image data. Some methods
utilized these scores as labels in order to train
attribute classifiers [24]. In 2011, the same group
again used facial attributes for improved face
verification and image search [3], extending the
set of attributes to 73.

Several groups realized the potential of facial
attributes to improve image search and retrieval
with natural queries [1, 4, 22, 53]. With a focus
on surveillance, Vaquero et al. utilized pedestrian
attributes for search and retrieval in low-quality

Facial Attribute Recognition: A Survey, Fig. 1 Sample images from the FaceTracer dataset [1]
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video [53]. Others have explored different ways
to perform multi-attribute search queries [4, 22].
[4] improved over previous ranking methods
that required individual models for each search
term. Instead they used correlations among
attributes to provide additional information to
the search query. Their Multi-Attribute Retrieval
and Ranking (MARR) method benefited from the
strong relationship among attributes. The authors
labeled a subset of the Labeled Faces in the Wild
(LFW) dataset [54] (9992 images) with 27 binary
attributes (a subset from the work of [2]). A year
later, [22] focused on developing a meaningful
way to combine different attribute scores. They
construct a normalized score space based on
Extreme Value Theory. The authors aimed to con-
vert raw SVM output scores to a normalized score
that would be more consistent with human label-
ing as well as with the scores of other attributes.
After converting the scores, they were able to
fuse them to allow for multi-attribute queries
in a shared score space. The authors use the
method of [3] to extract attribute scores from face
images.

All of the publicly available datasets up to this
point considered facial attributes to have binary
values, that is, the attribute is either present or
not. This can be a very challenging way to view
the problem when many attributes are subjective
or exist on a gradient (e.g., some hair is more
blond than others). Parikh et al. aimed to address
this issue in [55], focusing on so-called rela-
tive attributes. The authors utilize the concept of
relative attributes to generate a ranking function
for each attribute allowing for a new type of

zero-shot learning in which they can describe
unseen objects relative to previously seen ones.
They propose a learning-to-rank formulation that
learns a desired ordering of the training images.
This learning framework resulted in a model
that could better capture the strength of a par-
ticular attribute compared to a binary classifica-
tion model. The authors utilized a subset of the
PubFig dataset in order to learn their ranking
functions.

Labeling attributes is a time-consuming pro-
cess, with each image needing multiple (over 70
in the case of [3]) labels. This became a limiting
factor in facial attribute research very quickly.
In [56], the authors introduce a likeness measure
as a way to utilize describable features without
requiring an extensive labeling process. The goal
of this work is to improve face verification per-
formance. For each pair of subjects, the authors
create a classifier that is capable of distinguishing
between the two subjects. This process results
in many likeness classifiers, or “Tom v. Pete”
classifiers, as they call them. Face images are
classified using this collection of “Tom v. Pete”
classifiers giving a set of scores that indicate the
person’s likeness to a particular subject in a pair
classifier. This set of scores is then used as a
subject’s feature vector which is in turn used for
face verification. This work resulted in human-
describable features of faces, in the form of their
likeness to other individuals. That is, “this person
looks more like subject 1 than subject 2, and more
like subject 3 than subject 2,” etc. [56] built on
the concept of automatically generated attributes
as seen in the simile classifiers of [2].
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Facial Attribute Recognition: A Survey, Fig. 3 Sample images from the CelebA dataset [57]

Attribute Recognition with Deep Learning
In 2015, Liu et al. introduced two large-scale
benchmark datasets for the problem of facial
attribute recognition in unconstrained images –
CelebFaces Attributes (CelebA) and Labeled
Faces in the Wild Attributes (LFWA) [57].
CelebA contains over 200,000 images each
labeled with 40 binary attributes, which are a
subset from those used in [3]. The CelebA
dataset contains a wide range of images including
full body and close cropped faces. The dataset
includes these original images as well as cropped
and aligned face images. Sample cropped and
aligned images from CelebA are shown in Fig. 3.
Along with CelebA, attribute labels were added
to the popular face verification benchmark LFW,
creating LFWA. LFWA contains roughly 13,000
images, labeled with the same 40 binary attributes
from CelebA. Some sample images from LFW
can be seen in Fig. 4. CelebA and LFWA were
the first (and only to date) large-scale datasets
introduced for the problem of facial attribute
recognition from images. Prior to CelebA and
LFWA, no dataset labeled with attributes was
large enough to effectively train deep neural
networks. With the introduction of this dataset,
many deep learning methods were used for facial
attribute recognition [25, 57–60].

Along with CelebA and LFWA, Liu et al.
introduced a method for attribute recognition that
involves two networks: LNet and ANet. LNet
is a localization network that localizes the face
with weak attribute supervision, and ANet uses

the localized face to predict facial attributes.
LNet was built on the widely popular AlexNet
[61] architecture trained on the ImageNet object
recognition dataset [62]. After being pre-trained
on the large-scale Imagenet dataset, LNet was
fine-tuned on the original (full body, unaligned)
CelebA images using weak attribute supervision.
With the weak supervision from CelebA’s facial
attributes, LNet was able to accurately localize
the face in a given image. Once the face was
localized by LNet, ANet was trained from the
cropped face image. ANet was also built on the
AlexNet architecture, pre-trained on ImageNet,
and fine-tuned on CelebA. This two-network
scheme produced impressive results on CelebA
and LFWA.

In 2016, Wang et al. introduced a method
dubbed “Walk and Learn” in which they utilized
face tracks as additional supervision for facial
attribute recognition [59]. The authors collected
additional data by attaching wearable cameras to
their bodies and walking around different areas of
New York City. They used face tracking to iden-
tify individuals in every frame and used face veri-
fication to pre-train their network. Their deep net-
work was then fine-tuned on the CelebA dataset,
producing improved results on some challenging
attributes over [57].

Just a year after the release of CelebA
and LFWA, many researchers began to notice
some very serious label imbalance issues. In
particular, [60] focused on adjusting the label
imbalance during network training. The authors



Facial Attribute Recognition: A Survey 453

F
Facial Attribute Recognition: A Survey, Fig. 4 Sample images from the LFW (also LFWA) dataset [54, 57]

introduced a Mixed Objective Optimization
Network (MOON) capable of learning all
attributes at once while at the same time adjusting
for label imbalance. We note that prior to this
work, individual models were learned for each
attribute, including all of the methods previously
discussed [1–3, 57, 59]. This was incredibly
inefficient and did not take advantage of a
shared representation for all attributes. MOON
addressed both of these issues by utilizing the
popular VGG-16 network architecture [63] and
training from random initialization on CelebA.
MOONwas the first to combine attribute learning
into one network, address dataset imbalance,
and train on CelebA from scratch rather than
fine-tune. MOON addressed label imbalance
by calculating source and target distributions
for each attribute and applying a weight to
the backpropagation within a euclidean loss in
order to adjust for the distribution discrepancies.
The source distribution for an attribute was the
distribution of positive and negative instances of
the attribute in CelebA, and the target distribution
could be set to any desired distribution, though
the authors experimented with an even target
distribution. MOON produced impressive results
on CelebA and highlighted the severe imbalance
issues associated with it.

Ehrlich et al. [64] also tackled the problem of
multitask learning for facial attribute recognition,
utilizing a Restricted BoltzmannMachine (RBM)
rather than a CNN. Their model is trained with
both the aligned face images from CelebA
and facial landmark points as inputs. The
authors extend RBMs to handle multiple tasks

and multiple inputs naming it the Multitask
Multimodal RBM (MTM-RBM). The MTM-
RBM compares favorably with [57]. To date this
is the only method for facial attribute recognition
that utilizes an RBM model.

With the introduction of deep learning in the
facial attribute domain, many began to wonder
how robust these models truly are. In [65] they
aim to address this question by introducing an
adversary. They develop a Fast Flipping Attribute
(FFA) method that generates adversarial exam-
ples that cause classification errors. The FFA
method identifies directions which can generate
adversarial examples by inverting the classifi-
cation score and calculating the gradient with
respect to the inverted score. Searching along
those gradient directions results in images that
produce classification errors. The authors found
that some attributes (e.g., wavy hair and wearing
necklace) were more robust to adversarial attacks
than others (e.g., big nose and young).

Several groups began to address the problem
of facial alignment in attribute recognition.
In [66], the authors introduce the Alignment-
Free Facial Attribute Classification Technique
(AFFACT), which performs data augmentation
allowing a deep convolutional neural network to
recognize attributes without first aligning the face
images. The AFFACT method performs augmen-
tation of the dataset through scaling, rotation,
shifting, and blurring. Training ResNet [67]
architectures, the authors applied AFFACT data
augmentation to CelebA and were able to achieve
state-of-the-art performance. Ding et al. [68]
also aimed to address the problem of attribute
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recognition from unaligned face images by
utilizing a cascade network capable of identifying
different regions of the face and recognizing
attributes without alignment. Their face region
localization network is capable of detecting face
regions based on weakly supervised attribute
data. Rather than performing data augmentation
like [66], this work focused on part-based
approach to attribute prediction.

Only 2 years after the introduction of CelebA
and LFWA, performance on the benchmark
datasets began to plateau. In [58], the authors
aimed to improve attribute recognition accuracy
by taking advantage of relationships among
attributes both implicitly and explicitly. The
authors introduce a new deep CNN architecture
for attribute recognition: Multitask CNN
(MCNN). MCNN had fewer than 16 million
parameters compared to the 138 million
parameters in the VGG-16 model used for
MOON. MCNN took advantage of attribute
relationships by learning a shared representation
at the lower levels of the network and branching
off into spatial attribute groupings at the
higher levels of the network. Finally, attribute
relationships were learned at the score level with
an auxiliary network (AUX) that was attached
to the trained MCNN. The combined network,
MCNN-AUX utilizes attribute relationships in
three different ways and produced state-of-the-
art results on CelebA and LFWA.

Aiming to utilize localization cues to improve
facial attribute prediction, [69] combined
the problem of facial attribute recognition
with that of semantic segmentation. Semantic
segmentation requires predicting a label for every
pixel in an image, producing a class map over
the entire image. The authors aggregated face
segments, provided as a part of the Helen Dataset
[70], to create seven segments: background, hair,
face skin, eyes, eyebrows, mouth, and nose. They
utilize a gating mechanism to focus the attribute
recognition network on regions of interest for
a particular attribute. For example, they focus
mouth-related attributes (e.g., smiling, mouth
open) on the mouth segment provided by the
segmentation method.

Along a similar vein, [71] uses generative
adversarial networks (GANs) to generate
abstraction images that are then used to improve
facial attribute recognition through a multi-
stream network acting on the abstraction and
original images. The abstraction images produce
a kind of facial segmentation with textual
information, localizing parts and providing
additional supervision to the facial attribute
recognition task. The multi-stream abstraction
image formulation for attribute recognition
outperformed the recent work of segmentation
for improved facial attribute recognition [69].

As a follow-up to MOON [60, 72] introduced
a method called “selective learning” to perform
balancing of multi-label datasets during training
of a deep neural network in order to address the
label imbalance in CelebA. The authors intro-
duce a new CNN, Attribute CNN (AttCNN),
which has roughly 6 million parameters, com-
pared to the 16 from MCNN [58]. In MOON, the
labels were balanced by considering an overall
dataset source distribution for each attribute. In
[72], the authors note that this does not fully
address the problem as each batch that is used
to train the CNN may be more or less bal-
anced than the overall training set. The author’s
solution was to perform label balancing at the
batch level. Every attribute in each batch was
balanced according to a desired target distribu-
tion by sampling from the over-represented class
and weighting the underrepresented class. The
selective learning method produced comparable
results to MOON on CelebA and LFWA. The
authors also introduced a new evaluation dataset:
the University of Maryland Attribute Evaluation
Dataset (UMD-AED). UMD-AED consists of
roughly 3,000 images sparsely labeled with facial
attributes. Some sample images from UMD-AED
are shown in Fig. 5. Each of the 40 attributes in
CelebA has 50 positive and 50 negative instances
in UMD-AED, allowing for balanced testing of
facial attribute recognition methods. Selective
learning and AttCNN significantly outperformed
MOON on UMD-AED.

Most research in facial attribute recognition
focused on unconstrained images. Hand et al.



Facial Attribute Recognition: A Survey 455

F
Facial Attribute Recognition: A Survey, Fig. 5 Sample images from the UMD-AED dataset [72]

shifted the focus to video in [73] using weakly
labeled video to train attribute prediction models.
The authors labeled four frames in every video of
YouTube Faces [74] – a video dataset collected
for face verification – with the 40 binary facial
attributes from CelebA. They introduced several
methods for utilizing weakly labeled frames to
improve attribute prediction in video: motion
attention and temporal coherence. Their motion
attention mechanism focused attribute models on
areas of motion in the video, reducing over-
fitting, and the temporal coherence constraint
encouraged nearby frames to have similar net-
work responses, relying on the fact that nearby
frames in a video will likely have similar – but
perhaps not the same – attributes. Combining
motion attention and temporal coherence, the
authors were able to train a deep CNN on unla-
beled video frames from YouTube Faces, out-
performing traditional fine-tuning methods. Hand
et al. [73] was the first, and only to date, attempt
to utilize video for facial attribute recognition.

We present the average accuracy over all
attributes in CelebA for all state-of-the-art
methods in Table 1. We can see that since the
introduction of the dataset in [57], only a 4%
gain in accuracy has been achieved on average.
This emphasizes that there are many challenges
that have yet to be addressed in the field of facial
attribute recognition.

The field of facial attribute recognition is still a
very young one, having been introduced just over
a decade ago. Since its introduction, huge strides
have been made, with current systems capable
of recognizing facial attributes in unconstrained

Facial Attribute Recognition: A Survey, Table 1
Average attribute classification accuracy across all 40
attributes in CelebA for current state-of-the-art methods

Method Accuracy

Liu et al. (LNet+ANet) [57] 87.30%

Ehrlich et al. (MTM-RBM) [64] 87.00%

Wang et al. (Walk and Learn) [59] 88.00%

Rudd et al. (MOON) [60] 90.94%

Gunther et al. (AFFACT) [66] 91.97%

Hand et al. (MCNN-AUX) [58] 91.30%

Kalayeh et al. [69] 91.80%

Ding et al. [68] 91.23%

Hand et al. (AttCNN) [72] 91.05%

He et al. [71] 91.81%

images and video. There are many open research
directions that will lead to significant improve-
ments in the state-of-the-art in facial attribute pre-
diction. With many applications relying heavily
on the recognition of human-describable features,
the field of facial attribute recognition will be of
great interest for many years to come.

Open Problems

Addressing Bias
With the popularization of deep learning methods
comes the inevitable question of bias. Most of
the state-of-the-art deep learning models have
tens of millions of parameters. Overfitting is a
very common problem with such complex and
deep architectures. For many problems, including
attribute recognition, overfitting leads to learning
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dataset biases and imbalances. Due to the large
number of parameters in deep learning models,
the cause of bias is also difficult to locate.

Even outside of deep learning, bias can be an
issue for models that draw correlations between
attributes that frequently exist together. Siddiquie
et al. [4] proposes a method for image search and
ranking for multi-attribute queries. Their method
is to find interdependencies of queried attributes
with attributes not mentioned. The danger of this
approach is that without diverse data, potentially
inaccurate or even inappropriate results can be
returned. Hand et al. found this to be true in
[58], when utilizing implicit and explicit attribute
relationships to improve prediction. They found
that many relationships were not indicative of
the real world but rather were overfit to the
CelebA dataset (e.g., heavy makeup and arched
eyebrows).

Most of the methods for attribute prediction
presented here simply consider accuracy as an
evaluation metric. When we are dealing with
severe class imbalance, precision and recall are
more appropriate measures of good performance.
Additionally, it is essential to account for age,
race, and gender in attribute recognition research
in order to truly learn a representation for an
attribute across different groups. Ultimately, most
bias stems from a lack of representation in the
data or bias in the labeling of the data. Addressing
these issues will improve attribute recognition
research.

Noisy Data
There is a recent plateau in facial attribute recog-
nition performance, which could be due to poor
labeling of data. Many research groups rely on
Amazon’s Mechanical Turk, as well as other
paid services to provide manual labels on large
datasets [2, 3, 22, 56]. While crowdsourcing such
tasks can be very useful and result in large quan-
tities of reasonably labeled data, there are some
tasks which may be consistently labeled incor-
rectly – such as subjective tasks (e.g., hair color,
attractive). Additionally, certain groups of people
may find it challenging to label certain tasks.
For example, men can have difficulty identi-
fying makeup and lipstick in images of faces.

Mislabeled data is a very difficult challenge to
overcome for most learning methods.

Mislabeled data is also known as noise. An
open problem in facial attribute recognition – and
many problems in computer vision and machine
learning – is that of noise identification and
removal. The difficulty here lies in removing
noise while maintaining outliers – challenging,
but correctly labeled, samples. It is essential to
keep outliers in the dataset, as they represent
samples that are outside of the average for a
particular problem.

Identifying noise versus outliers is an
especially challenging problem in the domain
of facial attribute recognition. Many attributes
are extremely subjective and exist on a gradient.
Some examples of subjective attributes include
attractive, 5 o’clock shadow, arched eyebrows,
young, etc. Due to this subjectivity, there is a
need to consider the problem of facial attribute
recognition as one of regression or real-value
prediction. In this way, attributes can exist on a
scale, and subjectivity will not pose as much of
a problem as it does in the binary case. Parikh
et al. introduced the concept of relative attributes
in [55], and it has yet to be built upon. This is
likely due to the significant amount of time that
would be required to properly label a large dataset
with relative attributes. However, it is undeniable
that attributes as real-valued variables result in a
more natural, rich description of faces. Relative
attributes will help to alleviate the problem of
poorly labeled data as well, since attributes will
exist on a scale rather than in strict categories.

Attributes in Video
A relatively untouched and important problem
in attribute recognition is attribute prediction in
videos. There is a wealth of information that
comes from video. Take, for example, the prob-
lem of classifying facial attributes depending on
pose. In a video, various frames will contain the
same attributes with a large variety of poses,
expressions, angles, etc. Models trained on video
data could be very robust in their ability to iden-
tify facial attributes. In addition to the large
amount of data that can be used in videos to solve
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current issues in attribute recognition, there are
also new categories of attributes to be identified.

One such category is static versus dynamic
attributes. Static attributes are the visual attributes
that do not change with pose, expression,
lighting, etc. These are features such as hair
color, gender, age, facial hair, etc. Conversely,
dynamic attributes include features such
as smiling, narrow eyes, mouth open, etc.
Accurate recognition of these attributes requires
pose prediction, 3D processing, and semantic
understanding of the data.

There are of course challenges associated
with video processing. The main challenges
of attribute recognition in videos, compared
to images, are low resolution, poor lighting,
severe poses, motion blur, and varying frame
rate. Low resolution is a problem simply
because lower-quality images contain less data.
Videos commonly contain content with bad
lighting, which can cause unwanted effects
on a person’s face leading to poor attribute
recognition performance. Video also suffers from
severe poses and motion blur. Recognizing visual
features in still images usually only takes into
account images of people in relatively normal
positions or with common expressions. Videos
contain many blurred frames, especially as frame
rate increases.
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Synonyms

Structure-from-motion (SfM); Three dimensional
reconstruction

Definition

Given arbitrary many images and 3D-points,
the so-called factorization algorithm [1] is a



460 Factorization

noniterative technique for simultaneously
estimating 3D-structure along with orientations
and positions of the cameras which observed
the 3D-scene or object. It is based on the
factorization of a matrix consisting of all
measurements.

The original algorithm requires a particular
affine camera. It was later extended to more gen-
eral affine cameras and even to the full projective
camera model. Other variants can handle lines,
triangles, or ellipses instead of 2D-point corre-
spondences. It can be further extended to nonrigid
scenes or objects, not merely rigid ones. It can
also minimize geometric error criteria instead of
algebraic errors and even allow unknown entries
in the measurement matrix.

Background

Let the 3 × 3 upper triangular matrix Ki denote
the calibration of the i th camera, the 3 × 3
rotation matrix Ri its orientation and the 3-vector
ti its position, and Xj

H the j th 3D-feature in
homogeneous coordinates. The perspective pro-
jection xij of Xj

H by the i th camera can be
modeled by

xij � Ki [Ri |ti ]XH
j . (1)

The symbol� implies that every scalar multi-
ple of the observed coordinates xij is a solution to
this equation. Estimating all the camera parame-
ters and the vectors Xj

H from the measurements
xij at the same time is one of the oldest and
most important problems in computer vision. The
vectors Xj usually represent 3D-points in homo-
geneous coordinates, but they can also express
lines, triangles, ellipses, or other features.

These days, the most widely used algorithm
for structure-from-motion estimation, bundle
adjustment, iteratively minimizes the reprojec-
tion error (The Euclidean distance between the
projections of the estimated 3D-points Xj

H into
the images and the measured 2D-points xij). It
is regarded as the most accurate method, but it
requires a good initialization and can handle only
rigid scenes or rigid objects [2]. In this sense,

the factorization algorithm is more flexible and
better suited to problems that do not demand so
high accuracy.

Theory

If the nonhomogeneous 3D-vectors Xj are pro-
jected into the images by an affine camera (Any
pinhole camera is reasonably approximated by an
affine camera if the object is very far away from
the camera. This implies that the depth variation
within the scene is neglectable small compared
with the distance between camera and scene),
(Eq. 1) can be simplified to

xij = Ki [Ri |ti ]XH
j = KiRi︸ ︷︷ ︸

Pi

Xj + Kiti . (2)

As opposed to the case of a projective camera
in (Eq. 1), matrix Ki is 2 × 3 in (Eq. 2).

The vectors xij are collected into a measure-
ment matrix for all m images and the n3D-
features

W =
⎡

⎢
⎣

x11 · · · x1n
...

. . .
...

xm1 · · · xmn

⎤

⎥
⎦

=
⎡

⎢
⎣

P1
...

Pm

⎤

⎥
⎦

︸ ︷︷ ︸
P

[X1 . . . Xn]︸ ︷︷ ︸
X

+
⎡

⎢
⎣

K1t1
...

Kmtm

⎤

⎥
⎦

︸ ︷︷ ︸
t

[
1 · · · 1 ] .

(3)

Since matrices P and X both have rank 3 in
general (Matrix P only has three columns and
X only three rows; cf. (Eq. 2).) and the matrix
given by the product of t and

[
1 · · · 1 ] has rank

1, W cannot have more than rank 4, because
each column of W is a linear combination of the
columns of P and t.

The world coordinate system can be arbitrarily
defined, so let us place it in such a way that
the centroid of all Xi is at the coordinate origin,

i.e.,
n∑

j=1
Xj = 0. Then, the translation Ki ti is the
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centroid of all the observations of the i th image:

Kiti = 1

n

n∑

j=1

Xij , (4)

Hence, if Ki ti is subtracted from xij to define

x′
ij = xij − Kiti, (5)

the resulting measurement matrix is written as
W

′ = PX, which has rank 3. The matrix W
′
can be

factorized using the singular value decomposition
in the form

W ′ = U�E� = U
(
�V �) . (6)

The original factorization algorithm in [1]
decomposes W

′
in the form (U�1/2)(�1/2 V�),

but the decomposition in (Eq. 6) is preferred for
numerical reasons and simplicity of notation.
Due to the rank-3 constraint, only the first three
singular values on the diagonal of the matrix Σ

are nonzero in the absence of noise. It therefore
suffices to take only the corresponding three
vectors in U and V and truncate Σ accordingly.
The matrices U and (�V�) define distorted
camera parameters and a distorted 3D-structure,
respectively, since singular value decomposition
does not impose that each row-tuple of U are rows
of a rotation matrix. Therefore, the computed
camera parameters and the reconstructed 3D-
structure are affinely distorted and need to be
corrected in a subsequent step.

Since any nonsingular 3 × 3 matrix A may be
inserted into the decomposition of W

′
,

W ′ = UAA−1
(
�V �) , (7)

without altering W
′
, matrix A can be determined

as second step of the factorization algorithm.
Denote by I3 × 3 the 3 × 3 identity matrix.
As in the case of self-calibrating a perspective
camera by means of the dual absolute quadric,
matrix A is determined from (Eq. 2) such that
the two rows Ui of U corresponding to image i
equal KiRi

KiRi = UiA

(KiRi) (KiRi)
� = (UiA) (UiA)�

KiRiR
�
i︸ ︷︷ ︸

I3×3

K�
i = UiAA�

︸ ︷︷ ︸
T

U�
i

KiK
�
i = UiT U�

i .

(8)

For the simplest affine camera, the ortho-
graphic camera, the matrices Ki consist of the
first two rows of a 3 × 3 identity matrix, i.e.,
KiKi

� equals the 2 × 2 identity matrix for all
images. Hence, if ui1

� and ui2
� are the first and

the second rows of Ui, respectively, the following
three equations are obtained:

1 = u�
i 1T ui 1, (9)

1 = u�
i 2T ui 2, (10)

0 = u�
i 1T ui 2 = u�

i 2T ui 1. (11)

Equations 9–11 constitute three linear equa-
tions in the six unknown entries of the sym-
metric matrix T per image. If we define t6 =
[
T11 T22 T33 T12 T13 T23

]�
where Tab denotes

the entry of T in the ath row and the bth column,
and H11 = ui1 ui1

� , H22 = ui2 ui2
� , H12 = ui1

ui2
� , (Eq. 9)–(Eq. 11) can be written as

1 = [
H 11

11 H 11
22 H 11

33 2H 11
12 2H 11

13 2H 11
23

]
t6,

(12)

1 = [
H 22

11 H 22
22 H 22

33 2H 22
12 2H 22

13 2H 22
23

]
t6,

(13)

0 =
[
H 12

11 H 12
22 H 12

33

(
H 12

12 + H 12
21

)

(
H 12

13 + H 12
31

) (
H 12

23 + H 12
32

)]
t6.

(14)

Here, Hab denotes the (a, b)th entry of matrix
H. For simplicity, the subscript i denoting the
image is omitted.

After estimating t6from the three equations
(Eq. 12)–(Eq. 14) per image using normal
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equations, the correcting matrix A can be
determined by eigenvalue decomposition
T = UDU� as A = UD1/2. The matrix of camera
parameters P can be taken as P = UA and the
3D-structure as X = A−1 ∑ V�.

Extensions

The original factorization algorithm was
extended to more sophisticated affine camera
models. For the projective camera model,
noniterative [3] and iterative [4, 5] extensions
exist. The latter alternate matrix decomposition
with refinement of the projective depths λij, scalar
variables are chosen so that

λij xij = Ki [Ri |ti]XH
j (15)

holds true under perspective projection. In [6],
a projective extension is proposed which min-
imizes the reprojection error to obtain projec-
tively distorted estimates of shape and motion
parameters. The reprojection error is a geometric
error measure instead of the algebraic error which
is minimized by factorization schemes. There
also exist algorithms which can handle missing
observations, i.e., not all observations xij need to
be known.

A generalization of the affine factorization
algorithm to the kinematic chain model was pro-
posed in [7]. An algorithm for scenes or objects
which generally deform nonrigidly was intro-
duced in [8]. Using prior knowledge on the shape
and pose variety of human bodies, a projec-
tive factorization algorithm was proposed in [9]
which can also handle missing observations.

Open Problems

Many unsolved problems remain in all variants of
the factorization scheme. One of the most promi-
nent difficulties stems from the requirement that
all observations of the measurement matrix must
be known. For the affine factorization scheme,
the matrix decomposition step can be solved by
an alternating projection method [10], yet such

algorithms turn out to be unstable for the projec-
tive camera model and can therefore handle only
small amounts of unknown observations. More
robust algorithms combine different error metrics
[11, 12] or use strong prior knowledge [9].

For iterative extensions, the problem of initial-
ization reappears. If arbitrarily initialized, con-
vergence to a reasonable local minimum is not
guaranteed, so the resulting reconstructions can
be strongly distorted.

Algorithms on nonrigid scenes or objects
can handle small nonrigid deformations, unless
restrictive prior knowledge is imposed. For the
projective camera model without further prior
knowledge, no successful 3D-reconstruction
methods have been proposed which can
reconstruct nonrigidly deforming scenes unless
special devices, such as stereo cameras, are used
or partially rigid scenes are assumed.

Lastly, the decomposition of matrix T is not
possible if some eigenvalues are negative.
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Synonyms

Dimensionality reduction; Feature reduction;
Variable selection

Definition

Feature selection refers to a set of techniques
for automatically extracting important features

from raw observations or reducing the set of
dimensions from a given feature set, in a task-
dependent manner.

Background

Feature selection refers to a large set of over-
lapping techniques, ranging from methods such
as dimensionality reduction, subset selection, and
more recently feature learning or representation
learning. Since early works in pattern analysis
[1], there has been an interest in extracting parsi-
monious and meaningful features from raw data
for tasks such as recognition, compression, etc.
Classically, features based on intuition or domain
knowledge were considered popular; however,
automatic methods for feature selection that can
find optimal transformations of raw data are of
contemporary interest. Toward this, linear and
nonlinear methods for feature selection and learn-
ing have been suggested.

Theory

The basic intuition behind feature selection
methods is to extract either lower-dimensional
information from high-dimensional data such
as images, videos, etc., in a domain-dependent
or task-specific manner. Reducing the size of
the feature set results in more parsimony and
helps in beating the curse of dimensionality.
Feature selection is approached by formulating a
task-dependent criterion function that measures
the “quality” of the obtained features, which is
then optimized over the set of admissible feature
selection operators.

Given a set of data points denoted by X =
{x1, x2, . . . , xk} where xi ∈ R

n, optionally along
with lower-dimensional attributes or labels li =
L(xi) associated with each xi , a set of admissible
operators Φ, where for any φ ∈ Φ, φ : R

n →
R

d , is a mapping from the raw data space to a
feature space of dimension d < n, and a task-
specific criterion function E(X,L, φ), the goal of
feature selection is to find a mapping φ ∈ Φ

such that the criterion function E is optimized. In
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computer vision, the x′
i s typically are images or

other statistics of images, and the labels l′i s can be
discrete-valued such as names of objects, identi-
ties of people, etc. or continuous-valued such as
the pose of an object, the age of a person, etc.

Linear methods restrict φ to the set of linear
transforms, which can be represented as a matrix
multiplication given by y = φ(x) = WT x, where
W is a n × d matrix. Examples of linear feature
selection methods include principal component
analysis (PCA) [1], independent component anal-
ysis (ICA) [2], Fisher’s linear discriminant anal-
ysis (FLDA)[3], support vector machines (SVM)
[4], partial least squares (PLS) [5], boosting [6],
etc. Nonlinear extensions of linear techniques
are commonly achieved by means of the kernel
method [7]. Subset selection methods consider φ

to be a matrix with binary entries, typically only
one non-zero element per row, which corresponds
to choosing a subset of the dimensions available
to us. In this case, feature selection results in a
combinatorial search over all possible subsets, for
which several approximate and greedy methods
have been devised [8].

Examples

Principal Component Analysis In PCA, the goal
is to obtain linear projections that allow optimal
reconstruction of data as measured in terms of
the reconstruction error. Thus, given a set of
data points X, the goal is to obtain a n × d

orthonormal matrix W, such that E(X,W) =
∑k

i=1

∥
∥xi − μ − WWTxi

∥
∥2 is minimized, where

μ is the mean of the set X. For this case, the
optimal W has columns which are the top d

eigenvectors of the data covariance matrix [9,10].

Fisher’s Linear Discriminant Analysis In FLDA,
along with a set of points {xi}, one is given a set
of discrete class labels li ∈ {1, 2, . . . , c}. The
goal is to obtain linear projections of the data
so that separation between classes is increased
with respect to the spread within each class.
This is measured in terms of within-class and
between-class scatter matrices. Denote Di =

{x ∈ X|L(x) = i}, the subset of points belonging
to the ith class, and m and mi as the mean of
the entire set X and the ith class, respectively.
The within-class scatter is defined as SW =
∑c

i=1 Si , where Si = ∑

x∈Di

(x − mi)(x − mi)
T ,

and the between-class scatter is defined as SB =
∑c

i=1 ni(mi − m)(mi − m)T , where ni is the
cardinality of Di . Then, the criterion function to

be maximized is E(X,L,W) =
∣
∣WTSBW

∣
∣

|WTSWW| . For
this case, the optimal W has columns which are
the top d generalized eigenvectors of SBwi =
λiSWwi [10].

Projection Pursuit Projection pursuit is a broad
class of techniques for exploratory data analysis
where the goal is to find projections of data along
interesting directions. This is typically stated
as searching for directions of non-Gaussianity.
Criterion functions to measure non-Gaussianity
include entropy and higher-order moments such
as the kurtosis. For the case of entropy, the
Gaussian distribution has the largest entropy
among the class of zero mean and unit variance
densities. Thus, to maximize non-Gaussianity,
the criterion function to be maximized is
E[f (WT x)logf (WT x)] (the negative entropy),
where f is the estimated probability density
function of the projections [11].

Manifold Learning In many cases, it has been
reasonably shown that high-dimensional data can
be viewed as samples from an underlying mani-
fold that is not known analytically. In this setting,
a suite of techniques, broadly known as manifold
learning techniques, have been developed. Exam-
ples include techniques such as LLE [12], Isomap
[13], Laplacian eigenmaps [14], t-SNE [15],
UMAP [16], etc. Manifold learning techniques
aim to find an embedding of the manifold to
a Euclidean space, where each method attempts
to preserve different properties about the data.
Once an acceptable embedding into a Euclidean
space is found, feature selection can proceed
using one of the existing algorithms mentioned
before. However, the number and density of sam-
ples available on the manifold strongly affect the
quality of features obtained.
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Applications

Feature selection has found very wide applica-
tions in face recognition [17–19]. Kernelized
versions of PCA, LDA [20], and SVMs [21]
have been successful in face recognition. Similar
applications have been proposed in numerous
object recognition tasks. Recently, the method of
partial least squares has found successful appli-
cation in human detection and face recognition
[22, 23].

Open Problems and Recent Trends

Feature Learning Classically, feature selection
starts after an initial set of reasonable features has
been established. This initial set of features was
generally constructed with intuition or domain
knowledge. In recent years, due to the resurgence
of deep neural network architectures, one can
now learn appropriate features directly from
raw data, as well as implicitly include feature
selection operations as layers within deep neu-
ral architectures. Examples of such approaches
include auto-encoders [24] and newer devel-
opment such as variational auto-encoders [25].
Feature learning can also be driven by end tasks
such as classification [26] or generation tasks
[27]. The fusion of feature learning with feature
selection continues to be of current interest in
machine learning.

Feature Selection and Differential Geometry
The techniques for feature selection described
above are implicitly designed to operate on
Euclidean spaces. The definitions of various
entities used – L2 distortion measure, the
mean, and covariances – are valid only for
Euclidean spaces. In computer vision, there
are several applications where the data space
is a non-Euclidean manifold embedded in a
larger ambient Euclidean space, which can be
shown to have differential structures or quotient
structures due to certain invariance requirements.
This is different than manifold learning, where
there is not much more information available

beyond discrete samples from an unknown
manifold. Applications of such differentiable
manifolds in vision include shape analysis
[28], human detection and tracking [29], and
activity analysis [30]. Often it is possible to
extend feature selection concepts to manifolds
by taking recourse to Riemannian geometry.
The significant modification lies in redefining
the notions of distances in terms of manifold
geodesics and statistical quantities such as means
and covariances in terms of intrinsic statistics
[31,32]. For example, the counterpart of PCA for
manifolds is called principal geodesic analysis
(PGA) [33]. However, these procedures are often
approximations, and it is very hard in general
to quantify their degree of accuracy. Feature
selection on geometric spaces continues to be of
interest in many diverse areas of computer vision
and machine learning [34].

Feature Sensing There has been recent interest
in designing sensors and cameras that can directly
sense the required task-dependent features
instead of sensing first and then performing
feature selection. By directly sensing features,
one can potentially reduce the load on the
sensor without loss of performance in the
given application. This is achieved in practice
by modifying camera elements, such as by
introducing a programmable micro-mirror array
[35] or optical masks [36], in a way that the
required transformations of the raw data are
directly sensed. However, different designs
are needed to preserve different properties of
the images. In parallel, there has been recent
interest in sensing “universal” features by random
projections. The Johnson-Lindenstrauss lemma is
used as motivation for using random projections
directly for inference tasks [37]. Cameras to
sense random projections of data have been
designed using micro-mirror arrays [38]. High-
level tasks, such as face and activity recognition
and visual question answering, have been shown
to be feasible [39–41] from directly sensed
measurements. New architectures for sensing
features continue to be of interest in the field
of computational imaging and computational
photography [42].
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Synonyms

Low-shot learning

Related Concepts

�Transfer Learning
�Zero-Shot Learning

Definition

Few-shot learning refers to the machine learning
problem of learning a model from very few exam-
ples (shots).

Background

Computer vision systems based on machine
learning often require the collection of large
datasets for their training. This is often a

challenging obstacle for their deployment.
Moreover, there is evidence that humans are
actually able to learn concepts from very few
examples [1–3]. Few-shot learning methods
aim to reduce this observed gap between human
learning and machine learning. This is achieved
by performing a form of transfer learning using
data from many previously observed tasks toward
new tasks with little data.

Theory and Application

In the 2000s, early research in computer vision on
few-shot learning tackled the problem by using
hand-designed feature representations and focus-
ing on the exploration of learning and inference
algorithms operating on that data representation
[4–7]. A lot of that research focused on the one-
shot learning setting, where a single example of a
new object category is assumed to be available.

More recently, deep learning methods have
become popular for computer vision, where
we posit that it is more effective to include in
the learning problem the training of the data
representation. A simple approach to performing
few-shot learning with deep learning is thus to
train a representation on all the data of previously
observed tasks/categories with regular supervised
classification learning and post hoc use that
representation (and potentially fine-tune it) on
new tasks with little data. However, embracing
fully the idea of end-to-end training behind
deep learning, recent work in few-shot learning
has been exploring the training of not just the
representation but also the learning and inference
mechanisms used by a few-shot learner of novel
tasks/categories.

Meta-Learning Framework This problem has
successfully been expressed in a meta-learning
(or learning to learn) framework [8]. Formally,
the problem we wish to solve is to produce,
for a task with a small training set Dtrain =
{(xt , yt )}Lt=1 of image (xt ) and object label (yt )
pairs, a predictor f (x∗) (usually taking the form
of a deep neural network) of the task label y∗
for new input images x∗. In other words, we
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want to discover a function A(Dtrain) (i.e., a
learning algorithm) that can take in a labeled set
for any task at hand and will output a predictor
that solves that task as well as possible, on new
inputs. In meta-learning, we solve this problem
by assuming a parametrization for the function
A(Dtrain) and (meta-)training it on many tasks.
This is sometimes referred to as the episodic
approach to few-shot learning, where an episode
is an example pair of Dtrain (the training set
for the task, also sometimes referred to as sup-
port set) and Dtest = {(x∗

t , y
∗
t )} (the test set

for the task, also sometimes referred to as the
query set). The episodic approach is illustrated in
Fig. 1.

Approaches in parametrizing the learning
algorithm function A vary. One can distinguish
two families of approaches.

A first family of methods are those that
take direct inspiration from currently existing
“hand-designed” learning algorithms and meta-
train some of its free parameters. In other
words, function A will explicitly be running
a familiar learning algorithm on Dtrain, which
is often referred to as the inner loop. Meta-
learning A (referred to as the outer loop)
then requires back propagating gradients of a
loss measured on Dtest through the learning
algorithm that produced f (x∗), iteratively for
each episode. In Ravi and Larochelle [10], Finn
et al. [11], A(Dtrain) corresponds to a gradient
descent procedure in the inner loop that fits the
weights of a neural network predictor on the
data in Dtrain. The meta-trained free parameters
are the initialization of the neural network’s
weights, as well as the parameters of the gradient
descent optimizer (e.g., the learning rates). Some
work has also looked at non-gradient-descent
architectures for producing the weights of the
neural network predictor f (x∗) [12]. Other
methods have focused on learning an embedding
space (represented by a deep neural network
encoder) for the inputs in Dtrain such that a
known learning algorithm in that space yields
good generalization to Dtest. Snell et al. [13]’s
prototypical networks can be seen as assuming a
Gaussian classifier as the inner loop algorithm,
Bertinetto et al. [14] uses a ridge regressor
classifier, and Lee et al. [15] uses a linear SVM.

Finally, Vinyals et al. [16] instead learns a metric
function that computes the similarity between
training inputs xt in Dtrain and test inputs x∗ in
Dtest, such that a soft-nearest-neighbor classifier
using this metric performs well on Dtest.

A second family of methods corresponds
to ignoring existing learning algorithms and
instead embracing the end-to-end nature of meta-
learning, to directly design a neural network
architecture that ingests a set Dtrain and a test
input x∗ and outputs a predictive distribution
over the label y∗ of x∗. Hochreiter et al. [17]
proposes such an approach by framing the meta-
learning framework as a sequential labeling
problem. There, examples in each episode are
put in a sequence in some arbitrary order, with
each time step corresponding to an input pair
(xt , yt−1) (i.e., the current input and the label
of the previous input) and a predicted target yt

(i.e., the label of the current input). Santoro et al.
[18] leveraged this framework to train an adapted
version of a neural turing machine [19] for few-
shot learning. Another approach, followed by
Mishra et al. [20], is to convert episodes into
sequences [(x1, y1), . . . , (xT , yT ), (x∗, 0)]where
labels are aligned with inputs but where the last
element is an input from Dtest without its label
and the neural network must predict that label
y∗. You can then leverage any deep learning
architecture appropriate for sequences such as
(dilated) convolutions and attentional layers, to
encode the provided sequence.

Evaluation and Benchmarks To benchmark
few-shot learning methods in the episodic setting,
a source dataset is leveraged to create the
episodes. Most research in few-shot learning is
focused on the problem of few-shot classification.
Episodes are stochastically generated by first
randomly choosing a small number of classes
(e.g., 5 or 20) and then randomly picking without
replacement examples from these classes to build
the training (support) set and the test (query) set
of the episode. The most popular benchmarks
are based on the Omniglot dataset [21] and the
ImageNet dataset [22] (specifically the mini-
ImageNet benchmark [10, 16], which leverages
only 100 classes from the original ImageNet
dataset). Recent research has also proposed
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Few-Shot Learning, Fig. 1 Illustration of the episodic
approach of the meta-learning framework. Each episode
is a pair of a training (or support) set Dtrain and test
(or query) set Dtest, corresponding to an N -way/K-shot
image classification task. Meta-training is performed on a

set of episodes corresponding to classification tasks over
different concepts/categories than those used for meta-
testing. The episodes illustrated here were derived from
the Meta-Dataset benchmark [9]

merging many source datasets to benchmark
few-shot learning methods [9].

To measure generalization performance (i.e.,
meta-test performance), it is important to use
episodes that are created from classes never seen
during meta-training, to reflect the fact that A is
expected to be used on classification tasks that it
has never seen before. However, it is sometimes
more realistic to also include classes seen during
meta-training (referred to as base classes) in the
evaluation and to analyze the accuracy of meth-
ods on base classes and novel classes [23, 24].
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Field of View

Srikumar Ramalingam
Mitsubishi Electric Research Laboratories,
Cambridge, MA, USA

Synonyms

Field of vision

Related Concepts

�Center of Projection

Definition

Field of view refers to the angular volume of 3D
space sampled by the light rays of a camera.

Background

The pinhole camera is one of the most successful
mathematical models in the field of computer
vision, image processing, and graphics. People
naturally accepted this imaging model because
of its extreme simplicity and its closeness to an
image perceived by the human visual system. In
a pinhole camera, the projection rays from scene
points (light rays) intersect at a single point (opti-
cal center). Typically, these conventional cameras
have a very small field of view, around 50◦.
Omnidirectional cameras have a larger field of
view and have been extremely useful in several
applications like videoconferencing, augmented
reality, surveillance, and large-scale 3D recon-
struction. These cameras can be constructed in a
simple manner, for they can be made from con-
ventional cameras by using additional lenses or
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FieldofView, Fig. 1 (a) Fisheye camera (b) Catadioptric configuration using a hyperbolic mirror and a pinhole camera.
(c) Catadioptric configuration using a parabolic mirror and an orthographic camera

Field of View, Fig. 2 Omnidirectional images captured
by three different cameras are shown: (a) Image of a fish-
eye camera (b) image of a catadioptric camera using a
hyperbolic mirror and a pinhole camera. (c) image of

a catadioptric camera using a parabolic mirror and an
orthographic camera. (Courtesy of Branislav Micusik and
Tomas Pajdla)

mirrors. For example, Fig. 1a shows an E8 Nikon
Coolpix camera appended with a fish-eye lens
having a field of view of 183◦ × 360◦ . Another
possibility is to use mirrors in addition to lenses
to increase the field of view. These configura-
tions are referred to as catadioptric, where “cata”
comes from mirrors (reflective) and “dioptric”
comes from lenses (refractive). Figure 1b, c show
two catadioptric configurations with hyperbolic
and parabolic mirrors, respectively.

Theory and CameraModels

Fish-Eye Camera Model
Fish-eye lenses have a short focal length and a
very large field of view (cf. Fig. 2a). However,
when the field of view is greater than 180◦,

the concept of focal length is not defined. For
example, the focal length is not defined for the E8
fish-eye lens of Nikon which has a field of view
of 183◦ × 360◦. Several works have used fish-
eye lenses for creating omnidirectional images
[1–3]. Geometrically, omnidirectional cameras
can be either single viewpoint or noncentral.
Single viewpoint configurations are preferred
to noncentral systems because they permit the
generation of geometrically correct perspective
images from the image(s) captured by the camera.
In addition, most theories and algorithms devel-
oped for conventional cameras hold good for
single-center omnidirectional cameras. In theory,
fish-eye lenses do not provide a single viewpoint
imaging system [4]. The projection rays pass
through a small disk in space rather than a single
point. Nevertheless, in practice, it is usually a
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good assumption to consider these cameras as
single viewpoint cameras [5]. Perspective images
synthesized from fish-eye images are visibly
very accurate without any distortions. Several
distortion functions can be used to model fish-
eye and central catadioptric images [6, 7]. Some
of them are mentioned below.

– Stereographic projection: Several radially
symmetric models [8] were used for fish-
eye images. One of them is the stereographic
projection. This model gives a relation
between θ, the angle made by a scene point,
the optical center and the optical axis, and the
distance r between the associated image point
and the distortion center

r = k tan
θ

2

where k is the only parameter to be estimated.

– Equidistant projection:

r = kθ

– Equisolid angle projection:

r = k sin
θ

2

– Sine law projection:

r = k sin θ

On fitting the Nikon FC-E8 fish-eye lens
with the four radially symmetric models
(stereographic, equidistant, equisolid angle, and
sine law), it was found that the stereographic
projection gave the lowest error [9]. The error
is the Euclidean distance between the original
image pixels and the projected image pixels using
the models.

– Combined stereographic and equisolid angle
model: In [9], Bakstein and Pajdla followed
a model-fitting approach to identify the right
projection model for fish-eye cameras. Their

model is a combination of stereographic and
equisolid angle models. The following rela-
tion was obtained with four parameters:

r = a tan
θ

b
+ c sin

θ

d

On the whole, they used 13 camera parame-
ters: six external motion parameters (R, t), one
aspect ratio (β), two parameters for the principal
point (u0, v0), and the four parameters of the
above projection model (a, b, c, d).

– Polynomial lens distortion model: Most distor-
tion corrections assume the knowledge of the
distortion center. Let rd refer to the distance
of an image point from the distortion center.
The distance of the same image point in the
undistorted image is given by

ru = rd

(
1 + k1r

2
d + k2r

4
d + · · ·

)

where k1and k2 are distortion coefficients [10].

– Field of view (FOV): The distortion function is
given by

ru = tan (rdw)

2 tan w
2

The above distortion correction function is
based on a single parameter w. It is a good idea to
correct the distortion using the polynomial model
followed by the field of view model [6].

– Division model (DM): The distortion correc-
tion function is given by

ru = rd
(
1 + k1r

2
d + k2r

4
d + · · · )

where the ki are the distortion coefficients.

Catadioptric Camera Model
Vision researchers have been interested in cata-
dioptric cameras [4, 11–17] because they allow
numerous possibilities in constructing omnidi-
rectional cameras. The possibilities arise from
the differences in size, shape, orientation, and
positioning of the mirrors with respect to the
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camera. Please refer to the encyclopedia entry on
� “Catadioptric Camera” for more details.

Application

– Larger field of view: Fig. 2 shows images cap-
tured by three different omnidirectional cam-
eras. The first image is captured by a fish-
eye camera, the second is captured by a cata-
dioptric system constructed using a hyperbolic
mirror and a perspective camera, and finally,
the third is captured by another catadioptric
camera constructed using a parabolic mirror
and an orthographic camera. One can make
the following observation from the omnidi-
rectional images. A very large scene, which
usually requires several pinhole images, can
be captured in a single omnidirectional image
although of course at a lower resolution.

– Stable motion estimation: Motion estimation
is a challenging problem for pinhole images,
especially when a larger number of images are
involved. On the other hand, omnidirectional
cameras stabilize the motion estimation and
improves its accuracy [18–20]. In the case
of small rigid motions, two different motions
can yield nearly identical motion fields for
classical perspective cameras. However, this
is impossible in the case of omnidirectional
cameras. By improving the stability of motion
estimation, omnidirectional cameras also con-
tribute to a stable 3D reconstruction.

A detailed survey of various camera models,
calibration, and 3D reconstruction algorithms is
given in [21, 22].
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Fisher-RaoMetric
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Synonyms

Rao metric

Related Concepts

� Fisher-Rao Metric
�Maximum Likelihood Estimation
�Riemannian Manifold

Definition

The Fisher-Rao metric is a particular Rieman-
nian metric defined on a parameterized family of
conditional probability density functions (pdfs).
If two conditional pdfs are near to each other
under the Fisher-Rao metric, then the square of
the distance between them is approximately equal
to twice the average value of the log likelihood
ratio of the conditional pdfs. If the log likelihood
ratio of the two pdfs is near to zero, then it is
difficult to distinguish between them using only
sampled values.

Background

Suppose that a parameterized family of condi-
tional pdfs is given and it is required to find the
parameter value corresponding to the conditional
pdf that best fits a given set of data. It is useful to

have a distance function defined on pairs of con-
ditional pdfs, such that if a given conditional pdf
is a close fit to the data, then all the conditional
pdfs near to it are also close fits to the data. It
is always possible to change the parameterization
of the family of pdfs or to change the parameteri-
zation of the data without losing information and
without gaining any new information. It follows
that any meaningful distance function should be
independent of the choice of parameterizations.
The Fisher-Rao metric is the only known Rie-
mannian metric that yields a distance function
with both the required independence properties
[1, 2].

Theory

Let X be an open subset of a Euclidean space Rn,
and let T be an open subset of a Euclidean space
R

d . Let x, θ be vectors in X and T , respectively,
and let p(x|θ) be a probability density function
defined for x in X and conditional on θ in T .
The set T is a parameter space for the family
of conditional pdfs θ �→ p(x|θ). Let θi for 1 ≤
i ≤ d be the components of θ . With these choices
of parameterization for X and T , the Fisher-Rao
metric on T is defined by the following family of
d × d matrices:

Jij (θ) = −
∫

X

(
∂2

∂θi∂θj

lnp(x|θ)

)

p(x|θ) dx,

1 ≤ i, j ≤ d, θ ∈ T . (1)

The same matrix J (θ) is also defined by the
formulae

Jij (θ) =
∫

X

(
∂

∂θi

lnp(x|θ)

)

(
∂

∂θj

lnp(x|θ)

)

p(x|θ) dx,

1 ≤ i, j ≤ d, θ ∈ T . (2)

Rao notes in [3] that J (θ) defines a Riemannian
metric on T . For information about (1) and (2),
see [1], Section 2.3.
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Let θ + �θ be a point in T near to θ , and
let dist(θ, θ + �θ) be the length of the shortest
path in T from θ to θ + �θ , as measured using
the Fisher-Rao metric. This shortest path is called
the geodesic between θ and θ + �θ . The matrix
J (θ) provides an approximation to the geodesic
distance, in that

�θ�J (θ)�θ = dist(θ, θ + �θ)2 + O(‖�θ‖3).
(3)

The Fisher-Rao metric is also defined for prob-
ability distributions on finite sets. LetX be a finite
set with n elements and let θi be the probability
of the ith element of X. The θi for 1 ≤ i ≤ n

sum to 1. Let θ be the vector formed from the
probabilities θi for 1 ≤ i ≤ n − 1. The parameter
space T is the open subset of Rn−1 consisting of
vectors θ with components θi such that

0 < θi < 1, 1 ≤ i ≤ n − 1,

0 <

n−1∑

i=1

θi < 1.

The Fisher-Rao metric is defined on T by the
following (n − 1) × (n − 1) matrix:

Jij (θ) = θ−1
n , 1 ≤ i, j ≤ n − 1, i 
= j,

Jii(θ) = θ−1
n + θ−1

i , 1 ≤ i ≤ n − 1.

Let θ and θ +�θ be nearby points in T . Then the
approximation (3) to the square of the distance
between the pdfs p(x|θ) and p(x|θ + �θ) is

n∑

i=1

θ−1
i (�θi)

2.

Let D(θ(1)‖θ(2)) be the Kullback-Leibler
divergence between the conditional pdfs
p(x|θ(1)) and p(x|θ(2)) [1]. In the continuous
case, in which X is an open subset of Rn, the
Kullback-Leibler divergence is given by

D(θ(1)‖θ(2)) =
∫

X

ln

(
p(x|θ(1))

p(x|θ(2))

)

p(x|θ(1)) dx. (4)

On setting θ = θ(1), θ + �θ = θ(2), it follows
from (4) that

1

2
�θ�J (θ)�θ = D(θ‖θ + �θ) + O(‖�θ‖3).

(5)

An equation similar to (5) holds whenX is a finite
set.

The matrix J (θ) used to define the Fisher-
Rao metric appears in the theory of maximum
likelihood estimation [4]. Suppose that N points
x(i) for 1 ≤ i ≤ N are sampled independently
from X using the conditional pdf p(x|θ). Let θ̂

be the maximum likelihood estimate of θ :

θ̂ = argmaxφ �→
N∏

i=1

p(x(i)|φ).

If N is large, then the distribution of θ − θ̂ is
closely approximated by a Gaussian distribution
with expected value 0 and covariance:

N−1J (θ)−1.

Let N be any fixed positive integer, let φ ≡
φ(x(1), . . . , x(N)) be any unbiased estimator of
θ , and let C be the covariance of φ. Then the
matrix

C − N−1J (θ)−1

is positive semi-definite. The matrix N−1J (θ)−1

is known as the Cramér-Rao lower bound for C

[1].
In the continuous case, in which X is an open

subset of R
n, it is rare to find a closed-form

expression for the Fisher-Rao metric. However,
an example of a closed-form expression is pro-
vided by the family of Gaussian densities for
which X = R. Let θ = (μ, t), such that μ, t

are points in R with t > 0. The parameter space
T is the upper half plane in R

2. Let p(x|θ) be
the Gaussian pdf for x in R with expected value
μ and standard deviation t/

√
2. In this case, the

scaled Fisher-Rao metric, (1/2)J (θ), coincides
with the Poincaré metric on T ,

1

2
J (θ) = 1

t2

(
1 0
0 1

)

, θ ∈ T .
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It is shown in [5] that under certain conditions the
Fisher-Rao metric can be closely approximated
by a simpler metric.

Applications

The Fisher-Rao metric provides a theoretical
basis for the Hough transform which is used
to detect geometrical structures such as lines
and circles. The size and shape of the Hough
transform accumulators and the number of accu-
mulators can be calculated using the Fisher-Rao
metric [5]. Peter and Rangarajan [6] describe
planar shapes using weighted sums of Gaussian
pdfs. The associated Fisher-Rao metric is used
to define geodesics in the parameter manifold
for the shape pdfs. Each segment of a geodesic
specifies a continuous family of shapes which
interpolate between the two shapes represented
by the end points of the segment. An algorithm
to find geodesics is described in [7]. Ceolin
and Hancock [8] use the Fisher-Rao metric to
compute geodesics in a shape space of faces.
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Fisheye Camera

�Omnidirectional Camera

Fisheye Lens

Peter Sturm
INRIA Grenoble Rhône-Alpes, St. Ismier
Cedex, France

Related Concepts

�Omnidirectional Vision

Definition

A fisheye lens is a lens giving a field of view of
about 180◦ or larger.

Background

The terms fisheye camera and fisheye view seem
to have been introduced by Wood in 1906 [1].
Wood was interested in the way a fish perceives
objects outside the water. Besides studying the
problem theoretically, he also built a camera that
mimics the fisheye view. To do so, he immersed
a pinhole camera in a casing filled with water
and that had a glass plate as one of its faces,
through which the camera could acquire images
of the outside world. One basic observationWood
made is that since the camera looks from a
denser medium (water) into a lighter one (air), its
effective field of view is larger than its native one,
due to the refraction happening at the interface
between the media. This effect is related to the
so-called Snell’s window. In particular, when
looking from water into air and supposing that
the water surface is still, the entire hemisphere
above the water can be seen within a circular
cone-shaped field of view with an opening angle
of about 96◦.
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Fisheye Lens, Fig. 1 Two images of a fisheye conversion lens and an image taken with a fisheye lens. The image is
necessarily heavily distorted since it “contains” an entire hemispheric field of view

In the 1920s, Bond and Hill independently
invented purely glass-based fisheye lenses
that, like Wood’s water-based camera, gave
hemispherical fields of view [2, 3]. Many
improvements were made subsequently, for
instance, on chromatic aberrations; see, for
example, [4–6]. Fisheye lenses can achieve larger
than hemispheric fields of view, for example,
Martin reports a design with a 310◦ field of view
[6]. An example of a fisheye lens and an image
acquired using one is given in Fig. 1.

Theory

Since fisheye cameras capture an entire hemi-
sphere or more in a single image, the image is
bound to show strong distortions. These cameras
can thus not be modeled using a pinhole model
and even classical polynomial distortion models
are insufficient. Better suited models have been
proposed [4, 7, 8], as follows. Let φ be the angle
between the optical axis and an incoming light
ray and θ the angle between the optical axis and
the ray leaving the lens towards the image plane.
Then, we can make the following definitions:

Perspective projection : θ = φ

Stereographic projection : tan θ = k tan φ
2

Equidistant projection : tan θ = k φ

Equi-solid angle projection : tan θ = k sin φ
2

Sine-law projection : tan θ = k sinφ,

where k is a free parameter.
It is sometimes useful to express these projec-

tion models with respect to the distance r of an
image point from the principal point:

Perspective projection : r = m tanφ

Stereographic projection : r = m tan φ
2

Equidistant projection : r = m φ

Equi-solid angle projection : r = m sin φ
2

Sine-law projection : r = m sinφ,

where m is a free parameter, proportional to the
camera’s focal length.

Various other models for fisheye lenses
and other omnidirectional cameras have been
proposed in the literature, for instance [5, 9–12].
These and other models are described in [13],
which also provides references to calibration
methods. It seems that most fisheye lenses are
designed to approach the equidistant model. In
practice, an accurate calibration of a fisheye
camera may require to add a classical polynomial
distortion model “on top” of a specific fisheye
projection model.

Application

Among the first applications of fisheye lenses
were meteorology, via the study of cloud forma-
tions, and forest management, via the assessment
of leaf coverage via fisheye images of forest
canopies. Other applications are the same as those
of other omni-directional cameras, where a wide
field of view is beneficial, for instance in mobile
robotics or video surveillance.
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Definition

Fluorescent lighting is the illumination of a
scene by the fluorescence of phosphor in a gas-
discharge lamp.

Background

In fluorescent lighting, electrical energy is con-
verted into radiant energy by a physical process
in the fluorescent lamp. The lamp consists of a
sealed glass tube containing mercury vapor, an
inert gas (such as argon) at low pressure, and
a phosphor coating on the inside surface. After
ionizing the gas, electrical current flows through
the gas between electrodes at the ends of the tube.
The current excites the mercury atoms, which
then emit ultraviolet light. Ultraviolet (UV) light
is not visible to the human eye, but is used
to cause fluorescence of the phosphor, which
absorbs the UV radiation and produces light in
the visible range of the color spectrum. Addi-
tional details on fluorescent lamp operation can
be found in [1].

Fluorescent light has certain properties that
distinguish it from other forms of illumination.
These include a color spectrum with sharp peaks
that correspond to the chemical composition of
the phosphor and flicker at twice the frequency
of the alternating current. Some computer vision
algorithms are designed to take advantage of
these properties for particular purposes.

Application

The color spectrum of fluorescent light contains
peaks as exemplified in Fig. 1. These peaks orig-
inate from energy emission of the phosphor and
lie at specific wavelengths according to the phos-
phor composition. The correspondence of spec-
trum peaks to particular wavelengths has been
utilized in computer vision for calibration of
multispectral sensing devices based on disper-
sive optics [2]. In [2], the spectrum peaks are
also used to identify the presence of fluorescent
lighting in a scene, as the characteristic peaks
are detectable even in light reflected from object
surfaces.

Fluorescent lighting also exhibits a regular,
high-frequency flicker due to the cycles of elec-
trical current flow in fluorescent lamps. This stro-

http://en.wikipedia.org/wiki/Fisheye_lens
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Fluorescent Lighting, Fig. 1 A typical color spectrum of fluorescent light

boscopic effect is used in the Mova Contour™
system for markerless motion tracking of human
faces [3, 4]. The face is covered with a phos-
phorescent makeup and then illuminated by the
flicker of a blacklight fluorescent lamp, which
uses a phosphor that converts the shortwave UV
radiation of the mercury vapor to a long-wave
UV light that stimulates the makeup. At intervals
of the flicker when the fluorescent lighting is
off, emission from the phosphorescent makeup
is recorded by multiple cameras. The random
patterns of makeup formed by a rough applicator
sponge are tracked and also triangulated to form
3D models.
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Focal Length

Peter Sturm
INRIA Grenoble Rhône-Alpes, St. Ismier
Cedex, France

Synonyms

Principal distance

Related Concepts

�Camera Calibration
�Center of Projection
� Image Plane
�Optical Axis
� Pinhole Camera Model

Definition

The focal length has different, related, meanings.
In optics, the focal length of a lens or optical
system is the distance from the center to the point
on the optical axis where a bundle of incoming
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rays parallel to the optical axis get focused to.
In geometric image formation models such as the
pinhole model, the focal length usually represents
the distance between the center of projection and
the image plane.

Background

The concept of focal length stems from the area
of optics. The focal length of a lens is generally
defined as the distance from the center of the
lens to the point where a set of incoming parallel
light rays that are parallel to the optical axis get
focused. It is thus related to the magnification
operated by an optical system.

In computer vision, the image formation pro-
cess carried out by the optics and electronics of
a camera is usually modeled by simple geometric
models.

In the following, the thin lens model and
the pinhole model are discussed. More general
background is given, for example, in [1–3].

Theory

Thin lens model. Consider first a simple “phys-
ical” model for a lens, the thin lens model, for
the case of a lens whose two outer surfaces are
convex and spherical. For simplicity, we assume
here that the two spheres have the same radius
R. Let n be the index of refraction of the lens
material and n0 that of the surrounding medium
(for a vacuum n0 = 1, for air n0 ≈ 1.0008).

Incoming rays get bent by the lens, due to
the successive refractions in the two surfaces of
the lens. For lenses with spherical surfaces, even
incoming rays that are parallel to the optical
axis do not converge to the same point on the
optical axis after these refractions. Rather, they
hit the optical axis in a segment; this is known as
spherical aberration; see Fig. 1.

Let us now make two common approxima-
tions. First, under the thin lens approximation,
one assumes that both refractions happen at the
same point, on the lens’ plane instead of on

the two spherical surfaces. Second, we make the
so-called paraxial approximation by assuming
that along the path of the refracted light ray,
all angles it forms with the optical axis and
the normals of the spherical surfaces are small
(leading, e.g., to the approximation sinα ≈ α

for such angles). Under these two simplifying
assumptions, all incoming rays that are parallel to
the optical axis are focused by the lens to a point
on the optical axis that is at the following distance
from the lens center:

f = R n0

2 (n − n0)
.

This distance is the focal length of the lens,
under the paraxial thin lens approximation. This
formula can be generalized to lenses with two
spherical surfaces of different radii, in the form of
the so-called lensmaker’s equation [4, 5]. Lenses
with other bounding shapes than spherical ones
exist of course and can be studied similarly [2].

Under the above assumptions, if one wishes to
take a sharp picture of a distant object, one would
put the image plane at a distance of f from the
lens. However, if the object is at a close distance
s from the lens, then the light rays emerging from
it converge at a distance s′ from the lens that is
different from f and that is given by [2, 6]:

1

s
+ 1

s′ = 1

f
.

This classical relationship can be easily
derived by considering similar triangles and the
following two light rays emitted from a point P
at a distance s from the lens; cf. the lower part
of Fig. 1. The ray parallel to the optical axis
(supposing here it enters the aperture) intersects
the optical axis at a distance f from the lens, after
being bent by it, as explained above. The ray
going through the lens center does not get bent
under the thin lens assumption. The two rays thus
converge in a point P′ at a distance of s′ from the
lens plane. To get a sharp picture, one would thus
put the image plane at distance s′.
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Focal Length, Fig. 1 Upper left: spherical aberration of a
lens with two spherical surfaces. Upper right: focal length
in the paraxial thin lens approximation. Bottom: image of

an object point P at finite distance from the lens, under the
paraxial thin lens model

Pinhole model. In the pinhole model and
other camera models, the focal length is defined
differently than in optics, as the distance between
the center of projection and the image plane.
As seen above, this is in general different from
the focal length of optical systems, even in the
very simple case of the paraxial thin lens model
thereof. The two definitions coincide however if
a camera is focused to infinity and if the center
of the thin lens model is considered as center of
projection in the pinhole model.

The focal length of the pinhole model is often
expressed in the nonmetric unit “number of pix-
els” (true focal length divided by the density
of pixels). For real cameras, the focal length is
usually given in millimeters. An often used con-
vention is to characterize a camera by the focal
length that an equivalent 35-mm-format camera
would have: the focal length of a lens that, if
used with a 35-mm-format image area, would
have the same field of view as the camera under
consideration.

Application

The focal length of the pinhole or other cam-
era models typically used in computer vision is
part of the camera’s intrinsic parameters, which
can be computed by camera calibration. Camera

calibration is an important requirement in most
applications where geometric information about
the scene or the camera movement is to be deter-
mined from images.

The difference between the meaning of the
pinhole model’s focal length and that of a true
optical system made of lenses (the pinhole model
is lens-less) is stressed again here. A consequence
of what is explained above is that when cali-
brating a camera using the pinhole model, that
model’s focal length is affected by both a change
in focus and zoom of the actual camera [7].
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Focus Bracketing

�Multi-focus Images

Foreground-Background
Assignment

�Occlusion Detection

Form Analysis

� Statistical Shape Analysis

Fresnel Conditions

� Fresnel Equations

Fresnel Equations

Daisuke Miyazaki
Graduate School of Information Sciences,
Hiroshima City University, Asaminami-ku,
Hiroshima, Japan

Synonyms

Fresnel conditions; Fresnel’s law; Light transmis-
sion and reflection coefficients

Related Concepts

� Polarized Light in Computer Vision
� Polarizer
� Polarization

Definition

The four Fresnel equations express the reflection
and transmission coefficients of light components
whose electric-field vector is either parallel or
perpendicular to the plane of incidence.

Background

Based on the theory of electromagnetism, the
Fresnel equations express the reflection and trans-
mission coefficients of light that hits an inter-
face between two media. This entry introduces
amplitude reflectivity, amplitude transmissivity,
intensity reflectivity, and intensity transmissivity.

Theory

Figure 1 illustrates a light ray that hits the inter-
face between two materials, the refractive indices
of which are denoted by n1 and n2, respectively.
Part of the light is reflected from the interface,
while another part penetrates the surface and
refracts as it enters the second material. The plane
including the surface normal and the incident
light ray is called the plane of incidence (POI).
The incident light, the reflected light, and the
transmitted light are denoted as the subscripts i,
r, and t, respectively.

Being an electromagnetic wave, light carries
an oscillating electric field. The oscillating field
(called E-vector) has amplitude components that
are parallel or perpendicular to the POI. These
components are denoted by p and s, respectively.
Here, p is associated with the term “parallel,”
while s is associated with the word “senkrecht,”
which means “perpendicular” in German. The
incidence, reflection, and transmission angles are
defined as θ1, θ1

′, and θ2, respectively, as illus-
trated in Fig. 1.

For optically smooth objects, the incidence
and reflection angles are equal, θ1 = θ1

′, while θ1
and θ2 are related by Snell’s law (cf. Sect. 1.5.1 in
the 5th edition of Born and Wolf [1], Sect. 4.4.1
in the 4th edition of Hecht [2]):
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n1 sin θ1 = n2 sin θ2. (1)

The ratio of the amplitude of the reflected
light to that of the incident light is called reflec-
tion coefficient (or, amplitude reflectivity), r. The
ratio of the amplitude of the transmitted light to
that of the incident light is called transmission
coefficient (or, amplitude transmissivity), t. These
coefficients are generally different for the two E-
vector components. The coefficients for the p-
component and s-component are derived from
the theory of optics as (cf. Sect. 1.5.2 in the 5th
edition of Born and Wolf [1], Sect. 4.6.2 in the
4th edition of Hecht [2]):

rp = tan (θ1 − θ2)

tan (θ1 + θ2)
(2)

rs = − sin (θ1 − θ2)

sin (θ1 + θ2)
(3)

tp = 2 sin θ2 cos θ1

sin (θ1 + θ2) cos (θ1 − θ2)
(4)

ts = 2 sin θ2 cos θ1

sin (θ1 + θ2)
. (5)

These coefficients are plotted in Fig. 2. These
equations are called Fresnel equations.

The intensity reflectivity of the p-component
Rp and that of the s-component Rs, and the inten-

sity transmissivity of the p-component Tp and that
of the s-component Ts are (cf. Sect. 1.5.3 in the
5th edition of Born and Wolf [1]):

Rp = tan2 (θ1 − θ2)

tan2 (θ1 + θ2)
(6)

Rs = − sin2 (θ1 − θ2)

sin2 (θ1 + θ2)
(7)

Tp = sin 2θ1 sin 2θ2
sin2 (θ1 + θ2) cos2 (θ1 − θ2)

(8)

Ts = sin 2θ1 sin 2θ2
sin2 (θ1 + θ2)

. (9)

They are plotted in Fig. 3.
From the above equations, Rp = 0 can be

obtained at a special incidence angle. This
angle is referred to as the Brewster angle, θB.
The Brewster angle is obtained by substituting
θ1 + θ2 = π/2 (namely, Rp = 0) into (Eq. 1),
yielding (cf. Sect. 1.5.3 in the 5th edition of Born
and Wolf [1]):

tan θB = n2

n1
. (10)

From (Eq. 1) to (Eq. 6)–(Eq. 9), and defining
θ = θ1, n = n2/n1, the following can be derived
(cf. Appendix A.6 in Miyazaki [3]):

Rp = 1 + n2 − (
n2 + 1/n2

)
sin2θ − 2 cos θ

√
n2 − sin2θ

1 + n2 − (
n2 + 1/n2

)
sin2θ + 2 cos θ

√
n2 − sin2θ

(11)

Rs = 1 + n2 − 2sin2θ − 2 cos θ
√

n2 − sin2θ

1 + n2 − 2sin2θ + 2 cos θ
√

n2 − sin2θ
(12)

Tp = 4 cos θ
√

n2 − sin2θ

1 + n2 − (
n2 + 1/n2

)
sin2θ + 2 cos θ

√
n2 − sin2θ

(13)

Ts = 4 cos θ
√

n2 − sin2θ

1 + n2 − 2sin2θ + 2 cos θ
√

n2 − sin2θ
. (14)
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Fresnel Equations, Fig. 1
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Fresnel Equations, Fig. 3
Intensity reflectivity of the
p-component Rp and
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transmissivity of the
p-component Tp and
s-component Ts. The plots
correspond to the case
where n2/n1 = 1.5
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Application

Fresnel equations are mainly used to model and
analyze light transmission and specular reflec-
tion. Intensity transmissivity ((Eq. 8) and (Eq. 9))
is also used for analyzing diffuse reflection and
thermal radiation, since they are caused by radia-
tion from beneath the object surface.
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Fresnels Law

� Fresnel Equations

Fundamental Matrix

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen, China

Synonyms

Epipolar geometry; Essential matrix

Related Concepts

�Epipolar Geometry
�Essential Matrix

Definition

Fundamental matrix is a special 3 × 3 matrix
which captures the geometric relationship
between two cameras or between two locations
of a single moving camera.

Background

See entry � “Epipolar Geometry” for details.

Theory

If two points m and m
′
, expressed in pixel image

coordinates in the first and second camera, are in
correspondence, they must satisfy the following
equation

m̃T Fm̃′ = 0, (1)

where

F = A−T EA′−1
, (2)

E = [t]×R, (3)

A and A′ are respectively the intrinsic matrix
of the first and second camera, and (R, t ) is
the rigid transformation between the first and
second camera. This is a fundamental constraint
for two pixels to be in correspondence between
two images. The 3 × 3 matrix F is called the fun-
damental matrix, and the 3× 3 matrixE is known
as the essential matrix (see entry � “Essential
Matrix”).

As can be seen in Eq. (2), the fundamental
matrix and the essential matrix are related. If
the cameras are calibrated, i.e., if A and A′
are known, we can use the normalized image
coordinates, and the fundamental matrix becomes
the essential matrix.

Because detE = 0, we have detF = 0. Thus,
the fundamental matrix is singular (rank 2). From
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Eq. (1), it is also clear that F is defined up to
a scale factor, which depends on the translation
magnitude that cannot be determined from image
alone. Therefore, a fundamental matrix only has
7 degrees of freedom. Given one pair of corre-
sponding image points, we have one constraint on
F as expressed by Eq. (1). We thus need at least
seven or more point correspondences in order to
determine the fundamental matrix between two

images. The reader is referred to [1] for vari-
ous algorithms of determining the fundamental
matrix from point correspondences.
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Synonyms

Automatic gait recognition; Gait analysis; Gait
biometrics

Related Concepts

� Face Recognition
�Optical Flow: Traditional Approaches
� Principal Component Analysis (PCA)
� Segmentation

Definition

The way a person walks (or runs) combined
with their posture is known as gait. Recognizing
individuals by their particular gait using auto-
mated vision-based algorithms is known as gait
recognition.

Background

Gait is increasingly used when a person cannot
be identified by more conventional means: in
the recent high-profile Hatton Gardens robbery
in the UK, “Basil” covered his face and other
identifying marks, Fig. 1, only to be convicted in
part by identification by his gait. Gait has some
important advantages over other biometrics. Gait
can be observed at a distance when other bio-
metrics are obscured or the resolution is insuffi-
cient. It does not require subject cooperation and
can be acquired in a noninvasive manner. It is
easy to observe and hard to disguise as walking
is necessary for human mobility. Gait can be
acquired from a temporal sequence of images
(e.g., a video) and may be partly acquired even

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
https://doi.org/10.1007/978-3-030-63416-2
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Gait Recognition:
Databases,
Representations, and
Applications, Fig. 1
Basil in disguise, from
Hatton Garden robbery
evidence https://www.bbc.
co.uk/news/uk-england-
london-47132760 (The
actual permission will be
obtained if this version is
accepted)

from a single still image (e.g., a single still image
at the double support phase may contain a stride
as one of gait information).

Shakespeare made several references to the
individuality of gait, e.g., in The Tempest [Act 4
Scene 1], Cares observes “High’st Queen of state,
Great Juno comes; I know her by her gait,” and
in Henry IV Part II [Act 2, Scene 3] “To seem
like him: so that, in speech, in gait, in diet, in
affections of delight, in military rules, humours
of blood, he was the mark and glass, copy and
book.”

The aim of medical research has been to clas-
sify the components of gait for the treatment
of pathologically abnormal patients (e.g., Parkin-
son’s disease, degenerative hip disease, and idio-
pathic normal pressure hydrocephalus). Patho-
logically normal people usually have standard
movement patterns. Those patterns were then
used to identify pathologically abnormal patients
[11].

The biomechanics literature makes observa-
tions concerning identity: “A given person will
perform his or her walking pattern in a fairly
repeatable and characteristic way, sufficiently
unique that it is possible to recognize a person at
a distance by their gait” [17].

Psychophysiological studies have shown [4]
that humans can recognize friends and the sex
of a person solely by their gait with 70–80%
accuracy. Moreover, a biological motion study

has shown that several factors such as the sex, the
body weight, feeling (e.g., nervous or relaxed),
and emotion (e.g., happy or sad) clearly appear
in their gaits even if the gaits are displayed
as a simple biological motion (i.e., point-light
sources attached to the human joints). One early
work highlighted the human ability to recognize
people by gait, where subject tried identifying
six individuals on the basis of their gait under
conditions of simulated daylight and simulated
dusk and via point-light displays [15]. These
and similar studies via human perceptions have
inspired the use of gait as a biometric trait via
machine perception.

Recently, there has been a rapid growth in
the number of surveillance systems, aimed to
improve safety and security. These systems
are yet to include recognition capabilities, and
automatic gait recognition through machine
perception (e.g., pattern recognition from CCVT
footage) could be a most suitable choice. The
primary aim of surveillance videos is to monitor
people. However, the video data can be of a low
quality (poor resolution, time lapse, etc.), and
the subject can conceal the more conventional
biometrics. Nevertheless, such video can provide
sufficient data for gait recognition technology,
and there is already research in using gait
biometrics for forensics. Gait recognition could
be employed at border crossings or high-
throughput environments. Gait contains very

https://www.bbc.co.uk/news/uk-england-london-47132760
https://www.bbc.co.uk/news/uk-england-london-47132760
https://www.bbc.co.uk/news/uk-england-london-47132760
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rich information and is considered to be unique.
Studies have shown that gait can also be used
to reveal a person’s identity, gender, age, and
emotional state.

Recognition by gait is one of the newest bio-
metrics, since its development only started when
computer memory and processing speed became
sufficient to process sequences of image data with
reasonable performance. The potential for gait
recognition is great, and hence there is a vast
interest in computer vision and pattern recog-
nition research in extracting and matching gait
features [2].

Theory

Overview
A gait biometrics system is based on computer
vision. A gait signature is created by extract-
ing images of a walking subject which is then
compared to the signatures of known subjects.
Figure 2 shows an example of some of the basic
stages of a gait recognition system.

Step 1: Data can be acquired using a single
or multiple cameras. If data is acquired using
a single color/monochrome camera, recognition
can be performed using a 2D gait signature shown
in stage 4. However, if a range finder (depth
camera) or multiple but synchronized cameras are
used, we have an option for 3D gait signatures
with view invariance.

Step 2: An example of pre-processing stage is
foreground/background segmentation using one
of a plethora of computer vision techniques from
background subtraction to recent deep learning-
based semantic segmentation.

Step 3: As human gait is periodic, a gait
sequence (sample) can consist of multiple gait
cycles. Identifying the most suitable cycle can
lead to better recognition rates. Signal processing
techniques (e.g., peak detection or maximizing
autocorrelation) can be applied to the foreground
signal.

Step 4: There are number of approaches to
produce a gait signature, some of which are
described later. A baseline gait signature was

proposed in [12]. An example of a signature is
shown in stage 4.

Step 5: A gait signature can be used directly
within a classifier with a selection of classifi-
cation techniques: k-nearest neighbor, a combi-
nation of principal component analysis (PCA)
and the subsequent linear discriminant analysis
(LDA), primal rank support vector machine (pri-
mal RankSVM), and recent deep learning-based
classifiers.

Gait Representation
Gait representations can be divided in two
main groups: model-based and model-free
(appearance-based). Model-based approaches
use the human body structure, and model-
free methods use the whole motion pattern of
the human body. Which approach is adopted
depends on the acquisition conditions. Model-
free approaches use the input images directly to
produce a gait signature without fitting a model.
These approaches can perform recognition at
lower resolutions which makes them suitable
for outdoor applications where a subject can be
far from the camera. Model-based approaches
require higher resolution images of a subject to
be able to fit the model accurately though with
relatively high computational cost.

We describe briefly each gait representation
below, and more detailed surveys of model-based
and model-free approaches are available [2, 9].

Model-Free Approaches
Model-free approaches derive the human silhou-
ette by separating the moving object from the
background. The subject can then be recognized
by measurements that reflect the shape and/or
movement. The simplest approach is to directly
compute the dissimilarity (e.g., Euclidean,
cosine, or Tanimoto distance) between two
silhouette sequences (i.e., a probe and a gallery)
in conjunction with phase synchronization by
frame shift, which is called a baseline algorithm
[12] in the gait recognition community. Another
simple approach is a silhouette averaged over
a complete gait cycle which is also known as
gait energy image (GEI) [6] (see Fig. 3). Motion
silhouette image (MSI) is a similar representation
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Step 2 – Pre-processingStep 1 – Acquire a 
gait sample
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Step 4 – Create a gait 
signature

Step 5 – Classifica�on

Gait Recognition: Databases, Representations, and Applications, Fig. 2 General steps of a gait recognition
system

to the GEI. The value of each pixel is computed
as a function of motion in the temporal dimension
over all silhouettes that are part of a single gait
cycle (see Fig. 3). Both the GEI and MSI are easy
to compute but are vulnerable to appearance
changes of the human silhouette. A frieze
pattern represents the information contained
in a gait sequence by horizontal and vertical
projections of the silhouettes. As its extension
shape variation-based (SVB) frieze patterns use
key frame subtraction in order to mitigate the
effects of appearance changes on the silhouette
(see Fig. 3). The gait entropy image (GEnI) is
another example of a compact gait representation
(signature). GEnI is computed by calculating the
Shannon entropy for each pixel in a silhouette
image sequence. The gait signatures for the
approaches shown in Fig. 3 are usually used
directly for classification. There are additional
ways of extracting gait signatures without using
a model.

While many approaches use conventional
RGB or grayscale images, we can also employ
a depth image captured by a commercial and

inexpensive sensor (e.g., Microsoft Kinect™)
which increases information and eases fore-
ground segmentation. Some depth-based or
three-dimensional volumetric representation-
based approaches to the model-free analysis are
introduced.

Model-Based Approaches
The advantages of the previous silhouette
approaches are computational efficiency and
simplicity. In contrast, model-based approaches
have greater invariant properties and can handle
better occlusion, noise, scale, and rotation [3].

Model-based approaches incorporate knowl-
edge of the shape and dynamics of the
human body into the extraction process. These
approaches extract features that fit a physical
model of the human body. A gait model consists
of shapes of various body parts and how those
shapes move relative to each other (motion
model). The shape model for a human subject
uses ellipses to describe the head and the
torso, quadrilaterals to describe the limbs, and
rectangles to describe the feet. Alternatively
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Gait Recognition: Databases, Representations, and Applications, Fig. 3 Examples of model-free gait signatures.
(Reprinted with permission from [9] copyright 2015, Wiley)

arbitrary shapes could be used to describe the
edges of the body parts. The motion model
describes the dynamics of the motion of the
different body parts. Using a model ensures
that only image data corresponding to allowable
human shape and motion is extracted, reducing
the effect of noise. The models can be two or
three dimensional. Most of the current models

are two dimensional but deliver good results on
databases of more than 100 subjects.

There have been moves toward developing
3D gait models. Guoying et al. [5] use video
sequences from multiple cameras to construct 3D
human models. The motion is tracked by apply-
ing a local optimization algorithm. The length of
key segments is extracted as static parameters,
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and the motion trajectories of lower limbs are
used as dynamic features. Linear time normal-
ization is used for matching and recognition. 3D
approaches are robust to changes in viewpoint
and have much potential. However current exper-
iments are limited to small databases by high
computational requirements.

Gait depends on many parameters (joint
angles and body segment size) which leads to
complex models with many free parameters.
Finding the best fit model leads to searching a
high-dimensional parameter space. Therefore,
there is a trade-off between the accuracy of
the model (complexity) and computational
cost. Models are often simplified based on
assumptions, e.g., a constant walking speed.
However, as computing power increases the
problems, arising of high complexity can be
mitigated. Also, recent deep learning-based pose
estimators such as OpenPose significantly reduce
computation time and have started to be used in
model-based gait analysis.

Scenario-Dependent Choice of Gait
Representation
We finally discuss the suitability of the
approaches described above in the context of
the two application scenarios: access control
and surveillance. In the access control scenario,
since we can design the environment as we have
already discussed in the section of databases, it
is possible to capture a subject with relatively
high image resolution (i.e., capturing at a close
distance). Consequently, not only model-free
approaches but also model-based approaches
are suitable. Moreover, it is allowed to use a
depth camera in this scenario; recent depth-
based gait features are promising since they have
possibilities for higher accuracy due to richer
information than two-dimensional silhouette-
based approaches such as GEI.

On the other hand, in surveillance or
criminal investigation scenarios, the suitability of
approaches is heavily dependent on the captured
images. For example, when the spatial resolution
of captured subjects is relatively high and where
clothing conditions are different between a
matching pair, the model-based approaches are

suitable due to invariance to clothing. In addition,
when observation views are different, the 3D
model-based approaches are useful. In contrast,
when the spatial resolution is low, model-free
approaches can be more suitable than model-
based approaches. Although the model-free
approaches are much affected by the individual
factors such as view and clothing, SBV frieze
pattern can mitigate the effect of the clothing
variation to some extent.

Classification
At the early stage of gait recognition research,
gait silhouette sequences or pose sequences were
directly used for matching, and hence matching
algorithms for time series were employed, for
example, dynamic time warping, hidden Markov
model, and parametric eigenspace method.
Thereafter, gait representations which aggregate
temporal information such as averaged silhouette
or GEI got more popular, and then more standard
image-based classification algorithms were
introduced. One of the most popular ways
is to apply PCA to reduce dimensions and
then apply LDA to increase discrimination
capability. Moreover, a plethora of machine
learning techniques were employed, for example,
subspace method, discriminant analysis with
tensor representation, random subspace method,
joint subspace analysis, SVM, multi-layer
perceptron, etc.

Recently, similar to the other computer
vision fields, gait recognition researchers started
to employ deep learning-based approaches,
more specifically convolutional neural networks
(CNNs) The simplest one is GEINet [14]
which outputs probabilities of individual training
subjects given GEI as an input. Wu et al. [18]
exploit a pair of input images and cast a gait
recognition problem as a two-class classification
problem into the same or different subject pairs,
which is also beneficial in terms of increasing
the number of training sample. Takemura et al.
[16] designed input/output architectures (e.g.,
a triplet of input images and a triplet loss
function), which are, respectively, suitable
for verification/identification scenarios under
small/large view variations (see Fig. 4). Yu et al.
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[20] introduced generative adversarial network
(GAN) to generate a canonical view gait feature
from another view gait feature. Most of the
CNN-based approaches to gait recognition aim at
increasing robustness against view variation, and
they achieved significantly higher accuracy than
conventional machine learning-based approaches
such as a view transformation model and a
support vector regression.

Databases

A database can be collected for various purposes.
Primary concerns include uniqueness and
practicality. A database should contain enough
subjects/samples to allow for an estimate of
inter- and intra-subject variation for statistically
reliable performance evaluation and for effective
training of classifiers. The current databases
contain smaller number of subjects compared to
databases used to evaluate performance of other
biometrics (e.g., face, fingerprint). However,
there are databases that include covariate factors
and application potential. Some of the best-
known databases and their characteristics are
shown in Table 1.

While gait databases at the early stage of
gait recognition research in the 1990s contained
less than 100 subjects, those in the middle of
the 2000s contained more than 100 subjects.
For example, SOTON Large Database was the
first gait database to contain over 100 subjects.
USF HumanID is one of the most frequently
used gait databases since it contains over 100
subjects as well as a variety of covariates: view,
surface, shoes, bag, and time elapse, although
each covariate has at most two variations (e.g.,
concrete and grass for surface covariate, with and
without bag for bag covariate). CASIA B is a
frequently used gait database since it contains
large view variations from front view (0 deg) to
rear view (180 deg) with 18-degree interval.

Some of gait databases in 2010s contain over
thousand subjects, and the most recent databases
contain over ten thousand subjects. OU-ISIR LP-
Age contains the largest number of subjects,
63,846, in the world, as well as age and gender

labels, and it is useful for studying gait-based
age and gender estimation. OU-ISIR LP-Bag also
contains over 60,000 subjects with carrying status
variation in the wild, where each subject has their
own carried objects and can be used to study gait
recognition variation with carried loads. OU-ISIR
MVLP contains over 10,000 subjects captured
from 14 views, that is, 7 views from frontal view
to side view at 15-deg interval and the other 7
views from back view to side view at 15-deg
interval. It is naturally useful for studying view-
invariant gait recognition.

In summary, challenging aspects of individual
gait databases roughly fall into three: subject
diversity, individual factors (e.g., clothing, speed,
carrying status), and environmental or scene
factors (e.g., view directions and illumination
changes in outdoor). Moreover, the importance of
these challenging aspects is highly dependent on
application scenarios. For example, in an access
control scenario, the environment is usually
fixed and even appropriately designed for better
authentication (e.g., indoor environment such
as a corridor in front of door, relatively close
observation distance, multimodal information
source such as an RGB camera and a depth
camera, multimodal biometric cues such as face,
ear, the height, as well as gait are acceptable).
Moreover, the individual factors are controlled
to some extent since a user (client) wants to
be successfully authenticated (i.e., cooperative).
Consequently, the subject diversity is the most
important aspect in the access control scenario,
and hence SOTON Multimodal, OU-ISIR LP,
and TUM-GAID are suitable for evaluating the
access control scenario.

On the other hand, in a surveillance or criminal
investigation scenario, the environment is usually
unfixed, and a subject such as a perpetrator or
a suspect is uncooperative. Both the individual
and environmental factors are therefore important
as well as the subject diversity. SOTON Large
Database and USF HumanID provide a variety
of such individual and environmental factors,
and hence they are suitable exploratory factor
analysis in the surveillance and criminal investi-
gation scenario. However, the variation of each
factor is limited in SOTON Large Database and
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Gait Recognition: Databases, Representations, and Applications. Table 1 Details of some of the well-known
gait databases

Name Subjects Sequences Covariates Viewpoints Indoor(I)/Outdoor(O)

CMU MoBo 25 600 Y 6 I (Treadmill)

Georgia tech 15 268 Y O

18 20 Y

HID-UMD 25 100 N 1 O

55 222 Y 2 O

SOTON small database 12 Y 3 I

SOTON large database 115 2,128 Y 2 I/O

SOTON multimodal >300 >5,000 Y 12 I

SOTON temporal 25 2,280 Y 12 I

USF humanID 122 1,870 Y 2 O

CASIA A 20 240 Y 3 I

CASIA B 124 1,240 Y 11 I

CASIA C 153 1530 Y 1 O

CASIA D 88 2640 Y 1 O

TUM-IITKGP 35 850 Y 1 O

TUM-GAID 305 3,370 Y 1 O

WOSG 155 684 Y 8 O

OU-ISIR, treadmill A 34 612 Y 1 I (Treadmill)

OU-ISIR, treadmill B 68 2,764 Y 1 I (Treadmill)

OU-ISIR, treadmill C 200 200 Y 25 I (Treadmill)

OU-ISIR, treadmill D 185 370 N 1 I (Treadmill)

OU-ISIR, LP 4,007 7,842 N 2 I

OU-ISIR, LP-age 63,846 63,846 N 1 I

OU-ISIR, LP-bag 62,528 178,018 Y 1 I

OU-ISIR, MVLP 10,307 277,358 Y 14 I

USF HumanID; other databases are still useful
when focusing on each factor (e.g., CASIA B
and OU-ISIR MVLP for view variations, OU-
ISIR Treadmill A for speed variations, OU-ISIR
Treadmill B for clothing variation, OU-ISIR LP-
Bag for carrying status variation, SOTON Tem-
poral for time-lapse variations, and WOSG for
environmental variations).

Experimental Results

We introduce experimental results of cross-view
gait recognition on OU-MVLP reported in [16]
since cross-view gait recognition is one of the
most challenging topics which many gait recog-
nition researchers have paid efforts for a long
time. In addition, OU-MVLP is one of the most

challenging gait databases for cross-view gait
recognition, which contains over 10,000 subjects
from 14 views. In fact, recent deep learning-based
approaches to gait recognition require more and
more training data in order to perform well; large-
scale training data in OU-MVLP is beneficial to
make the most of the algorithm’s performance.
In addition to the training aspect, the large-scale
test samples enable statistically reliable perfor-
mance evaluation of gait recognition. The data
set was divided into two disjoint sets: training
and test sets which contain approx. 5,000 sub-
jects, respectively. In the experiments, the most
popular gait representation, GEI, was used as
an input. We show the results for eight bench-
marks: direct matching (DM) as a baseline; LDA;
view transformation model (VTM) [10]; GEINet
[14]; low-level feature at bottom layer (LB) and
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middle-level feature at top layer (MT) [18]; four
network architectures 2in, 3in, diff, and 2diff;
and its two combinations: 2in + diff and 2in +
2diff [16].

Table 2 shows gait recognition accuracies
in verification scenario and identification
scenarios. In the verification scenario (one-to-
one matching), given a pair of gait samples, the
system tries to judge whether they originate from
the same subject pair of different subject pair.
The typical performance criteria are equal error
rate (EER) of false acceptance rate (FAR) of
different subject pairs and false rejection rate
(FRR) of the same subject pairs. On the other
hand, in the identification scenario aka one-to-
many matching, given a gait sample, the system
tries to find the same subject from a gallery
set. The typical performance criterion is rank-n
identification rate, that is, a ratio that the same
subject is included in the top-n gallery list. It
turns out that state-of-the-art gait recognition
achieves almost 90% rank-1 identification rate
for the gallery size of approx. 5,000 and less than
1% EER for the same-view case (i.e., angular
difference is zero). On the other hand, gait
recognition accuracies decrease as the angular
difference gets large, e.g., 55.0%, 33.0%, and
17.3% rank-1 identification rates for 30-deg,

60-deg, and 90-deg angular differences for
2in+2diff.

Applications

Gait recognition research is currently under tran-
sition from an evaluation stage to an application
stage. The potential for gait recognition is great,
since the complete unobtrusiveness without any
subject cooperation or contact for data acquisi-
tion makes gait particularly attractive for identifi-
cation purposes. It could be used in applications
including forensics, security, immigration, and
surveillance.

Many surveillance systems capture only a low
resolution video at varying lighting conditions,
and gait recognition might be the only plausible
choice for automatic recognition. A bank robber
may wear a mask so you cannot see his face, wear
gloves so you cannot get fingerprints, and wear a
hat so you cannot get DNA evidence – but they
have to walk or run into the bank, and they could
be identified from their gait.

Gait recognition has been used as evidence for
conviction in some criminal cases. One forensic
study has already used gait biometrics to pro-
vide evidence for identification [1]. In 2004, a

Gait Recognition: Databases, Representations, and
Applications. Table 2 Gait recognition accuracies for
each angular difference. Bold with underline and bold

mean the best and the second best accuracies, respectively.
Copyright 2017 IEEE. (Reprinted, with permission from
[16])

(a)Rank-1 identification rates (%) (b)EERs (%)

Angular difference Angular difference

0 30 60 90 Mean 0 30 60 90 Mean

DM 77.4 2.4 0.2 0.0 20.3 DM 6.5 25.2 41.4 46.2 27.2

LDA 81.6 10.1 0.8 0.1 24.4 LDA 6.2 22.7 35.7 40.1 24.0

VTM 77.4 2.7 0.6 0.2 20.5 VTM 6.5 26.8 34.2 38.5 25.0

GEINet 85.7 40.3 13.8 5.4 40.7 GEINet 2.4 5.9 12.7 17.2 8.1

LB (Wu) 89.9 42.2 15.2 4.5 42.6 LB (Wu) 1.0 3.3 6.7 9.3 4.3

MT (Wu) 89.3 49.0 20.9 8.2 46.9 MT (Wu) 0.9 2.5 5.2 7.0 3.3

2in 75.5 37.9 24.9 14.9 41.2 2in 1.3 2.4 3.5 4.4 2.6

3in 85.7 47.8 26.3 15.9 47.9 3in 1.3 2.3 3.7 4.7 2.7

diff 73.6 32.1 11.8 5.2 34.0 diff 1.1 3.0 5.7 7.2 3.7

2diff 89.1 40.8 17.6 7.8 42.9 2diff 1.8 4.0 6.6 8.5 4.7

2in+diff 80.0 41.5 26.1 15.6 44.1 2in+diff 1.0 2.0 3.4 4.2 2.4

3in+2diff 89.5 55.0 30.0 17.3 52.7 3in+2diff 1.1 2.2 3.6 4.6 2.6
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perpetrator robbed a bank in Denmark. The Insti-
tute of Forensic Medicine in Copenhagen was
contacted by the police to perform gait analysis,
as they thought the perpetrator had a unique gait.
The institute instructed the police to establish a
covert recording of the suspect from the same
angles as the surveillance recordings for compar-
ison. The gait analysis revealed several charac-
teristic matches between the perpetrator and the
suspect. For example, both the perpetrator (to the
left) and the suspect showed inverted left ankle
(white arrow) during left leg’s stance phase and
markedly outward rotated feet (see Fig. 5). The
suspect was convicted of robbery, and the court
found that gait analysis is a very valuable tool [8].
Criminal investigations might need the analysis
of running, and that link has been investigated
[19].

Moreover, a gait verification system for this
criminal investigation has been developed in [7].
The system is equipped with a graphical user
interface (Fig. 6) so as that a criminal investigator,
who may not be a researcher on gait recognition,
can obtain gait-based person verification results
through appropriate manual interventions: tar-
get specification, interactive silhouette extraction,

and undesired region masking (e.g., helmet) if
necessary. The system outputs a posterior distri-
bution that a pair of walking image sequences
are generated from the same person based on
circumstance-dependent probability distribution
functions of dissimilarity scores from the same
person’s pairs and different persons’ pairs. The
system is now under a trial use phase by the
National Research Institute of Police Science in
Japan.

One system called the biometric tunnel [13]
led to the first live demonstration of gait as a
biometric and could suggest a possible route for
future deployment of the technology. The left
side of Fig. 7 depicts the system. It consists of a
simple corridor with 12 synchronized and fixed
cameras. The subjects are asked to walk through
the middle, and the lighting and background are
controlled to facilitate analysis. The right side of
Fig. 7 shows the details of the arrangement. The
system is designed with high throughput in mind.

Recently, the first commercial software of
gait recognition has been released by Watrix in
Oct. 2018, which was incubated by the Institute
of Automation, Chinese Academy of Sciences
(CASIA). According to their website, once a user

Gait Recognition:
Databases,
Representations, and
Applications, Fig. 5
Bank robbery



498 Gait Recognition: Databases, Representations, and Applications

Gait Recognition: Databases, Representations, and Applications, Fig. 6 Gait verification system

Gait Recognition: Databases, Representations, and Applications, Fig. 7 The biometric tunnel

offers the software videos to be inspected and
an example video of a target, then the software
can complete a search through 1 hour of video
in 10min with 94% accuracy. The software has
been piloted in the public security system for
more than 1,000 h, being used for detection in
more than 20 cases so far.

Open Problems

Robustness of gait recognition against each
covariate such as view, walking speed, clothes,
carrying status, etc. has increased thanks to a
series of gait recognition studies. One of the
open problems is robustness against multiple
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covariates at the same time, e.g., matching of
gaits with different walking speeds as well as
from different viewing angles. In addition, since
most of the current gait databases are collected
under relatively controlled environments (e.g., a
single walking person without occlusions under a
simple background), it is also necessary to inves-
tigate gait recognition in more realistic situations
(e.g., cluttered backgrounds, occlusions by other
people). Moreover, because recent deep learning-
based approaches require more and more training
data to achieve high accuracies, it is also an
important issue how to construct such large-scale
gait databases, which preferably include multiple
covariates conditions as well as are collected in
realistic situations.
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500 Gamut Mapping

Definition

Gamut Mapping refers to the process of translat-
ing colors in one device’s color space to that of
another. This process is performed on colors in
images and video so as to create a rendition of
a source image (typically in a capture device’s
color space) in an output device’s color space
while meeting several rendering intents: absolute
and relative colorimetric fidelity, perceptual accu-
racy, and the problem of saturation – each of
which trades off one color property at the expense
of another.

Background

Different media – cameras, printers, displays –
have different achievable gamuts, depending on
the manner in which color is either captured
or reproduced. This typically means that one
medium can have colors that may not be repro-
ducible on another. The color gamut of a device
may be displayed as a volume of achievable
colors, and typically this is shown in a CIELAB
or CIELUV (see Fig. 1), or as a projection on
the CIE xy or u“v” chromaticity diagram (see
Fig. 2). The three-dimensional representation is
far more informative than the two-dimensional
projection as it captures the nuances of the color
space, specifically around the luminance of the
primaries and the associated black and white
levels of the medium. The two-dimensional pro-
jection requires multiple luminance slices to be
plotted for it to be comparably informative.

Theory

The challenge of gamut mapping may be
described by means of an example of a case
where an image stored within an sRGB color
space needs to be reproduced in a print medium
with SWOP colors: Fig. 3 shows two color
gamuts – the sRGB color gamut (wireframe)
almost enclosing a SWOP color space (solid).
It is interesting to note that there are regions of
the color space that are represented by the sRGB

color space but are not represented by the SWOP
color space and vice versa. In performing such a
mapping, the following challenges arise:

– How should black and white be mapped?
– Should colors in the intersection of the two

gamut volumes be reproduced as such, or
should they be compressed?

– How should input colors that are outside the
output color space be reproduced?

– What must be done with colors that can be
created with the output color space but cannot
be represented in the input color space?

The objective of gamut mapping algorithms
is to translate colors in the input color space to
achievable colors in the output color space so as
to meet certain key criteria that are referred to as
rendering intents (per ICC guidelines [3]):

– ICC-absolute colorimetric intent: “Chromat-
ically adapted tristimulus values of in-gamut
colors are unchanged.” This intent preserves
the relationship among in-gamut colors at the
expense of out-of-gamut colors while main-
taining accuracy. Again, nothing is specif-
ically stated about the mapping of out-of-
gamut colors.

– Media-relative colorimetric intent: “The use
of media-relative colorimetry enables colour
reproductions to be defined which maintain
highlight detail, while keeping the medium
white, even when the original and reproduc-
tion media differ in colour.” This intent also
preserves the relationship between in-gamut
colors at the expense of out-of-gamut col-
ors while maintaining accuracy. Nothing is
specifically stated about the mapping of out-
of-gamut colors.

– Perceptual intent: “The exact gamut mapping
of the perceptual intent is vendor specific
and is useful for general reproduction of pic-
torial images, typically includes tone scale
adjustments to map the dynamic range of one
medium to that of another, and gamut warping
to deal with gamut mismatches.” This objec-
tive of this intent is clear from the definition,
and typically involves proprietary algorithms
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GamutMapping, Fig. 1 Three-dimensional renderings of color gamuts: (a) device with sRGB color space, (b) device
with SWOP color space
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Gamut Mapping, Fig. 2 Two-dimensional renderings of color gamuts of a device with sRGB color space and one
with SWOP color space in (a) CIE xy chromaticity diagram, (b) CIE u“v” chromaticity diagram

to perform the gamut mapping for general
reproduction of images, particularly pictorial
or photographic-type images.

– Saturation intent: “The exact gamut mapping
of the saturation intent is vendor specific and
involves compromises such as trading off

preservation of hue in order to preserve the
vividness of pure colours.” This objective of
this intent is also clear from the definition, and
also typically involves proprietary algorithms
to perform the gamut mapping for images and
video that contains charts and diagrams.
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GamutMapping, Fig. 3
Three-dimensional
renderings of color gamuts
of an sRGB color space
(wireframe) and a SWOP
color space (solid)
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Most gamut mapping algorithms are per-
formed in either the device space or in a
perceptual space: the choice of which space to use
is highly application and preference dependent.
For the sake of simplicity, in this article, we will
restrict ourselves to a CIELAB space along with
its perceptual correlates: CIELAB Lightness,
Chroma, and Hue. However it should be noted
that gamut mapping algorithms could be defined
in a variety of spaces, making use of each
space’s general perceptual correlates of hue,
chroma/colorfulness, and lightness/brightness.

Typical color gamuts are shown in Fig. 3 and
particular Hue slices for red–green, and yellow–
blue are shown in Fig. 4. That is, these slices each
show a vertical slice through a color solid, each at
a particular position around the surrounding cir-
cle we consider to be Hue – i.e., is a color red, is
it green, etc. The Chroma increases from zero in
the center of the solid to a maximum value on the
outside of the solid, and Lightness (the correlate
of brightness) goes from minimum (black) at the
bottom to maximum (white) at the top. To ease
illustration, Hue slices will be abstracted using

figures like those in Fig. 5 composed of highly
simplified shapes (triangles in this case) – real-
world color gamuts can be far more complicated
and not included in these illustrations. It is to be
noted that the point LM-out is often referred to as
the cusp for that Hue slice.

Multiple variations of different scenarios of
Hue slices are shown in Fig. 6 to illustrate the
variety of problems one might encounter with
gamut mapping even when the shape of the
gamut is simplified using triangles. These four
cases show the input gamut to be larger (in the
Lightness scale) than the output gamut, but it is
straightforward to envision the opposite set of
cases (swapping input and output color spaces)
to be possible as well for different gamut pairs.
It is also straightforward to envision gamut pairs
for which the Lightness scales match. Clearly,
even for one gamut pair, one chosen approach for
“mapping” the gamuts may work for most Hue
slices, but might fail for a different Hue slice.

In general, gamut mapping algorithms may be
classified based on which of four approaches is
taken:
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GamutMapping, Fig. 4
A set of slices of the color
gamut of an sRGB color
space (in a CIELAB
representation) showing
the (a) red–green slice and
(b) a yellow–blue slice

GamutMapping, Fig. 5
A highly simplified Hue
slice of color gamut of a
gamut pair showing the
min-max and most
chromatic points in the two
gamuts
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Gamut Clipping
Gamut clipping approaches may be described as
those that address those colors that are outside the
gamut of the output color space. Some of the most

common approaches include those that are near-
est neighbor and those that are Hue-preserving.
Nearest-neighbor approaches map the color in the
input gamut’s color space to a color in the output
gamut’s color space that is nearest as defined by
one of the following criteria:

– Nearest color in the output color space along a
vector of constant Lightness: Mapping along
the vector of constant Lightness tends to
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GamutMapping, Fig. 6
Four variations of Hue
slices showing challenges
that gamut mapping
algorithms have to address.
The complement of these
approaches also exist
wherein the input and
output gamuts are reversed
in these pictures
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address the mapping issue as a simple one-
dimensional problem of changing only the
Chroma of a color. This is shown as approach
(a) in Fig. 7, with the mapping occurring along
the dashed blue lines.

– Nearest color in the output color space along
a vector to the point in the Hue slice with
a Lightness of 50. Mapping along the vector
pointing to a Lightness of 50 has the advantage
that both Lightness and Chroma are adjusted,
which helps maintain contrast between colors.
This is shown as approach (b) in Fig. 7. This
approach is sometimes further divided as a
mapping to a different Lightness value for
colors above and below the cusp of the input
gamut, shown as approach (c) in Fig. 7.

– Nearest color in the output color space along
a vector to the point in the Hue slice with
a Lightness of the cusp ( LM-out in Fig. 5):
Mapping to the cusp has the advantage of
maintaining the general trend of the Lightness
in the input and output color spaces. This is
shown as approach (d) in Fig. 7.

– Nearest color in the output color space based
on a color difference measure: If one were to
use the CIELAB difference measure �E∗

ab,

which is approximately perceptually uniform,
a color would be mapped to an output color
that is perceptually closest to the input color
as defined by the �E∗

ab measure. A slightly
different variant of this approach would be to
use a different color difference measure, such
as �E94, or �E∗

00 (CIEDE2000), or some
other preferred color difference measure. It is
to be noted that this can result in shifts in the
Hue descriptor for a color.

Gamut Compression/Expansion
One of the challenges that arises with gamut
clipping is that this invariably results in loss
of detail in images when multiple input colors
map to the same output color, especially when
large differences in color gamuts are to be over-
come. If this behavior is not desired, gamut com-
pression (or alternatively expansion) is typically
performed. The approaches for gamut compres-
sion/expansion may be classified as belonging to
one of three classes:

– Lightness compression/expansion approaches
operate only along the Lightness/luminance
axis when the largest difference is along



Gamut Mapping 505

G

Chroma

Li
gh

tn
es

s
Li

gh
tn

es
s

0 CM-in

LM-in

100

LM-out

LMax-out

CM-out

LMin-out

Chroma

Li
gh

tn
es

s

0 CM-in

LM-in

100

LM-out

LMax-out

CM-out

LMin-out

LM-in

100

LM-out

LMax-out

LMin-out

a

c

b

d

Chroma

0 CM-in

66

33

CM-out

50

Chroma

Li
gh

tn
es

s

0 CM-in

LM-in

100

LM-out

LMax-out

CM-out

LMin-out

Output gamut
Input gamut
Direction of Mapping

Output gamut
Input gamut
Direction of Mapping

Output gamut
Input gamut
Direction of Mapping

Output gamut
Input gamut
Direction of Mapping

Gamut Mapping, Fig. 7 Different directions for map-
ping colors showing the (a) mapping along lines of con-
stant Lightness, (b) mapping along lines of fixed Light-

ness, (c) mapping along lines of varying lightness with a
simple example of two different Lightnesses, (d) mapping
along the vectors to the output gamut’s cusp

this axis of the color space. The resulting
Chroma (after Lightness mapping) could
either be clipped or get compressed/expanded
appropriately.

– Chroma compression/expansion approaches
operate only along the Chroma axis.
The resulting Lightness (after Chroma
mapping) could either be clipped or get
compressed/expanded appropriately.

– Lightness and chroma compression approaches
operate on both Lightness and Chroma at the
same time by mapping colors along various
directions, as for those shown in Fig. 7a–d.

In all these approaches, independent of
which dimension of the color space is com-
pressed/expanded, or which direction of com-
pression/expansion is chosen, the choice of the
input–output relationship impacts the outcome
significantly. Figure 8 shows various input–
output relationships for the two parameters –

Lightness and Chroma – that may be used for
the above approaches. All these approaches are
typically performed on a hue-by-hue basis.

Spatial Gamut Mapping Algorithms
The gamut mapping approaches discussed thus
far consider individual colors in an image in
isolation, aside from their relationship in the
color space. This disregards key factors that are
known to impact the appearance of colors to
human observers, such as spatial frequency of
the image/color, surround colors, and other color
appearance phenomena that can greatly change
the perception of a color. Discounting these fac-
tors typically results in loss of detail in images
or a degradation in the perception of the image –
although specific colors may have been “accu-
rately” mapped. A generic class of approaches
called spatial gamut mapping algorithms take the
spatial relationships of colors into account when
mapping colors. A simple, yet robust, framework
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GamutMapping, Fig. 8
Different input–output
relationships for gamut
compression/expansion,
represented for parameter
P which denotes Lightness
and/or Chroma
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GamutMapping, Fig. 9 A generic framework for spatial gamut mappers

proposed by Balasubramanian et al. [1] is shown
in Fig. 9 where the two gamut mappers (a) and
(b) are tuned for the specific application. The
objective of the spatial high-pass filter is to allow
for Lightness variations in the signal when high-
frequency content in the image is encountered.
This is based on the observation that humans
possess the most visual acuity in the brightness
dimension of color, and so high spatial frequency
content is more perceived along the Lightness
axis.

Memory-Color-Aware Gamut Mapping
Algorithms
Although this class of algorithms may be com-
bined with the three other classes of gamut map-
ping solutions, it is important to address this
issue separately as this is at the core of high-

quality gamut mapping algorithms. One of the
most challenging tasks of a gamut mapping algo-
rithm arises from the fact that its performance is
typically evaluated by a human observer. Human
observers have visual systems that, apart from
being highly complex in terms of the appearance
phenomena that determine their behavior, have
preferences: the sky has to be a certain shade
of blue, human skin tone rendition has to be a
“certain” desired color, the color of green grass
has to be a very specific shade of green, etc.
This requires gamut mapping algorithms to com-
prehend these colors, deemed memory colors:
colors that the human observer “knows” to be a
certain shade, especially in the context in which
they are presented. Approaches that attempt to
maintain the rendition of memory colors tend to
be proprietary to the vendors. These approaches
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tend to be mostly probabilistic in nature, taking
into account a very large database of memory col-
ors as rendered in the output media and deemed
suitable by the solution providers.

Open Problems

The rendering intents as specified by the ICC
say little about how the mapping needs to be
performed [5]. Open questions like the following
still remain unanswered:

– What must be done when there is a com-
bination of the rendering intents? This is a
relatively common problem when a pictorial
image containing the logo of a corporation
needs to be gamut mapped – the logo needs
to be accurate while the image may need to be
perceptually mapped.

– What attributes of the appearance of colors
must be used? Colors may be defined by
their Lightness, Chroma, and Hue; or by their
brightness, colorfulness, and Hue. The choice
of which triplet needs to be used will help
determine the color space that is to be chosen
for gamut mapping.

– What color space is best suited to perform
gamut mapping? In the case of colorimetric
intents, it is relatively clear that the tristimulus
values need to be maintained/adapted, and the
chromatic-adaptation transform is specified to
be the linear Bradford model. Even if one were
to know clearly which appearance attributes to
use, for each set of appearance attributes, and
application, different color spaces lend them-
selves differently. More importantly, differ-
ent color spaces provide different “predictors”
for these appearance attributes and the gamut
mapping algorithm needs to rely on the accu-
racy of these predictors.

Interested readers are referred to works by
various authors in the general field of color imag-
ing and reproduction that address not just the
immediate needs of gamut mapping algorithms
but the more important aspect of their interaction

with the larger image and color processing chain
in typical capture, display, and print systems
[2, 4, 6].
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Definition

Generative adversarial network (GAN) is a
framework that was invented for the purpose
of creating an artificial distribution that mimics
a given target distribution, and it consists
of a generator function that produces the
imitator distribution from a seed prior and a
discriminator function that distinguishes the
artificial distribution from the target.

Background

The task of approximating the probability den-
sity from empirically collected dataset (i.e., the
training dataset)–or, in short, the task of learn-
ing a generative model–is a central problem of
machine learning. The most straightforward way

of carrying out this task is the method of max-
imum likelihood estimation (MLE). However, a
naive application of MLE with arbitrary choice of
models won’t suffice. For the learning of a com-
plex probability distribution like the underlying
distribution of image datasets, one needs a family
of models that are complex enough to mimic the
original; one popular choice is the family of neu-
ral networks. A problem that arises in applying
the method of MLE to a complex model is the
difficulty of evaluating the normalizing constant,
which is also known in physics literature by
the name of partition function. With appropriate
design of models, however, we may compute the
probability density p(x) with relative ease. This
is the central philosophy of auto-regressive model
[14] and normalizing flow [24]; these models
can all be trained by directly maximizing the
likelihood function. There is also a family of
methods that gives up on the direct optimization
of the likelihood and instead settles with the
maximization of a lower bound. Evidence lower
bound (ELBO) is a particularly popular lower
bound of the log-likelihood that is used by the
celebrated variational autoencoder (VAE) [13].
Still another family of methods goes even so far
to avoid the direct confrontation with the likeli-
hood estimation and uses a different energy that
behaves like the likelihood. Score matching [11]
and noise-contrastive estimation [9] fall into this
category.

Generative adversarial network (GAN) [8] is
a method of generative modeling that is particu-
larly popular for the task of image generation, and
it falls into still another category called implicit
model [21]. GAN are implicit model in that it
allows the probability density to remain implicitly
defined as a part of the generator model. But
of course, this advantage comes at the cost of
difficulty in estimating the log-likelihood of the
data. As subjective as it may sound, GAN is
more popular than VAE, auto-regressive model,
and normalizing flow simply for its outstanding
ability to generate photorealistic images. From a
more practical view point, GAN is useful because
it can be built from a wide variety of generator
models. We just want the model of GAN to
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allow us to (1) sample from the artificial dis-
tribution and (2) take derivative with respect to
the parameters. The training of GAN does not
require much more than some blunt knowledge
of how the target distribution is generated; GAN
is thus especially handy when there is a physical
simulator of the environment.

In what follows, we will go over the basic
theory of GAN and introduce some notable
applications of GAN including video generations
and inverse-reinforcement learning. We will then
close this entry with several important open
problems of GAN.

Theory

Let us denote the training dataset by D =
{x(n)}Nn=1, x ∈ R

dx . If the dataset consists of
a set of grayscale images, for example, each
coordinate of x may represent a pixel intensity
at the corresponding pixel. We also need a
placeholder for the true distribution from which
the dataset D is collected. Let q(x) be the
density of the true distribution at x. Typically, the
generator distribution in GAN is constructed by
applying a parametric function Gθ : Rdz → R

dx

to a latent variable z ∈ R
dz sampled from some

prior distribution p(z). In application, Gθ is
oftentimes a neural network, and the parameter
θ is the vector of the parameters of the network.
Gaussian and uniform distributions are popular
choices of the prior distribution. We often refer
to the deterministic function Gθ as the generator
in the context of GAN.

In the training algorithm of GAN, the gen-
erator function is trained together with the dis-
criminator, which is in charge of evaluating “how
close” the generator distribution is to the true
distribution. Ever since the first invention of GAN
by [8], numerous measures of the “closeness”
have been developed together with different types
of discriminators. The original formulation intro-
duced in [8] is a good place to start. In the
original formulation, the discriminator function
is a parametric function Dφ : R

dx → [0, 1]
that takes a sample x in R

dx and outputs the

probability that x could have been sampled from
q. For the training of the parameter φ, [8] used
the objective function of the form below:

min
θ

max
φ

V (θ, φ)

where V (θ, φ) ≡ E
x∼q

[log(Dφ(x))]

+ E
z∼p

[log(1 − Dφ(Gθ(z)))].
(1)

Of course, in actual implementation, the
expectation in the expression above is both
computed empirically by using the samples from
the dataset D and the samples from the prior
distribution p(z). Let us dissect this equation and
elaborate the meaning of each piece. The maxφ

part of this equation is the classic likelihood-
based objective function for binary classification;
this part is in charge of training the discriminator
to more accurately discriminate the sample from
the generator from the sample from the true
distribution. The minθ part, on the other hand,
is responsible for training the generator to better
deceive the discriminator–that is, to generate
a sample that cannot be distinguished from
the samples from true distribution. Figure 1 is
the schematic of the GAN model The training
process proceeds by recursively updating the
discriminator and the generator in turn. It is often
customary to apply several steps of stochastic
gradient descent (SGD) to the discriminator
for each update of the generator. The name
“generative adversarial network” comes from
this training process, in which the generator and
the discriminator act as a pair of adversaries that
attempt to deceive one another.

Not so surprisingly, the optimal value of
the objective function maxφ V (θ, φ) of the
discriminator at any stage of the training is the
Jensen-Shannon divergence (JSD) between the
true distribution q(x) and the current generator
distribution pθ(x). Thus, we can interpret the
training process of the discriminator as the
estimation of the JSD. As it turns out, we can
modify the objective function so that the training
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Generative Adversarial Network (GAN), Fig. 1 The schematic of the GAN

Algorithm 1 Generative adversarial network
with gradient descent

– Given dataset D = {x(n)}Nn=1, initial generator and
discriminator parameters θ, φ.

– For t in {1, . . . , T }

1. For k in {1, . . . , K}
Update discriminator Dφ for fixed G

θ̂
with learn-

ing rate α > 0:

φ ← φ + α∇φV (θ̂ , φ). (2)

2. Update generator Gθ for fixed D
φ̂
with learning

rate β > 0:

θ ← θ − β∇θV (θ, φ̂). (3)

of the discriminator will amount to the estimation
of f-divergence. See [22] for a concise list of
common f-divergence and the corresponding
objective function (Lucic et al. [17] also presents
results that suggest that the quality of images
produced by GAN is not much affected by the
choice of the divergences.).

The Algorithm 1 is the pseudo-code of the
training process of GAN. Some words of cau-
tion are in order for the implementation of this
training process. In general, a naive update of
the generator based on the Algorithm 1 tends not
to work well in practice. As magical as it may
sound,

∇θ

(
− E

z∼p
[log(D

φ̂
(Gθ(Z)))]

)
(4)

is usually used in place of ∇θV (θ, φ̂). This is in
fact what is done in the original article of [8] as
well. The work of [1] attributes the failure of

the original vanilla formulation to the phenomena
of vanishing gradient that takes place when the
support of the generator distribution and the true
distribution is disjoint. We also shall note that, in
practice, the discriminator is never updated until
the objective function reaches the JS divergence;
instead, it is updated only a few numbers of times
(∼5) for each update of the generator. As sug-
gested by [5], the study of GAN’ training process
from the perspective of divergence minimization
is thus a Pandora’s box; much ambiguities still
remain unresolved.

As GAN became more widely applied, a more
major problem came to light; the training of GAN
tends to be very unstable, and numerous studies
tackled this problem from different perspectives
(e.g., [1, 18]). As of 2019, the unspoken con-
sensus is that one can alleviate the problem by
imposing appropriate regularity condition onto
the choice of the discriminator. Arjovsky and
Bottou [1] required the discriminator to be 1-
Lipschitz function with R range and showed
that the training based on their objective func-
tion amounts to solving the dual problem of
minimizing the 1-Wasserstein distance between
the generator distribution and the true distribu-
tion (WGAN). In their original article, Arjovsky
and Bottou realized this regularization by using
the method of weight clipping. Miyato et al.
[20] pointed out that weight clipping is in fact
requiring more than just the Lipschitz condition
and improved their approach by controlling the
spectral norm of each layer in the discriminator
function. Many methods of GAN today regular-
ize the Lipschitz constant of the map in some
way or another. Mescheder et al. [18] takes
the approach of penalizing the gradient of the
discriminator with respect to the input.
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Numerous variants of GAN have been pro-
posed to date. MMDGAN [15] is an extension
of moment matching networks [16], and it for-
mulates the problem as an optimization problem
in RKHS. Together with WGAN, MMDGAN is
oftentimes referred to as the GAN of integrated
probability metric type (IPM, [27]). All variants
of GAN, however, stick to the common strategy
of training the discriminator and the generator in
turn, and one may regard this strategy as the sole
defining ingredient of GAN. Likewise in the dis-
cussion of f-divergence, some studies report that
the performance of GAN does not change much
with the choice of the objective function [17]. At
the same time, there is some room for discussion
for the choice of the evaluation metric used in
their work, and one cannot say for sure that the
choice of the objective function does not affect
the behavior of GAN. We will further explore
the choice of the evaluation metric in the open
problem section.

Applications

Image and video generation The history of the
theories of GAN is tightly bound to the history
of GAN’ applications. The first notable appli-
cation of GAN to image generation was done
by [23], and they used convolutional neural net-
works for both discriminator and generator. Kar-
ras et al. [12] has built on their work and suc-
ceeded in producing super photo-realistic images
using their progressive GAN, which successively
generate a high-resolution image from a low-
resolution image by gradually augmenting both
the generator and discriminator with additional
sets of layers. Miyato et al. [20] used the afore-
mentioned spectral normalization technique and
succeeded in using a single pair of discriminator
and generator to learn the distribution on Ima-
geNet, a massive benchmark dataset that consists
of images of 1000 categories. More recently,
[4] discovered that one can significantly improve
the image generation of GAN by training large
networks with large batch size (∼2048) (conven-
tional size had been ∼256). There are applica-
tions of GAN to the video generation as well [25].

The quality of these results, however, has not yet
reached the levels of [12] and [4], and there is
still a long way to go for application of GAN, the
video generation tasks.

Unpaired Image Translation Unpaired image
translation is a particularly interesting application
of GAN. The translation of a dataset from one
domain to another seems to require a set of paired
images of the two domains as a training dataset.
However, [30] succeeded in using the framework
of GAN to change the domain of the images
without the dataset of paired images. Zhu et
al. [30] achieved this feat by augmenting the
objective function of GAN with what is so-
called cycle consistency loss, which requires
that the original image can be retrieved from the
translated image by the domain translation in
other direction.

Adversarial Imitation Learning Also, the recent
surge of interests in autonomous AI has given
a birth to an interesting application of GAN to
inverse reinforcement learning [6]. The goal of
inverse reinforcement learning is to learn a good
policy from the histories of actions taken by the
experts. In more precise terms, the task of inverse
reinforcement learning is to learn both the cost
function c(s, a) and the policy function π(s, a)

with respect to state-action pair (s, a) in such
a way that (1) c(s, a) is trained to be low on
the trajectory of the expert while being high on
the trajectory of the agent following the policy
π(s, a) and (2) π(s, a) is trained to optimize
c(s, a). A keen reader might have noticed that this
formulation is akin to the formulation of GAN,
because c is acting as like a “discriminator” that
discriminates the policy of the expert from the
policy of the agent and π is acting like a generator
that strives to mimic the expert. In fact, with
the above correspondence, the objective function
of the inverse reinforcement learning coincides
with GAN’s objective function augmented with
a term that penalizes the entropy of π . Numer-
ous variants of inverse-reinforcement learning
based on this formulation have been developed
to date. Recent variants include [2]’s model-
based method in which one can back-propagate
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the trajectories, and [7]’s method that promotes
the robustness of the trained policy against the
change in the dynamics of the environment. This
is an active field of research for which there is still
much room for improvement. For more extensive
surveys, please consult [6].

Open Problems

Mode Collapse The users of GAN are often
vexed by the issue of mode collapse, phenomena
in which the generator produces a single output
from multiple inputs. Salimans et al. [26] was the
first one to investigate this problem in depth. In
their original article, [26] attempted to alleviate
this problem by introducing the idea of mini-
batch discrimination to promote the diversity of
the images within each mini-batch. Later, [19]
proposed unrolled optimization that takes the
discriminator’s update into account in the design
of the generator’s update, and [29] proposed a
method that encourages the entropy of the gen-
erator distribution using a functional-gradient-
based interpretation of GAN’s update.

Evaluation Metrics The most essential problem
in the research of GAN is the absence of a natural
evaluation metric. Recall that, in application, the
max part of the minimax objective function of
GAN is almost never fully optimized during the
training process. The learning curve of GAN
therefore does not mean much; let alone JSD,
it does not correspond to the upper bound of
any divergence measure that measures how close
the generator distribution is to the true distribu-
tion. Naturally, this becomes a serious problem
in comparing one method of GAN to another–
researchers will be left to just scream to each
other that “my image is better than yours”! [26]
endeavored to resolve this problem and proposed
to use the inception model [28] as a judge. In their
work, they showed that their evaluation metric
based on the mutual information with the output
of the inception model is closely correlated with
the human evaluation. The inception score is
given by

exp

(
1

M

N∑
m=1

KL(p(Y |x(m))||p(Y ))

)
, (5)

where x(m) is the m-th sample from the trained
generator that is subject to the evaluation, p(Y |x)
is the trained inception model, and p(Y ) :=
1
N

∑N
m=1 p(Y |x(m)) is the aggregated posterior.

Inception score is widely used as an evaluation
metric of GAN.We shall not forget, however, that
the human evaluation that is used to validate the
use of the inception score is also subjective, and it
does not take the diversity of images into account.
The later proposed evaluation metrics including
Frechet inception distance [10] and Kernel incep-
tion distance [3] partially addresses this issue
by considering the high-order moment of the
generator distributions. However, their methods
too depend on the choice of the judge model. A
practical and natural statistical evaluation metric
is still yet to be discovered.
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Definition

Geodesics are locally the shortest paths in
some space. Equivalently, geodesics are curves
for which small perturbation increases their
length according to some measure. A minimal
geodesic corresponds to the shortest geodesic
connecting two points. In computer vision and
pattern recognition, the way distance is measured
and the resulting geodesics define the specific
application, see [1] for a pedagogical introduction
to the field of numerical geometry of images.

Background

Edge detectors can be defined from a variational
perspective where an edge is a curve along which
the image gradient aligns with the curve’s normal
[2–6]. These types of edges are geodesics in the
sense of integrating the inner product between the
curve’s normal and the image gradient and by
Green’s Theorem can be shown to be the Marr-
Hildreth edge detectors [7], also known as LZC
or Laplacian zero crossings. In fact, the more
sophisticated Canny-Haralick [8, 9] edge detector
can be viewed in a similar geometric-variational
manner [3].

The first to formulate computer vision prob-
lems from a variational axiomatic view point
was probably Horn [10]. For example, shape
from shading, the problem of shape reconstruc-
tion from an intensity image, can be casted into a
minimal geodesic computation problem. In a sim-
ilar fashion, the image domain can be separated
into meaningful regions by treating the image
either as a set of pixels, each tries to place itself in
the right segment, or as contours that attempt to
locate themselves along the boundaries between
objects. These kinds of contours live somewhere
between histogram segmentation and edge detec-
tion and could be referred to as edge integrators.
The geodesic active contour (GAC) model was
first presented in [11]; see also [12] for a link
between vector quantization and the GAC model.
It is a computational framework to find local
geodesics in a domain weighted by some edge
indicator function. Its first implementation was

via the Osher-Sethian level set framework [13].
Minimal geodesics in that metric were shown to
be the solution of an eikonal equation [14] that
could be efficiently solved by the fast marching
method [15, 16]; see also its extension to surfaces
[17].

Eikonal solvers compute distance maps in a
specific metric. Shape morphology, which defines
algebra of shapes via Minkowski operations on
sets of points, can also be related to distance
maps. For an intuitive explanation, one can think
of adding two shapes as the process of adding two
numbers A and B. The result can be thought of
as adding n times the number 1

n
B to A. As n →

∞, addition can be considered as a differential
process. In a similar manner, erosion and dila-
tion operations in mathematical morphology of
shapes have a differential interpretations. Its con-
tinues formulation was put forward in a number
of publications [18–20] relating to level sets and
eikonal solvers.

The geodesic active contour model evolves a
given contour into a local geodesic via a heat
flow in the space of weighted contours. Other
heat flows evolve the image level sets themselves
towards geodesics in Euclidean, affine, or per-
spective geometries. For example, the curvature
scale space [21, 22] and the affine scale space [23,
24] can simplify the image structure in a topology
preserving manner, where topology refers to the
connectivity of the image level sets.

Theory

Consider the geodesic active contour functional

E(C) =
∫

g (C(s)) ds, (1)

where g is some edge indicator function, e.g.,
g(x, y) = (|∇I| + ε)−1, and C(s) = { x(s), y(s)}
is an arclength parametrized planar contour, for
which the first variation is given by

δE

δC
= − (kg − 〈∇g,n〉)n, (2)
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where n is the curve’s normal and κ its curvature.
One could either find geodesics under that metric
by a gradient descent process Ct = − δE

δC
, that in

a level set formulation reads

φt = div

(
g

∇φ

|∇φ|
)

|∇φ| .

Here, φ is an implicit representation of the
curve C. The way to find minimal geodesics
under the same metric would be by solving the
eikonal equation |∇u| = g with u(p) = 0 at some
source point p in the image domain, and then
extract the minimal geodesic by gradient descent
flow Ct = − ∇ u from some target point q to the
source point p.

InterestingMeasures

In the shape from shading problem, the surface
z(x, y) is reconstructed from the shading image
I(x, y) = 〈N, l〉, where N is the surface normal and
l is the light source direction. For l = ẑ, one needs
to solve for z in the eikonal equation

|∇z| =
√
1 − I 2

I 2

The Marr-Hildreth edge detector is given by
the extremal curves of

E(C) =
∫

〈n,∇I 〉 ds,

for which the first variation vanishes for
	I = 0, while the Canny-Haralick edge detector
integrates the extremal curves of

E(C) =
∫

〈n,∇I 〉 ds −
∫∫


C

k(I ) |∇I | dxdy.

In this case the first variation w.r.t. C (pro-
vided by Euler-Lagrange equation) vanishes for
Iξξ = 0. Equivalently, edges are found where the
second derivative of the image along the image
gradient direction ξ = ∇I

|∇I | is equal to zero.

Minimizing the Euclidean arclength s =∫ |Cp|
dp leads to the curvature flow, Ct = Css or equiv-
alently Ct = kn, that for an image simultaneous
evolution of all its level sets reads

It = div

( ∇I

|∇I |
)

|∇I | .

The Equi-Affine arclength v = ∫ |det(Cp,
Cpp)|1/3 dp leads to the affine heat flow Ct = Cvv,
or equivalently Ct = k1/3 n, that for all image level
sets simultaneous evolution is given by

It =
(
div

( ∇I

|∇I |
))1/3

|∇I | .

Application

Total variation [25] methods in image process-
ing, edge detection and integration, segmentation,
structure reconstruction SFS [26, 27], and shape
morphology (algebra of shapes) are all appli-
cations of computing geodesics and geodesic
distances. Each application has its own distance
measure and computational preferred flavor.

Open Problems

The theoretical machinery and concepts that
motivated the usage of differential geometry and
geodesics were adopted to the field of shape
matching, processing, and analysis. Further links
to metric geometry in general and open problems
in this field can be found in [28].
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Synonyms

Clifford algebra

Definition

Geometric algebra is an algebra based on a geo-
metric product of vectors in an inner product
space (a.k.a. the Clifford product). It naturally
extends common geometrical techniques from
linear algebra, to process subspaces and opera-
tions between them in a direct, coordinate-free
manner. It permits division by subspaces (notably
vectors), which leads to much more compact
expression of common operations and algorithms
in linear algebra, and more direct solutions to
equations. Geometric algebra includes quater-
nions, in a real construction as a ratio of vectors,
and extends them to encode rigid body motions.
Geometric algebra also extends vector calculus to
permit direct differentiation with respect to geo-
metrical quantities and operators, thus allowing
classically scalar optimization techniques to be
transferred directly to geometric settings.
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Background

Geometric algebra (GA) (or Clifford algebra) and
its predecessor Grassmann algebra date from the
1870s and 1840s and are therefore older than
linear algebra (LA). They formed the first formal-
ization of how to compute with linear subspaces.
Simplification of the ideas by Gibbs and others
with the intention to construct a compact alge-
braic system for 3D computations in engineering
around 1900 then led to the neglect of these
more general frameworks. Now that parts of their
structure have effectively been patched onto LA
in an ad hoc manner with ideas like homogeneous
coordinates and quaternions, it may pay to recon-
sider the use of GA to unify geometric computa-
tions. Hestenes was the first to realize this in the
1980s [4], initially for physics. In the 1990s, his
ideas percolated into robotics, computer vision,
and computer graphics.

Theory

Geometric algebra assumes a vector space Vn

with inner product, denoted “·” (aka dot product)
between vectors. GA views this dot product as
the symmetric part of an underlying geometric
product denoted “ ” (a half space, or juxtapo-
sition); the other, antisymmetric part being the
outer product, denoted “∧”, signifying the span
of vectors. The axioms of the geometric product
are surprisingly few: it is bilinear, associative,
distributive over vector addition, scalars com-
mute, and the geometric product of a vector v
with itself is a scalar equal to v · v.

From this, it follows that for a (non-null)
vector v, the geometric product is invertible with
v−1 = v/(v · v). This makes division by a vec-
tor a permissible operation. That in turn simpli-
fies many geometric expressions. For instance, a
reflection of a vector in a plane with normal n
at the origin can be rewritten in a much simpler
form than the classical linear algebra expression:

x �→ x − 2
x · n
n · nn = x − 2

(
x n + n x

2

)
n−1

= −nxn−1.

Planar reflection is an orthogonal transforma-
tion, and concatenating such reflections leads to
the general expression of an orthogonal trans-
formation as being characterized as a product
of invertible vectors – an algebraic and compu-
tationally practical consequence of the famous
Cartan-Dieudonné theorem. In particular, a rota-
tion in 3D may be represented as the product of
two reflections, i.e., an element mn applied in a
“sandwiching” manner to a vector:

x �→ (mn) x(mn)−1.

Taking the normal vectors to be normalized to
unity, this element (mn) has the same algebraic
properties as a unit quaternion. Quaternions in
GA are therefore simply products (or ratios) of
real vectors denoting double planar reflections.
Parametrizing this product of vectors by their
angle I φ/2 (i.e., φ/2 from n to m to produce a
rotation over φ in that sense), we may write

m n = n · m − n ∧ m

= cos (φ/2) − I sin (φ/2) = e−Iφ/2,

where I is the unit “bivector” n ∧ m of the
plane span (n,m), with an orientation determined
by the order of the spanning vectors. One may
verify (by the axioms of the geometric product)
that I2 = − 1, so that the “complex” nature of
the quaternions is merely a consequence of the
axioms of the geometric product of a real vector
space. The final expression as an exponent then
follows from the usual Taylor series definition of
the exponential, extended to GA elements.

This parametrization of an orthogonal trans-
formation as the exponent of a bivector uses the
minimal 1

2n (n − 1) parameters in an n-D vector
space. In applications estimating an orthogonal
transformation from data, this is more convenient
than the usual overparametrization as an n × n
matrix M, needing to impose orthogonality as the
1
2n (n + 1) constraints MT M = I.

An element that can be made as the product
of unit vectors, or expressed as the exponent of
a bivector, is called a rotor in GA. In multiply-
ing operators, this rotor representation is more
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efficient than matrices (a generalization of the
well-known advantage of unit quaternions over
rotation matrices). For applying the operator to
vectors only, matrices are faster; but rotors can
be applied, without modification, to any geomet-
ric element. The reason behind this is that an
orthogonal transformation represented by a rotor
V trivially preserves the geometric product in a
covariant manner:

V (AB)V −1 =
(
V AV −1

) (
V BV −1

)
.

As long as we make any construction in GA
from a linear combination of geometric products,
and as long as we can represent the transforma-

tions of interest as rotors, we have a structure-
preserving implementation of our geometry. As
we will see below, this may require choosing a
clever embedding relationship between the space
in which our geometric elements reside, and the
geometric algebra that represents them.

As one multiplies elements of geometric alge-
bra, elements of various grades appear. These can
be decomposed on a basis consisting of blades,
which are elements factorizable by the outer
product. Such elements represent subspaces of
a dimension equal to their grade. For instance,
starting from a basis {e1, e2, e3} for the vector
space R3, one obtains eight basis blades:

⎧⎨
⎩ 1,︸︷︷︸

scalar basis

e1, e2, e3,︸ ︷︷ ︸
vector basis

e2 ∧ e3, e3 ∧ e1, e1 ∧ e3,︸ ︷︷ ︸
2−blade basis

e1 ∧ e2 ∧ e3︸ ︷︷ ︸
3−blade basis

⎫⎬
⎭ .

Geometrically, these can be interpreted as the
point at the origin, three vector directions, three
2-directions of planar elements, and a volume ele-
ment. A geometric algebra of an n-dimensional
vector space has a basis of 2n elements (like
its Grassmann algebra). The high dimensional-
ity of a geometric algebra is not an argument
against its use, since the possibility to gener-
ate all structure-preserving interactions between
such elements automatically at compile time off-
sets much run time complexity [3]; also, the
geometrically meaningful elements tend to be
obtained by multiplication of basis elements, and
those are sparse on this basis. (Incidentally, such
multiplicative generation of meaningful elements
may be taken as a distinction between geomet-
ric algebra and Clifford algebra, since the latter
permits arbitrary addition in its theoretical con-
struction.) In fact, the “extra” elements are mostly
geometric objects one would make anyway in
classical LA, but now integrated in one consistent
framework.

Scalar and vector calculus is naturally
extended to GA elements. This makes it
possible to optimize orientation estimations
by differentiating a well-chosen cost criterion
with respect to rotors, and demanding that the

result be zero. Such capabilities are beginning to
provide powerful coordinate-free geometrical
optimization methods (see, e.g., [10]), in
which specific parametrizations can be chosen
conveniently afterward.

The Conformal Model

In linear algebra, homogeneous coordinates are
an embedding trick that permits us to use the
linear transformations of an (n + 1)-dimensional
space to represent projective transformations
of an n-dimensional space computationally.
In GA, there is an embedding which allows
computing with conformal transformations in
an n-dimensional space using the rotors (i.e.,
orthogonal transformations) from the algebra of
an (n + 2)-dimensional space [1]. This space has
an inner product with signature (n + 1, 1), i.e.,
one can provide it with an orthonormal basis of
which n + 1 vectors square to +1, and 1 vector
squares to −1. A more commonly used basis is a
“null basis” involving the vector n∞ representing
the point at infinity, and no, an arbitrarily chosen
finite point (which can serve as an origin,
similarly to the extra dimensions in homogeneous
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coordinates). The products of the two non-
Euclidean dimensions obey n2o = n2∞ = 0,
and no · n∞ = − 1. This, combined with a well
chosen embedding of points, permits the space to
be an isometric image of Euclidean space (which
homogeneous coordinates are not). The resulting
geometric algebra is often referred to as CGA
(for conformal geometric algebra).

The embedding of Euclidean space into CGA
is that a point P at Euclidean location p relative
to no is represented by a vector p ∈ R

n + 1, 1 given
by

p = α

(
no + p + 1

2
p2n∞

)
,with α ∈ R

(which may be viewed as an extension of
the homogeneous coordinate representation
α(no + p)). Note that p is a null vector: p2 = 0. A
simple computation now shows that the squared
Euclidean distance between two normalized
points is effectively the inner product between
their representative vectors:

−1

2
‖p − q‖2 =

(
p

−n∞ · p

)
·
(

q

−n∞ · p

)
.

The factor −n∞ · p is the homogeneous
weight α of the point representation, so dividing
by it provides a normalization. It follows that
orthogonal transformations of R

n + 1, 1 which
preserve the point at infinity n∞ preserve
Euclidean distances, and hence represent rigid
body motions of R

n. Their rotors (sometimes
called motors) form a more general form of unit
quaternion which can represent rotations around
a general axis, combined with a shift along
that axis. When n∞ is not preserved, a rotor
of the algebra represents a general conformal
transformation.

As to the blades in CGA, a general vector
of the space R

4, 1 (to be specific) represents a
Euclidean 3D sphere in a dual manner (with a
hyperplane as a special case). A point is merely
a dual sphere of zero radius. A 4-blade (i.e.,
the outer product of four points) represents the
oriented sphere through those points, unless one
of them is n∞, in which case it represents an
oriented plane. Similarly, 3-blades are oriented

circles or lines, and 2-blades are oriented point
pairs. Other useful geometric elements obtain
an algebraic definition, such as tangent vectors,
tangent planes, and purely directional elements.
In CGA, therefore, classical primitives already
used effectively in the specification of geometri-
cal algorithms finally obtain an algebraic expres-
sion that permits automatic generation of their
transformation properties under the rotors repre-
senting the operators of interest. The generating
capabilities of CGA are quite powerful: e.g.,
P = (X ·A)/A represents the projection of a blade
X onto a blade A; if X is a line and A is a sphere,
then P is a great circle. Such geometrical nuggets
may be found in tutorial texts like [3].

Application

While on paper GA may look more involved than
LA, its structure-preserving properties make for
cleaner software for geometrical applications; the
algebra playing the role – at compiler time if
required – of generating the transformation meth-
ods for the various geometric data objects auto-
matically [3]. The formalism presumably allows
for the expression of all desired geometry, and
helpfully hampers the construction of elements
without geometric meaning (if certain simple
construction rules are followed).

The novel representation of rigid body
motions and the associated geometric primitives
has already permitted compact treatment of such
geometrical computer visions tasks as camera
calibration [6, 10], pose estimation [8], and
pose interpolation [2]. Image transformations
in space and value can be given their own
geometric algebra [5] and signal processing [9].
Applications to color processing or quaternionic
Fourier transforms are so far less compelling.

Open Problems

Currently, the GA equivalents of a suite of
techniques from applied linear algebra are
being uncovered and turned into practical
tools. These include eigenproblems, singular
value decomposition, spectral analysis, calculus
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(Lagrange optimization) and statistics (geometric
noise characterization [7]), and more. Since
linear algebra and vector calculus are contained
within geometric algebra, one can always defer
to known techniques, but the employment of the
full suite of GA techniques in sample problems
is showing promise.

Moreover, other useful GA models are being
identified: for 3D projective geometry, the geo-
metric algebra of 3D lines involving the space
R
3, 3 can represent projective transformations as

orthogonal transformations, and hence perform
them through structure-preserving rotor compu-
tations.
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Geometric Calibration
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Related Concepts

�Calibration
�Calibration of Projective Cameras
�Camera Calibration

Definition

Geometric calibration is the process of deter-
mining the geometric property of a camera such
as its intrinsic and extrinsic parameters. It is
often referred to as simply camera calibration in
computer vision. The reader is referred to entry
� “Camera Calibration” for a discussion on other
camera calibration tasks.

Background

Much work has been done, starting in the pho-
togrammetry community (see [1, 2] to cite a
few) and more recently in computer vision ([3–
10] to cite a few). According to the dimension
of the calibration objects, we can classify those
techniques roughly into four categories.

3D reference object-based calibration. Camera
calibration is performed by observing a cali-
bration object whose geometry in 3-D space
is known with very good precision. Calibra-
tion can be done very efficiently [11]. The
calibration object usually consists of two or
three planes orthogonal to each other. Some-
times, a plane undergoing a precisely known
translation is also used [5], which equivalently
provides 3D reference points. This approach
requires an expensive calibration apparatus
and an elaborate setup.
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2D plane-based calibration. Techniques in this
category requires to observe a planar pat-
tern shown at a few different orientations [12,
13]. Different from Tsai’s technique [5], the
knowledge of the plane motion is not neces-
sary. Because almost anyone can make such
a calibration pattern by himself/herself, the
setup is easier for camera calibration.

1D line-based calibration. Calibration objects
used in this category are composed of a set of
collinear points [14, 15]. As will be shown,
a camera can be calibrated by observing a
moving line around a fixed point, such as a
string of balls hanging from the ceiling.

Self-calibration. Techniques in this category do
not use any calibration object and can be
considered as 0D approach because only
image point correspondences are required.
Just by moving a camera in a static scene, the
rigidity of the scene provides in general two
constraints [9, 16] on the cameras’ internal
parameters from one camera displacement by
using image information alone. Therefore, if
images are taken by the same camera with
fixed internal parameters, correspondences
between three images are sufficient to recover
both the internal and external parameters
which allow us to reconstruct 3-D structure
up to a similarity [17, 18]. Although no
calibration objects are necessary, a large
number of parameters need to be estimated,
resulting in a much harder mathematical
problem.

Other techniques exist: vanishing points for
orthogonal directions [19, 20] and calibration
from pure rotation [21, 22].

Theory

What follows is an excerpt of the review on
camera calibration [23]. The reader is referred to
[23] for a complete review of various geometric
calibration techniques.

Geometric calibration depends on which cam-
era model is used. The reader is referred to
entry � “Camera Model” for a presentation of

various camera models. In the sequel, we use the
perspective camera model.

Camera Calibration with 3D Objects
The traditional way to calibrate a camera is to
use a 3D reference object such as those shown in
Fig. 1. In Fig. 1a, the calibration apparatus used
at INRIA [11] is shown, which consists of two
orthogonal planes, on each a checker pattern is
printed. A 3D coordinate system is attached to
this apparatus, and the coordinates of the checker
corners are known very accurately in this coordi-
nate system. A similar calibration apparatus is a
cube with checker patterns painted in each face,
so in general three faces will be visible to the
camera. Figure 1b illustrates the device used in
Tsai’s technique [5], which only uses one plane
with checker pattern, but the plane needs to be
displaced at least once with known motion. This
is equivalent to knowing the 3D coordinates of
the checker corners.

According to the perspective camera model,
the relationship between the 3D point M and its
image projection m is given by

sm̃ = A [R t]︸ ︷︷ ︸
P

M̃ ≡ PM̃, (1)

with A =
⎡
⎣α γ u0
0 β v0
0 0 1

⎤
⎦ (2)

and P = A [R t] (3)

where s is an arbitrary scale factor; (R, t), called
the extrinsic parameters, is the rotation and trans-
lation which relates the world coordinate sys-
tem to the camera coordinate system; and A is
called the camera intrinsic matrix, with (u0, v0)
the coordinates of the principal point, α and β

the scale factors in image u and v axes, and γ the
parameter describing the skew of the two image
axes. The 3 × 4 matrix P is called the camera
projection matrix, which mixes both intrinsic and
extrinsic parameters. Matrix P is defined up to a
scale factor, so it only has 11 free parameters.

Given one 2D-3D correspondence (mi,Mi),
we can write down two equations based on
Eq. (1). There are in total 11 unknowns (5



522 Geometric Calibration

Geometric Calibration,
Fig. 1 3D apparatus for
calibrating cameras

Known displacement

Known displacement

a b

intrinsic parameters and 6 extrinsic parameters).
If we have 6 or points that do not lie on a single
plane, a unique solution is available.

A popular technique in this category consists
of four steps [11]:

1. Detect the corners of the checker pattern in
each image.

2. Estimate the camera projection matrix P using
linear least squares.

3. Recover intrinsic and extrinsic parameters A,
R, and t from P.

4. Refine A, R, and t through a nonlinear opti-
mization.

Note that it is also possible to first refine P
through a nonlinear optimization and then deter-
mine A, R, and t from the refined P.

It is worth noting that using corners is not the
only possibility. We can avoid corner detection by
working directly in the image. In [24], calibration
is realized by maximizing the gradients around
a set of control points that define the calibration
object. Figure 2 illustrates the control points used
in that work.

Camera Calibration with 2D Objects:
Plane-Based Technique
This technique only requires the camera to
observe a planar pattern from a few different
orientations [12, 13]. An example is shown in
Fig. 3.

Geometric Calibration, Fig. 2 Control points used in a
gradient-based calibration technique

Given an image of the model plane, a homog-
raphy between the known model plane and the
image can be estimated. Let us denote it by
H = [

h1 h2 h3
]
. Without loss of generality, we

assume the model plane is on Z = 0 of the world
coordinate system. This yields

[
h1 h2 h3

] = λA
[
r1 r2 t

]
,

where λ is an arbitrary scalar. The reader is
referred to [12, 25] for the derivation. Using the
knowledge that r1 and r2 are orthonormal, we
have
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Geometric Calibration,
Fig. 3 Two sets of images
taken at different distances
to the calibration pattern.
Each set contains five
images. On the left, three
images from the set taken
at a close distance are
shown. On the right, three
images from the set taken
at a larger distance are
shown

hT
1 A

−T A−1 h2 = 0 (4)

hT
1 A

−T A−1 h1 = hT
2 A

−T A−1 h2. (5)

These are the two basic constraints on the
intrinsic parameters, given one homography.
Because a homography has 8 degrees of freedom
and there are 6 extrinsic parameters (3 for rotation
and 3 for translation), we can only obtain 2
constraints on the intrinsic parameters.

If the camera is shown with the model plane
at N general orientations, we have 3N constraints
on five intrinsic parameters. With N ≥ 3, a unique
solution is available. There is a degenerate con-
figuration in this technique when planes are par-
allel to each other. See [15] for a more detailed
description.

A recommended calibration procedure is as
follows:

1. Print a pattern and attach it to a planar surface.
2. Take a few images of the model plane under

different orientations by moving either the
plane or the camera.

3. Detect the feature points in the images.
4. Estimate the five intrinsic parameters and all

the extrinsic parameters using the closed-form
solution.

5. Estimate the coefficients of the radial distor-
tion.

6. Refine all parameters, including lens distor-
tion parameters, through maximum likelihood
estimation.

Solving Camera Calibration with 1D
Objects
A 1D object consisting of three or more points on
a line. An example is shown in Fig. 4.

As discussed in [14, 26], calibration is impos-
sible with a free moving 1D calibration object,
no matter how many points on the object. It is,
however, possible if the 1D object moves around
a fixed point. In the sequel, let the fixed point be
point A, and a is the corresponding image point.
We need three parameters, which are unknown,
to specify the coordinates of A in the camera
coordinate system, while image point a provides
two scalar equations according to (Eq. 1).

Two Points with Known Distance
They could be the endpoints of a stick, and
we move the stick around the endpoint that is
fixed. Let B be the free endpoint and b, its
corresponding image point. For each observation,
we need two parameters to define the orientation
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Geometric Calibration,
Fig. 4 Sample images of a
1D object used for camera
calibration

of the line AB and therefore the position of B
because the distance between A and B is known.
Given N observations of the stick, we have five
intrinsic parameters, three parameters for A and
2N parameters for the free endpoint positions to
estimate, that is, the total number of unknowns is
8 + 2N. However, each observation of b provides
two equations, so together with a we only have
in total 2 + 2N equations. Camera calibration is
thus impossible.

Three Collinear Points with Known Distances
By adding an additional point, say C, the number
of unknowns for the point positions still remains
the same, that is, 8 + 2N. For each observation, b
provides two equations, but c only provides one
additional equation because of the collinearity
of a, b, and .(R, t).a.. Thus, the total number
of equations is 2 + 3N for N observations. By
counting the numbers, we see that if we have six
or more observations, we should be able to solve
camera calibration, and this is the calibration
technique as developed in [14, 26].

Four or More Collinear Points with Known
Distances
Again, the number of unknowns and the num-
ber of independent equations remain the same

because of invariance of cross ratios. This said,
the more collinear points we have, the more
accurate camera calibration will be in practice
because data redundancy can combat the noise in
image data.

Self-calibration
Self-calibration is also called auto-calibration.
Techniques in this category do not require
any particular calibration object. They can
be considered as 0D approach because only
image point correspondences are required. Just
by moving a camera in a static scene, the
rigidity of the scene provides in general two
constraints [9, 16, 17] on the cameras’ internal
parameters from one camera displacement by
using image information alone. Absolute conic
is an essential concept in understanding these
constraints. Therefore, if images are taken by
the same camera with fixed internal parameters,
correspondences between three images are
sufficient to recover both the internal and external
parameters which allow us to reconstruct 3-D
structure up to a similarity [17, 18]. Although no
calibration objects are necessary, a large number
of parameters need to be estimated, resulting in a
much harder mathematical problem. The reader
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is referred to two books [27, 28] which provide
an excellent recount of those techniques.

Discussions

Although many calibration techniques exist, no
single calibration technique is the best for all. It
really depends on the situation a user needs to
deal with. Following are my few recommenda-
tions:

– Calibration with apparatus vs. self-calibration.
Whenever possible, if we can pre-calibrate
a camera, we should do it with a calibra-
tion apparatus. Self-calibration cannot usually
achieve an accuracy comparable with that of
pre-calibration because self-calibration needs
to estimate a large number of parameters,
resulting in a much harder mathematical prob-
lem. When pre-calibration is impossible (e.g.,
scene reconstruction from an old movie), self-
calibration is the only choice.

– Partial vs. full self-calibration. Partial self-
calibration refers to the case where only a
subset of camera intrinsic parameters are to
be calibrated. Along the same line as the
previous recommendation, whenever possible,
partial self-calibration is preferred because
the number of parameters to be estimated is
smaller. Take an example of 3D reconstruction
with a camera with variable focal length. It
is preferable to pre-calibrate the pixel aspect
ratio and the pixel skewness.

– Calibration with 3D vs. 2D apparatus. Highest
accuracy can usually be obtained by using a
3D apparatus, so it should be used when accu-
racy is indispensable and when it is afford-
able to make and use a 3D apparatus. From
the feedback I received from computer vision
researchers and practitioners around the world
in the last couple of years, calibration with a
2D apparatus seems to be the best choice in
most situations because of its ease of use and
good accuracy.

– Calibration with 1D apparatus. This technique
is relatively new, and it is hard for the moment
to predict how popular it will be. It, however,
should be useful especially for calibration of

a camera network. To calibrate the relative
geometry between multiple cameras as well as
their intrinsic parameters, it is necessary for all
involving cameras to simultaneously observe
a number of points. It is hardly possible to
achieve this with 3D or 2D calibration appara-
tus if one camera is mounted in the front of a
room while another in the back. An exception
is when those apparatus are made transparent;
then the cost would be much higher. This is
not a problem for 1D objects. We can, for
example, use a string of balls hanging from the
ceiling.

In this entry, we have only considered the
linear projective projection. With real cameras,
lens distortion sometimes has to be considered.
The reader is referred to the entry � “Calibration
of Projective Cameras”.
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Synonyms

Recognition-by-components (RBC) theory

Definition

Geons are a set of less than 50 qualitative 2-D or
3-D part classes derived from permuting a set of
four dichotomous and trichotomous properties of
a generalized cylinder (GC). The values of these
properties are nonaccidental in that they can be
resolved from a general viewpoint, e.g., whether
the axis of a cylinder is straight or curved.
Geons were originally introduced by Biederman
[1, 2] as the foundation for his recognition-by-

http://research.microsoft.com/~zhang/Calib/
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components (RBC) theory for human shape
perception, whereby object-centered models
are represented as concatenations of geons, and
object recognition from a 2-D image proceeds by
matching recovered parts, typically segmented at
regions of matched concavity, and their relations
to object models.

Background

The concept of modeling an object as a com-
position of generalized cylinders dates back to
Binford [3], who spawned a generation of object-
recognition systems based on generalized cylin-
ders, e.g., [4–8]. Generalized cylinders suffered
from unbounded complexity, for arbitrarily com-
plex functions could be used to define the axis,
cross section, and sweep functions. As a result, it
became popular to restrict the complexity of these
functions, e.g., straight axis, constant or linear
sweep, rotationally symmetric cross section, in
order to facilitate their overconstrained recovery
from sparse image data.

In the mid-1980s, two alternative restrictions
on generalized cylinders emerged from the
computer vision and human vision communities,
respectively. Pentland [9] introduced the
superquadric ellipsoid to the computer vision
community – a 3-D, symmetry-based part
representation that afforded a large degree
of descriptive power with a small number of
parameters. Around the same time, Biederman
[1, 2] introduced geons to the human vision
community as part of his recognition-by-
components (RBC) theory. Like superquadric
ellipsoids, geons exploited symmetry to reduce
the complexity of a generalized cylinder.
However, while the superquadric ellipsoid was
a metric shape representation, the geon was a
qualitative shape categorization. Thus, when
a superquadric ellipsoid was recovered from
an image, the recovered parameters defined a
specific shape (a generative model), whereas
when a geon was recovered from an image, it
defined a symbolic part class (non-generative
category) with only coarse (rather than exact)
metric specification.

The appeal of the geon was twofold: (1) its
properties were based on the sorts of judgments
that humans are very good at, e.g., judging
whether a line was straight or curved rather than
estimating its exact curvature; and (2) each geon
class afforded a high degree of within-class shape
deformation, offering great potential for shape
categorization and invariance over orientation in
depth. Given extensive experiments with humans
and primates that lent strong support of his RBC
theory, the computer vision community quickly
set out to develop computational models for geon
recovery from 2-D images.

Theory

Geons define a partitioning of a subspace of the
generalized cylinders. Like generalized cylinders,
each geon is defined by its axis function, its
cross-section function, and its sweep function.
Biederman noted that humans are (1) much better
at distinguishing between straight and curved
lines than they are at estimating curvature; (2)
much better at distinguishing parallelism from
nonparallel symmetry than they are at estimating
the angle between two causally related lines;
and (3) good at distinguishing between various
types of vertices produced by a cotermination of
contours, such as a fork from an arrow from a
L-junction. Drawing on these properties of the
human visual system, Biederman mapped the
spaces of the three generalized cylinder param-
eters to dichotomous and trichotomous values
(Fig. 1):

• Axis shape: the axis takes on two possible
values: straight or curved.

• Cross-section shape: the cross-section shape
takes on two possible values: straight-edged or
curved-edged.

• Sweep function: the cross-section sweep
function takes on four possible values:
constant, monotonically increasing (or
decreasing), monotonically increasing and
then decreasing, or monotonically decreasing
and then increasing.
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Geons, Fig. 1 The space
of approximately 50 geons
is defined by permuting the
dichotomous and
trichotomous properties of
a restricted space of
generalized cylinders

The set of geons is generated by variations in the production function for generalized
cylinders that produce viewpoint-invariant (= nonaccidental) shape differences

1. Cross Section: Straight vs. Curved

2. Axis: Straight vs. Curved

3. Size of Cross Section:
Constant (parallel sides) vs. Expand vs. Expand & Contract vs Contract & Expand

4. Termination of Geon when Nonparallel: Truncated vs. Pointed vs. Rounded

© Irving Biederman

• Termination: given a nonconstant sweep func-
tion, the termination of a geon could be trun-
cated, end in a point (projects into an L-
vertex), or end as a curved surface.

Originally, Biederman [2] posited cross-
section symmetry as another attribute (with
three possible values: rotationally symmetric,
possessing an axis of reflective symmetry, or
asymmetry) but that attribute was dropped as
experiments showed that people assume symmet-
rical cross-sections, even when the cross- section
is asymmetrical (as with an airplane wing).

Permuting the possible values of these four
functions defines a space of 2 ×2 ×4 ×3 =
48 3-D geons, as illustrated in Fig. 1. Adding
2D geons, e.g., circle, quadrilateral, and triangle,
and subtracting the eight instances of constant
sweep (2 axis shape ×2 cross-section shape ×2
point and curved terminations) when the sweep
function is constant brings the total to about 50.

RelatedWork

Hummel et al. [10, 11] first proposed a
connectionist model for recovering geons
from line drawings that achieved invariance to

viewpoint. In the computer vision community,
Bergevin and Levine were the first to propose
a computational model for geon recovery and
geon-based recognition [12–16]. Dickinson et al.
[17–19] introduced a hybrid object representation
combining 3-D object-centered volumetric parts
and 2-D viewer-centered aspects modeling the
parts. While the framework was applicable
to any vocabulary of volumetric parts, it was
demonstrated on a qualitative shape vocabulary
very similar to geons. Many geon-based
frameworks followed, including probabilistic
approaches [20], logic-based approaches [21],
parametric geon recovery from range data [22–
24], deformable contour-based approaches [25],
deformable volume-based approaches [26], and
active vision approaches [27, 28]. See [29] for a
panel discussion on the strengths and weakness
of geons and the challenges that lie ahead.

Open Problems

Geons have tremendous potential as a part
representation in support of object categorization.
They are qualitative and can support a high
degree of within-class deformation, they (like
generalized cylinders) map to the natural part
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structure of objects (when such elongated part
structure exists), they are viewpoint-invariant 3-D
parts that support object-centered 3-D models
(which, in turn, better support scaling to large
databases), and there is psychophysical support
for them (the human is still, by far, the best
example of an object categorization system).
Despite these advantages, geons declined as
a subject of study in the computer vision
community in the late 1990s, in part due to the
advent of appearance-based recognition and a
general movement away from shape features.

The main reason for their decline was not
necessarily a shortcoming of the representation,
i.e., geons, but rather the community’s inability to
extract qualitative shape from real images of real
objects. Except for those approaches operating on
range images, the work reviewed above operated
on either line drawings or uncluttered scenes
containing simple, textureless objects. The key
assumption made by these systems was that a
salient contour in the image maps one-to-one
to a salient surface discontinuity (or occluding
contour) on a geon. Unfortunately, in a real scene,
objects contain texture, shadows, reflectance con-
tours, and structural “noise” (surface disconti-
nuities that are not salient with respect to the
geon class), all of which introduce unwanted
contours. Moreover, images of contours (both
good and bad) may be broken or noisy, requir-
ing complex perceptual grouping and multiscale
analysis to restore and capture the salient shape
of the contours. Yet despite these conditions,
humans and primates have absolutely no trou-
ble distinguishing (or abstracting) those contours
that mark orientation and depth discontinuities –
the critical contours for geon extraction – from
contours reflecting variations in surface texture,
color, lighting, shadows, etc.

As discussed in Dickinson [30], the recog-
nition community’s gradual movement from
shape toward appearance, coupled with the
community’s interest in engineering practical
systems, drew attention away from basic
research on shape modeling in support of object
categorization. However, the community is once
again realizing that over the set of exemplars
belonging to an object category, shape is far more

invariant than appearance. As a result, shape-
based object categorization systems (mainly
using contours) are beginning to reemerge, e.g.,
[31]. But a return to local contour-based features
is not sufficient, as local shape features are still
too exemplar-specific. Rather, such features must
be perceptually grouped and abstracted to form
more generic shape structures that offer the
within-class deformation invariance required for
effective categorization. Geons offer a powerful
shape abstraction with great categorization
potential, but only when more progress has
been made on the mid-level challenges of
perceptual grouping and intermediate-level shape
abstraction. Some early work along these lines
has started to appear [32].

Experimental Results: Computer
Vision

Figure 2 illustrates three examples of geon recov-
ery systems in the computer vision community. In
Fig. 2a, the system of Bergevin and Levine [15]
recovers geons from line drawings. In Fig. 2b, the
system of Dickinson et al. [27] recovers geon-
like volumetric parts from real images of simple
objects, as does the system of Pilu and Fisher
[25], as shown in Fig. 2c.

Experimental Results: Human Vision

There is now substantial neural and behavioral
evidence for the representation of objects as
an arrangement of geons, as specified by
the recognition-by-components theory. This
evidence can be summarized in terms of six
independent assumptions. Any one (or several)
of these assumptions can be made independent
of RBC but, to date, RBC is the only theory from
which all six derive.

The representation of an object is largely edge-
based – specifically, those edges specifying ori-
entation and depth discontinuities – rather than
surface-based (i.e., color, texture).

Reaction times (RTs) and error rates for nam-
ing briefly presented images of objects are as
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a b c
1 2

4 5

3

Geons, Fig. 2 Three examples of geon recovery in the
computer vision community: (a) decomposing a line
drawing of a lamp into its constituent geon parts, with
bold contours indicating parts: 1 – rear shade, 2 – base, 3 –
front shade, 4 – lower neck, and 5 – upper neck (Bergevin
and Levine [15]); (b) from a region segmentation (upper

right) of the image of an occluded cup (upper left), the two
recovered constituent qualitative volumetric parts (with
matched contours highlighted in black) are shown in lower
left (body cylinder) and lower right (handle bent cylinder)
(Dickinson et al. [27]); and (c) decomposing a phone into
its constituent geons parts (Pilu and Fisher [25])

fast for line drawings as they are for full, color
photography [33]. This is also true of verification
in which the observer verifies whether a name
(“chair”), provided prior to an image of an object,
matches the object. The equivalence in perfor-
mance for identifying line drawings and photog-
raphy is evident even when the objects have a
diagnostic color/texture, such as a fish, fork, or
banana, as opposed to objects with nondiagnostic
surface properties, e.g., a chair or a lamp, which
can be any color or texture.

The equivalence of photography and line
drawings is also witnessed in fMRI activity
where the adaptation (i.e., the reduction) of the
BOLD signal that is evident with a repetition
of a stimulus, fMRI-a, is the same when the
images have the same format, i.e., identical
photographs or line drawings, as when they
have different formats, one a photograph and
the other a line drawing [34]. This invariance to
surface properties is also seen in the response
of many single neurons in object-sensitive areas
in the macaque [35]. In fMRI, the processing of
surface properties, color and texture, activates
different cortical areas than those activated when
processing shape [36].

There are few transformations to appearance
as dramatic as rendering a line drawing from a
photograph yet the readily achieved invariance
to this transformation poses a major challenge to
appearance-based theories of object recognition.

Objects are represented by parts rather than local
features, templates, or concepts.

Object priming is the facilitation that ensues
as a consequence of a prior perception of an
object. It can be readily evidenced by a reduction
in RTs and error rates in the naming of brief,
masked presentations of objects and has been
documented over a 14-month period from the first
to second presentation of the images. (The reduc-
tion in the magnitude of the BOLD response to
a repeated stimulus, termed fMRI adaptation, is
generally attributed to more efficient coding and
is interpreted as a neural correlate of priming.)
Almost all of this priming is visual (i.e., percep-
tual) rather than lexical (easier access to the name
itself) in that an object with the same name but a
substantially different shape, e.g., a grand piano
followed by an upright piano, evidences almost
no facilitation.

Studies with complementary, contour-deleted
line drawings document that all the priming can
be attributed to the repetition of the parts (in
their appropriate relations) as opposed to local
features, i.e., the specific lines and vertices in
the image [37]. Thus, if every other vertex and
line from each geon is deleted from one image
of an object and the deleted contour composes
the other member of a complementary pair, as
in the two images of a flashlight on the left
side of Fig. 3a (so if the two were superim-
posed they would comprise an intact image with
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Every other vertex and line is
deleted from each part and
placed in the other member of
a complementary pair.

If the two members of a
pair of complementary
images are
superimposed they will

produce the original
image with no ovelap in
contour.

Intact objecta b Complementary Image 1 Complementary Image 2 Same Name,
Different Exemplar

c

Nonaccidental

Nonaccidental vs. Metric Comparisons
Metric

Amount of
expansion
of the cross-section

Amount of
negative curvature
of the sides

Amount of
positive curvature
of the sides

Degree of
curvature
of the main axis

Expansion versus
no expansion
of the cross-section

Negative curvature
of the sides versus
straight sides

Positive curvature
of the sides versus
straight sides

Curved main axis
versus
straight main axis

Geons, Fig. 3 Psychophysical evidence in support of
Geons: (a) members of a local contour-deleted comple-
mentary pair, which have the same parts but different local
features, prime each other as much as they do themselves;
priming is not attributable to local contours; (b) there is
no visual priming between members of a complementary
pair when they have no parts in common, as between

the images of the second and third columns [37]; and (c)
equal image differences between nonaccidental (between
center and left columns) and metric properties (between
center and right columns). Geons are distinguished by
nonaccidental properties. Discrimination is much faster
and more accurate for differences in nonaccidental than
metric properties

no overlap of contour), the degree of priming
between members of a complementary pair –
which depict the same parts though with dif-
ferent local contours – is equal to the prim-
ing between identical images. This implies that
none of the priming can be attributable to the
local contours (i.e., the local lines and vertices).
Presumably, the local contours are required to
activate a representation of the part, but once
that part (in its appropriate relations) is activated

there is no contribution of the initial local image
features.

Instead of deletion of local features, if the
deletion is of half the parts of a complex object,
as shown in Fig. 3b, then there is no visual
priming between members of a complementary
pair. Thus the priming is completely dependent
on the overlap in the parts in the two images.
These effects on behavioral priming have their
exact counterpart in fMRI-a. Here, local feature
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complements show the same reduction in the
BOLD response as when the identical images
are repeated, suggesting equivalent representa-
tions, but repetition of part complements show a
complete loss of adaptation thus indicating that
there is no overlap in visual representations when
the images are composed of different parts, even
though they are of the same subordinate concept,
e.g., both grand pianos [38].

Evidence against a template representation
derives from studies of the priming of depth-
rotated stimuli. As long as the same parts can be
readily extracted in two different images of the
same object, recognition or matching of a rotated
object will be achieved with virtually no cost.
However, if because of self-occlusion some parts
disappear and other parts emerge, then priming is
reduced or object matching is impaired [39].

Single cell recordings in the inferior temporal
lobe (IT) of the macaque, the area generally
accepted to mediate object recognition, generally
fire as strongly to one or two of the parts of an
object as they do to the complete object [40].

Parts are distinguished by nonaccidental properties
(NAPs) and only coarsely by metric properties
(MPs).

Values of various dimensions of geons can be
regarded as singular or nonsingular. A singular
value, such as 0 curvature (i.e., a straight
contour), retains that value as the object is
rotated in depth. A nonsingular value, such as
a nonzero value of curvature (i.e., a curved
contour), can vary with the orientation in depth of
that contour. In addition to curvature, parallelism
of two contours can have a singular value of zero
convergence (or divergence) or a nonzero value.
Two or three contours that coterminate can be
regarded as a singular value of zero separation
between their terminations, forming vertices,
such as Ls, arrows, or forks. This framework
can define NAP differences as the difference
between singular and nonsingular values as, e.g.,
a difference between a curved and a straight
contour produced by the parallel sides of the
cylinder on the left in the third row of Fig. 3c
and the middle barrel. Metric differences are
differences in non-singular values, such as two

contours with unequal nonzero curvatures, as
with the slightly curved and more curved barrels
in the third row.

The aforementioned invariance to rotation in
depth holds only if the objects that are to be
discriminated differ in NAPs [39, 41]. Objects
differing only in metric properties incur high
costs when they are encountered at a different
orientation in depth. At equal orientations, the
discrimination of two shapes as being same or
different is markedly easier if the shapes differ
in NAPs than MPs [42]. Cells in the IT region
of the macaque modulate (i.e., vary their firing
rate) much more to a change in a NAP compared
to an MP [35, 43]. Even pigeons show greater
sensitivity to differences in NAPs than MPs [44].
In these comparisons of the sensitivity of NAPs
and MPs, the physical differences are equated
according to a model of V1 [45], the first stage
of cortical shape coding.

Dimensions of generalized cylinders (GCs) are
independently coded and have psychophysical and
neural reality.

The set of geons is generated by combina-
tions of the values of the independent dimensions
shown in Fig. 1. (In addition, as noted previously,
there can be coarse variation in the metric of
these geons, such as their aspect ratio or degree
of axis curvature.) Are simple object parts actu-
ally coded by independent combinations of these
dimensions (vs. just being nondimensionalized
variations in shape templates)? One measure of
independent coding of perceptual dimensions is
whether human observers can selectively attend
to one dimension without any cost from varia-
tions in another, to-be-ignored, dimension. For
example, the speed and accuracy of discrimi-
nating different shapes is unaffected by whether
the colors of those shapes are held constant or
varied. It might seem plausible that shape could
be attended while ignoring a surface feature such
as color. Would efficient selective attention be
manifested when observers are attending to one
shape dimension, say axis curvature, while ignor-
ing variations in another shape dimension, say
aspect ratio. The answer is clearly yes [46]. More-
over, a multidimensional analysis of the firing
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of a population of IT cells to a set of stimuli
similar to that depicted in Fig. 3c shows that
95% of the variance of the spike rates can be
modeled in terms of independent coding of the
GC dimensions [40].

Low sensitivity for discriminating complex, irregu-
lar shapes (= texture?) compared to simple shapes
but high sensitivity for distinguishing regular from
irregular.

Geons are simple and regular. What about
complex, highly irregular objects, such as a
bush or a crumpled sweater? It would be
highly unlikely that people are employing geons
for the precise representation of such objects.
Interestingly, the evidence is that people do not
represent such variation in any detail beyond the
fact that the shapes are irregular and some simple
nonaccidental characterizations, e.g., whether the
surfaces are round or pointed. This is also true of
IT cells [47]. Essentially, objects with irregular
parts are treated as texture, rather than shape.

There is a more general point to be made
here. GCs (and geons) were criticized for their
unwieldiness for modeling objects such as
bushes. But this is confusing a graphics system,
in which the goal is to achieve an exact replica of
the image, with a biological recognition system
designed to do basic- and subordinate-level
classification in which irrelevant variation is best
ignored.

Objects are represented by a structural description
that specifies simple parts and relations.

Geons are the representation of the parts of
an object, but objects are typically composed of
more than one part. In the same manner that
people are sensitive to the order of phonemes,
so “rough” and “fur” have the same phonemes
but in different order, people are sensitive to the
arrangement of parts of an object, so they can say,
e.g., that a vertical cylinder is attached end-to-
middle and perpendicular to the top of a larger
horizontal brick. That geons and their relations
may be coded independently is documented by
a remarkable patient with a left inferior temporal
lesion who had no problem distinguishing objects
differing in their geons but could not distinguish
objects that differed in the relations among the

same geons [48]. Recent neuroimaging studies
show that such relations are specified explicitly
at the same cortical locus, the lateral occipital
complex, that object shape is specified [49].
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Synonyms

Human motion classification

Related Concepts

�Activity Analysis
� Facial Attribute Recognition: A Survey

Definition

Vision-based gesture recognition is the process
of recognizing meaningful human movements
from image sequences that contain information
useful in human-human interaction or human-

computer interaction. This is distinguished from
other forms of gesture recognition based on input
from a computer mouse, pen, or stylus, sensor-
based gloves, touch screens, etc.

Background

Automatic image-based gesture recognition is an
area of computer vision motivated by a range
of application areas, including the analysis of
human-human communication, sign language
interpretation, human-robot interaction, multi-
modal human-computer interaction, and gaming.
Human gesture has a long history of interdisci-
plinary study by psychologists, linguists, anthro-
pologists, and others in the context of human
communication [1], exploring the role of gesture
in face-to-face conversation, universal and cul-
tural aspects of gesture, the influence of gesture
in human evolution and in child development,
and other topics, going back at least to the work
of Charles Darwin with The Expression of the
Emotions in Man and Animals (1872). Research
in computer vision-based gesture recognition
began primarily in the 1990s as computers
began to be capable of supporting real-time (or
interactive time, fast enough to support human
interaction) processing and recognition of video
streams.

Several gesture taxonomies or categorizations
have been developed by different researchers
that underscore the breadth of the problem in
general. Cadoz [2] described three functional
roles of human gesture: semiotic (gestures to
communicate meaningful information), ergotic
(gestures to manipulate the environment), and
epistemic (gestures to discover the environment
through tactile experience). Most work in
automated gesture recognition is concerned with
the first role (semiotic gestures), whereas the area
of activity analysis tends to focus on the latter
two. Kendon [3] described a gesture continuum,
defining five types of gestures: gesticulation,
language-like gestures, pantomimes, emblems,
and sign languages. Each of these has a
varying association with verbal speech, language
properties, spontaneity, and social regulation
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[4], indicating that human gesture is indeed a
complex phenomenon. Gesticulation, defined as
spontaneous, speech-associated gesture, makes
up a large portion of human gesture and is further
characterized by McNeill [5] into four types:

• Iconic – Representational gestures depicting
some feature of the object, action, or event
being described

• Metaphoric – Gestures that represent a com-
mon metaphor, rather than the object or event
directly

• Beat – Small, formless gestures, often associ-
ated with word emphasis

• Deictic – Pointing gestures that refer to peo-
ple, objects, or events in space or time

These gesture types modify the content
of accompanying speech and often help to
disambiguate speech, similar to the role of spoken
intonation. Cassell et al. [6] described early
research in conversational agents that models
the relationship between speech and gesture
and generates interactive dialogs between three-
dimensional animated characters that gesture as
they speak.

Gestures can be seen as a type of activity,
along with other activity types such as actions and
interactions. Gestures are typically considered
as shorter-duration and more simple movements,
whereas actions can be longer-term (like walk-
ing) and consist of a sequence of gestures [7],
and interactions consist of gestures or actions
involving more than one person.

Theory and Application

A gesture may be considered as a continuous set
of movements or as a sequence of discrete poses
or postures. Gestures are inherently dynamic and
time-varying, while postures are specific – and
static – configurations; recognizing specific con-
figurations (such as making a “victory sign”)
should properly be referred to as posture recog-
nition. Aspects of a gesture that may be critical
to its interpretation include spatial information
(where the gesture occurs and/or refers to), pathic

information (the path a gesture takes), symbolic
information (sign(s) made during a gesture), and
affective information (the emotional quality of a
gesture, which may be related to the speed and
magnitude of a gestural act, as well as to facial
expression).

Hand, Head, and Body Gestures
Gestures can be performed by different body
parts and combinations thereof, such as hands,
head, legs, full body, or upper body. Hand ges-
tures have received particular attention in gesture
recognition. Hands provide the opportunity for a
wide range of meaningful gestures, as evidenced
by the rich history of human sign languages such
as American Sign Language (ASL) (e.g., [8]).
Hands may also be convenient for quickly and
naturally conveying information in vision-based
interfaces (e.g., [9]).

At the same time, gestures not involving hands
are also important in various applications. In sign
languages, head movements can carry grammat-
ical information. As an example, in ASL, head
movements can determine if a sentence is an
affirmative statement, a negation, or a question
[10]. Head and eye gesture recognition is used
to design human-computer interfaces, especially
for people with disabilities who may have limited
control of other parts of their body [11]. Camera-
based video game interfaces can recognize body
gestures such as jumping or leaning to the side,
and a choreography application may aim to rec-
ognize different types of dance moves [12].

Isolated and Continuous Gestures
Many existing methods and datasets concentrate
on recognizing isolated gestures, whose start and
end frame are known. Such methods can be appli-
cable in various settings. For example, gestures
may be constrained to a particular point in time
with a “push to gesture” functionality, where the
user pushes a button to indicate the start and/or
end of a gesture [13]. Another example is a
system for recognizing an isolated sign from a
sign language, in which case the user would
need to specify the start frame and end frame of
the sign or provide a video containing only that
sign [14]. At the same time, many real-world
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applications require recognizing gestures whose
start and end frame are unknown.

Temporal segmentation/detection of gestures
is a challenging problem, particularly in less
constrained environments where several kinds
of gestures are possible amidst other movement
[15]. While temporal detection and segmentation
of gestures may be attempted as a first step, other
approaches combine spatial (or spatiotemporal)
segmentation with recognition [16]. Gesture seg-
mentation can involve isolated gestures that are
performed with pauses between them (e.g., when
a user issues gesture commands to a robot [15])
or cases where gestures are signed in a continuous
manner with no breaks between them (e.g., in
continuous sign language recognition [8]).

For recognition of unsegmented gestures, an
important parameter is whether each gesture
must be recognized as soon as possible upon
completion. Recognizing upon completion is
a common requirement in human-computer
interfaces and other real-time applications, where
it is desirable to minimize the system response
time. On the other hand, greater accuracy can
often be achieved if the system waits until
a longer sequence of gestures is observed.
For example, in continuous sign language
recognition, methods such as bidirectional Long
Short-Term Memory and Viterbi alignment can
use features from subsequent signs to recognize
signs occurring earlier [8].

Modalities
Traditionally, gesture recognition methods
mainly used data from RGB video, and RGB data
is still commonly used. Some methods have used
data from a single camera, where recovery of 3D
information can be difficult, limiting accuracy
and constraining the viewpoints from which a
gesture can be recognized (e.g., [14]). Other
methods rely on multi-camera setups, which
however can be more cumbersome and expensive
to deploy in real-world scenarios (e.g., [17]).

In the last decade, there has been a significant
amount of work in gesture recognition from depth
imagery (e.g., [18]) or combinations of video
(RGB) and depth data (e.g., [19]). This devel-
opment was largely initiated by the introduction

of the Microsoft Kinect sensor (and SDK/toolkit)
and the use of body modeling, tracking, and ges-
ture recognition in consumer applications using
the Kinect [9]. Several depth sensors and asso-
ciated toolkits are now available for developing
consumer and industrial applications. Such toolk-
its can compute and output in real time (but not
with perfect accuracy) the position of skeletal
joints based on the video data. In such cases,
skeletal information is often treated by gesture
recognition methods as a separate modality, used
by itself or in combination with the video data.

Processing Pipelines
A typical approach to human gesture recognition
involves detecting and tracking component body
parts, such as hands, arms, head, torso, legs, and
feet, based on an articulated body model and sub-
sequently classifying the movement into one of a
set of known gestures. The output of the tracking
stage is a time-varying sequence of parameters
describing (2D or 3D) positions, velocities, and
angles of the relevant body parts and features,
possibly including a representation of uncertainty
that indicates limitations of the sensor and the
algorithms (e.g., [20]). An alternative is to take
an appearance-based approach, which computes
parameters directly from image and video data,
generally bypassing human body modeling (e.g.,
[19]).

The classification step is typically performed
using a temporal classifier. Some popular
approaches used in the past include Hidden
Markov Models [21], Hidden Conditional
Random Fields [22], and Dynamic TimeWarping
[23]. In the last decade, deep neural networks
have become prevalent, and current popular
approaches include recurrent neural networks
(RNNs) with Long Short-Term Memory (LSTM)
and 3D convolutional neural networks [19].
Gesture recognition methods now commonly
utilize CNNs for other pipeline components
as well, such as feature extraction [24] and
detection/tracking of body parts [25].

Training models to recognize gestures can be
treated as a standard supervised learning prob-
lem, where the training set consists of video
segments and an associated gesture class label for
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each segment. Creating large training sets of this
nature can be cumbersome, as it typically requires
human effort to mark the start and end frames
of gestures in longer videos, in order to generate
the segmented samples [14]. An alternative that
requires substantially less human effort is weakly
supervised learning, where each training video
contains multiple gestures, and the learning algo-
rithm is provided with the sequence of gesture
labels, but not with the start and end frame of each
gesture [8].

Measures of Accuracy
For recognizing isolated, presegmented gestures,
accuracy is typically evaluated based on the per-
centage of correctly classified gestures. For rec-
ognizing unsegmented gestures appearing in a
continuous stream, different measures can be
employed. If the start and end frame of each ges-
ture are known, then accuracy can be measured
at the frame level, as the percentage of frames
to which the system assigned the correct gesture
label [26]. Alternatively, the intersection-over-
union (IoU) measure can be computed to eval-
uate the temporal overlap between each actual
gesture and each gesture identified by the system
[16]. By applying some predefined threshold on
IoU, we can determine true/false positives and
true/false negatives and measure precision, recall,
and the corresponding F1 score. By varying the
IoU threshold, we can obtain a precision-vs.-
recall curve and compute the mean average pre-
cision (mAP) score [26].

Providing the start and end frames of each
gesture as ground truth can be cumbersome or
even impractical for large datasets. Ground truth
can also be provided at a coarser level, by only
specifying the sequence of gestures that occur
in each video. In that case, accuracy can be
evaluated based on the edit distance (Levenshtein
distance) between the correct sequence and the
sequence produced by the model [27].

An important factor in measuring gesture
recognition accuracy is user independence. User-
independent accuracy is the accuracy obtained
when the humans who perform gestures in the

test set are disjoint from the humans performing
gestures in the training set. User-independent
accuracy can be significantly lower than user-
dependent accuracy, due to both the differences
in body types between different humans and the
differences in the style in which different humans
perform the same gesture.

Open Problems

Gesture recognition is a broadly defined set of
problems and challenges, for which there are
some domain-specific solutions that are adequate
for commercial use, but the general problems
are largely unsolved. At the low level, there are
limitations to any choice of sensor type, and work
still needs to be done on integrating data from
multiple sensors. There is no agreement on how
to best represent the sensed spatial and temporal
information and its relationship to human move-
ment. Temporal segmentation of natural dynamic
gestures is unlikely to be solved without a deep
understanding of the gesture semantics, i.e., the
high level context in which the gestures take
place. Despite the recent impact of depth sensors
on this area, the field is still wide open for solu-
tions that can provide precise and robust gesture
recognition in a wide range of environments.

RGB-based gesture recognition methods are
often viewpoint-dependent, due to the challenge
of recovering 3D data from a single RGB cam-
era. Complex and moving backgrounds can also
significantly hurt accuracy. Intra-class variations
can be challenging to model: a single person may
perform a gesture differently at different times,
for example, by varying the speed or range of
motion. Intra-class differences are typically even
greater when gestures are performed by different
people. User-independent recognition of a large
vocabulary of gestures, such as the thousands of
distinct signs in a sign language, is particularly
challenging for existing state-of-the-art methods,
as it is a recognition problem combining large
intra-class variations, small inter-class variations
(signs looking relatively similar to other signs),
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and a relatively small number of training exam-
ples per class.

Research in vision-based gesture recognition
can be stimulated by the creation and sharing
of thorough, annotated datasets that capture a
wide range of spontaneous gestures and imaging
conditions and by apples-to-apples comparisons
such as several ChaLearn Gesture Challenges in
the past decade [27].

References

1. http://www.gesturestudies.com/
2. Cadoz C (1994) Les réalités virtuelles: Un exposé

pour comprendre, un essai pour réfléchir. Flammarion
(réédition numérique FeniXX)

3. Kendon A (1972) Some relationships between body
motion and speech. In: Siegman AW, Pope B (eds)
Studies in dyadic communication. Pergamon Press,
New York

4. Kendon A (2004) Gesture: visible action as utterance.
Cambridge University Press, Cambridge

5. McNeill D (1992) Hand and mind: what gestures
reveal about thought. University of Chicago Press,
Chicago

6. Cassell J, Stone M, Douville B, Prevost S, Achorn B,
Steedman M, Badler N, Pelachaud C (1994) Model-
ing the interaction between speech and gesture. In:
Ram A, Eiselt K (eds) Proceedings of the sixteenth
annual conference of the cognitive science society,
p 153. Erlbaum

7. Aggarwal JK, Ryoo MS (2011) Human activity
analysis: a review. ACM Comput Surv (CSUR)
16(1):1–43

8. Koller O, Zargaran S, Hermann N, Bowden R (2018)
Deep sign: enabling robust statistical continuous sign
language recognition via hybrid CNN-HMMs. Int J
Comput Vis 126(12):1311–1325

9. Zhang Z (2012) Microsoft Kinect sensor and its
effect. IEEE Multimedia 19(2):4–10

10. Liddell SK (1980) American sign language syntax.
Approaches to semiotics. Mouton, Netherlands

11. Grauman K, Betke M, Gips J, Bradski GR (2001)
Communication via eye blinks-detection and duration
analysis in real time. In: IEEE conference on com-
puter vision and pattern recognition

12. Raptis M, Kirovski D, Hoppe H (2011) Real-time
classification of dance gestures from skeleton anima-
tion. In: ACM SIGGRAPH/Eurographics symposium
on computer animation, pp 147–156

13. Lee SC, Li B, Starner T (2011) AirTouch: synchro-
nizing in-air hand gesture and on-body tactile feed-
back to augment mobile gesture interaction. In: Inter-
national symposium on wearable computers, pp 3–10

14. Wang H, Stefan A, Moradi S, Athitsos V, Neidle C,
Kamangar F (2010) A system for large vocabulary
sign search. In: Workshop on sign, gesture and activ-
ity (SGA)

15. Yang H-D, Park A-Y, Lee S-W (2007) Gesture spot-
ting and recognition for human–robot interaction.
IEEE Trans Robot 23(2):256–270

16. Wu D, Pigou L, Kindermans P-J, Do-Hoang Le N,
Shao L, Dambre J, Odobez J-M (2016) Deep dynamic
neural networks for multimodal gesture segmentation
and recognition. IEEE Trans Pattern Anal Mach Intell
38(8):1583–1597

17. Vogler C, Metaxas D (1998) ASL recognition based
on a coupling between HMMs and 3D motion analy-
sis. In: International conference on computer vision,
pp 363–369

18. Shotton, J, Fitzgibbon AW, Cook M, Sharp T, Finoc-
chio M, Moore R, Kipman A, Blake A (2011) Real-
time human pose recognition in parts from single
depth images. In: IEEE conference on computer
vision and pattern recognition (CVPR), pp 1297–
1304

19. Molchanov P, Yang X, Gupta S, Kim K, Tyree S,
Kautz J (2016) Online detection and classification of
dynamic hand gestures with recurrent 3D convolu-
tional neural network. In: The IEEE conference on
computer vision and pattern recognition (CVPR)

20. Cao Z, Hidalgo G, Simon T, Wei S-E, Sheikh Y
(2018) OpenPose: realtime multi-person 2D pose
estimation using Part Affinity Fields. arXiv preprint
arXiv:1812.08008

21. Starner T, Pentland A (1998) Real-time American
Sign Language recognition using desk and wearable
computer based video. IEEE Trans Pattern Anal
Mach Intell 20(12):1371–1375

22. Quattoni A, Wang SB, Morency L-P, Collins M,
Darrell T (2007) Hidden conditional random fields.
IEEE Trans Pattern Anal Mach Intell 29(10):1848–
1852

23. Darrell T, Pentland A (1993) Space-time gestures. In:
Proceedings of IEEE conference on computer vision
and pattern recognition. IEEE

24. Camgoz NC, Hadfield SS, Koller O, Bowden R
(2017) SubUNets: end-to-end hand shape and con-
tinuous sign language recognition. In: 2017 IEEE
International conference on computer vision (ICCV),
pp 3075–3084

25. Narayana P, Beveridge JR, Draper BA (2018) Gesture
recognition: focus on the hands. In: 2018 IEEE/CVF
conference on computer vision and pattern recogni-
tion, pp 5235–5244

26. Tsironi E, Barros P, Weber C, Wermter S (2017) An
analysis of convolutional long short-term memory
recurrent neural networks for gesture recognition.
Neurocomputing 268:76–86

27. Escalera S, Athitsos V, Guyon I (2016) Challenges
in multimodal gesture recognition. J Mach Learn Res
17(72):1–54

http://www.gesturestudies.com/


540 Gradient Vector Flow

Gradient Vector Flow

Chenyang Xu1 and Jerry L. Prince2
1Silicon Valley Future Academy, Palo Alto,
CA, USA
2Electrical and Computer Engineering, Johns
Hopkins University, Baltimore, MD, USA

Synonyms

GVF

Related Concepts

�Active Contours
�Edge Detection

Definition

Gradient vector flow is the vector field that is
produced by a process that smooths and diffuses
an input vector field and is usually used to create
a vector field that points to object edges from a
distance.

Background

Finding objects or homogeneous regions
in images is a process known as image
segmentation. In many applications, the locations
of object edges can be estimated using local
operators that yield a new image called an edge
map. The edge map can then be used to guide
a deformable model, sometimes called an active
contour or a snake, so that it passes through the
edge map in a smooth way, therefore defining the
object itself.

A common way to encourage a deformable
model to move toward the edge map is to take
the spatial gradient of the edge map, yielding a
vector field. Since the edge map has its highest
intensities directly on the edge and drops to
zero away from the edge, these gradient vectors
provide directions for the active contour to move.

When the gradient vectors are zero, the active
contour will not move, and this is the correct
behavior when the contour rests on the peak of
the edge map itself. However, because the edge
itself is defined by local operators, these gradient
vectors will also be zero far away from the edge,
and therefore the active contour will not move
toward the edge when initialized far away from
the edge.

Gradient vector flow (GVF) is the process that
spatially extends the edge map gradient vectors,
yielding a new vector field that contains informa-
tion about the location of object edges throughout
the entire image domain. GVF is defined as a
diffusion process operating on the components of
the input vector field. It is designed to balance
the fidelity of the original vector field, so it is not
changed too much, with a regularization that is
intended to produce a smooth field on its output.

Although GVF was designed originally for
the purpose of segmenting objects using active
contours attracted to edges, it has been since
adapted and used for many alternative purposes.
Some newer purposes include defining a contin-
uous medial axis representation [1], regulariz-
ing image anisotropic diffusion algorithms [2],
finding the centers of ribbon-like objects [3],
constructing graphs for optimal surface segmen-
tations [4], creating a shape prior [5], and much
more.

Theory

The theory of GVF was originally described
in [6]. Let f (x, y) be an edge map defined on
the image domain. For uniformity of results, it is
important to restrict the edge map intensities to lie
between 0 and 1, and by convention f (x, y) takes
on larger values (close to 1) on the object edges.
The gradient vector flow (GVF) field is given by
the vector field v(x, y) = [u(x, y), v(x, y)] that
minimizes the energy functional:

E =
∫∫

R2
|∇f |2|v − ∇f |2

+ μ
(

u2x + u2y + v2x + v2y

)
dx dy . (1)
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In this equation, subscripts denote partial deriva-
tives, and the gradient of the edge map is given
by the vector field ∇f = (fx, fy). Figure 1
shows an edge map, the gradient of the (slightly
blurred) edge map, and the GVF field generated
by minimizing E .

Equation (1) is a variational formulation that
has both a data term and a regularization term.
The first term in the integrand is the data term.
It encourages the solution v to closely agree with
the gradients of the edge map since that will make
v−∇f small. However, this only needs to happen
when the edge map gradients are large since
v−∇f is multiplied by the square of the length of
these gradients. The second term in the integrand
is a regularization term. It encourages the spatial
variations in the components of the solution to
be small by penalizing the sum of all the partial
derivatives of v. As is customary in these types of
variational formulations, there is a regularization
parameter μ > 0 that must be specified by the
user in order to trade off the influence of each of
the two terms. If μ is large, for example, then the
resulting field will be very smooth and may not
agree as well with the underlying edge gradients.

Theoretical Solution
Finding v(x, y) to minimize Equation (1)
requires the use of calculus of variations since
v(x, y) is a function, not a variable. Accordingly,
the Euler equations, which provide the necessary
conditions for v to be a solution can be found by
calculus of variations, yielding

μ∇2u − (u − fx)
(
f 2

x + f 2
y

)
= 0 , (2a)

μ∇2v − (v − fx)
(
f 2

x + f 2
y

)
= 0 , (2b)

where ∇2 is the Laplacian operator. It is instruc-
tive to examine the form of the equations in (2).
Each is a partial differential equation that the
components u and v of v must satisfy. If the
magnitude of the edge gradient is small, then the
solution of each equation is guided entirely by
Laplace’s equation, for example, ∇2u = 0, which
will produce a smooth scalar field entirely depen-
dent on its boundary conditions. The boundary
conditions are effectively provided by the loca-

tions in the image where the magnitude of the
edge gradient is large, where the solution is
driven to agree more with the edge gradients.

Computational Solutions
There are two fundamental ways to compute
GVF. First, the energy function E itself (1)
can be directly discretized and minimized,
for example, by gradient descent. Second, the
partial differential equations in (2) can be
discretized and solved iteratively. The original
GVF paper used an iterative approach, while
later papers introduced considerably faster
implementations such as an octree-based method
[7], a multi-grid method [8], and an augmented
Lagrangian method [9]. In addition, very fast
GPU implementations have been developed in
[10, 11].

Extensions and Advances
GVF is easily extended to higher dimensions. The
energy function is readily written in a vector form
as

E =
∫
Rn

μ|∇v|2 + |∇f |2|v − ∇f |2dx , (3)

which can be solved by gradient descent or by
finding and solving its Euler equation. Figure 2
shows an illustration of a three-dimensional GVF
field on the edge map of a simple object (see
[12]).

The data and regularization terms in the inte-
grand of the GVF functional can also be mod-
ified. A modification described in [13], called
generalized gradient vector flow (GGVF), defines
two scalar functions and reformulates the energy
as

E =
∫
Rn

g(|∇f |)|∇v|2 + h(|∇f |)|v − ∇f |2dx .

(4)
While the choices g(∇f |) = μ and h(|∇f |) =
|∇f |2 reduce GGVF to GVF, the alternative
choices g(|∇f |) = exp{−|∇f |/K} and
h(∇f |) = 1 − g(|∇f |), for K a user-selected
constant, can improve the trade-off between
the data term and its regularization in some
applications.
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Gradient Vector Flow, Fig. 1 An edge map (left)
describes the boundary of an object. The gradient of
the (slightly blurred) edge map (center) points toward

the boundary but is very local. The gradient vector flow
(GVF) field (right) also points toward the boundary but
has a much larger capture range

Gradient Vector Flow, Fig. 2 The object shown in the
top left is used as an edge map to generate a three-
dimensional GVF field. Vectors and streamlines of the

GVF field are shown in the (Z) zoomed region, (V) vertical
plane, and (H) horizontal plane
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The GVF formulation has been further
extended to vector-valued images in [14] where
a weighted structure tensor of a vector-valued
image is used. A learning-based probabilistic
weighted GVF extension was proposed in [15]
to further improve the segmentation for images
with severely cluttered textures or high levels of
noise.

The variational formulation of GVF has also
been modified in motion GVF (MGVF) to incor-
porate object motion in an image sequence [16].
Whereas the diffusion of GVF vectors from a
conventional edge map acts in an isotropic man-
ner, the formulation of MGVF incorporates the
expected object motion between image frames.

An alternative to GVF called vector field con-
volution (VFC) provides many of the advantages
of GVF, has superior noise robustness, and can
be computed very fast [17]. The VFC field vVFC
is defined as the convolution of the edge map f

with a vector field kernel k

vVFC(x, y) = f (x, y) ∗ k(x, y) , (5)

where

k(x, y) =
⎧⎨
⎩

m(x, y)

(
−x√
x2+y2

,
−y√
x2+y2

)
(x, y) �=(0, 0)

(0, 0) otherwise
(6)

The vector field kernel k has vectors that always
point toward the origin but their magnitudes,
determined in detail by the function m, decrease
to zero with increasing distance from the origin.

The beauty of VFC is that it can be computed
very rapidly using a fast Fourier transform (FFT),
a multiplication, and an inverse FFT. The capture
range can be large and is explicitly given by the
radius R of the vector field kernel. A possible
drawback of VFC is that weak edges might be
overwhelmed by strong edges, but that problem
can be alleviated by the use of a hybrid method
that switches to conventional forces when the
snake gets close to the boundary.

Properties
GVF has characteristics that have made it useful
in many diverse applications. It has already
been noted that its primary original purpose
was to extend a local edge field throughout the
image domain, far away from the actual edge in
many cases. This property has been described
as an extension of the capture range of the
external force of an active contour model. It
is also capable of moving active contours into
concave regions of an object’s boundary. These
two properties are illustrated in Fig. 3.

Previous forces that had been used as external
forces (based on the edge map gradients and

Gradient Vector Flow, Fig. 3 An active contour with
traditional external forces (left) must be initialized very
close to the boundary, and it still will not converge to the
true boundary in concave regions. An active contour using

GVF external forces (right) can be initialized farther away,
and it will converge all the way to the true boundary, even
in concave regions
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simply related variants) required pressure forces
in order to move boundaries from large distances
and into concave regions. Pressure forces, also
called balloon forces, provide a uniform force
on the boundary in one direction (outward or
inward) and tend to have the effect of pushing
through weak boundaries. GVF can often replace
pressure forces and yield better performance in
such situations.

Because the diffusion process is inherent in
the GVF solution, vectors that point in opposite
directions tend to compete as they meet at a cen-
tral location, thereby defining a type of geometric
feature that is related to the boundary configura-
tion, but not directly evident from the edge map.
For example, perceptual edges are gaps in the
edge map which tend to be connected visually
by human perception [18]. GVF helps to connect
them by diffusing opposing edge gradient vectors
across the gap; and even though there is no actual
edge map, active contour will converge to the
perceptual edge because the GVF vectors drive
them there (see [19]). This property carries over
when there are so-called weak edges identified by
regions of edge maps having lower values.

GVF vectors also meet in opposition at central
locations of objects thereby defining a type of
medialness. This property has been exploited as
an alternative definition of the skeleton of objects
[1] and also as a way to initialize deformable
models within objects such that convergence to
the boundary is more likely.

Applications

The most fundamental application of GVF is
as an external force in a deformable model. A
typical application considers an image I (x) with
an object delineated by intensity from its back-
ground. Thus, a suitable edge map f (x) could be
defined by

f (x) = |∇(I (x) ∗ Gσ (x))|
maxx |∇(I (x) ∗ Gσ (x))| , (7)

where Gσ is a Gaussian blurring kernel with
standard deviation σ and ∗ is convolution. This

definition is applicable in any dimension and
yields an edge map that falls in the range [0, 1].
Gaussian blurring is used primarily so that a
meaningful gradient vector can always be com-
puted, but σ is generally kept fairly small so that
true edge positions are not overly distorted. Given
this edge map, the GVF vector field v(x) can be
computed by solving (2).

The deformable model itself can be imple-
mented in a variety of ways including parametric
models such as the original snake [18] or active
surfaces and implicit models including geometric
deformable models [20]. In the case of parametric
deformable models, the GVF vector field v can
be used directly as the external forces in the
model. If the deformable model is defined by the
evolution of the (two-dimensional) active contour
X(s, t), then a simple parametric active contour
evolution equation can be written as

γXt = αXss − v(X) . (8)

Here, the subscripts indicate partial derivatives
and γ and α are user-selected constants.

In the case of geometric deformable models,
then the GVF vector field v is first projected
against the normal direction of the implicit wave-
front, which defines an additional speed function.
Accordingly, then the evolution of the signed dis-
tance function φt (x) defining a simple geometric
deformable contour can be written as

γφt =
[
ακ − v · ∇φ

|∇φ|
]

|∇φ| , (9)

where κ is the curvature of the contour and α is a
user-selected constant.

A more sophisticated deformable model for-
mulation that combines the geodesic active con-
tour flow with GVF forces was proposed in [21].
This paper also shows how to apply the Addi-
tive Operator Splitting Schema [22] for rapid
computation of this segmentation method. The
uniqueness and existence of this combined model
were proven in [23]. A further modification of
this model by using an external force term mini-
mizing GVF divergence was proposed in [24] to
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Gradient Vector Flow, Fig. 4 The inner, central, and
outer surfaces of the human brain cortex (top) are
found sequentially using GVF forces in three geometric
deformable models. The central surface uses the gray
matter membership function (bottom left) as an edge map

itself, which draws the central surface to the central layer
of the cortical gray matter. The positions of the three
surfaces are shown as nested surfaces in a coronal cutaway
(bottom right)

achieve even better segmentation for images with
complex geometric objects.

GVF has been used to find both inner, central,
and central cortical surfaces in the analysis of
brain images [3], as shown in Fig. 4. The pro-
cess first finds the inner surface using a three-
dimensional geometric deformable model with
conventional forces. Then the central surface is
found by exploiting the central tendency property
of GVF. In particular, the cortical membership

function of the human brain cortex, derived using
a fuzzy classifier, is used to compute GVF as
if itself were a thick edge map. The computed
GVF vectors point toward the center of the cortex
and can then be used as external forces to drive
the inner surface to the central surface. Finally,
another geometric deformable model with con-
ventional forces is used to drive the central sur-
face to a position on the outer surface of the
cortex.
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Several notable recent applications of GVF
include constructing graphs for optimal surface
segmentation in spectral-domain optical coher-
ence tomography volumes [4], a learning-based
probabilistic GVF active contour formulation
to give more weights to objects of interest in
ultrasound image segmentation [15], and an
adaptive multi-feature GVF active contour for
improved ultrasound image segmentation without
hand tuned parameters [25].
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Synonyms

Articulated hand pose regression; Hand pose
recovery

Related Concepts

�Articulated Pose Estimation

Definition

Hand pose estimation is the process of estimating
the 2D/3D positions of hand keypoints from a
visual input, typically a single depth image or a
single monocular RGB image.

Background

Vision-based hand pose estimation is a very
important problem in computer vision and has

been studied for over 20 years since it is one
of the core technologies for human computer
interaction, especially in virtual reality and
augmented reality applications [11, 16, 17]. For
example, articulated 3D hand pose estimation
provides a natural way for users to interact with
virtual environments and virtual objects [3]. The
estimated hand pose can also be used for hand
gesture recognition.

Although hand pose estimation has aroused a
lot of research attention in recent years, it is still
challenging to achieve efficient and robust per-
formance. First, estimating 3D hand pose from
depth images is a high-dimensional and nonlinear
regression problem. Due to the high-dimensional
space of the hand pose parameters, it is difficult
to find the optimal hand pose, and the mapping
between the input image and the 3D hand pose is
highly nonlinear. Second, hand pose in a single
image often suffers from severe self-occlusion
problem. Some parts of the hand may be occluded
by other parts of the hand in a single image,
which makes the estimation of 3D hand pose
ambiguous. Third, articulated hand pose exhibits
large variations due to the local and global hand
motion.

Theory and Application

Hand pose estimation aims at estimating a set of
3D hand joint locations representing the 3D hand
pose. The skeleton structure of the hand is shown
in Fig. 1. As shown in this figure, the thumb finger
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Hand Pose Estimation, Fig. 1 Hand skeleton structure
defined in [2]. The thumb finger has 5 DOF; each of the
other four fingers has 4 DOF; the wrist joint has 6 DOF

has 5 degrees of freedom (DOF), including 1
DOF for interphalangeal (IP) joint, 2 DOF for
metacarpophalangeal (MCP) joint, and 2 DOF
for trapeziometacarpal (TM) joint. Each of the
other four fingers has 4 DOF, including 1 DOF
for distal interphalangeal (DIP) joint, 1 DOF for
proximal interphalangeal (PIP) joint, and 2 DOF
for MCP joint, while the carpometacarpal (CMC)
joints are fixed. The wrist joint has 6 DOF for
global translation and rotation. Thus, the hand
skeleton model has 27 DOF in total.

Methods for vision-based hand pose esti-
mation can be categorized into generative
approaches, discriminative approaches, and
hybrid approaches.

Generative approaches fit an explicit
deformable hand model to the input image
by minimizing a hand-crafted cost function.
The commonly used optimization methods are
particle swarm optimization (PSO), iterative
closest point (ICP), and their combination [10].
Many hand models have been proposed, as shown
in Fig. 2. Oikonomidis et al. [9] propose a
polygonal mesh hand model using geometric
primitives. Qian et al. [10] approximate the 3D
hand model using 48 spheres. Melax et al. [8]
propose to use a rigid body representation of
the hand model. Taylor et al. [13] create the
hand model based on linear blend skinning and
approximate loop subdivision. Tkach et al. [14]

propose to use sphere meshes as the 3D hand
model. Joo et al. [6] use a rigged hand mesh as
the hand model for total capture of human.

Discriminative approaches learn a mapping
from depth image to hand pose from training
data. Some early works focus on example-based
method that searches the most similar images in a
dataset to the input hand image, but cannot work
well in high-dimensional space. Some methods
apply random forests and their variants as a dis-
criminative model. Xu and Cheng [18] propose to
use the random forest to directly regress the hand
joint angles from depth images, in which a set of
spatial-voting pixels cast their votes for hand pose
independently and their votes are clustered into a
set of candidates. The optimal one is determined
by a verification stage with a hand model. Liang
et al. [7] propose to apply Hough forest in hand
pose estimation. The vote weights stored at the
leaf nodes of a forest are learned to minimize
average pose estimation error.

Some other approaches combine the model-
based fitting and the data-driven methods in order
to take advantages of both methods. Sharp et al.
[12] infer hand pose using a multilayered dis-
criminative model and optimize the hand pose by
a model fitting stage based on the particle swarm
optimization.

With the success of deep neural networks in
various computer vision tasks and the emergence
of large hand pose datasets [15, 19], many of
the recent methods applied convolutional neural
networks (CNNs) as the discriminative model for
3D hand pose estimation. Tompson et al. [15] first
propose to apply CNNs to generate heat maps
representing the 2D probability distributions of
hand joints in the depth image and recover 3D
hand pose from estimated heat maps and corre-
sponding depth values using model-based inverse
kinematics. Ge et al. [3] propose to encode the
hand depth images as 3D volumes and apply
3D CNNs for inferring the 3D hand pose. A
PointNet-based method [5] is proposed to esti-
mate 3D hand pose directly from 3D point cloud.

Deep learning methods have also been
recently adopted for 3D hand pose estimation
from monocular RGB images [1,4,20]. Different
from depth images that contain absolute depth
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Hand Pose Estimation, Fig. 2 Hand models used in
model-driven methods. (a) Hand model using geometric
primitives [9]. (b) Hand model using 48 spheres [10].
(c) Hand model used in [8]. (d) Hand model using using

linear blend skinning and approximate Loop subdivision
[13]. (e) Hand model using sphere-meshes [14]. (f) Hand
model used in [6]

information, single-view RGB images exhibit
inherent depth ambiguity, which makes 3D hand
pose estimation from monocular RGB images
a challenging problem. Most of recent methods
estimate root-relative and scale-invariant 3D hand
pose frommonocular RGB images. Zimmermann
et al. [20] proposed a deep network that learns
an implicit 3D articulation prior of hand from
single RGB images. Cai et al. [1] proposed
a weakly supervised method, adapting from
fully annotated synthetic dataset to weakly
labeled real-world dataset with the aid of a depth
regularizer.

Open Problems

Although much progress has been made in
3D hand pose estimation, there are still many
research problems in this field that need to be
resolved, e.g., hand pose estimation from hand-
object or hand-hand interactions and hand pose
tracking in videos.
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Synonyms

Robot-camera calibration; Tracker-camera cali-
bration

Related Concepts

�Camera Calibration

Definition

The hand-eye calibration problem first appeared
and got its name from the robotics community,
where a camera (eye) was mounted on the gripper
(hand) of a robot. The camera was calibrated
using a calibration pattern. Then the problem of
identifying the unknown transformation from the
camera to the hand coordinate system is known
as the hand-eye calibration.

Background

There is a strong need for an accurate hand-
eye calibration. The reasons are twofold: (i)
to map sensor-centered measurements into the
robot-world coordinate and (ii) to allow for an
accurate prediction of the pose of the sensor
on the basis of the arm motion – in fact these
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are often complementary aspects of the same
problem [1].

Theory

A typical hand-eye structure is shown in Fig. 1,
where a camera is rigidly mounted on the gripper
of the robot. In Fig. 1, X, a 4 × 4 matrix, denotes
the Euclidean transformation between the hand
coordinate system and the camera coordinate
system, i.e., the hand-eye calibration. Roughly
speaking, the hand-eye calibration methods can
be divided into two categories: one is to decom-
pose the matrix X into its rotational and trans-
lational parts then optimize the rotation at first,
followed by an optimization for the translational
part. The other is to optimize the rotation and
translation simultaneously.

The standard approach to hand-eye calibration
relies on (i) a known reference object and (ii)
the possibility to reliably track points on this
reference object in order to obtain correspond-
ing points between pairs of images. As shown
in Fig. 2, A, B, C, and D are Euclidean trans-
formation matrices between different coordinate
systems, which can be represented by a 4 × 4
homogeneous matrix as

[
R t
0t 1

]
(1)

where R is a 3 × 3 rotation matrix and t is a
3× 1 vector. MatrixA denotes the transformation
between the first and second position of the robot

Hand-Eye Calibration, Fig. 1 A camera (eye) mounted
at the gripper (hand) of a robot

hand (also known as tool center point motion,
TCP motion), which could be read out from the
robot controller. Since the camera is calibrated
beforehand, the transformation matrices C and
D are assumed known, then the motion of the
camera, B, can be expressed as

B = CD−1 (2)

From this we have the basic equation of the
hand-eye calibration as

AX = XB (3)

A number of approaches have been proposed
for the determination of the hand-eye calibration
matrix X from Eq. (3). Here is a brief historical
development of the approaches.

1980s
Early solutions decoupled the rotational part of X
from the translational one, yielding some simple,
fast, but error-prone formulations, since rotation
estimation errors could propagate to the transla-
tional part. Shiu et al. [2] used angle-axis rep-
resentation and least-squares fitting to calculate
the rotation then the translation. Tsai et al. [3]
gave a closed-form solution using a more efficient
linear algorithm. The number of unknowns in
their method is unchanged no matter how many
measurements are available. Wang [4] compared
[2, 3] with real data and showed that [3] is slight
better than [2].

1990s
Zhuang et al. [5] extended and simplified part of
the results in [2] by reformulating the solutions
for the rotational part of the homogeneous
transform equation as a quaternion equation.
Chou et al. [6] presented another quaternion-
based approach where a closed-form solution is
obtained using the generalized inverse method
with singular value decomposition (SVD). Based
on the concept of screw motion, Chen [7] did
not decouple rotational and translational terms
for the first time. Zhuang et al. [8] applied
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Hand-Eye Calibration,
Fig. 2 Standard approach
of hand-eye calibration

nonlinear optimization directly for X estimation
by minimizing a similar expression to the
Frobenius norms of homogeneous matrices of
transformation errors. Park et al. [9] performed
nonlinear optimization in the same way but again
under the decomposed formulation. Lu et al. [10]
introduced the eight-space formulation based
on quaternions and derived a closed-form least-
squares solution using Schur decomposition and
Gaussian elimination. Horaud et al. [11] solved
simultaneously for rotation and translation using
Levenberg–Marquardt technique. Ma [12] gave
a linear approach for camera self-calibration and
head–eye calibration by controlling the camera
platform to undertake at least three orthogonal
motions. It is the first approach to combine both
camera self-calibration and hand-eye calibration
based on active vision concept. Wei et al. [13]
nonlinearly minimized algebraic distances and
performed a fully automatic hand-eye and camera
calibration. Daniilidis [14] introduced the dual
quaternions – an algebraic representation of the
screw theory to describe motions, which makes

it possible to find a fast SVD-based joint solution
for rotation and translation.

2000s
Bayro-Corrochano et al. [15] gave an SVD-based
linear solution of the coupled problem by the use
of motors within the geometric algebra frame-
work. Andreff et al. [16] combined structure from
motion with known robot motions for the calibra-
tion. They did not enforce the nonlinear orthogo-
nality constraint by increasing the dimensionality
of the rotational part and managed to formulate
the problem as a single homogeneous linear sys-
tem. Fassi et al. [17] investigated the standard
equation using a geometrical approach and gave
some new properties of the equation. Fassi et al.
highlighted the reason of over-constrained system
when multiple instances of the equation are to be
solved simultaneously. Schmidt et al. [18] pre-
sented a calibration approach which, in contrast
to the standard method, does not require a cali-
bration pattern for determining camera position
and orientation.
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Application

Hand-eye calibration is useful in many indus-
trial applications, for instance, grasping objects,
visual servoing, robot navigation, et al. For exam-
ple, in robot-assisted endoscopic surgery [19],
the hand–eye transformation has to be estimated
every time when the camera head is mounted
anew on the endoscope optics, which is done
before each operation because it has to be ster-
ilized. Therefore, an automatic and robust hand-
eye calibration algorithm is both desirable and
welcome.
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Synonyms

Binary coding for face retrieval

Definition

Hashing is the process of compressing a given
input real-valued feature representation into a
binary code of a relatively small number of bits.
For the application of face search with deep
features, it corresponds to encoding a feature
extracted from a deep learning-based face recog-
nition model into a binary representation with the
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goal of maintaining most of the retrieval ability
of the original representation.

Background

The state-of-the-art face recognition methods
represent a face image as a high-dimensional
real-valued feature, obtained using a deep
network. However, comparisons of this high-
dimensional feature can be computationally
expensive. Furthermore, when dealing with large
face images database, this representation can
lead to prohibitive storage requirements. Thus,
the goal of hashing for face search is mainly
to:

• Lower the memory consumption: hashing is a
way to produce a compact representation, and
thus a larger face database can be stored on a
single machine;

• Speed-up the comparison: Hamming distance
computation directly over the binary codes
can be performed very efficiently thanks to
low-level instructions;

• Reduce the cost of transmission of the fea-
tures over bandwidth constrained networks
like wireless.

There has been comprehensive surveys of
compact hashing for large-scale retrieval [1],
but they did not address the unique challenges
of face recognition. Recently, [2] has explored
the problem of hashing a face, and some of the
discussions reported in this article are based on
this work. A face search application with hashing
is illustrated in Fig. 1.

Hashing a face representation is especially
challenging as the problem of face recognition
can be seen as a fine-grained recognition prob-
lem, as all faces share similar structure and the
difference between two identities can be very
subtle. Besides, different face images of the same
individual can exhibit very high level of varia-
tions due to change of pose or viewing angle,
lighting condition, variations of expressions, etc.
A face image can be a partial observation, with

parts of the face being occluded by other persons
or objects in the scene. These face images can
be captured as a single shot but also as a video,
therefore inducing motion blur and other capture
artifacts.

Thus, recent face image representations tend
to be highly specialized and discriminative fea-
tures, often heavily learned and optimized from
a large amount of data. As intra-class variations
may be larger than interclass differences, the
face recognition problem creates very challeng-
ing conditions to learn a hashing model that is
able to produce a compact binary representation
that is still effective for the face search task. We
therefore assume here that the face representation
is highly discriminative, and our goal is to train a
hashing model, given a set of face features but no
identity labels that can produce medium length
(128 to 1024 bits) binary hash codes to maintain
a face search performance similar to that obtained
with the original features.

Theory

The task of hashing a face representation can be
formalized as follows. A dataset S is composed
of N faces samples {si}i=1...N . We denote the
d-dimensional feature representation of the face
sample si as the row vector xi ∈ R

d , and X ∈
R

N×d is the feature matrix of all samples. A
hashing model H with parameters � maps xi to a
binary code of length b, i.e., H(xi , �) = hi ∈
B

b and the full feature matrix to H(X,�) =
H ∈ B

N×b. The binary space B can technically
be either {0, 1} or {−1, 1} for different meth-
ods, but there is obviously a strict equivalence
between these two choices. We can see the hash
model H as a set of b hash functions, i.e., H =
{fj }j=1...b each having a set of parameters �j .
The j th bit hij of hi is obtained by applying the
j th hash function fj of H to the feature, i.e.,
hij = fj (xi , �j ).

Many different strategies can be employed to
estimate the hashing model parameters �. We
briefly review in the next few paragraphs the most
relevant hashing methods of the literature for the
application of face search. We refer the reader to
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Hashing for Face Search, Fig. 1 Illustration of a face
search application with hashing. Offline, given a gallery
of face images, their features are computed with a deep
model and compressed into binary codes with a hash
model. At test time, given a query face image, its feature

is extracted and compressed, and the search is performed
by comparing the binary codes in the Hamming space to
retrieve the most relevant samples (with smallest distances
as shown above) from the database

the survey [1] for a more complete overview of
learning-based hashing methods in general and
to [2] for more detailed discussions on hashing
for face verification and search.

One popular hashing method is locality-
sensitive hashing (LSH) [3] which is data-
independent with interesting asymptotic theo-
retical guarantees. The idea of LSH is to define
a family of hash functions that ensures that
“similar” samples are more likely to be mapped
to the same hash code. One common strategy
is to sample random projections and thresholds
to define the hash functions. LSH approaches
often require long hash codes and potentially
multiple hash tables to produce reasonable
retrieval performance.

To overcome these limitations, more recent
hashing methods learn the hash functions from
the data. The iterative quantization (ITQ) method
[4] minimizes the quantization error obtained
when directly encoding the sign of a principal
component analysis (PCA)-based projection. The
optimization process seeks a rotation matrix that
minimizes the quantization error of the projected
features. ITQ has been shown to be competitive,
especially compared to other PCA-based hashing
methods. However, it is limited to produce binary
codes no longer than the original features dimen-
sion.

Learning the hash functions from the data can
enable selecting more effective hash functions.
However, any hashing method relying on the sign

of linear projections will have limited discrimina-
tive ability. Therefore, several hashing methods
have been proposed that rely on nonlinear hash
functions. Specifically, one common idea of such
methods is to sample the feature space to obtain
a set of “pivot” or “anchor” points. Then, similar-
ities or distances with regard to these pivots are
exploited to define the hash functions.

The Neighbor-Sensitive Hashing [5] (NSH)
method aims to avoid using hash bits to capture
the distances between samples that are far apart.
The key element of the NSH approach is what
the authors call a Neighbor-Sensitive Transform
(NST) that is a continuous and monotonic func-
tion that produces “larger gaps” in a given range
of distances. The hash functions are learned as
random orthogonal projections in the embed-
ded space induced by NST functions applied to
the distances between a sample and the pivot
points.

The spherical hashing (SpH) method intro-
duced in [6] proposes to define hashing functions
not as hyperplanes but as hyperspheres, based on
a set of pivots as centers of the hyperspheres and
associated distance thresholds. The optimization
aims to get independent and balanced hashing
functions, by iteratively optimizing the hyper-
sphere centers position in space and the thresh-
old values. The theoretical advantage of using
hyperspheres for hashing is that matched hash
codes can correspond to closed regions with tight
distance bounds.
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Finally, the Unsupervised Rank Preserving
Hashing (URPH) method [7] aims to optimize the
hash model to produce hash codes that preserve
the ranking obtained using the original features.
A shallow neural network is optimized with a
gradient descent approach to minimize a ranking
loss and regularization losses. The optimization
is therefore directly targeting the final usage of
the hash codes, i.e., being able to properly rank
the samples using the binary codes.

Application

The task of face search is of, given a query face
image, finding the most similar face images in a
large database of face images. One of the typical
use cases would be a watch list situation, where
the database holds a list of missing or wanted
persons, and queries are face images of persons
of interest.

If some query images do not have a match in
the gallery, the task is named an open-set iden-
tification. In that case, a good face recognition
system should still retrieve the most similar sam-
ples from the gallery, but they should have a low
similarity score. Thus, a filtering approach based
on the similarity score should enable flagging the
probe as having no match in the gallery.

Experimental Results

IJB-C Dataset The IJB-C [8] dataset was
developed with the goal of pushing the limits
of face recognition, especially targeting the
unconstrained setting. It contains 31,334 images
and 11,779 videos of 3,531 subjects. This data
has been collected with the goal of covering a
wide set of occupations and geographic origins.
This dataset has two gallery sets containing 1,772
and 1,759 subjects, respectively, with a template
of about 5 images defined for each subject. There
is a probe set of 19,593 templates, build from
both still images and video frames, and one
subject may have multiple probe templates. There
is no pre-defined training set, and we rely on the
UMD faces [9] dataset, which is composed of

a distinct set of identities, to train all hashing
models.

Experimental Settings We use the RAG1 fea-
ture that is extracted from the bottleneck layer of
a resNet-101 network as detailed in [10]. This
model is trained on a dataset containing over
5 millions of images of about 58,000 subjects.
Furthermore, the RAG1 feature is embedded into
a real-valued 128-dimensional space using the
Triplet Probabilistic Embedding (TPE) approach
[11]; we will refer to this embedded version as
ERAG1. The features are extracted and embed-
ded with TPE for each face image in a template,
face images coming from different frames of
the same video are first averaged into a media-
averaged feature, and then all media-averaged
features and still images features are averaged to
define the template feature. The features are L2-
normalized. In the following, we will compare
the performance of the NSH, SpH, and URPH
methods. We report the search performance aver-
aged over the two galleries.

Face Search Results We compare the search
results on the IJB-C dataset in Table 1, with
the best hashing results in bold. For each probe
sample, a ranked list of the most similar sam-
ples (estimated based on the Hamming distance
for hashing methods) in the gallery is retrieved.
We compute the retrieval rate as the portion
of probe samples for which we have correctly
retrieved a matching gallery sample within a
given rank. We report the original features perfor-
mance (using the Euclidean distance to rank the
samples) in the last line of the table for reference.
We can observe that the original continuous-
valued ERAG1 feature achieves a very high level
of face search performance, with retrieval rates of
0.945 and 0.975 at rank 1 and 10, respectively.
The SpH [6] method needs at least 512 bits
to achieve a retrieval rate of 90% at rank 1.
Limited improvements are observed when further
increasing the hash code length to 1024 bits. The
NSH [5] methods obtain a better performance
with a retrieval rate of 90% at rank 1 using only
256 bits. With 1024 bits, NSH achieves a retrieval
rate of 0.933 at rank 1 and 0.961 at rank 5 which
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Hashing for Face
Search, Table 1 Face
search results on IJBC.

Retrieval rate at rank #

Method # bits 1 2 5 10 20 50 100

SpH 128 0.828 0.864 0.896 0.916 0.932 0.953 0.964

SpH 256 0.878 0.902 0.925 0.939 0.949 0.962 0.971

SpH 512 0.901 0.922 0.94 0.951 0.959 0.97 0.976

SpH 1024 0.914 0.93 0.945 0.955 0.963 0.973 0.979

NSH 128 0.873 0.908 0.933 0.949 0.961 0.974 0.981

NSH 256 0.902 0.923 0.945 0.957 0.967 0.977 0.983

NSH 512 0.919 0.937 0.955 0.964 0.971 0.979 0.983

NSH 1024 0.933 0.948 0.961 0.969 0.974 0.98 0.984

URPH 128 0.897 0.924 0.943 0.957 0.966 0.976 0.982

URPH 256 0.924 0.942 0.956 0.966 0.973 0.981 0.985

URPH 512 0.935 0.95 0.963 0.971 0.977 0.984 0.987

URPH 1024 0.941 0.953 0.966 0.973 0.978 0.984 0.988

ERAG1 – 0.945 0.957 0.968 0.975 0.981 0.986 0.989

is very close to 0.968 using the original features.
The URPH [7] method performs the best of all
hashing methods, obtaining retrieval rates that are
very close to the original features performance
when using 1024 bits. The retrieval rate at rank
1 with just 128 bits is almost 90%. This confirms
by direct optimization for the retrieval task that
a hashing method such as URPH can achieves
highly effective performance.

Open Problems

Recently, small-world graph-based indexing
methods [12] have gained popularity due
to their high level of performance and close
to logarithmic complexity when solving the
approximate nearest neighbors (ANN) search
problem. Thus, studying the combination of
hashing with advanced graph-based indexing
scheme is an interesting problem. The authors
of [7] explore the use of rank-preserving
hashing combined with small-world graph-based
indexing, demonstrating that this combination
can achieve excellent performance in terms of
search speed and accuracy while enabling storing
a large number of database samples thanks to the
compression induced by the use of hashing.

For some applications it may be interesting
to combine multiple features to achieve the best
performance. Therefore, the question of how to
fuse multiple features in a hashing framework

is worth investigating. Three strategies could be
explored: (i) an early fusion where the features
are concatenated and hashed as if they were
just one feature; (ii) an intermediate fusion strat-
egy, especially applicable to pivot-based hash-
ing methods, where the distances or similarities
between a sample and the pivots in the different
feature spaces are aggregated; and (iii) a late
fusion strategy where each feature is hashed inde-
pendently, but the hamming distances obtained in
each binary space, induced by each hash model,
are combined for the final task.
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Definition

High dynamic range (HDR) imaging comprises
a range of techniques for capturing, storing,
editing, transmitting, and displaying images
and video with an extended range of values
between black and white, compared with
traditional imaging techniques. This means
that HDR images can be better representations
of real scenes than conventional photographs,
bringing associated enhanced realism and visual
quality.

Introduction

Light levels to which humans are routinely
exposed range from dim starlight to bright
sunlight. While human vision cannot resolve
detail over this enormous range simultaneously,
through adaptive processes active in the visual
system, humans can interpret and navigate
through scenes that range from 10−6 to
108 cd/m2 [1]. This represents a range of
illumination spanning around 14 orders of
magnitude (log units). At any one time, the
human visual system can resolve detail over a
range of about 3.7 orders of magnitude [2].

Conventional technologies for capturing,
processing, and displaying images are more
limited, in that they typically use image data
spanning no more than 2 orders of magnitude
of range between black and white. Such
technologies, referred to as low dynamic range
(LDR) or standard dynamic range (SDR)
imaging, typically represent pixel data with a

https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1007/978-3-030-63416-2s_300350
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bit depth of 8 nonlinearly encoded bits. This has
several practical implications. First, it is easier
to build sensors and display devices. Second,
the demands on storage and transmission are
limited.

On the other hand, SDR images do not
match the capabilities of human vision. As a
consequence, there is room for improvement,
which is the raison d’être of HDR imaging.
The aim of the latter is to represent a larger
range of luminance values. It is often combined
with employing a wide color gamut such as
defined in ITU-R Recommendation BT.2020 [3],
so that the range of chroma values is also
increased. HDR images often look significantly
more realistic than corresponding SDR images.
Some researchers have remarked that HDR
images, when viewed on an HDR display,
evoke a sensation of realism that is not present
in SDR images, akin to looking through a
window [4]. Thus, HDR imaging offers a
real enhancement in image quality over SDR
imaging. As an example, Fig. 1 (left) shows
an image taken from a scene using standard
digital photographic techniques. The image
on the right shows the same scene, obtained
with HDR capture techniques, and subsequently
tone mapped. This image is arguably a better
representation of the scene than the image
on the left. HDR technologies have reached
a level of maturity sufficient for market
introduction.

History

The first digital images originated from scanning
photographs. One of the first such images is
shown in Fig. 2, where multiple binary scans
were merged to obtain a digital grayscale image.
By 1968, scanning technology was able to pro-
duce 12-bit images directly [5], even if the result-
ing images were stored in a logarithmic format
while keeping the 9 most significant bits. At the
time, these images could be exponentiated to con-
trol a vector graphics display with 8-bit precision
[5]. Note that in this case, the difference between
capture and display bit depth is 4 bits. Thus, to be
able to display the images, their dynamic range
had to be reduced: in essence, removing the n

least significant bits can be seen as an early form
of dynamic range reduction, which is also known
as tone mapping or tone reproduction (see the
section on “Tone Management” below).

From that moment, a trickle of research papers
emerged that broadly addressed the problem of
tone reproduction, starting in 1972 [6]. In 1984,
this topic was used to introduce computer graph-
ics to the field of lighting design [7]. Computer
graphics became a fertile ground for research
on HDR imaging, as rendering algorithms natu-
rally produce high dynamic range images which
require tone mapping prior to display [8]. The
Radiance rendering software, for example, [9],
which was first released in 1987, included a HDR
image file format which was used widely.

High Dynamic Range Imaging, Fig. 1 Left: a single
capture of a challenging scene, whereby most pixels are
either under- or overexposed. Right: an image captured

with HDR techniques and subsequently processed for
display. This image resembles the actual scene much more
accurately
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High Dynamic Range Imaging, Fig. 2 One of the first
digital photographs, scanned by Russell Kirsch at the
National Institute of Standards and Technology (NIST)
in 1957. (From https://en.wikipedia.org/wiki/Russell_A.
_Kirsch; this image is in the public domain)

Due to limitations in sensor design, digital
photography was not able to natively produce
HDR images. However, multiple image captures
from the same vantage point, while varying the
exposure time, allow an extended range to be
captured. In a post-processing step, the individ-
ual captures are merged to form the final HDR
image [10]. This has broadly solved the prob-
lem of image capture of static scenes without
the need for upgrading capture hardware. With
this method, however, scenes with movement
are difficult to capture without additional pro-
cessing, as outlined in the “Capture” section
below.

The availability of HDR image data has
then opened up the possibility to use that data
inside a renderer as complex spatially varying
illuminants [11]. The visual quality of computer-
generated imagery has thus greatly improved,
paving the way for a large array of special effects.

Research into HDR imaging picked up pace
dramatically in 2002, when a batch of papers
once again addressed the problem of tone repro-
duction [12–15].

Direct display of HDR imagery became a
reality in 2003 when the first HDR display system
was demonstrated [16]. HDR camera systems
followed in 2001 [17]. The first standards
governing HDR video transmission appeared
in 2014, paving the way for HDR broadcast
systems [18–20]. HDR cinema projection
systems have been demonstrated [21], while
HDR movie cameras are now a reality. For those
wishing to experiment with HDR images and
videos, there are several resources available
online, including the HDR Photographic
Survey [22], a database of cinematic HDR video
sequences [23] and a dataset of test materials for
the assessment of picture quality [24].

Capture

To capture a high dynamic range image, a com-
mon technique is to take several photographs
from the same vantage point, usually by employ-
ing auto-bracketing, resulting in a sequence of
SDR exposures obtained with different exposure
times. The difference between each successive
exposure may, for example, be 1 f -stop apart.
The idea is that each part of the scene will be well
exposed in at least one of the exposures.

In a post-process, the exposures are then com-
bined into an HDR image [10]. This requires
knowledge of the camera response curve, i.e., the
nonlinear relationship between scene light and
pixel value. Each exposure is first linearized by
applying the inverse camera response curve and
then scaled by its exposure time. A windowing
function may then be applied to reduce the effect
of noise in underexposed pixels and the lack of
information in overexposed pixels. After that, the
exposures are simply averaged to produce the
HDR image.

In the presence of noise, further noise removal
may be applied [25]. Image alignment may be
required to account for movement of the camera
[26], especially when the camera was handheld.
If objects move while the exposures are taken,
then the averaging process may result in ghost-
ing. Detection and elimination of such ghosting

https://en.wikipedia.org/wiki/Russell_A._Kirsch
https://en.wikipedia.org/wiki/Russell_A._Kirsch
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artifacts has proven to be a challenging problem
[27,28].

Alternatively, the exposures may be merged
into an SDR image, albeit one with more detail
and information than any of its constituent
exposures. This is a process called exposure
fusion [29].

Rather than recording several exposures one
after the other, cameras may be constructed that
divert light to multiple sensors using beam split-
ters [17]. Optical filters may optionally be applied
to attenuate the light reaching each sensor differ-
ently. The advantage of such an approach is that
no ghosting or alignment issues are present and
that the achievable video frame rate is not reduced
due to the capture of multiple exposures.

ToneManagement

HDR and SDR technologies will coexist for the
foreseeable future. This means that SDR content
may be displayed on HDR displays, and HDR
content may have to be displayed on SDR dis-
plays. A significant amount of research has been
devoted to develop perceptually plausible algo-
rithms that map HDR data to SDR levels [30] –
a process known as tone mapping or tone repro-
duction. The mapping of SDR data to HDR levels
is known as inverse tone mapping or inverse tone
reproduction [31].

Tone reproduction often includes a nonlinear
mapping which can be applied identically to all
pixels of an image. By attenuating light pixels
more than dark pixels, a range reduction can be
achieved that matches human visual experience
well [30]. Especially sigmoidal (s-shaped) tone
mapping functions are close to the static behavior
of photoreceptors [32].

In addition, spatially varying processing may
be applied to locally increase contrast, although
such procedures tend to be computationally much
more costly. Spatially varying operators that
relate to human visual perception include Retinex
processing [33], image appearance models [34–
36], and a display-adaptive tone reproduction
operator [37].

A variety of other tone reproduction operators
are known, including those based on bilateral
filtering [13], gradient domain processing [14],
and histogram adjustment [38].

Mapping SDR data to HDR levels, also known
as inverse tone reproduction or inverse tone map-
ping, has proven to be a viable approach to creat-
ing HDR data. Color grading in post-production
studios now routinely involves the creation of
HDR grades, and these are often produced with
the aid of inverse tone reproduction tools. A key
requirement of such tools is that the processing is
semiautomatic, so that the results can be adjusted
or edited by the colorist.

Quality Assessment

Image quality assessment can either be accom-
plished through visual inspection, through carry-
ing out a psychophysical experiment, or by apply-
ing metric. For HDR images and video, visible
difference predictors [39] and quality assessment
metrics are available [40, 41], allowing the auto-
matic assessment of differences between images
and quality of video, respectively.

Encoding, Compression, and
Standards

Currently, HDR images are often stored as EXR
files [42], a file format developed by Indus-
trial Light & Magic (See http://www.openexr.
com/). The JPG XT image compression standard
[43] includes support for HDR images, while
the aforementioned Radiance format is supported
through the JPEG XR format [44].

In (movie) production and post-production,
HDR is nowadays routinely employed, for
example, through the ACES format (See https://
www.oscars.org/science-technology/aces/aces-do
cumentation). Guidelines for live production are
available as well [45].

For the transmission and broadcast of HDR
video, a current approach is to preprocess the
HDR video data so that it can subsequently be

http://www.openexr.com/
http://www.openexr.com/
https://www.oscars.org/science-technology/aces/aces-documentation
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compressed with a standard codec, such as AVC
or HEVC. To this end, each video frame is first
passed through a compressive curve, known as
an optoelectronic transfer function (OETF). Such
curves are not unlike tone mapping curves, albeit
that they are not necessarily optimized to match
human visual perception, but to maximize com-
pression efficiency of any subsequent encoder.
In practice, such curves may still be based on
insights from human visual perception. Curves
currently in use are the Perceptual Quantizer [46]
(PQ) and Hybrid Log-Gamma [47], as standard-
ized by ITU-R, SMPTE, and ARIB [18–20].

A receiver such as a television or a set-top
box may then decode the signal before applying
an electro-optical transfer function (EOTF). This
function may be the mathematical inverse of the
corresponding OETF (PQ systems operate in this
manner), but it may incorporate further process-
ing to adapt the signal to the capabilities of a
specific display (HLG systems work like this).

An alternative to encoding HDR video, while
enabling backward compatibility, is to augment
SDR video data with dynamic metadata that
allows a receiver to reconstruct HDR video
data [48]. Thus, a receiver not able to decode
the metadata will simply display the SDR video,
while an HDR-enabled television would be able
to reconstruct HDR video and adapt it to its own
capabilities. This approach is standardized by
ETSI [49].

Provisions for the transmission of HDR are
made in various other standards, including ATSC
3.0, DVB, and in China.

While broadcasters are implementing HDR
broadcast channels, currently HDR video content
can be enjoyed by consumers through streaming
applications, as well as through Ultra HD Blu-
ray disks, provided they have access to an HDR-
capable television and Blu-ray player.

Discussion

High dynamic range imaging offers an improved
range of light levels between black and white,
creating a higher visual quality. Research has
found solutions for most if not all of the problems

associated with high dynamic range imaging and
video. Standardization and industry adoption are
in an advanced state of progress, so that HDRwill
be broadly available soon.
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Synonyms

Computing architectures for machine perception;
Heterogeneous parallel computing

Related Concepts

� Information Fusion
�Recurrent Neural Network

Definition

The central objective of a computer vision
task is to perceive visual data and develop
a response. Various processes take place in
the data to decision chain. High-performance
computing refers to the capacity to achieve a
computational task at the required fidelity with
minimal resources including time and endurance.
Recent explosive growth in video cameras and
the resulting ubiquity of visual data broaden
the scope of high-performance computer vision
well beyond robotics and automation. It is
difficult to crisply separate the processing and
perception mechanisms underlying this chain.
Inspired by neural information processing in the
visual system, they are often broadly grouped
as: low-level vision, intermediate-level vision,
and higher-level vision. Low-level vision entails
very simple computations applied at each pixel
and its immediate neighborhood. Examples
include edge detection, texture, order statistics,
and optical flow. Intermediate-level analysis is
concerned with local and regional consistencies
including coherence. Examples include contour
tracing, connected component labeling, and
Hough transforms. These accumulative methods

do not fully capture certain evidence driven
assimilative processes, where one or more
salient features detected in the scene steer the
evidence gathering low-level primitives over the
rest of the image. Under special circumstances,
the low-level and intermediate-level vision are
coupled in an iterative style, giving rise to
a recursive model of perceptive processing.
Examples include, optimal placement of edges,
deformable templates, subjective contours, and
extraction plus grouping of gestalts. Higher-
level processes are defined and analyzed from a
broader perspective, facilitating a net perception
sufficient to achieve detection, recognition,
localization, association, prediction, etc. They
drive complex applications such as super
resolution, segmentation, reconstruction, object
recognition, content-based image retrieval,
tracking, etc.

Background

Abstract model of computation is comprised of
an arithmetic and logic unit (ALU) to perform
a primitive operation, an access mechanism to
fetch or modify or the operands without imposing
limit on the size of the data set or program,
ability to concurrently maintain multiple inde-
pendent intermediate results impacting the course
of execution, and the richness of its instruc-
tion set. Parallel computing, pipelined process-
ing, and application-specific hardware including
heterogenous and reconfigurable processors have
all been demonstrated as a means to achieve
high performance. We will focus our discussion
on approaches to achieve high performance in
computer vision.

Distinct types of parallel computing models
are used to characterize the overall computation
required for computer vision: data level
parallelism, cooperating concurrent processes,
and competing concurrent threads with and
without mutual preemption. Computations for
low-level vision would follow data parallelism
and are efficiently implemented using specialized
designs including reconfigurable and pipelined
processors to perform vector, block, and stream
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operations. Modern general purpose graphic
processing units (GPUs) and stream and vector
processing CPUs are good at this. Intermediate
vision processes are efficiently performed
using concurrent/multi-threaded processing
with multicore and multi-threaded processors
and sufficient cache memory. Higher-level
processes [1–3] are well suited for computing
clusters consisting of super scalar processors
with node level capabilities to efficiently
process vector and regular gridded data. Most
clusters employ message passing mechanisms to
move data between processors; interconnection
topologies such as bi-orthogonal linear buses,
meshes, tori, trees, and hypercubes have all been
tried in practice. The need for heterogeneous
parallel computing for vision and all aspects of
artificial intelligence were envisioned early on
[4]. Low-level vision algorithms were developed
to take advantage of early parallel processing
architectures [5]. Parallel computing algorithms
at all levels of the vision hierarchy have been
adapted to suit prevailing architectures [6]
including the modern CMOS image sensors [7].
Modern-day desktop computers make a powerful
combination of heterogenous processors,
multicore, and multi-processor systems more
accessible and affordable. This has further
broadened high- performance computing and
shifted the focus on software methods, tools, and
versatility of application scenarios.

Images acquired through physical cameras
suffer a loss of depth. Computational methods
aimed at recovering depth information involve
iterative optimization of certain regularized
functions which are compute-intensive. They are
highly uniform, if not identical, across the entire
image, making them a candidate for parallel
processing. Vision algorithms are often designed
to follow a divide and conquer approach. For
example, the image is partitioned into four
quadrants, each processed independently and
the results grouped by a merging strategy. Each
quadrant will in turn be recursively split into
sub quadrants for further processing, until it is
not necessary to split further. A problem-specific
preprocessing or postprocessing step is used at
the split and merge stages, respectively, and,

each partition can be processed independently
in parallelized fashion. The computation is
said to follow an adaptive quad-tree control
structure. A seminal algorithm in computer
graphics also known as the area subdivision
(Warnock) algorithm, and a widely known
quad-tree-based image segmentation algorithm
(Pavlidis) follows this structure. Specific aspects
of each computation will determine the type of
data-flow: either top-down or bottom-up. Certain
complex visual tasks involve bidirectional
inferencing where one or more salient objects
present in the scene steer the way the rest
of the scene is processed. Such tasks will
shift up and down the quad-tree in cyclical
fashion. In general, they will include intra-block
computations and adjacent-block data access
to apply spatial operators. The interdependence
between incremental computations is captured by
a hybrid topological structure, a pyramid, which
combines a quad-tree with a two-dimensional
mesh. Basic computations such as convolution
are performed as a systolic or vector operation
across the mesh, using single instruction multiple
data (SIMD) primitives [8]. They can also be
achieved by carefully (de)composed sequence
of partial sums and efficiently implemented (on
a standard von-Neumann machine) as pipelined
primitives [9] exploiting the order in which the
pixels will be visited. Integral histograms are a
powerful emerging low-level processing method
for speeding up multi-resolution sliding window-
based searching and other computer vision
tasks using block-level pipelined computations.
Multicore parallel implementations of integral
histograms [9] can significantly scale up
computation to large image and video collections.

Classic space filling curves such as Hilbert
curves, Peano scans, and curves have been
used as a locality preserving pixel organization
[10, 11] and an alternative to the standard
raster scan which scans the image left to right
and top to bottom visiting each pixel exactly
once. The spatially compact nature of space
filling scans tends to cohere highly correlated
pixels as maximal subsequences, producing a
significant improvement on aggregative operators
such as the run-length coding and compressive
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sensing. A recent work on Z-trees combines
the advantages of a binary tree control structure
and spatially compact nature of Peano scans
to achieve cache-oblivious computations [12]
algorithms on sequential machines. Z-tree is built
by inserting a Hilbert-curve scanned sequence of
pixel at the terminal level of a binary tree and then
building the tree upwards. Such a tree represents
very large images as a collection of tiles,
permitting mesh algorithms at any given level
of the Z-tree and SIMD processing over two or
more aligned tiles. Spatiotemporal visualization
of gigapixel-sized images and videos has been
implemented using such tiled representations
[13–16].

Our understanding of human visual perception
suggests multiple competing chains of evidence
accumulation and incremental inferencing neural
processes. The basic unit of such inferences is
known as gestalts [17]. They cohere and coalesce
into a candidate interpretation, which are
indirectly influenced by context and cues about
the scene. They account for subjective processes
associated with observer expectations. Evidence
gathered in one location across an image may
at times add-to, concur-with, be neutral-to,
or compete against the interpretation arising
from elsewhere within the image. A consistent
interpretation is achieved through a constraint
propagation and resolution method known
as relaxation labeling and belief propagation
techniques [18]. Such methods have been
studied thoroughly in the perception of line
drawings of a complex scene of trihedral blocks.
Animals that blend with the background such
as the well-known Dalmatian dog camouflaged
against a background of rocks are sometimes
used to illustrate the inherent difficulties of
separating foreground (the dog) from background
based on local contrast or edge structures
only. Any cue about the existence of a dog,
immediately contributes to the coalescing of
an otherwise disconnected set of patches into a
meaningful grouping in the shape of dog. From
a computational standpoint, two approaches have
been proposed each with significant success [1].

Model-driven computations include hypothesize
and verify methods following procedural models.
In contrast, a collection of associations between
physical scene/object situations and resulting
observations across images are used effectively
using rule-based computations to achieve one
of more stable interpretations. These methods
lend themselves to parallel computations. Light-
weighted threads with carefully orchestrated spa-
tial and feature space-based interdependencies
will be required to efficiently implement these
processes. Modern multi core heterogeneous
processors are more suitable for this.

Recent advances in custom application-
specific computing architectures have led to
a class of high- performance computations
to implement real-time computer vision
systems based on neural networks. The general
purpose graphic processing units (GPGPU),
originally designed for video gaming and
graphic visualizations have been useful to build
and train very complex supervised learning
of visual objects with deep learning neural
networks [19]. Although the neural networks
have been extensively researched in the 1990s,
the use of GPGPUs has been catalytic [20]. The
training process requires massive amount of
samples to train with, and the resources required
to compute the weights underlying the neural
networks to be learned by a back propagation
mechanism remain prohibitively high. The
Systems of Neuromorphic Adaptive Plastic
Scalable Electronics (SyNAPSE) processors
pioneered by DARPA led to further advances.
Spiking neural networks is another framework
to build computer vision systems trained using
supervised learning. These processors use signals
that are made of three consecutive pulses to code
the weights using pulse space modulation and
offer very high integration density and energy
efficiency. Both the IBM True North [21] and
Intel Loihi [22] processors came out of the
SyNAPSE program. These processors offer
entirely new programming models.

From a computer engineering perspective, the
granularity of the parallelism is of importance
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for constructing high-throughput dedicated
machines. However, from a computer science
and computing architectures perspective, one
will see that parallel computation for computer
vision requires multiple architectures across
scale and level of information processing.
Topics not covered but deserving of further
exploration are focal plane and light-field
processing using optical parallel computing
and quantum computing for vision algorithms.
There is a diversity in the intrinsic parallelism
that is seen at each stage of the data-to-decision
chain.
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Definition

High-resolution network (HRNet) is a deep con-
volutional neural network for visual recognition
that learns semantically rich and spatially fine-
grained representations by maintaining high res-
olution in the entire process.

Background

Most visual recognition tasks except image
classification are position-sensitive. For example,
semantic segmentation needs to assign a label
to each pixel. Object detection needs to predict
the position of an object. Human pose estimation
needs to identify the positions of human joints.
The key factor in deep learning approaches to
position-sensitive tasks is to learn strong high-
resolution representations.

Traditional two-stage frameworks first
encode an input image as a low-resolution
representation through a subnetwork that is
formed by connecting high-to-low-resolution
convolutions in series (e.g., AlexNet [5],
VGGNet [13], GoogleNet [16], ResNet [3],
and DenseNet [4]) and then recover the high-
resolution representation from the encoded
low-resolution representation. The process is
depicted in Fig. 1. The typical approaches include
Hourglass [9], SegNet [1], DeconvNet [10],
U-Net [12], SimpleBaseline [18], and encoder-
decoder [11].

High-resolution network, introduced in [15,
17], is able to learn strong high-resolution
representations by maintaining high-resolution
representations through the whole process.
It starts from a high-resolution convolution
stream, gradually adds high-to-low-resolution
convolution streams one by one, and connects
multi-resolution streams in parallel. The resulting
network consists of several (typically 4) stages as
depicted in Fig. 2, and the nth stage contains n

streams corresponding to n resolutions. Together
with repeated multi-resolution fusions that
exchange information across parallel streams

over and over, the resulting high-resolution
representation is semantically richer and spatially
more fine-grained.

Approach

Architecture The HRNet architecture consists
of two main components: parallel multi-
resolution convolutions (Fig. 3a) and repeated
multi-resolution fusions (Fig. 3b).

The network is formed by starting from a high-
resolution convolution stream as the first stage,
gradually adding high-to-low-resolution streams
one by one to form new stages, and connecting
multi-resolution streams in parallel. The reso-
lutions for the parallel streams of a later stage
consist of the resolutions from the previous stage
and an extra lower one.

The example HRNet structure illustrated in
Fig. 2 contains f our parallel streams and is logi-
cally written as follows:

N11 → N21 → N31 → N41

↘ N22 → N32 → N42

↘ N33 → N43

↘ N44,

(1)

where Nsr is a sub-stream in the sth stage and r is
the resolution index. The resolution index of the
first stream is r = 1. The resolution of index r

is 1
2r−1 of the resolution of the first stream. The

widths of the convolutions of the four resolutions
are C, 2C, 4C, and 8C, respectively.

The across-resolution fusions are repeated
several times for exchanging the information.
Take fusing three-resolution representations
as an example (Fusing two representations
and f our representations can be similarly
derived.). There are three input representations:
{Ri

r , r = 1, 2, 3}, where r is the resolution index,
and the associated output representations are
{Ro

r , r = 1, 2, 3}. Each output representation is
the sum of the transformed representations of the
three inputs: Ro

r = f1r (Ri
1)+f2r (Ri

2)+f3r (Ri
3).

The fusion across stages (from stage 3 to stage 4)
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(a) (b)

High-Resolution Network, Fig. 1 Recovering high res-
olution from low resolution. (a) A low-resolution repre-
sentation learning subnetwork, which is formed by con-
necting high-to-low convolutions in series. (b) A high-

resolution representation recovering subnetwork, which is
formed by connecting low-to-high convolutions in series.
(Figure courtesy of [17])

channel
maps

conv.
unit

strided
conv. upsample

High-Resolution Network, Fig. 2 Example high-
resolution network. There are four stages. The 1st stage
consists of high-resolution convolutions. The 2nd (3rd,

4th) stage repeats two-resolution (three-resolution, four-
resolution) blocks. (Figure courtesy of [17])

has an extra output: Ro
4 = f14(Ri

1) + f24(Ri
2) +

f34(Ri
3).

The choice of the transform function fxr(·)
relies on the input resolution index x and the out-
put resolution index r . If x = r , fxr(R) = R. If
x < r , fxr(R) downsamples the input representa-
tionR through (r−s) stride-2 3×3 convolutions,
for example, one stride-2 3 × 3 convolution for
2× downsampling and two consecutive stride-2
3 × 3 convolutions for 4× downsampling. If x >

r , fxr(R) upsamples the input representation R
through bilinear upsampling followed by a 1 × 1
convolution for aligning the number of channels.

The representation of an image is computed by
first feeding the image into a stem, which consists
of two stride-2 3× 3 convolutions decreasing the
resolution to 1

4 , and subsequently the HRNet that
outputs the representations with four resolutions
1
4 ,

1
8 ,

1
16 , and

1
32 .

Analysis The multi-resolution parallel convolu-
tion unit (shown in Fig. 3a) is similar to the
group convolution. It divides the input channels
into several subsets of channels with each subset
corresponding to a different spatial resolution
and performs a regular convolution on each sub-
set, while in the group convolution, the resolu-
tions are the same. This connection implies that

the multi-resolution parallel convolution enjoys a
benefit similar to group convolution, e.g., reduc-
ing the redundancy by sparsifying the convolu-
tion kernel, and furthermore, it also reduces the
spatial redundancy by applying convolutions on
high and low resolutions.

The multi-resolution fusion unit (shown
in Fig. 3b) is related to the multibranch full-
connection form of the regular convolution, as
illustrated in Fig. 3c. A regular convolution can
be divided as multiple small convolutions as
explained in [14, 19, 20]. The input channels
are divided into several subsets, and the output
channels are also divided into several subsets.
The input and output subsets are connected in
a fully connected fashion, and each connection
is a regular convolution. Each subset of output
channels is a summation of the outputs of the
convolutions over each subset of input channels.
The differences lie in that the connection in
our multi-resolution fusion needs to handle the
resolution change. Similar to multi-resolution
parallel convolution, the multi-resolution fusion
unit also enjoys the benefit of spatial redundancy
reduction.

Advantages The high-resolution representa-
tions learned from HRNet are semantically
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(a) (b) (c)

≡

High-Resolution Network, Fig. 3 (a) Multi-resolution parallel convolution, (b) multi-resolution fusion. (c) A normal
convolution (left) is equivalent to fully connected multibranch convolutions (right). (Figure courtesy of [17])

(a) (b) (c)

High-Resolution Network, Fig. 4 (a) Human pose esti-
mation head: only output the representation from the high-
resolution convolution stream. (b) Semantic segmentation
head: concatenate the (upsampled) representations from
all the resolutions. (c) Object detection and instance seg-

mentation head: form a feature pyramid from the repre-
sentation by (b). The four-resolution representations at the
bottom in each sub-figure are outputted from the network
in Fig. 2. (Figure courtesy of [17])

High-Resolution Network, Fig. 5 Qualitative human pose estimation examples on the COCO dataset [7]. (Figure
courtesy of [17])

richer and spatially more precise. There are
two reasons. (i) The convolution streams from
high resolution to low resolution are connected
in parallel other than in series. It maintains
high resolution instead of recovering high
resolution from low resolution. Thus, the learned
representation is potentially spatially more
precise. (ii) HRNet repeats multi-resolution
fusions to boost high-resolution representations
with the help of low-resolution representations
and vice versa. Consequently, the high-to-

low-resolution representations are semantically
strong.

Application

HRNet is applicable to various visual recognition
tasks, such as human pose estimation, seman-
tic segmentation, face alignment, object detec-
tion, image style transfer, and so on. The heads
for three example tasks, human pose estimation,
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HHigh-Resolution Network, Fig. 6 Qualitative segmentation examples on the Cityscapes dataset [2] (left), the
PASCAL-Context dataset [8] (middle), and the LIP dataset [6] (right). (Figure courtesy of [17])

High-Resolution Network, Fig. 7 Qualitative object detection (top three) and instance segmentation (bottom three)
examples on the COCO dataset [7]. (Figure courtesy of [17])

semantic segmentation, and object detection, are
illustrated in Fig. 4. Qualitative results of human
pose estimation, semantic segmentation, as well
as object detection and instance segmentation are
given in Figs. 5, 6, and 7, respectively. The codes
are available at https://github.com/HRNet.

Empirical comparisons on many tasks pre-
sented in [17], such as human pose estimation,
semantic segmentation, face alignment, as well
as object detection and instance segmentation,
demonstrate the superiority of HRNet in terms of
accuracy, computation complexity, and parameter
complexity over previous state of the arts, e.g.,
ResNet and VGGNet.

References

1. Badrinarayanan V, Kendall A, Cipolla R (2017) Seg-
net: a deep convolutional encoder-decoder architec-
ture for image segmentation. IEEE Trans Pattern
Anal Mach Intell 39(12):2481–2495

2. Cordts M, Omran M, Ramos S, Rehfeld T,
Enzweiler M, Benenson R, Franke U, Roth S,
Schiele B (2016) The cityscapes dataset for
semantic urban scene understanding. In: CVPR,
pp 3213–3223

3. He K, Zhang X, Ren S, Sun J (2016) Deep residual
learning for image recognition. In: CVPR, pp 770–
778

4. Huang G, Liu Z, van der Maaten L, Weinberger KQ
(2017) Densely connected convolutional networks.
In: CVPR, pp 2261–2269

https://github.com/HRNet


572 Histogram

5. Krizhevsky A, Sutskever I, Hinton GE
(2012) Imagenet classification with deep
convolutional neural networks. In: NIPS,
pp 1106–1114

6. Liang X, Gong K, Shen X, Lin L (2019) Look into
person: joint body parsing & pose estimation network
and a new benchmark. IEEE Trans Pattern Anal Mach
Intell 41(4):871–885

7. Lin TY, Maire M, Belongie SJ, Hays J, Perona P,
Ramanan D, Dollár P, Zitnick CL (2014) Microsoft
COCO: common objects in context. In: ECCV,
pp 740–755

8. Mottaghi R, Chen X, Liu X, Cho NG, Lee SW,
Fidler S, Urtasun R, Yuille AL (2014) The
role of context for object detection and seman-
tic segmentation in the wild. In: CVPR,
pp 891–898

9. Newell A, Yang K, Deng J (2016) Stacked hourglass
networks for human pose estimation. In: ECCV,
pp 483–499

10. Noh H, Hong S, Han B (2015) Learning deconvolu-
tion network for semantic segmentation. In: ICCV,
pp 1520–1528

11. Peng X, Feris RS, Wang X, Metaxas DN (2016)
A recurrent encoder-decoder network for sequen-
tial face alignment. In: ECCV (1) 9905:
38–56

12. Ronneberger O, Fischer P, Brox T (2015) U-
net: convolutional networks for biomedical
image segmentation. In: MICCAI,
pp 234–241

13. Simonyan K, Zisserman A (2015) Very deep convo-
lutional networks for large-scale image recognition.
In: ICLR

14. Sun K, Li M, Liu D, Wang J (2018) IGCV3:
interleaved low-rank group convolutions for
efficient deep neural networks. In: BMVC,
pp 101

15. Sun K, Xiao B, Liu D, Wang J (2019) Deep high-
resolution representation learning for human pose
estimation. In: CVPR, pp 5693–5703

16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed SE,
Anguelov D, Erhan D, Vanhoucke V, Rabinovich A
(2015) Going deeper with convolutions. In: CVPR,
pp 1–9

17. Wang J, Sun K, Cheng T, Jiang B, Deng C, Zhao
Y, Liu D, Mu Y, Tan M, Wang X, Liu W, Xiao B
(2020) Deep high-resolution representation learning
for visual recognition. IEEE Trans Pattern Anal
Mach Intell, p 1. https://doi.org/10.1109/TPAMI.
2020.2983686

18. Xiao B, Wu H, Wei Y (2018) Simple baselines for
human pose estimation and tracking. In: ECCV,
pp 472–487

19. Xie G, Wang J, Zhang T, Lai J, Hong R,
Qi GJ (2018) Interleaved structured sparse
convolutional neural networks. In: CVPR,
pp 8847–8856

20. Zhang T, Qi GJ, Xiao B, Wang J (2017) Interleaved
group convolutions. In: ICCV, pp 4383–4392

Histogram

Ying Nian Wu
Department of Statistics, UCLA, Los Angeles,
CA, USA

Definition

Histogram is a graphical display of the distribu-
tion of observed values of some random variable.

Theory and Applications

Histogram was introduced by Karl Pearson. In
a histogram, the range of the observed values is
divided into a number of bins of equal length. A
rectangle is erected on top of each bin so that the
area of the rectangle equals the frequency that the
observed values fall into this bin. A histogram
is a more detailed summary of a distribution
than mean and variance. It can be considered a
nonparametric estimate of the probability density
function of the random variable.

In image analysis and computer vision, his-
tograms are often obtained by spatial pooling and
they serve as image features. For a texture image,
histograms of responses from a bank of filters
are pooled over the image domain, and these
histograms serve as features that characterize the
texture pattern. Histograms can also be pooled
within local windows as local texture features.
Heeger and Bergen [3] proposed an algorithm
for texture synthesis by matching histograms of
filter responses. Zhu, Wu, and Mumford [7] pro-
posed a Markov random field model for stochas-
tic textures. The model is the maximum entropy
distribution that matches observed marginal his-
tograms of filter responses. The spatially pooled
histograms discard the position information. This
is appropriate for characterizing texture patterns,
which are spatially stationary.

The local orientation histograms of image
intensity gradients are key components of two
of the most successful image features, namely,
SIFT (scale-invariant feature transform) [5] and

https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1109/TPAMI.2020.2983686
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HoG (histogram of oriented gradients) [2]. Such
histograms are pooled within local cells, where
each pixel contributes a weighted vote to the
histogram bin that corresponds to the orientation
of the intensity gradient at this pixel. The weight
can be the magnitude of the gradient or some
nonlinear transformation of it. Such histograms
are very informative descriptions of local image
patches, and they are partially invariant to local
geometric distortions or shape deformations,
because they are spatially pooled within local
cells where information about the exact positions
of the gradients is discarded.

A more general version of histogram is also
used in the bag-of-words method for image clas-
sification [1]. The basic idea is to obtain a code-
book of “words” by quantizing local image fea-
tures via clustering. The histogram is in the form
of the frequencies of the occurrences of the code-
words. The histogram can be pooled over the
entire image. One can also divide the image
into subregions and pool the histograms within
these subregions [4]. Such histograms can then
be used for image classification, usually by SVM
with histogram intersection kernel [4, 6]. Again,
because the spatial pooling of the histograms
discards the exact position information, such his-
tograms are invariant to shape deformations.

References

1. Csurka G, Dance C, Fan L, Willamowski J, Bray C
(2004) Visual categorization with bags of keypoints.
In: Workshop of ECCV, Prague

2. Dalal N, Triggs B (2005) Histograms of oriented
gradients for human detection. In: IEEE conference
on computer vision pattern recognition (CVPR), San
Diego

3. Heeger DJ, Bergen JR (1995) Pyramid-based texture
analysis/synthesis. In: SIGGRAPH’95, Los Angeles,
pp 229–238

4. Lazebnik S, Schmid C, Ponce J (2006) Beyond bags
of features: spatial pyramid matching for recognizing
natural scene categories. In: IEEE conference on com-
puter vision pattern recognition (CVPR), New York

5. Lowe DG (1999) Object recognition from local scale-
invariant features. In: ICCV, Kerkyra

6. Maji S, Berg AC, Malik J (2008) Classification using
intersection kernel support vector machines is efficient.
In: IEEE conference on computer vision pattern recog-
nition (CVPR), Anchorage

7. Zhu SC, Wu YN, Mumford DB (1997) Filter, random
field, and maximum entropy (FRAME): towards a
unified theory for texture modeling. Int J Comput Vis
27:107–126

Human Appearance Modeling and
Tracking

�Appearance-Based Human Tracking: Tradi-
tional Approaches

Human Body Tracking

�Appearance-Based Human Tracking: Tradi-
tional Approaches

HumanMotion Classification

�Gesture Recognition

Human Pose Estimation

Leonid Sigal
University of British Columbia, Vancouver, BC,
Canada

Synonyms

Articulated pose estimation; Body configuration
recovery

Related Concepts

�Monocular and Binocular People Tracking



574 Human Pose Estimation

Definition

Human pose estimation is the process of estimat-
ing the configuration of the body (pose) from a
single, typically monocular (While the problem
of human pose estimation can be formulated
from simultaneous observations from multiple
camera views (or one or more RGBD cameras),
which can result in higher-fidelity results or alle-
viate annotation [46], such formulations are sub-
stantially less common, as they require cumber-
some hardware setups, making them inappropri-
ate for many applications.), image or video. The
pose can be expressed in variety of ways (e.g.,
joint positions/keypoints or angles between body
parts) in either the image (2d) or the world (3d)
coordinate frame.

Background

Human pose estimation is one of the key
fundamental problems in computer vision that
has been studied for well over 20 years. The
reason for its importance is the abundance
of applications that can benefit from such a
technology. For example, human pose estimation
allows for higher-level reasoning in the context
of human-computer/human-robot interaction
and activity recognition; it is also one of the
basic building blocks for marker-less motion
capture (MoCap) technology. MoCap technology
is useful for applications ranging from character
animation, in film and games, to clinical analysis
of gait pathologies.

Despite many years of research, however,
pose estimation remains a very difficult problem.
Among the most significant challenges are
(1) variability of human visual appearance in
images, (2) variability in lighting conditions,
(3) variability in human physique, (4) partial
occlusions due to self-articulation and layering
of objects in the scene, (5) complexity of human
skeletal structure, (6) high dimensionality of the
pose, and (7) the loss of 3d information that
results from observing the pose from 2d planar
image projections. Despite these challenges,

however, there has been enormous progress in
the field, and recent approaches that utilize forms
of custom-designed neural architectures are able
to produce impressive, albeit not perfect, results
in challenging cluttered scenarios with multiple,
sometimes partially occluded and interacting,
persons.

Theory and Application

In earlier days, the human pose estimation was
typically formulated probabilistically to account
for ambiguities that may exist in the inference
(though there were notable early exceptions, e.g.,
[24]). In such cases, one is generally interested
in estimating the posterior distribution, p(x|z),
where x is the pose of the body and z = g(I)

is a feature set derived from the image. The key
modeling choices that affect the inference are:

– The representation of the output pose – x.
– The nature and encoding of image features –

z = g(I).
– The inference framework required to estimate

the posterior – p(x|z).

More recently, with the advent of convolu-
tional neural networks (CNNs), the image encod-
ing is being learned as part of the CNN archi-
tecture, rather than hand-designed. As an artifact,
the explicit encoding of image features has been
replaced by distributed and hierarchical feature
representations leaned and tuned for the pose
estimation task within CNNs. The more recent
models, while sometimes still can be interpreted
probabilistically, are more often than not formu-
lated as direct estimates. As a result, these CNN
architectures are designed to learn a functional
mapping x = fΘ(I) between an image, I, and
the depicted pose, x. This sometimes involves
intermediate semantic representations (e.g., in the
form of the 2d joint heatmaps) that can be used
either directly or indirectly to arrive at the final
pose x. Note the inherent assumption that the
image contains only a single person; we will
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address this later in the chapter. The main mod-
eling choices in such formulations are:

– The representation of the output pose – x.
– The design of the CNN architecture (e.g.,

number, form, and connectivity of the layers),
i.e., parametrization of the function fΘ(I).

– The formulation of, one or more, loss func-
tion(s) that serve as proxy measure(s) for eval-
uating performance of the model on the train-
ing data and are used to backpropagate the
error and learn parameters Θ of fΘ(I).

Next, the primary lines of research in pose
estimation with respect to these modeling choices
are reviewed. It is worth noting that these mod-
eling choices are not always independent. For
example, some inference frameworks and neural
architectures are specifically designed to utilize
a given representation of pose. In what follows
we describe older historical algorithmic trends,
as well as recent advances, to put the problem of
human pose estimation in perspective.

Representation The configuration of the human
body can be represented in a variety of ways. The
most direct and classic representation is obtained
by parameterizing the body as a kinematic tree
(see Fig. 1), x = {τ, θτ , θ1, θ2, . . . , θM }, where
the pose is encoded using position of the root
segment (to keep the kinematic tree as short as
possible, the pelvis is typically used as the root
segment), τ , orientation of the root segment in
the world, θτ , and a set of relative joint angles,
{θi}Mi=1, that represent the orientations of body
parts with respect to their parents along the kine-
matic tree (e.g., the orientation of the thigh with
respect to the pelvis, shin with respect to the
thigh, etc.).

Kinematic Tree Representations The kinematic
tree representation can be obtained for 2d, 2.5d,
and 3d body models. In 3d, τ ∈ R

3 and θτ ∈
SO(3): θi ∈ SO(3) for spherical joints (e.g.,
neck), θi ∈ R

2 for saddle joints (e.g., wrist), and
θi ∈ R

1 for hinge joints (e.g., knee), representing

the pose of the body in the world. Note that
the actual representation of the rotations in 3d
is beyond the scope of this entry but can involve
Euler angles, quaternions, and exponential maps.
It is worth noting that in terms of the skeletal
model, the kinematic tree representation of this
form is perhaps the most anatomically accurate.
It also allows easy modeling of certain anatomic
constraints (e.g., limb proportions, joint ranges
and limits). In 2d, τ ∈ R

2 and θτ ∈ R
1; θi ∈ R

1

corresponds to pose of the cardboard person in
the image plane. The 2.5d representations are
the least common and are extensions of the 2d
representation such that the pose, x, is augmented
with (typically discrete) variables encoding the
relative depth (layering) of body parts. In all
cases, be it in 2d or 3d, this representation results
in a high-dimensional pose vector, x, in R

30 –
R
70, depending on the fidelity and exact parame-

terization of the skeleton and joints.

Body Model Representations Kinematic tree
representation defines a skeletal articulation of
the body. Sometimes, however, it is useful to
augment this representation in order to build
a full-pledged body model. A body model is a
parametric, typically mesh-based, representation
of the human body outer surface. While the focus
of human pose estimation is clearly on pose,
the shape of the body may also be of interest
and, more importantly, may be necessary to
estimate for accurate pose recovery (e.g., in
a generative framework). Formally, the body
model is a function M(x, s) : R

K → R
3N

which maps the articulated pose, x, and the
shape parameters, s, to the deformations of
vertices of a reference triangular mesh with
predefined human topology (N is the number
of vertices). In other words, by modifying pose
and shape parameters, using M(x, s), one can
generate a complete 3d mesh representation of a
person in any pose and of any identity/physique
(Fig. 1 bottom). Various functional forms for
M(x, s) have been explored, but perhaps the
most widely used to date are SCAPE and SMPL
[29, 32]. Both SCAPE and SMPL decompose
body shape into person-dependent shape and
nonrigid pose-dependent shape deformations;
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Human Pose Estimation, Fig. 1 Pose Representa-
tions: Illustration of the 2d and 3d kinematic tree rep-
resentation is in the (top-left). Various forms of key-
point/landmark representations are illustrated in (top-
right). The 2d keypoint representation is illustrated in
terms of heatmaps. (Figure is reproduced from [57]).
The 3d keypoint representations are illustrated in terms of
sparse joints and dense body mesh locations. (Figures are

reproduced from [40] and [3], respectively). SMPL body
model representation is illustrated in (bottom-left) by a
sample of poses produced with different pose and shape
parameters. (Figure is reproduced from [32]). Finally,
part-based representations in 2d and 3d are illustrated in
(bottom-right). (Figures are reproduced from [49] and
[68], respectively)

both deformations are learned from 3d human
scans of multiple subjects in variety of poses.

Keypoint/Landmark Representations Alterna-
tively, one can parameterize the pose of the body
by 2d or 3d keypoints/landmarks that most often
correspond to locations of the major joints [9].
Some keypoint representations are augmented to
also include other fiducial markers (e.g., facial
features [11] or even dense keypoints defined
on the surface of the body [2, 3], i.e., mesh
vertices in the body model described above).
Taken simply, x = {p1,p2, . . . ,pM }, where pi is
the joint location/keypoint in the world, pi ∈ R

3,
or in an image, pi ∈ R

2. The keypoint-based
representations are somewhat impoverished, as
modeling joints independently make it more
difficult to encode structural constrains of the
body (e.g., preserve limb lengths and left-
right body symmetries and rule out impossible
pose configurations). Also, note that while the

kinematic tree can be converted to keypoints (2d
or 3d) uniquely, using forward kinematics, the
opposite conversion from keypoints to kinematic
tree is not unique (e.g., twist of a limb could
be lost). However, at the same time, keypoint
representations have significant benefits, which
make them the representation of choice for many
recent CNN-based formulations. Mainly, the
independence of representation makes it easy to
estimate each joint separately, without the need to
reason about the body as a whole. In other words,
the inference or regression over pose can be
reduced to M-independent inference/regression
problems (one for each joint) in a much lower
and unstructured 2d, or less frequently 3d, space.

Part-Based Representations Finally, one can
model the body as a set of parts (The subtle
difference with keypoints is that parts are
traditionally assumed to have spatial extent,
i.e., are themselves identifiable in the image,
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whereas keypoints do not have spatial extent
and are only identifiable through contextual
region around them. That said, this difference
has been progressively blurred in the literature,
and, in more recent formulations, the two
could be used almost interchangeably.), x =
{x1, x2, . . . , xM }, each with its own position
and orientation in space, xi = {τi, θi}, that
are connected by a set of statistical or physical
constraints that enforce skeletal (and sometimes
image) consistency. Because this part-based
parameterization is redundant, it results in
an even higher-dimensional representation.
However, it does so in a way that makes it
efficient to infer the pose, as will be discussed
in a later section. Methods that utilize such a
parameterization are often called part-based. As
in kinematic tree models, the parts can be defined
in 2d [4, 7, 15, 17, 24, 43] or in 3d [50], with
2d parameterizations being significantly more
common. In 2d, each part’s representation is
often augmented with an additional variable, γi ,
that accounts for uniform scaling of the body part
in the image, i.e., xi = {τi, θi , γi} with τi ∈ R

2,
θi ∈ R

1 and γi ∈ R
1. Each part can also be

endowed with learned, or predefined, geometric
primitives, resulting in a part-based body model
(see Fig. 1 bottom-right).

Discussion Generally speaking, there is a
significant benefit to 2d parameterizations
over the 3d ones, mainly in that (1) they are
lower dimensional and (2) are typically directly
observable in an image and hence are less
ambiguous to estimate. At the same time, 3d pose
estimates are practically more useful, enabling
a much broader range of applications. As a
consequence, in most recent frameworks, 2d joint
location/keypoint pose estimation is either the
final output or, in the very least, an intermediate
stage. The more advanced architectures that
predict 3d pose are then often conditioned on
these intermediate 2d estimates.

Image features Performance of any pose esti-
mation approach depends substantially on the
observations, or image features, that are chosen to
represent salient parts of the image with respect to

the human pose. A related and equally important
issue is one of how these features are encoded.

Hand-Crafted Representations Early approaches
to human pose estimation engineered feature
representations and the encodings. Over the
years, many features have been proposed by
various authors. The most common features
included image silhouettes [1], for effectively
separating the person from background in static
scenes; color [43], for modeling un-occluded skin
or clothing; edges [43], for modeling external
and internal contours of the body; and gradients
[8], for modeling the texture over the body
parts. Less common features include shading
and focus [35]. To reduce dimensionality and
increase robustness to noise, these raw features
were often encapsulated in image descriptors,
such as shape context [1, 4, 9], SIFT [9], and
histogram of oriented gradients [8]. Alternatively,
hierarchical multilevel image encodings can be
used, such as HMAX [25], spatial pyramids [25],
and vocabulary trees [25]. The effectiveness of
different feature types on pose estimation has
been studied in the context of several inference
architectures; see [4] and [25] for discussions
and quantitative analyses.

Neural and CNN Representations More recently,
with computer vision transitioning to learned fea-
ture representations that are integrated with the
end-to-end neural architecture designs, typically
taking the form of CNNs, the burden of engi-
neering has shifted from features to architectural
designs of the networks. Starting from AlexNet
[58], there have been important advances in CNN
designs, including a general trend toward stacks
of reusable blocks (e.g., pooling and upsam-
pling layers which resemble an hourglass [37])
and residual connections (e.g., ResNet [21]).
Such advances in CNN designs have broadly
improved the performance of computer vision
systems. Beyond traditional CNN architectural
advances, two architectural designs seem to be
particularly well tailored to the task of pose
estimation: (i) use of encoder-decoder architec-
tures with a bottleneck, e.g., constructed using
convolution and deconvolution layers [37, 61],
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and (ii) multi-resolution architectures that, for
example, use multi-scale fusion from parallel
multi-resolution subnetworks [54].

Inference Given an image representation (hand-
crafted or neural), inference over the pose can be
formulated in hundreds of different ways. Here
we will restrict ourselves to discussion of four
broad classes of inference methods, highlighting
representative works and designs in each cate-
gory. We start by discussing (1) classic regression
models, where a simple functional mapping (e.g.,
linear, kernel, etc.) is learned in order to map
image features to the pose. Similar in nature, (2)
deep learning and CNN-based models learn a
much more complex hierarchical and nonlinear
mapping functions while simultaneously learning
the feature representations themselves. Both of
the aforementioned classes of methods can be
regarded as discriminative, owning to the input-
output inference nature that attempts to charac-
terize and learn relationship between features (z)
and pose representation (x). In stark contrast, (3)
generative methods define a generative process
that underlines image formation with specific
body model and then attempt to recover the
parameters of the body, often through optimiza-
tion, that give rise to the observed image or
image features. Finally, (4) part-based models
rely on distributed body representations to facil-
itate inference. The ability to represent the body
as a collection of body parts is convenient as it
allows one to express inference over the high-
dimensional pose of the body, in terms of series
of lower-dimensional inferences for more rigid
components (limbs or joints) loosely connected
by (local) statistical or geometric relations.

Inference (classic regression models) Charac-
terizing the posterior distribution, p(x|z), can be
done in a number of ways. Perhaps the most
intuitive is to define a parametric [1,9,25] or non-
parametric [36,48,52,59] form for the conditional
distribution p(x|z) and learn the parameters of
that distribution from a set of training exemplars.
This class of models is more widely known as dis-
criminative methods, and they have been shown
to be very effective for pose estimation. Such

methods directly learn p(x|z) from a labeled
dataset of poses and corresponding images, D =
{(xi , zi )}Ni=1, which can, alternatively, be pro-
duced artificially using computer graphics soft-
ware packages (e.g., Poser) [1,25,48]. The infer-
ence takes a form of probabilistic regression.
Once a regression function is learned, a scanning
window approach is typically used at test time
to detect a portion of the image (bounding box)
where the person resides; p(x|z) is then used to
characterize the configuration of the person in
that target window. The simplest method in this
category is the one of linear regression [1], where
the body configuration, x, is assumed to be a
linear combination of the image features, z, with
additive Gaussian noise:

x = A[z − μz] + μx + ν; ν ∼ N(0,Σ);

μx = 1
N

∑N
i=1 xi and μz = 1

N

∑N
i=1 zi are

means over samples used to center the data.
Alternatively, this can be written as:

p(x|z) = N (A[z − μz] + μx,Σ) . (1)

The regression coefficients, A, can be learned
easily from paired training samples, D =
{(xi , zi )}Ni=1, using the least squares formulation
(see [1] for details).

Parametric vs. Nonparametric Parametric
discriminative methods [1, 9, 25] are appealing
because the model representation is fixed with
respect to the size of the training dataset
D. However, simple parametric models, such
as linear regression [1] or relevance vector
machine [1], are unable to deal with complex
nonlinear relationships between image features
and poses. Nonparametric methods, such as
nearest neighbor regression [48] or kernel
regression [48], are able to model arbitrary
complex relationships between input features
and output poses. The disadvantage of these
nonparametric methods is that the model and
inference complexity are both functions of
the training set size. For example, in kernel
regression:
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p(x|z) =
N∑

i=1

Kx(x, xi )
Kz(z, zi )∑N

k=1Kz(z, zk)
(2)

where Kx(·, ·) and Kz(·, ·) are kernel functions
measuring the similarity of the arguments (e.g.,
Gaussian kernels) and the inference complexity
is O(N) (where N is the size of the training
dataset). More sophisticated nonparametric meth-
ods, such as Gaussian Process Latent Variable
Models (GPLVMs), can have higher complex-
ity; GPLVMs have O(N3) learning and O(N2)

inference complexity. In practice, nonparametric
methods tend to perform better but are slower.

Dealing with Ambiguities If one assumes that
p(x|z) is unimodal [1], conditional expectation
can be used to characterize the plausible con-
figuration of the person in an image given the
learned model. For example, for linear regression
in Eq. (1), E[x|z] = A[z − μz] + μx ; for kernel
regression in Eq. (2):

E[x|z] =
N∑

i=1

xi

Kz(z, zi )∑N
k=1Kz(z, zk)

. (3)

In practice, however, most features under stan-
dard imaging conditions are ambiguous, resulting
in multimodal distributions. Ambiguities natu-
rally arise in image projections, where multiple
poses can result in similar, if not identical, image
features (e.g., front- and back-facing poses yield
nearly identical silhouette features). To account
for these ambiguities, parametric mixture mod-
els were introduced in the form of mixture of
experts [9, 25]. Nonparametric alternatives, such
as Local Gaussian Process Latent Variable Mod-
els (LGPLVMs) [59], cluster the data into convex
local sets and make unimodal predictions within
each cluster or search for prominent modes in
p(x|z) [36, 52].

Learning Obtaining the large datasets that are
required for learning discriminative models that
can generalize across motions and imaging con-
ditions is challenging. Synthetic datasets often
do not exhibit the imaging characteristics present

in real images, and real fully-labeled datasets
until relatively recently have been difficult to col-
lect. Furthermore, even with large datasets, learn-
ing standard regression models described above,
from vast amounts of data, is not a trivial task [9].
To address this issue, two solutions were intro-
duced: (1) learning from small datasets by dis-
covering an intermediate low-dimensional latent
space for regularization [36, 52] and (2) learning
in semi-supervised settings, where a relatively
small dataset of paired samples is accompanied
by a large amount of unlabeled data [25, 36, 52].

Inference (deep learning and CNNs) Most
recent pose estimation systems, starting from
around 2014, have adopted convolutional neural
networks (CNNs) as their building blocks.
CNNs and deep neural networks can be thought
of as ultimate parametric regression models
(see above). They are, provably, able to learn
arbitrarily complex functional mappings and
learn feature representations appropriate for
the task (and specific data). This has led to
significant performance improvements on the
standard benchmark datasets, leading to results
that are now becoming commercially feasible for
many applications.

The first successful CNN-based architecture
for pose estimation was DeepPose [58] illustrated
in Fig. 2 (top). DeepPose adopted a standard
AlexNet CNN backbone, initially proposed for
image classification, replacing the last fully con-
nected layer with the one of output dimension of
2M , where M is the number of pose keypoints.
The input to the network is directly an RGB
image patch of size L × L containing a person
(L = 220), e.g., obtained using a person detector.
In effect, the network defines a functional map-
ping from the image I to the keypoint-encoded
pose of the body x:

x={p1,p2, ...,pM }=fΘ(I) : R3×L×L → R
2M.

(4)
The parameters Θ include all parameters of

involved convolutional and fully connected lay-
ers and were optimized to minimize prediction
error, which, in non-probabilistic form, can be
expressed directly as a L2 loss optimized over
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Human Pose Estimation, Fig. 2 Sample CNN archi-
tectures for 2d pose estimation: Architecture of Deep-
Pose [58] is illustrated on top and architecture of stacked
hourglass [37] in the bottom. The major difference is

that [37] produces heatmaps, one per joint, as the output,
while [58] produces the joint estimates directly. See text
for more details. (Figures are reproduced from [58] and
[37] top-to-bottom, respectively)

all joints and annotated examples in the dataset
D = {(xi , Ii )}Ni=1,

argmax
Θ

N∑
i=1

M∑
j=1

||pi,j − fΘ(Ii )j ||22. (5)

In addition, the idea of iterative (or cascaded)
refinement that has permeated the future CNN
formulations was first introduced in [58]. The
idea is simple; at the first stage, the cascade
starts off by estimating an initial pose x(0) =
{p(0)

1 ,p(0)
2 , ...,p(0)

M } using Eq. (4). At subsequent
stages, additional CNN refinement regressors are
trained, one per joint, to predict a displacement
from the predicted joint location from previous
stage to the true location. Each such refinement
regressor takes the same form of the AlexNet
with input being a crop around a predicted joint
position: I[p(s−1)

j ± W
2 ], where W ×W is the size

of the crop. In other words,

p(0)
j = fΘ(I)j ; p(s)

j = p(s−1)
j

+ fΘref,j

(
I

[
p(s−1)

j ± W

2

])
︸ ︷︷ ︸

refinement

, (6)

where s > 0 is the stage of refinement and p(s)
j

is the estimate for the joint j at that stage. The
parameters of the refinement networksΘref,j , one
for each joint j , are different from those at the
initial stage 0 – Θ . Notably, conceptually sim-
ilar iterative refinement estimation for the pose,
shape, and camera parameters was employed in
[26] to estimate the SMPL body model; we will
discuss this later.

However, direct regression of joints, or body
parameters, has generally proven difficult. Doing
so requires architectures that typically involve
fully connected layers that are parameter heavy,
making networks more difficult to train and
generalize. More recent human pose estimation
approaches transform the formulation to one
of estimating M heatmaps, {H1,H2, . . . ,HM },
one for each joint. A heatmap Hj is a (lower
resolution) one-channel “image” which at each
pixel encodes probability, or confidence, of
keypoint/joint j occurring. For training, a
keypoint representation can be trivially converted
to the heatmap by quantizing (x, y) annotated
keypoint positions to a courser grid of the
heatmap; in practice, for robustness and to avoid
heatmaps with only one nonzero entry, a 2d
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Gaussian kernel centered around (x, y) is used to
generate target heatmaps. In inference, prediction
for the joint j can simply be taken as:

pj = argmax
(x,y)

Hj (x, y). (7)

The benefit of architectures that output
heatmaps is that they can easily be formulated,
without fully connected layers, using, typically,
only convolutional and pooling (downsampling)
operations. More recent architectures use a
combination of convolutional pooling (downsam-
pling) and deconvolutional (upsampling) layers.
The exact form of the neural functional mapping,

{H1,H2, . . . ,HM } = fΘ(I) : R3×L×L

→ R
M×L′×L′

, (8)

encoded into the architectures varies significantly
from paper to paper. Parameters Θ are typically
learned with respect to a mean squared error loss
between the predicted and ground truth heatmaps.

Perhaps the first instance of the heatmap-
based architecture is [57], which generalized the
idea of (two-stage) cascade/refinement from [58]
to heatmaps. Similar to [57, 58] used cropped
feature maps, centered on coarsely predicted
joints, for refinement of the heatmap predictions.
However, unlike [57, 58] utilizes parallel multi-
resolution convolutional feature maps and fusion
in order to improve quality of predictions. The
concept of multi-resolution features/subnetworks
has since been adopted into many architectures,
including the latest state-of-the-art HRNet [54].
Convolutional Pose Machines (CPM) [60]
have similar motivation to [57] and also use a
progressive cascade/refinement over a number
of stages. The first stage predicts heatmaps,
while subsequent stages refine them using
image as context. Importantly, later stages use
progressively larger kernels, which has an effect
of producing progressively larger receptive fields.
This, implicitly, allows learning of long range
spatial interactions between joints, giving the
model ability, at least in principle, to reason
about limb length and other structural constraints
of the body. Convolutional Pose Machines are

fully differentiable, effectively taking a form of a
large CNN with intermediate supervision (loss is
computed after each stage), which can be trained
end-to-end.

Important to note that CPM was a precursor
to OpenPose [11] framework, which is among
the most widely used pose estimation systems
to date. OpenPose uses the general CPM archi-
tecture of [60] but in addition to heatmaps also
predicts Part Affinity Fields (PAF) – a 2d vector
field that, for each body part, at each pixel,
predicts position and orientation of the limb (e.g.,
for a left shoulder joint the vector field would
extend from the shoulder to the corresponding
elbow joint). See illustration of the OpenPose and
PAF in Fig. 4. The benefit of PAF is that it makes
it easy to associate joints and combine them
into a coherent pose; one must simply follow
the estimated vector field to arrive at the next
joint along the kinematic chain. Association is
trivial when an image contains only one person
and heatmaps output a peak at the correct joint
position but becomes problematic when multi-
ple overlapping persons are present or images
are complex, producing spurious peaks in the
heatmaps. The use of PAF and robust associate
procedure allows OpenPose to robustly estimate
pose of multiple, interacting, people in the same
image.

An interesting departure from [57, 60] is
the work of [37], which introduces a stacked
hourglass model. The intuition of this model is
simple, unlike its predecessor architectures that
effectively rely on progressively larger receptive
fields, resulting from convolutions in deeper
levels, to capture context for keypoint refinement;
[37] uses repeated bottom-up and top-down
processing in combination with intermediate
supervision (also utilized in [60] and others). The
resulting stacked hourglass network consists of
identical blocks chained together, each of which
comprising of pooling and upsampling layers
(hence the name). The pooling has an effect of
bottom-up (high-resolution to low-resolution)
and upsampling of top-down (low-resolution to
high-resolution) processing. Skip connections
preserve spatial information. The stacked
hourglass model achieved new state of the results
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on a number of benchmarks and popularized the
use of auto-encoder like architectures for pose
estimation. This idea has further been explored
in [61], which has introduced a much simplified
architecture consisting of effectively a standard
downsampling backbone (ResNet) and a few
upsampling (deconvolution) layers at the end.
Without requiring skip connections and despite a
much simplified architecture, approach was able
to produce higher accuracy results.

It is worth noting that the aforementioned
approaches can easily be adopted to reason about
joint occlusions by applying a threshold on the
heatmaps. If no pixel in the heatmap for a joint
is above a certain probability/confidence thresh-
old, that joint can be assumed to be missing or
occluded in the image. This is a useful strategy
that has been applied in many state-of-the-art
works.

Lifting Notably, all of the CNN architectures
discussed above produce 2d keypoint represen-
tations as the output. While architectures such
as DeepPose [58] are able to regress 3d poses
and heatmap approaches are able to be extended
to 3d volumes [40], this has generally proven
less effective in practice. Instead, a number
of effective lifting approaches were proposed.
Lifting is the process of taking a 2d pose and
regressing a 3d pose based on it. A number
of neural approaches of this form have been
proposed that leverage variety of architectures
from stacks of fully connected layers [33] to
forms of graph neural networks [67]; the most
recent approach uses local-to-global architecture
with graph pooling and upsampling [10]. While
lifting networks can be trained separately from
2d pose-estimation pipelines by utilizing 2d-3d
pose correspondences, better results are often
achieved by combining the two pipelines and
training them jointly with supervision at 2d and
3d level. In this way, the 2d keypoints effectively
serve as intermediate supervision for the final 3d
keypoint task. See Fig. 3 for illustrations (Fig. 4).

Multi-person Pose Estimation Briefly, it is worth
mentioning that estimating pose of multiple,
potentially interacting people is a substantially

more difficult task. A simple way to address
the problem is to apply person detection,
extract person regions using those detections,
and then apply any of the pose detection
approaches discussed, independently, on each
region. The premiere approach to mention in
this context is Mask-RCNN [22] that uses a
single integrated two-stage end-to-end network
with multiple prediction “heads.” The first
stage is used to predict image regions likely
to contain people/objects. The second stage
extracts a feature representation from each
region and applies three neural “heads” to (i)
classify presence/absence of the person, (ii)
predict the corresponding segmentation, and
(iii) keypoint-based representation of the pose.
Because everything is integrated and trained
end-to-end, Mask-RCNN doesn’t suffer from
some of the typical issues that older two-stage
frameworks have encountered. Mask-RCNN,
and other similar approaches, tends to work well
when person instances in the image or video are
well separated or lightly occluded.

It becomes consistently more difficult to
deal with cases where person instances are
significantly occluding one another. Notably
such challenging scenarios make it difficult
to detect person instances robustly in the first
place. In general, robust multi-pose estimation
requires more detailed reasoning which involves
association of joints to individual pose instances.
One approach for doing this was discussed above
in the context of OpenPose [11]; however, many
other alternatives exist [16, 42]. In [11] person
detection is avoided by producing heatmaps and
PAF for the entire input image, irrespective
of the number of persons present, and then
formulating optimal keypoint association as
a maximum weight bipartite graph matching
problem which is solved using Hungarian
algorithm. Alternatively, [42] formulate the
association as an instance of an integer linear
program, implicitly performing non-maximum
suppression on the set of part candidates, in
a part-based formulation, and grouping them to
form configurations of body respecting geometric
and appearance constraints. Approaches of this
form typically fall into category of part-based
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Human Pose Estimation, Fig. 4 Multi-person pose
estimation: Illustration of the OpenPose architecture [11].
Method takes the entire image (a) as the input for a
CNN to jointly predict (b) confidence maps for body

part/keypoint detection and (c) Part Affinity Fields for
part association. The parsing step (d) performs a set of
bipartite matchings to associate body part candidates into
body poses (e). (Figure is reproduced from [11])

models which we will discuss later; a more
detailed discussion is beyond the scope of this
chapter.

Inference (generative) Alternatively, one can
take a generative approach and express the
desired posterior, p(x|z), as a product of a
likelihood and a prior:

p(x|z) ∝ p(z|x)︸ ︷︷ ︸
likelihood

p(x)︸︷︷︸
prior

(9)

Characterizing this high-dimensional poste-
rior distribution is typically hard; hence, most
approaches rely on a posteriori (MAP) solutions
that look for the most probable configurations
that are both typical (have high prior probability)
and can explain the image data well (have high
likelihood):

x∗ = argmax
x

p(x|z). (10)

Classically, search for such configurations, in
the high-dimensional (40+) articulation space,
has been challenging with most approaches fre-
quently get stuck in local optima. Global stochas-
tic hierarchical search methods, such as annealed
particle filter [19] or hybrid MCMC, have shown
some promising results for simple skeletal config-
urations, where body is mostly upright and when
observations from multiple cameras are available
(Fig. 5).

More recently, the advancements in differ-
entiable renderers allowed direct gradient-based
optimization [62] with respect to the desired

image-matching objectives (e.g., joint reproduc-
tion, silhouette and part-mask projections). For
example, [34] uses a three stage pipeline that first
regresses 2d keypoints, using approach similar
to OpenPose [11], then lifts the 2d keypoints
to 3d, using a set of fully connected layers, and
then finally estimates the 3d kinematic pose using
a gradient-based optimization procedure which
involves forward kinematics. The quality of esti-
mates being generated by CNN-based regression
algorithms is also able to provide good initial
starting points for optimization itself that are
much more likely to converge to global optima
(or close to it). In particular, a number of recent
approaches (e.g., [26,29]) take the form of initial
neural network regression of the 3d body pose
(x), body shape (s), and camera parameters (C)
and then optimize the objective that encompasses
the likelihood and the prior:

{x∗, s∗}
= argmax

x,s
Erep(x, s;C, J2d)+λ3dE3d(x, s; J3d)︸ ︷︷ ︸

likelihood

+ λxEp(x) + λsEs(s)︸ ︷︷ ︸
prior

; (11)

the J2d , in the above, are typically 2d pose
keypoint estimates produced by a CNN-based
network and Erep(·) is an L2 [29, 34] or L1 [26]
error between the projected keypoints of the body
model M(x, s) (or equivalent) and the predicted
2d joints; notably, ground truth estimates can also
be used instead for J2d if those are available. The
second likelihood term measures L2 similarity
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Human Pose Estimation, Fig. 5 Generative models:
Illustrated are three different recent generative architec-
tures for 3d pose (and shape [26, 62]) estimation. While
approaches share some architectural design principles,

they differ significantly in details. See discussion in the
text for explanation. Worth noting is that [34] is real time.
(Figures are reproduced from [62], [34], and [26] top-to-
bottom, respectively)

between the keypoints derived from the predicted
model, through forward kinematics and/or body
model mesh generation and the corresponding
ground truth markers J3d . Some methods add
additional supervision on the body model
parameters themselves, in terms of predicted and
ground truth vectors {x, s} directly [26, 29, 66].

The λx and λs are the weighting factors for
corresponding pose and shape priors. The prior

terms take different forms. For example, in [34],
Ep(·) takes the form of explicit (soft) joint limit
constraints encoded using L2 regularizer which
activates when the joint is beyond a prescribed
limit; [29] further adds a mixture of Gaussians
pose prior to this, trained with SMPL body shapes
fitted on marker data, and a quadratic penalty on
the shape coefficients for Es(·). An interesting
departure is [26] which introduces a factorized
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adversarial prior (using a GAN-like discrimina-
tor). The approach of [26] also utilizes iterative
refinement, through error feedback, using a for-
mulation similar to [12], made popular by CNN-
based keypoint regression methods.

Discussion The latest generative models have
produced truly impressive results. However, such
approaches come with significant challenges. As
can be noted from above, they often optimize
combinations of multiple objectives with a vari-
ety of choices being employed for both archi-
tectural components and the terms in the objec-
tive itself. As a result, while some are able to
utilize standard gradient-based optimization, oth-
ers require multistage optimization procedures.
Further, often datasets with different granularity
of annotation need to be combined to train the
final model. This stems from the fact that data
that contains accurate 3d annotations typically
comes from simplified environments (e.g., cap-
tured in the lab with specialized equipment such
as 3d scanners), while in-the-wild data is often
annotated with only 2d keypoints. Combination
of the two sources of data typically is needed to
train systems that are both accurate and able to
generalize across complex imagery.

Inference (part-based models) Let us briefly
review; regression models (classic or CNN-
based), discussed so far, generally predict a set of
2d or 3d joints independently. This is efficient but
lacks the ability to preserve structure between
joints, at least potentially, resulting in pose
configurations that are impossible or implausible.
Generative models address this issue, since they
typically search for a solution within the space
of plausible pose configurations, but can result
in expensive inference that may involve high-
dimensional optimization at test time. Part-based
models are a set of traditional approaches to
pose estimation that are specifically designed
to address both of those challenges through a
distributed but loosely coupled representation of
the body and the corresponding derived graphical
model-based inference.

Part-based methods originate in the object
recognition community with formulation of Fis-

chler and Elschlager (1973) and assume that a
body can be represented as an assembly of parts
that are connected by constraints imposed by the
joints within the skeletal structure (and, some-
times, by the image “constraints” imposed by
projections onto an image plane that account for
occlusions). This formulation reduces the infer-
ence complexity because likely body part loca-
tions can be searched for independently, only
considering the nearby body parts that constrain
them, which significantly prunes the total search
space.

Among the earliest successes along this line of
research is the work of Lee and Cohen [30]. Their
approach focused on obtaining proposal maps for
the locations of individual joints within an image.
These proposal maps were obtained based on a
number of features that were computed densely
over the image. For example, face detection was
used to obtain hypotheses for the location of the
head; head-shoulder contour matching, obtained
using a deformable contour model and gradient
descent, was used as evidence for shoulder joint
locations; elliptical skin regions, obtained using
skin-color segmentation, were used to determine
the locations of the lower arms and lower legs. In
addition, second-derivative (ridge) observations
were used as evidence for other limbs of the body.
Given proposals for the different joints, weighted
by the confidence of corresponding detectors, a
data-driven Markov chain Monte Carlo (MCMC)
approach was used to recover 3d configurations
of the skeleton. This inference relied on direct
inverse kinematics (IK) obtained from 2d pro-
posal maps. To further improve the results, a kine-
matic jump proposal process was also introduced.
The kinematic jump proposal process involves
flipping a body part or a set of parts (i.e., the head,
a hand, or an entire arm) in the depth direction
around its pivotal joint.

Other part-based approaches tried to assemble
regions of an image into body parts and
successively construct those parts into a body.
Prime examples of such methods are introduced
by Mori et al. [35] and Ren et al. [44]. In
[35], super-pixels were first assembled into
body parts based on the evaluation of low-level
image cues, including contour, shape, shading,
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and focus. The part-proposals were then pruned
and assembled together using length, body part
adjacency, and clothing symmetry. A similar
approach was taken in [44], but line segments
were used instead of assembling super-pixels.
Parallel lines were assembled into candidate
parts using a set of predefined rules, and the
candidate parts were in turn assembled into
the body with a set of joint, scale, appearance,
and orientation consistency constraints. Unlike
[35], the search for the most probable body
configurations was formulated as a solution to an
integer quadratic programming (IQP) problem.
More recent approaches rely on much more
sophisticated body part detectors obtained using
state-of-the-art object detection approaches (e.g.,
faster RCNN [42]) and formulate search over
configurations of multiple persons using integer
linear programing [42].

The most traditional approach, however, is
to represent the body using a Markov random
field (MRF) with body parts corresponding to the
nodes and constraints between parts encoded by
potential functions that account for physical and
statistical dependencies (see Fig. 6). Formally, the
posterior, p(x|z), can be expressed as:

p(x|z) ∝ p(z|x)p(x)

= p(z|{x1, x2, . . . ., xM })p({x1, x2, . . . ., xM })

≈
M∏
i=1

p(z|xi )

︸ ︷︷ ︸
likelihood

p(x1)
∏

(i,j)∈E

p(xi , xj )

︸ ︷︷ ︸
prior

. (12)

In this case, pose estimation takes the form of
inference in a general MRF network. The infer-
ence can be solved efficiently using message-
passing algorithms, such as belief propagation
(BP) [28]. BP consists of two distinct phases: (1)
a set of message-passing iterations are executed
to propagate consistent part estimates within a
graph, and (2) marginal posterior distributions are
estimated for every body part [4,17,43]. A typical
formulation looks at the configuration of the body
in the 2d image plane and assumes discretization
of the pose for each individual part, e.g., xi =
{τi, θi , si} where τi ∈ R

2 is the location and θi ∈
R
1 and si ∈ R

1 are orientation and scale of the
part i (represented as a rectangular patch) in the
image plane. As a result, the inference is over a
set of discrete part configurations li ∈ Z (for part
i), where Z is the enumeration of poses for a part
in an image (li could be a discretization of xi).
Notably, if a part is assumed to be parametrized
by location only, i.e., xi = {τi}, the representation
is no different from a keypoint, and the part-based
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Human Pose Estimation, Fig. 6 Pictorial structures
model: Illustrated is the depiction of the ten-part tree-
structureds pictorial structures model (middle) and a non-

tree-structured (loopy) pictorial structures model (right).
In the non-tree-structured model, additional constraints
encoding occlusions are illustrated in blue
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model would simply find a set of consistent
keypoints that result in a plausible pose. With
an additional assumption of pairwise potentials
that account for kinematic constraints, the model
forms a tree-structured graph known as the tree-
structured pictorial structures (PS) model. An
approximate inference with continuous variables
is also possible [49, 50].

Inference in the tree-structured PS model first
proceeds by sending recursively defined mes-
sages of the form:

mi→j (lj ) = p(li , lj )p(z|li )
∑

k∈A(i)\j
mk→i (li ),

(13)
where mi→j is the message from part i to part
j , with p(li , lj ) measuring the compatibility of
poses for the two parts and p(z|li ) the likelihood
andA(i)\j is the set of parts in the graph adjacent
to i except for j . Compatibility, p(li , lj ), is often
measured by the physical consistency of two parts
at the joint or by their statistical (e.g., angular) co-
occurrence with respect to one another.

Once all of the message updates are complete,
the marginal posteriors for all of the parts can be
estimated as:

p(li |z) ∝ p(z|li )
∏

j∈A(i)

mj→i (li ). (14)

Similarly, the most likely configuration can be
obtained as a MAP estimate:

li,MAP = argmax
li

p(li |z). (15)

One of the key benefits of the pictorial
structures (PS) paradigm is its simplicity and
efficiency. In PS exact inference is possible
in the time linear in the number of discrete
configurations a given part can assume. Because
of this property, implementations [4] can handle
the pixel-dense configurations of parts that result
in millions of potential discrete states for each
body part. The linear complexity comes from
the observation that a generally complex non-
Gaussian prior over neighboring parts, p(xi , xj ),
can be expressed as a Gaussian prior over the

transformed locations corresponding to joints,
mainly p(xi , xj ) = N(Tij (xi ); Tji(xj ),Σij ).
This is done by defining a transformation, Tij (xi ),
that maps a common joint between parts i and
j , defined in the part i’s coordinate frame,
to its location in the image space. Similarly,
Tji(xj ) defines the transformation from the same
common joint defined in the j ’s coordinate
frame to the location in the image plane. This
transformation allows the inference to use an
efficient solution that involves convolution (see
[17] for more details).

Performance The effectiveness of a PS model is
closely tied to the quality of the part likelihoods
[4]. Discriminatively trained models [43] and
more complex appearance models [4] outperform
models defined by hand [17]. A more recent
discriminative formulation of PS model allows
joint learning of part appearances and model
structure [63] using structural support vector
machine (SVM).

Part-Based CNN Variants The latest approaches
rely on deep learning formulations for both
part likelihoods and inference. Recent work
has shown that a typical formulation of PS can
actually be expressed exactly as a CNN [20]. The
construction involves formulating part detection
using a CNN architecture and implementing
unrolled inference in the MRF using a set of
carefully constructed CNN layers. Some variants
of this formulation include ability to learn
compatibility functions between parts at the same
time as the remaining parameters of the neural
network. Alternatives formulate approximate
inference in the conditional random field (CRF),
instead of MRF, using a form of mean field
algorithm, implemented using a recurrent neural
network [14]. The latest variants, while not
always explicitly making the connection to
PS, utilize graph neural networks (GNNs) for
inference [65]. GNNs effectively implement
message passing needed for inference and do
not require specific topology (tree-structure) of
the underlying CRF/MRF. While GNN-based
architectures typically cannot guarantee that the
result is consistent with a specific form of a
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marginal distribution, they do effectively carry
out inference in a graph of the required topology
making them uniquely appropriate for the task.
Variants of such methods include [10, 67].

Non-tree-Structured Extensions Although tree-
structured PS models are computationally effi-
cient and exact, they generally are not sufficient
to model all the necessary constraints imposed by
the body. More complex relationships among the
parts that fall outside of the realm of these models
include non-penetration constraints and occlu-
sion constraints [49]. Incorporating such relation-
ships into the model adds loops corresponding
to long-range dependencies between body parts.
These loops complicate inference because (1)
no optimal solutions can be found efficiently
(message-passing algorithms, like BP, are not
guaranteed to converge in loopy graphs) and (2)
even approximate inference is typically compu-
tationally expensive. Despite these challenges,
it has been argued that adding such constraints
is necessary to improve performance [7]. To
alleviate some of the inference complexities with
these non-tree-structured models, a number of
competing methods have been introduced. Early
attempts used sampling techniques from the tree-
structured posterior as proposals for evaluation
of a more complex non-tree-structured model
[15]. To obtain optimality guarantees, branch-
and-bound search was recently proposed by Tian
et al. [55], with the tree-structured solutions as a
lower bound on the more complex loopy model
energy.

Datasets No discussion of pose estimation
would be complete without some mention of
the common datasets and benchmarks that have
driven performance on the task. The COCO
dataset [31] and the corresponding COCO
Keypoint Detection Challenge, which has been
running since 2016, require localization of
person keypoints in challenging, uncontrolled
conditions. The task requires simultaneous
detection of people and their pose. The COCO
train, validation, and test sets contain more than
200,000 images and 250,000 person instances
labeled with keypoints. A similar benchmark, but

focusing on videos, was proposed as part of MPII
Human Pose dataset [6]. The dataset includes
approximately 25,000 images, taken from
YouTube videos, containing over 40,000 people
with annotated body joints. Interestingly, the
collection procedure in [6] utilized established
taxonomy of everyday human activities, resulting
in hierarchical activity labels that accompany
the videos. Both COCO and MPII datasets
provide 2d annotated poses in complex imaging
conditions: community photographs with single
and multiple subjects exhibiting diversity
of poses, clothing, and backgrounds. These
challenges and abundance of annotations made
these datasets popular choices for benchmarking
advances in 2d pose estimation.

Collection of 3d pose datasets is significantly
more challenging and, in general, requires
specialized equipment. To this end, Human3.6M
[23] dataset was introduced in 2014. Human3.6M
contains multi-view video hardware synchro-
nized with 3d poses obtained using commercial
marker-based motion capture system. As implicit
in the name, dataset contains 3.6 million frames
and corresponding poses of actors performing
variety of pre-scripted everyday activities. While
the dataset spans a good variety of poses, the
image complexity, in terms of background
and clothing of the subjects, is limited due to
requirements of the setup that limits capture to an
instrumented indoor environment. Nevertheless,
Human3.6M continues to be one of the most
widely used datasets for benchmarking 3d pose
estimation and 2d-to-3d lifting approaches.

Open Problems

Human pose estimation is an active area of
research with algorithms evolving quickly
over the last couple of years. Performance
of 2d keypoint-based, and corresponding 3d
lifting, architectures continues to increase
with development of more sophisticated neural
models. The use of graph-based neural networks
(GNNs) [10, 67], in this context, appears
particularly promising as a way to add structure
into the predictions. These trends of improving
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performance through better architectural designs
is likely to continue at least for the next couple
of years. Further, there is significant evidence
suggesting that successfully estimating pose
independently at every frame is a very ill-posed
problem. Spatiotemporal models that aggregate
information over time [10, 66] are emerging as
a way to regularize performance and smooth out
the noise in the estimates. Some of such models,
e.g., [41], are starting to leverage physics-based
modeling and reasoning to improve plausibility
of both poses and recovered dynamics; this
appears to be a promising future direction. Much
more work is also needed to build realistic human
avatars, by recovering not only body pose and
shape in the form of realistic body models (e.g.,
SCAPE or SMPL) but also clothing and texture.

Speaking more broadly, and longer term, one
needs to integrate multi-person models and start
to reason about pose in the context of the envi-
ronments and objects that subject is interacting
with. This is a very challenging task that will
require integration of multi-person pose estima-
tion with other techniques in computer vision
(e.g., object detection, segmentation, and scene
understanding). Finally, nearly all work in pose
estimation assumes passive cameras and capture
environments. Very recent approaches are start-
ing to experiment with active capture setups [27],
where, for example, a camera is able to follow the
subject and capture the images/video in service
of recovering the pose from opportune angles.
This direction not only opens up a broader set
of applications (i.e., capturing poses that are part
of extreme mobile activities, e.g., skiing, riding
horses, etc.) but also enables opportunities for
positioning the cameras in a way that actually
simplifies the task and reduces pose ambiguities.

Finally, nearly all of the approaches discussed
in this chapter are learning-based and require
large datasets of images/videos with annotated
poses to learn from. One would argue that current
approach are, at least, as limited by the data
as they are by algorithmic innovations. While
this challenge is not unique to pose estimation
and is broadly applicable to problems across the
computer vision, it is exacerbated by the com-
plexity of required pose annotations (especially

when considering poses in 3d). As such, the trend
of unsupervised learning widely regarded as the
next frontier for scaling neural architectures is
also starting to exhibit itself in pose estimation
domain, with initial successes shown by [13] and
[45]. One would expect this trend to only grow
over the next couple of years.
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Definition

Hyperspectral imaging (HSI) is a newly
developing technique combining the advantages
of optical imaging and spectroscopy to simulta-
neously collect spatial and spectral information
from a scene. A set of monochromatic images at
almost continuous hundreds of wavelengths can
be acquired by HSI.

Background

The light emitted from illumination sources or
reflected from scene objects generally spans a
broad range of wavelengths [13]. The vision
of the human eye is dependent on three basic
color (red, green, and blue) bands, which means
the human eye is only able to see a limited
part of the electromagnetic spectrum and dis-
tinguish between objects based on their differ-
ent spectral responses in that narrow spectral
range. Though trichromatic sensing suffices for
the human visual system in many circumstances,
hyperspectral imaging collects image data with
a greater number of spectral channels than tradi-
tional trichromatic sensors, thus providing spec-
tral information about the captured scene and
objects at a higher level of detail. In HSI, each
pixel of the image contains spectral information
which is added as a third dimension of values
to the two-dimensional spatial image, generating
a three-dimensional data cube. A simple, well-
known example of a three-dimensional data cube
is the common RGB image, where each pixel
only has three bands (red, green, and blue) of
the visible spectrum. The three bands are lim-
ited to observing scenes and usually not able to

obtain enough information about the external or
internal components of the material. Hyperspec-
tral data cubes contain continuous narrow bands
(<10 nm) across the electromagnetic spectrum
and can provide absorption, reflectance, or fluo-
rescence spectrum data for each image pixel. The
additional spectral information contained with
the continuous hyperspectral image can be uti-
lized to more accurately analyze and understand
micro- and nanoscale spectral features, which are
not feasible by the discrete RGB imaging with
only three bands (Fig. 1).

Multispectral imaging (MSI) acquires data in
a small number of spectral bands. As the super-
set of multispectral imaging, HSI consists of a
larger number of spectral bands (i.e., having a
higher spectral resolution) and generates contin-
uous spectral bands.

Theory

In the past few decades, various methods have
been developed for acquiring hyperspectral data
S(x, y, λ) which has two spatial dimensions (x,
y) and one spectral dimension (λ). Since hyper-
spectral data cubes S(x, y, λ) are of a higher
dimensionality than the two-dimensional (2D)
camera detector arrays currently available, the
design of hyperspectral imaging methods trades
off either temporal resolution or spatial resolu-
tion. There are mainly two types of methods,
namely, the scanning-based methods (multiple
exposure) and the computational imaging meth-
ods (single exposure) (Fig. 2).

The scanning-based methods The develop-
ment of the scanning-based methods has gone
through three stages: the point-scanning methods,
the line-scanning methods, and the spectral-
scanning methods. The point-scanning methods
[18] capture the spectrum of a single spatial
location at each time instant and thus require
substantial time to obtain an entire 3D data
cube. Rather than a pinhole aperture, the line-
scanning methods [28] employ a slit aperture
aligned with one of the two spatial dimensions
(either x or y), and the spectrometer is translated
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Hyperspectral/Multispectral Imaging, Fig. 1 The comparison of RGB imaging, multispectral imaging, and hyper-
spectral imaging

Hyperspectral/Multispectral Imaging, Fig. 2 The
portions of the data cube collected during the hyper-
spectral imaging process for the scanning-based methods
(multiple exposure) and the computational imaging

methods (single exposure). (Figure is modified from
[39].) (a) Point-scanning. (b) Line-scanning. (c) Spectral-
scanning. (d) Computational imaging

along the other direction, providing much lower
latency than the point-scanning methods. Both
the line-scanning methods and the point-scanning
methods utilize a dispersive component to expand
the spectral information of the incoming signals
in spatial dimension, and the exposure time
can be lengthened to increase signal intensity.
Nevertheless, they also involve more mechanical
and calibration complexity in practice. The
spectral-scanning methods record a sequence
of images using different narrowband filters in
the optical path of an imaging device, which
effectively samples a set of full spatial resolution
images over the spectral range at the expense of
temporal resolution. For instance, Schechner
and Nayar [30] attached a spatially varying
color filter rigidly to a movable camera – as
the camera moves, it senses each pixel in the
scene multiple times, each time in a different
spectral band. Different from the traditional
scanning methods, acousto-optic tunable filter

[17] (AOTF) and liquid crystal tunable filter [1]
(LCTF) are based on the principle of polarized
light and have a very fast scanning speed. In
addition to passive spectral-scanning methods,
Nayar et al. [19] proposed the multiplexed
illumination scheme which employs active
illumination to sweep from band to band. There
are also other scanning methods such as Fourier
transform spectral imaging methods which
scan one mirror of a Michelson interferometer
in order to obtain measurements at multiple
optical path difference (OPD) values – the
Fourier domain equivalent of a tunable filter
camera [11]. Agile spectrum imaging [29] uses
a diffraction grating to disperse the rays into
different colors and introduce a slot-like mask
in the optical path to modulate the spectrum.
Over the past 30 years, scanning techniques
have witnessed an impressive improvement,
but the underlying technology and concepts
have not changed significantly. Most of these
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systems trade off temporal resolution for spectral
resolution and are thus unsuitable for video
acquisition. Since the scanning-based methods
cannot capture dynamic scenes, technology for
collecting high-dimensional spectral data cubes
in a single exposure appears.

The computational imaging methods To
overcome the limitation of the scanning-based
methods, several snapshot methods have been
developed in the past few decades. From the
1930s to the 1960s, to be applied in astronomy,
the most common approaches to snapshot
imaging spectrometry are the integral field
techniques (based on mirror arrays, fiber arrays,
and lenslet arrays: IFS-M [6], IFS-F [21],
and IFS-L [10]) – so-called because each
individual measurement of a data cube voxel
results from integrating over a region of the
field. In the 1970s, multispectral beamsplitting
methods [33] are brought up which make use
of multiple beamsplitters to split incident light
into several color bands. A more conceptually
simple approach – multiaperture filtered camera
[32] (MAFC 1994) – uses an array of imaging
elements and places a different filter at each
element in order to collect portions of the full
spectral band. In the tunable echelle imager
[2] (TEI 2000), the output from an imaging
Fabry-Perot interferometer is cross-dispersed
by a grism in one direction and dispersed by an
echelle grating in the perpendicular direction.
This forms a mosaic of different narrowband
images of the same field on a detector. Though
with the capability of multispectral acquisition at
a snapshot, these methods are still insufficient
in spatial resolution or spectral resolution.
The advent of large-format (4 megapixel)
detector arrays, some 20 years ago, brought
with the capability to measure millions of
voxels simultaneously, which makes snapshot
spectral imaging practical and useful [20].
Techniques based on computed tomography
imaging spectrometry (CTIS [12], 1995) have
been presented for multispectral imaging in a
single snapshot. Inspired by tomographic medical
imaging, Descour and Dereniak [12] introduced
the approach of reconstructing a 3D data cube

with two spatial and one spectral dimension from
a set of simultaneously captured 2D projections
that integrate spectral signals from different scene
positions on the detector. A major advantage of
the CTIS approach is that the system layout can
be made quite compact, but a major disadvantage
has been the difficulty in manufacturing the
kinoform dispersing elements. Moreover, since
its inception, CTIS has had to deal with problems
surrounding its computational complexity,
calibration difficulty, and measurement artifacts.
Though video imagery could potentially be
acquired via CTIS, the computationally intensive
reconstruction, requiring up to 20–30 min per
frame for a 100×100×100 data cube, makes
tomographic approaches unsuitable for real-time
video applications at that time. Coded aperture
snapshot spectral imager (CASSI [8], 2006)
is the first spectral imager attempting to take
advantage of compressive sensing theory for
snapshot measurement which estimates a spectral
image from fewer measurements than data cube
entries. The underdetermined data cube is solved
by assuming sparsity in a multiscale wavelet
basis, a common property of natural scenes. As
illustrated in Fig. 3, The whole under-sampling
process of the compressive sensing [4] theory can
be regarded as a sensing matrix (Φ) for the high-
dimensional spectral data. The hyperspectral data
cube S(x, y, λ) is coded through a prism-mask
modulation and mapped to a low-dimensional
imaging matrix M (M = ΦS). S can have
a sparse representation of a spectral vector
orthonormal basis Ψ and a sparse coefficient
θ (S = Ψ θ ). When the sensing matrix Φ and
the orthonormal basis Ψ have smaller coherence,
fewer measurements are needed for complete
reconstruction, and the sensing system has higher
sampling efficiency; therefore, the high-precision
reconstruction from the low-dimensional imaging
data M to the original hyperspectral data cube S

can be realized. A dual disperser (DD) CASSI
[16] and a single disperser (SD) CASSI [37] were
later proposed to improve spatial and spectral
resolving power. Compressive spectral imaging
systems are much more compact and flexible
in various application fields and have a lower
cost. Nevertheless, limitations still exist in the
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Hyperspectral/Multispectral Imaging, Fig. 3 Schematic of the prism-mask modulation based system (CASSI[8,16,
37]; PMVIS [9, 13])

coded aperture-based imaging systems, whereby
(1) the reconstruction error is unavoidable due
to the sparsity assumption for a natural scene
and (2) the computational complexities of the
reconstruction algorithms, such as TwIST [5],
ADMM [7], and HS dictionary learning plus
sparse-constraint computational reconstruction
algorithms [25], are not satisfying, and the
high-dimensional spectral data cannot be
reconstructed in real-time. In order to overcome
the above disadvantages, Wang et al. [38, 40]
proposed a dual-camera imaging system based on
complementary observations, and a hyperspectral
image reconstruction algorithm combining the
data and prior knowledge is developed. Cao et al.
[9, 13] proposed the prism-mask multispectral
video imaging system (PMVIS, 2011) which
can be constructed with the low-cost off-the-
shelf optical components and is much simpler
to calibrate in practice. Additionally, PMVIS
can generate high-dimensional spectral videos
in real-time. Considering that spectral resolution
has been the short board in many machine vision
applications, snapshot hyperspectral imaging
Fourier transform spectrometer [22] (SHIFT,
2010), multispectral Sagnac interferometer [23]
(MSI, 2010), and image mapping spectrometer
[15] (IMS, 2010) were proposed to trade the high
spatial resolution of a camera for a higher spectral
resolution. Following this, Manakov et al. [27]
proposed a reconfigurable camera add-on (2013)
that enables plenoptic imaging based on a
physical copying mechanism, which multiplies a
sensor image into a number of identical copies

and recovers the desired information via different
optical filters.

New trends In the past years, the spatial and
spectral resolution achieved by the computational
imaging systems have become sufficient that the
devices are now commercially viable (XIMEA,
Specim, Pixelteq, ALPhANOV, LinkSquare, etc.
[41]). More recently, with the rapid development
in big data science and semiconductor device
fabrication, some newly developed imaging sys-
tems have been emerging. As a substitute for
traditional dispersive elements, e.g., prism and
grating over hundreds of years, micro-nano fab-
rication allows wavelength-level modulation on
chip such as the colloidal quantum dot spec-
trometer [3] (CQD, 2015) and the Imec’s on-
chip filter technology, the latter providing high
spatial (up to 7Mpx) and spectral (150+bands)
resolution in a compact, lightweight, and mass-
manufacturable design. In addition, metasurfaces
[35,42,43] based on resonant subwavelength pho-
tonic structures enable novel ways of wavefront
control and light focusing, underpinning a new
generation of flat-optics devices. In conclusion,
the computational imaging methods have demon-
strated considerable potential than the scanning
methods in various applications because of the
remarkable efficiency in dynamic spectrum cap-
ture and simple low-cost system configurations.
Meanwhile, several limitations exist in different
spectral imaging systems, which must account
for further combinations of optical principles,
compressive sensing theory, machine learning
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algorithms, and semiconductor device fabrication
technologies.

Application

Since various material and object properties can
be inferred from detailed spectrum, acquisition
systems for precise spectral measurements can be
effective tools for scientific research and engi-
neering applications. HSI has been applied to
numerous applications including environmental
monitoring [34], military defense [31], art con-
servation and archeology [24], medical diagnosis
[26], food quality control [14], and mineralogical
mapping of earth surface [36].

Open Problems

The rapid increase of possible HSI applications
requires the availability of better hyperspectral
imaging methods with a much higher speed in
acquisition speed, smarter data elaboration, new
set-ups, and new ideas. The increase number of
spectral bands will result in lower signal-to-noise
ratio (SNR) per band, and the varying illumina-
tion can be a challenging condition for HSI. How
to obtain hyperspectral images with higher spatial
resolution and higher spectral resolution stably
at a lower time cost is still a problem worthy of
study.
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Definition

The purpose of illumination estimation is
to determine the direction and intensity of
the lighting in a scene. In contrast to direct
measurement of lighting, the illumination
information is inferred from visual cues within
the scene, without the use of a special probe.

Estimating the illumination color of a scene
may also be referred to as illumination estima-
tion. This research problem is commonly termed
as color constancy, which is described in another
entry of this encyclopedia.

Background

The appearance of objects and scenes can vary
considerably with respect to illumination condi-
tions. In [1], differences in face appearance due
to lighting were found to be greater than those
due to identity. Since such appearance variations
can affect the performance of certain computer
vision algorithms, much research has focused on
illumination estimation, so that lighting can be
accounted for in image understanding.

To simplify inference, methods for illumina-
tion estimation typically assume that the illu-
mination originates from distant light sources.
With this assumption, the illumination can be
considered to be uniform across the scene, such
that only a single global lighting condition needs
to be estimated. Most techniques perform this
estimation on a single input image, as this allows
for wider applicability.

Early Methods

Early methods generally infer illumination from
a particular lighting effect within an image. Sev-
eral techniques categorized by lighting cue are
described in the following.

Shading
Many methods for illumination estimation are
based on an analysis of shading over the surface
of an object. They typically utilize the relation-
ship between shading and lighting described by
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the Lambertian reflectance model:

I (x) = ρ(x)N(x) · L

where x indexes the shaded image pixels, I

denotes image intensity (shading), ρ is the
albedo, N(x) is the surface normal, and L

is the light vector that encodes the direction
and magnitude of illumination. To solve for
L, shading-based techniques often assume the
surface of interest to have a uniform albedo and a
known geometry. If the absolute albedo value is
unknown, then L can be estimated only up to an
unknown scale factor.

While some methods focus on recovering just
the direction of a single illuminant [2, 3], most
address the more common scenario of multiple
illumination sources. Hougen and Ahuja [4] solve
a set of linear equations to determine light inten-
sities from a set of sampled directions. Yang and
Yuille [5] use image intensities and known sur-
face normals at occluding boundaries to constrain
illuminant directions. Ramamoorthi and Hanra-
han [6] compute a low-frequency illumination
distribution from a deconvolution of reflectance
and lighting. Zhang and Yang [7] estimate light-
ing directions from critical points which have
surface normals perpendicular to an illuminant
direction. Based on this, Wang and Samaras [8]
segmented images into regions of uniform light-
ing and then performed estimation by recursive
least-squares fitting of the Lambertian reflectance
model to these regions.

Illumination may alternatively be estimated by
uncalibrated photometric stereo [9], without the
need for known albedos and surface normals.
This approach requires a set of images taken
under different lighting conditions as input.

Cast Shadows
Several techniques analyze cast shadows for illu-
mination estimation. For an object of known
shape, the shadows that it casts provide con-
straints on the lighting directions and their cor-
responding intensities. Sato et al. [10–13] formu-
lated these constraints as a system of equations
in terms of observed brightness values within
shadows and a set of sampled lighting directions

at which source intensities are to be solved. These
methods require a single input image for objects
that cast shadows onto a uniform-colored surface;
two images are needed to cancel out the effects
of color variation for surfaces with texture. This
approach was extended by Okabe et al. [14] to a
lighting representation of Haar wavelets. Kim and
Hong [15] later proposed a single-image method
that handles surface texture by incorporating reg-
ularization and some user-specified information.

Specular Reflections
Some methods consider specular reflections in
estimating illumination. From the locations of
specular reflections on an object of known shape,
these techniques compute the corresponding light
source directions according to the mirror reflec-
tion property. This approach was used by Nishino
et al. [16] to obtain an initial approximation of the
illumination distribution, which is then refined
using a more sophisticated model of reflectance.
Illumination cues from specular reflections are
combined with those from shading and shadows
by Li et al. [17] to minimize the effects of scene
texture on lighting estimation. Without needing
explicit object shape recovery, Nishino et al. [18]
and Wang et al. [19] proposed to estimate lighting
from specular reflections on human eyes, which
are highly reflective and have a similar shape
from person to person.

Recent Techniques

Over the past decade, methods for illumination
estimation have tended to consider image appear-
ance more holistically, rather than focus on spe-
cific lighting effects. Many also are designed to
jointly estimate other appearance factors such as
reflectance or shape in addition to illumination,
thus avoiding the need for strong assumptions
or measured data on these properties. Moreover,
most recent methods are able to infer more gen-
eral models of lighting, such as environment
maps, and employ deep learning to take advan-
tage of information from large datasets.

These techniques can be classified according
to the locality of the scene area they process.
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While some estimate lighting from the appear-
ance of an individual object, others utilize the
partial view of a scene that is visible within an
image.

Object-Based Estimation
Some methods for estimating illumination from a
single object perform optimization over multiple
appearance factors. These works must address
ambiguities that exist among these factors, where
a change in one can be offset by a corresponding
change in another to yield the same object appear-
ance. To deal with this problem, constraints based
on prior knowledge have been imposed on the
appearance factors, such that they conform to
typical illumination conditions, reflectance prop-
erties, or object shapes. Given a known object
shape, Lombardi and Nishino [20, 21] solve for
illumination and reflectance by Bayesian joint
estimation. Priors on illumination include it being
of low entropy and having a heavy-tailed gradient
distribution derived from natural image statistics.
For reflectance, the estimates are bounded within
a space of natural reflectances measured from
real-world materials. Barron and Malik [22] esti-
mate all three factors of shape, illumination, and
reflectance. Among the priors employed are that
the reflectance is piecewise constant and has a
sparse palette, that the shape is smooth and has an
isotropic distribution of surface orientations, and
that the illumination fits a multivariate Gaussian
model of low-order spherical harmonics.

More recently, methods for object-based illu-
mination estimation have utilized convolutional
neural networks. Many of these works specifi-
cally address the case of human faces, which are
common in images and for which prior knowl-
edge about face shape and appearance can be
incorporated. From facial appearance, illumina-
tion has been estimated in the form of sun and sky
models [23], directional lighting [24], spherical
harmonics [25–27], and non-parametric environ-
ment maps [28, 29].

For more general objects, neural networks
have been designed to estimate an environment
map from an image given certain additional
information or assumed object properties.
Georgoulis et al. [30] addressed the case of

homogeneous specular objects with unknown
shape, where a reflectance map is first estimated
and then factorized into parametric reflectance
and an environment map. They additionally
presented a method to deal with piecewise
constant materials given approximate surface
normals [31]. This approach also estimates an
intermediate reflectance map, but does so for each
surface material and uses them jointly to estimate
illumination. With known object geometry
and reflectance, Weber et al. [32] estimate
a low-dimensional model of indoor lighting
learned from a dataset of indoor illumination
environments. For the case of RGBD images, Wei
et al. [33] take advantage of physical principles
from inverse rendering to constrain illumination
estimates while also utilizing neural networks
to expedite the more computationally expensive
portions of its processing.

A benefit of estimating illumination from
individual objects is that this naturally allows
for spatially varying lighting to be recovered,
since different local illumination conditions
can be inferred at different object locations
within an image. However, a local object region
may contain less information for illumination
estimation than a more global scene area.

Scene-Based Estimation
In estimating the lighting from a view of the
scene, several works utilize illumination models
specific to outdoor environments. Lalonde et al.
[34] combine cues from cast shadows, shading,
and sky appearance with a data-driven prior to
estimate a probability distribution of the sun
position and parameters of a sky model. Hold-
Geoffrey et al. [35] train a CNN to predict param-
eters of a low-dimensional outdoor illumination
model by using image crops of outdoor panora-
mas as input and obtaining the ground truth by
fitting the model to the panorama’s sky regions.
This work is extended by Zhang et al. [36] to
handle different weather conditions. A separate
network is trained to regress the parameters of
a high dynamic range (HDR) outdoor illumina-
tion model from a low dynamic range (LDR)
panorama, and this network is then used to label
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a training set for the main illumination estimation
network. In contrast to these methods based on
analytical sky models, Hold-Geoffrey et al. [37]
learn a data-driven sky model jointly with illumi-
nation estimation in an end-to-end manner.

Numerous other techniques have been pre-
sented instead for indoor settings. Some follow an
approach of directly regressing illumination from
scene appearance. Among them are a method
by Gardner et al. [38] that trains a network to
estimate light directions from a large set of LDR
panoramas, where rectangular crops are taken
as input images and the ground-truth lighting
directions are derived from the panoramas. A
small set of HDR panoramas is then used to fine-
tune the network for predicting light intensities.
This panorama-based approach is extended by
Gardner et al. [39], who simplify the inference
task by estimating illumination as a set of discrete
light sources rather than as a general environ-
ment map. The 3D geometric and photometric
parameters of the lights are regressed from a
single image by a deep neural network. Differ-
ent from these methods, Garon et al. [40] esti-
mate spatially varying illumination, in the form
of spherical harmonics at different image loca-
tions. For improved training and prediction, they
employ multi-task learning where low-frequency
depth, albedo, and shading are jointly learned as
auxiliary subtasks together with the illumination
estimation.

Indoor illumination has also been estimated in
a geometric manner via 3D scene reconstruction.
Song and Funkhouser [41] employ a neural
network to infer scene geometry from the
image, and then a partial environment map
for any scene position is reconstructed through
reprojection of the image pixels via the predicted
geometry. The rest of the environment map
is completed using a generative network, and
then a third model is applied to infer HDR
light intensities from the LDR image colors.
Srinivasan et al. [42] instead predict a volumetric
scene representation from a narrow-baseline
stereo pair of images, where a novel view
near the stereo pair and an environment map
captured within the scene are provided as
rendering targets for the loss function. From

the estimated volume, an environment map at a
queried 3D location is generated by casting rays
along the directions sampled in the environment
map.

In addition to scene geometry, the reflectance
properties of surfaces and their effects on light
transport within a scene are accounted for in
methods based on differentiable rendering. A
differentiable renderer generates image appear-
ance from scene attributes, namely, illumination,
geometry, and reflectance, while explicitly retain-
ing gradients of the rendered image with respect
to these attributes. With these gradients, a neu-
ral network can be trained to estimate lighting
as well as other scene attributes by minimizing
the difference of its rendered images and the
corresponding observed scenes. Azinovic et al.
[43] present a differentiable Monte Carlo path
tracer for estimating reflectance properties and
lighting given 3D scene geometry and several
images as input. Environment lighting, albedos,
and surface normals are jointly estimated in the
work of Sengupta et al. [44], which introduces
a residual appearance renderer trained to model
complex appearance effects not captured by ren-
dering of direct illumination. Li et al. [45] employ
a differentiable rendering layer to more generally
estimate spatially varying lighting and reflectance
in addition to shape, with illumination modeled
by a spherical Gaussian representation.

Applicable to both indoor or outdoor settings,
the method of Cheng et al. [46] recovers a
spherical harmonics model of lighting using
paired photos from the front and rear cameras of
a mobile device. Estimating from single-image
input, LeGendre et al. [47] train a neural network
on LDR videos that include spheres of various
reflectivity at the bottom of the frame. The
network learns to predict an HDR environment
map from the background image that is consistent
with the appearance of the spheres.

Applications

Illumination estimation has been employed
in various applications based on appearance
modeling. In [18], lighting estimates from eye
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reflections are used for robust face recognition
under varying illumination conditions. Estimates
of scene illumination have also been used to
realistically composite virtual objects into real
images in an illumination-consistent manner
[33, 34, 40, 42, 43, 45, 48, 49], to relight human
faces [24, 27, 29], and to edit scene appearance,
such as by replacing surface materials with others
that have different reflectance properties [45] or
by adjusting the lighting conditions [22, 49].
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Definition

An image decomposition is the result of a math-
ematical transformation of an image into a new
set of images that represent different aspects of
the input image or scene pictured in that image.
The original image can typically be reconstructed
from these new images.

Background

While images are primarily stored as an array of
pixel values, an image can be represented in a
number of different ways. For instance, an image
can be easily transformed into two images, one
containing the high-frequency variation in the
input image and a second containing the low-
frequency variation. This process decomposes
the input image into two images, each of which
expresses different information about the original
image.

This process is useful when further processing
will treat these two images differently. If the
decomposition is chosen correctly, the image is
decomposed into a set of images that can each
be processed uniformly. Thus, the decomposition
facilitates adaptive processing of the content of
an image.

Theory

Image decompositions can be roughly divided
into two different types of decompositions,
image-based decompositions and intrinsic image
decompositions. Image-based decompositions
represent the image itself using new images,
while the intrinsic image decompositions reflect

the content of the scene pictured in the image
itself.

Image-Based Decompositions
Similar to the background example above, many
image-based decompositions focus on represent-
ing multi-scale frequency content in the scene.
The Gaussian pyramid is one of the most basic
decompositions representing multi-scale content.
The decomposition consists of a set of images of
progressively smaller resolution, with each image
being one level of the pyramid. Each level is
created by filtering the image at the level below
and then downsampling the result. This creates a
multi-resolution set of images.

Depending on the application, the usefulness
of the Gaussian pyramid may be limited because
each level contains redundant information. This
can be eliminated by modifying the pyramid cre-
ation process to create a Laplacian pyramid [1].
In the Laplacian pyramid, the input image is pro-
gressively downsampled. The image at level i in
the Laplacian pyramid is computed by taking the
difference between the ith level of the Gaussian
pyramid and the upsampled version of level i +1,
which has been downsampled from the ith level
of the Gaussian pyramid. Effectively, each level
of the Laplacian pyramid expresses the image
information at a particular scale. Figure 1 shows
an example of the Laplacian decomposition of an
image.

In [2], Simoncelli et al. extended this decom-
position process to also separate orientation into
different images, creating the steerable pyramid
decomposition. Similar decompositions can also
be generated by using a different process to
separate the images. In [3], the bilateral filter is
used to generate a two-image decomposition.

These decompositions are also connected
to other image transformations, particularly
wavelets. The connections are discussed in [2].

Intrinsic Image Decompositions
While image-based decompositions are focused
on the pixel values themselves, intrinsic
image decompositions create images that
are based on the content of the scene. The
intrinsic image decomposition is based on the
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Image Decomposition:
Traditional Approaches,
Fig. 1 These images are a
Laplacian pyramid created
from the well-known Lena
image. Each image
captures the variation at a
specific scale

Image Decomposition: Traditional Approaches, Fig. 2 An example of an intrinsic image decomposition. The
image on the left is decomposed into shading and albedo components

intrinsic image approach for representing scene
characteristics. In this approach, each intrinsic
characteristic of the scene is represented by
a distinct image. These images are chosen to
represent both intrinsic characteristics and image
content.

In [4], Weiss uses video data to separate an
image into illumination, or shading, and albedo
components. In this decomposition, an input
image pixel at location n, I (n), is equal to
the product of a shading image and an albedo
image, or I (n) = S(n) × A(n). In [5] and [6],
Tappen et al. show how the intrinsic image
decomposition can be computed from a single

image. Figure 2 shows an example of an intrinsic
image decomposition for the image on the left.

Application

Image decompositions are frequently used to
generate images that processed separately. In [7],
Portilla et al. use the steerable pyramid to
denoise images. Heeger and Bergen showed that
texture can be generated by forcing the marginal
histograms of the levels of a steerable pyramid
to match those of a pyramid generated from a
reference image [8]. More complete measures of
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statistical similarity are used in [9], leading to
improved synthesis results.

As mentioned earlier, the bilateral filter is used
in [3] to separate the image into large- and fine-
scale variations to combine images taken under
different illumination. In [10], Bousseau et al.
describe how user input can improve intrinsic
image decompositions and demonstrate how they
can be applied for graphics applications.

Traditionally, systems for creating image
decompositions have been designed to separate
different types of image causes by modeling
the statistics of different contributors to
surface appearance. Similar to many other
areas of computer vision, these methods are
now generally outperformed by deep learning
methods.
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Definition

An image descriptor is a vector representing
concisely the content of an image. A similarity
measure is a function estimating the similarity
between two objects, usually represented by vec-
tors.

Background

Image descriptors are an ubiquitous tool in com-
puter vision. By representing the content of an
image or an image region in a compact and
robust way, they make matching problems more
efficient, as shown in Figs. 1 and 2. Typically, a
descriptor is used to query a set of descriptors,
looking for the most similar descriptor in the
set. Efficient algorithms, such as hashing, can be
used to make this search extremely fast, even
for large databases, when the Euclidean distance
can be used as similarity measure. Applications
range from simultaneous localization and map-
ping (SLAM) and Structure from Motion (SfM)
to image retrieval and object recognition.

Many different approaches were proposed
over the years, and as almost any computer vision
topic, deep learning has also changed the way
descriptors could be computed. We describe
below the most representative approaches to
computing descriptors, as well as similarity
measures, as these two concepts are closely
related.
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Image Descriptors and Similarity Measures, Fig. 1 Affine regions represented as ellipses matched across two
images using their local descriptors. (Images from [1])

Image Descriptors and Similarity Measures, Fig. 2 By using the NetVLAD image descriptors, one can match
images despite strong perspective and light changes. (Images from [2])

Local Image Descriptors

Early Developments and SIFT
A local descriptor is a vector of scalar values
characterizing a region of an image, in a way
that is as invariant as possible to factors such as
illumination or perspective while being distinc-
tive. For example, simply using pixel intensities
for the descriptor’s values would not be robust as
they change when light or perspective change.

Since the descriptor is “local,” in the sense
that it describes only a region of the image, one
has first to choose the size and shape of this
region. For many problems, the region is centered
on “feature points,” which are detected using
some automated method (SIFT, Harris, FAST
detectors, etc.). The size can be manually spec-
ified or selected automatically. For example, the
choice of size for the region can be based on the

scale-space theory: The size is then taken as a
function of the standard deviation that maximizes
the normalized Laplacian of Gaussian. It has been
showed that this results in a region stable to scale
changes [3].

An early description method depends on the
image derivatives Lij at the region center x, com-
puted by convolutions with Gaussian derivatives:

Lij (x) =
((

∂i

∂ui

∂j

∂vj
G

)
∗ I

)
(x) , (1)

where G is a Gaussian kernel and I denotes the
image. The set of derivatives Lij has been called
“local jet” by Koenderink and van Doorn. It is
possible to define a descriptor that is invariant to
rotations based on them [4]:

d = [L00, L
2
01 + L2

10, 2L10L11L01, L20 + L02, ..]� .

(2)
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Note that the first coordinate is the weighted
average intensity, the second one is the square of
the intensity gradient magnitude, and the fourth
one is the Laplacian of Gaussian of the inten-
sities. Such descriptor can also be made to be
invariant to scale changes. However, it is not
invariant to perspective transformations. Its dis-
tinctiveness is also very limited, as it is made of
only eight values.

Many other descriptors were proposed in the
1990s, based on various heuristics and images
cues, such as color histograms, color moments,
Gabor filters, etc., but the SIFT descriptor [5]
introduced by Lowe was a clear breakthrough.
This descriptor is based on multiple histograms of
image gradient orientations, as shown in Fig. 3a.
While it is not per se invariant to deformations or
perspective transformations, it achieves a remark-
able robustness to significant local deformations.
The region is divided into several, typically 4×4,
subregions, and the contents of each subregion
are summarized by an eight-bin histogram of
gradient orientations. The descriptor is then a
vector of 128 dimensions, built by concatenating
the different histograms. Finally, this vector is
normalized to unit length to reduce the effects of
illumination changes.

The idea of building the descriptor from his-
tograms of image gradients was key to achieve
robustness to deformations and was motivated
by the theory of Hubel and Wiesel on V1, the
first layer of the mammals’ visual cortex. In
this theory, some neurons, called “simple cells,”
perform operations similar to oriented gradient
detection. Other neurons, called “complex cells,”
collect the output of the simple cells with similar
orientations but with slightly different receptive
fields. Creating histograms of gradients is an
efficient way to implement the functionality of
the simple and complex cells.

GLOH is another keypoint extraction and
description method [6], close to SIFT, the main
difference being that the region has a foveal
structure (Fig. 3b). SURF [7] is also closely
related to SIFT. Even if it does not build explicitly
histograms of gradients, it also computes sums
of gradient magnitudes for several directions.
The sums are computed using integral images,

which makes the SURF descriptor very efficient
to compute, for a very good discriminative power.
Implementations of SIFT on GPU also exist. The
DAISY descriptor is also based on histograms of
gradients [8], where the histogram regions form a
foveal shape, and the histograms are computed by
applying Gaussian smoothing to maps of oriented
gradients. The advantage of DAISY is that it can
be computed for each image location efficiently,
which can be useful for dense image alignment,
for example.

Invariance to Rotations and Affine
Transformations
To achieve more invariance, an orientation can
also be assigned to the region. Such orientation is
also computed based on heuristics. For example,
in SIFT, it is taken to be the one correspond-
ing to a peak in the histogram of the gradient
orientations within a region around the keypoint
location. This method appears to be quite stable
under viewpoint changes in practice. The image
region is then rotated according to the estimated
orientation, before computing the local descrip-
tor.

Lindeberg and Garding [9], Baumberg [10]
and Mikolajczyk and Schmid [1] showed that it
is possible to estimate, from the pixel intensities
of the region to describe, an affine transforma-
tion that varies with geometric transformations
applied to this region. More exactly, the matrix
of this affine transformation can be taken as the
square root of the second moment matrix of the
intensities and is defined up to a rotation. This
missing rotation can however be estimated by the
method described in the previous paragraph.

Such rectification techniques can be applied
to any description method, even though a pub-
lic implementation combining rectification and
description from different authors is not always
available.

Binary Local Descriptors
The descriptors described above are made of
floating point values, which makes them rel-
atively slow to compute and match. This can
substantially affect real-time applications such
as SLAM. Binary descriptors, which are binary
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Image Descriptors and Similarity Measures, Fig. 3
Some local descriptors. (a) The SIFT descriptor is com-
puted from eight-bin histograms of the image gradient
directions for several subregions. (b) The GLOH descrip-

tor prefers a foveal shape for the subregions. (c) The
BRIEF descriptor is computed by comparing image inten-
sities at locations randomly selected

strings rather than vectors of floating point val-
ues, were invented for speeding up these opera-
tions.

An early local binary descriptor, called “cen-
sus transform,” was motivated by stereo recon-
struction [11], to make point matches robust
to the presence of occluding contours and illu-
mination changes. The census transform can be
defined as

d =
∑

i

2iτ (I, x, yi ) , (3)

where I denotes the image, x the center of the
local region, yi the image locations in this region,
and τ a binary test:

τ(I, x, yi ) =
{

1 if I (x) < I (yi ) , and
0 otherwise .

(4)

Locally Binary Patterns (LBPs) also build a
bit string where the neighborhoods are taken to
be circles of fixed radius [12]. Unlike census,
however, LBPs usually translate the bit strings
into its decimal representation and build a his-
togram of these decimal values. The concatena-
tion of these histogram values has been found
to result in stable descriptors. Extensions are
numerous.

The BRIEF descriptor [13] generalized the
census transform approach and considers the
binary string:

d =
∑

i

2iτ (I, yi , zi ) , (5)

where the (yi , zi ) are pairs of pixel locations
taken randomly. Rublee et al. [14] proposed to
optimize these locations. Other schemes have
been proposed to sample the image intensities.
Usually, 128- or 256-bit descriptors are used.

The advantages of using a binary string for
descriptor are multiple, even if they are often not
as discriminative. First, they are typically very
fast to compute while being robust to large illu-
mination changes. Second, the similarity between
descriptors can be measured by the Hamming
distance, which can be done extremely fast on
modern CPUs that often provide instructions to
perform the XOR and bit count operations to
implement the Hamming distance, as is the case
in the SSE and NEON instruction sets. Locality-
sensitive hashing (LSH) can also be used for
efficient matching in case of large numbers of
descriptors. Binary descriptors are also memory
efficient as they can be stored using only a few
bytes.

Deep Learning Methods
The methods described above are ad hoc, but
other methods also aimed at learning to compute
descriptors. Different approaches have been pro-
posed, but the most suitable approach is based
on siamese networks. As this is an approach that
is not limited to local descriptors, we describe it
below, at the end of the section on “Similarity
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Measures.” More recent works such as LF-Net
and SuperPoint learn together the methods for
detecting the regions and computing their local
descriptors.

Several surveys and evaluations have been
published on the topic of local image descriptors,
and the interested reader is invited to refer to them
as well [15].

Image Descriptors

Image descriptors describe the whole content of
an image and can be used for image retrieval
and localization for example. However, they are
usually not suitable for semantic tasks such as
object recognition.

Bags-of-Words
Image descriptors can be created from local
descriptors. An early successful image descriptor
is the bag-of-words (BOW) representation [16].
This representation was motivated by text
retrieval techniques. To apply such techniques, an
equivalent to the concept of words but for images
is required. This is done by quantizing the space
of local descriptors. This quantization is obtained
by clustering a large set of local descriptors, and
the cluster centroids are called “visual words.”
In practice, thousands or even millions of visual
words are used, from local descriptors computed
on affine regions. A local descriptor can then be
replaced by its most similar visual word.

An image is then described by a descriptor
d = [t1, .., tk]� of the frequencies of its visual
words. More exactly, the term “frequency-inverse
document frequency,” or tf-idf, is used rather than
the mere frequency, and is defined as

ti = ni

n
log

1

Ti

, (6)

where ni is the number of occurrences of visual
word i in the image, n is the number of local
descriptors extracted from the image, and Ti is
the prior frequency of visual word i, estimated
on a large set of images. ni

n
is the frequency of

visual word i in the image, weighted by log 1
Ti

,

which downweights words that appear often and
are therefore not discriminative.

It can be seen that the image locations of the
visual words do not influence the final descrip-
tor. While some information is thus lost, this
approach still performs remarkably well.

VLAD
The VLAD descriptor [17], for Vector of Locally
Aggregated Descriptors, was later introduced to
improve search accuracy and speed and memory
footprint. VLAD first computes the sums of dif-
ferences between the local descriptors and their
closest visual word:

vi =
∑

dL | NN(dL)=i

dL − wi , (7)

where the sum is over the local descriptors dL of
the image that are associated to visual word wi .
The VLAD is then d = [v�

1 , .., v�
k ]�, after power

normalization and L2 normalization. Power nor-
malization acts as a robust estimator and here
reduces the influence of repetitive visual elements
in the image. Jégou et al. [17] shows that this
process is an approximation of computing the
Fisher vector of the local descriptors. The Fisher
vector captures higher-order statistics, providing
a finer representation than the BOW vector.

Without further processing, the size of the
VLAD representation would be k × s scalar
values, where k is the number of visual words
and s the dimension of the local descriptors. Long
descriptors, however, are not desirable as they
have a bigger memory footprint, and search in
high-dimensional space does not perform very
well.

To reduce this size, a first dimensionality
reduction is applied to the local descriptors using
PCA, before computing the VLAD. A second
PCA dimensionality reduction is performed
on the full descriptor after normalization. The
descriptor is then quantized, meaning that it is
assigned a discrete value, which can be seen as
a binary string for convenience. This is done by
relying on the same k-mean-based strategy as
for assigning local descriptors to a finite number
of visual words. However, directly clustering
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VLAD representations is not tractable, as they
are still highly dimensional. The key idea is then
“product quantization”: The vector is first split
into smaller vectors, d = [d�

1 , ..,d�
d ]�, and

each vector di is quantized independently. This
results in a remarkably short descriptor of a few
tens of bits yet very discriminative. Note that
the search can be performed using an asymmetric
distance, where the descriptors in the database are
quantized but not the query descriptor. This limits
the degradation of the distance computations due
to the quantization.

NetVLAD
NetVLAD introduces a “VLAD layer” that is
appended to a Convolutional Neural Network and
mimics the computation of the VLAD represen-
tation on the image features extracted by the
network [2]. Since the network and the VLAD
layer are trained jointly using a Siamese network
framework as described at the end of this chapter,
the visual words in the VLAD layer can be opti-
mized for better retrieval performance, instead of
simply taking them as cluster centroids as it was
done with the original VLAD.

To make end-to-end training possible, the
VLAD layer has to be differentiable, even though
the computation of the original VLAD is not.
This computation, already presented in Eq. (7),
can also be written as

vi =
∑
dL

ai(dL)(dL − wi ) , (8)

where ai(dL) = 1 if the closest visual word
to dL is wi and 0 otherwise. This is clearly not
differentiable, and NetVLAD changes it into

vi =
∑
dL

ea
�
i d

L+bi

∑′
i e

a�
i′ d

L+bi′
(dL − wi ) , (9)

where the {ai}i , {bi}i , and {wi}i are sets of
parameters learned by minimizing a loss function
similar to the one in Eq. (17) described above and
the dL are here local image features extracted
by the CNN. NetVLAD demonstrates impres-
sive retrieval performance, even in presence of

day-night differences between the database and
the query image.

Similarity Measures

Ad hoc Measures
The Euclidean distance ‖d1 − d2‖ between
two descriptors d1 and d2 is often used to
estimate their similarity. Alternatively, the cosine
d�

1 .d2
‖d1‖‖d2‖ can also be used and is equivalent to
the Euclidean distance if the descriptors are
normalized.

Since the SIFT descriptor can be seen as a
histogram, [18] suggests using the Hellinger
kernel, also known as the Bhattacharyya’s coef-
ficient. It is a similarity measure more suitable to
histograms and has the following form:

H(d1,d2) =
n∑

i=1

√
d(i)

1 d(i)
2 . (10)

This can be implemented efficiently by normaliz-
ing the SIFT descriptors using L1 normalization
and replacing each element by its square root.
After this transformation, which results in what
the authors call “RootSIFT descriptors,” compar-
ing two descriptors can still be done using the
Euclidean distance, as it became equivalent to
using the Hellinger kernel: ‖√d1 − √

d2‖ =
2 − 2H(d1,d2). This is shown to significantly
improve the similarity estimation.

For binary descriptors, as mentioned above,
the Hamming distance is used. The Hamming
distance between two binary strings is defined as
the number of bits for which the strings differ,
but is actually equivalent to the square of the
Euclidean distance if the descriptors are consid-
ered like scalar value vectors.

Unsupervised Metric Learning
The Mahalanobis distance

√
(d1 − d2)�Σ−1(d1 − d2) , (11)

where Σ is the covariance matrix of descrip-
tors, is also often used. This distance gives more
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weight to directions in the descriptor space with
less variances, so that all directions have similar
influences in the distance value. This distance
can be computed efficiently by pre-multiplying
the descriptors by matrix P = √

Σ−1 and using
the Euclidean distance on the resulting descrip-
tors. Note that when PCA is used to reduce the
dimensionality of the descriptors, the Euclidean
distance in the eigenspace is also an approxima-
tion of the Mahalanobis distance in the original
space.

Supervised Metric Learning
The covariance matrix Σ involved in the Maha-
lanobis distance is estimated in an unsupervised
way, in the sense that it needs no additional
information besides a set of descriptors large
enough to empirically estimate Σ . Other metrics
can be learned in a supervised way.

Such supervised metric learning methods rely
on two training sets S and D of pairs of exam-
ples that are known to be similar and dissimilar,
respectively:

S = {(d1,d2) | d1 and d2 are similar} , and
D = {(d1,d2) | d1 and d2 are dissimilar} .

(12)

Here, d1 and d2 can be local descriptors for
local regions that correspond or not to the same
3D physical point or VLAD representations for
images of the same landmark or not. A third
training set with relative constraints is sometimes
also used:

R = {(d1,d2,d3) | d1

is more similar to d2 than to d3} . (13)

The advantage of learning a metric in that
way is that it can adapt the distance between
descriptors to the problem at hand. However,
creating the training sets S, D, and possibly R
in order to do so can be difficult in practice.

Distances of the form
dM(d1,d2) = √

(d1 − d2)�M(d1 − d2), which
are sometimes called (pseudo) Mahalanobis
distances, and where M is a positive semi-definite

matrix can be learned based on S and D. For
example, LDAHash [19] estimates a matrix P
that minimizes

α
1

|S|
∑

(d1,d2)∈S
dP�P(d1,d2)

− 1

|D|
∑

(d1,d2)∈D
dP�P(d1,d2) , (14)

where α is a weight balancing the two terms. It
is shown that matrix P can be estimated in closed
form, using Linear Discriminant Analysis.

For another example, the MMC method learns
a matrix M by solving the problem:

max
M

∑
(d1,d2)∈D

dM(d1,d2)

such that
∑

(d1,d2)∈S
d2
M(d1,d2) ≤ 1 ,

(15)

under the constraint that M is a positive semi-
definite matrix.

The interested reader can also refer to the [20]
survey for more metric learning methods.

Siamese Networks
The methods described above assume that a
description method is already available and apply
a simple linear transformation to the descriptors
to learn a better distance than the Euclidean
distance.

It is also possible to learn a distance that
directly estimates the similarity between two raw
inputs, which would be in our case image regions
or complete images. While machine learning
methods such as boosting have been used to this
aim, deep networks are usually more powerful.
A network predicting the similarity between two
inputs can be trained by minimizing, for example:

L(Θ) = ∑
(I1,I2)∈S

f 2(I1, I2;Θ)+

∑
(I1,I2)∈D

max(0,m − f (I1, I2;Θ))2 ,

(16)
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over parameters Θ of network f , where training
sets S and D are now made of pairs of images or
image regions. m > 0 is an arbitrary constant.

However, this approach is not optimal as the
network has to be invoked every time the simi-
larity between two images has to be computed,
which prevents the use of efficient data structures
for fast query. Instead, a deep network can be
used for computing descriptors from raw input,
while the Euclidean distance is used for evalu-
ating the similarity between descriptors for fast
query. This idea is actually not new, as the main
technique, Siamese networks, was introduced in
[21]. A network computing descriptors from raw
data can be trained by minimizing

L(Θ) =
∑

(R1,R2)∈S
D(R1, R2,Θ)2

+
∑

(R1,R2)∈D
[max(0,m − D(R1, R2,Θ))]2

(17)

with D(R1, R2,Θ) = ‖g(R1;Θ) − g(R2;Θ)‖.
Such a loss function is called a contrastive

loss. The name “Siamese network” comes
from the fact that the same network appears
twice when computing the distance between
descriptors. Hard negative mining is necessary
when minimizing Eq. (17) for good performance,
as many pairs in D may not contribute to the
gradient of the loss function if their distance is
already larger than m. More sophisticated losses
can also be considered, for example, triplets as in
R can also be used.

This approach blends the boundary between
descriptor computation and metric learning, as
the descriptors are optimized according to the
desired similarities. The interested reader can
refer to [22] for an empirical study of such
approaches for local descriptors.
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2. Arandjelović R, Gronat P, Torii A, Pajdla T, Sivic
J (2016) NetVLAD: CNN architecture for weakly

supervised place recognition. In: Proceedings of the
conference on computer vision and pattern recogni-
tion

3. Lindeberg T (1998) Principles for automatic scale
selection. Technical Report ISRN KTH NA/P–98/14–
SE, KTH (Royal Institute of Technology)

4. Schmid C, Mohr R (1997) Local grayvalue invariants
for image retrieval. IEEE Trans Pattern Anal Mach
Intell 19(5):530–534

5. Lowe DG (2004) Distinctive image features from
scale-invariant keypoints. Int J Comput Vis 20(2):
91–110

6. Mikolajczyk K, Schmid C (2005) A performance
evaluation of local descriptors. IEEE Trans Pattern
Anal Mach Intell 10(27):1615–1630

7. Bay H, Ess A, Tuytelaars T, Van Gool L (2008)
SURF: speeded up robust features. Comput Vis
Image Underst 10(3):346–359

8. Tola E, Lepetit V, Fua P (2010) Daisy: an effi-
cient dense descriptor applied to wide baseline
stereo. IEEE Trans Pattern Anal Mach Intell 32(5):
815–830

9. Lindeberg T, Garding J (1997) Shape-adapted
smoothing in estimation of 3-D shape cues from
affine deformations of local 2-D brightness structure.
Image Vis Comput 15(6):415–434

10. Baumberg A (2000) Reliable feature matching across
widely separated views. In: Proceedings of the con-
ference on computer vision and pattern recognition,
pp 774–781

11. Zabih R, Woodfill J (1994) Non parametric local
transforms for computing visual correspondences. In:
Proceedings of the European conference on computer
vision, pp 151–158, May 1994

12. Ojala T, Pietikäinen M, Mäenpää T (2002)
Multiresolution gray-scale and rotation invariant
texture classification with local binary patterns.
IEEE Trans Pattern Anal Mach Intell 24(7):
971–987

13. Calonder M, Lepetit V, Ozuysal M, Trzcinski T,
Strecha C, Fua P (2012) BRIEF: computing a local
binary descriptor very fast. IEEE Trans Pattern Anal
Mach Intell 34(7):1281–1298

14. Rublee E, Rabaud V, Konolidge K, Bradski G (2011)
ORB: an efficient alternative to SIFT or SURF. In:
Proceedings of the international conference on com-
puter vision

15. Balntas V, Lenc K, Vedaldi A, Mikolajczyk K (2017)
HPatches: a benchmark and evaluation of handcrafted
and learned local descriptors. In: Proceedings of the
conference on computer vision and pattern recogni-
tion

16. Sivic J, Zisserman A (2003) Video Google: a text
retrieval approach to object matching in videos. In:
Proceedings of the international conference on com-
puter vision

17. Jégou H, Perronnin F, Douze M, Sanchez J, Pérez
P, Schmid C (2012) VLAD: aggregating local image
descriptors into compact codes. IEEE Trans Pattern
Anal Mach Intell 34(9):1704–1716



Image Enhancement and Restoration: Traditional Approaches 615

I
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Synonyms

Image inverse problems

Related Concepts

�Denoising
� Image-Based Modeling
� Inpainting

Definition

Image enhancement and restoration is a proce-
dure that attempts to improve the image quality

by removing the degradation while preserving the
underlying image characteristics.

Background

Image quality is often deteriorated during acqui-
sition, compression, and transmission. Typical
degradations include image blur introduced
by lens out-of-focus, resolution downgrade
due to acquisition equipment pixel limitation,
noise spots introduced at high ISO, and JPEG
block artifact, as illustrated in Fig. 1. Image
enhancement and restoration is a procedure
that attempts to improve the image quality
by removing the degradation while preserving
the underlying image characteristics. For some
specific degradations as mentioned above, image
enhancement and restoration is also known as
deblurring, super-resolution zooming, denoising,
and deblocking. While jointly addressed here
and in most of the literature, restoration often
refers to the case where one attempts to
mathematically invert the degradation (e.g., invert
the blurring filter), and enhancement refers to
the improvement of the overall image quality
without explicit mathematical inversion of the
degradation process.

Theory

The problems of image enhancement and restora-
tion are ill posed since they amount to recovering
some image information that has been eliminated
during the degradation. Solving these problems
must therefore rely on some prior knowledge of
the image, or in mathematical terms image mod-
els, to regularize the solution. Mathematically, let
f denote an ideal image, U a linear degradation
operator, w an additive noise, and

y = Uf + w (1)

the degraded (observed) image. While this model
does not cover all possible degradation scenar-
ios, it is very popular and useful, and serves to
illustrate the underlying image enhancement and
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Image Enhancement and Restoration: Traditional Approaches, Fig. 1 From left to right. Ideal image, image
degraded by out-of-focus, resolution downgrade, noise spots, and JPEG block artifact

restoration key concepts. Modern image enhance-
ment and restoration estimates the underlying
image f from the degraded observation y by, for
example, minimizing a functional of the form

f̂ = arg min
h

(
‖y − Uh‖2 + ϕ(h)

)
, (2)

where the first term ensures that the restored
image f̂ and the degraded image y agree with the
image degradation Eq. (1), and the second term
ϕ(h) regularizes the solution via a certain image
model. The technology of image enhancement
and restoration thus has been developed hand
in hand with a better understanding of image
modeling.

The most classic image model that dated
from the 1960s assumes that image content is
uniformly smooth [1]. This model results in
a number of well-known image enhancement
and restoration algorithms, including Gaussian
smoothing for denoising, bicubic interpolation
for zooming, and Wiener filter for deblurring [2].
All these algorithms are implemented with
linear filtering uniformly applied over the image,
typical isotropic local filters smoothing out the
image. While the uniformly smooth assumption
holds on regular image regions such as sky or
a blackboard, that typically dominates a natural
image, it is obviously oversimplified on other
important types of image transition structures,
such as contours, that are smooth along one
direction but not the other, and textures that are
oscillatory patterns. As shown in Fig. 2, although
image noise is attenuated, image contours

become blurred at the end of restoration when
this simple uniformly smooth model is assumed.

Anisotropic image models attempting to
address this problem came into the scene in
the early 1990s (with some works dating to the
1960s as well, by Gabor). As opposed to the
uniformly smooth assumption, the anisotropic
models assume that an image is piecewise
smooth, in other words, smooth inside each
sub-region, and that at a contour or boundary
of the regions where the image intensity sharply
changes, the smoothness holds only along the
contour direction but not in the perpendicular
direction. These models give clearly a better
image description and have been elegantly
formulated in some partial differential equation
frameworks such as anisotropic diffusion [3, 4]
and total variation [5]. The resulting algorithms
implement nonlinear filtering adaptive to the
image content, uniformly smoothing inside each
image sub-region, and smoothing only along
the contour direction on the region boundaries.
Therefore, image contours are better preserved.

Since the boom of wavelets in the early 1990s,
multi-resolution harmonic analysis has lead to
considerable efforts and improvements on image
modeling and restoration [2, 7]. Wavelet analysis
models an image from multiple resolutions;
at each resolution, translating local wavelet
atoms oscillating at the corresponding scale are
used. The wavelet response is typically high on
image transition structures, such as contours and
textures, and negligible on regular regions. As
a result, it does not only implement nonlinear
adaptive filtering, but also reveals the important
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Image Enhancement and
Restoration: Traditional
Approaches, Fig. 2 Left:
noisy image. Right: image
denoised by Gaussian
smoothing

concept of “sparse modeling”: wavelet analysis
represents an image with only a few large
wavelet coefficients that absorb most of the image
energy, while the majority of wavelet coefficients
quickly decay to zero. The wavelet’s sparsity as
well as its performance in image enhancement
and restoration have been later improved by
geometric adaptive harmonic analysis such as
curvelets [8] that include local directional atoms
to catch the image contours.

In order to further promote the resulting
sparsity relative to prefixed harmonic analysis
dictionaries (Dictionary here means an ensemble
of harmonic analysis atoms), such as wavelets
or curvelets, sparsifying learned dictionaries,
i.e., dictionaries that are learned from images
of interest to yield sparse representations for
that class of data, have emerged [9, 10], leading
to further improved image enhancement and
restoration performance [11].

Non-local image modeling is based on the
observation that images typically contain repet-
itive local patterns (self-similarity). Since the
pioneering work of the nonlocal means denoising
algorithm [12] in 2005 (see also [13, 14]), non-
local modeling has been extensively studied in
image enhancement and restoration [15, 16].

Gaussian mixture models, a statistical model
widely applied in machine learning, have been
shown particularly effective for image enhance-
ment and restoration [6]. The models assume
that local image patches follow a mixture of

Gaussian distributions. The resulting piecewise
linear algorithm is not only extremely fast, but
also reveals some connections to sparse modeling
and non-local modeling.

State-of-the-art image enhancement and
restoration results are obtained with algorithms
derived from the last three image models, namely,
sparse modeling with learned dictionaries, non-
local modeling, and Gaussian mixture models.
Figure 3 illustrates some examples.

Open Problems

For image enhancement and restoration problems
such as removing Gaussian white noise from an
image and filling small holes at random positions
in an image, it seems that the current performance
is already acceptable, as illustrated in Fig. 4, and
has arguably reached a quality boundary uneasy
to go beyond. For other more difficult problems
such as deblurring and zooming, although
substantial visual quality improvement has been
achieved with respect to classic algorithms
such as Wiener filter and bicubic interpolation,
objective performance improvement is relatively
limited despite considerable efforts that have
been devoted. Theoretical performance bounds of
image enhancement and restoration remains to be
understood. The recent very exciting compressive
sensing theory [17] reveals the performance
bounds of the sparse modeling approaches
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Image Enhancement and Restoration: Traditional
Approaches, Fig. 3 Image enhancement and restoration
examples. (a) and (b) Super-resolution zooming: Low-

resolution and zoomed images. (c) and (d) Deblurring:
blurred and deblurred images. (Figures reproduced from
[6])

Image Enhancement and Restoration: Traditional
Approaches, Fig. 4 Image enhancement and restoration
examples. (a) and (b) Denoising: Noisy and denoised
images. (c) and (d) Inpainting: image with 80 % random
missing pixels and restore image. (This problem is related

to the task of reconstructing a color image from under-
sampled color channels, as present in most low/mid, end
digital cameras.) The results are obtained following the
technique in [6]

given some random degradation operations,
but is inapplicable to typical degradations such
as blurring and subsampling and to the most
successful learned dictionaries. The extension of
these results to more realistic image degradation
scenarios and image models is among the
current challenges of image restoration and
enhancement.
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Synonyms

Digital forensics; Image authentication

Definition

Image forensics refers to the analysis of an image
to determine if it has been manipulated from the
time of its recording. The techniques described
here – so called passive techniques – operate in
the absence of digital watermarks, signatures, or
specialized hardware. Instead, these techniques
analyze physical, geometric, optical, sensor, and
file properties for inconsistencies that may arise
from image manipulation.

Background

History has shown that many autocratic leaders
had photographs manipulated in an attempt to
rewrite history. These men understood the power
of photography and that if they changed pho-
tographs they could change history. Cumbersome
and time-consuming darkroom techniques were
required to alter the historical record on behalf
of Stalin and others. Today, powerful and low-
cost digital technology coupled with sophisti-
cated rendering and synthesis techniques and the
broad and rapid reach of social media have made
it far easier to alter and disseminate digital con-
tent. The resulting fakes are often very difficult
to detect and are having a significant impact in
many different areas of society.
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Doctored photographs are appearing in tabloid
and fashion magazines, government media, main-
stream media, social media, online auction sites,
online dating sites, political ad campaigns, and
scientific journals. More recently, the coupling of
fake news with fake imagery has been used by
individuals and state-sponsored entities to disrupt
democratic elections, incite civil and political
discord, and fuel horrific violence.

The technology that can distort and manipu-
late digital media is developing rapidly, and the
implications of not authenticating content quickly
and accurately are becoming more pronounced.
The goal of the field of image (and video/audio)
forensics is to develop techniques for quickly and
accurately authenticating digital content.

At their foundation, most image forensic
techniques rely on understanding the imaging
pipeline, from the interaction of light with
the physical 3-D world, the refraction of light
as it passes through the camera lenses, the
transformation of light to electrical signals in
the camera sensor, to the conversion of electrical
signals into a digital image file. This entry is
organized according to this pipeline, with each
section describing a representative set of forensic
techniques built on understanding and modeling
some aspect of the imaging process. Portions of
this entry are adapted from [1].

Application

Physics-Based Forensics
A political ad shows a presidential candidate
covertly meeting with a foreign agent. Is the
image real or is it a composite created by splicing
together two images? The lighting and reflections
often hold the answer. Unless the candidate and
agent were photographed under identical lighting
conditions, there may be discrepancies in the
shadows and lighting created by the light source
and in the reflections of each actor on nearby
shiny surfaces. This section describes a forensic
technique for reasoning about the physical plau-
sibility of shadows and reflections [2, 3].

Shadows
Let’s start with the simplest situation: A 3-D
scene is illuminated by a single, small light
source. Consider the scene depicted in Fig. 1a
in which a box casts a shadow on the ground.
For every point in this cast shadow, there must
be a line to the light source that passes through
the box. For every point outside the shadow,
there must be a line to the light source that is
unobstructed by the box. Consider now a line
connecting the point at the corner of the shadow
and its corresponding point at the corner of the
box: Follow this line, and it will intersect the
light.

Because straight lines in the physical scene
are imaged as straight lines (assuming no lens
distortion), the location constraint in the 3-D
scene also holds in an image of the scene. Just as
the shadow corner, the corresponding box corner,
and the light source are all constrained to lie on a
single line in the scene, the image of the shadow
corner, the image of the box corner, and the image
of the light source are all constrained to lie on a
single line in the image. This idea is illustrated in
Fig. 1a, which shows a line that connects a point
on the edge of the shadow to the corresponding
point on the box. In the image, the projection of
the light source lies somewhere on this line. Now
let’s connect two more points on the cast shadow
to their corresponding points on the box, as in
Fig. 1b. We will continue to use the corners of the
box because they are distinctive. These three lines
intersect at a single point above the box. This
intersection is the projection of the light source
in the image.

The geometric constraint relating the shadow,
the object, and the light holds whether the light
source is nearby (a desk lamp) or distant (the
sun). This constraint also holds regardless of
the location and orientation of the surfaces onto
which the shadow is cast. Regardless of the scene
geometry, all of the constraint lines intersect at
the same point.

The boundary of the image plane in Fig. 1b
had to be extended to see the intersection of the
three lines. This is because the light source is
not visible in the original image of the scene.
This will typically be the case, and, depending
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Image Forensics, Fig. 1 A cast shadow constraint connects (a) a point on the box’s shadow with the corresponding
point on the box. Multiple such constraints (b) intersect at the projection of the light source

on where the light is, the lines may have to be
extended beyond the image’s left, right, top, or
(counterintuitively) bottom boundary.

If one or more of the cast shadow constraint
lines in an image do not converge on a common
intersection, the image may be a fake [3].

Reflections
Somewhat surprisingly, reflections in flat mirror
surfaces lend themselves to the same type of
analysis as cast shadows. The basic geometry of a
reflection is shown in the bottom panel of Fig. 2.
Shown on the left is a bird’s eye view of three
boxes, and shown on the right is their mirror
reflection, with the mirror shown in the middle.
The reflections are equal in size and equal in
distance from the mirror so that corresponding
points on the virtual and real objects are con-
nected by parallel lines.

This scene geometry changes when the scene
is projected onto a camera sensor. Lines that

were parallel when viewed from the plane of
the mirror are no longer parallel. Instead, due to
perspective projection, these parallel lines con-
verge to a single point, as shown in the top
panel of Fig. 2. Because the lines connecting
corresponding points in a scene and its reflection
are always parallel, these lines should have a
common intersection in the image.

If one or more of the reflection constraint
lines in an image do not converge on a common
intersection, the image may be a fake [2].

Sensor-Based Forensics
Gun barrels are grooved to impart spin to a
bullet for increased accuracy and range. Because
these grooves introduce distinct markings to the
bullet, ballistic techniques can link a bullet to a
specific handgun. Similarly, photo forensic tech-
niques can use the distinctive artifacts introduced
by a camera’s sensor to link an image to a
specific device. In addition, inconsistencies in
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Image Forensics, Fig. 2
Three boxes are reflected in
a mirror (top) and a virtual
bird’s eye view (bottom) of
this scene with the boxes
on the left, mirror in the
middle, and reflection on
the right. The yellow lines
connect points on a box to
their reflection. When such
a scene is imaged under
linear perspective
projection, lines connecting
any point in the scene with
its reflection will intersect
at a single point, as shown
in the top panel

these artifacts can provide evidence of tampering.
This section describes forensic techniques for
estimating image artifacts introduced by camera
sensors [4–6].

Color Filter Array
Modern digital cameras have three channels with
different peak sensitivities: R (red), G (green),
and B (blue). This means that each pixel in a
digital image is represented as three values: R, G,
and B. The camera sensor, however, is sensitive
to all visible light. To measure the light in one
color channel, it is, therefore, necessary to restrict
the wavelength of the light that impinges on the
sensor. This restriction is accomplished by a color
filter array (CFA) that sits atop the sensor. Most
CFAs use a Bayer pattern as shown in Fig. 3. The
color of each square in the pattern indicates the
part of the visible spectrum (R, G, or B) that
the filter transmits at that location. Note that the
R, G, and B filters of the CFA are distributed

in a consistent, periodic pattern. This periodicity
is important because it is the key to this next
forensic technique.

The CFA transmits only one part of the visible
spectrum to each cell on the sensor. For a full
color image, it is necessary to have all three
measurements for each pixel. Since each sensor
cell makes only one measurement, the other two
values must be reconstructed. This process – CFA
interpolation – reconstructs the missing RGB
values by interpolating the surrounding values.
Consider, for example, the cell in the second row
and second column in the Bayer pattern shown in
Fig. 3. This sensor cell measures the R-channel,
but not the G-channel or B-channel. Values for
the G-channel are measured by cells immediately
above, below, and on either side. We can make
a reasonable guess about the missing G-channel
value from an average of its four neighbors.
This basic process underlies all CFA interpolation
algorithms.
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Image Forensics, Fig. 3
A Bayer pattern used to
record a subset of RGB
pixels

As a result of CFA interpolation, two-thirds
of all RGB values have been reconstructed
by interpolating neighboring measurements.
And, because the CFA pattern is periodic, the
interpolation introduces periodic correlations
between these values. These periodic correlations
are highly distinctive, and so their presence
provides a reliable sign that the image is
authentic. We do not know, however, which
pixels are CFA interpolated, nor do we know the
precise form of the CFA correlations. The classic
expectation/maximization (EM) algorithm can be
used to simultaneously estimate both and localize
parts of an image that violate the expected
correlations [4, 6].

Photo Response Nonuniformity
In an ideal imaging device, the pixel values of
the digital image would accurately reflect the
amount of light recorded by each photo detector.
Real devices, however, have imperfections that
introduce noise in the image. One source of noise
arises when stray electrons occur sporadically
within sensor cells. These stray electrons intro-
duce noise when they combine with the electrons
generated by the photo detector as it responds to
light. The resulting noise pattern is random, fluc-
tuating from image to image. Another source of

noise arises from slight variations in the size and
material properties of the sensor cells themselves.
Physical inconsistencies across the sensor cells
lead to differences in the efficiency with which
the cells convert light into digital pixel values.
Some cells consistently underreport the amount
of light, while others consistently over-report the
amount of light. These variations, termed photo-
response nonuniformity (PRNU), lead to a stable
noise pattern that is distinctive to the device.

To illustrate how PRNU noise might alter an
image, imagine that we point our camera at a
perfectly uniform gray wall. A noise-free sensor
will record an image with exactly the same value
at every pixel. Let’s say that this pixel value is
128 (on a scale of 0 (black) to 255 (white)).
PRNU noise modulates the value of each pixel
by multiplying 128 by a value slightly less than
or slightly greater than 1.0. Unlike sensor noise,
which additively modulates the pixel regardless
of its value, PRNU modulates the pixel pro-
portional to its value. Also unlike sensor noise,
PRNU is a fixed property of the sensor and does
not vary from image to image.

With some modest assumptions, a maximum
likelihood estimator can be used to estimate the
PRNU. Although it is possible to get a crude
estimate of a device’s PRNU from a single image,
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a reliable estimate requires 10–20 images (the
exact number depends on the quality of the cam-
era, as well as the quality and content of the
images).

The PRNU associated with a particular device
is not only stable, it is also distinctive. Even
devices of the same make and model have differ-
ent PRNUs. The stable and distinctive properties
of the PRNU allow it to serve two forensic
functions: It can be used to detect localized image
tampering, and it can be used to link an image to
a specific device [5].

File-Based Forensics
The first rule of any forensic analysis must surely
be “preserve the evidence.” Because JPEG and
other lossy image compression schemes discard
and distort image information, they would seem
to be a forensic analyst’s worst enemy. How-
ever, because the details of compression dif-
fer across devices, JPEG compression may pro-
vide an opportunity for the analyst. This section
describes forensic techniques that exploit features
of the image file that differ across devices. These
features can be used to link an image to a device
or to determine whether an image has been re-
saved after its initial recording [7, 8].

Quantization
By way of background, the JPEG image format
has emerged as the standard for devices that
capture digital images. This image format uses a
lossy compression scheme that allows for a trade-
off between memory size and visual quality.

Specifically, given a three-channel color
image, JPEG encoding consists of four basic
steps: (1) transform the image from a three-
channel color image (RGB) to a three-channel
luminance/chrominance image (YCbCr); (2)
convert the image into a spatial frequency
representation by partitioning the individual
channels into non-overlapping 8×8 pixel blocks.
Each block is then converted to frequency space
using a 2-D discrete cosine transform (DCT); (3)
quantize the DCT values in each 8 × 8 block by
an amount that depends on the frequency and
channel (to quantize a value c by an amount q,
divide c by q and round up or down to the nearest

integer); and (4) perform entropy-encoding on
the quantized DCT coefficients. The decoding
of a JPEG image follows the same steps but in
reverse order.

Device and software engineers fine-tune this
trade-off to suit their individual tastes and needs.
The resulting variation in JPEG settings pro-
vides a distinctive signature for each type of
device. These settings can be used to link an
image to a specific camera type or to determine
whether an image has been re-saved after its
initial recording.

Decoding requires knowing the quantization
values used to encode the image, and so the
quantization values must be stored as part of
a JPEG file. The quantization values are spec-
ified as a set of 192 integer values organized
as three 8 × 8 tables. Each table contains the
quantization values for 64 frequencies for one of
the three image channels (YCbCr). Because the
JPEG standard does not impose the use of specific
quantization tables, engineers are free to select
all 192 values resulting in quantization tables that
vary greatly across devices and software.

An image that is edited and re-saved acquires
the JPEG quantization tables of the editing soft-
ware. If it can be determined that an image’s
quantization tables are not the same as those of
the original recording device, this may indicate
that the image has been altered. To test whether
the image and device quantization tables match,
we need the camera make and model which is
typically embedded in the image metadata. (The
metadata for a digital image contains data about
the camera make and model, the camera settings
(e.g., exposure time and focal length), the date
and time of image capture, the GPS location of
image capture, and much more. The metadata is
stored along with the image data in the image file,
and it is readily extracted with various programs.)
We also need to know the set of possible quanti-
zation tables for this device.

For most devices, the range of possible quan-
tization tables can be determined by recording
images at all possible pairings of quality, resolu-
tion, and, when it is adjustable, aspect ratio. Most
devices have a relatively small number of these
settings, yielding a small number of possible
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quantization tables. The tables associated with a
particular device can then be compared with the
quantization tables of an image purportedly taken
with that device [7].

This image-to-device comparison can be made
more specific by including the dimensions of
the image. Because the compression settings are
often associated with a particular resolution, the
quantization table and image resolution may be
combined into a single device signature. This
device signature can be honed further by con-
sidering the dimensions and quantization tables
of the embedded thumbnail (which is stored as
a separate JPEG image, typically with differ-
ent quantization tables than the full-resolution
image).

Markers
A JPEG image file contains data corresponding
to the compressed image and thumbnail as well
as their quantization tables. The way this data
is organized within the file varies across devices
and programs adding to the device signature
details that can link an image to a specific camera
type. A JPEG file consists of multiple labeled
segments of data. Each data segment is labeled
with a unique marker. Although the JPEG stan-
dard specifies that certain information must be
stored in the JPEG file, it does not specify the
location or order of these segments. Camera and
software engineers are, therefore, free to organize
file data in any way that they choose. As with
the JPEG signature described above, the JPEG
markers associated with a particular device can
then be compared with the markers of an image
purportedly taken with that device [8].

Pixel-Based Forensics
In the hands of a talented forger, the methods for
manipulating images may be applied so skillfully
that the faked image appears authentic, even to a
trained eye. But these same methods often leave
anomalous patterns that are too regular to be acci-
dental. This section describes forensic techniques
that can detect pixel-level anomalies that arise
from different forms of tampering [9–11].

Double Compression
Because most digital images are initially
recorded in the JPEG format, any image
manipulation will lead to multiple compressions:
A first compression on the camera and a second
compression by the photo editing software. Mul-
tiple compressions – and in particular, multiple
DCT quantizations – may leave behind a telltale
artifact in the underlying DCT coefficients.

Consider a simple example of this double
quantization (to quantize a value c by an amount
q, divide c by q and round up or down to the
nearest integer). Shown in Fig. 4 are the dis-
tributions for each of the following stages: (a)
initial DCT values, (b) after quantization with
q1 = 3, (c) after re-scaling with q1 = 3, and
(d) after a second quantization with q2 = 2. The
shaded gray areas in panel (d) for bins 1 and 3
show how these values are transformed by the
first quantization, the re-scaling, and the second
quantization. Note that bins 2 and 5 are empty
in the final distribution (d). This shouldn’t be
surprising because we initially condensed 12 bins
into four and then later expanded the range to
five bins.

For comparison, shown in Fig. 4e is the orig-
inal distribution after a single quantization with
q1 = 2. This singly compressed distribution
has the same number of bins as in panel (d),
but the content of the bins is strikingly differ-
ent. Unlike the doubly compressed distribution,
the single compression produces no empty bins.
The anomalous distribution after double com-
pression is the telltale sign that the image was re-
compressed after the original recording.

When present, the anomalous pattern is
repeated across the entire distribution of DCT
values. In some cases, this periodic pattern is
as simple as a populated bin followed by an
unpopulated bin (e.g., q1 = 2 and q2 = 1). In
other cases, this periodic pattern is a bit more
complex. For example, with q1 = 5 and q2 = 2
the anomalous pattern is one populated bin,
followed by two unpopulated bins, followed by
one populated bin, followed by one unpopulated
bin. This pattern of five then repeats. Regardless
of the specific pattern, the detection of double
compression is based on the presence of a
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Image Forensics, Fig. 4 Double quantization with first
quantization of q1 = 3 and second quantization of
q2 = 2 (panels (a)-(d)). The shaded gray regions illustrate
how values in the original histogram (a) are transformed
through a single quantization (b), re-scaling (c), and a
second quantization (d). The empty bins in the resulting
distribution (d) are a telltale sign of double compression,
as compared to the singly compressed distribution (with
q1 = 2) in panel (e)

periodic pattern in the distribution of DCT values.
Because the double compression artifacts are so
distinct, it is relatively straightforward to detect
their presence [9, 11].

Cloning
In 2008, a photo of Iran’s provocative missile test
appeared on the front page of newspapers around
the world. It was quickly revealed, however, that
the photo of four airborne missiles had been
doctored. To conceal the launch failure of one of
the missiles, the image of a successful missile had
been copied and pasted over the failed missile.
This cloning was easily detected because of the
suspicious similarity in the billowing dust clouds.
Although the cloning in this image was detectable
by eye, carefully executed clones can be visually
imperceptible.

Detecting a clone involves two steps: the iden-
tification of potential matches and the verification
of a match. The verification step is straight-
forward: If two regions are clones, their pixel
values will be highly correlated. In contrast to the
simplicity of verifying matches, the problem of
identifying potential matches can easily lead to a
combinatorial explosion. To see why this problem
explodes, let’s assume that we are searching a
1000 × 1000 pixel image for a cloned region
of known size and shape. An image of this size
contains 1, 000, 000 pixels and yields 500 bil-
lion region pairs that could be potential matches.
(Ignoring overlapping regions and the edges of
the image, there are 1, 000, 000 choose 2, equal to
(1, 000, 000 × 999, 998)/2 = 500, 000, 000, 000
possible pairings of pixels, each of which may
be the center of a pair of cloned regions.) We
do not typically know the cloned region’s size
and shape, nor do we know whether the cloned
region has been resized or rotated before being
added back into the image. Clearly, an exhaustive
search of the potential matches in an image is
computationally intractable.

With an easy verification step but a prohibitive
search space, the task of detecting cloning
reduces to finding an efficient and accurate
way to search an image for two nearly identical
regions. One particularly effective algorithm [10]
consists of three basic steps: (1) the identification
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of distinctive features in the image; (2) the
extraction of a compact descriptor of each
feature; and (3) the search for two clusters of
features that have pairwise similar descriptors
and that are related by a translation (and
optionally a scaling and rotation).

The first step is to identify salient features in
the image. These salient features should be suffi-
ciently distinctive that they would have relatively
few matches in the image. One such approach
is the Harris detector which assigns a value to
each pixel that is proportional to the amount of
spatial variation in the pixels that surround it.
Once the salient features in the image have been
identified, the next step is to describe them in
a compact way to allow for efficient matching.
This description should retain the distinctiveness
of the feature, but it should also be unaffected by
common image transformations such as scaling,
rotation, brightness and contrast adjustment, and
compression. The scale-invariant feature trans-
form (SIFT) or histogram of oriented gradients
(HOG) descriptor offers a reasonable compro-
mise between specificity and tolerance to trans-
formations.

The third step in detecting potential matches
is to search for two sets of similar features that
are related by a translation (and optionally a scal-
ing and rotation). Isolating these corresponding
sets in a sea of features requires model-fitting
in the presence of outliers. The random sample
consensus (RANSAC) algorithm can be used to
simultaneously extract the matching features and
estimate the relationship between them.

The output of this clone detection algorithm
will typically require a human analyst to review
the purported matches to determine if they are
semantically meaningful.

Recent Trends
There are many forensic techniques that can
detect image tampering, and new techniques
are constantly being developed. Each of these
techniques, however, can be circumvented. A
determined and skilled forger can, for example,
build a custom JPEG coder that exactly mimics
a camera’s file packaging, carefully remove
any DCT artifacts that arise from multiple

compressions, reinsert the expected color filter
array interpolation correlations, analyze all
shadows and reflections to ensure that they are
physically consistent, and carefully work through
all of the other traces used by dozens of different
forensic techniques. The number, variety, and
complexity of these techniques, however, make it
difficult and time-consuming (but not impossible)
for the average forger to create a fake that is
completely indistinguishable from an authentic
image.

Despite significant advances over the past two
decades in the field of image forensics, much
work remains to be done. While many forensic
techniques are highly effective, many of them
also require manual and careful oversight to apply
them. This means that they require some exper-
tise to apply and that they are not yet ready to be
deployed at Internet-scale (to the tune of millions
or billions of uploads a day).

Authentication will also be made more diffi-
cult by rapid advances in machine learning that
have made it easier than ever to create sophis-
ticated and compelling fakes [12–14]. These
technologies have removed many of the time and
skill barriers previously required to create high-
quality fakes. Not only can these automatic tools
be used to create compelling fakes, they can be
turned against our forensic techniques in the form
of generative adversarial networks (GANs) that
modify fake content to bypass forensic detection
[15]. There is little doubt that this arms race will
continue into the foreseeable future.
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Image Fusion

� Image Registration

Image Inverse Problems

� Image Enhancement and Restoration: Tradi-
tional Approaches

ImageMosaicing

� Image Stitching

Image Plane

Peter Sturm
INRIA Grenoble Rhône-Alpes, St. Ismier
Cedex, France

Synonyms

Retina

Related Concepts

� Pinhole Camera Model

Definition

The image plane is the planar surface on which
the image is generated in an image formation
process or a model thereof.

Background

In most cameras, the photosensitive elements are
arranged on a planar support. In image formation
models, the image plane is the (mathematical)
plane where the image is formed and within
which pixels or film are supposed to be located.

There exist cameras where the photosensi-
tive area is not flat. For instance, in most early
panoramic image acquisition systems that pro-
ceeded by scanning a scene with a rotating slit
camera, the film was wrapped onto the inside
of a cylindrical surface [1, 2]. In that case, one
may still devise an equivalent theoretical image
formation model that has a planar image support
surface.
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Synonyms

Gaussian pyramid; Laplacian pyramid

Definition

An image pyramid is a multi-scale representation
of an image comprising a hierarchy of fine to
coarse resolution versions. Generated by iterative
filtering and sampling, a tapered pyramid struc-
ture is formed by the sequence of the input image
at consecutively halved resolutions.

Background

The concept of an image pyramid was formulated
by Tanimoto and Pavlidis [1] as a means to
improve processing efficiency. Here, the issue of
scale is raised through the need for selectivity of
visual attention as in human visual systems. Scale
is a crucial aspect in image representation as
different objects may require different resolutions
to faithfully represent the details in the scene.
Since digital images comprise rasterized pixels
in a fixed grid, explicit multi-scale representation

is required to mimic the efficiency of human
vision.

The development of the Laplacian pyramid
by Burt and Adelson [2] propelled the wide
use of image pyramids. It combines a low-pass
filtered copy of the image at reduced resolution
together with band-pass filtered copies equivalent
to the image sampled with Laplacian operators of
many scales. This generates a multi-scale repre-
sentation without redundancies and decorrelates
pixels enabling efficient coding with minimal
information loss. Moreover, it can be computed
very efficiently by first constructing a Gaussian
pyramid and approximating the Laplacian as the
difference of two Gaussian filtered copies.

Both the Laplacian and Gaussian pyramids
are overcomplete, as the number of pixels is
larger than the original number of pixels (by a
factor of 1/3). This motivated the development
of more efficient methods such as the Wavelet
transform [3].

Theory

This section describes the process to generate the
Laplacian and Gaussian pyramids as originally
given by Burt and Adelson [2, 4].

The Gaussian Pyramid
The Gaussian pyramid must be first generated
before generating the Laplacian pyramid. Let g0

be the original image which contains C columns
and R rows of pixels. This image becomes the
bottom or zero level of the Gaussian pyramid.
Pyramid level 1 contains image g1, which is a
reduced or low-pass filtered version of g0. Each
value within level 1 is computed as a weighted
average of values in level 0 within some window.
Each value within level 2, representing g0, is then
obtained from values within level 1 by applying
the same pattern of weights.

Assuming a 5 × 5 window size, the pixels
of the subsequent level gl is computed from the
previous level gl−1 by the following weighting
averaging process:
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gl(i, j) =
2∑

m=−2

2∑
n=−2

w(m, n)

gl−1(2i + m, 2j + n), (1)

where i, j is the two-dimensional pixel coordi-
nate and w(m, n) is the weight coefficients of the
window, denoted as the generating kernel. Note
that the spatial resolution of gl is halved in each
dimension compared to gl−1.

The values of the generating kernel are chosen
subject to the following constraints [4]:

– Separable: the two-dimensional kernel can
be decomposed into two identical one-
dimensional kernels to satisfy:

w(m, n) = ŵ(m)ŵ(n).

– Normalized:

2∑
m=−2

ŵ(m) = 1.

– Symmetric:

ŵ(i) = ŵ(−i) for i = 0, 1, 2.

– Equal contribution: all pixels at a given level
must contribute the same total weight (=1/4)
to pixels at the next higher level.

If we denote ŵ(0) = a, ŵ(−1) = ŵ(1) = b, and
ŵ(−2) = ŵ(2) = c, a+2c = 2b must be satisfied
since even numbered pixels contribute to 3 pixels
in the next level (1 with weight a and 2 with
weight c), while odd numbered pixels contribute
to only 2 pixels (both with weight b). Thus:

ŵ(0) = a,

ŵ(−1) = ŵ(1) = 1/4,

ŵ(−2) = ŵ(2) = 1/4 − a/2.

The value of a becomes the sole parameter to
control the shape of the kernel. When a = 0.4, it
is particularly Gaussian-like, and when a = 0.3,

it is flatter and broader than a Gaussian. When
a = 0.5, the shape is triangular, and with a = 0.6,
the central positive mode is sharply peaked and is
flanked by small negative lobes.

An important characteristic of the generating
kernel stems from its recursive application. An
equivalent kernel that generates the same result
with recursively applying the generating kernel
can be defined as follows:

gl(i, j) =
2∑

m=−2

2∑
n=−2

hl(m, n)

g0(i2
l + m, j2l + n). (2)

It turns out the shape of hl(m, n) rapidly to a
characteristic form with successively higher lev-
els of the pyramid, so that only its scale changes.
Thus a multi-scale image pyramid can be gener-
ated by recursively applying the simple generat-
ing kernel in Eq. (1). When a = 0.4, generated
images in the pyramid approximate Gaussian
filtered copies.

The Laplacian Pyramid
By storing the differences between consecutive
pairs in the Gaussian pyramid, redundancies are
removed, and image pixels are decorrelated. For-
mally, the Laplacian pyramid is a sequence of
difference images L0, L1, . . . LN . Each is the
difference between two levels of the Gaussian
pyramid. Thus, for 0 ≤ 1 < N :

Ll = gl − U2(gl−1), (3)

where U2() denotes upsampling with interpola-
tion by a factor of 2 to match the pixel resolution
between the levels. We define the highest level
LN = gN to store the low-pass copy and since
there is no image gN+l . Figure 1 presents a visual
description of the above process.

The original image can be reconstructed from
the Laplacian pyramid exactly, by iteratively
upsampling by a factor of 2 and adding it to the
lower level, beginning from the highest level.
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Image Pyramid, Fig. 1 Visual description of the processes for generating the Gaussian pyramid and the Laplacian
pyramid

Application

Image pyramids have been applied to a very
wide variety of image processing and computer
vision problems. Its applications include image
compression [2], image blending [5], image
denoising [6], texture perception [7], feature
point detection and description [8], and
object detection [9]. Although scale-space
theory [10, 11] provided a more rigorous
theoretical basis with a continuous representation
of scale, image pyramids are continued to be used
due to their efficient multi-scale representation.
Its basic framework can be found in deep
learning methods where hierarchical filtering
and sampling are embedded in convolutional
neural networks through pooling or strided
convolutions [12, 13].
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Synonyms

Image alignment; Image fusion

Related Concepts

� Stereo Matching

Definition

Image registration aligns corresponding features
of images via spatial transformations.

Background

Computer vision or image processing systems
often need to align multiple images of the same
or similar scenes. In medical imaging, for exam-
ple, radiologists routinely compare images of
a patient acquired at different times to mon-
itor changes. The intensity difference between
two images highlights such changes, but only
if the corresponding features are in the same
location. However, patients’ positions in imag-
ing devices vary between visits, so raw images
never have perfect alignment. Image registration
transforms or warps one image so that the impor-
tant objects and the regions of interest are in
the same position as in the other image. The
difference image then reveals intrinsic physical
changes. Figure 1 illustrates the idea. The prob-
lem becomes more challenging when the images
come from different devices (inter-modality reg-
istration) or from different subjects (intersubject
registration).

The same problem arises in nonmedical
imaging applications. Surveillance systems, for
example, often need to look for differences
between images at different times, for example,
to subtract the background and highlight activity
in a scene viewed by a security camera. Fixed
cameras can wobble in the wind and produce
misaligned images that require registration before
the difference image provides a meaningful
result. Stitching images together to create
panoramas [1] also requires image registration to
align the overlapping parts of the images being
stitched together, as illustrated in Fig. 2. Similarly
super-resolution techniques [2] align multiple
images of the same scene and infer sub-pixel
details.

The theory of image registration is outlined
in the following section, and an additional sec-
tion has been included to introduce the recent
development of image registration methods using
deep learning, which share many theoretical and
practical aspects of the “classical” registration
approaches. The literature contains many review
papers, for example, [3–8].
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Image Registration, Fig. 1 Intra-subject brain image
registration. Top left: overlaid images of the same brain
from different acquisitions, one in red and one in green;
bottom left: difference image of the two unaligned images;

top right: overlaid images after registration via a rigid
transformation; bottom right: difference image after align-
ment

Theory

The process of automatic image registration
involves optimizing a cost function, which
expresses the similarity of the two images, with
respect to the parameters of a transformation
of one of the images. Mathematically, the
optimization problem is

{T 	, g	} = argmin
{T ,g}

(f (I1, T (g(I2)))), (1)

where I1 is the target image, which is fixed; I2

is the source image, which the transformations
T and g act upon; T is a spatial transformation
or warp; and g affects only the image intensity
at each pixel position; the optimization seeks
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ImageRegistration, Fig. 2 Image registration for stitch-
ing. The panoramic image at the top comes from stitching
together various images including the two at the bottom.

Image registration provides the spatial transformation that
associates corresponding salient points in the two images,
such as those marked by the green arrows

the transformations T 	 and g	 that minimize the
cost function f . The process decomposes into
four key components, discussed in the following
subsections.

Features
Various image features drive the registration pro-
cess. Broadly, the feature set is either sparse
or dense. Sparse feature sets consist of geo-
metric features identified in the image through
some preprocessing step. These features might
be salient points identified by a user or by an
automatic detector. Features may also be more
complex geometric objects, such as salient lines,
curves, surfaces, or regions. Dense features are
typically pixel-by-pixel image intensities. Each
feature may be a single scalar intensity or may
have multiple components, as in multispectral
images.

Cost Function
The cost function includes a measurement of
similarity between two images. The definition
of similarity depends on the set of features. For

sparse feature sets, the cost function typically
uses a measure of distance between matched fea-
tures in the two images. For example, Euclidean
distance measures each corresponding pair of
point features, although this requires a preceding
step to establish correspondence between two
point sets, a common problem in various
other computer vision tasks, such as stereo
matching.

Registration based on dense features, i.e.,
pixel intensities, typically uses statistical
measures of similarity between pixel intensities
in corresponding locations. The most direct
measure of similarity uses the sum of squares
(SSD) of intensity differences.

Direct intensity comparisons, as in SSD,
assume the pixel intensity at corresponding
locations is the same subject to some noise
perturbation. However, that assumption often
does not hold. For example, differences in
intensity scale between images arise frequently.
Where such intensity differences are likely,
similarity measures based on the correlation of
pixel intensities between the two images are
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more appropriate, such as the normalized cross-
correlation (NCC) and its variants.

The mapping between intensities of corre-
sponding pixels is sometimes more complex than
a simple scale change. It may be nonlinear and
non-monotonic. For example, in inter-modality
medical image registration, two images of the
same object may have the same regional struc-
ture, but different regional contrast: image 1 has
higher intensity than image 2 in some regions,
vice versa in others, and intensity correlation at
alignment remains low. Entropy-based similarity
measures [9–12] provide a useful alternative. A
common choice is the normalized mutual infor-
mation.

The image similarity is often combined
with a regularization term to form the cost
function, especially when local transforma-
tion models are required (described in the
next section), to encourage smoothness of
the optimized transformation. While these
smoothness measures can be highly application-
dependent, general-purpose formulations are
usually based on first- or second-order derivatives
of local displacement, such as the L2 norm
of displacement gradients [13] or bending
energy [14].

Transformation Model
A variety of models are available for the spatial
transformation, T . Simple transformations, such
as rigid, affine, or polynomial transformations,
are global in the sense that even well-separated
pixels undergo highly correlated displacements.
More complex models, such as spline [14], radial
basis function [15], elastic [16], or fluid [17]
transformations, can have more local support,
so that the displacement of one pixel under the
transformation correlates only with that of proxi-
mal pixels. Other complex transformation models
attempt to capture application-specific deforma-
tions, such as respiratory, cardiac, or interven-
tional organ motion, using, for example, biome-
chanical models and statistical shape models.

In some applications, simple global transfor-
mations are sufficient. For example, in image-
guided orthopedic surgery, rigid transformations
are often sufficient to align two images from the

same subject. Since bones are rigid with little
deformation between image acquisitions, the reg-
istration needs to correct only for the difference
in position and orientation of the subject in the
imaging device. However, higher-order global
transformations, such as full affine or polynomial
transformations, can improve alignment signifi-
cantly even when the physical transformation is
rigid, because they can capture artefactual dis-
tortions introduced by the image device. Image
stitching often uses a homography, which is a
global transformation that accounts for changes
in perspective.

Local transformations can capture more subtle
changes between images. They are essential, for
example, for detecting and quantifying local atro-
phy (shrinkage) of brain tissue that occurs over
time in various neurological conditions [18]. In
general in medical imaging, local transformations
are usually necessary for good alignment in inter-
subject image registration, where local variations
in size and shape of anatomical and pathological
structures arise.

In practice, the intensity transformation, g in
equation 1, is often the identity. However, g

becomes important in images that contain more
complex information at each pixel than single
or multiple scalar values. For example, vector
or tensor images are common in remote sensing
and medical imaging. In such images, each pixel
has an associated orientation. Nontrivial g is
essential to ensure that local orientations remain
consistent with the image structure through the
spatial transformation; see, for example, [19,20].

Optimization
The wide range of optimization algorithms avail-
able today, from simple line search or gradient
descent to stochastic and genetic optimization
procedures, provides many candidates for driving
the minimization of the cost function that solves
the registration problem. The choice of optimiza-
tion procedure depends on the feature set and
the transformation model. Registration via sparse
feature matching often relies on application-
specific algorithms such as RANSAC [21] and
expectation-maximization [22], implicitly or
explicitly establishing feature correspondence in
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the process, whereas most image registration
algorithms with dense features use some
form of gradient descent. The cost function
is almost always non-convex with potentially
sub-optimal local minima. Furthermore, the
optimization problem tends to become harder the
more complex the transformation models with
much larger number of parameters. Numerical
optimization for these local transformation
models often requires nontrivial computational
resource and therefore more frequently resorts
to parallel computing software and hardware
such as GPU implementations. Hierarchical
approaches, which start with a simple global
registration to get a good starting point and
gradually add parameters and re-optimize, are
common to obtain a good local registration.
Multi-resolution strategies, which start with
low-resolution images and gradually increase
image resolution and/or complexity of the
transformation model, also help.

Machine Learning

Machine learning methods have long been
important in developing different components
of image registration algorithms. Deep neural
networks (DNNs) with much improved rep-
resentation learning capability [23] pose the
entire registration process as a machine learning
problem. The end-to-end DNN models can
be trained using large data sets consisted of
already aligned image pairs and then directly
infer the displacement fields or the parameters
of the transformation models without iterative
optimization for unseen image pairs [24]. The
efficient “one-pass” inference step automatically
provides a substantial advantage in speed, with
volumetric image registration which can now be
performed in near real-time.

In practice, a key challenge for the supervised
methods is to obtain ground-truth transformation
for training the DNNs. Methods for estimating
the ground-truth transformation between a pair of
images include simulations, manual alignment (a
very challenging task especially for local trans-
formation), and iterative registration methods.

Without known ground-truth transformation to
establish dense pixel-by-pixel correspondence,
weak labels [25] can be used to train the DNNs.
Labels delineating corresponding anatomical or
pathological points, surfaces, and regions, similar
to those used in sparse feature registration, pro-
vide sparse and partially known correspondence
for weak supervision during training.

The transformation-predicting DNNs can
also be trained in an unsupervised manner,
minimizing a loss function based on the
previously described cost functions over all
training image pairs [26]. Unsupervised learning
can also be combined with weak supervision
to improve the registration performance [27].
Similar supervised and unsupervised learning
paradigms that predict the transformation
between input pairs of images have also been
applied in other computer vision tasks, such
as predicting optical flow [28] and estimating
homography parameters [29]. Several surveys
are dedicated to this topic [7, 8].

Applications

The medical imaging community is a large con-
sumer and developer of image registration tech-
niques. Intra-subject image registration enables
fusion of information in images from different
devices. Intra-subject registration also enables
tracking of changes over time during develop-
ment or disease. In drug trials, for example, imag-
ing offers the potential to observe the effects of
a prospective treatment and establish its efficacy
noninvasively; image registration is essential for
monitoring such effects.

Image registration has increasingly been used
in image-guided intervention and surgery, where
diagnostic quality images acquired before the
procedure are utilized during the operation,
by aligning the key anatomical structures and
pathological regions of interest between the
pre-procedural images with real-time guidance
images, the latter of which are often limited by
intra-procedural requirements such as time and
accessibility to patient. These are inherent inter-
modality image registration tasks often involving
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estimating the spatial transformation between
MR, CT, ultrasound, camera video, and other
imaging or non-imaging sensors with spatial
encoding.

Another major application is spatial normal-
ization for group studies, which study the vari-
ation in the size, shape, and internal organiza-
tion of a particular organ or object. A com-
mon application is human brain mapping where
morphological variability is well studied in a
range of conditions. Intersubject image registra-
tion ensures a collection of similar images are
in the same spatial frame of reference so that
studies of variation are meaningful. This spa-
tial normalization allows, for example, medical
imaging researchers to characterize differences in
organ size, shape, and structure between different
populations, such as normal healthy adults and
patients with a certain condition.

Image registration for image stitching enables
day-to-day image processing for digital cam-
era users, as standard packages like Photoshop
include such operations. Google Maps is a large-
scale application of the same technology.

Many implementations of image registration
are freely available. Tried and tested global reg-
istration software includes the FLIRT package
[30] and the popular b-spline registration algo-
rithm [14] with some variations in FNIRT [31],
NiftyReg [32], and ITK [33], some of which
also offer GPU acceleration. The DARTEL pack-
age [34] is designed specifically for spatial nor-
malization of large brain image ensembles. The
recent ANTS package [35] combines several
state-of-the-art ideas and performs well in a head-
to-head evaluation with other standard packages
[36]. Furthermore, most recent DNN-based regis-
tration methods have accompanying open-source
code.

Open Problems

Similar to training the DNNs, the lack of
ground-truth transformation in many computer
vision and medical imaging applications
directly led to a well-documented difficulty in
validating registration algorithms in real-world

applications [3]. Quality labels from large-
scale medical image data sets are scarce for
validating registration algorithms and for training
supervised or weakly supervised DNN-based
methods. Many image registration algorithms
including unsupervised DNN-based methods rely
on a robust cost function for fully automated
applications. Developing effective similarity
measures as a cost function remains a challenge
for many inter-modality image registration
tasks. Examples include registration between
preoperative MR images and intraoperative
ultrasound images for prostate cancer biopsy,
brain tumor resection, and laparoscopic liver
resection. Most available guidance systems in
these applications still require additional spatial
information from manually identified landmarks
and position-tracking instruments.

Properties assumed in the transformation
models may not hold in real-world applications.
For examples, topological differences or changes
are not accommodated in most general-purpose
registration algorithms. In fact, significant
effort has gone into developing diffeomorphic
transformation models that cannot fold or
tear. However, topological differences arise
frequently. In intersubject medical image
registration, for example, it is not uncommon
for an anatomical feature in one person to be
entirely missing in another. The same problem
can arise between intra-subject images, before
and after surgery to remove a tumor, for example.
Another example is inverse consistency. Basic
asymmetric algorithms do not ensure that the
transformation from registering image A to
image B is the perfect inverse of that from
registering image B to image A, which can
become particularly problematic in tasks such
as group-wise registration [34].
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Synonyms

Camera sensor

Related Concepts

�High Dynamic Range Imaging
� Saturation (Imaging)

Definition

Image sensors are devices that produce an
electronic signal proportional to the amount of
light impinging on the device, typically arranged
in two-dimensional pixel arrays. They can read
out the image using on-chip amplification and
analog-to-digital conversion and are typically
controlled using electronic shutters.

Background

Materials and devices to sense light have a long
history from antiquity to the present day. While
camera obscura or pinhole cameras were being
developed for centuries to focus light onto the
image plane, only with the invention of the
daguerreotype were images captured directly
on plates in the late 1800s (Note: there were
some camera precursors like heliography, but
daguerreotypes were the first popular cameras).
These plates would consist of polished metal such
as silver exposed to photosensitive chemicals
such as Bitumen of Judea, iodine, or halogen
fumes, and after exposure with the scene, the
resulting latent image was developed using
mercury vapors. The resulting images had
high spatial resolution but required dangerous
chemicals and bulky equipment to be carried
around with the camera. Later research was able
to transfer image capture from plates to films
containing photographic emulsions which are
light-sensitive. Analog photography, utilizing
film, emerged as the popular camera technology
for most of the twentieth century. We refer the
reader to Chapter 16 of [1] for more details about
the history of photography.

The rise of digital electronics led to the use
of silicon-based sensors for capturing images.
CCDs (charge-coupled devices) were invented
in 1969 at Bell Labs and featured an array
of gate capacitors which are doped in silicon
to be photoactive when a positive voltage is
applied [2]. Incoming light accumulates electric
charge proportional to the light irradiance, which
is then transferred using a bucket-brigade readout
scheme to the edges of the array where it is
either transmitted in analog or digitized. CCDs
become widely available in cameras, particularly
for scientific applications where their low noise
properties were beneficial.

However, the majority of image sensors used
presently are made from CMOS technology used
for fabricated integrated circuits. Work in the
Jet Propulsion Laboratory in the early 1990s led
to the development of the CMOS image sensor,
which consisted of an array of photodiodes that
contained a small amplifier per pixel, and column
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electronics including further amplification and
ADCs [3]. CMOS image sensors quickly grew
in market share due to their ability to integrate
electronics on the same silicon die as the pho-
todiode array, and was mass-manufacturable in
the CMOS process. Today, most cameras from
DSLRs to cellphones utilize CMOS image sen-
sors as their main image sensor of choice.

Theory

The theory behind image sensors is rooted in
semiconductor physics, namely, optoelectronics,
as well as mixed-signal circuit design for the
readout, amplification, and analog-to-digital con-
version. In this section, we briefly discuss these
fundamentals and identify commonly used met-
rics for image sensor performance. We refer the
reader to [4] for a more comprehensive introduc-
tion to image sensors.

After light arrives at a photodiode, it typically
goes through a microlens and color filter before
reaching the photodiode, as shown in Fig. 1a.
Microlenses are small lenses on the order of
microns (μm) that are fixed on top of the silicon
photodiode to focus light. After passing through
the microlens, light is sometimes filtered by a
color filter, typically for either red, green, or blue
visible wavelengths which are spatially arranged
over the sensor in a Bayer pattern. This allows
color spatial subsampling of the image with each

pixel sensing only one of those three primary
wavelengths, and this subsampling is corrected in
a process known as demosaicing in image pro-
cessing. Finally the light reaches the photoactive
silicon region, which is typically a p-n junction of
doped silicon.

The photoactive region itself exploits the pho-
toelectric effect (which Albert Einstein discov-
ered in 1905 and for which he received the Nobel
Prize in physics in 1921) where light displaces
electrons in the semiconductor lattice and the
corresponding charge carriers are swept across a
diode junction to generate a photocurrent. Pho-
todiodes can operate in photovoltaic mode with
no bias across their diode, or more typically in
photoconductive mode where the diode is reverse
biased to increase the responsivity to light. The
photocurrent is accumulated on a capacitor to
aggregate charge proportional to the number of
photons per second per meter squared (equivalent
to irradiance). To expose the photodiode, typi-
cally one needs to reset the photodiode to its ini-
tial reverse bias by applying an external voltage
across its terminals before floating the diode and
allowing the photocurrent to accumulate charge.

After the charge has been accumulated, it is
typically read out of the pixel using an in-pixel
amplifier (typically known as a source follower
in CMOS) or using a bucket-brigade readout in
CCDs. A 2D spatial array of pixels are arranged
in row-column format, and commonly one row
is read out at a time in column-parallel fashion.

a
b

Image Sensors, Fig. 1 (a) The structure of a back-
side illuminated photodiode consisting of microlens, color
filter, photodiode, and circuitry underneath to read out the
signals and (b) a 4T pixel architecture consisting of a reset

transistor for the photodiode, a transfer gate to transfer
charge to the pixel amplifier (source follower), and a read
transistor that selects the pixel voltage to travel down the
column for amplification and digitization
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Image Sensors, Fig. 2 A
typical architecture for an
image sensor array. Rows
of pixels are individually
reset, integrated or
exposed, and then read out
via column-parallel readout
using a rolling shutter. The
resulting column signals
for every row are amplified
and digitized before being
sent off-chip for further
processing and
computation

Common pixel architectures include the 3T or 4T
transistor topology shown in Fig. 1b. To expose
and read out the entire array, either a rolling
or global electronic shutter is used. In rolling
shutter, each row is reset, then exposed, and read
out in the timing of the sensor, which means
that the entire image is exposed at slightly stag-
gered times (corresponding to different rows), as
shown in Fig. 2. Global shutter exposes the entire
image sensor at the same time but requires in-
pixel memories to store the charge while readout
occurs or specialized circuits to do full array
readout simultaneously.

After reading out each column signal in par-
allel (corresponding to one row), the voltage is
usually amplified with a column amplifier and
then passes through an analog-to-digital con-
verter (ADC). This results in 8–16 bit images
depending on the image quantization used, and
the image readout is known as the RAW image.
After this, the image is usually sent to an image
signal/sensor processor (ISP) to perform image
processing such as demosaicing, denoising, white
balancing, color correction, tone mapping, and
compression.

Image Sensor Metrics
There are several key metrics that are important
for image sensor performance. Quantum effi-
ciency, QE(λ) = Ne(λ)/Np(λ) where Np(λ)

is the number of incident photons for a spe-
cific wavelength and Ne(λ) is the number of

electrons produced, determines the sensitivity of
the image sensor with higher efficiency meaning
less wasted photons.

Various noise sources for the sensor include
photon shot noise due to the physics of light
collection and read noise of the sensor. Following
a model formulated in [5], photon shot noise aver-
age power is given by σ 2

shot = q(iph + idc) · tint

where iph is the photocurrent, idc is dark current
(a type of noise), tint is the integration time, and
q is the charge of an electron. Read noise power
is given by σ 2

r = σ 2
Reset +σ 2

Readout +σ 2
FPN where

reset is the noise of resetting the photodiode,
readout is the noise of all the electronics, and FPN
is fixed pattern noise due to non-uniformities in
the sensor. From these quantities, the signal-to-
noise ratio is given by the following equation [5]:

SNR(iph) = (iphtint )
2

q(iph + idc)tint + σ 2
r )

. (1)

The dynamic range of the pixel is the range
of light intensities that can be represented by a
single pixel (or equivalently the amount of charge
that can be held by the photodiode). Dynamic
range is defined as the ratio of the largest non-
saturating input signal to the smallest detectable
image signal. This is given by the following
formula [5]:

DR = imax

imin

= qmax − idctint√
qidctint + σ 2

r

. (2)
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where qmax is the maximum charge the photo-
diode can hold. Note that imax increases as the
integration time decreases and imin decreases as
integration time increases. Thus, high dynamic
range imaging needs short integration times for
bright illumination, and long integration times for
dark illumination.

Spatial resolution of the image sensor is par-
tially governed by the pixel pitch of the sensor,
with most modern CMOS image sensors being
less than 1 μm in pitch (spatial resolution of the
image is a complex formula of both pixel pitch
but also the entire optical system’s modulation
transfer function (MTF)). Finally, the frame rate
of the sensor (fps) is typically set by the exposure
time and the readout timing and synchronization
of the array. All these metrics are optimized for
performance in modern image sensors.

Application

Images and video have become ubiquitous in the
twenty-first century, generating content that is
uploaded daily to the Internet, shared on social
media, and used in a host of different applica-
tions. Image sensors are currently reaching tens
of megapixels in resolution, frame rates that far
exceed 60 frames per second, and are embed-
ded on many different platforms. For photog-
raphers, high-end image sensors are found in
digital single-lens reflex (DSLR) cameras, yet
most typical pictures that are uploaded online are
taken using image sensors on mobile devices and
smartphones.

In fact, one main application of image sensors
is the entire field of computer vision, the focus
of this reference guide. Machine vision cameras
have been developed to optimize image sensors
for application-specific demands. Machine vision
cameras typically offer both global and rolling
shutter, fast interfaces for data transfer including
Ethernet and camera-specific protocols, and have
the ability to output RAW images or configure
the ISP. These cameras are commonly used for
computer vision methods that require accurate
photometric measurements from the scene.

In addition to traditional CMOS and CCD
image sensors, image sensors have been cus-
tomized for various other imaging regimes.
Image sensors for non-visible wavelengths
including infrared and terahertz domains have
been developed. These typically use semicon-
ductor materials other than silicon (as silicon
is only sensitive to visible and near infrared),
such as III–V materials. Such image sensors
have applications in remote sensing, surveillance,
and biomedical imaging where these non-visible
wavelengths yield additional spectral information
from the scene.

Open Problems

There are several new frontiers for image sensors
and their applications. Computational imaging
and photography is a new field of research which
co-designs optics, sensor hardware, and algo-
rithms to capture new visual information. New
sensors for computational photography include
pixels for high dynamic range imaging [6], light
field imaging [7, 8], polarization imaging [9],
and compressive sensing [10]. Sensors have been
developed to support coded exposure and read-
out [11] for motion deblurring, as well as support
arbitrary region-of-interest readout [12] for selec-
tive imaging. Other computational image sensors
include on-board image gradient calculation [13].

New pixel designs can expand the possibilities
of visual data that can be captured on board
the sensor. Neuromorphic silicon retinas are able
to sense edge gradients and motion informa-
tion directly through novel silicon detectors that
emulate neurons [14]. Event-based sensors (also
known as dynamic vision sensors) utilize pixels
which output binary or trinary pixels when the
pixel changes value temporally and can operate at
extremely low powers and extremely fast frame
rates [15]. These have been used for a host of
applications in robotics, optical flow, and simul-
taneous localization and mapping.

Time-of-flight sensors have seen widespread
application for depth sensing for computer vision.
These typically feature either photogates [16] or
single-photon avalanche diodes (SPADs) which
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operate the photodiode in avalanche mode to
be sensitive to a few photons at a time [17].
SPADs have been used widely in LIDAR systems
and for emerging applications in non-line-of-
sight and transient imaging. Finally, as CMOS
technology shrinks to smaller sizes, the ability
to sense individual photons has become possible.
Quanta image sensors using jot pixels are able
to achieve single-photon sensing without the use
of avalanche gain, which allows for megapixel
resolutions (1.1 μm pixel pitch) and 1000+ fps
frame rates [18]. These new image sensors will
open up new avenues for research in computer
vision as these devices become more available
and widespread.
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Synonyms

Image mosaicing; Panoramic stitching

Related Concepts

�Environment Mapping

Definition

Image stitching is the process of combining mul-
tiple overlapping images to generate a new image
with a larger field of view than the originals.



644 Image Stitching

Background

Image stitching can enhance the capabilities of an
ordinary camera, enabling the capture of larger
field-of-view, higher-resolution images. A pop-
ular example is the construction of panorama
images by seamlessly combining several images
of a scene taken from the same point (This pro-
cess is known as panoramic stitching, which
refers to the special case of image stitching for
rotational motion). By capturing images with
variable exposure settings, it can also be used
to generate images with a higher dynamic range
than the originals.

Stitching techniques were originally used in
photogrammetry to produce maps from aerial and
satellite images. Early techniques involved man-
ual specification of matching images and control
points (correspondences) between them [1]. Later
methods used automated image alignment [2, 3]
and interactive viewers to visualize the results
[4]. Modern stitching pipelines offer fully auto-
mated operation [3], seam selection [5], and
photometric, as well as geometric alignment [6].

A typical pipeline for image stitching consists
of the following stages (see Fig. 1):

1. Estimating two-frame motion and discovering
overlaps between the images

2. Global alignment (e.g., using bundle adjust-
ment [7])

3. Photometric alignment and seam selec-
tion/deghosting

4. Rendering the final panorama with blending
and/or tone mapping

Theory and Applications

Image stitching is possible when a one-to-one
mapping exists between the source image coor-
dinates. Two commonly occurring examples are:
(1) a camera rotating about it’s optical center
and (2) cameras viewing a planar scene. If the
cameras are assumed to be rectilinear, the image
coordinates are related by a homography

ũ2 = H12ũ1, (1)

where ũ1, ũ2 are the homogeneous coordinates
in image 1 and 2 and H12 is a 3 × 3 matrix
that encodes the relative camera positions. For
example, in the rotational case, H12 is given by

H12 = K2R2RT
1 K

−1
1 , (2)

where R1,R2 are the rotation matrices of cameras
1 and 2 and K1,K2 contain the intrinsic parame-
ters.

A typical image stitching approach begins by
robustly estimating H12 from correspondences
of local image features [8]. A standard method
is to use the RANSAC algorithm [9] to sam-
ple the space of transformation hypotheses, for
all images with a sufficiently large number of
feature matches. One can then reason about the
adjacency relationships and recognize panoramas
by making a match/no-match decision for each
pair and finding connected components in the
resulting graph of image matches [3].

After pairwise alignment, gaps and inconsis-
tencies can still exist. Bundle adjustment [7] can
be used to minimize projection errors between
feature matches in all images and generate glob-
ally consistent results. Best results are achieved
by parameterizing in terms of the intrinsic and
extrinsic parameters of the cameras (e.g., rota-
tion, focal length, radial distortion) [2]. Direct
methods [10] (using all of the pixel data instead
of only feature points) may optionally be used for
accurate final registration.

Once the images are geometrically aligned,
the remaining task is to render a seamless
output view. The appropriate render surface
may depend on the images being aligned:
rectilinear renderings (preserving straight lines)
might be best for stitching planar surfaces such
as whiteboards, spherical or cylindrical render
surfaces are popular for wide-angle panoramas.
Multiperspective renderings can be used to
preserve important geometric properties in the
output [11].

Ideally, one can capture or estimate irradi-
ance values per pixel, and given perfect align-
ment, these would be equal in all images over-
lapping a given ray. In practice, however, several
sources of error contribute toward differences in
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Image Stitching, Fig. 1 Panoramic stitching. Images
are first geometrically aligned (using a rotational motion
model in this case). Photometric alignment is used to
compensate for brightness variations between the images,

and the final panorama is rendered using seam selection
and pyramid blending. (a) Half of the images aligned.
(b) All images aligned using bundle adjustment. (c) After
photometric alignment, seam selection and blending

the recorded radiances. Some common examples
are parallax due to motion of the camera cen-
ter, errors or unmodeled parameters in the cam-
era pose estimate, and moving objects in the
scene. Several algorithms have been developed
to eliminate the visual seams that result. The
best approaches find seam lines which minimize
differences between image intensities or radi-
ances [12], and smoothly interpolate between
images using pyramid blending [13] or gradient
domain fusion [5]. The final results can be tone
mapped for display.

An example of an automated capture system
capable of stitching gigapixel panoramas with

feature-based alignment, seam selection, and
dynamic tone mapping is given in [14].
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Synonyms

Image upsampling; Image upscaling; Super-
resolution

Definition

Image super-resolution (SR) problem is to
reconstruct a high-resolution image from a given
one or more low-resolution sample(s). While
non-blind super-resolution methods assume that
the exact formulation of the low-resolution
image is known, blind algorithms are designed
to handle arbitrary images from the real-world
scenario.

Background

Digital images appear in various resolutions and
may require resizing for specific purposes. For
example, a thumbnail image in the PC browser
is generated from a high-resolution counterpart.
On the other hand, a low-resolution frame in
a surveillance video should be enlarged to
identify the suspect more accurately. Based
on the sampling theory, the former can be
effectively done by consecutive low-pass filtering
and subsampling. However, the latter is an ill-
posed problem since we have to reconstruct
the missing high-frequency band only using
the given low-resolution sample. While various
spatial interpolation algorithms, e.g., bilinear
or bicubic, can contribute to upscale an
arbitrary example, results look blurry and less
realistic compared to the natural high-resolution
images.

Therefore, image super-resolution algorithms
have played a critical role in the computer vision
area to overcome the limitation. They have sev-
eral practical applications such as image resizing,
enhancement, restoration, surveillance, satellite
imaging, and even graphics. The key idea of the
super-resolution is that high-resolution images
can be modeled with appropriate priors, which
can be either learned from large-scale external
data or carefully designed by considering vari-
ous properties of natural images. Nevertheless,
due to the many challenges in the real world,
super-resolving an arbitrary image is still an open
problem and requires careful consideration when
selecting the algorithm.

http://www.springer.com/computer/image+processing/book/978-1-84882-934-3
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Theory

Basic Theory The idea of image super-
resolution is originated from the sampling theory
about reconstructing a high-resolution signal
from misaligned low-resolution samples [9].
However, the algorithm may not satisfy the
needs of upscaling an arbitrary example, e.g., one
from the Internet, as it requires multiple images.
Therefore, recent approaches mostly focus on
single-image super-resolution, where the high-
resolution image is reconstructed from a single
input.

To solve the ill-posed problem of restoring a
high-resolution (HR) image, conventional meth-
ods first formulate the low-resolution (LR) image
as follows:

ILR = (IHR ∗ k)↓s + n, (1)

where ILR ∈ R
h×w×c is a low-resolution image,

IHR ∈ R
sh×sw×c is a high-resolution image, ∗

is a spatial convolution, k ∈ R
kh×kw is a 2D

downsampling kernel, s is a scale factor, and
n ∈ R

h×w×c is a pixel-wise additive noise term,
respectively. We also note that h × w and kh × kw

refers to spatial resolutions and c is the number
of color channels, e.g., 1 for luminance and 3 for
RGB images.

Therefore, existing optimization-based algo-
rithms solve the following equation to get a super-
resolved image ISR from ILR:

ISR = argmin
I

‖(I ∗ k)↓s − ILR‖2
2 + Φ (I). (2)

Due to the filtering and subsampling operations,
ISR is not unique even when the exact k is
known. Therefore, the selection of a proper prior
term Φ (·), e.g., total-variation regularization [2],
plays a critical role in the reconstruction.

Example-Based Super-Resolution Instead of
estimating the high-resolution image directly
from a given input, several methods leverage
training pairs of

(
IiLR, IiHR

)
in image super-

resolution. Here, IiLR is a low-resolution

counterpart of IiHR as shown in Eq. (1). In
dictionary-based [18] or sparse coding [21]
approaches, each local patch in ISR is represented
by dictionary elements as follows:

Pp

SR =
∑

i

wipIiHR, (3)

where Pp

SR is a p-th local patch in ISR and
wip is a weight which can be estimated using
a dictionary of low-resolution patches. For
such methods, constructing better dictionaries
is of great interest to reconstruct more accurate
results [22].

On the other hand, learning-based algorithms
aim to train a parametric super-resolution model
f (·; θ) directly over the training samples by
minimizing the following objective function:

L (θ) = Ei

[
‖f

(
IiLR; θ

)
− IiHR‖2

2

]

+ R (θ), (4)

where f
(
IiLR; θ

) = IiSR is a super-resolved
image and R (·) is a regularization term. While
various parameterization techniques such as deep
convolutional neural networks (CNNs) and ran-
dom forests [16] can be adopted for the mapping
f , deep learning and CNN-based approaches
have drawn huge attention after significant suc-
cess of the SRCNN [7] model.

Deep Image Super-Resolution In the deep
learning era, designing powerful CNN archi-
tectures plays a critical role in achieving high
reconstruction performance. Therefore, earlier
methods [7, 11, 14] have proposed various
building styles of super-resolution CNNs.
Such algorithms outperform the conventional
methods by a significant margin, demonstrating
the capacity of deep CNNs in image super-
resolution problem. Especially, a residual
connection in the VDSR [11], recursive structure
in the DRCN [12], and large-scale network
in the EDSR [14] model have proved their
efficiency.
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One of the notable successes of deep image
super-resolution is a perceptual model for recon-
structing photo-realistic results. Considering that
multiple IHR can be mapped to the same ILR as
shown in Eq. (1), optimizing Eq. (4) may yield a
blurry and less realistic output since an optimal
ISR is an average of all possible solutions. There-
fore, Ledig et al. [13] have introduced adversarial
training framework to effectively model the natu-
ral image prior by the following:

Lp (θ) = Ei

[
‖φ

(
IiSR

)
− φ

(
IiHR

)
‖2

2

−α log p
(
IiSR

)]
, (5)

where φ (·) is a deep convolutional feature extrac-
tor for perceptual loss, p

(
IiSR

)
is a probability

of IiSR occurring in the natural high-resolution
image manifold, and α is a hyperparameter.
Since it is infeasible to calculate p

(
IiSR

)
directly,

a discriminator CNN is jointly trained with
the super-resolution network to predict the
probability. The resulting SRGAN [13] model
has demonstrated its ability to reconstruct
realistic and detailed textures over diverse test
examples.

Datasets and Metrics Conventional image
super-resolution methods usually synthesize
low-resolution examples following Eq. (1)
with bicubic or Gaussian kernels. Therefore,
collecting diverse high-resolution images is
essential for building a generalizable training
dataset. For example, Yang et al. [21] have
collected 91 images from the Internet to train
their super-resolution algorithm. Recent methods
further adopt larger datasets like DIV2K [1] and
Flickr2K [14] toward better generalization. For
evaluation, diverse benchmark datasets [4, 8, 22]
are adopted. While PSNR and SSIM [19]
between super-resolved and ground-truth images
serve as representative measures, the needs of
evaluating visual quality [13] of images and
appropriate perceptual metrics [5] are arising
these days.

Applications

The concept of image super-resolution is very
broad, and there exist various methods which
narrow down the scope and concentrate on
specialized situations. For example, video super-
resolution [17] aims to obtain multiple high-
resolution frames from low-resolution sequences.
Such algorithms can benefit from temporal infor-
mation and deliver more accurate reconstructions
than single-image methods. In the reference-
based super-resolution [20], it is possible to
utilize reference high-resolution images that are
similar to the given low-resolution input. Given
proper references, rich textures and impressive
details can be reconstructed, which may not be
available in naïve single-image super-resolution.
It is also possible to design super-resolution
models on a specific domain rather than diverse
natural images. Face hallucination [23] is a
representative term for such algorithms which
mainly targets facial images.

Open Problems

Most of the existing super-resolution methods
are developed on bicubic-downsampled images,
where k corresponds to a bicubic kernel in
Eq. (1). However, the formulation of real-world
images may not follow such an assumption,
which prevents the conventional super-resolution
algorithms from generalizing on diverse inputs
from the wild. Therefore, recent approaches
aim to overcome this challenge by collecting
real-world training pairs [6], finding more
suitable downsampling kernels [3], or generating
realistic low-resolution images directly [15].
Nevertheless, designing a robust super-resolution
algorithm against arbitrary input images is still
remaining as an open problem to be solved.

Experimental Results

Figure 1 compares ×4 super-resolution results
of various methods. Figure 1a and b visualizes
ground-truth HR image and its cropped region.
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(a) ‘0869’ from the
DIV2K [1] dataset

(b) HR
PSNR(dB) / SSIM

(c) Bicubic
22.66 / 0.8025

(d) A+ [18]
23.10 / 0.8251

(e) SRCNN [7]
23.14 / 0.8280

(f) VDSR [11]
23.36 / 0.8365

(g) SRResNet [13]
23.71 / 0.8485

(h) EDSR [14]
23.89 / 0.8563

Image Super-Resolution, Fig. 1 Examples of ×4
super-resolution results [14]. (a) and (b) are the original
HR image and its cropped region; (c) and (d) are the
results of traditional bicubic and exemplar-based methods,

respectively; (e)–(h) are the results of CNN-based meth-
ods. Corresponding PSNR and SSIM are shown for refer-
ence

An input LR image of the super-resolution
methods is a ×4 downscaled version of the
HR example. Figure 1c shows a reconstructed
image from the traditional bicubic interpolation,
while Fig. 1d is a result from the dictionary-
based A+ [18] algorithm. Figure 1e–h illustrates
the outputs from CNN-based models that show
much better performance than the conventional
approaches. PSNR and SSIM between the
ground-truth HR and reconstructed images are
also provided for reference.
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Synonyms

Environment mapping; Reflection mapping

Related Concepts

� Plenoptic Function

Definition

Image-based lighting [1, 2] is a rendering
technique to compute the reflection from a 3D
object lit in a distant environment, represented
as an image, typically in the form of a cubemap
(Fig. 1).

Background

Due to the computational expense of global
illumination (e.g., radiosity and Monte Carlo
ray tracing), most real-time graphics systems
are depth-buffering based and only support
local illumination. This hurts the realism of
the rendered images. Environment mapping
[1, 3] is proposed to simulate the reflection
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Image-Based Lighting, Fig. 1 Image-based lighting
assumes the object being rendered is enclosed by an
image-based environment positioned infinitely far away,

or equivalently, the object is infinitesimally small. The
environment map is typically represented as a cubemap

of the surrounding environment on an object
surface (Fig. 1). The enclosing environment
is assumed to be infinitely far away (distant
environment) because all surface points on
the object are assumed to be lit by the same
environment. Due to the high computational
expense, early implementations of environment
mapping account only for the light contribution
along the mirror reflection direction. Hence, most
surfaces rendered by the environment mapping
are over-shiny.

Image-based lighting can be regarded as
a more comprehensive realization of the
environment mapping, by accounting not only
the light contribution along the mirror reflection
but also the whole enclosing sphere. The surface
reflectance property (bidirectional reflectance
distribution function, BRDF) is also considered
so as to render not only shiny or glossy surfaces
but also most kinds of surfaces. Moreover, the
environment maps are usually captured as high
dynamic range (HDR) images to further increase
the photorealism. Note that the image-based
lighting remains work even low-dynamic range
(LDR) environment maps are used instead.

Theory

Extending from accounting only the mirror
reflection direction to the whole enclosing sphere
drastically increases the computational expense.

Hence, the challenge is how to efficiently
compute the following integration for each
surface point:

I (x, s) =
∫

�

Lin(ω)ρ(x, ω, u)v(x, ω)(ω · n)dω

(1)

where x is the current surface point of interest; �

is the surrounding environment (the distant envi-
ronment map); ω is the incoming light direction;
u is the viewing direction from x towards the eye;
I is the reflected light; Lin(ω) is the incoming light
contribution along direction ω, in other words, a
point in the environment map; v is the visibility
function; ρ is the BRDF; and n is the surface
normal at x. Note that Lin, ρ, and v are spherical
functions.

One way to evaluate the above integration is
to approximate the environment map by a much
smaller number (say m) of point light sources.
The position and color of the point lights are
obtained by importance sampling of the envi-
ronment map [4]. In other words, the above
integration is approximated by a summation of
light contribution of m point lights. The rendered
image can simply be generated by adding m
images, each rendered by illuminating the scene
with a point light source.

By adopting the image-based relighting tech-
niques [5], the above integration can be evalu-
ated more efficiently. The idea is to first encode
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the spherical function with basis functions. This
effectively converts a huge spherical function
(table) into a coefficient vector si as follows.
Since the basis functions Bi are known, they need
not be stored:

S (ω) ≈
k∑
i

siBi (ω) (2)

where S is a spherical function and k is the
total number of basis functions, which is much
smaller than the number of entries in the original
spherical table.

By embedding ρ(x, ω, u)v(x, ω)(ω · n) into
a spherical function C, both C and Lin can be
encoded with the same basis and stored as two
coefficient vectors, ci and li, respectively. If the
selected basis functions are orthonormal, the
above integration (Eq. 1) can be simply evaluated
as a dot product between two coefficient vectors
[1],

I ≈
k∑
i

ci li (3)

Basis Functions
The key to efficient image-based lighting is to
select an appropriate basis for representing the
spherical functions. Various bases have been pro-
posed for image-based relighting [5]. They are
directly applicable to image-based lighting.

A pioneer work is proposed by Nimeroff et al.
[6]. They efficiently relit the scene under various
natural illumination (overcast or clear skylight).
The illumination function is decomposed into a
linear combination of steerable functions.

Principal component analysis is naturally a
potential choice for basis function [7]. Singular
value decomposition can be used to extract a set
of eigenimages from the input reference images.
The desired image can then be synthesized by a
linear combination of these basis images given
a set of coefficients [8, 9] if all surfaces are
Lambertian.

Earlier works do not consider the spherical
nature of the illumination computation. Wong
et al. [5, 10] chose the spherical harmonic basis,
which is commonly used for compressing BRDF.

Pleasant rendering results are obtained with 16–
25 basis functions. However, spherical harmonic
is also well known in over-smoothing the high-
frequency signal (e.g., shadow) in the original
spherical function, leading to low-frequency
results.

To achieve all-frequency rendering, Haar
wavelet basis is proposed [11]. It may introduce
visual artifact when the distant environment con-
tains a dominant but small-size spot. The cause
of such artifact is due to the digitization of the
spherical function and the limited reconstruction
involving only important wavelet coefficients.

Spherical radial basis function (SRBF) [12–
14] is another approach to capture all-frequency
signal. The local support nature of SRBF allows
its implementation to be very efficient and
simple. The multiscale spherical radial basis
function [15] avoids the visual artifact of the
Haar wavelet basis while remains able to achieve
all-frequency rendering.

Application

Image-based lighting can be applied to produce
realistic rendering for both off-line movie
production or real-time computer games.
The parallel nature of image-based lighting
(all surface points have to evaluate Eq. 1
independently) facilitates its real-time realization
on modern graphics processing unit (GPU).
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Synonyms

Three-dimensional modeling from images

Related Concepts

�Dense Reconstruction
�Depth Estimation
�Multiview Stereo

Definition

Image-based modeling refers to the process of
using 2D images to create 3D models. These 3D
models are often represented by triangle meshes
with texture maps. These models can be used
for visualization or may be used for planning in
robotics applications. The image-based modeling
process can be roughly divided into three major
steps: (1) sparse 3D reconstruction (also known
as structure-from-motion), (2) dense 3D recon-
struction (i.e., multi-view stereo), and (3) surface
reconstruction and texture mapping.

Background

Many applications require 3D models of real
objects or scenes. These applications include vir-
tual reality (VR) or augmented reality (AR), map-
ping, manufacturing, robotics, etc. Thus, digitiz-
ing real objects into high-quality 3D models has
been an important research topic since the early
days of computer vision.

Earlier works such as [1] employ a range
scanner to model the 3D shape and estimate
reflectance from the images. This entry focuses
on methods using only regular RGB images with-
out resorting to range scanners or RGB-D cam-
eras. One important advantage of these image-
based methods is that the same pipeline can be
adopted to model objects and scenes at different
scales, from desktop toys to city scale maps.

Early image-based modeling methods [2, 3]
still require human inputs in the loop to facilitate
segmentation or model generation. More recent
works [4, 5] have automated the whole process,
starting from structure-from-motion, multi-
view stereo, till surface reconstruction. There
are commercial software packages [6, 7] and
open source solutions [4] for the complete
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image-based modeling pipeline. Figure 1
illustrates a typical pipeline for a city scene.

Theory

A typical image-based modeling pipeline usu-
ally consists of three standard steps: (1) sparse
reconstruction, (2) dense reconstruction, and (3)
surface reconstruction and texture mapping.

The sparse reconstruction step solves the
structure-from-motion problem, which recovers
camera poses and a sparse set of 3D points
of the scene from the input images. This
problem has been intensively investigated in
the field of computer vision and is probably
one of the most important achievements of the
field. Many of the fundamental mathematical
results are summarized in the textbook [8]. A
typical structure-from-motion system includes
the following components: (a) Feature detection
and matching computes local image features
such as SIFT [9] or SURF [10] features and finds
corresponding features across different images.
(b) Relative motion estimation between image
pairs or triplets solves the relative rotation and
translation between two or three cameras by the
five-point [11] or six-point [12] algorithms.
(c) Camera registration solves all camera poses
(including orientations and positions) and sparse
scene points in a single global coordinate
system from the pairwise relative motions.
There are incremental approaches [13, 14]
that solve cameras one by one and also global
approaches [15, 16] that solve all cameras
together. (d) Bundle adjustment [17] is a non-
linear optimization to refine camera poses and
scene point coordinates by minimizing the
reprojection error to guarantee a maximum
likelihood estimation of the result.

The dense reconstruction step aims to densify
the point clouds by recovering the 3D position
for each pixel in the input images. Toward this
goal, some methods [18,19] estimate semi-dense
point clouds through correspondence propaga-
tion. Other methods solve the multi-view stereo
problem to recover a dense model. Many early
multi-view stereo algorithms are summarized and

benchmarked in [20]. A more recent survey can
be found at [21] with an updated benchmark
provided in [22]. Broadly speaking, conven-
tional methods can be divided into two categories
including volumetric methods like space carving
[23] and depth map-based methods [24,25] which
are more flexible at large-scale scenes. There is
a strong open source implementation for multi-
view stereo known as COLMAP [26]. It is still
challenging to reconstruct textureless or reflective
surfaces such as water, glasses, reflective metal,
or mirrors. More recently, deep convolutional
neural networks have been employed to solve
the multi-view stereo problem in [27, 28], which
can potentially incorporate high-level semantics
to easy the reconstruction at textureless places.

The surface reconstruction can be solved eas-
ily with the Poisson surface reconstruction algo-
rithm [29] if the dense reconstruction step suc-
cessfully generates dense point clouds with little
gaps or holes. Surface reconstruction is more
challenging when the point cloud is incomplete,
e.g., due to textureless or reflective surfaces, or
when the underlying surface is discontinuous
such as hair fibers (linear structure), flower petal
or plant leaves (open surface patches), or tree
branches (tree and fractal structure). To deal with
incomplete point clouds, a minimal surface might
be solved by the level set method [30] from the
input points, which minimizes a functional of the
following form,

∫ ∫
wds.

Here, ds is the infinitesimal surface element, and
w is the consistency of the surface according
to the input 3D points and 2D images. This
consistency can be simply the Euclidean distance
[31], or point to plane distance [32], or further
combined with reprojection errors and silhouette
constraints [33]. To deal with discontinuous sur-
faces, there are many methods that exploit shape
priors of the object to facilitate modeling. Wei
et al. [34] modeled hair by “growing” 3D smooth
curves guided by 3D points and images. Bhat
et al. [35] used videos to obtain the parameters
of a cloth simulation system. Tan et al. [36]
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Image-Based Modeling, Fig. 1 A typical pipeline of
image-based modeling. In the left are some input images.
In the middle is the result by structure-from-motion, which
generates sparse point clouds of the scene and calibrates

all camera poses. In the right is the dense mesh model
with texture maps generated from the input images. (These
pictures are from [5])

recovered some basic branch elements from the
3D points and used them to generate a fractal
branch structure. Though generating good results,
these methods are limited to model the type of
surface that matches their underlying prior shape
assumption. A general modeling method is still
missing to handle all these different data in a
unified framework.

Application

Image-based modeling can be applied in robotics
or autonomous driving to generate a 3D map of
their environment for path/action planning. It can
also be used in industry vision for product quality
inspection. The 3D models can also be applied
for visualization purposes in games, movies, and
VR/AR.
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Related Concepts

�Light Field
�Lumigraph
� Plenoptic Function

Definition

Image-based rendering (IBR) refers to a col-
lection of techniques and representations that
allows 3D scenes and objects to be visualized and
manipulated in a realistic way without full 3D
model reconstruction.

Background

One of the primary goals in computer graphics
is photorealistic rendering. Motivated by the
difficulties in achieving full photorealism with
conventional 3D and model-based graphics,
image-based rendering which works directly
with real images has proposed as an alternative
approach to reduce the rendering and capturing
complexity. Depending on how the images are
being taken and the auxiliary information, such as
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depths, etc., required, a number of image-based
representations supporting different viewing
freedom and functionalities are available. These
range from the familiar two-dimension (2D)
panoramas to more sophisticated representations
such as the four-dimension (4D) light fields [9],
lumigraphs [8], and variants, which are special
cases of the radiance received at every viewing
position, visual angle, wavelength, and time,
called the plenoptic function.

The rendering of novel views can therefore
be viewed as the reconstruction of the plenop-
tic function from its samples. Image-based rep-
resentations are usually densely sampled high-
dimensional data with large data sizes, but their
samples are highly correlated. Because of the
multidimensional nature of image-based repre-
sentations and scene geometry, much research
has been devoted to the efficient capturing, sam-
pling, rendering, and compression of IBR.

Theory

Representation
In IBR, new views of scenes are reconstructed
from a collection of densely sampled images
or videos. Examples include the well-known
panoramas [5], light fields [9], lumigraph [8],
layered depth images [13], concentric mosaics
(CM) [14], etc. Figure 1 summarizes the concept
of CM and light field (see the sections on light
field, lumigraph, and plenoptic function for
more illustration). The reconstruction problem
(i.e., rendering) is treated as a multidimensional
sampling problem, where new views are
generated from densely sampled images and
depth maps instead of building accurate 3D
model of the scenes.

Depending on the functionality required, there
is a spectrum of IBR as shown in Fig. 2. They
differ from each other in the amount of geometry
information of the scenes/objects being used.
At one end of the spectrum, like traditional
texture mapping, very accurate geometric models
of the scenes and objects say generated by
animation techniques is used, but only a few
images are required to generate the textures.

Given the 3D models and the lighting conditions,
novel views can be rendered using conventional
graphic techniques. Moreover, interactive render-
ing with movable objects and light sources can
be supported using advanced graphic hardware.

At the other extreme, light field or lumigraph
rendering relies on dense sampling (by capturing
more image/videos) with no or very little geome-
try information for rendering without recovering
the exact 3D models. An important advantage of
the latter is its superior image quality, compared
with 3D model building for complicated real
world scenes. Another important advantage
is that it requires much less computational
resources for rendering regardless of the scene
complexity because most of the quantities
involved are precomputed or recorded. This has
attracted considerable attention in the computer
graphic community in developing fast and
efficient rendering algorithms for real-time
relighting and soft-shadow generation [2, 12,
19, 22].

Broadly speaking, image-based representa-
tions can be classified according to the geometry
information used into three main categories:
(1) representations with no geometry, (2)
representations with implicit geometry, and
(3) representations with explicit geometry. 2-D
panoramas, McMillan and Bishop’s plenoptic
modeling [11], and 3D concentric mosaics
and light fields/lumigraph belong to the first
category, and they can be viewed as the direct
interpolation of the plenoptic function. Layere-
based, object-based representations [4], pop-
up light [16] using depth maps fall into the
second. Finally, conventional 3D computer
graphic models and other more sophisticated
representations [7, 21, 22] belong to the last
category. Although these representations also
sample the plenoptic function, further processing
of the plenoptic function has been performed to
infer the scene geometry or surface property such
as bidirectional reflectance distribution function
(BRDF) of objects. Such image-based modeling
approach has emerged as a more promising
approach to enrich the photorealism and user
interactivity of IBR. Moreover, since 3D models
of the scenes are unavailable, conventional
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Concentric mosaic

By constraining camera motion to

planar concentric circles, concentric

mosaic can be created by

compositing slit images taken at

different locations of each circle.

Light field

Using this 2D array of images,

light field is possible to render

different views of the object or

scene at different viewing

angles.

Image-Based Rendering, Fig. 1 Concentric mosaic and light field [3]

Image-Based Rendering, Fig. 2 Spectrum of IBR representations

image-based representations are limited to the
change of viewpoints and sometimes limited
amount of relighting. Recently, it was found that
real-time relighting and soft-shadow computation
are feasible using the IBR concepts and the
associated 3D models using precomputed

radiance transfer (PRT) [19] and precomputed
shadow fields [22].

Earlier image-based representations are usu-
ally static, and their extension usually requires
multiple camera arrays. Much research has been
devoted to the capturing, compression, transmis-
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sion, and processing of these dynamic represen-
tations. For a review as of 2007, see [17].

Rendering
Rendering refers to the process of rendering of
new views from the images and possibly other
auxiliary information captured in the represen-
tations. For early image-based representations
which do not employ any geometry information,
rendering can be done simply by image blending
as in panoramas [5] and ray-space interpolation
in light field [9]. In ray-space interpolation, each
ray that corresponds to a target screen pixel is
mapped to nearby sampled rays. Figure 4a shows
the example renderings of a simplified light field
using ray-space interpolation [17]. For more
sophisticated representations which use more
geometry information such as layered depth
images [13], surface light field [21], and pop-
up light field [16], graphics hardware has been
exploited to accelerate the rendering process.
The geometry information can either be implicit
that relies on positional correspondences or
explicit in the form of depth along known lines-
of-sight or 3D coordinates. Representations of
the former usually involve weakly calibrated
cameras and rely on image correspondences
to render new views, say by triangulating two
reference images into patches according to the
correspondences as in joint view triangulation
(JVT) [10]. These include view interpolation,
view morphing, JVT, and transfer methods
with fundamental matrices and trifocal tensors.
Representations employing explicit geometry
include sprites, relief textures, layered depth
images (LDIs), view-dependent texture, surface
light field, pop-up light field, shadow light
field, etc.

In general, the rendering methods can be
broadly classified into three groups [17]: (1)
point-based, (2) layer-based, and (3) monolithic.

Point-Based Rendering works on 3D point
clouds or point correspondences, and typically
each point is rendered independently. Points are
mapped to the target screen through forward
mapping and variants. For the 3D point X in
Fig. 3, the mapping can be written as

X = Cr + ρrPrxr = Ct + ρtPtxt (1)

where xt and xr are homogeneous coordinates
of the projection of X on target screen and
reference images, respectively. C and P are
camera center and projection matrix, respectively,
and ρ is a scale factor. Since Ct, Pt, and
the focus length ft are known for the target
view, ρt can be computed using the depth
of X. Given xr and ρr, one can compute
the exact position of xt on the target screen
and transfer the color accordingly. Gaps or
holes may exist due to magnification and
disocclusion, and splatting techniques have
been proposed to alleviate this problem. The
painter’s algorithm is frequently used to avoid
the problem of the mapping of multiple pixels
from the reference view to the same pixel in the
target view.

Layered Techniques usually discretize the
scene into a collection of planar layers with
each layer consisting of a 3D plane with tex-
ture and optionally a transparency map. The lay-
ers can be thought of as a continuous set of
polygonal models, which is amenable to con-
ventional texture mapping and view-dependent
texture mapping. Usually, each layer is rendered
using either point-based or polygon meshes as
in monolithic rendering techniques before being
composed in the back-to-front order using the
painter’s algorithm to produce the final view.
Layer-based rendering is also easier to implement
using graphic processing unit (GPU). Since the
rendering of IBR requires very low complexity,
it is even possible to perform the calculation
using CPU by working on individual layer or
object [4].

Monolithic Rendering usually represents the
geometry as continuous polygon meshes with
textures, which can be readily rendered using
graphics hardware. The 3D model normally con-
sists of vertices, normals of vertices, faces, and
texture mapping coordinates. The data can be
stored in a variety of data formats. The most
popular formats are .obj, .3ds, .max, .stl, .ply,
.wrl, .dxf, etc.
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Image-Based Rendering, Fig. 3 Forward mapping

Image-Based Rendering, Fig. 4 Example renderings
using (a) ray-space interpolation [17], (b) forward map-
ping in layered representation (with two layers – dancer
and background) [4], (c) monolithic rendering using 3D

polygonal mesh (left) estimated by multiview stereo and
real-time rendering with shadow light field technique on
GPU [23]

Relighting, shadow generation, and interac-
tivity have played an increasingly important
role in 3D interactive rendering. The most
popular algorithms are shadow mapping,
shadow volume, ray tracing, precomputed
radiance transfer, precomputed shadow field,
etc. Some of them have better rendering quality,
while others are more efficient for real-time

rendering. Thanks to the development of GPU,
basic lighting, and shading algorithms like
shadow mapping and shadow volume have
been realized on the fly. Modern GPUs can
even offer programmable rendering pipelines
for customized rendering effects and “shader” is
a set of software instructions running on these
GPUs to control the pipelines. Using shader
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Image-Based Rendering, Fig. 5 Geometry-rendering matrix

programming, high-quality shadow rendering
algorithms like precomputed shadow field can
be done in real time. Figure 4 shows example
renderings of the three techniques, and Fig. 5
summarizes the types of representations and
rendering in IBR called the geometry-rendering
matrix.

Compression
In general, there are two approaches to reduce
the data size of image-based representations.
The first one is to reduce their dimensionality,
often by limiting viewpoints or scarifying some
realism. Panoramas and concentric mosaics are
such examples. The second approach is to exploit
the high correlation (i.e., redundancy) within

the representation using waveform coding or
model-based techniques. The scene geometry
may be used explicitly or implicitly. The second
approach can be further classified into four
broad categories: pixel-based methods, disparity
compensation/prediction (DCP) methods, model-
based/model-aided methods, and object-based
approach.

In pixel-based methods, the correlation
between adjacent image pixels is exploited
using conventional techniques such as vector
quantization and transform coding. In the DCP
methods, scene geometry is utilized implicitly
by exploiting the disparity of image pixels,
resulting in better compression performance.
(Disparity refers to the relative displacement



662 Image-Based Rendering

of pixels in images taken at adjacent physical
locations.) Model-based/model-aided approaches
recover the geometry of the objects or scene in
coding the observed images. The models and
other information such as prediction residuals or
view-dependent texture maps are then encoded.
In the object-based approach, the representations
are segmented into IBR objects, each with its
image sequences, depth maps, and other relevant
information such as shape information. The main
advantage is that it helps to reduce the rendering
artifacts and hence the required sampling rate.
For additional references, see the section on light
fields.

Unlike conventional video coding, higher
dimensional image-based representations such
as 3D concentric mosaics (CMs) require random
access at the line level, whereas the 4D light
field and lumigraph require random access at
the pixel level. It is usually time-consuming to
retrieve and decode a single line or pixel from
the compressed which is of variable length due
to entropy coding. This is referred to as the
“random access problem” of IBR and is usually
tackled by grouping the compressed data of
several basic units for rendering (such as lines
in CMs or image blocks in light fields) together
and employ pointers to locate them efficiently.
Moreover, interdependence of decoding resulting
from DCP should be reduced to avoid decoding
excessively unnecessary intermediate data. This
is also required for selective transmission or
decoding of the compressed representations due
to their large bandwidth and storage requirement.
A simple comparison of difficult image-based
representations and compression methods in
terms of their complexities, compression ratios,
and ease of random access is shown in Fig. 6. For
more information, see [15, 17] and references in
the light field section.

Application

The potential for photorealistic visualization and
simplicity in rendering of IBR has tremendous
appeal. They have already found applications

in architectural modeling [6], cultural heritage
preservation [23], virtual tour, and digital
museum [18], multiview TV [3, 4], etc.
Other potential applications include digital
edutainment, E-commerce and photorealistic
modeling, and real-time rendering in computer
graphics and mobile devices. Another emerging
application is view synthesis in 3D and multiview
videos and display.

Open Problems

Though there has been substantial progress
in capturing, representing, rendering, and
modeling of scenes, the ability to handle general
complex scenes remains challenging for IBR.
A substantial amount of work is still required
to ensure robustness in handling reflection
translucency, highlights, depth estimation,
capturing complexity, object manipulation, etc.
Since IBR uses images for rendering, interacting
with IBR representations remains challenging.
Recent approaches have focused on using
advanced computer vision techniques, such as
stereo/multiview vision and photometric stereo,
and depth sensing devices to extract more geom-
etry information from the scene so as to enhance
the functionalities of IBR representations. While
there has been considerable progress in relighting
and interactive rendering of individual real static
objects, such operations are still difficult for real
and complicated scenes. For dynamic scenes,
the huge amount of data and vast amount of
viewpoints to be provided present one of the
major challenges to IBR. Advanced algorithms
for processing and manipulation of the high-
dimensional representation to achieve such
function as object extraction, model completion,
scene inpainting, etc., are all major challenges to
be addressed. Finally, the efficient transmission,
compression, and display of dynamic IBR and
models are also urgent issues awaiting for
satisfactory solution in order for IBR to establish
itself as an essential media for communication
and presentation.
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Image-Based Rendering, Fig. 6 Comparison of differ-
ent image-based representation and compression meth-
ods in terms of their complexity. The ease of random
access increases as the dimension of plenoptic function

decreases, while the complexity and potential for com-
pression both increase with the dimension. DCP disparity
compensation/prediction, VQ vector quantization
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Related Concepts

� Illumination Estimation, Illuminant Estimation

Definition

Incident light measurement is the recording of
incoming illumination at a given scene point or
in a given scene.

Background

The distribution and intensity of light incident
upon a surface point or in a scene affects the
amount of reflected radiance to the camera and
more generally the appearance of objects. Knowl-
edge of the incident light can aid in shape recov-
ery through photometric analysis techniques such
as shape-from-shading and photometric stereo or
may be used in reducing appearance variation
caused by lighting. Various methods have been
used for measurement of incident light. Different
from algorithms for illumination estimation, inci-
dent light measurement does not infer lighting
from indirect scene cues such as shading, but
rather obtains direct observations of the light
sources.

Methods for incident light measurement typi-
cally introduce a probe or a sensor into the scene
to view the incoming radiance. In general, the
probes are mirrored spheres that allow for precise
readings of light from a broad range of incident
directions. Besides lighting distribution, the color
of incident illumination may be measured using
a color calibration target such as a white ref-
erence standard. Unlike illumination estimation
methods, light measurement with such devices
often allows for accurate recovery of both direct
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illumination from light sources and more subtle
indirect illumination from reflected light within
the scene.

Some techniques are intended to measure inci-
dent light at a certain scene point. Excluding the
effects of light occluders, these methods equiv-
alently measure far lighting that originates from
distant light sources and is considered to be
uniform throughout the scene. Other methods are
more general in that their measurements also
determine the location and brightness of near
light sources, whose illumination varies within
the scene. Such methods utilize triangulation,
usually from two or more probes or sensors
placed in the scene, to locate the positions of local
light sources.

Methods

Several methods for incident light measurement
are described in the following.

Spherical Probes
To measure distant illumination or the light inci-
dent at a given scene point, a common approach
is to place a mirrored spherical probe at the
scene point. From the reflections on the sphere,
the corresponding directions of the incident light
are computed from the known surface orientation
of each sphere point and the mirror reflection
property, which states that the incident angle
of light is equal to the reflected light angle.
Incident lighting environments of various scenes
were measured in this manner by Debevec [1].
High dynamic range imaging was used to obtain
accurate measurements of relative light source
brightness.

To recover spatially variant incident lighting
due to local light sources, Powell et al. [2]
used three mirrored spheres at known relative
positions to triangulate light source locations.
For triangulation, correspondences need to be
computed among the mirrored reflections of the
spheres. Illumination color is also measured from
the color of diffuse reflections on the spheres.
Zhou and Kambhamettu [3] also employed
triangulation, but instead computed correspon-

dences in a stereo image pair of a single sphere.
Shifts in specular reflections as seen from the two
stereo viewpoints indicate the distance of light
sources. Here, the spheres also exhibit diffuse
reflection, which provides information on light
intensities. Using this setup, they later proposed
a method [4] based on ray tracing and convex
hull computation to measure a more general light
source model [5].

Hemispherical Imaging
An alternative to lighting probes is to directly
place sensors within the scene. Drettakis et al. [6]
employed image mosaicing of several snapshots
captured within the scene to form a panoramic
image of the incident lighting. Sato et al. [7]
instead used a pair of omnidirectional cameras,
each outfitted with a fish-eye lens. Correspon-
dences in the omnidirectional images are com-
puted with an omnidirectional stereo algorithm to
obtain a 3D model of the incident lighting, and
high dynamic range imaging is used to measure
the intensity of radiance.

Color Calibration Target
The incident light color may be measured by
inserting a white reference standard into the
scene. Deviations from white of the reflected light
indicate the color of illumination. This approach
to measuring incident lighting color is described
by Barnard et al. [8] for their construction of an
image dataset for computational color constancy.
Directional variations in illumination color may
be measured by imaging the white reference
standard at different orientations.

Application

Incident light measurement is often employed for
augmented reality [1, 7], to ensure that inserted
virtual objects exhibit an appearance consistent
with the scene’s illumination environment.
Measurements of real-world lighting have also
been utilized in computer graphics applications to
give rendered objects a more natural appearance.
Applications of light color measurement include
evaluation of color constancy algorithms [8]
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and spectral reflectance recovery using multiple
illumination colors [9].
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Synonyms

Thermography

Related Concepts

� Field of View
�Motion Blur
�Radiometric Calibration

Definition

Infrared thermal imaging is a technique to
generate quantitative radiometric digital images
of object scenes recorded in the thermal infrared
wavelength range between 0.8 and 15 μm.
Besides qualitative visualization, it allows to
measure surface temperatures of objects [1–3].

Background

Infrared (IR) radiation was discovered in
1800 by Sir William Herschel while studying
radiation from the sun. One hundred years
later, Max Planck was the first to correctly
describe the underlying laws of thermal radiation
quantitatively. Several decades thereafter the
first infrared-detecting cameras with cooled
semiconductor detectors were developed. While
initially developed for military purposes, small
portable systems soon became available also
for commercial applications, and nowadays they
are used extensively by physicists, technicians,
engineers, and even science teachers. The
enormous progress of microsystem technologies
toward the end of the twentieth century resulted
in uncooled microbolometer cameras, and the
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respective mass production of infrared focal
plane array detector arrays led to comparatively
low-price cameras. Meanwhile, miniaturized
cameras resembling smartphone accessories
exist [4], and IR cameras are nowadays already
available as high-end consumer products for
everyone.

Setup, Components, and Quantitative
Imaging

IR cameras operate very similar to any visible
light (VIS) camera (Fig. 1) [3]. The electromag-
netic radiation from objects passes a lens system
and maybe additional optical components before
forming an image of the object on a detector,
nowadays exclusively a focal plane array (FPA).
Subsequently, the information from the individ-
ual pixels is gathered by some readout integrated
circuit. The camera may – though need not – be
operated remotely using a computer interface.

Besides this common basic setup, infrared
cameras differ from visual cameras in several
aspects. First, the radiation is in the infrared part
of the spectrum, typically from 0.8 μm to around

25 μm wavelength (VIS: 0.4 μm to 0.8 μm).
Second, this radiation is mostly thermally
emitted radiation [3, 5, 6], whereas visual images
typically reflect scenes of scattered light. Third,
the optical materials of the lenses, filters, etc.
must transmit this radiation and are therefore
usually not made from glass but semiconductors.
Fourth, the detectors are not silicon based as
in VIS cameras but – depending on the used
wavelength region – chosen from a wide possible
range of materials and techniques including
cooled photoelectron as well as uncooled thermal
detectors [1–3, 5–7]. Infrared detectors are more
complex than VIS detectors, and, so far, IR
FPA’s have much lower pixel numbers than VIS
cameras, typically below 1 Mpixel. Fifth, the
pixel signals are usually not spectrally filtered
and therefore resemble monochrome images.
Using image processing, these are then displayed
either as gray scale or false color images. Sixth,
for quantitative measurements there are several
temperature sensors within the camera which
together with additional user input (emissivity,
ambient temperature, object distance, relative
humidity) and some calibration procedure allow
to evaluate the signals [3]. Seventh, most IR

Infrared Thermal
Imaging, Fig. 1 Block
diagram with main IR
camera components
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Infrared Thermal
Imaging, Fig. 2 Black
body spectra for three
different temperatures. The
colored regions indicate the
typical wavebands used in
IR imaging. Please note the
logarithmic scales

cameras come with additional analysis software
to evaluate signals quantitatively (e.g., line plots,
time series, etc.). The use of the software requires
basic knowledge of the underlying physics. As a
rule, more or less everybody is able to produce
nicely looking false color images, but only the
experts know how to correctly interpret them.

Infrared radiation from objects only depends
on the temperature of the objects and a mate-
rial property called emissivity. Objects which
emit the maximum possible radiation are black
bodies. Their spectrum is defined by Planck’s
law [1–3, 5, 6], and it only depends on the
object temperature. The larger the temperature,
the more the spectrum shifts toward shorter wave-
lengths (see Fig. 2). Most observations are made
within the earth atmosphere; therefore certain
spectral regions with low atmospheric transmis-
sion are not utilized for IR imaging. Mostly
three ranges are commercially used, the long-
wave (LW: 8–14 μm), mid-wave (MW: 3–5 μm),
and short-wave (SW: 0.9–1.7 μm) region [3].
Real objects emit less radiation than black bodies,
defined by their emissivity. Any quantitative anal-
ysis requires knowledge of the correct emissivity
of the objects. Analysis is usually complicated by
the fact that every image represents a combina-
tion of temperature as well as emissivity contrast.

For camera calibration, artificial black bodies
of known temperatures are analyzed. Measured
objects signals are compared to them with the
goal to deduce surface temperatures (assuming

opaque objects). The real problem then is to
understand the observed object temperature dis-
tributions, i.e., relate them, e.g., to heat transfer
processes associated with the objects.

Variety of Systems

Modern IR camera systems differ in many
respects, first of all detector type and waveband.
Often, an additional VIS camera is included, and
both VIS and IR images are recorded simul-
taneously. The most important characteristic
specifications of the cameras [3] are first their
ability to spatially resolve objects. This depends
on the pixel numbers of the FPAs, the used lens,
and the distance between camera and object.
Second, the time resolution of the camera is
important whenever non-still scenes shall be
recorded. Most cameras nowadays allow for
25 fps or 30 fps; however, those with thermal
detectors often show cometary tails of moving
objects due to the long time constant of the
detectors. In contrast, photoelectron detector
cameras also allow high-speed IR recordings;
they are, however, much more expensive. Third,
for quantitative measurements, cameras are
specified by their absolute accuracy of measuring
temperatures (e.g., 1 to 3 K) and their ability
to detect small T differences (typically 20 to
50 mK).
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Infrared Thermal
Imaging, Fig. 3 IR
thermal images of a house
for specific temperature
span (10 K) and color
palette. Emissivity was
0.96, distance 10 m to the
nearest wall, outside air
temperature 0 ◦C, inside
room temperatures 20 ◦C.
There is an obvious
insulation leak close to the
dormer window

The most common cameras today including
the ones available as smartphone accessories are
microbolometer LW cameras. Several industrial
or scientific applications do, however, require
very special conditions which led to the devel-
opment of specialized IR camera systems, e.g.,
for nondestructive testing [8, 9] or detection of
gases [3].

Applications

Applications of infrared thermal imaging are
numerous and growing each year [3]. They
range from condition monitoring and predictive
maintenance in many industrial fields to building
inspections for energy savings (Fig. 3) and gas
detection (Fig. 4). In addition, there is growing
use in the medical field [10], in sports, the
automotive and aerospace industry, surveillance,
and even volcanology and visualization of
thermal features in nature [11].

Open Problems
The field of IR cameras is constantly developing.
Current trends are further miniaturization, which
will lead to more qualitatively used and less
expensive consumer product cameras. The
detector FPA’s will be getting larger pixel
numbers to enhance spatial resolution. Using
two cameras may allow for thermal stereo vision.
In addition, multi-waveband cameras are being

Infrared Thermal Imaging, Fig. 4 Raw data of (in this
case turbulent) CO2 flow (1000 ml/min), recorded with a
MW camera, uncooled narrow band filter, and background
black body at 50 ◦C. Commercial cameras allow detection
of a huge number of volatile organic compounds (VOCs)
and many other gaseous inorganic compounds. Gas detec-
tion is often qualitative, only

developed which will help to better deal with
emissivity uncertainties, in particular of low
emissivity materials such as metals.
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Synonyms

Disocclusion; Error concealment; Filling in

This contribution is dedicated to the memory of Vicent
Caselles, outstanding researcher, exceptional friend.

Definition

Given an image and a region � inside it, the
inpainting problem consists in modifying the
image values of the pixels in � so that this
region does not stand out with respect to its
surroundings. The purpose of inpainting might
be to restore damaged portions of an image (e.g.,
an old photograph where folds and scratches
have left image gaps) or to remove unwanted
elements present in the image (e.g., a microphone
appearing in a film frame). See Fig. 1. The
region � is always given by the user, so the
localization of � is not part of the inpainting
problem. Almost all inpainting algorithms treat
� as a hard constraint, whereas some methods
allow some relaxing of the boundaries of �.

This definition, given for a single-image prob-
lem, extends naturally to the multi-image case;
therefore, this entry covers both image and video
inpainting. What is not however considered in
this text is surface inpainting (e.g., how to fill
holes in 3D scans), although this problem has
been addressed in the literature.

Background

The term inpainting comes from art restoration,
where it is also called retouching. Medieval art-
work started to be restored as early as the Renais-
sance, the motives being often as much to bring
medieval pictures “up to date” as to fill in any
gaps. The need to retouch the image in an unob-
trusive way extended naturally from paintings to
photography and film. The purposes remained
the same: to revert deterioration (e.g., scratches
and dust spots in film) or to add or remove ele-
ments (e.g., the infamous “airbrushing” of polit-
ical enemies in Stalin era USSR). In the digital
domain, the inpainting problem first appeared
under the name “error concealment” in telecom-
munications, where the need was to fill in image
blocks that had been lost during data transmis-
sion. One of the first works to address automatic
inpainting in a general setting dubbed it “image
disocclusion” since it treated the image gap as an
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Inpainting, Fig. 1 The inpainting problem. Left: original image. Middle: inpainting mask �, in black. Right: an
inpainting result. (Figure taken from [20])

occluding object that had to be removed, and the
image underneath would be the restoration result.
Popular terms used to denote inpainting algo-
rithms are also “image completion” and “image
fill-in.”

Application

The extensive literature on digital image inpaint-
ing may be roughly grouped into three categories:
patch-based, sparse, and PDEs/variational meth-
ods.

From Texture Synthesis to Patch-Based
Inpainting
Efros and Leung [14] proposed a method that,
although initially intended for texture synthe-
sis, has proven most effective for the inpainting
problem. The image gap is filled in recursively,
inwards from the gap boundary: each “empty”
pixel P at the boundary is filled with the value
of the pixel Q (lying outside the image gap, that
is, Q is a pixel with valid information) such that
the neighborhood �(Q) of Q (a square patch
centered in Q) is most similar to the (available)
neighborhood �(P) of P. Formally, this can be
expressed as an optimization problem:

Output(P ) = Value (Q), P ∈ �,Q /∈ �,

Q = arg min d (�(P ),�(Q)) ,
(1)

where d(�(P), �(Q)) is the sum of squared dif-
ferences (SSD) among the patches �(P) and
�(Q) (considering only available pixels):

d (�1, �2) =
∑

i

∑
j

∣∣∣�1 (i, j) − �2

(
i, j

)∣∣∣2
,

(2)

and the indices i, j span the extent of the patches
(e.g., if � is an 11 × 11 patch, then 0 ≤ i,
j ≤ 10). Once P is filled in, the algorithm marches
on to the next pixel at the boundary of the gap,
never going back to P (whose value is, therefore,
not altered again). See Fig. 2 for an overview
of the algorithm and Fig. 3 for an example of
the outputs it can achieve. The results are really
impressive for a wide range of images. The main
shortcomings of this algorithm are its compu-
tational cost, the selection of the neighborhood
size (which in the original paper is a global
user-selected parameter but which should change
locally, depending on image content), the filling
order (which may create unconnected boundaries
for some objects), and the fact that it cannot deal
well with image perspective (it was intended to
synthesize frontal textures; hence, neighborhoods
are compared always with the same size and
orientation). Also, results are poor if the image
gap is very large and disperse (e.g., an image
where 80% of the pixels have been lost due to
random salt and pepper noise).

Criminisi et al. [12] improved on this work
in two aspects. Firstly, they changed the filling
order from the original “onion-peel” fashion to a
priority scheme where empty pixels at the edge of
an image object have higher priority than empty
pixels on flat regions. Thus, they are able to
correctly inpaint straight object boundaries which
could have otherwise ended up disconnected with
the original formulation. See Fig. 4. Secondly,
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Inpainting, Fig. 2 Efros and Leung’s algorithm
overview. (Figure taken from [14]). Given a sample
texture image (left), a new image is being synthesized one
pixel at a time (right). To synthesize a pixel, the algorithm

first finds all neighborhoods in the sample image (boxes on
the left) that are similar to the pixels neighborhood (box on
the right) and then randomly chooses one neighborhood
and takes its center to be the newly synthesized pixel

Inpainting, Fig. 3 Left: original image, inpainting mask � in black. Right: inpainting result obtained with Efros and
Leung’s algorithm. (Images taken from their paper [14])

they copy entire patches instead of single pixels,
so this method is considerably faster. Several
shortcomings remain, though, like the inability to
deal with perspective and the need to manually
select the neighborhood size (here, there are two
sizes to set, one for the patch to compare with and
another for the patch to copy from). Also, objects
with curved boundaries may not be inpainted
correctly.

Ashikhmin [2] contributed as well to improve
on the original method of Efros and Leung [14].
With the idea of reducing the computational cost
of the procedure, he proposed to look for the
best candidate Q to copy its value to the empty
pixel P not searching the whole image but only
searching among the candidates of the neighbors
of P which have already been inpainted. See
Fig. 5. The speedup achieved with this simple
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Inpainting, Fig. 4 Left: original image. Right: inpainting result obtained with the algorithm of Criminisi et al. [12].
(Images taken from their paper)

technique is considerable, and also there is a very
positive effect regarding the visual quality of the
output. Other methods reduce the search space
and computational cost involved in the candidate
patch search by organizing image patches in tree
structures, reducing the dimensionality of the
patches with techniques like principal component
analysis (PCA), or using randomized approaches.

While most image inpainting methods attempt
to be fully automatic (aside from the manual set-
ting of some parameters), there are user-assisted
methods that provide remarkable results with
just a little input from the user. In the work by
Sun et al. [27], the user must specify curves
in the unknown region, curves corresponding
to relevant object boundaries. Patch synthesis is
performed along these curves inside the image
gap, by copying from patches that lie on the
segments of these curves which are outside the
gap, in the “known” region. Once these curves
are completed, in a process which the authors
call structure propagation, the remaining empty
pixels are inpainted using a technique like the

one by Ashikhmin [2] with priorities as in Crim-
inisi et al. [12]. Barnes et al. [5] accelerate this
method and make it interactive, by employing
randomized searches and combining into one step
the structure propagation and texture synthesis
processes of Sun et al. [27].

The Role of Sparsity
After the introduction of patch-based methods
for texture synthesis by Efros and Leung [14],
and image inpainting by Criminisi et al. [12], it
became clear that the patches of an image provide
a good dictionary to express other parts of the
image. This idea has been successfully applied
to other areas of image processing, for example,
denoising and segmentation.

More general sparse image representations
using dictionaries have proven their efficiency
in the context of inpainting. For instance,
using overcomplete dictionaries adapted to the
representation of image geometry and texture,
Elad et al. [15] proposed an image decomposition
model with sparse coefficients for the geometry
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Inpainting, Fig. 5 Ashikhmin’s texture synthesis
method. (Figure taken from [2]). Each pixel in the current
L-shaped neighborhood generates a shifted candidate
pixel (black) according to its original position (hatched)
in the input texture. The best pixel is chosen among these
candidates only. Several different pixels in the current
neighborhood can generate the same candidate

and texture components of the image and showed
that the model can be easily adapted for image
inpainting. A further description of this model
follows.

Let u be an image represented as a vector in
R

N. Let the matrices Dg and Dt of sizes N × kg

and N × kt represent two dictionaries adapted to
geometry and texture, respectively. If αg ∈ R

kg

and αt ∈ R
kg represent the geometry and texture

coefficients, then u = Dg αg + Dt αt represents
the image decomposition using the dictionaries
collected in Dg and Dt. A sparse image represen-
tation is obtained by minimizing

min
(αg,αt ):u=Dgαg+Dtαt

∥∥αg

∥∥
p

+ ‖αt‖p, (3)

where p = 0, 1. Although the case p = 0 rep-
resents the sparseness measure (i.e., the number
of nonzero coordinates), it leads to a noncon-
vex optimization problem whose minimization is
more complex. The case p = 1 yields a con-
vex and tractable optimization problem leading
also to sparseness. Introducing the constraint by
penalization (thus, in practice, relaxing it) and
regularizing the geometric part of the decom-
position with a total variation semi-norm penal-
ization, Elad et al. [15] propose the variational
model:

min
(αg,αt )

∥∥αg

∥∥
1 + ‖αt‖1 + λ

∥∥u − Dgαg − Dtαt

∥∥2
2

+ γ T V
(
Dgαg

)
, (4)

where TV denotes the total variation, λ, γ > 0.
This model can be easily adapted to a model for
image inpainting. Observe that u − Dg αg − Dt

αt can be interpreted as the noise component of
the image and λ is a penalization parameter that
depends inversely on the noise power. Then the
inpainting mask can be interpreted as a region
where the noise is very large (infinite). Thus, if
M = 0 and = 1 identify the inpainting mask and
the known part of the image, respectively, then
the extension of (4) to inpainting can be written
as

min
(αg,αt )

∥∥αg

∥∥
1 + ‖αt‖1

+ λ
∥∥M

(
u − Dgαg − Dtαt

)∥∥2
2

+ γ T V
(
Dgαg

)
. (5)

Writing the energy in (5) using ug: = Dgu,
ut: = Dtu as unknown variables, it can be
observed that αg = D+

g ug + rg , αt = D+
t ut + rt ,

where D+
g ,D+

t denote the corresponding
pseudoinverse matrices and rg, rt are in the null
spaces of Dg and Dt, respectively. Assuming for
simplicity, as in Elad et al. [15], that rg = 0,
rt = 0, the model (5) can be written as

min
(αg,αt )

∥∥∥D+
g ug

∥∥∥
1
+ ∥∥D+

t ut

∥∥
1
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+ λ
∥∥M

(
u − ug − ut

)∥∥2
2 + γ T V

(
ug

)
. (6)

This simplified model is justified in Elad et al.
[15] by several reasons: it is an upper bound for
(5), it is easier to solve, it provides good results, it
has a Bayesian interpretation, and it is equivalent
to (5) if Dg and Dt are non-singular or when
using the �2 norm in place of the �1 norm. The
model has nice features since it permits to use
adapted dictionaries for geometry and texture and
treats the inpainting as missing samples, and the
sparsity model is included with �1 norms that are
easy to solve.

This framework has been adapted to the use
of dictionaries of patches and has been extended
in several directions like image denoising, filling
in missing pixels (Aharon et al. [1]), color image
denoising, demosaicing, and inpainting of small
holes (Mairal et al. [21] and further extended to
deal with multiscale dictionaries and to cover the
case of video sequences in Mairal et al. [22]. To
give a brief review of this model, some notation
is required. Image patches are squares of size
n = √

n × √
n. Let D be a dictionary of patches

represented by a matrix of size n × k, where
the elements of the dictionary are the columns
of D. If α ∈ R

k is a vector of coefficients,
then Dα represents the patch obtained by linear
combination of the columns of D. Given an image
v(i, j), i, j ∈ { 1, . . . , N}, the purpose is to find a
dictionary D̂, an image û, and coefficients α̂ ={
α̂i,j ∈ R

k : i, j ∈ {1, . . . , N}} which minimize
the energy

min
(α,D,u)

λ‖v − u‖2 +
N∑

i,j=1

μi,j

∥∥αi,j

∥∥
0

+
N∑

i,j=1

∥∥Dαi,j − Ri,j u
∥∥

2, (7)

where Ri, j u denotes the patch of u centered at
(i, j) (dismissing boundary effects), and μi, j are
positive weights. The solution of the nonconvex
problem (7) is obtained using an alternate min-
imization: a sparse coding step where one com-
putes αi, j knowing the dictionary D for all i, j, a

dictionary update using a sequence of one rank
approximation problem to update each column of
D (Aharon et al. [1]), and a final reconstruction
step given by the solution of

min
u

λ‖v − u‖2 +
N∑

i,j=1

∥∥∥D̂αi,j − Ri,j u
∥∥∥

2
. (8)

Again, the inpainting problem can be consid-
ered as a case of nonhomogeneous noise. Defin-
ing for each pixel (i, j) a coefficient β i, j inversely
proportional to the noise variance, a value of
β i, j = 0 may be taken for each pixel in the
inpainting mask. Then the inpainting problem can
be formulated as

min
(α,D,u)

λ‖β ⊗ (v − u)‖2 +
N∑

i,j=1

μi,j

∥∥αi,j

∥∥
0

+
N∑

i,j=1

∥∥(
Ri,jβ

) ⊗ (
Dαi,j − Ri,j u

)∥∥
2, (9)

where β = (
βi,j

)N

i,j=1 and ⊗ denotes the elemen-
twise multiplication between two vectors.

With suitable adaptations, this model has been
applied to inpainting (of relatively small holes),
to interpolation from sparse irregular samples and
super-resolution, to image denoising, to demo-
saicing of color images, and to video denoising
and inpainting, obtaining excellent results; see
Mairal et al. [22].

PDEs and Variational Approaches

All the methods mentioned so far are based on
the same principle: a missing/corrupted part of
an image can be well synthetized by suitably
sampling and copying uncorrupted patches (taken
either from the image itself or built from a dic-
tionary). A very different point of view underlies
many contributions involving either a variational
principle, through a minimization process, or a
(non necessarily variational) partial differential
equation (PDE).
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Inpainting, Fig. 6 An inpainting experiment taken from Ogden et al. [24]. The method uses a Gaussian pyramid and
a series of linear interpolations, downsampling, and upsampling

An early interpolation method that applies for
inpainting is due to Ogden et al. [24]. Starting
from an initial image, a Gaussian filtering is built
by iterated convolution and subsampling. Then,
a given inpainting domain can be filled in by
successive linear interpolations, downsampling,
and upsampling at different levels of the Gaus-
sian pyramid. The efficiency of such approach is
illustrated in Fig. 6.

Masnou and Morel proposed in [23] to
interpolate a gray-valued image by extending
its isophotes (the lines of constant intensity) in
the inpainting domain. This approach is very
much in the spirit of early works by Kanizsa,
Ullman, Horn, Mumford, and Nitzberg to model
the ability of the visual system to complete edges
in an occlusion or visual illusion context. This
is illustrated in Fig. 7. The general completion
process involves complicated phenomena that
cannot be easily and univocally modeled.
However, experimental results show that, in
simple occlusion situations, it is reasonable to
argue that the brain extrapolates broken edges
using elastica-type curves, that is, curves that join
two given points with prescribed tangents at these
points, a total length lower than a given L, and
minimize the Euler elastica energy

∫ |k(s)|2ds,
with s the curve arc length and κ the curvature.

The model by Masnou and Morel [23]
generalizes this principle to the isophotes of a
gray-valued image. More precisely, denoting �̃

a domain slightly larger than �, it is proposed
in [23] to extrapolate the isophotes of an image

u, known outside � and valued in [m, M], by a
collection of curves {γ t}t ∈ [m, M] with no mutual
crossings, that coincide with the isophotes of u
on �̃\� and that minimize the energy

∫ M

m

∫
γt

(
α + β

∣∣kγt

∣∣p)
ds dt. (10)

Here α, β are two context-dependent parame-
ters. This energy penalizes a generalized Euler’s
elastica energy, with curvature to the power p > 1
instead of 2, of all extrapolation curves γ t, t ∈
[m, M].

An inpainting algorithm, based on the min-
imization of (10) in the case p = 1, is pro-
posed by Masnou and Morel in [23]. A globally
minimal solution is computed using a dynamic
programming approach that reduces the algorith-
mical complexity. The algorithm handles only
simply connected domains, that is, those with
no holes. In order to deal with color images,
RGB images are turned into a luma/chrominance
representation, for example, YCrCb, or Lab, and
each channel is processed independently. The
reconstruction process is illustrated in Fig. 8.

The word inpainting, in the image process-
ing context, has been coined first by Bertalmío,
Sapiro, Caselles, and Ballester in [6], where a
PDE model is proposed in the very spirit of real
paintings restoration. More precisely, u being a
gray-valued image to be inpainted in �, a time-
stepping method for the transport-like equation
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Inpainting, Fig. 7 Amodal completion: the visual sys-
tem automatically completes the broken edge in the left
figure. The middle figure illustrates that, here, no global
symmetry process is involved: in both figures, the same

edge is synthesized. In such simple situation, the interpo-
lated curve can be modeled as Euler’s elastica, that is, a
curve with clamped points and tangents at its extremities
and with minimal oscillations

Inpainting, Fig. 8 (a) is the original image and (b) the
image with occlusions in white. The luminance channel is
shown in figure (c). A few isophotes are drawn in figure
(d), and their reconstruction by the algorithm of Masnou

and Morel [23] is given in figure (e). Applying the same
method to the luminance, hue, and saturation channels
yields the final result of figure (f)

ut = ∇⊥u · ∇�u in �,

u given in �c (11)

is combined with anisotropic diffusion steps that
are interleaved for stabilization, using the follow-
ing diffusion model:

ut = ϕε(x) | ∇u | ∇ · ∇u

| ∇u | , (12)

where ϕε is a smooth cutoff function that forces
the equation to act only in �, and ∇ · (∇u/| ∇u| )
is the curvature along isophotes. This diffusion
equation, which has been widely used for denois-
ing an image while preserving its edges, compen-
sates any shock possibly created by the transport-
like equation. What is the meaning of Eq. (11)?
Following Bertalmío et al. [6], �u is a measure
of image smoothness, and stationary points for
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the equation are images for which �u is constant
along the isophotes induced by the vector field
∇⊥u. Equation (11) is not explicitly a transport
equation for �u, but, in the equivalent form,

ut = −∇⊥�u · ∇u, (13)

it is a transport equation for u being convected by
the field ∇⊥�u. Following Bornemann and März
[9], this field is in the direction of the level lines
of �u, which are related to the Marr-Hildreth
edges. Indeed, the zero crossings of (a convoluted
version of) �u are the classical characterization
of edges in the celebrated model of Marr and
Hildreth. In other words, as in the real paintings
restoration, the approach of Bertalmío et al. [6]
consists in conveying the image intensities along
the direction of the edges, from the boundary
of the inpainting domain � toward the interior.
The efficiency of such approach is illustrated in
Fig. 9. From a numerical viewpoint, the trans-
port equation and the anisotropic diffusion can
be implemented with classical finite difference
schemes. For color images, the coupled system
can be applied independently to each channel of
any classical luma/chrominance representation.
There is no restriction on the topology of the
inpainting domain.

Another perspective on this model is provided
by Bertalmío, Bertozzi, and Sapiro in [7], where
connections with the classical Navier-Stokes
equation of fluid dynamics are shown. Indeed,
the steady-state equation of Bertalmío et al. [6],

∇⊥u · ∇�u = 0,

is exactly the equation satisfied by steady-
state inviscid flows in the two-dimensional
incompressible Navier-Stokes model. Although
the anisotropic diffusion equation (12) is not
the exact counterpart of the viscous diffusion
term used in the Navier-Stokes model for
incompressible and Newtonian flows, a lot of the
numerical knowledge on fluid mechanics seems
to be adaptable to design stable and efficient
schemes for inpainting. Results in this direction
are shown in Bertalmío et al. [7].

Chan and Shen propose in [10] a denois-
ing/inpainting first-order model based on the joint
minimization of a quadratic fidelity term outside
� and a total variation criterion in �, that is, the
joint energy

∫
A

| ∇u | dx + λ

2

∫
�

|u − u0|2 dx,

with A ⊃⊃ � the image domain and λ a Lagrange
multiplier. The existence of solutions to this prob-
lem follows easily from the properties of func-
tions of bounded variation. As for the implemen-
tation, Chan and Shen look for critical points of
the energy using a Gauss-Jacobi iteration scheme
for the linear system associated to an approxi-
mation of the Euler-Lagrange equation by finite
differences. More recent approaches to the mini-
mization of total variation with subpixel accuracy
should nowadays be preferred. From the phe-
nomenological point of view, the model of Chan
and Shen [10] yields inpainting candidates with
the smallest possible isophotes. It is therefore
more suitable for thin or sparse domains. An
illustration of the model’s performances is given
in Fig. 10.

Turning back to the criterion (10), a similar
penalization on �̃ of both the length and the
curvature of all isophotes of an image u yields
two equivalent forms, in the case where u is
smooth enough (see Masnou and Morel [23]):

∫ +∞
−∞

∫
{u=t}∩�̃

(
α + β|k|p)

ds dt

= ∫
�̃

| ∇u |
(
α + β

∣∣∣∇ · ∇u
|∇u|

∣∣∣p)
dx.

(14)

There have been various contributions to
the numerical approximation of critical points
for this criterion. A fourth-order time-stepping
method is proposed by Chan et al. in [11]
based on the approximation of the Euler-
Lagrange equation, for the case p = 2, using
upwind finite differences and a min-mod formula
for estimating the curvature. Such high-order
evolution method suffers from well-known
stability and convergence issues that are difficult
to handle.
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IInpainting, Fig. 9 An experiment taken from Bertalmío et al. [6]. Left: original image. Middle: a user-defined mask.
Right: the result with the algorithm of [6]

Inpainting, Fig. 10 An
experiment taken from
Chan and Shen [10]. Left:
original image. Right: after
denoising and removal of
text

A model, slightly different from (14), is
tackled by Ballester et al. in [4] using a
relaxation approach. The key idea is to replace
the second-order term ∇ · ∇u

|∇u| with a first-
order term, depending on an auxiliary variable.
More precisely, Ballester et al. study in [4] the
minimization of

∫
�̃

|∇ · θ |p (a + b|∇G ∗ u|) dx

+ α

∫
�̃

(|∇u| − θ · ∇u) dx,

under the constraint that θ is a vector field with
subunit modulus and prescribed normal compo-
nent on the boundary of �̃, and u takes values
in the same range as in �c. Clearly, θ plays
the role of ∇u / |∇u|, but the new criterion is
much less singular. As for G, it is a regularizing
kernel introduced for technical reasons in order
to ensure the existence of a minimizing couple
(u, θ ). The main difference between the new
relaxed criterion and (14), besides singularity,
is the term

∫
�̃
|∇ · θ |p which is more restric-

tive, despite the relaxation, than
∫
�̃

| ∇u |∣∣∣∇ · ∇u
|∇u|

∣∣∣pdx. However, the new model has a

nice property: a gradient descent with respect to
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Inpainting, Fig. 11 Two inpainting results obtained with the model proposed by Ballester et al. [4]. Observe in
particular how curved edges are restored

(u, θ ) can be easily computed and yields two
coupled second-order equations whose numerical
approximation is standard. Results obtained with
this model are shown in Fig. 11.

The Mumford-Shah-Euler model by Esedoglu
and Shen [16] is also variational. It combines the
celebrated Mumford-Shah segmentation model
for images and the Euler’s elastica model for
curves. Being u0 the original image defined on
a domain A, and � ⊂ A the inpainting domain,
Esedoglu and Shen propose to find a piecewise
weakly smooth function u, that is a function with
integrable squared gradient out of a discontinuity
set K ⊂ A, that minimizes the criterion

∫
A\�

λ‖u − u0‖2dx +
∫

A\K
γ |∇u|2dx

+
∫

K

(
α + β k2

)
d s,

where α, β, γ , λ are positive parameters. The
resulting image is not only reconstructed in the
inpainting domain Ω , but also segmented all over
A since the original image is not imposed as a
hard constraint.

Two numerical approaches to the minimiza-
tion of this model are discussed in Esedoglu and

Shen [16]: first, a level set approach based on
the representation of K as the zero-level set of
a sequence of smooth functions that concentrate,
and the explicit derivation, using finite differ-
ences, of the Euler-Lagrange equations associ-
ated with the criterion; second, a �-convergence
approach based on a result originally conjectured
by De Giorgi and recently proved by Röger and
Schätzle in dimensions 2, 3. In both cases, the
final system of discrete equations is of order four,
facing again difficult issues of convergence and
stability.

More recently, following the work of
Grzibovskis and Heintz on the Willmore
flow, Esedoglu et al. [17] have addressed the
numerical flow associated with the Mumford-
Shah-Euler model using a promising convolu-
tion/thresholding method that is much easier to
handle than the previous approaches.

Tschumperlé proposes in [28] an efficient
second-order anisotropic diffusion model for
multivalued image regularization and inpainting.
Given a RN-valued image u known outside �, and
starting from an initial rough inpainting obtained
by straightforward advection of boundary
values, the pixels in the inpainting domain are
iteratively updated according to a finite difference
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approximation to the equations

∂ui

∂t
= trace

(
T ∇2ui

)
, i ∈ {1, · · · , N} .

Here, T is the tensor field defined as

T = 1

(1 + λmin + λmax)
α1

vmin ⊗ vmin

+ 1

(1 + λmin + λmax)
α2

vmax ⊗ vmax,

with 0 < α1 � α2, and λmin, λmax, vmin, vmax are
the eigenvalues and eigenvectors, respectively, of
Gσ ∗ ∑N

i=1∇ui ⊗ ∇ui , being Gσ a smoothing
kernel and

∑N
i=1∇ui ⊗∇ui the classical structure

tensor, which is known for representing well the
local geometry of u. Figure 12 reproduces an
experiment taken from Tschumperlé [28].

The approach of Auroux and Masmoudi in [3]
uses the PDE techniques that have been devel-
oped for the inverse conductivity problem in the
context of crack detection. The link with inpaint-
ing is the following: missing edges are modeled
as cracks, and the image is assumed to be smooth
out of these cracks. Given a crack, two inpainting
candidates can be obtained as the solutions of the
Laplace equation with Neumann condition along
the crack and either a Dirichlet or a Neumann
condition on the domain’s boundary. The optimal
cracks are those for which the two candidates
are the most similar in quadratic norm, and they
can be found through topological analysis, that
is, they correspond to the set of points where
putting a crack mostly decreases the quadratic
difference. Both the localization of the cracks
and the associated piecewise smooth inpainting
solutions can be found using fast and simple finite
difference schemes.

Finally, Bornemann and März propose in [9] a
first-order model to advect the image information
along the integral curves of a coherence vector
field that extends in � the dominant directions
of the image gradient. This coherence field is
explicitly defined, at every point, as the normal-
ized eigenvector to the minimal eigenvalue of
a smoothed structure tensor whose computation
carefully avoids boundary biases in the vicinity of

∂�. Denoting c the coherence field, Bornemann
and März show that the equation c · ∇u = 0 with
Dirichlet boundary constraint can be obtained as
the vanishing viscosity limit of an efficient fast-
marching scheme: the pixels in � are synthesized
one at a time, according to their distance to
the boundary. The new value at a pixel p is a
linear combination of both known and previously
generated values in a neighborhood of p. The key
ingredient of the method is the explicit definition
of the linear weights according to the coherence
field c. Although the Bornemann-März model
requires a careful tune of four parameters, it is
much faster than the PDE approaches mentioned
so far and performs very well, as illustrated in
Fig. 13.

Combining and Extending PDEs and Patch
Models
In general, most PDE/variational methods that
have been presented so far perform well for
inpainting either thin or sparsely distributed
domains. However, there is a common drawback
to all these methods: they are unable to restore
texture properly, and this is particularly visible
on large inpainting domains, for instance, in the
inpainting result of Fig. 12 where the diffusion
method is not able to recover the parrot’s texture.
On the other hand, patch-based methods are not
able to handle sparse inpainting domains like in
Fig. 14, where no valid squared patch can be
found that does not reduce to a point. On the
contrary, most PDE/variational methods remain
applicable in such situation, like in Fig. 14 where
the model proposed by Masnou and Morel [23]
yields the inpainting result. Obviously, some
geometric information can be recovered, but no
texture.

There have been several attempts to explic-
itly combine PDEs and patch-based methods in
order to handle properly both texture and geo-
metric structures. The contribution of Criminisi
et al. [12] was mentioned already. The work of
Bertalmío et al. [8] uses an additive decomposi-
tion of the image to be inpainted into a geomet-
ric component that contains all edges informa-
tion, and a texture component. Then the texture
image is restored using the Efros and Leung’s
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Inpainting, Fig. 12 An inpainting experiment (the middle image is the mask defined by the user). (Taken from
Tschumperlé [28])

Inpainting, Fig. 13 An inpainting experiment taken from Bornemann and März [9], with a reported computation time
of 0.4 s

Inpainting, Fig. 14 A picture of a mandrill, the same
picture after removal of 15 × 15 squares (more than 87%
of the pixels are removed), and the reconstruction with the

method introduced by Masnou and Morel [23] using only
the one-pixel-wide information at the squares’ boundaries

algorithm of [14], while the geometric image
is inpainted following the method proposed in
Bertalmío et al. [6] (several subsequent works
have proposed other methods for the individ-
ual reconstruction of each component). The final
image is obtained by addition of the restored
texture and geometric components. In a few sit-
uations where the additive decomposition makes

sense, this approach does indeed improve the
result and extends the applications domain of
inpainting.

In Komodakis and Tziritas [20], the authors
combine variational and patch-based strategies
by defining an inpainting energy over a graph
whose nodes are the centers of patches over the
image. The inpainting energy has two terms,
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one being a texture synthesis term and the other
measuring the similarity of the overlapping area
of two neighboring patches (centered on nodes
which are neighbors in the graph). By minimizing
this energy with belief propagation, a label is
assigned to each node, which amounts to copying
the patch corresponding to the label over the
position of the node. The results are very good
on a variety of different images (e.g., Fig. 1),
and the method is fast. Some potential issues
are the following: there is no assurance that the
iterative process converges to a global minimum,
and visual artifacts may appear since the method
uses a fixed grid and entire patches are copied for
each pixel of the mask.

The work by Drori et al. in [13] does not
involve any explicit geometry/texture decompo-
sition, but the search for similar neighborhoods is
guided by a prior rough estimate of the inpainted
values using a multiscale sampling and convolu-
tion strategy, in the very spirit of Ogden et al.
[24]. In addition, in contrast with many patch-
based methods, the dictionary of valid patches is
enriched using rotations, rescalings, and reflec-
tions. An example extracted from Drori et al. [13]
is shown in Fig. 15.

Beyond Single-Image Inpainting
All the methods mentioned above involve just
a single image. For the multi-image case, there
are two possible scenarios: video inpainting and
inpainting a single image using information from
several images.

Basic methods for video inpainting for data
transmission (where the problem is known as
“error concealment” and involves restoring miss-
ing image blocks) and for film restoration appli-
cations (dealing with image gaps produced by
dust, scratches, or the abrasion of the material)
assume that the missing data changes location
in correlative frames and therefore use motion
estimation to copy information along pixel trajec-
tories. A particular difficulty in video inpainting
for film restoration is that, for good visual quality
of the outputs, the detection of the gap and its
filling in are to be tackled jointly and in a way
which is robust to noise, usually employing prob-

abilistic models in a Bayesian framework; see, for
example, the book by Kokaram [19].

Wexler et al. [29] propose a video inpainting
algorithm that extends to space-time the
technique of Efros and Leung [14] and combines
it with the idea of coherence among neighbors
developed by Ashikhmin [2]. First, for each
empty pixel P, they consider a space-time cube
centered in P, compare it with all possible cubes
in the video, find the most similar, and keep its
center pixel Q, which will be the correspondent
of P. For each cube the information considered
and compared is not only color but also motion
vectors. Then, instead of copying the value of Q
to P, they copy to P the average of all the values
of the shifted correspondents of the neighbors of
P: for instance, if R is at the right of P, and S is
the correspondent of R, then the pixel to the left
of S will be involved in the average to fill in P.
This is based on the idea by Ashikhmin [2], see
Fig. 5. The shortcomings of this video inpainting
method are that the results present significant blur
(due to the averaging), it seems to be limited only
to static-camera scenarios (probably due to the
simple motion estimation procedure involved)
and periodic motion without change of scale, and
the computational cost is quite high (due to the
comparison of 3D blocks).

Shiratori et al. [26] perform video inpaint-
ing by firstly inpainting the motion field with
a patch-based technique like that of Efros and
Leung [14] and then propagating the colors along
the (inpainted) motion trajectories. The method
assumes that motion information is sufficient to
fill in holes in videos, which is not always the case
(e.g., with a static hole over a static region). The
results present some blurring, due to the bilinear
interpolation in the color propagation step.

Patwardhan et al. [25] propose a video
inpainting method consisting of three steps.
In the first step they decompose the video
sequence into binary motion layers (foreground
and background), which are used to build three
image mosaics (a mosaic is the equivalent of a
panorama image created by stitching together
several images): one mosaic for the foreground,
another for the background, and a third for
the motion information. The other two steps
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Inpainting, Fig. 15 An
experiment from Drori
et al. [13] illustrating the
proposed multiscale
diffusion/patch-based
inpainting method. The
upper-left image is the
original, the upper-right
image contains the mask
defined by the user, the
bottom-left image is the
result, and the bottom-right
image shows what has been
synthesized in place of the
elephant

Inpainting, Fig. 16 Top row: some frames from a video. Middle row: inpainting mask � in black. Bottom row: video
inpainting results obtained with the algorithm of Patwardhan et al. [25]

of the algorithm perform inpainting, first from
the foreground and then from the background:
these inpainting processes are aided and sped up

by using the mosaics computed in the first step.
See Fig. 16 for some results. The algorithm is
limited to sequences where the camera motion
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Inpainting, Fig. 17 Left: original image. Middle: inpainting mask �, in white. Right: inpainting result obtained with
the method by Hays and Efros [18]. (Images taken from their paper)

Inpainting, Fig. 18 An example where no inpainting
method seems to work. (a) Original image, from the
database provided by Hays and Efros [18]. (b) In white,
the mask to be inpainted, which is not the initial mask
proposed by Hayes and Efros but derives from the fuzzy
mask actually used by their algorithm. (c) Result courtesy

of D. Tschumperlé using the algorithm from [28]. (d)
Result courtesy of T. März and F. Bornemann using the
algorithm from [9]. (e) Result using a variant of the
algorithm from Criminisi et al. [12]. (f) Result from Hays
and Efros [18]

is approximately parallel to the image plane and
foreground objects move in a repetitive fashion
and do not change size: these restrictions are
imposed so that a patch-synthesis algorithm like
that of Efros and Leung [14] can be used.

Hays and Efros [18] perform inpainting of a
single image using information from a database
with several millions of photographs. They use a
scene descriptor to reduce the search space from
two million to two hundred images, those images
from the database which are semantically closer
to the image the user wants to inpaint. Using
template matching, they align the 200 best match-

ing scenes to the local image around the region
to inpaint. Then they composite each matching
scene into the target image using seam finding
and image blending. Several outputs are gener-
ated so the user may select among them, and the
results can be outstanding; see Fig. 17. The main
shortcoming of this method is that it relies on
managing and operating a huge image database.
When the algorithm fails, it can be due to a lack
of good scene matches (if the target image is
atypical), or because of semantic violations (e.g.,
failure to recognize people, hence copying only
part of them), or in the case of uniformly textured



686 Inpainting

backgrounds (where this algorithm might not find
the precise same texture in another picture of the
database).

Open Problems

Inpainting is a very challenging problem, and
it is far from being solved; see Fig. 18. Patch-
based methods work best in general, although for
some applications (e.g., very spread, sparsely dis-
tributed gap �) geometry-based methods might
be better suited. And when the image gap lies on
a singular location, with surroundings that cannot
be found anywhere else, then all patch-based
methods give poor results, regardless if they con-
sider or not geometry. For video inpainting the
situation is worse; the existing algorithms are few
and with very constraining limitations on camera
and object motion. Because video inpainting is
very relevant in cinema postproduction, in order
to replace the current typical labor intensive sys-
tems, important developments are expected in the
near future.
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Synonyms

Labeling; Object extraction; Partitioning; Seg-
mentation; Semiautomatic; User-assisted; User-
guided

Related Concepts

�Dynamic Programming

Definition

Interactive image segmentation is a (near) real-
time mechanism for accurately marking/labeling
an object of interest based on visual user interface
(VUI) specifying seeds, rough delineation, par-
tial labeling, bounding box, or other constraints.
Semiautomatic interactive segmentation methods
incorporate various generic image cues and/or

object-specific feature detectors in order to facili-
tate acceptable results with minimum user efforts.

Background

The most basic object extraction techniques like
thresholding (Fig. 1) and region growing are
based on simple but very fast heuristics. The
spectrum of applications for such techniques is
limited as they are prone to many problems, most
notably leaking as in Fig. 2. Despite significant
problems, thresholding and region growing are
widely known due to their simplicity and speed.
For example, they could be easily run on per-
sonal computers available 15–20 years ago. More
recent generations of commodity PCs allow much
more robust segmentation techniques, which rely
on optimization of some segmentation cost func-
tion, or an energy. An energy functional should
define an explicit measure of goodness for evalu-
ating any specific segmentation result. The main
goal of optimization is to find the best seg-
mentation with respect to the specified criteria.
In the context of interactive segmentation, the
energy can embed some soft and hard constraints
specified by the user.

Discrete Segmentation Functionals

Many discrete optimization methods for
interactive segmentation are based on classical
combinatorial optimization techniques: dynamic
programming (DP) or s/t graph cuts. In general,
these approaches are guaranteed to find the
exact global minimum solution in finite (low-
order polynomial) number of steps. There are no
numerical convergence issues (e.g., oscillations),
and they work in near real time even on a single
CPU. For efficiency, these methods are often
implemented using the simplest 4-neighbor grids.
In theory, this basic approach may generate
some discrete metrication artifacts, but they
are rarely observable on real images. Increasing
the neighborhood size (e.g., to eight neighbors)
adequately addresses the problem [8, 9].
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original image intensity histogram thesholding result

ba

0 63 127 191 255

c

Interactive Segmentation, Fig. 1 Image thresholding
segments a subset of pixels with intensities in a certain
range, for example, {p: Ip < T} in (c). Some threshold T

works only if there is no overlap between the object and
background intensities. The images above are from [1]

original image leaking problem

ba

Interactive Segmentation, Fig. 2 Region growing is a
greedy heuristic often associated with the leaking prob-
lem. Segment S is initialized by some seed in the object of
interest (lake). Adjacent pixels q are iteratively added to S

as long as some “growing” criteria are met, for example,
|| Iq − Ip || < T for some neighbor p ∈ S. A single low-
contrast spot on the object boundary (horizon) will make
the lake leak into the sky (b)

Graph-path segmentation models are designed
for 2D image segmentation. Intelligent scissors
[2], also known as live wire in the medical imag-
ing community [3], requires user to place seeds
on the desired object boundary; see Fig. 3. The
algorithm connects these seeds by computing the
shortest path on a graph where edges (or nodes)
are image weighted according to local contrast
(intensity gradient). Such weighting makes paths
“stick” to image boundaries. The shortest paths
from each new seed to all other image pixels can
be pre-computed in O(n log n) time. Then, an
optimal path from any mouse position to the seed
can be previewed in real time.

This method evaluates segmentation boundary
as a path between two seeds (see Fig. 4a) using
energy functionals like

E
(
Ps,t

) =
∑

{p,q}∈Ps,t

wpq (1)

where Ps,t is a set of adjacent edges from source
seed s to terminal seed t and edge weights wpq ≥ 0
are segmentation boundary costs based on some
local measure of intensity contrast across edge
{p, q}. One example of weights wpq is
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Free Point
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Interactive Segmentation, Fig. 3 Intelligent scissors or live-wire methods connect seeds placed on object boundaries.
Optimal segmentation boundary (orange curve) can be previewed for any mouse position in real time

tucahtapa

ba

Interactive Segmentation, Fig. 4 Segmentation on
graphs. The path-based methods [2–4] represent segmen-
tation boundary as a sequence of adjacent (green) edges
(a). A path could connect two seeds or form a closed cycle.
The graph-cut methods [5–7] assign to pixels different

labels, for example, red and blue in (b). Any such labeling
implicitly defines a segmentation boundary, which is a
cut, as a collection of (green) edges between differently
labeled pixels

wpq ∝ 1

1 + ∣∣∇I · npq

∣∣2
· ‖p − q‖

where ∇I is image gradient, vector npq is a
normal to edge {p, q}, and ‖p − q‖ is the geo-
metric length of edge {p, q}. Factor ‖p − q‖

differentiates diagonal edges from horizontal and
vertical edges on grids with higher connectivity,
which can reduce the grid bias.

There is a number of other interactive segmen-
tation methods based on efficient DP-based opti-
mization algorithms. For example, the methods in
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[10, 11] compute globally optimal cycles (closed
contours), minimizing ratios of different mea-
sures of segment’s boundary and region. For
example, [11] can find a segment with the largest
average contrast on its boundary. (Ratio of some
cumulative contrast measure and the boundary
length.) Optimization of ratio functionals evalu-
ating boundary’s curvature was addressed in [12].

Graph-cut segmentation models: Boykov and
Jolly [5] and Boykov and Funka-Lea [6] proposed
an object extraction functional for N-dimensional
images that evaluates boundary and region prop-
erties of segments as

E (x|θ) = −
∑

p:xp=0

ln Pr
(
Ip|θ0

)

−
∑

p:xp=1

ln Pr
(
Ip|θ1

)

+
∑

{p,q}∈N
wpq · [

xp �= xq

]
(2)

where [·] are Iverson brackets, variables xp

are binary object/background labels at pixels
p, parameters θ = {θ0, θ1} define object and
background intensity distributions, and edge
weights wpq are a cost of discontinuity between a
pair of neighboring pixels. For example,

wpq ∝ exp

(
−

∣∣∇I · epq

∣∣2

σ 2

)
· 1

‖p − q‖

where epq is a unit vector collinear to edge {p, q}
and σ is a parameter controlling sensitivity to
intensity contrast that is often set according to the
level of noise in the image. Similarly to energy
(1), the last term in (2) evaluates the image-
weighted length of the segmentation boundary.
In contrast to edge weights in (1), the weights
above are based on intensity contrast along the
edge {p, q}; see Fig. 4b. Normalization by edge
length ‖p − q‖ is required for grids with higher
connectivity, reducing the grid bias [13].

The first two terms in (2) evaluate how well
pixel intensities inside the object and background
segments fit the corresponding distributions. In
general, image intensity/color distributions could

be extended by more sophisticated features and
appearance models, for example, texture. The
appearance models could be estimated from
seeds or from prior data. The grab-cut method
in [7] also uses an iterative EM-style scheme
for additionally optimizing functional E(x| θ ) in
(2) with respect to parameters θ . In this case,
sufficiently good initial appearance models can
be often estimated from a user-placed box around
the object. The graph-cut segmentation model
also extends to video; for example, see the snap-
cut method [14].

Functional (2) can be globally minimized over
binary variables x by low-order polynomial algo-
rithms from combinatorial optimization [15] that
are fast even on a single CPU. Also, there are
efficient techniques [5, 6] for integrating interac-
tive hard constraints (seeds) as in Fig. 5. Instead
of segmentation energy (2), graph-cut framework
can also use various ratio functionals [16].

Segmentation energy (2) works for N objects
(labels). In general, its optimization is NP-hard
for N > 2. An approximate solution with
a factor of 2 optimality guarantee can be
found via α-expansion optimization algorithm
[17]. Interestingly, imposing some additional
geometric constraints between object boundaries
(e.g., inclusion, exclusion, minimum margin)
may lead to exact polynomial optimization
algorithms [18–20].

Continuous Segmentation
Functionals

Many popular interactive segmentation methods
use continuous representation of segments where
boundaries are contours in R2 or surfaces in R3.
Such methods use either physics-based or geo-
metric functionals to evaluate such continuous
segments. Traditionally, variational calculus and
different forms of gradient descent were used to
converge to a local minima from a given initial
contour; see Fig. 6. This motivates the general
term, active contours, commonly used for such
methods. Recent convex formulations for stan-
dard continuous regularization functionals [21,
22] and development of continuous max-flow
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Interactive Segmentation, Fig. 5 Interactive editing of
segments via hard constraints (seeds) based on graph cuts
[5, 6]. A fragment of an original photo is shown in (a).
Initial seeds and segmentation are shown in (b). The

results in (c–e) illustrate changes in optimal segmenta-
tion as new hard constraints are successively added. The
computation time for consecutive corrections in (c–e) is
marginal compared to time for initial results in (b)

initialization local minima

ba

Interactive Segmentation, Fig. 6 Snakes and other
active contour methods are initialized by rough delin-
eation of the desired object (a). Minimization of an energy

associated with the contour leads to a local minimum
(b) with better alignment to image boundaries

techniques [23, 24] now also allow good quality
approximations of the global minima.

Physics-based segmentation models: Snakes
[25, 26], balloons [27], spline snakes [28], and
other methods explicitly represent object bound-
aries as an elastic band or a balloon. The band is
normally assigned an internal energy (elasticity
and stiffness) and a potential energy with respect
to some external field of predefined image forces
attracting the band to image boundaries, that is,
locations with large intensity gradients. A user
can also place seeds defining additional attraction
or repulsion potentials.

Geometry-based segmentation models: Note
that two visually identical snakes appearing in the
same image position may have different internal
elastic energies. In many cases this may con-
tradict a natural assumption that a segmenta-

tion result can be evaluated only by its visible
appearance (In some video applications the goal
is to track specific points on a moving segment,
e.g. muscles of a beating heart. Physics-based
(e.g. elastic) segmentation energy is well moti-
vated is such cases). Based on this criticism of
the physics-based approach, [29, 30] proposed
geodesic active contour model evaluating contour
C on a (bounded) domain � via geometric func-
tionals like

E(C) =
∫

int (C)

f1(p) dp+
∫

�/int(C)

f0(p) dp

+
∫

∂C

g(s)ds

(3)
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which is similar to discrete model (2). The first
two integrals in (3) are over the interior and
exterior regions of C, and the third integral is the
Riemannian length of C under metric g. Image-
based density function g, for example,

g(p) = 1

1 + ‖∇I (p)‖2
, ∀p ∈ �

shortens the length of contour C if it follows
image boundaries where the density is small.
The geometric length term in (3) is a continuous
analogue of (1) and the spatial smoothness term
in (2); see [13].

Scalar functions f1 and f0 on � are
interior and exterior potentials based on some
known appearance models for the object and
background regions. For example, one can use
fi(p) = − ln Pr (Ip| θ i) as in (2). Similarly, these
potentials could also enforce user-placed hard
constraints (seeds).

Geometric contours C can be repre-
sented as level sets of some scalar embed-
ding function u : � → R1, for example,
C = {p ∈ � : u (p) = const}. This approach avoids
some numerical issues, for example, the need
for reparameterization, often associated with
explicit representation of contour points needed
for physics-based bands. The level-set framework
does not pose any topological constraints on
contours and yields easy-to-implement gradient
descent equations for geometric energies like
(3). More recently, geometric energies like (3)
are addressed with various continuous convex
formulations [24, 31, 32] that are shown to
converge to a good approximation of the global
minimum.

The continuous geometric models are very
closely related to discrete segmentation energies
in the graph-cut framework [8, 13]. One theoret-
ical advantage of the continuous formulations is
absence of the grid bias. Continuous numerical
schemes guarantee certain convergence rate, but
some stopping threshold often needs to be cho-
sen. Current fast implementations of continuous
optimization methods, for example, [32], require
GPU acceleration.

Distance-Based Segmentation
Methods

Many interactive segmentation techniques
optimize objective functions that are only
indirectly related to the visual appearance of
the segments and their boundaries. In particular,
a large number of methods compute optimal
(image-weighted) distance functions computed
from seeds. For example, fast-marching method
[33] extracts the boundary reached at time T
by a front expanding with an image-weighted
speed. This can be seen as a generalization of
region growing. These ideas were extended in
[34] where the segments are Voronoi cells w.r.t.
geodesic distance d(p, s) from the object and
background seeds s ∈ SO ∪ SB

x∗
p = arg min

l∈{O,B}min
s∈Sl

d(p, s)

Their image-based metric is based on gradi-
ents of the appearance models likelihoods instead
of intensity gradients. Distance transforms can
also work as the unary potentials in the segmen-
tation models (2) and (3); for example, see [35].

Instead of the standard min-sum geodesic
distance d(p, s), many segmentation methods use
other measures to compute Voronoi cells from
the seeds. For example, fuzzy-connectedness
methods [36, 37] compute Voronoi cells with
respect to some max–min affinity measure.
Random walker [38] outputs Voronoi cells for
probabilistic distance function d(p, s), measuring
the expected time of arrival for a random walk
from p to s. Watershed method, for example, [39],
connect points to seeds using water-drop paths
instead of geodesics. Power watershed algorithm
[40] unifies the ideas of watershed and random
walker.

Some Open Problems

Energy functionals like (2) and (3) represent only
the most standard ideas for evaluating segments.
Accurate evaluation of the higher-order geo-
metric properties of the boundary, for example,
curvature [12, 41], remains a difficult optimiza-
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tion issue. Shape priors for globally optimal
segmentation [42, 43] as well as enforcement of
topological constraints [44, 45] are largely open
problems.
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Interface Reflection

� Specularity, Specular Reflectance

Interpretation of Line Drawings

�Line Drawing Labeling

Interreflections

Michael S. Langer
School of Computer Science, McGill University,
Montreal, QC, Canada

Synonyms

Mutual illumination

Related Concepts

�Diffuse Reflectance
�Light Transport
�Radiance
� Shape from Shading

Definition

Interreflections are reflections of light from one
surface to another surface.

Background

Surfaces are illuminated not just by light sources
but also by each other. Such interreflections can
provide a significant component of surface illu-
mination especially in concavities or enclosures.
Numerical methods for computing interreflec-
tions were developed a century ago to solve prob-
lems in heat transfer. In the 1980s, these methods
were developed further by the computer graphics
community, and soon after interreflections were
considered in computer vision.
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Interreflections are important in computer
vision for methods that use exact models of image
intensities. For example, shape from shading
and photometric stereo methods assume direct
illumination only, so these methods produce
incorrect shape estimates when interreflections
are present [1]. Another example is the
problem of estimating surface color. Classical
methods assume a planar scene under ambient
illumination and so interreflections can be
ignored. However, when a scene has folded
or curved surfaces, interreflections will occur
and can lead to incorrect estimates of surface
color [2].

Theory

Interreflections can be described mathematically
by writing the reflected light that leaves each
surface point as a sum of two components: the
first is due to the illumination arriving at the point
directly from the light source, and the second is
due to the illumination that arrives indirectly from
other surfaces in the scene. If the scene is com-
posed of Lambertian surfaces with albedo ρ(x)
varying across surfaces, then the total radiance
L(x) leaving x can be written:

L(x) = Ls(x) + ρ(x)
∫

S

L(y) K(x, y) dy. (1)

Here Ls(x) is the reflected radiance that is due
to direct illumination from the source, and the
second term is the component that is due to
interreflections. The integral is taken over all
surface points y ∈ S in the scene. The function
K(x, y) is a symmetric weighting function that
depends on the surface normals at x and y and
on the distances between x and y. K(x, y) is zero
if the x and y are not visible to each other. It is
common to approximate Eq. (1) by using a polyg-
onal mesh surface whose facets have constant
radiance

Li = Ls
i + Pi

∑
j

Ki,jLj (2)

where Li and Ls
i are the vectors of direct and

total radiance, respectively, Pi is the albedo of
surface facet i, and K is a geometrical form factor
matrix.

In both the continuous and discrete cases,
the eigenfunctions of K are radiance functions
that are invariant to interreflections [3, 22]. For
eigenfunctions that have relatively large eigen-
values, the support of the eigenfunctions tends to
concentrate in surface concavities and at points of
contact between surfaces such as a convex object
resting on a plane [4].

To model interreflections when non-Lambertian
surfaces are present, one needs to consider the
radiance Li,j leaving facet j in the direction
of facet i. Let the weight matrix Wi,j capture
the BRDF of facet i as well as the geometric
relationship between facets i and j including
distance and foreshortening. Then the radiance
Lc,i arriving at the camera c from facet i can be
written:

Lc,i = Ls
c,i +

∑
j

Wi,jLi,j . (3)

An equivalent way to model interreflections
is to consider how emitted light is transported
through a scene via a sequence of reflections.
The nth reflection serves as the incident light
for the n + 1st reflection, and the sum of
all reflections gives an infinite series which
converges to the scene radiance. For any given
scene geometry and surface reflectances, it is
possible to define a sequence of linear operators
that decomposes the radiance arriving at the
camera into its n bounce components [5].
Related methods for decomposing the image into
direct and indirect components will be discussed
below.

Finally, interreflections are related to subsur-
face scattering and volume scattering, since these
phenomena lead to multiple bounces of light
between the source and camera. Although some
of the methods below deal with these effects as
well, we will only discuss aspects of the methods
that deal with interreflections between visible
surface facets whose image projection is at least
as large as a pixel.
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Applications

Shape from Shading and Photometric
Stereo
Classical shape from shading and photometric
stereo methods ignore interreflections. One can
extend these methods to account for interreflec-
tions in several ways. For example, one can
apply the method to obtain an approximate shape
solution and then iteratively update the solution
to account for interreflections. This idea has been
applied to photometric stereo both for gray-level
images [6] and in color [7]. The idea has also
been applied to shape from shading for the special
case that the surface is an unfolded book in
a photocopier [8]. In these applications, it is
assumed the light sources are known.

Under unknown lighting and in the absence
of interreflections, there exists a family of scenes
(shape, albedo, lighting) that all produce the same
image – the so-called bas-relief ambiguity. When
interreflections are present, this ambiguity van-
ishes. In this case, one can estimate the surface
shape and reflectance by applying a photomet-
ric stereo method that is designed for unknown
lighting and then iteratively update the shape and
reflectance to account for interreflections [9].

Color
Classical color constancy methods ignore
interreflections by assuming a single planar
scene. When the scene contains concavities,
however, interreflections sometimes cannot be
ignored, especially when color bleeds from
one surface to another. Consider a situation in
which two planar surfaces of different colors
are illuminated by the same ambient light.
Under a two-bounce model (one direct plus one
interreflection), these two components define a
2D subspace of RGB space for each surface. The
intersection of the subspaces is the color of the
indirect component. Under certain conditions,
it is possible to remove this indirect component
and to estimate the illuminant and reflectance
spectra [10].

For the case that a surface has a single color,
the problem is less constrained. Some solutions

for removing the indirect component use
calibration spheres which are painted the same
as the object and are viewed under the same
lighting [11]. Alternatively, one can constrain
the problem by using fluorescent paint and
imaging the surface under different colored
light sources [12]. More recent methods have
attempted to learn a mapping from the image to
the spectral reflectance and illuminant by training
on many synthetic examples using the full infinite
bounce model [13]. For further examples of
interreflections in spectral estimation, see the
following review [14].

Structured Light
Interreflections can also create problems for
structured light methods. One method for
removing interreflections is to use high-
frequency illumination patterns such as checker-
boards. Such patterns produce a low-frequency
indirect component, and so, for example, two
complementary patterns will produce essentially
the same indirect component at each scene. One
can measure (and then subtract) this indirect
component at each scene point by using the
image whose direct component is zero [15].
Several methods have been proposed to increase
the robustness of this approach, for example, by
using a large number of random high-frequency
binary spatial patterns [16] or using patterns
of different frequencies that isolate not only
interreflections but also related effects such
as the projector depth of field and subsurface
scattering [17].

Another approach, which uses phase-shifted
sinusoids, has been to avoid trying to remove
the indirect component [18]. With traditional
phase-shifted structured light, using only a sin-
gle frequency results in a limited depth resolu-
tion because there is a 2π phase ambiguity. To
resolve the ambiguity, one needs also to use a
lower-frequency illumination component. How-
ever, low-frequency illumination is susceptible
to errors from interreflections [17]. By using
different high frequencies within a small spatial
frequency band, the “micro phase shifting” [18]
allows the phase information to be disambiguated



Interreflections 697

I

while keeping the advantage of high-frequency
direct illumination, namely, that it produces a
low-frequency indirect component which does
not perturb the phase of the direct component.

Another approach is to separate the direct and
indirect components optically [19]. The camera
and projector define corresponding epipolar lines,
namely, the light from a projector pixel that
reaches the camera by one bounce must fall on
a unique line in the image and light that reaches a
pixel in the image from one bounce must have
emitted from a unique line in the projection
image. By synchronously masking pixels in the
camera and projector at a rate much higher than
the frame rate of the camera, it is possible to
optically mix a selected set of light paths. For
example, one can make a direct-only image, or
an indirect-only image, or an indirect-invariant
image, namely, the indirect component is inde-
pendent of the direct component.

Time-of-Flight Imaging
For time-of-flight imaging that uses a single pulse
of light, interreflections add a tail to the incoming
pulse. This tail can in principle be detected and
removed [20]. Often time-of-flight methods use
a sequence of pulses at some temporal frequency
ω, and in this case the distance to visible surfaces
can only be estimated modulo the wavelength
(or spatial period) of the sequence. To resolve
this phase ambiguity, multiple frequencies can be
used. However, this must be done with some care
since interreflections can change the phase of the
signal.

To deal with interreflections, one can use high
frequencies, namely, the spatial period should be
comparable to the interreflection path lengths. In
this case, the diffuse interreflections would add
roughly a DC component to the direct component
which would not affect its phase. This is the
temporal analog of the method described above
for structured light, namely, a sufficiently high
spatial frequency illumination pattern produces
only low spatial frequency indirect patterns. In
the time-of-flight case, there is still a phase ambi-
guity if one uses only one frequency. However, by
using multiple high frequencies within a narrow

band, it is possible to combine the amplitude and
phase information to estimate a unique depth
[21].
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Intrinsic Images

Marshall F. Tappen
Amazon, University of Central Florida, Seattle,
WA, USA

Definition

A set of images used to represent characteristics
of a scene pictured in an image, with each image
representing one particular characteristic of the
scene.

Background

Vision systems have been categorized into low-
and high-level processing, with high-level pro-
cessing taking an object-centered approach [1].
In this categorization, the role of low-level pro-
cessing is to extract basic characteristics at all
locations in the image. These characteristics are
then used to find objects.

Intrinsic images are a method for represent-
ing the low-level characteristics extracted from
images. In the intrinsic image representation,
proposed by Barrow and Tenenbaum in [2], one
image represents each of the characteristics being
used in the system. The value of each pixel
represents the value of the characteristic at each
point in the scene.

The types of characteristics that are conve-
niently expressed as intrinsic images include
the illumination of each point in the scene, the
motion at each point, the orientation of each
point, the albedo, and the distance from the
camera.

Application

Starting with [3], the term intrinsic images have
also been used to refer to an image decomposition
that decomposes an observed image into intrinsic
images that can be recombined to recreate the
observed image. The most common decomposi-
tion is, into images, representing the shading, or
illumination, and albedo of each point. Figure 1
shows an example of how the image in Fig. 1a
into shading and albedo images. Mathematically,
the decomposition is modeled as

Op = Ip × Rp

where Op is the value of the observed image at
pixel p, I is the illumination image, and R is the
reflectance image.

In [3], Weiss recovers these intrinsic
images from a sequence of images where the
illumination varies in the scene. In [4, 5],
Tappen et al. use color and gray-scale features
to estimate the decomposition from a single
image.

Besides image decompositions, [6] proposes
using intrinsic images that represent prop-
erties like occlusion boundaries and object
depth.
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Intrinsic Images, Fig. 1 These images show an example
of an intrinsic image decomposition. In this decomposi-
tion, the intrinsic images can be how the image in (a) can

be decomposed into the albedo and shading images shown
in (b) and (c), respectively
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Intrinsic Parameters

� Intrinsics

Intrinsics

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen, China

Synonyms

Intrinsic parameters

Related Concepts

�Camera Parameters (Intrinsic, Extrinsic)

Definition

Intrinsics, short for intrinsic parameters, refer to
the parameters belonging to the essential nature
of a thing, which is usually a camera in com-
puter vision. The intrinsic parameters of a camera
include its focal length, the aspect ratio of a pixel,
the coordinates of its principal point, and the lens
distortion parameters.

See entry “Camera Parameters” for more
details.
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Invariant Methods in Computer
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2Arizona State University, Tempe, AZ, USA
3Department of Electrical and Computer
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Related Concepts

�Deep Learning Based 3D Vision

Definition

The term invariant methods in computer vision
refers to a broad class of ideas for designing
both representations and metrics that are invari-
ant/robust to (and only to) nuisance factors in
computer vision such as viewpoint, motion, defo-
cus, etc. for different related modalities including
images, videos, and point clouds.

Background

Computer vision consists of inferring geometric
and semantic properties of objects and scenes,
from 2D projections as seen through cameras.
This theme appears in applications such as
object recognition, localization, segmentation,
3D reconstruction, etc. As canonical examples,
we will focus on object, scene, and action
recognition. Usually, these tasks need to
be performed given a single image of the
object/scene or a video. That is, we usually do not
have access to the full 3D structure of the object
or scenes, but have 2D projections obtained
using a camera. As such, a lot of important
information is lost. Unknown camera intrinsics,
extrinsics, sensor noise, etc. make the task more
difficult. Additionally, environmental factors
such as illumination, shadows, reflections, and

atmospheric conditions such as fog create more
ambiguity. Furthermore, object/action categories
themselves cannot be precisely defined, and
there are large intra-class variations and small
interclass variations for many commonly used
categories. Computer vision systems should be
(a) able to disregard, or at least be robust to,
all these nuisance factors while performing an
end task such as object/action recognition, (b)
lend themselves to being interpretable, and (c)
be computationally efficient. Here, we discuss
issues that are relevant while designing represen-
tations/metrics that are invariant to these factors.
Fortunately, some of these factors can be modeled
mathematically leading to tractable invariances.
The image/video features and metrics that arise
out of these models are often described using the
language of moment invariants, group theory and
geometry, and topology.

Theory

Let the set of images/videos be X ⊂ R
n, where

n is the ambient dimension of the images/videos
and could be number of pixels, etc., and x ∈
X be a single datapoint on which object/action
recognition is performed. The common pipeline
in computer vision is as follows. First, a feature
φ(x) is extracted, and then a machine learning
technique such as nearest neighbors, support vec-
tor machines, neural networks, etc. is used to
classify the feature into one of the predefined
object/action categories. Let us now denote by
T : X → X, a set of nuisance transforma-
tions which we want to factor out. Let T be
parameterized by θ ∈ Θ that acts on images,
and we denote x̂θ = T (x, θ), the action of the
set of transformations on an image/video. By
an invariant representation of an image/video to
the set of transformations T , we mean a fea-
ture φ : X → Y ⊂ Rd , where d is the
ambient dimension of the feature space, such
that φ(x) = φ(x̂θ ) = φ(T (x, θ)),∀θ ∈ Θ .
It is very important to note that extracting the
invariant representation is an intermediate step
in the classification pipeline. Our final goal is
to perform effective classification. This implies
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that the process of extracting invariants should
not lose any information that may be pertinent
for classification, i.e., the invariants must ideally
be invariant only to the nuisance factors. That is,
for x, y ∈ X, if φ(x) = φ(y), then ∃θ ∈ Θ ,
such that y = T (x, θ). This is sometimes referred
to as completeness of the invariant. We also note
that sets of nuisance transformations T can often
be equipped with a group structure, such as in
the case of affine transforms for images, rate
transforms for video, etc.

Another way to performing direct invariant
classification is do design invariant metrics,
rather than devising invariant representations.
For example, if the set of transformations T

can be equipped with group structure, we may
be able to define a metric d so that d(x, y) =
minθ ‖x − T (y, θ)‖p, under some norm over
R

n. Such a metric measures distances between
the equivalence classes [x] = {x̂θ , θ ∈ Θ}
and [y] = {ŷθ , θ ∈ Θ} or orbits rather than
the images themselves and is invariant to the
transformations T . See Vedaldi [1] and Simard
et al. [2] for a longer treatment of these ideas.

For the purposes of this chapter, we will also
refer to representations and metrics which are
robust to nuisance transformations as invariant,
keeping with the parlance of the community. By
robust representations we mean that the repre-
sentations do not change significantly under a
nuisance transformation.

Examples of Factors of Variation and
Associated Invariants

There are several physical factors of variation
for which we want to design invariances in
computer vision. Discussed below are important
factors for which, under different simplifying
assumptions, we can mathematically model
these transformations and design invariant
representations/metrics. A summary is presented
in Table 1.

Blur Blurring due to resolution limitation of the
sensor, defocus, motion, etc. is common in imag-
ing, and the level of blur is usually unknown.

For image recognition, it is important to develop
features/metrics that are invariant to blur. Zhang
et al. [10] present a blur-invariant metric for
Gaussian blurring. The blur kernel, assumed to be
constant throughout the image, acts on the image
via convolution and the set of all blur kernels at
different levels forms a semigroup. Here, a log-
Fourier representation of an image is first com-
puted, under which the orbit of blurred versions
of an image becomes a line. The Riemannian
metrics defined between two images measure
distances between their orbits rather than the
images themselves. Instead of metrics, there are
works which propose blur-invariant/robust rep-
resentations. Among these are moment invari-
ants described by Flusser et al. [9] for symmet-
ric blur kernels, which are further shown to be
complete. They also combine the proposed blur
invariant with illumination and rotation invari-
ance. Gopalan et al. [11] construct a geometric
blur-robust descriptor for blur kernels with a
predefined maximum width. For an image, they
use an orthogonal basis for blur kernels and
create a dictionary with each element given by
the convolution of a basis function on the image.
They show that, with certain assumptions on
the blur kernel, the span of the elements of the
dictionary of an image and its blurred variant are
the same. Thus, face recognition in this frame-
work becomes a nearest neighbor search between
spans of dictionaries which are points on the
Grassmann manifold.

Viewpoint The effect of the viewing condition,
or the relative placement of the image sensor with
respect to an object, leads to many difficult trans-
forms in image space. If the object under consid-
eration is planar, the effect of view changes can
be described by projective transforms, or homo-
graphies. Invariance to projective transforms for
simple objects was classically studied through
geometric invariants, such as cross ratios, and
local geometric invariants based on points, lines,
and derivatives of curvatures [21]. For nonplanar
objects, or objects with full-depth variation, any
change in viewing condition results in certain
parts going of out view and new parts coming into
view. There are no known true invariants under
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Invariant Methods in
Computer Vision, Table 1
Some methods to compute
invariant metrics and
representations for various
nuisance transformations
discussed in this chapter

Nuisance factors Canonical applications Mathematical models Related works

View point Object recognition Affine
transforms,
homography

[3–7]

+ reparameterization Shape analysis Affine
transforms +
diffeomorphisms

[8]

Blur Object recognition Moments, subspaces [9–11]

Temporal repa-
rameterization

Action recognition Order-preserving
diffeomorphisms

[12–15]

Illumination Object recognition Subspaces [16–19]

Permutations Point clouds Symmetric functions [20]

such a case. However, under simpler assumptions
of small changes in view, one can often approxi-
mate the effects of viewpoint change via global or
local affine transformations. Scale variations and
rotations become a special case of affine transfor-
mations. These ideas have appeared in a number
of different contexts, depending on what can be
robustly measured. In the field of shape analysis,
where we assume that certain landmark points
can always be detected, techniques for compen-
sating for the effect rotation, scale, and affine
transformations are well-developed [3, 4]. These
ideas also appears in more recent developments
in comparing the shapes of continuous curves and
surfaces [8]. In more general situations, it is dif-
ficult to define true invariants, but the method of
using local patch-level robust features is encoded
even in newer algorithms for feature-point detec-
tion and matching such as SIFT [5], affine-
SIFT [22], etc. In more recent developments,
topological invariants for point clouds, and image
patches have been gaining ground as a way to
encode a far richer set of geometric deformations
[23]. This area continues to see active interest and
is considered an unsolved problem.

Temporal reparameterization In the case of
action recognition, and more generally in the
case of time-series classification problems, a
common nuisance factor is execution-rate. In
many applications, we want the classifier to
be invariant/robust to the rate at which the
activity is performed. The same activity may be
performed at different rates by subjects owing to
physiological, biomechanical, and other factors.

Mathematically, rate variations are modeled
using order-preserving diffeomorphisms, more
commonly referred to as time-warping functions.
Let us consider a human action sequence
each time, instant contains a human skeleton
represented by 2D/3D joint locations. For two
such action sequences α and β, if they only
differ by execution rate, then α = β ◦ γ ,
where γ ∈ Γ and γ : [0, 1] → [0, 1], the
set of warping functions. Additionally, each
γ ∈ Γ respects the following constraints: (1)
γ ∈ C1, the set of differentiable functions
on [0, 1], (2) γ (0) = 0, γ (1) = 1 and (3)
if t1 < t2, γ (t1) < γ (t2). Γ is then easily
equipped with a group structure under function
composition ◦ as the group action. The same
model can be used to model misalignments
as well as differing sampling rates between
sequences. Now, we can define a metric invariant
under time warps: for two sequences α and β,
d(α, β) = minγ∈Γ ‖α − β ◦ γ ‖. Commonly,
this alignment problem is discretized and solved
using dynamic programming, and the algorithm
is referred to as dynamic time warping (DTW)
[12]. Instead of solving alignment directly on
the sequences, Srivastava et al. [13] present a
Riemannian framework by first constructing the
square-root velocity field (SRVF) representation
using which alignment is performed. SRVF
representation provides better mathematical
properties and guarantees compared to DTW. In
action recognition, at test time, the test sequence
is aligned to a predefined template before
feature extraction and classification. This leads
to rate-invariant representations and improves
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classification rate as shown by Veeraraghavan
et al. [14] for human activities, by Vemulapalli
et al. [24] using Lie group representations for
human skeletons.

Illumination Chen et al. [25] showed the
nonexistence of illumination invariants –
given two images under unknown illumination
conditions, there is no way to know with
absolute certainty whether they are from the
same object or not. However, with access to
more images in the training set, we can avoid
the ambiguity. Hallinan et al. [16] and others
showed empirically that using approximately the
top 5 eigenvectors explains most of the set of the
images of the object under varying illumination
conditions. Belhumeur and Kreigman [17]
demonstrated theoretically that for a convex
Lambertian object illuminated by point sources at
infinity, the set of images of that object under all
illumination conditions forms a convex cone with
the dimension of the cone equal to the number of
distinct surface normals, and determined by only
three images. They conjectured and provided
empirical results that the cone is flat and the set of
images lies close to a low-dimensional subspace.
Basri and Jacobs [18] created low-dimensional
subspaces from the low-frequency spherical
harmonics of the Lambertian kernel and design
an effective recognition algorithm based on it. For
an object or a face, its illumination subspace for
the illumination-invariant representation. In order
to perform illumination-robust face recognition,
the distance of a given test face should
be computed from the training illumination
subspaces rather than training images if there
are illumination variations [26].

Open Problems and Recent Trends

Over the last decade, employing deep neural
networks has led to significant advances in solv-
ing many tasks in computer vision. The most
common architecture is convolutional neural net-
works. Implicitly, using training data to mini-
mize classification loss, such networks learn to
develop invariant representations for images and

videos, to some extent [27]. Preliminary empir-
ical studies demonstrate that features in deeper
layers in autoencoders and convolutional deep
belief networks provide better invariance to input
transformations [28, 29] and further improved
using data augmentation with transformed inputs
[30]. However, it is not fully clear a priori to what
factors the representations are invariant to, how
much the architecture affects it, and if they are
fully invariant (e.g., invariant to all rotations v/s
invariant to rotations only present in the training
data). Many times, even small perturbations of
the input can break the classifier such as small
amounts of Gaussian noise [31] if the network
has not seen blurred images and adversarial per-
turbations [32].

Improving invariance properties In addition to
data augmentation, regularization functions have
been proposed to improve the invariance proper-
ties of neural networks for small perturbations of
the input. We can regularize the norm of the Jaco-
bian of the image/video features with respect to
the input image [33]. One of the pioneering works
in the field by Simard et al. [2] proposed a mod-
ified version of backpropagation (widely used
to train artificial neural networks), called tan-
gent propagation which provides some amount
of invariance to small input transformations. The
maxpooling operation commonly employed in
convolutional neural networks (CNNs) also pro-
vides small amounts of translational invariance.
Bruna and Mallat designed wavelet scattering
networks [34] which are cascaded wavelet trans-
forms and carefully designed nonlinear operators.
This results in creating translation-invariant rep-
resentations and provides robustness to deforma-
tions.

Hybrid model- and data-driven architectures
There is a recent interest in developing hybrid
data- and model-driven neural architectures that
can incorporate structured layers and modules
that get closer to guaranteeing invariance to
some nuisance factors. Jaderberg et al. [6]
propose designing a specialized neural module
called a spatial transformer which takes in an
input image/feature maps and outputs a spatial
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transform (such as an affine transform matrix)
which is then applied to the input image/feature
map using a “warping layer” before feeding
into the classifier layers. The authors show
that this has the effect of transforming the
rotated/scaled/translated input image back
into a canonical form – an upright, centered
image, which serves as an invariant to spatial
transforms – before the classifier layers and
leads to better classification accuracies. Note
that all the layers here are differentiable and
can be learned end-to-end by minimizing
classification loss. This idea was applied for
human skeletal action (time-series) classification
using temporal transformers [15] where a time-
warping function is generated by the transformer
module and applied to the input sequence,
creating a rate-invariant representation, and
then fed into the classifier. These methods
have the added advantage that the invariants
at the outputs of the transformer modules are
interpretable. Neural networks can also be trained
to generate illumination subspaces which are an
illumination-invariant using a single face image
by posing it as a nonlinear regression problem
on the Grassmann manifold as shown by Lohit
and Turaga [19]. Better scale invariance has been
shown to be possible using multiple columns for
different scales, but using the same filters across
columns with scale transformations applied on
them [35]. 3D point clouds are another modality
that is gaining a lot of interest recently for
computer vision. Point clouds are unordered,
and hence, any machine learning pipeline needs
to be invariant to the order in which the 3D
points are presented to it. To this end, Qi et al.
[20] designed PointNet for learning permutation-
invariant representations for point cloud data
where a series of symmetric functions with
learnable parameters are used and the parameters
are shared for all the incoming 3D points, thus
making the architecture permutation-invariant.
Another related line of work is Capsule Networks
and the dynamic routing algorithm by Sabour
et al. [7] results in viewpoint robust classification
by dividing every layer into “capsules” where
each capsule is designed to encode different
properties such as the pose vector.

Disentangled latent representations Well-
known linear methods like principal component
analysis (PCA), independent component analysis
(ICA), and related approaches can provide com-
pressed representations and disentangle factors of
variation. With disentanglement, different parts
of the latent space encode information about
different factors of variation. Thus different
partitions of the latent space provide invariances
to different factors. The linear methods described
above can be improved significantly in many
cases using nonlinear neural architectures,
especially when the datasets are larger and
more challenging. For example, autoencoders
and related architectures are widely employed
to learn compressed/latent representations for
datasets. This can be done in a supervised fashion
as in the case of deep convolutional inverse
graphics networks [36] where for different
variations, different parts of the latent space are
held constant while training. Methods based on
variational autoencoders (VAEs) such as Factor
VAE [37] impose independence constraints
between latent variables in order to perform
disentanglement. In deforming autoencoders
[38], unsupervised disentanglement of spatial
transforms is achieved by using spatial warping
layers, and the remaining part of the latent space
serves as an invariant to spatial transforms.
Similar ideas are employed for designing rate-
invariant representations by Koneripalli et al.
[39]. Shukla et al. [40] propose product of
orthogonal spheres motivated by models of
physical factors of variation. Here, the latent
space is split into parts such that each part is
constrained to lie on a unit hypersphere.
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Definition

The inverse compositional algorithm is a refor-
mulation of the classic Lucas-Kanade algorithm
to make the steepest-descent images and Hessian
constant.

Background: Lucas-Kanade

The goal of the Lucas-Kanade algorithm is to
minimize the sum of squared error between a
template image T(x) and a warped input image
I(x):

∑
x

[T (x) − I (W (x;p))]2, (1)

where x = (x, y)T are the pixel coordinates,
W(x; p) is a parameterized set of warps, and
W(x; p) is a vector of parameters. The Lucas-
Kanade algorithm assumes that a current estimate
of p is known and then iteratively solves for incre-
ments to the parameters �p, i.e., approximately
minimize

∑
x

[T (x) − I (W (x;p + �p))]2, (2)

with respect to �p and update the parameters

p ← p + �p. (3)

Equation (2) is linearized by performing a
first-order Taylor expansion:

∑
x

[
T (x) − I (W (x;p)) − ∇I

∂W
∂p

�p
]2

. (4)

In this expression, ∇I =
(

∂I
∂x

, ∂I
∂y

)
is the

gradient of image Iand ∂W
∂p is the Jacobian of the

warp. Equation (4) has a closed-form solution as
follows. The partial derivative of the expression
in Eq. (4) with respect to �p is

− 2
∑

x

[
∇I

∂W
∂p

]T

[T (x) − I (W( x;p ))

−∇I
∂W
∂p

�p
]

. (5)

Then denote

SDlk (x) = ∇I
∂W
∂p

, (6)

the steepest-descent images. Setting the expres-
sion in Eq. (5) to equal zero and solving give

�p = H−1
lk

∑
x

SDT
lk (x) E (x) (7)

where Hlk is the n × n (Gauss-Newton approxi-
mation to the) Hessian matrix
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Inverse Compositional Algorithm, Fig. 1 A schematic
overview of the inverse compositional algorithm.
Steps 3–6 (light-color arrows) are performed once as
a precomputation. The main algorithm simply consists
of iterating image warping (Step 1), image differencing

(Step 2), image dot products (Step 7), multiplication with
the inverse of the Hessian (Step 8), and the update to
the warp (Step 9). All of these steps can be performed
efficiently

Hlk =
∑

x

SDT
lk (x) SDlk (x) (8)

and

E (x) = T (x) − I (W (x;p)) (9)

is the error image. The Lucas-Kanade algorithm
consists of iteratively applying Eqs. (7) and (3).
Because the gradient ∇I must be evaluated at
W(x; p) and the Jacobian ∂W

∂p at p, they both
depend on p. Both the steepest-descent images

and the Hessian must therefore be recomputed in
every iteration [1, 2].

The Inverse Compositional Algorithm

Baker and Matthews [3] proposed the inverse
compositional algorithm as a way of reformulat-
ing image alignment so that the steepest descent
images and Hessian are constant. Although the
goal of the inverse compositional algorithm is
the same as the Lucas-Kanade algorithm (e.g.,
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minimizing Eq. (1)), the inverse compositional
algorithm iteratively minimizes

∑
x

[T (W (x;�p)) − I (W (x;p))]2, (10)

with respect to �p and then updates the warp

W (x;p) ← W (x;p) ◦ W(x;�p)−1. (11)

The expression

W (x;p) ◦ W (x;�p) ≡ W (W (x;�p) ;p)

(12)

is the composition of 2 warps, and W(x; �p)−1

is the inverse of W(x; �p). The inverse composi-
tional algorithm iterates Eq. (10) and (11) and can
be shown to be equivalent to the Lucas-Kanade
algorithm to first order in �p [3].

Performing a first-order Taylor expansion on
Eq. (10) gives

∑
x

[
T (W (x; 0))+∇T

∂W
∂p

�p−I (W (x;p))

]2

.

(13)

Assuming that W(x; 0) is the identity warp,
the minimum of this expression is

�p = −H−1
ic

∑
x

SDT
ic (x) E (x) , (14)

where SDT
ic (x) are the steepest-descent images

with I replaced by T:

SDic (x) = ∇T
∂W
∂p

, (15)

Hic is the Hessian matrix computed using the
new steepest-descent images:

Hic =
∑

x

SDT
ic (x) SDic (x) , (16)

and the Jacobian ∂W
∂p is evaluated at (x; 0). Since

there is nothing in either the steepest-descent
images or the Hessian that depends on p, they can

both be precomputed. The inverse composition
algorithm is illustrated in Fig. 1.

Application

The inverse compositional algorithm can be used
almost anywhere the Lucas-Kanade can be. In
can be applied to anything from simple transla-
tional motion to dense optical flow. Perhaps the
most significant application is its use to speed-up
the fitting or tracking of active appearance models
[4, 5].
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Definition

Light transport describes how the light propa-
gates into a known 3D scene. The inverse light
transport problem takes a set of images of an
unknown scene as input and infers the light trans-
port process in the scene.

Background

Although the light transport simulation and
acquisition have been well studied in computer
graphics, the inverse light transport is still an
open problem and hasn’t been systematically
investigated. This is due to the complexity of the
paths of light propagation in the scene, as well
as variations of surface BRDFs along each light
path. The problem becomes even more challeng-
ing when the scene geometry and illumination are
unknown.

A set of inverse light transport methods [3,
10, 14] decompose the light transport into the
direct lighting and indirect lighting parts. Most
of these methods make some assumptions about
the scene reflectance or lighting conditions. Sev-
eral methods [2, 11, 15] first capture the light
transport matrix of a scene and then decom-
pose the images of the scene as a set of light
transport components that correspond to different
number of light bounces in the scene. Other
methods leverage the time-of-flight imaging [13]
or optical computing [12] to obtain the light
transport of a scene with different number of
bounces.

Different from the inverse rendering problem
that mainly focuses on direct illumination effects
and ignores the interreflection in the scene, the
inverse light transport problem focuses on deriv-
ing the interreflections of the light in the scene
(i.e., the multiple bounces of the light between
scene surfaces). The inverse light transport tech-
niques can be combined with the inverse ren-
dering approaches for recovering scene geome-
try [9] and reflectance [16] from the images
that consists of global illumination effects of the
scene.

Theory

The light transport can be modeled by the render-
ing equation [7]

L(x, x′) = Le(x, x′)

+
∫

S

ρ(x, x′, x′′)G(x′, x′′)L(x′, x′′)dx′′,

(1)

where L(x, x′) is the radiance from a surface
point x′ to another point x, Le(x, x′) is the light
emitted from x′ toward x, ρ(x, x′, x′′) is the
BRDF (i.e., surface reflectance) at x′, L(x′, x′′)
is the incident light from another surface point x"
in the scene to x′, and G(x′, x′′) is the geometry
factor between x′ and x′′. The integration is
performed over all surface points S.

Seitz et al. [15] proved that for image
captured from an unknown scene under unknown
illumination, there are a set of linear operators
that can remove the N-bounce interreflections
from the image. By assuming the scene geometry
is composed of a set of small surface patches,
the rendering equation can be discretized
as [15]

Lo[i] = L1
o[i] +

∑
j

A[i, j ]Lo(j), (2)

where Lo[i] is the outgoing radiance from surface
patch i of x′, L1

o[i] is the outgoing radiance with
the first surface bounce (i.e., the radiance caused
by the direct lighting), and A[i, j ] represents the
light transport from surface patch j to i, which
is determined by the BRDF of patch i and the
geometry factor between patch i and j . So we can
formulate the light transport in the matrix form
and solve the light transport by [7]

Lo = L1
o + ALo = (I − A)−1L1

o. (3)

Given this equation, we can define a set of
linear operators

C1 = I − A (4)

Cn = C1(I − C1)n−1 (5)



710 Inverse Light Transport

to remove the N-bounce interreflections Ln
o from

the image recursively

L1
o = C1Lo (6)

Ln
o = CnLo (7)

Durand et al. [5] provided a frequency analysis
framework for light transport in a scene. Bai et al.
[2] analyzed the duality of forward and inverse
light transport and formulated the inverse light
transport as a Neumann series.

Applications

Since most vision algorithms assume the scene
is directly illuminated by the light sources, one
application of inverse light transport is to remove
the interreflections from the input images of these
vision algorithms. Also, the inverse light trans-
port can work with this vision algorithms for
recovering shape [9], reflection [16], or illumi-
nation compensation [2].

Another application of inverse light transport
is the image manipulation, where the users could
change the albedo or reflectance properties of the
objects in the image and keep the interreflections
between different objects consistent, such as the
color bleeding between the diffuse surfaces [3] or
mirrorlike reflection of a diffuse surface [4].

In time-of-flight imaging, the interreflections
of the light between scene surfaces (i.e., mul-
tiple path interference) will result in the bias
of the measured depth. Therefore, the inverse
light transport technique is very important for
removing the effect of interreflections in time-of-
flight imaging [1, 6, 8].

Open Problems

Similar to the inverse rendering problem, the
inverse light transport problem is ill-conditioned
when only one among three scene properties (i.e.,
geometry, reflectance, and illumination) is known
while the other two are unknown. Different from
many inverse rendering problems where the color

of each surface point can be determined by the
geometry, reflectance, and incoming lighting at
this surface point, the light transport in a scene
takes the interreflection between surfaces in con-
sideration. As a result, the color of a surface point
is determined by the properties of all surface
points along the light paths passing through this
surface point. Therefore, the inverse light trans-
port with single unknown (one of the lighting,
scene geometry, or surface reflectance) is still a
challenging problem.
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Inverse Rendering

Xin Tong
Microsoft Research Asia, Beijing, China

Synonyms

Inverse light transport

Related Concepts

� Intrinsic Images
� Photometric Stereo
� Shape from Shading

Definition

The rendering refers to the procedure that gener-
ates an image of a 3D scene from its geometry,
surface reflectance, and lighting. The inverse ren-
dering is the reverse process of the rendering that
derives unknown surface reflectance, lighting,
and scene geometry from images of a 3D scene.

Background

Inverse rendering is a fundamental problem in 3D
vision and covers almost all research topics that
derive the physical properties of a 3D scene from
its images. Specifically, an image of a 3D scene
can be determined by the geometry and layout of
3D objects in the scene, reflectance properties of
the objects, as well as the lighting conditions of
the scene. According to the number of unknown
factors (i.e., geometry, reflectance, and lighting)
computed in the inverse rendering, we could clas-
sify these research topics into several categories.

Inverse rendering with one unknown Shape from
shading techniques [19] assume the lighting and
surface albedo are known and recover the surface
geometry from single image with known view-
point.

Surface reflectance acquisition approaches
[17, 20] assume the surface geometry and light-
ing are known and recover the spatially varying
BRDF (SVBRDF) over the surface from images
taken from fixed or different viewing directions.

For light estimation and calibration [8], most
approaches assume the scene is lit by point or
directional light sources and then estimate the
position and intensity of each light source from
images of a 3D scene with known geometry and
surface reflectance.

Inverse rendering with two unknowns Photomet-
ric stereo techniques [1] and other multiple-view-
based methods [16] reconstruct surface geometry
and reflectance from images captured with known
lighting conditions.

A set of methods [2, 4, 14] assume the scene
geometry is known and estimate both SVBRDF
and lighting from the images of the scene.

Inverse rendering with all three unknowns Many
methods have been presented for recovering all
three unknowns (i.e., lighting, surface geometry,
and reflectance) from images captured from a
scene.

Intrinsic image decomposition [11] assumes
the surface is Lambertian and decomposes an
input image as the product of surface albedo and
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shading that fuses the normal and lighting infor-
mation at each surface point. Based on the same
assumption, later techniques [3] further recover
surface geometry, albedo, and low-frequency illu-
mination from single input image.

For the scenes with arbitrary surface
reflectance, a set of methods automatically
reconstruct all three unknowns from single image
[10, 15] or a set of images [18].

Theory

Problem Formulation Given a 3D scene, the out-
going radiance L(x, x′) from a surface point x′ to
another point x in the scene is determined by the
rendering equation [9]

L(x, x′) = Le(x, x′)

+
∫

S

ρ(x, x′, x′′)G(x′, x′′)L(x′′, x′′)dx′′,

(1)

where Le(x, x′) is the light emitted from x′
toward x, ρ(x, x′, x′′) is the BRDF (i.e., surface
reflectance) at x′, L(x′, x′′) is the incident radi-
ance from another surface point x′′ to x′, and
G(x′, x′′) is the geometry factor determined by
the local geometry of around x′ and x′′. The
integration in the rendering equation is performed
over all surface points S. Please refer to [9] for
more details.

For inverse rendering, we focus more on the
appearance of a scene surface lit by the light
source and reflected radiance of surrounding
scenes. To this end, we ignore the interreflections
in the scene and reparameterized the rendering
equation and related terms as

L(xp, ωo) =
∫

Ω+
ρ(xp, ωi, ωo)(n(xp) · ωi)

V (xp, ωi)L(xp, ωi)dωi, (2)

where xp is a surface point visible at pixel p and
n(xp) is its surface normal, ωo is the viewing
direction from xp to pixel p, and ρ(xp, ωi, ωo)

is the BRDF (i.e., surface reflectance) at xp.
L(xp, ωi) is the incident radiance from a light

source or other surface point to xp along the
direction ωi , and V (xp, ωi) is the visibility of xp

along ωi . The integration is performed over the
upper hemisphere Ω+ over xp.

Signal Processing Framework of Inverse Render-
ing Ramamoorthi and Hanrahan [12, 13] for-
mulated the inverse rendering as a deconvolu-
tion of the reflected light field. Based on this
formulation, they provided a theoretical analy-
sis of inverse rendering and discussed the well-
poseness of various inverse rendering tasks. The
conclusion is that with the known geometry and
high-frequency BRDF or lighting, the inverse
rendering with the one unknown is well-posed.

Priors of 3D Scenes for Inverse Rendering All
inverse rendering problems could be solved by
minimizing the difference between the images
rendered from the reconstructed unknowns and
the captured images. Due to the illposeness of the
inverse rendering, some priors of the scene geom-
etry, reflectance, or lighting should be applied in
optimization as constrains. A key effort in inverse
rendering is to develop new and efficient priors.
Here, we summarize the priors frequently used in
the existing inverse rendering solutions.

• Geometry prior. The shape smoothness and
spatial distribution of the surface normals
are often used to constrain the reconstructed
surface shapes [3] in inverse rendering.
For a family of objects with similar shapes
(e.g., human faces), the parametric model
(e.g., morphable model) of shape space is an
efficient constrain for inverse rendering [7].

• SVBRDF prior. For each surface point,
the compact parametric BRDF model is
always applied to simplify the SVBRDF
reconstruction [18]. For SVBRDF, the
coherence of BRDFs on all surface points
in spatial domain [11] or BRDF domain [20]
has also been exploited in inverse rendering.
For human faces with similar shapes and
appearances, the PCA model of face albedo
map pre-computed from a 3D face dataset can
be used for recovering face shape, albedo, and
illumination from single face image [7].
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• Lighting prior. A common practice is to sim-
plify the lighting as a sparse set of point or
directional light sources. For natural environ-
mental lighting, the smoothness of an environ-
mental lighting in angular domain [4] and the
statistics of the real environmental lightings
[14] are served as priors in different inverse
rendering solutions.

With the recent advances of deep learning tech-
niques, a set of methods [5, 6, 10, 15] auto-
matically learn the priors of scene geometry,
reflectance, and lighting from the training dataset
and solve the inverse rendering problem via deep
learning.

Open Problems

The inverse rendering problem is still an open and
challenging problem in computer vision due to its
illposeness. The key problem is how to develop or
learn effective priors of lighting, scene geometry,
and reflectance, as well as their relationships from
real-world observations.
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Related Concepts

�Radiance

Definition

Irradiance E is defined as the incident power of
electromagnetic radiation on a surface per unit
surface area. It is expressed in watt per square
meter (W · m−2).

Background

Irradiance is a concept from radiometry, the
science of measuring radiant energy transfer
[1]. The equivalent concept in photometry is
illuminance, with the key difference being
that illuminance is adjusted to account for the
varying sensitivity of the human eye to different
wavelengths of light.

Theory

The irradiance at a surface point x is proportional
to the radiance L(x, θ, φ) arriving at x from
direction (θ, φ) with a geometric foreshortening
factor cos θ . Taking into account the whole hemi-
sphere above the surface point, the irradiance is
the integral over all incoming directions

E(x) =
∫

θ,φ

L(x, θ, φ) cos θ dθdφ. (1)

θ denotes the angle between the surface normal
and the incident direction (θ, φ) (see Fig. 1).

Irradiance, Fig. 1 Geometric setting

Application

For a camera with an optical lens and an aperture,
the image irradiance at a camera sensor is pro-
portional to the radiance L emitted from a small
scene patch in the form that

E = L
π

4

(
d

f

)2

cos α4 (2)

where d is the aperture and f the focal length
of the lens. α is the angle between the direction
to the observed patch and the principal ray of
the camera. For wide-angle lenses, the influence
of α often results in a reduction of an image’s
brightness at the corners compared to the image
center. This effect is also called vignetting.

The pixel values of digital images are directly
related to the irradiance at the sensor of the cam-
era via the camera’s response curve [2, 3]. Many
computer vision techniques such as photometric
stereo use this fact to recover information about
the scene from the irradiance. Early works in this
field include [4] and [5].
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Synonyms

Differential geometry of graph spaces; Dual dif-
ferential geometry

Related Concepts

�Curvature
�Curves in Euclidean Three-Space
� Isotropic Differential Geometry in Graph

Spaces

Definition

In many settings the conventional Euclidean dif-
ferential geometry is not appropriate. A com-
mon case involves “graphs,” an instance being
images where the carrier may be modeled as
the Euclidean plane, but the intensity domain is
incommensurate. Isotropic differential geometry
allows one to deal with such cases.

Background

Isotropic differential geometry became highly
developed during the first half of the twentieth
century, mainly in German-speaking countries.
The bulk of the literature is still in German.

Theory

There are frequent cases in computer vision and
image processing in which the Euclidean E

3

setting from classical differential geometry is
not appropriate. A simple example is an image,
which may be thought of as the Euclidean plane
E

2, augmented with some “intensity domain.”
Intensities are nonnegative quantities that some-
how reflect photon-catches in, e.g., CCD devices.
Usually the physical dimension is unclear and
considered irrelevant to the problem. Then the
structure of the intensity domain is most appro-
priately modeled by the affine line A

1, by con-
sidering the logarithm of the intensity modulo
some arbitrary constant. But the E

2 × A
1-space

is quite unlike E
3 as becomes evident when one

considers Euclidean rotations about some axis in
the image plane. Such rotations make no sense
because photon catches and lengths are incom-
mensurable physical quantities. The correct way
to proceed is to consider “image space” to be a
fiber bundle with base space E

2 and fibers A
1.

Permissible transformations do not “mix” fibers,
and Euclidean rotations about axes in the image
plane are not among them.

This situation is typical in many contexts. The
simplest example is perhaps a graph y = f(x),
where x and y are incommensurable physical
quantities. Although the graph is evidently a
curve in the xy-plane, it makes no sense to com-
pute its Euclidean curvature as the result will
depend on irrelevant transformations of the y-
domain (Fig. 1).

A formal way to deal with such problems is to
treat the y-axis as an isotropic dimension. Then
the metric in the plane is essentially the separa-
tion in the x-dimension, the y-separation being
treated as isotropic, i.e., nil. Thus the distance of
points {x1, y1} and {x2, y2} is taken to be x2 −
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Isotropic Differential
Geometry in Graph
Spaces, Fig. 1 At left a
graph in red, and the graph
after a Euclidean rotation
(in blue). This obviously
makes no sense at all: the
blue curve is not even a
graph anymore! This is not
a fiber bundle. At right the
red graph has been
subjected to an isotropic
rotation. This makes
perfect sense, one obtains
another graph. Notice that
the points move up and
down along the fibers of
the fiber space, they never
leave their fiber, fibers “do
not mix”

Rotation in the Euclidean plane
(this makes no sense)

Isotropic rotation in a fiber bundle
(this makes good sense)

x1. Notice that this implies that points {x, y1} and
{x, y2} with y1 �=y2 are at mutually zero distance,
yet different. One denotes such points “parallel”
and assigns them the “special distance” y2 −
y1. Only parallel points have a special distance,
generic points only a proper distance. The group
of “isotropic motions”:

x′ = x + tx, (1)

y′ = αx + y + ty, (2)

conserves proper distance and, in the case of
parallel points, special distance. This group is fit
to replace the group of Euclidean movements:

x′ = x cos α − y sin α + tx, (3)

y′ = x sin α + y cos α + ty, (4)

and indeed has a somewhat similar (with impor-
tant differences!) structure.

One obtains this group if the xy-plane is inter-
preted as the dual number plane. Dual numbers
are complex numbers z = x + εy, where the
imaginary unit ε is defined as a nontrivial (i.e.,
not equal zero) solution of the quadratic equation
ε2 = 0. Thus ε �= 0 whereas ε2 = 0, from
which one derives that neither ε > 0, nor ε < 0.

Thus one is forced to use intuitionistic logic, for
instance dropping the law of the excluded middle.
A concrete representation is by way of matrices:

z = x + εy =
(

x y

0 x

)
, (5)

then addition and multiplication of dual numbers
may be done by matrix algebra, similar to the
conventional complex numbers x + iy with imag-
inary unit i2 = − 1, which are modeled through
matrix algebra with the matrices:

z = x + iy =
(

x −y

y x

)
. (6)

However, although perhaps less scary, these
matrix models are an unnecessary pain in hand
calculations.

A linear transformation z
′ = az + b with

a = 1 + εα and b = tx + εty becomes:

z′ = (1 + εα) (x + εy) + (
tx + εty

)
= (x + tx) + ε

(
αx + y + ty

)
,

(7)

(using ε2 = 0), i.e., exactly the transformation
given above. Apparently the dual imaginary
unit is an “infinitesimal.” Indeed, the full Taylor
expansion of a function F about x is:



Isotropic Differential Geometry in Graph Spaces 717

I

F (x + εh) = F(x) + εhF ′(x). (8)

Specifically, one has:

sin εξ = εξ, (9)

cos εξ = 1, (10)

eεξ = 1 + εξ, (11)

thus trigonometry becomes really convenient.
The polar representation of a dual number
becomes:

z = x + εy = x
(

1 + ε
y

x

)
=| z | eε arg z. (12)

The dual angle is y/x = y/x (notice that an
isotropic angle equals its tangent!), thus the angle
measure is parabolic instead of elliptic. Angles
do not repeat with period 2π as in the Euclidean
plane, but run between ±∞. Rotating the point
1 (that is 1 + ε0) about the origin over an angle
α yields 1 + εα, thus the line x = 1 is (part of)
a unit circle. This brings one back to the original
construction, and the rotations do not “mix” the x
and y dimensions in a way that would be nonsense
from the perspective of physics.

The group of proper motions (translations
and rotations) of the dual plane leads to a
differential geometry of curves that differs from
that of the Euclidean plane. Consider the curve
z(x) = x + εy(x). It is evidently parameterized
by arc length, for |zx|2 = 1. The tangent is
t(x) = zx = 1 + εyx(x), and is a unit vector, for
|t(x)| = 1. The unit normal is ε, for tx(x) = εyxx(x)
with (special) length yxx(x). Thus the normal is
constant along the curve and useless for the
purposes of differential geometry. The slope of
the tangent is well defined though, the tangent
subtends an angle yx(x) with the x-axis. The
derivative of this angle with arc-length is yxx(x),
thus one concludes that the curve has curvature
κ(x) = yxx(x). Notice that it is a much simpler
expression than one has in the Euclidean plane,
which is:

k(x) = yxx(x)(
1 + yx(x)2)3/2 . (13)

As expected, the Euclidean and the dual cur-
vatures agree to first order, and for very shal-
low curves (infinitesimally near the x-axis) the
Euclidean curvature degenerates to the dual cur-
vature.

A curve:

z(x) = ε
(x − c)2

2R
, (14)

has curvature 1/R, thus a radius of curvature R
and is centered on x = c. It is evidently a circle
in some sense, though different from the circle
encountered above. One denotes x = ±1 a unit
circle of the first kind, with center at the origin,
εx2/2 a unit circle of the second kind, centered at
the origin. The local second-order Taylor expan-
sion of a curve is illustrated in Fig. 2. It is a
parabola with isotropic axis, thus a “circle of
the second kind.” It is the osculating circle to the
curve in the isotropic geometry. The radius of the
osculating circle is evidently the reciprocal of
the second derivative, thus a curve x + εy(x) has
curvature yxx(x) as argued above.

The differential geometry of curves and sur-
faces in a fiber bundle E2×A

1 can be handled in a
similar manner. All expressions are much simpler
than those in Euclidean differential geometry,
which is a very useful property, apart from the
advantage that they make sense for a change.
(Inappropriate applications of expressions taken
from Euclidean differential geometry occur very
frequently in computer vision and image pro-
cessing. Although they certainly yield numerical
results, they strictly speaking make no sense.)
Thus the mean curvature of a surface {x, y, z(x,
y)} in Monge form becomes 2H = zxx + zyy, the
Gaussian curvature K = zxxzyy − z2

xy , and so
forth. Like in the planar case discussed above, the
normal is constant, and thus useless. One uses the
spatial attitude of the tangent plane instead. Any
point of the surface may be mapped on the unit
sphere of the second kind z(x, y) = (x2 + y2)/2
through parallelity of tangent planes. Even more
conveniently, one notices that the xy-plane {x, y,
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Isotropic Differential
Geometry in Graph
Spaces, Fig. 2 Consider
the local Taylor expansion
of the red curve at the point
indicated by the white dot.
The first order is the drawn
black line, the second-order
approximation is the blue
parabola. The center of
this “circle of the second
kind” is indicated by the
leftmost dotted line. The
other dotted line is the
normal direction

0} is the stereographic projection of this sphere,
thus conformal, but most remarkably – because
different from the Euclidean case – also isomet-
ric. Thus the Gauss map becomes

{x, y, z (x, y)} ∈ E
2 × A

1 �→
{

− zx (x, y) ,

− zy (x, y)
}

∈ R
2,

(15)

a map that is familiar in computer vision as
“gradient space.” Gradient space is often used by
way of a “linear approximation,” but it is really
the exact Gauss map (or “spherical image”) in
terms of the appropriate differential geometry.

The geometry of single isotropic space is well
understood, although almost all of the literature
is in German. The paper by Pottmann is the only
reference in English on the general (space) set-
ting, the book by Yaglom (translated into English
from Russian) is an excellent introduction to the
geometry of the dual plane.

Open Problems

This section introduced a very simple setting. In
general one may have to deal with a graph over
a curved surface. The paper by Pottmann gives
some leads as how to handle such more general
cases.
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Synonyms

ICP

Definition

Iterative closest point (ICP) is a popular algo-
rithm employed to register two sets of curves, two
sets of surfaces, or two clouds of points.
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Background

The ICP technique was proposed independently
by Besl and McKay [1] and Zhang [2] in two
different contexts. Besl and McKay [1] developed
the ICP algorithm to register partially sensed data
from rigid objects with an ideal geometric model,
prior to shape inspection. So this is a subset–set
matching problem because each sensed point has
a correspondence in the ideal model. Zhang [2]
developed the ICP algorithm in the context of
autonomous vehicle navigation in rugged terrain
based on vision. His algorithm is used to register
a sequence of sensed data in order to build a
complete model of the scene and to plan a free
path for navigation. So this is a subset–subset
matching problem because a fraction of data in
one set does not have any correspondence in the
other set. To address this issue, Zhang’s ICP algo-
rithm has integrated a statistical method based
on the distance distribution to deal with out-
liers, occlusion, appearance, and disappearance.
However, both algorithms share the same idea:
iteratively match points in one set to the closest
points in another set and refine the transformation
between the two sets, with the goal of minimiz-
ing the distance between the two sets of point
clouds.

Theory

The ICP algorithm is very simple and can be
summarized as follows:

• Input: two point sets, initial estimation of the
transformation

• Output: optimal transformation between the
two point sets

• Procedure: Iterate the following steps:

(i) Apply the current estimate of the trans-
formation to the first set of points.

(ii) Find the closest point in the second set for
each point in the first transformed point
set.

(iii) Update the point matches by discarding
outliers.

(iv) Compute the transformation using the
updated point matches, until convergence
of the estimated transformation.

Here are a few comments on this general
algorithm:

• Depending on the nature of the point sets,
various pose estimation techniques described
in the earlier sections can be used to
compute the transformation between the
two sets.

• The step of finding the closest point to a given
point is generally the most time-expensive
one. However, this step can be easily paral-
lelized.

• Many data structures can be used to accelerate
the finding of the closest point. They include
k-D tree and octree.

• Instead of using all points from the first set,
a selected subset of points (such as high cur-
vature points) can be used to speed up the
process, with only moderate sacrifice of the
final accuracy.

• The above algorithm is not symmetric. Let
point p̂′

i in the second set be the closest point
to a point pi in the first set. In the other direc-
tion, point pi is, in general, not necessarily
the closest point to p̂′

i . In order to make the
algorithm symmetric, we can find the closest
point in the first transformed point set for each
point in the second set and add these point
matches to the overall set of matches. Better
results can then be obtained at the expense of
additional computational cost.

• When the ICP algorithm is applied to register
curves or surfaces, they need to be sampled.
The final accuracy depends on the density
of sampling. The denser the sampling is, the
higher the registration quality will be, but the
more the computation will be required.

For more detailed and extensive discussions
on ICP, the interested reader is referred to Sects.
7 and 8 of Zhang’s paper [2].
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There are several variants to the ICP algo-
rithm. A useful variation is to substitute the point-
to-point distance with point-to-plane distance [3].
The point-to-plane distance allows one surface to
slide tangentially along the other surface, making
it less likely get stuck in local minima. Con-
sider a point pi in the first set. Let point p̂′

i

in the second set be its closest point. Let the
surface normal at point pi be ni (a unit vec-
tor). Then, the point-to-plane distance measure is
given by

di = nT
i

(
p̂′

i − pi

)
.

Surface normals can be precomputed to save
computation.
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Synonyms

Kalman-Bucy filter; KF

Related Concepts

� Sensor Fusion

Definition

The Kalman filter is a set of mathematical
equations that provides an efficient computational
(recursive) means to estimate the state of a
process, in a way that minimizes the mean of
the squared error. The filter is very powerful in
several aspects: it supports estimations of past,
present, and even future states, and it can do so
even when the precise nature of the modeled
system is unknown.

Background

In 1960, Rudolf E. Kalman published his famous
paper describing a recursive solution to the
discrete-data linear filtering problem [1]. Since
that time, due in large part to advances in digital
computing, the Kalman filter has been the subject
of extensive research and application, particularly
in the area of autonomous or assisted navigation.
The goal of the filter is to produce evolving
optimal estimates of a modeled process from
noisy measurements of the process.

Theory

The Kalman filter addresses the general problem
of trying to estimate the state x ∈ R

n of a
discrete-time controlled process that is governed
by the linear stochastic difference equation

xk = Axk−1 + Buk−1 + wk−1 (1)

at time step k, with a measurement z ∈ R
m that is

zk = Hxk + vk. (2)

The random variables wk and vk represent the
process noise and measurement noise, respec-
tively. They are assumed to be independent of
each other, white, and with normal probability
distributions
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p(w) ∼ N(0,Q), and (3)

p(v) ∼ N(0, R). (4)

The n × n matrix A in the difference Eq. (1)
relates the state x at the previous time step k − 1
to the state x at the current step k , in the absence
of either a driving function or process noise. The
n × l matrix B relates an optional control input
u ∈ R

l to the state x. The m × n matrix H in
the measurement Eq. (2) relates the state to the
measurement zk .

One usually does not know the true form of
the process (1) and associated noise parameter (3)
nor the true measurement model (2) and associ-
ated noise parameter (4), but in practice one can
often arrive at useful models via analytical for-
mulations and laboratory-based measurements.

Using the process and measurement models
(1)–(4), and real (noisy) measurements ẑk at each
time step k, the Kalman filter is used to recur-
sively estimate the first two statistical moments
of the process: the mean x̂k and the error covari-
ance Pk .

The filter is typically implemented in two
steps, a time update step and a measurement
update step, as follows:

Time update:

x̂−
k = Ax̂k−1 + Buk−1

P −
k = APk−1A

T + Q

Measurement update:

K = P −
k H T(HP −

k H T + R)−1

x̂k = x̂−
k + K(ẑk − Hx̂−

k )

Pk = (I − KH)P −
k

Repeatedly applying these steps recursively esti-
mates the process mean x̂k and the error covari-
ance Pk . Because the measurements can vary in
form and timing, the filter is often characterized
as a tool for sensor fusion.

The Kalman filter is optimal in that the n × m

Kalman gain matrix K minimizes the trace of a
posteriori error covariance Pk .

An accessible high-level introduction to the
general idea of the Kalman filter can be found in
Chap. 1 of [2]. A more complete introduction can
be found in [3] and in [4] which also contains
some interesting historical narrative. More exten-
sive references include [2, 5–9].

Application

Despite the fact that employed process models
rarely match the corresponding true systems, and
the noise models rarely exhibit the characteristics
required for optimality (zero mean, normally dis-
tributed, and independence over space and time),
the Kalman filter remains popular – perhaps due
to its relative simplicity and robustness. It contin-
ues to be used widely in diverse application areas
such as electronics, robotics, localization, navi-
gation, and even economics. In computer vision,
variations of the Kalman filter are typically used
to estimate structure, motion, and camera param-
eters. Early examples include [10–13]. Both the
OpenCV software project [14,15] and the Matlab
numerical computing environment [16] include
Kalman filter functions.

Experimental Results

A relatively simple example of using the Kalman
filter to estimate a scalar random constant is given
in [3], with complete details for the structure of
the filter, the parameters, the initial conditions,
and various results. The example presumes access
to noisy measurements of a voltage that is cor-
rupted by a 0.1 volt RMS white measurement
noise. Referring back to Eqs. (1) and (2), the
value to be estimated is presumed constant so
A = 1, there is no control input so u = 0 (and
B is irrelevant), and the noisy measurements are
of the state (the voltage) directly so H = 1. For
a true voltage of x = −0.37727, Q = 1 × 10−5,
and R = (0.1)2 = 0.01, plots for the true voltage
xk , noisy measurements, and estimated voltage x̂k

are shown in Fig. 1; and the error covariance Pk

is shown in Fig. 2.
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Kalman Filter, Fig. 1 An example: estimating a random
constant from noisy measurements. The true random con-
stant xk (solid line), the noisy measurements ẑk (cross
marks), and the filter estimate x̂k

Kalman Filter, Fig. 2 The error covariance Pk associated
with the estimates in Fig. 1. After 50 iterations, the covari-
ance has settled to a relatively small 0.0002 volts2
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Synonyms

Kinematic chain motion models

Related Concepts

�Model-Based Object Recognition: Traditional
Approach

Definition

Kinematic motion models are mathematical mod-
els that describe the motion of objects without
consideration of forces.

Background

Although kinematics is in general more broadly
defined, in computer vision, the term kinematic
motion model is usually used synonymously
with kinematic chain motion models, a term that
comes from the field of robotics. Such a model
defines a set of rigid objects (called links) that are
connected with joints. The motion of the links is
constraint by the degrees of freedom of the joints.
For instance, a link can only rotate relative to

another link around a joint axis. These models are
most commonly used to describe human and ani-
mal skeletal models or robotic manipulators. The
motion constraints can be used for robust visual
tracking of skeletal configurations in single-view
or multi-view video. Other kinematic models
include special cases like one single rigid object,
or more general motion models like deformable
models, often called nonrigid models. A
kinematic motion model does not consider mass
distributions and forces that influence the motion.
This is described by so-called dynamical models.

Theory

A kinematic chain is a sequence of rigid links li
that are connected by joints at location ji (Fig. 1).
There are different types of joints (Fig. 2). The
simplest is a “revolute joint,” which has one axis
of rotation αi . Other possible joint types are “pris-
matic joints” (sliding along an axis) and joints
with two or three axes of rotations (sometimes
called “ball joints” or “spherical joints”). The
configuration of the kinematic chain is defined
by the relative joint angles between links. For
instance, Fig. 1a shows a chain model with all
angles set to 0 and another configuration (Fig. 1b,
c) with different angle values. The first link in
the chain is called the base link l0. To represent
a human skeleton, the base link is usually the
hip, and several chains originating from l0 define
spine, head, arms, and legs. Connecting several
chains this way leads to a kinematic tree, but
for simplicity only chains are discussed. The
base joint l0 is either fixed or can move with
any arbitrary translation T0 and rotation R0. The
configuration θ = [R0, T0, α1, . . . , αk] of all
k + 6 degrees of freedom (local joint angles and
l0 translation and orientation) is often called the
pose.

Forward Kinematics
Mathematically the kinematic model (M) can be
defined in terms of how points Pi on a specific
link in the rest pose are moved to points Qi by a
new kinematic configuration θ (Fig. 1):
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link 1 link 2

joint 1
a b c

joint 2

Kinematic Motion Models, Fig. 1 Example of a kinematic chain representation. (a) Rest pose. (b) Joint 2 rotates.
(c) Joint 1 rotates

Kinematic Motion
Models, Fig. 2 Different
kinematic joint types

Qi = M(θ, Pi) (1)

A very important aspect of kinematic chain
models is that a rotation of a link la affects all link
motions further down the chain lb with a > b.
For example, a rotation of a shoulder joint affects
the global elbow position and rotation of the wrist
link. But a local rotation of the elbow will not
affect links further up. Starting with the scenario
of changing the joint angle αk of the last link lk
only (Fig. 1b), the motion of a point Pi on lk to
Qi can be calculated by the following translation
and rotation using homogeneous coordinates for
Pi and Qi = [x, y, z, 1]T :

Qi =
[

Rk (jk − Rk · jk)

0 0 0 1

]
·

Pi = Gk · Pi (2)

The rotation matrix Rk can be parameterized
using Euler angles or the exponential map of a
twist [1]. The exponential map of a twist leads
to simpler computation of derivatives in tracking
equations (as described below):

Gk(α) = exp

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 −ωz ωy v1
ωz 0 −ωx v2

−ωy ωx 0 v3
0 0 0 0

⎤
⎥⎥⎦ · α

⎞
⎟⎟⎠

with twist ξk =

⎡
⎢⎢⎢⎢⎢⎢⎣

v1
v2
v3
ωx

ωy

ωz

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

For a single axis joint (1 DOF), the twist ξk

defines the axis at joint jk (with ω2
x + ω2

y + ω2
z =

1). α is the angle around the axis. The twist is
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constant, and α is the only varying parameter.
For ball joints, it is modeled as a sequence on
single axis joints around the same location jk .
Alternatively it can be modeled as letting all
directional components for the twist vary.

Rotations of links further up the chain can be
incorporated link by link. For instance, all points
that are affected by a rotation around link location
lk−1 are defined by Gk−1, including the points Qi

that have been moved by Gk already (Fig. 1c):

Q′
i = Gk−1(αk−1)· (4)

Qi = Gk−1(αk−1) · Gk(αk) · Pi

Working all the way backward to the base link
l0 results in a product of G0 to Gk:

Q′′
i = G0 ·G1 ·. . . · Gk · Pi (5)

= Mk(R0, T0, α1, . . . , αk) ·
Pi = M(θ) · Pi (6)

The position and motion Mi of links further
up the chain (i < k) can be modeled in the
same way, as the product of G0 to Gi . Using
for G0 to Gk the exponential map of twist rep-
resentation, this equation is referred to as the
“product of exponential map” representation [1].
An alternative representation is the more tra-
ditional Denavit-Hartenberg representation [2],
which does not allow such an easy construction
of the motion model or simple computation of
derivatives and linearizations (more advantages
of the product of exponential map representation
are discussed in [1]).

Application

Kinematic Tracking
As mentioned earlier, kinematic chain models
are commonly used in computer vision to
track the articulated poses of humans. If visual
markers are identified with high accuracy, either
using a motion capture system or patterns
that are easy to track, estimating the pose
θ = [R0, T0, α1, . . . αk] can be done with an

error minimization technique. For instance, a
marker-based motion capture system estimates
3D reconstructions of body markers Q̂i . The
function M(θ) in Eq. (6) can be easily linearized
[1] and used in estimating the 3D pose θ

with the Newton-Raphson method or any other
optimization technique. If 2D points are located
in an image, the same can be applied to video
tracking in single or multi-view footage using
a camera model that relates 3D points to 2D
projections. The M(θ) model can even be
incorporated in optical flow models, and a direct
estimation of θ is possible from spatiotemporal
image gradients [3]. An earlier historic paper
that uses an alternative formulation is reported by
[4]. Since the comeback of deep learning models,
many new architectures have been proposed that
implicitly model kinematic constraints [5–10].
Most recent state-of-the-art models are usually
the winners of the COCO Keypoint Challenge
(http://cocodataset.org).

Model Estimation
Estimating the geometry of the kinematic chain
(the point locations Pi in the rest pose, or other
geometric shape representations) and all joint
axes ξk in the rest pose can also be done with
optimization techniques. This requires collecting
a sequence of different poses that ideally go
through the entire “range of motion” of a per-
son or articulated object, a common procedure
for motion capture systems, called “subject cal-
ibration.” The same can be also done for com-
puter vision systems. Once a sufficient number
of frames with different pose configurations are
collected, jointly the poses θt for each frame t and
the common model parameters ξk and Pi (that are
constant over time) are estimated. Some example
techniques are described in [11, 12].

Animation
Kinematic chain models are also used extensively
in computer graphics and computer animation.
Animating a character efficiently requires locally
controlling the joint angles in the same way
as previously outlined. All major 3D graphics
packages support skeletal models that are based
on kinematic chain motion models.

http://cocodataset.org
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Synonyms

Lambertian model; Lambert’s law

Related Concepts

�Diffuse Reflectance
� Photometric Stereo

Definition

Lambertian reflectance is a scene property that
distributes the energy from any incident illumi-
nation into all viewing directions equally.

Background

Local reflectance can be defined by the four-
dimensional bidirectional reflectance distribution
function (BRDF), where the four dimensions are
the angles for viewing direction and incident
illumination. Lambertian reflectance has no
dependency on viewing direction and is therefore
a two-dimensional function. This simplicity has
made it popular, but like all local models, it does
not account for cast shadows or specularities. The
Lambertian model is widely used due to both its
computational tractability and its fidelity to many
scenes, especially when the captured image data
is of low resolution. Finally, the Lambertian
model is an example of diffuse reflectance, which
means it acts as a low-pass filter to incident
illumination [1]. An artificial chemical called
Spectralon is the real-world material with the
closest appearance to the Lambertian ideal.

Theory

A scene point is said to exhibit Lambertian
reflectance [2, 3] when the measured intensity E

can be expressed in terms of the surface normal
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n and incident illumination direction s as

E = Iρ max(n.s, 0) (1)

where I is the intensity of the light (which may
be attenuated by falloff) and ρ is the scene point
albedo (which is the ratio of the reflected and
incident energies). Note that since the surface
normal and illumination directions are unit vec-
tors, Lambertian reflectance is a clamped cosine
function, and this allows the model to account for
attached shadows. In some applications, the raw
dot product n.s is used as the reflectance model,
and a nonnegativity constraint for irradiance is
applied separately.

Extensions

A variety of extensions to Lambertian reflection
exist to remove its most glaring deficiencies. The
most common of these is a “diffuse + specular”
extension [4],

E = Iρd max(n.s, 0)+ Iρs δ(υ − s −2‖n.s‖n)

(2)
where ρd and ρs are the diffuse and specular albe-
dos of the scene and the δ function denotes when
the viewing, incident, and surface normal vectors
are aligned according to the Law of Reflection, as
illustrated in Fig. 1.

Oren and Nayar [5] have generalized the
Lambertian model to include microfacets, which
model surface roughness by a Gaussian distribu-
tion of the orientations of microstructure within
any scene point. This extended model explains
the visual appearance of rough diffuse Lamber-
tian surfaces (such as the moon) and analytically
reduces to the Lambertian model for a smooth
surface whose microfacet orientation distribution
is a delta function.

Application

The popularity of Lambertian models is due to its
linearity. Consider a scene whose surface points

Incident ray, s Viewing ray, v

Normal, n

Point P

Lambertian Reflectance, Fig. 1 Reflection occurs
when the incident ray, the surface normal, and the reflected
lie in the same plane and, in addition, the angle between
the incident ray and the normal is identical to that between
the reflected ray and the normal

are indexed by i = 1, 2, . . . k. Without loss of
generality, let the maximum value of the image
intensity I and albedo ρ both be in unity. If the
viewing position is fixed and if t images are taken
of the scene under different lighting directions,
indexed by j = 1, 2, . . . t , the images create a
matrix whose analytic form is just a row-wise
stacking of Eq. (2) as

⎛
⎜⎜⎝

E11 E12 . . . E1k

E21 E22 . . . E2k

. . .

Et1 Et2 . . . Etk

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎝

s1(x) s1(y) s1(z)
s2(x) s2(y) s2(z)

...

st (x) st (y) st (z)

⎞
⎟⎟⎟⎠

⎛
⎝

n1(x) n2(x) . . . nk(x)

n1(y) n2(y) . . . nk(y)

n1(z) n2(z) . . . nk(z)

⎞
⎠

(3)

which we can rewrite in matrix notation as E =
S.N. Therefore, images taken of the scene can be
linearly separated into a surface normal matrix
and a light-source direction matrix. This sep-
aration allows many applications such as the
following:

Explanations of Ambiguities From the above
equation, it is clear that many combinations of
normals and light-source directions can create the
same image data, since E = S.Q.Q−1.N, for any
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invertible Q. Belhumeur et al. [6] have shown
that this ambiguity follows a closed form under
orthographic viewing and distant illumination.

Scene Reconstruction In classical photometric
stereo [7], three or more images are taken of
the scene with known illumination. Since the
matrix S is known, the surface normal matrix
can be obtained by N = (S−1.E

)
. Extensions to

these methods have also been presented, where
the illumination is unknown. In these cases, the
matrix E is decomposed using well-known lin-
ear methods such as QR decomposition or SVD
under constraints such as smooth motion for the
light source [8] or low rank [9]. Finally, we note
that most extensions to the Lambertian model
lose their linearity, and therefore, photometric
stereo methods that model interreflections [10],
microfacets [5], scattering [11], or near light-
ing [12] either apply nonlinear optimizations or
require some form of calibration.

Subspace Methods Since the rows and columns
of S and N lie inR3, the intensity matrix E is of at
most rank 3. Belhumeur and Kriegman [13] fur-
ther explain that, under fixed viewing and varying
illumination, the set of images under Lambertian
reflectance lies in a conical subspace. Such an
argument underlines the success of dimensional-
ity reduction methods, such as PCA, in represent-
ing large collections of images of objects, such
as faces. It also explains the existence of good
recognition algorithms for scenes under varying
illumination.

Relighting Scenes Data-driven methods for
relighting under distant illumination exploit the
additionality of light [14]. For the Lambertian
case, such relighting can be modeled as creating
new illumination directions. For example,
consider the addition of images created by
two sets of illumination directions S1 and
S2. The resultant data can be described as
E = S1.N + S2.N = S3.N , where S3 = S1 + S2:
that is, the relit Lambertian scene can be modeled
as being illuminated by a third, new set of
illumination directions.
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�Learning from a Neuroscience Perspective
�Reinforcement Learning

Definition

This entry gives an overview of learning from
a neuroscience perspective by highlighting some
key chronological findings in neuroscience that
have given rise to various theories of learning and
have particularly inspired major developments in
artificial intelligence.

Background

Learning has been a central question in psychol-
ogy and neuroscience, spanning various theories
and explanations from the behavioral level to
the neuronal scale. Even though many of these
theories are strengthened by experimental evi-
dence, understanding how learning is performed
by the brain is still an open problem and subject
of numerous ongoing research efforts. Neverthe-
less, the neuroscience perspective on learning
has heavily influenced artificial intelligence and
machine learning, hallmarked by early instances

such as the Perceptron, to the more recent advent
of convolutional neural networks and neuromor-
phic processing hardware. In this article, we give
a brief overview of some of the key notions of
learning from a neuroscience perspective.

Theory

We consider three different accounts of learning
from a neuroscience perspective, namely, rein-
forcement and conditioning, Hebbian learning,
and feature extraction.

Reinforcement and Conditioning
Historically, the earliest efforts in explaining how
the brain learns go back to the pioneering works
of psychologists such as Edward Thorndike,
Ivan Pavlov, and B. F. Skinner, among others.
Their theories of learning revolve around the
notion of “reinforcement,” which is defined as the
strengthening of the association between a pair
of stimuli or between the stimulus and response.
According to Pavlov’s classical conditioning
(often referred to as Pavlovian conditioning),
learning is the strengthening of the association
between two stimuli: an unconditioned stimulus
(such as food), which is rewarding for the
learner, and a conditioned stimulus (such as
a bell ring), which is neutral. In a variant
introduced by Thorndike and further developed
by Skinner, namely, instrumental learning or
operant conditioning, learning pertains to an
increase in the frequency of the responses that
accompany satisfying results and a decrease in
those that result in unpleasant outcomes.

These theories have been instrumental in
describing various behaviors elicited by humans
and animals since their inception in the early
1900s. They also inspired the mathematical
theory of reinforcement learning, in which a
learner aims at optimizing a cost function through
a balance between exploration (trying new
actions) and exploitation (using previously tested
actions) [1,2]. Another related development is the
Bellman equation for Markov decision processes,
in which a learner recursively optimizes an
overall cost function [3]. However, it took
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researchers nearly a century to pinpoint the neural
basis and circuit mechanisms of these theories in
the brain [4–7]. In particular, it is now widely
accepted that the activation of groups of neurons,
known as dopaminergic projections, mediates
reinforcement and reward-motivated behavior
through the release of a neurotransmitter called
dopamine [8].

Neural Encoding of Sensory Stimuli and
the Hebbian Theory of Learning
Shortly after the advent of the various theories of
learning in the psychology community, physiolo-
gists were able to record the activity of neurons in
the nervous system. The most notable such effort
is due to Edgar Adrian in 1926, who recorded the
electrical activity of a nerve cell in response to
sensory stimulation [9].

The nerve cells, or neurons, are typically com-
posed of three main components: the soma, the
dendrites, and the axon [8]. The soma is the cell
body of the neuron. The dendrites are treelike
extensions of the soma that receive electrical
signals from the other nerve cells. The axon is a
long fiber that propagates electrical signals from
the soma toward other neurons. The axons con-
nect to the dendrites via the so-called synapses,
which are chemical or electrical junctions that
transmit signals from one neuron to another. It
is known the rapid depolarization of a neuron’s
soma (presynaptic neuron) results in the so-called
action potential, which travels in the form of an
electrical impulse along the axon and reaches a
synapse located in a receiving neuron’s dendrites,
thereby changing the membrane potential of the
receiving neuron (postsynaptic neuron). The rate
at which a neuron produces action potentials is
known as the firing rate.

Based on his observations, Adrian postulated
that the intensity of a stimulus affecting a neuron
is encoded as its firing rate and not necessarily the
precise timing of each individual spike. Various
experiments that followed the pioneering work of
Adrian showed that the precise timing of individ-
ual spikes of a neuron could also carry informa-
tion about the sensory stimuli (see, e.g., [10]).

The foregoing observations further led to the
Hebbian theory of learning, named so in recog-
nition of Donald Hebb, who summarized these
findings in the form of a learning rule in 1949
[11]. In the Hebbian theory, learning corresponds
to the consolidation of synaptic weights in a
network of neurons, as a result of repetitive firing
patterns that arise from multiple presentations of
stimuli. Hebbian learning is often summarized in
the form of the following adage: The neurons that
fire together, wire together; the neurons that fail
to sync, fail to link.

The simplest form of the Hebbian learning
rule states that if presynaptic and postsynaptic
neurons get activated simultaneously, the strength
of the synapse is increased. Let wi and xi , i =
1, 2, · · · , N denote the synaptic strengths and
activity of N presynaptic neurons to a target
neuron, respectively. In a linear neuronal model,
let y = ∑N

i=1 wixi be the postsynaptic potential
of the target neuron. Then, the Hebbian learning
rule states that

Δwi ∝ xiy,

where the proportionality accounts for the learn-
ing rate. Various generalizations of this simplified
learning rule have been proposed and studied in
the computational neuroscience literature [12].
One notable form of Hebbian learning is the
spike-timing-dependent plasticity (STDP) [13–
17], in which the delay between the pre- and
postsynaptic activities plays a key role in the
learning rate of the synaptic update rule. Let τi

denote the delay between the spiking of the ith
presynaptic and the postsynaptic neuron. Then,
the simplest form of STDP specifies that

Δwi ∝ W(τi),

where W(τ) is a weighting function that
penalizes positive delays (i.e., presynaptic
neuron firing after the postsynaptic neuron)
and promotes negative delays (i.e., postsynaptic
neuron firing after the presynaptic neuron).
Another notable generalization of Hebbian
learning is the Bienenstock-Cooper-Munro
(BCM) theory [18]. In addition to the timing



734 Learning from a Neuroscience Perspective

between the pre- and postsynaptic responses, the
BCM learning rule also takes into account the
nonlinear dependence of the weight update on
the intensity of the postsynaptic response y.

Apart from being a topic of active research
in computational neuroscience, Hebbian learning
has also been utilized in hardware implemen-
tations of neuromorphic chips [19, 20], with a
recent example of Intel’s Loihi neuromorphic
processor [21].

Sensory Neurons as Feature Extractors
Pioneering work by David Hubel and Torsten
Wiesel in 1959 [22, 23] showed that neurons
in the mammalian primary visual cortex have
a unique functional characteristic known as the
receptive field. The receptive field is a map-
ping from the parameter space of the sensory
stimuli (e.g., visual or auditory stimuli) to the
activity of the neuron. In the case of the pri-
mary visual cortex, it was shown that neurons
preferentially exhibit higher spiking rate when
particular patterns are present in the visual field.
Similar characteristics have been shown to exist
in the primary auditory cortex, in which neurons
exhibit selective activity to certain patterns in
the spectrotemporal domain [24], as well as
in the somatosensory cortex, in which neurons
selectively respond to tactile stimulation of dif-
ferent skin regions [25]. These findings suggested
that some sensory neurons in primary cortical
areas act as feature extractors, as they selectively
respond to specific patterns in the feature space
of the sensory stimuli.

Hubel and Wiesel also postulated that connec-
tions of neurons from the primary sensory areas
to higher-level cortical areas result in a hierarchi-
cal combination of receptive fields and contribute
to the emergence of complex receptive fields that
can learn complicated features of the stimuli.
This hierarchical feature extraction viewpoint of
the visual cortex inspired the development of the
multilayer perceptron [26] and together with the
concept of receptive fields led to the advent of
convolutional neural networks [27]. Obtaining a
complete functional mapping of the architecture
of the visual cortex, however, is still the topic of
active research in neuroscience.

It is worth noting that the spectacular suc-
cess of deep learning methodologies in recent
years has motivated researchers to examine the
architectural parallels between artificial neural
networks and the visual cortex to gain insight on
the functional roles of higher-order visual cortical
areas [28].

Open Problems

In closing, we outline three areas of active
research aimed at solving open problems in
the domain of learning from a neuroscience
perspective:

Biologically Plausible Computation and
Learning
Given that neural networks are originally inspired
by neural circuitry in the brain, the success of
backpropagation in training artificial neural net-
works motivated researchers to examine whether
a similar procedure is carried out by biological
neural networks. Computation of the derivatives
in backpropagation, however, is a global oper-
ation and is not consistent with the predomi-
nantly local connections of the neurons in the
brain. Finding biologically plausible algorithms
for neuronal computation and learning has been
an active topic of research [29–32]. Another
hallmark of brain function is its robust and adap-
tive learning capability. These features of brain
function are often attributed to recurrent connec-
tions across various brain regions, resulting in
top-down control. However, such control mech-
anisms require the availability of global informa-
tion at the controller. Recent results have shown
that it is indeed possible to construct robust and
adaptive learning algorithms that can be imple-
mented with local and neurally plausible circuits
[33]. For the most part, constructing computa-
tional models and training algorithms that are
both neurally plausible and exhibit performance
on par with backpropagation and other success-
ful, yet neurally implausible computational and
control methodologies, remains an open question
to this day.



Learning from a Neuroscience Perspective 735

L

Dendritic Learning
As mentioned earlier, most prevalent theories of
learning at the neuronal level are based on the
adaptations of the synaptic weights. Recent evi-
dence, however, suggests that computation car-
ried out at the level of dendrites is significant
in learning and memory [34–36]. Developing
a dendritic theory of learning has thus become
an active area of research and remains an open
question to this day.

From Single Neurons to Recurrent
Networks and Population Representations
Studies of neuronal circuits are predominantly
carried out under the paradigm of hierarchical
cortical organization: primary cortical areas act
as simple feature extractors, and higher-order
areas learn more complex attributes of the stim-
uli. However, it is now widely accepted that
recurrent connections in the cortex are a staple
of neuronal circuitry [37]. An important open
question is to go beyond the hierarchical feature
extraction models and address how learning is
performed in such recurrent networks. A notable
development in this area is FORCE learning,
which suggests a learning mechanism by which
chaotic neuronal networks can produce a wide
range of behaviors that are observed experimen-
tally [38]. In addition, recent evidence shows
that when populations of neurons in a primary
area are considered together (as opposed to being
independent feature extractors), they encode the
more complex attributes of the stimuli that were
believed to only exist in higher-order areas (see,
e.g., [39, 40]). Constructing a theory of learning
that is consistent with these findings remains an
open problem.

References

1. Minsky M (1961) Steps toward artificial intelligence.
Proc IRE 49(1):8–30

2. Sutton RS, Barto AG (2018) Reinforcement learning:
an introduction. MIT Press, Cambridge

3. Bellman R (1952) On the theory of dynamic program-
ming. Proc Nat Acad Sci USA 38(8):716

4. Schultz W (1998) Predictive reward signal of
dopamine neurons. J Neurophysiol 80(1):1–27

5. Miller EK, Cohen JD (2001) An integrative theory
of prefrontal cortex function. Annu Rev Neurosci
24(1):167–202

6. Izhikevich EM (2007) Solving the distal reward prob-
lem through linkage of STDP and dopamine signal-
ing. Cereb Cortex 17(10):2443–2452

7. Eshel N, Bukwich M, Rao V, Hemmelder V, Tian
J, Uchida N (2015) Arithmetic and local cir-
cuitry underlying dopamine prediction errors. Nature
525(7568):243

8. Bear MF, Connors BW, Paradiso MA (2007) Neuro-
science: exploring the brain. Lippincott Williams &
Wilkins Publishers, Philadelphia

9. Adrian ED (1926) The impulses produced by sensory
nerve endings. J Physiol 61(1):49–72

10. O’Keefe J, Recce ML (1993) Phase relationship
between hippocampal place units and the eeg theta
rhythm. Hippocampus 3(3):317–330

11. Hebb DO (1949) The organization of behavior; a
neuropsychological theory. Wiley, New York

12. Gerstner W, Kistler WM (2002) Mathematical for-
mulations of hebbian learning. Biol Cybern 87(5-
6):404–415

13. Gerstner W, Kempter R, Leo van Hemmen J, Wag-
ner H (1996) A neuronal learning rule for sub-
millisecond temporal coding. Nature 383(6595):76

14. Song S, Miller KD, Abbott LF (2000) Competitive
hebbian learning through spike-timing-dependent
synaptic plasticity. Nat Neurosci 3(9):919

15. Caporale N, Dan Y (2008) Spike timing–dependent
plasticity: a hebbian learning rule. Annu Rev Neu-
rosci 31:25–46

16. Dan Y, Poo M-M (2004) Spike timing-dependent
plasticity of neural circuits. Neuron 44(1):23–30

17. Dan Y, Poo M-M (2006) Spike timing-dependent
plasticity: from synapse to perception. Physiol Rev
86(3):1033–1048

18. Bienenstock EL, Cooper LN, Munro PW (1982)
Theory for the development of neuron selectivity:
orientation specificity and binocular interaction in
visual cortex. J Neurosci 2(1):32–48

19. Indiveri G, Chicca E, Douglas R (2006) A VLSI array
of low-power spiking neurons and bistable synapses
with spike-timing dependent plasticity. IEEE Trans
Neural Netw 17(1):211–221

20. James CD, Aimone JB, Miner NE, Vineyard CM,
Rothganger FH, Carlson KD, Mulder SA, Draelos
TJ, Faust A, Marinella MJ et al (2017) A histor-
ical survey of algorithms and hardware architec-
tures for neural-inspired and neuromorphic comput-
ing applications. Biolog Inspired Cogn Architect 19:
49–64

21. Davies M, Srinivasa N, Lin T-H, Chinya G, Cao
Y, Choday SH, Dimou G, Joshi P, Imam N, Jain
S et al (2018) Loihi: a neuromorphic manycore
processor with on-chip learning. IEEE Micro 38(1):
82–99

22. Hubel DH, Wiesel TN (1959) Receptive fields of
single neurones in the cat’s striate cortex. J Physiol
148(3):574–591



736 Learning from Demonstration

23. Hubel DH, Wiesel TN (1962) Receptive fields, binoc-
ular interaction and functional architecture in the cat’s
visual cortex. J Physiol 160(1):106–154

24. Aertsen AMHJ, Johannesma PIM (1981) The
spectro-temporal receptive field. Biol Cybern
42(2):133–143

25. Thach Jr WT (1967) Somatosensory receptive fields
of single units in cat cerebellar cortex. J Neurophysiol
30(4):675–696

26. Rosenblatt F (1961) Principles of neurodynamics.
Perceptrons and the theory of brain mechanisms.
Technical report, Cornell Aeronautical Lab Inc,
Buffalo

27. LeCun Y, Bottou L, Bengio Y, Haffner P et al (1998)
Gradient-based learning applied to document recog-
nition. Proc IEEE 86(11):2278–2324

28. Yamins DLK, Hong H, Cadieu CF, Solomon EA,
Seibert D, DiCarlo JJ (2014) Performance-optimized
hierarchical models predict neural responses in higher
visual cortex. Proc Natl Acad Sci 111(23):8619–
8624

29. Mazzoni P, Andersen RA, Jordan MI (1991) A more
biologically plausible learning rule for neural net-
works. Proc Nat Acad Sci 88(10):4433–4437

30. Pehlevan C, Mohan S, Chklovskii DB (2017) Blind
nonnegative source separation using biological neural
networks. Neural Comput 29(11):2925–2954

31. Eliasmith C, Stewart TC, Choo X, Bekolay T,
DeWolf T, Tang Y, Rasmussen D (2012) A large-
scale model of the functioning brain. Science
338(6111):1202–1205

32. Eliasmith C, Anderson CH (2004) Neural engineer-
ing: computation, representation, and dynamics in
neurobiological systems. MIT Press, Cambridge

33. Denève S, Alemi A, Bourdoukan R (2017) The brain
as an efficient and robust adaptive learner. Neuron
94(5):969–977

34. Moore JJ, Ravassard PM, Ho D, Acharya L, Kees AL,
Vuong C, Mehta MR (2017) Dynamics of cortical
dendritic membrane potential and spikes in freely
behaving rats. Science 355(6331):eaaj1497

35. Frank AC, Huang S, Zhou M, Gdalyahu A, Kastel-
lakis G, Silva TK, Lu E, Wen X, Poirazi P, Tracht-
enberg JT et al (2018) Hotspots of dendritic spine
turnover facilitate clustered spine addition and learn-
ing and memory. Nat Commun 9(1):422

36. Haga T, Fukai T (2018) Dendritic processing of spon-
taneous neuronal sequences for single-trial learning.
Sci Rep 8(1):15166

37. Douglas RJ, Koch C, Mahowald M, Martin KA,
Suarez HH (1995) Recurrent excitation in neocortical
circuits. Science 269(5226):981–985

38. Sussillo D, Abbott LF (2009) Generating coherent
patterns of activity from chaotic neural networks.
Neuron 63(4):544–557

39. Bagur S, Averseng M, Elgueda D, David S, Fritz
J, Yin P, Shamma S, Boubenec Y, Ostojic S (2018)
Go/no-go task engagement enhances population rep-
resentation of target stimuli in primary auditory cor-
tex. Nat Commun 9(1):2529

40. Francis NA, Winkowski DE, Sheikhattar A, Armen-
gol K, Babadi B, Kanold PO (2018) Small networks
encode decision-making in primary auditory cortex.
Neuron 97(4):885–897

Learning fromDemonstration

�Learning-from-Observation

Learning-from-Observation

Jun Takamatsu
Graduate School of Information Science, Nara
Institute of Science and Technology (NAIST),
Ikoma, Nara, Japan

Synonyms

Imitation learning; Learning from demonstration;
Programming by demonstration

Definition

Learning-from-Observation is the framework to
generate robot’s (or other agent’s) movement to
achieve a target task with less user’s program-
ming effort. In this framework, a user just demon-
strates the target task and a robot learns the
method to reproduce the target task from the
observation.

Background

One goal in robotics and artificial intelligence
(AI) fields is to achieve any target tasks by a
robot with less user’s programming efforts. To
achieve this purpose, Learning-from-Observation
(LFO) framework attracts an attention. In this
framework, a user just demonstrates the target
task and a robot learns the method to reproduce
the target task from the observation. The user is
not required to have special skills on robotics.
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Note that an agent that the user teaches is not
limited to a robot.

In a scientific point of view, it is important
to clarify the methodology to achieve the LFO
framework. Only primates including human
beings have the ability to learn tasks from
observation, and ones think that the mirror
neuron that primates have is related to LFO [1].
The mirror neuron fires not only when it acts
some task (e.g., grasp an object) but also when it
observes the same task by others.

Theory

A LFO method formalizes the observed task and
reproduces it. Thus, the LFO methods are catego-
rized based on the following two aspects:

• how to observe demonstration
• how to formalize demonstration

Modalities in Observation
It is interesting to use vision to observe the
task as if human beings do. Another choice is
to additionally use linguistic instruction. Con-
sidering the maximization of the effects of the
demonstration, it is reasonable to use various
types of modalities, such as haptic information
and kinesthetic demonstration; skills in dexterous
manipulation appear in force interaction. Note
that human beings cannot share haptic informa-
tion directly.

The space of the demonstration is not limited
to the real world; the virtual reality (VR) space
is one of the candidates (e.g., [2]). Though the
advantage to use the VR space is that everything
in the space can be captured, the demonstrator
should get used to executing tasks in the VR
space.

The target tasks are from manipulation and
body movements, such as gestures and dances.
Thus the target objects and/or body movements
of the demonstrator should be observed. The
level of details of the observation depends on the
method to formalize the target tasks. The finest
level of the observation, for example, is 6D pose

trajectories of objects and trajectories of all body
joints in 3D. To simplify the observation, the AR
marker (e.g., [3]), a motion capture system, and a
sensor glove are employed.

Formalization of Target Tasks
As described in [4], there are three levels of
LFO:

1. Appearance level
2. Action level
3. Purposive task level

When a child learns a garden cleaning task using
a broom, she/he begins by imitating the move-
ment of a broom. She/he finally learns how to
clean a garden using a broom, such as collecting
the falling leaves. In LFO, it is a final goal to
learn the method to achieve the purpose of the
task. Furthermore, the mirror neuron fires when
observing the achievement of the purpose and
does not fire even when observing the imitated
movement that does not achieve the purpose.

One idea to realize LFO is to formalize tasks
by recognizing the purpose of the task. Then the
robot reproduces the task from the purpose only
(e.g., [5]). Though such realization of LFO looks
plausible, this complicates reproduction of the
target tasks. In the worst scenario, the movement
should be generated from the scratch; this is
equivalent to the path planning [6].

Several research methods [7–10] divide the
purpose into several sub-purposes. To do so, the
methods define the symbolic representation of
the states and analyze the feasible state tran-
sitions; each transition corresponds to a sub-
purpose, and the purpose is to achieve the final
state. Since the purpose is represented as a set
of small sub-purposes, the reproduction is sim-
plified. Since the purpose is symbolically repre-
sented, the methods can recognize the success of
the tasks under various situations.

Another idea is that the method copies all
the movements of the demonstration. Many of
LFO-related methods follow this idea [11–13].
Fortunately, the copy of the movement achieves
the purpose under the same environment as in
the demonstration. This idea can be implemented
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using machine learning technique, such as classi-
fication and regression.

There are several research methods to handle
the change of the environments. The intuitive idea
is to learns the relationship between the environ-
ment and the corresponding movement (e.g., [14,
15]); the information of the environment is also
included in the input of the classifier/regressor.
Schulman et al. [16] uses the non-rigid reg-
istration to derive the relationship between the
current environment and that in the demonstra-
tion and transforms the demonstrated movement
using this relationship. Ye and Alterovitz [17] use
motion planning, where the demonstration move-
ment guides the search region. Kramberger et al.
[18] use states and their transitions and estimate
the constraints from the demonstration in assem-
bly tasks.

Open Problems
In the former idea for the formalization, it
is necessary to pursue the generic method to
generate the robot motion in various kinds
of tasks, given the purpose and the current
environment. In the latter idea, it is necessary
to pursue the generic method to handle the
environmental changes from the demonstration.
If the kinesthetic demonstration is not used,
the difference of the body size between the
demonstrator and a robot should be considered.
Finally, in order to reduce the user’s effort, the
number of required demonstrations should also
be considered (e.g., one-shot learning).
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Definition

Lens distortion is a form of optical aberration that
causes lenses to deviate from rectilinear projec-
tion. Commonly, it is caused by defects in lens
design and manufacturing.

Background

In many cameras, optical errors or the construc-
tion of the lens by nature itself does not allow
for rectilinear projection (projection that maps
3D lines onto 2D lines). The deviation from
rectilinear projection is termed lens distortion.

In most common lens systems designed for
rectilinear projection, this occurs because of opti-
cal errors and is primarily radial in nature. This
phenomenon, also called radial distortion, is of
two types: barrel distortion (Fig. 1) and pincush-
ion distortion (Fig. 2). In barrel distortion, image
magnification increases nonlinearly with distance
from the optical axis resulting in lines “bulging

outward.” Pincushion distortion has the opposite
effect (lines bend radially inward), caused by
decrease in image magnification with distance
from the axis. Radial distortion is corrected by
calibrating the camera using a planar “checker-
board” pattern.

The second, less damaging cause of distortion
is the misalignment of optical elements in a com-
pound lens. This is called tangential distortion or
decentering distortion.

Some wide-angle lenses, like fish-eye lenses,
have distortion as a product of the construction of
the lens (sometimes in addition to radial distor-
tion). Fish-eye lenses capture images that appear
to be barrel distorted (Fig. 3).

Other Aberrations

Other common aberrations in lenses include
chromatic aberration (wavelength-specific
distortion) and spherical aberration (imperfect
focusing of light rays incident at lens periphery).

Theory

The most common representation of radial and
tangential distortion (for correction) is Brown’s
distortion model [1, 2, 6], which represents the
distorted image coordinate as

r =
(

rx

ry

)
= xu − cc, r =| r | (1)

xd = (1 + k1r2 + k2r4 + k3r6
)
xu

+
(

2k4rxry + k5
(
r2 + 2r2

x

)

k5

(
r2 + 2r2

y

)
+ 2k4rxry

)
(2)

where xu, xd are the undistorted and distorted
point coordinates, κ (1,2,3,4,5) the distortion coef-
ficients (first three radial and the rest tangential),
and cc the principal point.

Once estimated, images can be corrected for
distortion by warping by a function that maps
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Lens Distortion, Radial Distortion, Fig. 1 Effects of barrel distortions respectively on lines (Distortions in these
images have been exaggerated for visualization)

LensDistortion, Radial Distortion, Fig. 2 Effects of pincushion distortions respectively on lines (Distortions in these
images have been exaggerated for visualization)

Lens Distortion, Radial Distortion, Fig. 3 Left: Image
taken using a fish-eye lens. (Image courtesy Srikumar
Ramalingam). Right: Image taken off a set of reflecting

spheres. (Image courtesy Yuichi Taguchi). Both methods
of image capture produce distortions

colors from the distorted point coordinates to the
undistorted point coordinates.

Application

Radial distortion correction is generally applied
as a preprocessing step in algorithms like
panoramic stitching, structure from motion,
and other algorithms that rely explicitly on the

pinhole model of projection for their correct
execution.
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Lens Flare

�Lens Flare and Lens Glare

Lens Flare and Lens Glare

Dikpal Reddy1 and Ashok Veeraraghavan2

1Nvidia Research, Santa Clara, CA, USA
2Department of Electrical and Computer
Engineering, Rice University, Houston, TX,
USA

Synonyms

Aperture ghosting; Lens flare; Veiling glare

Related Concepts

�Light Field

Definition

Lens glare or lens flare is a global light transport
phenomenon which occurs due to reflections and
scattering of light in the optical elements and
body of the camera and leads to decrease in the
contrast of the image.

Background

Glare is a phenomenon caused due to bright light
source (either narrow or extended) in or near
the field of view of the camera. It is typically
caused when stray light reaches the sensor and
could be either due to reflections at the air-glass
interface of the lens or due to scattering in the
lens. The effect of glare is a decrease in contrast
of the image and thereby its dynamic range and
is often considered undesirable. Sometimes glare
is used artistically in graphics or outdoor filming
to convey a sense of realism. A simple way to
decrease glare is to use lens hood to prevent
stray light from entering the lens and by using
antireflective coating on lens which decreases the
reflections at the lens surface.

Glare can also be mitigated by first estimating
it and then removing it from the image. This can
be done in a passive fashion post capture or in an
active fashion where the sensed image is modified
for better glare estimation and removal.

Theory

While there is some confusion in the literature
regarding the classification and terminology of
different kinds of lens glare, glare can be broadly
classified into three kinds as shown in Fig. 1.
Two of these, aperture ghosting and lens flare, are
caused by reflections at the air-glass interface of
the lens. The third, veiling glare, is caused by the
scattering of light in the lens.

Aperture ghosting is caused due to Fresnel
reflection at the air-glass interface resulting in
a number of aperture shaped reflections in the
image as shown in Fig. 1. These aperture-shaped
reflections or ghosts occur in the image at the
symmetrically opposite end of the light source.
If there are n lens surfaces, the number of ghosts
are n(n − 1)/2 [2].

Lens flare appears as fogging of a large image
area as shown in Fig. 1 and is prominent when the
aperture is large and the camera has a wide field
of view. The effect is that region surrounding the
bright light source is also bright due to reflections
in the lens system as shown in Fig. 2.

http://en.wikipedia.org/wiki/Distortion
http://en.wikipedia.org/wiki/Fisheye_lens
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Lens Flare and Lens
Glare, Fig. 1 Different
kind of lens glare in the
image. Aperture ghosting
can be seen as hexagonal
parasitic images
symmetrically opposite the
light source. Lens flare is
the fogging seen around the
light source. Veiling glare
is the cause for decrease in
contrast on the person’s
jacket and the wall behind.
(Figure courtesy [1])

Lens Flare and Lens
Glare, Fig. 2 The red and
blue spot are focused on
the sensor. The purple ray
from the blue light source
is undergoing reflection,
which results in either
aperture ghosting and/or
lens flare. The cyan ray is
scattering due to weak
diffusion caused by the
lens resulting in veiling
glare. (Figure courtesy [1])

Veiling glare is caused by scattering of light
in the lens since lens acts as a weak diffuser
as shown in Fig. 2. This results in a foggy
appearance in the entire image with a distinct loss
in contrast as shown in Fig. 1. Veiling glare is
caused due to bright scene and not necessarily
due to bright light sources close to the field of
view.

In practice it is hard to distinguish and separate
lens flare from veiling glare. Superior optics helps
in mitigating glare by reducing the reflections at
the lens surface.

Measuring glare: There are various ways of
measuring glare. The standard way of measuring
glare is to photograph a white board with a
black target in the center [3, 4]. The ratio of the
luminance of the black target to the luminance
in the white region is defined as veiling glare

index (VGI) by the ISO standard 9358 (year
1994).

Glare spread function (GSF) is another mea-
sure defined by ISO standard to quantify glare.
It is defined as the glare intensity as function
of distance from the center of an image of a
centered point light source. If the glare intensity
is invariant to the location of the point light
source in the image, then GSF can be represented
by a convolution operation like the point spread
function (PSF).

Traditional methods of removing glare involve
assuming a shift invariant GSF, estimating it, and
performing deconvolution. This has been used in
removing veiling glare in X-ray imaging [5]. The
methods using deconvolution are passive where
the glare is estimated and removed after capture.
Active methods to remove glare have also been



Lens Flare and Lens Glare 743

L

proposed, and they involve modifying the imag-
ing architecture for better glare estimation and
removal.

Talvala et al. [6] estimate veiling glare by
taking multiple images of a scene by shifting a
mask. This method allows the glare to be esti-
mated even when the glare is significantly dom-
inant. Other active approach involves estimating
aperture ghosting and lens flare due to point light
source by inserting a mask near the sensor and
capturing a light field [1]. This method treats
glare as high-frequency phenomenon in ray space
as opposed to image space and defines a 4D glare
ray spread function (GRSF) that characterizes
how much an incident ray on lens contributes to
outgoing rays. Please refer the above entries for
technical details.

Application

Glare is used in photography and videography
to enhance the scene by conveying a sense of
realism as shown in Fig. 3.

Glare estimation and removal is an important
step in HDR imaging since the presence of glare
in captured images reduces the dynamic range.
Glare removal techniques in HDR are described
in [7]. In multi-exposure HDR imaging, it has
been used in [8]. Glare removal techniques are
also used in X-ray imaging [5, 9]. They are also
used in astronomical imaging where scattering
effects cause a degradation in the image. Glare
removal has been used to remove glare caused by
water droplets sticking to the lens [10].

Since aperture ghosting is symmetrically
opposite to the light source, techniques have been
proposed to estimate the light source location and
the optical center of the camera using this fact
[11].
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Related Concepts

� Intrinsics

Definitions and Properties

Lie algebras can be interpreted in a number of
ways: the set of infinitesimal transformations,
tangent space about the identity element of a
group, and a linear space with special properties.
Formally, a Lie algebra (denoted g) is a vector
space equipped with a bilinear, non-associative
map [., .] : g × g → g known as the Lie
bracket. The Lie bracket satisfies the following
relationships:

[x, y] = −[y, x] (anti-symmetry), (1)

[x + y, z] = [x, z] + [y, z] (bilinearity),

[x, [y, z]] + [y, [z, x]] + [z, [x, y]]
= 0 (Jacobi identity).

In computer vision, Lie groups play an
important role in representing geometric
transformation models such as rotations and
Euclidean motions. Lie groups are groups that are
also smooth manifolds. Specifically for elements
X,Y in Lie group G, composition (X ◦ Y)

and inverse (X−1) are analytic (read smooth or
differentiable) mappings. We will only consider
finite-dimensional Lie groups also known as
matrix groups, i.e., X ∈ G and x ∈ g are n × n

square matrices with real entries. For matrix
groups, the Lie bracket becomes the commutator
[x, y] = xy − yx. The commutator signifies the
degree to which the Lie bracket deviates from
commutativity and equals zero when elements
commute under composition.

Lie algebras are intuitively understood as cor-
responding to the set of infinitesimal transforma-
tions. Any finite transformation can be thought
of as the composition of repeated infinitesimal
transformations. Consider the set of transforma-
tions in the neighborhood of I, i.e., I+εx+O(ε2).
For small enough ε, we note that XY ≈ (I +
εx)(I + εy) ≈ I + ε(x + y). Using this it can
be shown that the set of infinitesimal transforma-
tions form a linear space. Further, owing to its
non-commutativity, left and right matrix multi-
plication have different implications. This is seen
by considering the conjugation mapping CXY =
XYX−1 which is Y only for commutative groups.
Dropping mathematical details, the adjoint action
for infinitesimal transformations gives

AdX(y) = XyX−1 (2)

≈ (I + εx)y(I + εx)−1

≈ (I + εx)y(I − εx)

= y + ε(xy − yx).

Thus, the Lie algebra is a vector space
endowed with the Lie bracket [x, y] = xy − yx.
In the above we have discussed the Lie algebra
(equivalently tangent space) about the identity
element I. But we can also consider the Lie
algebra as a left-invariant vector field at I. It can
be shown that if x ∈ g is a tangent vector at I,
then Yx is tangent to Y ∈ G. Accumulating these
tangent vectors on an integral curve gives us the
ordinary differential equation

dX(s)

ds
= sx. (3)
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Lie Algebra, Fig. 1 Schematic illustration of the map-
ping from the Lie algebra g to the Lie group G using the
exponential function

The solution for this relationship yields the
important exponential mapping

X(s) = exp(sx) =
∞∑

k=0

(sx)k

k! (4)

The exponential mapping exp : g → G allows
us to directly move from the Lie algebra g to
the Lie group G as schematically illustrated in
Fig. 1. It will also be noted that varying s traces
out a line in the Lie algebra which maps to a
one-dimensional subgroup of G. This subgroup
is Abelian as its elements are commutative under
multiplication.

Conversely, we can define a logarithm map-
ping log : G → g that maps from the Lie group to
its corresponding Lie algebra element. While the
exponential mapping is absolutely convergent,
the log(.) mapping is only valid in a suitable ball
around I and also has a series expression.

Examples

To satisfy group properties, we require that X
be invertible, i.e., |X| 	= 0. The set of invert-
ible matrices is an open set and under matrix
multiplication forms the General Linear Group
GL(n) = {X ∈ R

n×n| |X| 	= 0}. This group
has two connected components corresponding
to positive and negative determinants, and one
cannot smoothly move from one component to
the other. We can also identify the corresponding

Lie algebra gl(n) with the set of all real n × n

matrices.
All matrix groups of interest to us can be

obtained by specifying constraints to obtain
appropriate subgroups of GL(n). For instance
if we consider affine transformations of a vector
space x 
→ Ax + b, we get

A(n) =
{(

A | b
0 | 1

)∣∣∣∣ |A| 	= 0,b ∈ R
n−1
}

(5)

where A are all invertible matrices of dimensions
(n− 1). It will be recognized that A(n) ⊂ GL(n)

and is closed under matrix multiplication.
We can obtain Lie groups of interest by

imposing two types of specifications. In the first
instance, we consider only matrices X ∈ GL(n)

with a determinant of +1. This yields the Special
Linear Group SL(n) = {X ∈ GL(n)||X| = +1}.
The corresponding Lie algebra x ∈ sl(n) can
be obtained using the trace identity of matrix
exponentials

det(ex) = etr(x), (6)

det(ex) = +1 ∀x ∈ sl(n),

⇒ tr(x) = 0

where tr(.) is the trace of a matrix. Thus the Lie
algebra sl(n) consists of all matrices with trace
zero.

In the second instance, another Lie group
of interest is the Orthogonal Group O(n) =
{X ∈ GL(n)|XXT = XT X = I} under which
distances are preserved. However we can note
that the determinant of an orthogonal transforma-
tion matrix equals ± 1, i.e., it includes reflec-
tions. O(n) consists of two disconnected com-
ponents corresponding to determinant values of
+1 and −1. We can combine the above two
restrictions and specify that matrices be orthog-
onal and have a determinant of +1. This yields
the Special Orthogonal Group SO(n) = {X ∈
GL(n)|XXT = XT X = I, |X| = +1} which cor-
responds to orientation preserving rigid rotations
in n-dimensions. In computer vision, the 3D rigid
rotations group SO(3) is of special interest.
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Finally, in Eq. 5 if we impose a further restric-
tion that A is a rigid rotation (denoted R), we
get rigid Euclidean transformations that preserve
angles between vectors. In computer vision, the
absolute or relative motions of cameras are spec-
ified by 3D Euclidean motions, i.e., they are
elements of the Special Euclidean Group SE(3).

Any 3D rotation can be defined by an axis n
about which we rotate by an angle θ . Defining
ω = θn, we can show that the corresponding 3D
rotation matrix R ∈ SO(3) is given by

R = exp
([ω]×
)

(7)

where [ . ]× is the skew-symmetric cross-product
form such that [a]×b = a × b. Conversely, we
can extract the skew-symmetric representation of
a 3D rotation by the logarithm operation, i.e.,
[ω]× = log(R). We also note we can spec-
ify a canonical basis for so(3) as the skew-
symmetric cross-product matrix forms for the
canonical direction vectors e1 = [1 0 0]T , e2 =
[0 1 0]T , and e3 = [0 0 1]T . Finally, SO(3) is
non-commutative since multiplication of skew-
symmetric matrices is not commutative.

Optimization Using Lie Algebras

Many problems in computer vision involve the
optimization of cost functions on Lie groups.
Here the vector space properties of the corre-
sponding Lie algebra play a key role. To optimize
a function on a Lie group, we need two concepts:
a distance metric on the Lie group and a means
to take a step on the Lie group without moving
away from the manifold.

Distance Metrics For Lie groups, we may
define an intrinsic distance metric d(., .) :
G × G → R

+. The natural distance metric
between two 3D rotations R1 and R2 is the
magnitude of the angle of the rotation that takes
us from R1 to R2 or vice-versa, i.e., d(R1,R2) =

1√
2
|| log(R1R2

−1)||F = 1√
2
|| log(R2R1

−1)||F ,
where ||.||F is the Frobenius norm. We can also
define an intrinsic distance metric on SE(3).

While the intrinsic metric on SO(3) is bi-
invariant, there cannot be a bi-invariant metric
on SE(3) which has implications for problems in
robotic planning [1].

Optimization Consider minimization of a cost
function f (v) for v ∈ R

n. We could obtain an
iterative step Δv via a Taylor series expansion of
the cost function

f (v) ≈ f (v0) + gT Δv + ΔvT HΔv (8)

⇒ v ← v − H−1g

where g and H denote the first and second deriva-
tives of f with respect to v evaluated at v0. Using
only a first-order approximation in Eq. 8 yields
the gradient descent solution.

Now let us consider the minimization of a
cost function defined on SO(3), i.e., f (R). In
this case, to move in a descent direction while
remaining on the Lie group, we need to consider
infinitesimal rotations. This is where the opti-
mization problem becomes one of solving a linear
problem on the Lie algebra so(3). Analogous to
our update in Eq. 8 v ← v + Δv, for the rota-
tion at the current iteration R, we can write the
updated rotation as (I+[Δω]×)R. Note that here
Δω ∈ R

3, i.e., a three-dimensional vector repre-
senting the axis-angle parameters and [Δω]× is
an element of the Lie algebra so(3). Analogous
to Eq. 8, we can define the cost function to be
minimized as

f ((I + Δω)R) = f (R) + gT Δω + ΔωT HΔω

⇒ Δω = −H−1g (9)

The crucial difference from the vector space
problem is that given the descent step Δω, we
update the 3D rotation as

R ← e[Δω]×R (10)

which ensures that at all times our current esti-
mate of R is an element of the Lie group SO(3).
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Example Applications

In this section a representative sample of applica-
tions based on estimation on the Lie algebra are
presented.

Averages A problem of interest is the mean
or average of a number of 3D rotations
{R1, · · · ,RN }. Analogous to the definition of
the mean in vector spaces as the variational
minimizer, for estimating the intrinsic average,
we can define the minimization problem as

min
R

f (R) =
N∑

i=1

d2(Ri ,R) (11)

where d(., .) is the intrinsic metric on SO(3) [2].
If all rotations Ri lie within a ball of radius less
than π

2 , it can be shown that the intrinsic average
approach will converge [3]. In practice we often
have statistical outliers in the observations, i.e.,
some Ri could be grossly incorrect. In such a
scenario, the cost function can be made robust to
outliers using an appropriate loss function [4, 5].
We also note that while Eq. 9 states a second-
order approach, the methods described in [2, 4]
only use a first-order gradient estimate in the
optimization.

When describing the statistical properties of
a population or set of observations, we need to
capture different modes of variation using meth-
ods such as principal component analysis. For
articulated or deformable shapes, this translates
to distributions on Lie groups. In computational
anatomy, Lie groups are used in characterizing
statistical variations in medially-defined anatomi-
cal objects such as kidneys [6]. A similar analysis
of variability in human body shape is presented
in [7].

Motion Averaging In structure-from-motion,
given feature correspondences across many
images, we estimate both 3D camera motions and
3D structure points. In recent years the approach
of rotation averaging (more generally motion
averaging) has been used for this problem.

Consider a viewgraph representing a network
of camera-camera relationships. Given relative
rotations Rij for available edges, we seek the
vertex rotation values R = {R1, · · · ,RN } using
the consistency relationship Rij = RjR

−1
i

that needs to be satisfied. This translates to a
minimization problem in a least squares sense,
i.e.,

min
R

∑
(i,j)∈E

d2(Rij ,RjR
−1
i ).

This is the approach proposed in [2], and a robust
version is in [4]. Given the individual rotation
estimates, a number of approaches are available
to recover camera translations as well as the 3D
structure. A similar Lie algebra based motion
averaging on SE(3) can also be developed for 3D
registration problems.

Visual Tracking and Servoing A problem of
visual servoing is addressed in [8] where visual
feedback is used to drive the control of a robotic
arm to achieve a desired position. In this work, a
non-rigid contour is tracked using the Lie algebra
of affine transformations. In turn this is used
to drive the rigid motion (SE(3)) control of a
robotic arm. A key step in this process is the esti-
mation of an affine-to-robot Jacobian using the
Lie algebra se(3). Visual tracking and servoing
using a homography representation is proposed
in [9]. Here the Lie algebra sl(3) is used for
estimation of the updates for the homography.
Another work of relevance is [10].

Interpolation In many applications in control
or graphics, we wish to obtain a smooth trajec-
tory of intermediate motions given two or more
motions. This is achieved by smoothly interpo-
lating between an ordered set of SE(3) elements
in a manner analogous to splines in vector space
[11–14].

Further Reading The literature on Lie algebras
and Lie groups is enormous. Useful and acces-
sible introductions are available in [15–18]. Of
more direct relevance are the following volumes
written with computer vision and engineering
researchers in mind [19–21].
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Synonyms

Image-Based Rendering

Related Concepts

�Lumigraph
� Plenoptic Function
�Radiance

Definition

The light field is a function that describes the
amount of light in radiance along light rays trav-
eling in every direction through every point in
empty space.

Background

The term light field was coined in a paper by
A. Gershun [6] for studying surface illumination
with artificial lightings. A similar concept was
introduced to the computer graphics community
as the light field in [8] and lumigraph in [7]. The
motivation is to render new views or images of
objects or scenes from densely sampled images
previously taken to avoid building or capturing
complicated 3D models. Light field or lumigraph
rendering is a special representation of image-
based rendering (IBR), and they require either
no geometry [8] or limited geometry in terms of
depth maps [7]. The light field and lumigraph
are also four dimension (4D) simplification of the
plenoptic function for static scenes.
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Theory

In geometric optics, light propagation is modeled
as rays which travel in straight lines in free space.
The amount of light along a ray is measured in
radiance which is the power transmitted per unit
area perpendicular to the direction of travel, per
unit solid angle. It is denoted by l in watts (W)
per steradian (sr) per meter squared (m2). The
function that describes the radiance along light
rays traveling in every direction through every
point is called the plenoptic function.

A ray in free space can be parameterized by
three coordinates, x, y, and z and the elevation (θ )
and azimuth (φ) angles as shown in Fig. 1. There-
fore, for a static scene, the radiance of all the light
rays observed is a 5D function l(x, y, z, θ , φ),
which is a special case of the seven-dimensional
plenoptic function which also includes time and
wavelengths. Here, it is assumed that only the
three color components, instead of all the wave-
lengths, are of interest, and hence the dimen-
sion of wavelengths in the plenoptic function is
dropped.

If l(x, y, z, θ , φ) can be captured by an imaging
device, it is possible to select the required rays
from l(x, y, z, θ , φ) to obtain a projected image at
any location (x, y, z, θ , φ) as if a picture is taken
at this location. Very often, it is the exterior of
an object which is of interest, and therefore the
viewing locations can be restricted to the convex
hull of the object. In this case, the plenoptic
function can be captured by a digital camera,
which captures the rays at the viewing locations.
Since the radiance along rays in free space remain
constant, this one-dimensional redundancy in the
plenoptic function allows us to reduce it to the 4D
light field or lumigraph. The light field concept
can be similarly extended to time-varying or
dynamic scenes, which results in a 5D plenoptic
function.

Parameterization
The collection of light rays in a 4D static light
field can be parameterized in a number of ways
as shown in Fig. 2. A commonly used parameter-
ization is the two-plane parameterization, where

a light ray in the light field is parameterized as
its intersections or coordinates with two parallel
planes, which are denoted by (u, v) and (s, t).
Usually, one of the plane, say the (u, v) plane,
is chosen as the camera plane where images are
to be taken. All the rays passing through a given
point in the (u, v) plane will then correspond to an
image taken by a camera at that location, which
can be parameterized by the image coordinate
(s, t). Therefore, (s, t) is usually called the image
plane, or vice versa.

Both the light field in [8] and the lumigraph
[7] use the parallel plane parameterization due
to its simplicity. Other possible parameterizations
include intersections with surface of a sphere
or the intersections between a plane/sphere with
a convex surface. These parameterizations can
be further simplified by restricting the camera
locations to line, line segments, circle, circular
arc, etc. to reduce hardware complexity of the
capturing system. This gives rise to a wide range
of image-based representations specified by dif-
ferent camera geometry. See [19] for a review up
to 2007 and a quick summary in the image-based
rendering and plenoptic function sections.

For time-varying or dynamic scenes, simi-
lar parameterization can be employed. This can
be done by an array of video cameras or spe-
cially design capturing devices. It can be shown
from the sampling analysis of light field [3]
that geometry information can be employed to
reduce the sampling rate of light field. Therefore,
recent research has focused on the estimation of
geometry of objects using stereo or multiview
vision techniques, special depth sensing devices
and lighting techniques as in photometric stereo.
This has been shown to improve significantly the
rendering quality as illustrated in lumigraph, pop-
up light [18] and object-based plenoptic videos,
etc. If complete 3D model can be reconstructed,
interactive relighting is also possible [24].

Creating/Capturing Light Fields
Light fields can be created by rendering 3D
models using computer graphic techniques
or captured naturally using imaging devices
such as cameras. The former can be used
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Light Field, Fig. 1 Light
field describes the amount
of light in radiance along
light rays traveling in every
direction through every
point in empty space
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Light Field, Fig. 2 (a) 2-plane and (b) spherical parameterization of light fields

to record densely spaced images of a very
complicated scene rendered off-line by computer
graphic techniques. New novel views can then
be rendered in real-time using the recorded
image-based representations. In [22], real-
time relighting of panoramas has also been
demonstrated. For real and static scenes, it can
be captured by placing a digital still camera
at the desired locations of the image-based
representations using a robot arm or at general
locations using unstructured lumigraph rendering
[2]. The light field can also be captured using
specially designed cameras called the plenoptic
cameras [1], where an optical element, such
as a lenticular lens array [1, 14] or a coded
aperture [10, 21], is placed in front of a sensor
array to map rays from different directions at a
location to neighboring pixels in the senor array.
In other words, the recorded images consist of
an array of macro-pixels; each contains a set of

neighboring pixels recording rays from a given
set of directions. By integrating appropriately
these 4D samples in a light field, one can
approximate the view that would be captured by
a camera having a finite aperture. In the handheld
light field camera [14], an array of microlens
is placed in front of the sensors of a handheld
digital camera, and photographs can be refocused
after they are taken, a process called synthetic
aperture photography. In principle, a light field
video can be obtained in a similar manner.

To achieve a larger disparity, multiple cam-
era systems are frequently used, especially in
dynamic scenes. Much research effort has been
devoted to the construction of 2D camera arrays
(see the section of plenoptic function for more
references in capturing systems). To simplify
the capturing hardware, light field captured on
line segments and circular arc have also been
reported.
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Sampling
An important problem in capturing, display, and
rendering light fields is “how many samples of
the plenoptic function and how much geometrical
and textural information are needed to gener-
ate a continuous representation of the plenoptic
function?” This problem was first studied for the
light fields in [3] using the concept of Fourier
transform, which provides valuable insight in the
design of IBR systems and 3D display.

Assuming (u, v) and (s, t) are respectively the
image and camera planes as in the lumigraph [7,
19]. Let l(u, v, s, t) represent the continuous light
field, p(u, v, s, t) the pattern in sampling the light
field, and r(u, v, s, t) the combined filtering and
interpolating low-pass filter. The output image
after reconstruction is then given by

i (u, v, s, t) = r (u, v, s, t)

∗ [l (u, v, s, t) p (u, v, s, t)] , (1)

where * represents the convolution operation.
Taking the Fourier transform of (Eq. 1), one gets

I (u, v, s, t) = R (u, v, s, t) [L (u, v, s, t)

∗P (u, v, s, t)] ,

(2)

where I, R, L, and P denote, respectively, the
Fourier transforms of i(u, v, s, t), r(u, v, s, t),
l(u, v, s, t), and p(u, v, s, t). It is important
to study how the spectrum L(u, v, s, t) varies
with the geometry of the scene, from which the
minimum sampling density and the reconstruc-
tion filter r(u, v, s, t) can be determined. For
Lambertian surfaces, the radiance received at the
camera position (s, t) is given by

l (u, v, s, t) = l

(
u − f s

z (u, v, s, t)
,

v − f t

z (u, v, s, t)
, 0, 0

)
(3)

with Fourier transform L (�u,�v,�s,�t ) =∫
x∈R4 l (u, v, s, t) e−j�T xdx where x = (u, v,

s, t) and � = (Ωu, Ωv , Ωs, Ω t) and f is the
focal length. For rectangular sampling, lattice,
p (u, v, s, t) = ∑

n1,n2,n3,n4∈Z

δ (u − n1�u) δ (v−
n2�v) δ (s − n3�s) δ (t − n4�t) where δ(·) is
the Dirac delta function and �u, �v, �s, and
�t are the corresponding sampling intervals. The
sampled light field lS(u, v, s, t) is

lS (u, v, s, t) = l (u, v, s, t)
∑

m1,m2,m3,m4∈Z

δ (u − n1�u) × δ (v − n2�v) δ (s − n3�s) δ (t − n4�t) ,

(4)

and its Fourier transform is

LS (�) =
∑

m1,m2,m3,m4∈Z

L

(
�u − 2πm1

�u
,�v − 2πm2

�v
,�s − 2πm3

�s
,�t − 2πm4

�t

)
. (5)

It can be seen that LS(�) consists of replicas
of the original spectrum, which are shifted to the

4D grid points
(

2πm1
�u , 2πm2

�v
,

2πm3
�s

, 2πm4
�t

)
. For

scene with a constant depth z0, it is noted from
(Eq. 3) that l(u, v, s, t) is a shifted version of the
image l(u, v, 0, 0) = l′(u, v) at (s, t) = (0,0) by an

amount (−fs/z0, −ft/z0, 0, 0). Consequently, L(�)
is simplified to

L (�) = 4π2L′ (�u,�v) δ

×
(

f

z0
�u,�s

)
δ

(
f

z0
�v,�t

)
, (6)
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where L′(Ωu, Ωv) is the 2D Fourier transform
of l′(u, v). Equation (Eq. 6) suggests that the
projection of L(�) on the (Ωv , Ω t) (Ωu, Ωs)
plane lies on a straight line passing through the
original with a slope of −z0/f (Fig. 3a). After
sampling, the spectrum will be shifted to grid

points
(

2πm1
�u , 2πm2

�v
,

2πm3
�s

, 2πm4
�t

)
(Fig. 3b). If

zmin and zmax denote the minimum and maximum
depth values of the scene, then the spectrum
will be bounded by the two lines with slopes
−zmin/f and −zmax/f, respectively, as shown in
Fig. 3c. From Fig. 3b, the minimum interval,
by which the replicas of spectral support can
be packed without overlapping or aliasing,

is 2πK�ν f
(

1
zmin

− 1
zmax

)
, where K�ν is the

maximum frequency of the light field in v plane,
which depends on the maximum frequency of
texture variations Bv and the resolutions of the
sampling camera 1/�v and the rendering camera
1/δv as K�ν = min (Bv, 1/ (2�v) , 1/ (2δv)).
The maximum camera spacing is thus K�ν =
1/
(

2πK�vf
(

1
zmin

− 1
zmax

))
. To reduce the

sampling rate and avoid dense sampling, the
value of K�ν can be decreased by reducing
Bv and 1/(2�v), through pre-filtering the light
field images, to the desired rendering resolution.
Similar results apply to the (Ωu, Ωs) plane.
A more thorough discussion on the effect of
geometry on this minimum sampling density or
rate can be found in [3, 19]. It was found that the
sampling rate can be reduced by decomposition
of the light fields into depth layers.

Ideally, if the depth map can be computed
from stereo or multiview matching algorithm,
then the number of images required can be
significantly reduced. Despite considerable
advances in depth estimation algorithm, finding
correspondences in multiple images is still
fundamentally limited by textureless region,
reflections, and large variations of the imaging
content itself. In pop-up light field [18], a sparse
light field is modeled using a set of coherent
layers with each layer being a collection of
corresponding planar regions in the light field
images with the help of an easy to use user
interface. The number of layers, segmentation,
and matting are done with the help of user

interface so that the user can supply the
information needed for refining the above
processes. Each coherent layer can then be
rendered free of aliasing by itself or with other
background layers.

The effects of occlusion, and lighting and
reflection on light field spectrum can be found in
[4, 16].

Compression
Since adjacent light field images appear to be
shifted relative to each other, there is considerable
redundancy in the 4D data set, which can be
compressed to save storage and transmission
bandwidth. Earlier approaches on light field
or lumigraph compression were mostly based
on conventional pixel-based methods such as
vector quantization (VQ) [8, 20], discrete cosine
transform (DCT)-based coding, and wavelet
coding. Subsequently, disparity compensation
prediction (DCP) [11], model-based/model-
aided, and object-based methods were proposed
to improve the compression ratio and rendering
quality. In DCP, the light field images is divided
into I- (intra) and P- (predicted) pictures, and
the P-pictures can be predicted by disparity
compensation from the nearest encoded I-
pictures, which are evenly distributed. In [23],
a multiple reference frame (MRF) prediction
coding method was proposed for lumigraph
compression. Anchor frames (A frames) which
are similar to the I-pictures are used as reference
for predicting the remaining P-images, and a
two-level index table is incorporated into the bit
stream for quick access to individual picture and
macroblocks. This helps to simplify the “random
access problem” to improve rendering speed
(see the image-based rendering section for more
details and references). A caching stream is also
incorporated to speed up the rendering.

Model-based coding makes use of the scene
geometry to convert the images from a spherical
light field to view-dependent texture maps, which
are more amenable to coding using a wavelet-
based set partitioning in hierarchical trees (SPI-
HTs) 4D codec. Model-aided predictive coding
makes use of geometry information to morph
and predict new views from already encoded
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Light Field, Fig. 3 Spectral support of light field: (a)
spectrum of a light field with constant depth on the (v, t)
plane, (b) spectrum after sampling, and (c) spectrum of a
light field signals with depth bounded by zmin and zmax.

The mean depth is z0; (d) Optimal reconstruction filter
(black parallelogram in the middle) and optimal spacing
of spectrum without aliasing

images, and the prediction residuals are encoded
using DCT-based coding. Experimental results
showed that the model-aided approach is more
robust to variations in the geometric models [12].
In object-based light field compression [15], the
light field images are segmented into image-
based objects, or IBR objects in short, each with
its image sequences, depth maps, and other rele-
vant information such as shape information. They

are compressed using an MPEG-4-like compres-
sion algorithm so as to provide content-based
functionalities such as scalability of contents,
error resilience, and interactivity with individual
IBR objects. Rendering scene with depth layers
or IBR objects also reduce the artifacts due to
depth discontinuities. For more information of
IBR and light field compression, see also the
survey [5, 19].
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Applications

Like the plenoptic function, light field serves an
important concept for describing visual infor-
mation in our world. Its sampling analysis also
serves as a basic for designing light field cam-
eras and automultiscopic displays for capturing
and displaying such high-dimensional function,
respectively. Light fields have also found many
other applications in computational photography,
microscope [9], glare reduction in camera [17],
3DTV [13], etc.

Open Problems

Since the light field is a special case of the
plenoptic function, most of their open problems
are similar. For instance, the efficient capturing
and processing of light fields are important prob-
lems in visual computing and vision research.
A detailed analysis of the light field for com-
plicated scene is difficult because the function
itself may not even be bandlimited. A general
analysis involving all these components is again
difficult. Moreover, how to achieve high-quality
rendering and display light fields with a wide
range of viewpoints in large-scale environmental
modeling remains open.
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Coefficients

� Fresnel Equations

Light Transport
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Synonyms

Reflectance field

Related Concepts

� Image-Based Lighting
� Interreflections
� Inverse Light Transport
� Inverse Rendering

Definition

Light transport describes how the light emitted
from light sources propagates into a 3D scene
and bounces between object surfaces. The light
transport in a scene can also be presented by a
reflectance field that directly encodes the map-
ping between the incident light field to the out-
going light field of the scene caused by the light
transport.

Background

The physical process of light transport in a 3D
scene has been well studied in computer graphics

since 1980s. In theory, the light transport in a
scene can be formulated by the rendering equa-
tion [5]. In practice, simulating the light transport
in a 3D scene (i.e., global illumination effects) is
the essential task of various rendering techniques
in computer graphics. To this end, a set of global
illumination algorithms, such as Monte Carlo
ray tracing, photon mapping, and radiosity, have
been developed for efficiently simulating the light
transport in a synthetic 3D scene and generating
photo-realistic images of the scene from arbitrary
viewpoints [2]. These rendering techniques can
faithfully reproduce all kinds of light transport
effects with the high computational cost and
long rendering time. Later, Precomputed Radi-
ance Transfer (PRT) techniques [9,10] have been
developed for rendering the global illumination
effects of a synthetic scene in real time.

With the development of computational imag-
ing devices, some methods [4,11] directly capture
the light transport process in a real scene via
ultrafast imaging.

The light transport in a 3D scene can also be
modeled as an 8D reflectance field [1], which
represents the light transport from incident light
field to outgoing light field of the scene. Com-
pared to physically based representation (i.e., the
rendering equation), this image-based represen-
tation requires no scene modeling and thus can
be directly captured from real world scenes and
used for rendering images of the scene under new
lighting conditions. Based on this representation,
a set of image-based relighting techniques [8,12,
14] have been developed for efficiently capturing
the reflectance field of a real scene and generating
images of the scene under new illuminations.

Theory

Light transport describes the light propagation
in a 3D scene, where the light emitted from
a light source passes through the empty space
along a ray and is scattered toward different
directions after hitting a surface point. For each
scattered ray, this process is repeated until the
light is absorbed by the scene surfaces or reaches
the image plane of a virtual camera. The light
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transport in the scene can be described by the
following rendering equation: [5]

L(x, x′) = Le(x, x′)

+
∫

S

ρ(x, x′, x′′)G(x′, x′′)L(x′, x′′)dx′′ (1)

where L(x, x′) is the radiance from a surface
point x′ to another point x, Le(x, x′) is the
light emitted from x′ toward x, ρ(x, x′, x′′) is
the bidirectional reflectance distribution function
(BRDF) (i.e., surface reflectance) at x′, L(x′, x′′)
is the incident light from another surface point x′′
in the scene to x′, and G(x′, x′′) is the geometry
factor between x′ and x′′. The integration is
performed over all surface points S. Please refer
to [5] for more details.

The rendering equation can be solved in two
ways. One is to integrate the light transport along
all possible paths, each of which starts from the
light source and ends with the path (x′, x) and
has arbitrary number of bounces in between:

L(x, x′) = Le(x, x′)

+
∑
P

Pi(x, x′, . . . , x0, xe))Le(x0, xe)

(2)

where Le(x0, xe) is the light emitted from
the light source xe to a surface point x0,
Pi(x, x′, . . . , x0, xe) represent the probability
of the light propagation path from xe to x, and P

is all the possible light paths in the scene.
The other solution is to solve the rendering

equation with the Neumann series: [5]

L(x, x′) = Le + MLe + M2Le

+ M3Le . . . + MnLe . . . (3)

which is the sum of the radiance transfers from x

to x′ with different number of bounces between
the surfaces. Specifically, Le refers to the direct
radiance transfer without any bounce, MLe

represents the radiance transfer with one bounce,
and MnLe is the radiance transfer with n bounces
[5].

The light transport in a scene can also be
formulated as an 8D reflectance field: [1]

R(ui , vi , θi , φi, ur , vr , θr , φr) (4)

where (ui , vi , θi , φi) represents the incident light
field and (ur , vr , θr , φr) represents the outgoing
light field of a scene or object. The ray in each
light field is parameterized by a point (u, v) on a
virtual cube surrounding the scene and its direc-
tion (θ, φ). Since capturing this high-dimensional
reflectance field is very expensive, many methods
simplify this 8D reflectance field into a lower-
dimensional one. This can be achieved by fixing
the viewpoint and thus simplifying the outgoing
4D light field to a 2D image (ui , vi) or simplify-
ing the 4D incident light field as 2D directional
lighting or a set of point light sources that lie in a
2D plane.

Based on the reflectance field representation
of the light transport in a scene, image-based
relighting can be formulated by the following
matrix vector multiplication: [8]

b = T · l (5)

where b is a vector of the outgoing radiance
observed from an image with m pixels, l is
illumination condition represented by a vector of
incident radiance from n light sources, and T is
the m × n light transport matrix that records the
light transport from n light sources to m camera
pixels. The light transport matrix T represents
discrete samples of the reflectance field of the
scene. Since the 8D reflectance field is difficult
to be captured and processed, most of image-
based relighting methods focus on 4D reflectance
field with a fixed viewpoint and light sources that
lie in a 2D plane or hemisphere. The core task
of image-based relighting is to acquire the light
transport matrix T from the scene.

A set of methods [1, 13] directly measure
the light transport matrix from the scene, which
always require tens of thousands of images taken
under the controlled lighting. Other methods
exploit the sparsity [8] or coherence [7, 12]
of the light transport matrix to reduce the
number of images required for constructing
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the light transport matrix. Recently, the deep
neural network-based methods [14] exploit the
coherence of the light transports among various
scenes for image-based relighting.

Image-based relighting techniques have been
successfully used in movie production for relight-
ing the performance of real characters [13].
For synthetic 3D scenes, many-light methods
[3] model the global illumination with the
same matrix-vector multiplication formulation
and leverage the sparsity or coherence of light
transport matrix for speeding up the rendering.

Open Problems

How to efficiently capture the full 8D reflectance
field is still an open and challenging problem in
computer graphics and computer vision. Due to
the high computational cost, simulating the light
transport of a 3D scene in real time is still an open
problem in computer graphics.

Experimental Results

For light transport simulation, the Mitsuba 2.0
(http://www.mitsuba-renderer.org/) and PBRT
(https://www.pbrt.org/) provide good frameworks
and implementations of many global illumination
algorithms.

For image-based relighting, the source code
or data of several methods (e.g., [7, 14]) can be
found in their project pages.
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Definition

Line drawing labeling is an assignment of labels
to lines in a line drawing according to the
interpretation of the line drawing as a three-
dimensional scene.

Background

Machine interpretation of a line drawing as a
three-dimensional scene is one of the fundamen-
tal problems in computer vision. However, a line
drawing is a collection of line segments in the
plane and has no direct information about three-
dimensional structures. Line drawing labeling is
an effective method to find candidates of interpre-
tations as three-dimensional scenes. Hence, this
method is used as the first step for interpreting a
line drawing. Once the labeling is obtained, the
associated candidate of interpretation is analyzed
in details to judge whether it is a correct interpre-
tation.

Theory

The most basic version of line drawing labeling
is an interpretation of a line drawing as a poly-
hedral scene viewed from a general angle. This
framework is based on the next four assumptions.

Assumption 1 A scene is a collection of opaque
polyhedrons.

Assumption 2 The view point is in general posi-
tion in the sense that no accidental alignment hap-
pens in the picture plane (for example, nonparal-
lel edges do not fall into parallel lines, or non-
collinear edges do not fall into collinear lines).

Assumption 3 Every vertex of a polyhedron is
incident to exactly three faces.

Assumption 4 Visible edges only are drawn in
the line drawing.

Under these assumptions, lines in the line
drawing are classified into three categories.

1. Convex line. An image of an edge forming a
ridge whose two side faces are both visible;
this line is represented by “+” label.

2. Concave line. An image of an edge forming a
valley; this line is represented by “−” label.

3. Silhouette line. An image of an edge forming a
ridge, one of whose side faces is invisible; this
line is represented by an arrow label so that the
associated faces are to the right of the arrow.

Then, [1] showed that the allowed combi-
nations of labels around junctions are restricted
to only 12 types shown in Fig. 1. Clowes [2]
found essentially the same property with different
notations.

An assignment of the three labels, one label
to each line, is called a consistent labeling if
the resulting combinations around the vertices
all belong to Fig. 1. A line drawing is called
labelable if it admits a consistent labeling. Then,
the next property holds.

Property 1 If a line drawing does not admit a
consistent labeling, it cannot represent a three-
dimensional scene under Assumptions 1–4.

For example, the line drawing in Fig. 2a does
not admit a consistent labeling, and hence it
cannot represent a polyhedral scene. On the
other hand, a consistent labeling sometimes
corresponds to a correct interpretation as in
Fig. 2b, but sometimes does not correspond to
a correct interpretation as in Fig. 2c.

To find a consistent labeling is in general a
hard problem; actually it was proved to be NP-
hard by [3]. On the other hand, for many line
drawings observed in ordinary scenes, consistent
labeling can be found efficiently by a constraint
propagation method [4] and a relaxation method
[5].

The list of allowed combinations of labels
in Fig. 1 is called a junction dictionary; this is
because a line drawing is a language to convey
solid information, and the list in Fig. 1 can be
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considered as a dictionary to understand this
language.

The junction dictionary in Fig. 1 is obtained
under Assumptions 1–4. If some of the assump-
tions are changed, different sets of allowed com-
binations are obtained. Waltz [6] constructed a
junction dictionary for line drawings with shadow
lines and cracks. Sugihara [7] constructed a
dictionary for engineering line drawings in which
hidden lines are represented by broken lines.
Kanade [8] constructed a dictionary for origami
world in which the objects are made of thin
sheets such as paper. Sugihara [9] considered
a junction dictionary for range image in which
the line categories are known from range data,
and hence the dictionary is used for predicting
missing edges.

Open Problems

It is known to be NP-hard to find a consistent
labeling in general. It is natural to ask what

subclasses of pictures can admit polynomial-time
algorithms, but it is still open.

Figure 1 is the junction dictionary for the sim-
plest world, defined by Assumptions 1–4. If we
change the assumptions, the associated junction
dictionary also changes. It is open to construct
the junction dictionaries for other worlds and
to evaluate their performance. Important worlds
include, to mention a few, the world of the three-
view drawings used in engineering, and the world
with curved surface objects.

Application

A consistent labeling gives a candidate of inter-
pretation of a line drawing as a polyhedral scene.
Usually, the set of all consistent labelings is
small, and hence the line drawing labeling can
effectively prune the possible candidates of inter-
pretation for more detailed analysis. Thus, it
can be a first step for machine interpretation of
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line drawings. A method for judging whether
a consistent labeling corresponds to a correct
interpretation was established by [10].
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Synonyms

LP

Definition

A linear programming problem (also termed
linear program) is an optimization problem to

minimize or maximize a linear objective function
subject to linear equality/inequality constraints.
Linear programming, often abbreviated as LP,
is a methodology initiated by G. Dantzig, J. von
Neumann, L. V. Kantorovich, and others in the
1940s [1–10]. It includes:

– Modeling techniques to formulate real-world
problems into linear programs

– Theory about the mathematical structure of
linear programs

– Algorithms for numerically solving linear pro-
grams

Background

For theoretical treatment and software develop-
ment, it is convenient to use a specific form to
describe linear programs. Often adopted for use
is:

Minimize c�x

subject to Ax = b

x ≥ 0,
(1)

called the standard form, although the terminol-
ogy varies in the literature. It should be clear that:

– An instance of the optimization problem is
specified by a matrix A and vectors b and c. It
is assumed that A is an m×n matrix, b is an m-
dimensional vector, and c is an n-dimensional
vector.

– Symbol � means the transpose, and c�x

denotes the inner product of c and x, that
is, c�x =∑n

j=1 cj xj .
– The inequality between vectors means

componentwise inequality; x ≥ 0 for x =
(x1, . . . , xn) means xj ≥ 0 for j = 1, . . . , n.

– The variable x, an n-dimensional vector, is
the variable for optimization. It is required to
find an optimal solution x that minimizes the
objective function c�x under the equality con-
straint Ax = b and the inequality constraint
x ≥ 0.

Any linear program can be put in the
standard form by introducing auxiliary variables,
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changing maximization to minimization, etc. The
transformation to the standard form, however, is
not unique.

Example 1 A linear program of the form

Minimize c�x subject to Ax ≥ b, x ≥ 0
(2)

can be put in the standard form (1) by rewriting
Ax ≥ b to Ax − s = b, s ≥ 0 with a vector
s = (s1, . . . , sm) of slack variables s1, . . . , sm.
Conversely, a linear program in the standard form
(1) can be recast into the form of (2) by rewriting
Ax = b to Ax ≥ b, −Ax≥ − b. It is mentioned
that (2) is often called the canonical form.

Example 2 A linear program of the form

Maximize c�x subject to Ax ≤ b (3)

can be put in the standard form (1) as follows.
First, Ax ≤ b is rewritten as Ax + s = b, s ≥ 0.
Then, the vector x of free variables, which are
free from sign-constraint, is expressed as x =
y−z with y ≥ 0 and z ≥ 0. Finally, maximization
is turned into minimization by changing the sign
of the objective function. The resulting linear
program is

Minimize − c�y + c�z

subject to Ay − Az + s = b, y, z, s ≥ 0,

which is in the standard form (1) with A, b, c

replaced by

Ã = [A −A I
]
, b̃ = b,

c̃ = [−c� c� 0�]� . (4)

Given a linear program, say, in the standard
form (1), a vector x is called a feasible point or a
feasible solution if it satisfies all the constraints.
In the literature of optimization, “solution” is
often used as a synonym of “point,” and there-
fore, “solution x” may or may not be a “solu-

tion” to the given optimization problem, the latter
being termed an optimal solution. By defini-
tion, an optimal solution minimizes the objective
function among all feasible solutions (points).
A linear program is said to be feasible if it has a
feasible solution; otherwise, it is infeasible. The
set of feasible solutions is called the feasible
region. For instance, S = {x | Ax = b, x ≥ 0} is
the feasible region of the problem (1).

A linear program is said to be unbounded if
the objective function can become indefinitely
small toward −∞; otherwise, it is bounded. It
is a fundamental fact in linear programming
that a bounded problem has an optimal solution,
which means that there exists a feasible solution
x∗ ∈ S such that c�x∗ = inf{c�x | x ∈ S},
where S denotes the feasible region. Note
that this is not the case in nonlinear opti-
mization; for example, no x∗ exists such that
exp(−x∗) = inf{exp(−x) | x ≥ 0}.

Theory

In the standard form (1), it can be assumed,
without loss of generality, that the m × n matrix
A has independent rows. This implies that m ≤ n

and rank A = m. Note b ∈ Rm, c ∈ Rn, and
x ∈ Rn, where R denotes the set of real numbers.

Let B be the set of column numbers that
corresponds to a basis of the column vectors of A

and N be the set of remaining column numbers;
B ∩ N = ∅ and B ∪ N = {1, . . . , n}. The m × m

submatrix of A corresponding to B is denoted as
AB , and, similarly, the m × (n − m) submatrix
corresponding to N is AN . If B = {1, . . . , m}
and N = {m + 1, . . . , n}, for example, then A =
[AB AN ]. Accordingly, the vector x is partitioned
into two parts: x = (xB, xN) with xB=(xi | i∈B)

∈ Rm and xN = (xj | j ∈ N) ∈ Rn−m. Variables
xi contained in xB are basic variables, and those
in xN are nonbasic variables.

The equality constraint Ax = b can be rewrit-
ten as

xB + A−1
B ANxN = A−1

B b, (5)

which is satisfied by



762 Linear Programming

x = (xB, xN) = (A−1
B b, 0). (6)

A solution x induced from a basis B in this man-
ner is called a basic solution. The basic solution
x is feasible if

A−1
B b ≥ 0. (7)

A basic feasible solution means a basic solution
that is feasible. A basis B is called a feasible basis
if it satisfies the condition (7). Two different bases
can possibly determine the same basic solution
(6). This is called degeneracy.

The following theorem reveals a combinatorial
nature of linear programs. Note that, for a given
linear program, there exist only finitely many
bases, at most

(
n
m

) = n!/(m!(n − m)!) in number.

Theorem 1 For a linear program in (1), the
following hold:

(1) A basic feasible solution exists if it has a
feasible solution.

(2) A basic optimal solution exists if it has an
optimal solution.

With reference to a basis B, x and c are
represented as x = (xB, xN) and c = (cB, cN).
The basic solution corresponding to B is given by
(6). It follows from (5) that

xB = A−1
B b − A−1

B ANxN . (8)

Then

f = c�x = c�
B xB + c�

NxN

= c�
BA−1

B b + (c�
N − c�

BA−1
B AN)xN

= f + c�
NxN, (9)

which is an expression of the objective function
as a function in xN , where

f = c�
BA−1

B b = c�
BxB = c�x, (10)

c�
N = c�

N − c�
BA−1

B AN. (11)

Expressions (8) and (9) are reformulations of
the equality constraint and the objective function,
respectively, in terms of the nonbasic variable xN

at a basic solution. They are often referred to as
the basic forms.

With the notation

aij=(A−1
B AN)ij , bi=(A−1

B b)i (i ∈ B, j∈N)

(12)

for the coefficients in (8), and b = (bi | i ∈ B) ∈
Rm, the condition (7) for the feasibility of basic
solution x can be rewritten as

bi ≥ 0 (i ∈ B) [i.e., b ≥ 0 ]. (13)

The modified cost vector c = (cB, cN) =
(0, cN) ∈ Rn is defined using cN in (11).

Theorem 2 Let B be a feasible basis for a linear
program (1). Then the basic solution x corre-
sponding to B is an optimal solution if

cj ≥ 0 (j ∈ N) [i.e., cN ≥ 0 ]. (14)

Proof. Since xN ≥ 0 for any feasible solution,
it follows from cN ≥ 0 and (9) that f = f +
c�
NxN ≥ f . ��

A feasible basis B that satisfies the condition
(14) is called an optimal basis. Theorem 2 states
that an optimal basis induces an optimal solu-
tion; note, however, that, in case of degeneracy,
not every basis associated with an optimal basic
solution meets the condition (14).

Suppose that B is a feasible basis that is not
optimal. As the optimality condition (14) fails at
B, the set J = {j ∈ N | cj < 0} is nonempty.
Choose a nonbasic variable xj∗ with j∗ ∈ J and
consider increasing xj∗ from zero to a positive
value, while fixing other nonbasic variables to
zero. It is expected that the objective function
decreases since cj∗ is negative.

As for the equality constraint, (8) is written
componentwise as

xi = bi −
∑
j∈N

aij xj (i ∈ B). (15)
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In increasing xj∗ , the basic variables xi (i ∈B)

can be determined by (15) to maintain the equal-
ity constraint.

For the inequality constraint, define I = {i ∈
B | aij∗ > 0}. To maintain xi ≥ 0 for i ∈ I ,
the value of xj∗ must be chosen as xj∗ ≤ bi/aij∗ ,
whereas any nonnegative value of xj∗ results in
xi ≥ 0 for i 	∈ I . Therefore, if I = ∅, the given
linear program is unbounded. Hence, suppose
I 	= ∅. With

ξ = min
i

{bi/aij∗ | aij∗ > 0} (≥ 0), (16)

a new point x̂ is defined by

x̂j∗ = ξ, x̂i = bi − aij∗ξ (i ∈ B),

x̂j = 0 (j ∈ N \ {j∗}),

which is a basic feasible solution associated with
another basis

B̂ = (B \ {i∗}) ∪ {j∗},

where i∗ designates the index i that attains the
minimum on the right-hand side of (16). This
basis B̂ is a neighbor to B in the sense that
|B̂ \ B| = 1. It is remarked that ξ = 0 means
B 	= B̂ and x = x̂ (degeneracy).

The objective function is nonincreasing, since
cj∗ < 0, ξ ≥ 0, and

f (x̂) − f (x) = c�(x̂ − x) = cj∗ξ.

It is strictly decreasing if ξ > 0 (i.e., in a
nondegenerate case).

This is the fundamental idea of the simplex
method, which repeats updating bases as above
until it finds an optimal basis. So long as
no degeneracy occurs, the objective function
decreases monotonically, and the minimum
value is reached in finite steps. In the case of
degeneracy, however, it can happen that distinct
bases corresponding to the same basic solution
are visited infinitely many times – a phenomenon
called cycling. A judicious choice of j∗ and i∗
avoids cycling.

Duality

For a linear program in the standard form
(1) described by an m × n matrix A, an
m-dimensional vector b, and an n-dimensional
vector c, another linear program may be
considered:

Maximize b�y

subject to A�y ≤ c.

This is called the dual problem; in contrast, the
original problem (1) is referred to as the primal
problem. The pair of linear programs read as

Problem P Problem D
Minimize c�x Maximize b�y

subject to Ax = b subject to A�y ≤ c.

x ≥ 0
(17)

Since any linear program can be put in the
standard form, the dual of the standard form
equivalent to Problem D, which is called the dual
of Problem D, may be conceived. Problem D is
equivalent to the standard form (1) with A, b, and
c replaced by

Ã = [A� −A� I
]
, b̃ = c,

c̃ = [−b� b� 0�]� ;

see (4) in Example 2 and replace A→A�, b→c

and c → b. The dual problem of Problem D is

Maximize c�ỹ subject to

⎡
⎣

A

−A

I

⎤
⎦ ỹ≤

⎡
⎣

−b

b

0

⎤
⎦,

which can be rewritten with x̃ = −ỹ as

Minimize c�x̃ subject to Ax̃ = b, x̃ ≥ 0.

This coincides with Problem P. In this sense, the
linear program dual to the dual problem coincides
with the primal problem.

Example 3 For the canonical form, the dual pair
is given as
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Minimize c�x Maximize b�y

subject to Ax ≥ b subject to A�y ≤ c

x ≥ 0 y ≥ 0.

The linear programming duality is stated in
the following theorem, where the feasible regions
of Problems P and D in (17) are denoted as

P = {x ∈ Rn | Ax = b, x ≥ 0},
D = {y ∈ Rm | A�y ≤ c}. (18)

In (19) below, we follow the convention that the
infimum over an empty set is equal to +∞ and
the supremum over an empty set is equal to −∞.

Theorem 3 For the dual pair of linear programs
in (17), the following hold.

(1) [Weak duality] c�x ≥ b�y for any x ∈ P

and y ∈ D.
(2) [Strong duality] If P 	= ∅ or D 	= ∅, then

inf{c�x | x ∈ P } = sup{b�y | y ∈ D}.
(19)

This common value is finite if and only if both
P and D are nonempty, and in that case, the
infimum and the supremum are attained by
some x ∈ P and y ∈ D, respectively.

Proof. (1) For x ∈ P and y ∈ D, it holds
that y�b = y�Ax ≤ c�x. The essence of this
theorem lies in (2), which can be derived from a
fundamental fact known as Farkas’ lemma. ��

An optimality criterion in terms of comple-
mentarity can be derived from the duality theo-
rem above. For any x ∈ P and y ∈ D, it holds
that

c�x − b�y = c�x − y�Ax = (c − A�y)�x

=
n∑

j=1

(c − A�y)j xj ≥ 0. (20)

Here, the inequality “≥ 0” turns into equality “=
0” if and only if the complementarity condition:

xj = 0 or (A�y)j = cj for each j = 1, . . . , n

(21)

is satisfied. Hence, (21) is sufficient for the opti-
mality of x and y. The necessity follows from
Theorem 3(2). Hence, follows the next theorem.

Theorem 4 Assume x ∈ P and y ∈ D. Then
x is optimal for Problem P and y is optimal
for Problem D if and only if they satisfy the
complementarity condition (21).

Another implication of Theorem 3 is that solv-
ing Problem P is equivalent to finding (x, y) that
satisfies a system of linear equalities/inequalities:

Ax = b, x ≥ 0, c�x ≤ b�y, A�y ≤ c.

(22)

Thus, the duality theorem transforms the opti-
mization problem to a feasibility problem.

Integrality

Linear programming acquires combinatorial fla-
vors through integrality [9,11]. A linear program
described by integer data (an integer matrix A and
integer vectors b and c) may or may not have
an integer optimal solution. A major interest in
this context is under which condition an integer
optimal solution is guaranteed.

An integer matrix is totally unimodular if
every minor (subdeterminant) is equal to 1, −1,
or 0. Each entry of a totally unimodular matrix is
1, −1, or 0.

A typical example of a totally unimodular
matrix is the incidence matrix of a (directed)
graph. Let G = (V ,E) be a directed graph with
vertex set V and edge set E, where no self-loops
exist. The incidence matrix of G is a matrix such
that the row-set is indexed by V , the column-set
by E, and
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(v, e)-entry =
⎧⎨
⎩
+1 (v is the initial vertex of edge e)

−1 (v is the terminal vertex of edge e)

0 (otherwise),

where v ∈ V and e ∈ E.
The following theorem relates the total uni-

modularity of the coefficient matrix to the inte-
grality of optimal solutions of linear programs.
The set of integers is denoted as Z.

Theorem 5 Let A be a totally unimodular
matrix.

(1) If b is integral, Problem P in (17) has an
integral optimal solution x ∈ Zn, as long as
it has an optimal solution.

(2) If c is integral, Problem D in (17) has an
integral optimal solution y ∈ Zm, as long as
it has an optimal solution.

Algorithms

Algorithms for solving linear programs are
divided into three categories: the simplex method
[1, 2, 9], the interior-point method [12–18], and
the ellipsoid method [19]. The simplex method,
proposed by G. Dantzig, 1947, has long been the
standard algorithm. The interior-point method,
initiated by N. Karmarkar, 1984, is getting more
and more important. The ellipsoid method, due
to L. G. Khachiyan, 1979, is of theoretical
importance but of little practical value; it is
the first polynomial-time algorithm and has
deep implications in the theory of combinatorial
optimization.

Open Problems

The simplex method, with some pivoting rule,
is known to be a finite algorithm, but not a
polynomial-time algorithm. A major open prob-
lem is to find, if possible, a pivoting rule that
renders the simplex method a polynomial-time
algorithm.

The ellipsoid method is a polynomial-time
algorithm, but it is weakly polynomial in that the
running time depends on the size of the input
numerical data. Another major open problem is
to design a strongly polynomial-time algorithm,
which, by definition, runs in time polynomial
in the number of constraints and the number of
variables.
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Linguistic Techniques for Event
Recognition
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Computer Vision Laboratory, College Park, MD,
USA

Definition

Linguistic techniques for event recognition use
elements of language such as vocabulary, gram-
mar, expressions, syntax, and semantics to repre-
sent and recognize events.

Background

Visual event recognition systems use linguistic
techniques to describe complex events by the
composition of primitive sub-events according

certain rules (spatial, temporal, logical, etc.). This
allows systems to represent a large set of events
while modeling a much smaller set of primi-
tive events by low-level processing. Represen-
tational and computational properties of these
systems depend on the types of allowable rela-
tionships between sub-events. Some systems also
aim for representations that are closer to nat-
ural language to facilitate user interaction, i.e.,
to describe events, make queries, or interpret
results.

Theory and Applications

Hidden Markov Models (HMMs) [10] are sta-
tistical Markov models that decompose temporal
sequences into discrete time steps, each with an
associated unobserved discrete state variable and
an observed continuous or discrete variable. Each
state has a probability distribution over the output
variable and another over the transition to a new
state in the next time step. These models have
been successful in the field of speech recogni-
tion and have also been widely used for gesture
[7] and event recognition [6, 16]. More general
Dynamic Bayesian Networks (DBNs) [3] have
also been applied to event recognition (e.g., [8])
and some extensions such as Propagation Nets
(P-Nets) model duration of temporal subintervals
[13] for recognition of complex events.

Logical languages such as First-Order Logic
have been used to represent qualitative spatial and
temporal constraints, with temporal constraints
often expressed using Allen’s temporal primitives
[1]. Allen and Ferguson [2] proposed a frame-
work for using these temporal primitives to create
a representation motivated by natural language
that is able to reason about complex patterns
such as external events, simultaneous activities,
and mutually exclusive activities for the purpose
of planning and natural language understanding
systems. Siskind’s formal language of event logic
[14], which also uses Allen’s temporal primitives,
reasons about simple spatial verbs observed from
animated images. To deal with the computa-
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tional complexity with Allen’s temporal primi-
tives, Pinhanez and Bobick propose Past-Now-
Future Propagation (PNF) [9], which constructs
a three-valued PNF constraint network designed
to answer only the question of whether an action
is currently happening or not. Nevatia et al. [5]
also use Allen’s interval logic for relating event
intervals to each other using the Event Recog-
nition Language (ERL). ERL hierarchically rep-
resents single and multiple threads of composite
events and is intended to simplify user interaction
through its similarity to existing programming
languages. Tran and Davis more recently [15]
combined logical and probabilistic event reason-
ing via Markov Logic Networks (MLNs), which
relax hard rules in First-Order Logic and perform
probabilistic inference using Markov networks.

Grammars, which have been used in analyzing
static images (e.g., picture languages [11]), have
also been used for event recognition. Ivanov and
Bobick [4] propose a system that recognizes
events using a stochastic context-free grammar
(SCFG) parsing mechanism which allows for-
long range temporal constraints, uncertain low-
level detections, as well as concurrency of
events. Their approach combines the statistical
detection of primitives using uncertain low-level
detectors, with long-term structural interpretation
by stochastic context-free parsing. Ryoo and
Aggarwal [12] combine Bayes Nets at the lowest
layer to infer pose, HMMs that the middle
layer to extract gesture symbols, and context-
free grammars (CFGs) combined with Allen’s
interval logic to extract composite actions and
interactions from primitive (or atomic) actions.
Their system was applied to the recognition of
two-person interactions.
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Synonyms

LSTM

Related Concepts

�Recurrent neural network

Definition

Long short-term memory (LSTM) is a variation
of recurrent neural network (RNN) for processing
long sequential data. To remedy the gradient
vanishing and exploding problem of the origi-
nal RNN, constant error carousel (CEC), which
models long-term memory by connecting to itself
using an identity function, is introduced.

Background

Sequential data processing is a key technology
for a wide range of applications such as natural
language comprehension, speech recognition,
and video recognition. The goal is to predict
the conditional probability p(O1, . . . ,OT ′ |
I1, . . . , IT ) where (O1, . . . ,OT ′) is an output
sequence and (I1, . . . , IT ) is its corresponding
input sequence. Note that the length T ′ and T

may be different from each other.
A well-known approach is applying RNN.

It computes the probability of an output
sequence (O1, . . . ,OT ′) given an input sequence
(I1, . . . , IT ) as follows:

p(O1, . . . ,OT ′) =
T ′∏
t=1

p(Ot |Ot ), (1)

where Ot = {I1, . . . , IT ,O1, . . . ,Ot−1} for t > 2
and O1 = {I1, . . . , IT }. Let xt ∈ R

dx and yt ∈
R

dy be, respectively, the representation of It and
Ot , e.g.,

xt = f (It ), (2)

where f is a feature extractor for the inputs. Typ-
ically, the dimension of output representation dy

is set to be equal to the number of “vocabulary”
V for the target prediction. Let Vi and y(t+l)i

be the i-th member of the set V and the i-th
element of y(t+l), respectively. With a latency
constant l ∈ Z≥0, the outputs are then predicted
as:

Ot = Vj , where j = argmax
i

y(t+l)i . (3)

Typically, T = T ′ and l = 0 for name entity
recognition, T ′ = 1 and l = T − 1 for sentiment
classification, and l = T for machine translation.
RNN preserves sequential information in a hid-
den state vector ht ∈ R

dh and predicts yt as:

ht = tanh(Wh(h
�
t−1 x�

t )� + bh), (4)

yt = tanh(Wyht + by), (5)

where Wh ∈ R
dh×(dh+dx) and Wy ∈ R

dy×dh are
weight matrices and bh ∈ R

dh and by ∈ R
dy

are bias vectors. Note that bias vectors are often
omitted in the definitions of RNN.

RNN could work theoretically, but actually, it
would be challenging to train the parameters due
to vanishing and exploding gradients. Usually,
RNN is trained using backpropagation through
time (BPTT) algorithm. BPTT unrolls all time
steps of RNN and applies regular backpropaga-
tion for neural networks. Therefore, as shown in
Fig. 1, unrolled RNN can be considered as a deep
multilayer perceptron (MLP), and this is why the
gradients vanish or explode as discussed in MLP
literature.

To solve the problems about gradients,
Hochreiter and Schmidhuber proposed a new
type of RNN in 1997 [9]. The core module
is constant error carousel (CEC), which can
preserve the gradient by utilizing shortcut
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Long Short-Term Memory, Fig. 1 Illustration of back-
propagation through time (BPTT) algorithm to train RNN
network, where ⊗ is a concatenation of two vectors. It can
be seen as a very deep MLP, which causes vanishing and
exploding gradients problem. Note that the output length
T ′ = T here

connections. The idea of shortcuts has affected
later neural networks such as highway networks
and ResNet. This new RNN is referred to as long
short-term memory (LSTM).

Theory

In LSTM, another memory c is utilized in addi-
tion to the hidden state h. This memory c is
called memory cell and considered as long-term
memory, while h is considered as short-term one.

LSTM has several versions, but let us start
with the detail of LSTM with a forget gate. The
calculations at the t-th step would seem to be
complicated:

ct−1/2 = ct−1 � gf , (6)

gf = σ

(
Wf

[
ht−1

xt

]
+ bf

)
, (7)

ct = ct−1/2 + gi � z, (8)

gi = σ

(
Wi

[
ht−1

xt

]
+ bi

)
, (9)

z = tanh

(
Wz

[
ht−1

xt

]
+ bz

)
, (10)

ht = go � tanh(ct ), (11)

go = σ

(
Wo

[
ht−1

xt

]
+ bo

)
, (12)

where � denotes the Hadamard product, namely,
element-wise product of two vectors, and
W(·), b(·) is a pair of a transformation matrix
and a bias vector. The vectors g(·) are gates to
update memories in LSTM. The elements of gate
vectors are normalized between 0 and 1. Thus,
each element of gates represents the strength for
which elements of memories are filtered using
the current input and the last memory. Figure 2
illustrates Eqs. (6, 7, 8, 9, 10, 11, and 12).

What LSTM does is simpler than it looks. At
the t-th step, the memories h and c are updated
and then the output yt is computed as follows:

yt = tanh(Wyht + by). (13)

Updating the long-term memory
Equations (6, 7, 8, and 9) are updating the
long-term memory ct−1 to ct as shown in
Fig. 3. The update is composed of two sub-
steps. First, given the last short-term memory
ht−1 and the current input xt , LSTM forgets
a part of cell ct−1 in Eq. (6) using a forget
gate gf calculated in Eq. (7). Second, a new
memory is inserted to the latest cell ct−1/2 in
Eq. (8) using the current input, the last short-
term memory, and the input gate gi calculated
in Eq. (9).

CEC, the main contribution of LSTM, is
included in this part. As depicted in Fig. 1,
the hidden memory in RNN is updated for
several times through multiplications using
the parameter matrix Wh and an activation
function, namely, tanh(·), for each element.
Instead, the long-term memory is updated by
simple summations and multiplications with
a vector; therefore, LSTM can prevent the
gradient from vanishing and exploding.

The forget gate is not proposed in the orig-
inal LSTM paper. The first use of the gate for
LSTM can be seen in [4].

Updating the short-term memory
Given the updated long-term memory, LSTM
then updates the short-term memory, as shown
in Fig. 4.
Output gate go is calculated from the previous
short-term memory ht−1 and the current input
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Long Short-Term Memory, Fig. 2 Illustration of
LSTM, where � and ⊕ are, respectively, the Hadamard
product and summation of two vectors. The paths for the
gate vectors are shown in dark red, while the others are

in black. Note that the outputs are updated ht and ct . The
calculation of the output yt given the short-term memory
ht described in Eq. (13) and the bias vectors are omitted
for simplicity

Long Short-Term
Memory, Fig. 3 Updating
the long-term memory

xt in Eq. (12). The short-term memory can be
updated by passing the latest cell memory.

Estimating the output
The updated short-term memory is utilized to
predict the posterior probability of the t-th
element of the target sequence by Eq. (13).

Strictly speaking, the gradient vanishing prob-
lem is relaxed in the original LSTM; however, the
gradient explosion problem is not directly solved
yet. Pascanu et al. enable a stable training pro-
cedure for LSTM [10]. Particularly, the authors
find that clipping the norm of the gradient can
simply avoid its explosion without any losses of
its accuracy. In RNN, the chain rate shows that
the gradient of the estimation error with respect
to the parameter is significantly influenced by

the gradient of the memory with respect to the
previous memory. Additionally, it is bounded
by the product of the norm of the input vector
and weight matrix for the recurrent part. The
threshold of clipping each gradient can be defined
using the averaged norm of weight matrices.

Additionally, Graves and Shmidhuber [6]
implement bidirectional LSTM to present each
training sequence forward and backward to two
separate LSTMs. Both LSTMs are connected to
the same output layer. By estimating the outputs
using future inputs, bidirectional LSTM can
utilize more contexts than a forward LSTM that
uses only previous inputs.

Generally, LSTM is trained using BPTT.
Graves and Shmidhuber [6] enable the explicit
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Long Short-Term
Memory, Fig. 4 Updating
the short-term memory

use of BPTT for LSTM. The original algorithm
for LSTM training [5] uses a combination of
BPTT and real-time recurrent learning (RTRL),
which can be regarded as a particular case of
BPTT when the gradient is not backpropagated
through different time steps.

The detailed description of the partial deriva-
tives using BPTT for LSTM can be found in
[7]. The LSTM used for explaining BPTT in
[7] has peephole connections, which is explained
later in Open Problems. Since peephole connec-
tions are often omitted to implement LSTM, in
this entry, simpler descriptions about BPTT are
shown below.

Although BPTT seems complicated because
of the recurrent part, the basic idea is relatively
simple. Let gt

(·) and zt be, respectively, defined
as the gate vector g(·) and the block input z at
the t-th step, while t is omitted except here for
simplicity. Let W(·) be divided into Wh

(·) and Wx
(·)

so that:

W(·)(h�
t−1x

�
t )� = Wh

(·)ht−1 + Wx
(·)xt . (14)

The deltas of the memories are then as follows:

δht = δyt + Wh
z

�
δzt+1

+ Wh
f

�
δgt+1

f + Wh
i

�
δgt+1

i + Wh
o

�
δgt+1

o ,

(15)

δct = δht � gt
o � tanh′(ct ) + δct+1 � gt+1

f .

(16)

Let z̄t be the input for the activation function
for calculating zt in Eq. (10), i.e.,

z̄t = Wz

[
ht−1

xt

]
+ bz. (17)

Similarly, let ḡ(·) be the input for the activation
function for calculating gate vectors:

ḡ(·) = W(·)
[
ht−1

xt

]
+ b(·). (18)

The deltas for these variables are calculated
as:

δz̄t = δct � gt
i � tanh′(z̄t ), (19)

δḡt
f = δct � ct−1 � σ ′(ḡt

f ), (20)

δḡt
i = δct � zt � σ ′(ḡt

i ), (21)

δḡt
o = δht � tanh(c̄t ) � σ ′(ḡt

o). (22)

Finally, the gradients for the parameters of z
are derived as:

δWx
z =

T∑
t=1

δztx�
t ,

δWh
z =

T −1∑
t=1

δzt+1h
�
t , δbz =

T∑
t=1

δzt . (23)

Similarly, the gradients for the parameters of
each gate vector are derived as:
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δWx
(·) =

T∑
t=1

δgt
(·)x

�
t ,

δWh
(·) =

T −1∑
t=1

δgt+1
(·) h�

t , δb(·) =
T∑

t=1

δgt
(·). (24)

It is worth noting that the deltas about the
long-term memory are the summation of future
long-term memories as described in Eq. (16),
while the deltas about the memory in RNN
depend on the multiplication of the weight matrix
and the future memories. This difference provides
LSTM with tolerance against the gradient
vanishing and exploding that frequently occur
in RNN.

Application

In [6] bidirectional LSTM is implemented for
speech recognition. In [1], RNN encoder-decoder
model is proposed for machine translation.
The model learns to encode a variable-length
sequence into a fixed-length vector and to decode
a given fixed-length vector into a variable-length
sequence. This idea is modified by Sutskever
et al. with a multilayered LSTM [13]. Four-
layer LSTM achieves comparable performance
to the state of the art for English to French
translation at that time. For the NLP community,
LSTM also contributes to a grammar model;
embeddings from language models (ELMo)
is a well-known word representation utilizing
bidirectional LSTM.

The success in machine translation has
opened up the use of LSTM for multiple types
of sequence modeling. A straightforward use
of LSTM decoder for natural language is to
generate captions from images. Some researchers
in Google combined their convolutional neural
network for image recognition [14] with LSTM
for machine translation [13] to generate a
caption for an input image [18]. For video
caption generation [17], the encoder is also
based on LSTM to treat sequential frames in
videos.

Open Problems

One of the biggest unsolved problems is that
there is still no conclusion on which is the
best machine learning method that models long
sequences. Even RNN has several versions and
modifications.

There is a modification of LSTM by applying
peephole connections [3]. The gate vectors are
calculated using the short-term memory h, but it
is not guaranteed that the long-term memory c

also contributes to the gates. Therefore, in [3],
there are three connections: one from ct−1 to the
forget gate gf , another from ct−1 to the input gate
gi , and the other from ct to the output gate go.
It is worthy to note that, however, the peephole
connections are not mandatory to obtain the best
performance.

There is another variant of LSTM; gated recur-
rent unit (GRU) [1] is focusing only on gate func-
tions rather than the long-term memory. GRU can
reduce the number of parameters in comparison
to LSTM since there are two gates in GRU:
reset gate and update gate. The objective of the
authors to keep the ability of LSTM to reserve
long-term information while the whole network
is made as simple as possible. We would like to
know whether GRU can outperform LSTM, but
the extensive comparison [2] could not find the
significant difference between them.

Modeling of sequential data is not an exclusive
feature of recurrent neural networks. Convolu-
tional neural networks also show their capabil-
ity to model sequences for several tasks, e.g.,
machine translation and speech synthesis [15].

A remarkable change in natural language
processing is that the language model is no
longer based on LSTM; the transformer model
[16] and its variants generate surprisingly fluent
sentences and translate different languages much
more correctly than those based on LSTM.
Transformer utilizes self-attention mechanism
and omits recurrent parts, which enables highly
paralleled computation for training with a large
number of parameters and a large-scale corpus.

However, LSTM still performs its powerful
ability to model several types of sequences. For
example, current reinforcement learning [19]
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utilizes LSTM to learn temporal actions. Conse-
quently, we should start by investigating whether
LSTM is an appropriate approach, taking into
account the length and amount of sequential data
we would like to model.
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Synonyms

Light field

Related Concepts

� Image-Based Rendering

Definition

ALumigraph (also known as light field [1]; see
http://graphics.stanford.edu/papers/light/ for a
good explanation of the history, similarities,
and differences between a light field and a
Lumigraph.) is a four-dimensional representation
of all the light rays passing through an empty
volume of space [2]. It can be used to synthesize
a novel image from any viewpoint within that
space. The Lumigraph often refers to a light field
augmented with a partial 3D model of the scene,
which is used during the rendering process.

Background

If one considers a volume of empty space, the
radiance of all the rays passing through this space
can be organized in five dimensions, the three
dimensions of space plus two dimensions for
direction. This is known as the 5D plenoptic
function of Adelson and Bergen [3, 4]. How-
ever, since radiance is constant along a ray in
empty space, the space of all unique rays drops
to four dimensions. This four-dimensional set
of rays has come to be known as a light field
or Lumigraph. An idealized image consists of a
two-dimensional array of pixels, each of which
represents the radiance along single ray passing
through a single point in space or pinhole. Thus,

since a Lumigraph contains all the rays in a given
space, this information can depict any image from
any vantage point in the space represented by the
Lumigraph. More generally, the image created by
any lens and aperture embedded in the Lumi-
graph space can also be reconstructed. Finally,
images not realizable by traditional lenses, such
as multiperspective panoramas [5], can also be
rendered.

These observations led to the development of
the Lumigraph. Capturing a Lumigraph and then,
after-the-fact, being able to reconstruct any image
from any vantage point enable applications for
depicting the appearance of a scene or object.
Often, the empty space captured in a Lumigraph
is all or a portion of the space surrounding the
convex hull of an object. This allows the exam-
ination of the object from any vantage point.
Alternatively, the Lumigraph may capture the
space of views through a finite window. This
provides the ability to move the viewpoint back
and forth to depict any parallax due to varying
depths in the scene, or to treat the window as a
finite aperture with which to vary the plane of
focus or the depth of field.

The interesting technical problems for Lumi-
graphs include how to:

– Capture the desired subset of rays
– Organize and store the Lumigraph
– Interpolate missing rays from discretely sam-

pled rays
– Efficiently retrieve the visual information to

enable real-time image reconstruction from
any viewpoint

In the following sections, techniques devel-
oped in the original Lumigraph paper [2] are
discussed and then generalized to work in the
unstructured Lumigraphs of Buehler et al. [6].

Application

Lumigraph Capture
Unfortunately, it is impossible to instantaneously
capture a dense 4D continuous field of rays in

http://graphics.stanford.edu/papers/light/
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some volume (See the discussion at the end of
this entry on lenslet arrays as one alternative
for capturing discrete subsets of the 4D field.).
Instead, the space of rays is sampled with a cam-
era or cameras. Each camera image (assuming
a pinhole model) captures a discretized 2D slice
of the 4D space. Each pixel represents some ray.
In the original Lumigraph paper, an object was
placed on a special stage with fiduciary marks.
A handheld camera attached to a computer was
pointed at the object and moved around it to
capture a set of images from various vantage
points. The fiduciary points allowed the camera’s
pose to be calculated in real time to provide
feedback to the user about what regions of the
surrounding sphere had been well sampled. In
the concurrent light field paper, the camera was
placed on a gantry from which the camera could
be carefully maneuvered and the pose could be
read off mechanically.

Lumigraph Organization
Each captured image contains an array of pix-
els representing the radiance values for a sub-
set of rays passing through the aperture of the
camera. The set of all rays from all captured
images form the discrete information from which
to generate any other novel view. Likewise, con-
structing the novel view involves finding, for
each pixel (ray) in the novel view, one or more
nearby rays from the captured set from which
to reconstruct the desired pixel. To make the
reconstruction efficient, the input set of rays may
be reorganized to aid the ray lookup process. The
original Lumigraph and light field papers used
two-plane reparameterizations. The subsequent
unstructured Lumigraph [6] work skipped this
step, instead rendering directly from the original
images. The two-plane parameterization used in
the original papers is discussed next.

Consider two parallel planes. It is easiest to
start with aligned rectangular sections of each
plane, as shown in Fig. 1. The first plane is param-
eterized using s and t and the other using u and
v. Each ray that intersects the two rectangles is
associated with a 4D coordinate (s, t, u, v). Since
the rays are directional, the rays are assumed to
carry light through the (u, v) plane before passing

Lumigraph, Fig. 1 The Lumigraph: a ray is represented
by its 4D two-plane parameters (s, t) and (u, v). (From
[1], The Lumigraph, SIGGRAPH’96, (c) ACM)

through the (s, t) plane. Consider a single point
(s0, t0) on the (s, t) plane and all the rays passing
through that point. These rays represent an image
one could get by placing the camera’s center
at (s0, t0) oriented toward the (u, v) plane. The
(u, v) parameterization characterizes the image
rectified to the (u, v) plane.

By placing the camera successively at all
points on the (s, t) rectangle, a 4D Lumigraph
is captured. Of course, any image with rays
that pass through the two planes, such as from
a camera placed behind the (s, t) plane, can
contribute to filling in the Lumigraph. In Fig. 1,
a pixel’s 4D coordinate (s, t, u, v) is given by
its intersection with the two planes. The original
Lumigraph and light field papers resampled the
rays from such more general input images into
the two-plane parameterization.

Completing (Resampling) the Lumigraph
In any practical system, the Lumigraph is a col-
lection of only a finite number of 4D samples.
For example, given N2 images with R2 resolu-
tion, there are at most N2R2 pixels representing
unique rays in the Lumigraph. One could, for
example, carefully place a camera at each N ×N
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grid point on the (s, t) plane oriented precisely
to cover the extent of the (u, v) plane. Unfortu-
nately, even this simple configuration is very dif-
ficult to achieve. Instead, one can gather a much
less organized set of images and resample the
pixels into the 4D (s, t, u, v) coordinate system.
Typically, the (s, t) plane is more coarsely dis-
cretized than the (u, v) plane, as the object being
imaged is near the (u, v) plane. The assumption
is that the object texture changes more rapidly
across its surface than the directional changes in
radiance of a single point on the surface.

Each pixel in an input image represents some
ray (s, t, u, v) such as the ray shown in Fig. 2a.
The question then becomes finding the closest
discrete grid point to assign the color of this
pixel to in the discretized Lumigraph (Fig. 2d–f).
The simplest method to determine closest is to
choose the closest discrete (s, t) and (u, v) grid
points to ray’s continuous coordinates. The origi-
nal Lumigraph paper modifies this simple scheme
to leverage depth information in the scene. A

rough estimate of depth is obtained from the
visual hull of the object being imaged, which
is computed from the silhouettes of the object
pulled from the blue background stage.

Consider the ray (s, u) in a two-dimensional
Lumigraph (Fig. 3). The closest grid point
to this ray is (si+1, up). However, gridpoints
(si+1, up−1) and (si, up+1) are likely to contain
colors closer to the true color of the input
ray since these grid points represent rays that
intersect the object near the intersection with
the ray. Suppose one knows the depth value
z at which the ray first intersects the object.
For nearby discrete si and si+1 values, the
corresponding u′ and u′′ values are computed for
rays that intersect the same geometric location,

u′ = u + (s − si)z/(1 − z) (1)

u′′ = u + (s − si+1)z/(1 − z). (2)

As you can see, neither u′ nor u′′ is closest to
the discrete point up. This observation is used to
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Lumigraph, Fig. 2 Parameterization and discretization
of the Lumigraph: (a) a ray is parameterized by its 4D
two-plane parameters (s, t) and (u, v). The object being
imaged is near the (u, v) plane with the distance to any
point on the object surface from the plane given as z; (b)

a 2D slice of the 4D space for illustration purposes; (c) a
2D representation of the “ray space”; (d–f) discretizing the
Lumigraph. (From [1], The Lumigraph, SIGGRAPH’96,
(c) ACM)
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Lumigraph, Fig. 3 Determining the closest grid point. (From [1], The Lumigraph, SIGGRAPH’96, (c) ACM)

Lumigraph, Fig. 4 Results of a 2D analog to the 4D
push-pull algorithm. Left figure shows lines sampled in 2D
(analogous to images in 4D). Right shows result of push-

pull fill-in. (From [1], The Lumigraph, SIGGRAPH’96,
(c) ACM)

define a depth-corrected quadrilinear interpolant
for splatting input rays into the Lumigraph. The
details can be found in Gortler et al. [2].

Finally, even given a large number of input
cameras, there are bound to be many discrete
samples in the Lumigraph left unfilled. Gortler
et al. describe a push-pull multiresolution method
to fill out the Lumigraph by averaging up the
pyramid (pulling) and then pushing values down
the pyramid while never overwriting values filled
during the pull. Figure 4 shows a 2D analog of
this process.

Reconstruction and Display
Rendering a novel view from a Lumigraph
operates essentially in reverse of resampling.
Each pixel in a desired image corresponds to
a 4D ray. If this ray intersects the (s, t) and
(u, v) planes, its 4D coordinate is determined
by these intersections. The color values stored
at the closest 4D gridpoints of the Lumigraph
are retrieved and interpolated. Again, the depth
correction discussed in the creation of the
Lumigraph can be used in the definition of
closeness and thus the interpolation coefficients.
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Lumigraph, Fig. 5 A stereo pair of reconstructed images of a Lumigraph of a stuffed lion (Cross-eyed arrangement).
(From [1], The Lumigraph, SIGGRAPH’96, (c) ACM)

Lumigraph, Fig. 6 An unstructured Lumigraph reconstruction of a VW bug and its proxy geometry. (From [6],
Unstructured Lumigraph Rendering, SIGGRAPH 2001 (c) ACM)

Gortler et al. [2] relate this interpolation to
the definition of skewed 4D basis functions
for reconstruction and show differing artifacts
resulting from different basis function choices.
Figure 5 shows reconstructions of two nearby
views (a stereo pair) of a fuzzy lion captured with
a handheld camera.

Unstructured Lumigraphs
Five years after the original Lumigraph paper,
Buehler et al. [6] developed a means to render
directly from the original input images without
first resampling the pixels/rays into a regular 4D
structure. This unstructured Lumigraph relies on

an approximate 3D tesselated proxy as a means to
measure the distance between an input ray and a
desired output ray in the image being generated.
The distance measure combines epipole consis-
tency (does the desired ray pass near the center
of a source camera?), angular deviation (do two
rays that meet at the same point on the proxy
differ in angle?), continuity (do two rays intersect
the proxy at nearby points?), and resolution (do
the two rays integrate similar sized areas on the
proxy?).

Their paper describes a real-time rendering
algorithm that uses graphics hardware to compute
barycentric weight contributions from each input
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camera. The weights are computed for the union
of each tesselated triangle in the proxy with
each triangle in a tesselated output image plane.
Figure 6 shows a reconstructed image and the
tesselated proxy used in weight calculations.

Open Problems

In recent years, new cameras have been devel-
oped that contain an array of lenslets that can
capture a small light field on a single chip [7].
Such devices support after-capture refocusing, as
well as limited viewpoint motions [8]. Applica-
tions to microscopy also show great promise [9].
Large arrays of cameras have also been used
to enhance both spatial and temporal resolution
and to refocus with large virtual apertures to see
through occluders [10, 11]. It remains an open
problem to find ways to effectively capture large
Lumigraphs. Finally, adding a temporal dimen-
sion presents significant new issues to overcome.
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Related Concepts

�Visual Cortex Models for Object Recognition

Definition

Machine recognition of objects is the task of
locating and recognizing a given object in an
image and consists of the following steps: object
detection, feature extraction, and recognition.

Background

Early computer vision recognition schemes
focused primarily on the recognition of rigid
three-dimensional (3D) objects, such as machine
parts, tools, and cars. This is a challenging

problem because the same object can have
markedly different appearances when viewed
from different directions. It proved possible to
deal successfully with this difficulty by using
detailed 3D models of the viewed objects, which
were compared with the projected 2D image
(e.g., [14, 18, 33]). Over the last decade or so,
computational models have made significant
progress in the task of recognizing natural
object categories under realistic, relatively
unconstrained viewing conditions. Within
object recognition, it is common to distinguish
two main tasks: identification, for instance,
recognizing a specific face among other faces,
and categorization, for example, recognizing a
car among other object classes. We will discuss
both of these tasks below and use “recognition”
to include both.

The qualitative improvement in the perfor-
mance of recognition models can be attributed
to three main components. The first is the use
of extensive learning in constructing recognition
models. In this framework, rather than specifying
a particular model, the scheme starts with a large
family of possible models and uses observed
examples to guide the construction of a specific
model which is best suited to the observed data.
The second component was the development
of new forms of object representation for
the purpose of categorization, based on both
computational considerations and guidelines
from known properties of the visual cortex. These
two components, representation and learning, are
interrelated: initially, the class representation
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provides a family of plausible models, and
effective learning methods are then used to
construct a particular model for a novel class
such as “dog” or “airplane” based on observed
examples. The third component was the use
of new statistical learning techniques, such as
regularization classifiers (SVM and others) and
Bayesian inference (such as graphical models).
We next discuss each of these advances in more
detail.

Learning instead of design. A conceptual
advance that facilitated recent progress in
object recognition was the idea of learning the
solution to a specific classification problem
from examples, rather than focusing on the
classifier design. This was a marked departure
from the dominant practices at the time: instead
of an expert program with a predetermined
set of logical rules, the appropriate model was
learned and selected from a possibly infinite
set of models, based on a set of examples.
The techniques used in the 1990s originated
in the area of supervised learning, where
image examples are provided together with
the appropriate class labels (e.g., “face” or
“non-face”). A comprehensive theory of the
foundations of supervised learning has been
developed, with roots in functional analysis and
probability theory [6, 26, 27, 36]. The formal
analysis of learning continues to evolve and to
contribute to our understanding of the role of
learning in visual recognition.

New image representations. A recognition
scheme typically extracts during learning a set
of measurements or “features” and uses them to
construct new object representations. Objects
are then classified and recognized based on
their feature representation. Feature selection
and object representation are crucial, because
they facilitate the identification of elements that
are shared by objects in the same class and
support discrimination between similar objects
and categories. Different types of visual features
have been used in computational models in the
past, ranging from simple local-image patterns
such as wavelets, edges, blobs, or local-edge

combinations to abstract three-dimensional shape
primitives, such as cylinders [21], spheres, cubes,
and the like [4].

A common aspect of most past recognition
schemes is that they use a fixed small generic
set of feature types to represent all objects and
classes. In contrast, recent recognition schemes
use pictorial features extracted from examples,
such as object fragments or patches, together
with their spatial arrangement [1, 3, 19, 30].
Unlike generic parts, these schemes use a large
set of features, extracted from different classes
of objects. The use of large feature sets is also
connected to an interesting new trend in signal
processing, related to “over-complete” represen-
tations. Instead of representing a signal in terms
of a traditional complete representation, such as
Fourier components, one uses a redundant basis
(such as the combination of several complete
bases).

Representations using such features have
been used successfully in recent computer
vision recognition systems for two reasons.
First, these representations can be learned and
used efficiently; second, they proved to capture
effectively the broad range of variability in
appearance within a visual class.

An additional comment is appropriate. The
representations described above are view based,
as opposed to object-centered models. A repre-
sentation based on image appearance can include
not only 2D image properties but also 3D aspects
such as local depth variations or 3D curvature.

New statistical learning methods. Over the
last few years, the mathematics of learning has
become the “lingua franca” of large areas of
computer science and, in particular, of computer
vision. As we discussed, the use of a learning
framework enabled a qualitative jump in object
recognition. Whereas the initial techniques
used to construct useful classification models
from data were quite simple, there are now
more efficient algorithms originally introduced
in the area of learning in the 1990s such as
regularization algorithms (also called kernel
machines), which include SVM [35, 36] and
boosting [12]. By now, the area of learning has
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grown to include, in addition to discriminative
algorithms, probabilistic approaches with the
goal of providing full probability distributions
as solutions to object recognition tasks. These
techniques are mostly Bayesian and range
from graphical models [13, 15] to hierarchical
Bayesian models [16, 17]. At the same time,
the focus of research is shifting from supervised
to unsupervised and semisupervised learning
problems, using techniques such as manifold
learning [2]. Semisupervised problems, in which
the training set consists of a large number of
unlabeled examples and a small number of
labeled ones, are gaining attention.

Application

A number of early schemes, mainly focusing
on the class of human faces, obtained signif-
icant improvement over previous methods [5,
29, 31, 32, 38]. The techniques have evolved to
reach practical applications, as evidenced by their
use in current digital cameras. The more recent
versions of these computational schemes have
started to deal successfully with an increasing
range of complex object categories such as pedes-
trians, cars, motorcycles, airplanes, horses, and
the like, in unconstrained natural scenes, to deal
with a broad range of objects within each class
(e.g., [1, 8, 19, 22–24, 30, 34, 39]). The algo-
rithms that were refined over the last few years
can deal successfully with a large number of dif-
ferent object classes, in complex and highly clut-
tered scenes. They are being applied to databases
of hundreds [9] and even thousands of object
classes [7]. Yearly competitions in computer-
based recognition, such as the Pascal challenge
[25, 28], witness continuous improvement in the
range of classes and in scene complexity success-
fully handled by automatic object categorization
algorithms [10, 11, 37].
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Synonyms

Nonlinear dimensionality reduction

Related Concepts

�Riemannian Manifold

Definition

Manifold learning or nonlinear dimensionality
reduction refers to a class of methods that aim
to preserve geometric and topological properties
of a finite set of samples drawn from a high-
dimensional non-Euclidean space.

Background

Manifold learning methods shed light on the
geometric nature of the dataset at hand, before
task-specific modeling requirements kick in.
If one has an understanding of the “shape” of
the data, one can potentially develop specific
algorithms that effectively use that structure.
Manifold learning as a dimensionality reduction
tool can be seen as a generalization of classic
linear tools like principal component analysis
(PCA). Early versions of manifold learning,
such as multidimensional scaling (MDS)
[1] and Sammon mapping [2], have been
available in statistics literature since the 1970s.

http://pascallin.ecs.soton.ac.uk/challenges/voc/
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These methods produced a two-dimensional
embedding, given a pairwise distance matrix of
points. A series of breakthroughs occurred in the
early 2000s, due to the invention of locally linear
embedding (LLE) [3], Isomap [4], Laplacian
eigenmaps [5], etc. which allowed generating
embeddings of manifolds embedded in very high-
dimensional spaces (e.g., images) while allowing
one to preserve different properties such as local
neighborhood connectivity, etc. All of these
methods work under the assumption that samples
in these high-dimensional spaces actually lie
on a much lower-dimensional manifold, which
has since come to be known as the manifold
hypothesis. In the case of images, this is easily
understood with the following example: consider
an n × n image that captures a single object
under fixed lighting and a moving camera. While
the observed image lives in R

n2 , the intrinsic
dimensionality of this specific set of images
should be related to the degrees of freedom in the
camera’s positioning and environmental lighting
variables [5]. Uncovering such hidden structure
from data samples forms the core of the field of
manifold learning [6].

Theory

We provide a working description of a manifold;
for a mathematically precise introduction to the
theory of manifolds, we refer the reader to the
classic texts by Boothby [7] and Spivak [8].
A topological space is called a differentiable
manifold if, amongst other properties, it is locally
Euclidean. This means that for each p ∈ M ,
there exists an open neighborhood U of p and
a mapping φ : U → R

n such that φ(U) is open
in R

n and φ : U → φ(U) is a diffeomorphism.
The pair (U, φ) is called a coordinate chart for
the points that fall in U ; for any point y ∈ U ,
one can view the Euclidean coordinates φ(y) =
(φ1(y), φ2(y), . . . , φn(y)) as the coordinates of
y. The dimension of the manifold M is n. This is
a way of flattening the manifold locally. Using φ

and φ−1, one can move between the sets U and
φ(U) and perform calculations in the more con-
venient Euclidean space. If there exist multiple

such charts, then they are compatible, i.e., their
compositions are smooth. Some of the key math-
ematical ideas needed to fully describe manifolds
are curvature, tangent spaces, Riemannian metric,
geodesics, and parallel transports.

In manifold learning, one is given a discrete
set of samples from an unknown manifold. The
samples can be given directly as points embed-
ded in a high-dimensional Euclidean space, or
provided indirectly as a pairwise distance matrix
induced by a metric structure, or pairwise sim-
ilarity relationships encoded by domain knowl-
edge. Given this information, the methods aim
to derive computational approximations of coor-
dinate charts, tangent structures, geodesic dis-
tances, etc. For instance, once a coordinate chart
is constructed, one can use the low-dimensional
vectorial representation thus obtained for further
use in machine learning or other applications.

Examples

Examples of manifold learning techniques
include Isomap [4], locally linear embedding
(LLE) [3], Laplacian eigenmaps [5], diffusion
maps [9], etc. Each method aims to preserve
different aspects of the geometry of the manifold.
For example, Isomap aims to preserve pairwise
distance relationships, whereas LLE aims to
preserve local neighborhood structures. However
all these methods require that neighborhoods and
associated operations in high-dimensional space
are not ambiguous. In some cases, there may
be issues such as the “short-circuit” problem,
where points that should be far away come
close together in the Euclidean sense, either
due to noise or due to the intrinsic curvature
of the manifold. A different class of methods
has been developed to provide robustness to
such issues including diffusion maps [9] and
Stochastic Neighborhood Embedding (SNE)
[10]. In diffusion maps, instead of considering
the shortest paths between points as measured
on the data graph, which is susceptible to short
circuits, one looks instead at diffusion distances.
In SNE, one tries to ensure the distribution of
data in the lower-dimensional space is close
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to the original distribution, as measured by
the KL divergence between certain conditional
probability distributions. An improved version
of this algorithm known as t-SNE [11] enabled
significantly better optimization, with the use of a
better loss function and a Student’s t-distribution
in the lower-dimensional space. Today, t-SNE
is one of the most popular tools used for
visualization of high-dimensional data because
of its ability to identify local structure better than
most other techniques. A more recent technique
known as Uniform Manifold Approximation and
Projection (UMAP) [12] provides embeddings
comparable to t-SNE while being significantly
faster to compute.

Applications

In its early days, the primary applications
of manifold learning were to reduce the
representation dimension, to beat the curse of
dimensionality in machine learning applications
such as face recognition (cf. [13]). Another
parallel stream of work has been to leverage
these methods for understanding structure of
data by embedding into 2D or 3D maps.
Techniques such as t-SNE have become standard
tools in contemporary deep learning workflows
[14], where a 2D embedding can be used
to visualize how a deep neural network has
learned to represent data. Another successful
application of manifold learning is in obtaining
a more meaningful metric between samples, as
the “right” metric between high-dimensional
samples is rarely known in practice. As a
result, a widely adopted strategy is to compute
distances using the Euclidean metric in the lower-
dimensional space. For example, Johnson et al.
[15] used a Euclidean distance metric in the
hidden representations of a pre-trained neural
network to approximate a “perceptual” similarity
in the application of image style transfer.

Open Problems and Recent Trends

Deep neural networks have been revolutionary
in modeling high-dimensional data, leading to

breakthroughs in several challenging tasks such
as image/language classification, image recon-
struction, language translation, etc. A big part of
their success is due to being able to automati-
cally learn intermediate representations of high-
dimensional data that are best suited for a partic-
ular task. In this section, we outline some of the
recent successes in modeling high-dimensional
data using neural networks and present other
open problems.

Understanding manifolds generated by deep neu-
ral networks An autoencoder is a special type of
a neural network where the task is to reconstruct
the original input, by forcing an intermediate
representation to be of much lower dimensional-
ity. This acts as a compression technique, which
allows us to represent an image X ∈ R

m by
a latent vector z ∈ R

d where d << m. The
space of all possible latent vectors is referred to
as a latent space, Z ⊂ R

d , which is an approx-
imation of the low-dimensional manifold of the
original data. While classical manifold learning
techniques were primarily used to reduce the
dimensionality of the data for improved visual-
ization and modeling, sampling from the low-
dimensional manifold, to create new types of
high-dimensional data, is not easy. Recent break-
throughs in generative modeling have allowed us
to sample from the manifold effectively, enabling
a wide variety of new applications. Variational
Auto-Encoders (VAEs) [16] allow us to learn a
latent space where each high-dimensional sample
is embedding into a distribution instead of a
single low-dimensional point, typically parame-
terized as a multivariate Gaussian. A Generative
Adversarial Net (GAN) [17] is another technique
that provides an efficient way to sample from the
low-dimensional data manifold, without explic-
itly determining its form. A GAN learns to map
samples belonging to a low-dimensional prior
distribution, to the dataset of high-dimensional
samples. It achieves this by using two networks
that compete against each other, which can be
studied as a two-player game, which is complete
when the system attains Nash equilibrium. Sam-
ples from a GAN are known to be highly realistic,
i.e., to have very likely come from the true data
manifold.
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Differential geometry and machine learning
Several machine learning applications involving
perceptual tasks in computer vision, speech
analysis, etc. need to formally account for
invariances to factors of a physical nature. For
instance, invariance to illumination, pose, shape
deformation, etc. are core problems in machine
learning, which are usually tackled with clever
choices of invariant features, or by increasing the
diversity of the training set to include the required
variability. However, the formal study of invariant
structures leads to geometrically constrained sets
in many cases, which are being increasingly
exploited to learn invariant representations.
Typical non-Euclidean domains considered in
this endeavor have included the Stiefel and
Grassmann manifolds, submanifolds in Hilbert
spaces, special orthogonal group, tensors, etc.,
in areas as diverse as face recognition, robotic

manipulation, and activity analysis. A recent
compilation of differential geometric techniques
and its applications in machine learning can be
found in [18].

These methods differ from classical manifold
learning in that the structure of the underlying
manifold is known a priori, whereas it needs
to be estimated from data in the former case.
There are several examples where data that are
known to be lying on Riemannian manifolds can
be further reduced to a lower-dimensional space.
This has led to the development of techniques
such as PCA to operate on such geometric
spaces. For example, Fletcher et al. [19]
proposed principal geodesic analysis (PGA) that
generalizes PCA to manifolds. Harandi et al. [20]
proposed a dimensionality reduction technique
that can map higher-dimensional SPD matrices to
lower-dimensional SPD matrices. There has also

Manifold Learning, Fig. 1 A qualitative comparison of a
few popular manifold learning methods on a subset of the
MNIST digits data. (a) Samples from the 8× 8 digit data.

(b) Locally linear embedding of the data. (c) ISOMAP
embedding of the data. (d) t-SNE embedding of data
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been work to generalize PGA to manifold-valued
trajectories in [21], which enables visualization
and exploration of the entire manifold-valued
sequences in low-dimensional, vector-valued
spaces. In most of the examples in manifold
learning, the embedded space is assumed to
be Euclidean; however if the final goal is not
visualization, this assumption can also be relaxed.
This naturally leads to the idea of estimating the
geometric properties of the lower-dimensional
space, such as the Riemannian metric and the
exponential and inverse exponential maps from
data [22, 23]. These ideas have recently been
extended to latent spaces inferred by neural
networks recently [24, 25].

Experimental Results

In this section, we present a small-scale qualita-
tive comparison of a few popular dimensionality
reduction approaches. The dataset chosen is a
subset of the MNIST digit dataset with digits
from 0 to 5. Three methods – LLE, ISOMAP,
and t-SNE – are compared. These visualizations
are generated from the code adapted from SciKit
[26, 27]. As shown in Fig. 1, different meth-
ods preserve different aspects about the data.
LLE aims to preserve local neighborhood rela-
tions, and ISOMAPS aims to preserve global
distance relationships, whereas t-SNE aims to
preserve distributional properties, resulting in dif-
ferent visualizations. t-SNE has increased in pop-
ularity in recent years, due to its apparent ability
to separate classes as well as preserve neighbor-
hood relationships.
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Synonyms

Error-correcting graph matching; Error-tolerant
graph matching; Inexact matching; Transporta-
tion problem

Definition

When objects exhibit large within-class variation
and/or when image features are under- or over-
segmented, the image features extracted from two
exemplars belonging to the same category may
no longer be in one-to-one correspondence but,
in general, many-to-many correspondence. If the
features are structured, i.e., captured in a graph,
then computing the correct correspondence can
be formulated as a many-to-many graph matching
problem.

Background

The matching of image features to object
models is typically formulated as a one-
to-one assignment problem, based on the
assumption that for every salient image feature
belonging to the object to be matched, e.g., SIFT
feature, image patch, contour fragment, there
exists a single corresponding feature on the
model (and vice versa). While the one-to-one
correspondence assumption has been prevalent
in the object recognition community throughout
its entire evolution, including the paradigms of
graph matching [9], alignment [13], geometric
invariants [11], local appearance [14], and a
recent return to local contour-based features
[8], one-to-one feature correspondence is a
highly restrictive assumption that breaks down
as within-class variation increases and as the
segmentation and extraction of more abstract
image features suffer from over- or under-
segmentation [7]. In the more general case,
feature correspondence is not one-to-one, but
rather many-to-many. If a feature set is described
by a graph, with nodes representing features
and edges capturing pairwise relations between
features, computing the correct many-to-many
feature correspondence can be formulated as
many-to-many graph matching.

Consider two simple examples, shown in
Fig. 1. In Fig. 1a, a set of multiscale blobs
and ridges have been extracted from two
exemplars (humans) belonging to the same

http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html
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Many-to-Many Graph Matching, Fig. 1 Two graph
matching problems in computer vision for which assum-
ing a one-to-one feature correspondence will lead to incor-
rect correspondences, and which can only be solved if
formulated as a many-to-many graph-matching problem.
In (a), a multiscale blob and ridges decomposition [18]
of the two humans yields a single ridge for the extended
arm (top) and two coterminating ridges for the bent arm
(bottom). In this example, articulation has violated the
one-to-one feature correspondence assumption; if a one-

to-one correspondence is enforced for the arm, e.g., the red
highlighted features, it will be incorrect. In this case, the
correspondence should be two-to-one (or more generally,
many-to-many). In (b), two different cup exemplars (bot-
tom row) have been region segmented (top row), yielding
regions that are rarely in one-to-one correspondence (due
to within-class variation or region over- and/or under-
segmentation). Once again, the correct correspondence is
not one-to-one, but rather many-to-many

category. In the top image, the straight arm
yields a single elongated ridge, while in the
bottom image, the bent arm yields two smaller
and coterminating elongated ridges. In this
case, simple object articulation (a form of
within-class variation) has led to a violation
of the one-to-one correspondence assumption.
Instead, the correspondence is clearly two-to-
one; enforcing one-to-one correspondence will
lead to an incorrect matching of the entire arm
to either the upper or lower arm, e.g., the red
highlighted features. In Fig. 1b, two region
segmentations of two exemplars belonging to the
same class yield a set of region correspondences
that are rarely one-to-one, but more typically
many-to-many. Once again, enforcing a one-
to-one feature correspondence will ensure an

incorrect matching, and will miss the correct
correspondence.

The problem of computing a one-to-one cor-
respondence between a model feature graph and
a cluttered image graph can be formulated as
a largest isomorphic subgraph problem, whose
complexity is NP-hard. The complexity of the
many-to-many matching problem is even more
prohibitive, for the space of possible correspon-
dences is greater (any subset of features in the
image may match any subset of features on the
model). The intractable complexity of the many-
to-many matching problem can only be reduced
by exploiting the types of regularities suggested
by the perceptual grouping community, such as
proximity, continuity, conservation of mass, etc.
In what follows, a formal statement of the prob-
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lem is introduced, and a number of approaches to
its solution is reviewed.

Theory

The main objective of the many-to-many graph
matching problem is to establish a minimum cost
mapping between the vertices of two attributed,
edge-weighted graphs. In an attribute-weighted
graph G = (V, E), let L(v) denote the set of
attributes associated with v ∈ V . Given a subset
U ⊂ V , let L(U) = ∪u∈UL(u). For a set U ⊂ V ,
let G|U denote the subgraph of G induced on the
vertices in U, and let w(u, v) denote the weight
of an edge (u, v) ∈ E. Finally, let P(G) denote the
power-set 2V for the vertex set of G. A many-to-
many mapping between two graphsG1 = (V1,E1)
and G2 = (V2,E2) is a mapping among power-
sets P(G1) and P(G2) and can be characterized as
a function:

M : (P (G1) × P (G2)) → {0, 1} . (1)

For two sets, U ∈ P(G1) and V ∈ P(G2), there
will be a cost C (L(U),L(V )) associated with
mapping the labels in set L(U) to those in L(V ).
An example of a common cost function is the
edit-distance between the labels in sets L(U) and
L(v). Let S(G1|U,G2|V) denote the structural dis-
tance between induced subgraphs G1|U andG2|V.
Observe that every mapping M has a natural
representation as a matrix, with MU, V = 1 if the
sets U ∈ P(G1) and V ∈ P(G2) are mapped to
each other under M, and MU, V = 0 otherwise.
Combining these two cost functions will result
in the cost function C(M) associated with the
mapping M:

C(M) = ∑

U∈P(G1),V ∈P(G2)

MU,V

× C (L(U),L(V )) × S (G1|U ,G2|V ) .

(2)

In defining an optimal many-to-many
matching between two attributed graphs, G1 and
G2, a many-to-many mapping M∗ of minimum
cost C(M∗ ) subject to specific requirements

on the structure or cardinality of M∗ will
be obtained. For example, to prevent a trivial
solution that setsMU, V = 0, for all U and V, one
can require a matching such that its cardinality,
i.e.,

∑
U, VMU, V, exceeds a threshold while

minimizing C (M). Other functions, such as
maximizing the number of vertices from V1 and
V2 that participate in M, can be used to evaluate
the quality of the mapping. Note that cost
functions C (L(U),L(V )) and S(G1|U,G2|V)
may be used to enforce constraints such as
consistency of mapped labels, limits of feasible
label mappings, or allowed structural mapping
of induced graphs G1|U and G2|V by imposing
arbitrary large values or by being ill-defined.

The above description of the many-to-many
matching results in an intractable computational
problem. First, due to the exponential size of
power-sets P(V1) and P(V2) in terms of number of
vertices inG1 andG2, the size of the search space
for the many-to-many matching problem is expo-
nential. Even simplifying the problem to one-to-
one mappings, by replacing the power-sets P(V1)
and P(V2) with sets V1 and V2, respectively, will
result in the multidimensional matching problem
that is known to be NP-complete for arbitrary
labeled graphs.

RelatedWork

Many-to-many graph matching has been studied
extensively in a variety of contexts, including
graph edit distance [2, 16], spectral methods [4,
17], optimization problems [20], metric embed-
ding [5], abstract models [10], and grammars
[1, 21]. The classical formulation of graph edit
distance introduces a set of graph edit operations,
such as insertion, deletion, merging, splitting,
and substitution of nodes and edges. Given a
set of graph edit operations and a cost func-
tion, the objective is to find the lowest cost
sequence of graph edit operations that trans-
form one graph into the other. The edit distance
between two graphs critically depends on the
costs of the underlying edit operations; typi-
cally, lower costs are assigned to the most fre-
quent edit operations.\vadjust{\eject} A number
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of approaches have addressed the problem of
defining an appropriate cost, e.g., [3].

Many-to-many graph matching has also been
studied in the context of spectral methods by
examining the spectral properties of graph adja-
cency matrices. In [4], the authors present an
approach based on renormalization projections
of vertices into a common eigensubspace of two
graphs. Instead of finding the overall similarity of
two graphs from the positions of vertex projec-
tions, this approach uses an agglomerative hierar-
chical clustering technique to produce many-to-
many vertex correspondences.

Another spectral method is due to [17, 19],
which constructs a low-dimensional “signature”
of a directed graph’s “shape” from the mag-
nitudes of the eigenvalues of the graph’s adja-
cency matrix. The eigenvalues are invariant to the
reordering of a graph’s branches and are shown to
be robust under minor structural perturbation of
the graph. This vector can be used for both struc-
tural indexing and for matching in the presence
of noise and occlusion. If two signatures (vectors)
are close, their corresponding (sub)graphs, possi-
bly having different cardinalities, are in many-to-
many correspondence.

Recently, the approach presented in [20]
formulates the many-to-many graph matching
problem as a discrete optimization problem. The
algorithm starts by extending the optimization
problem for one-to-one matching to the case
of many-to-one matching. The algorithm then
obtains many-to-many vertex correspondences
through two many-to-one mappings. Since this
formulation of the many-to-many matching
requires the solution of a hard optimization
problem, the authors propose an approximate
algorithm based on a continuous relaxation of the
combinatorial problem.

The concept of a low-distortion graph
embedding has been used to obtain many-to-
many vertex correspondences [5]. Specifically,
low-distortion graph embedding is employed
to transform the problem of many-to-many
graph matching to a many-to-many point
matching problem in a geometric space. This
transformation maps nodes to points and
edge weights to interpoint distances, not only

simplifying the original graph representation
(by removing the edges), but also retaining
important local and global graph structure;
moreover, the transformation is robust under
perturbation. Representing two graphs as sets
of points reduces the many-to-many graph
matching problem to that of many-to-many
point matching in the geometric space, for
which a number of efficient distribution-based
similarity measures are available. The authors
use the Earth Mover’s Distance [15] algorithm
to find such correspondences and show that the
resulting many-to-many point matching realizes
the desired many-to-many matching between the
vertices of the input graphs.

A number of researchers, e.g., [10, 12] and
[6], have explored many-to-many graph matching
in the context of model-based abstraction from
images. The work presented in [10] starts by
forming a region adjacency graph from each
image. The approach then searches the space of
pairwise region groupings in each graph, forming
a lattice. Each input image yields a lattice such
that its bottom node represents the original region
adjacency graph and its top node represents the
silhouette of the object. The framework defines
a common abstraction as a set of nodes, one
per lattice, such that for a pair of nodes, their
corresponding graphs are isomorphic. The lowest
common abstraction (LCA) is defined as the
common abstraction whose underlying graph has
the maximum number of nodes. Thus, the result-
ing LCA carries the most informative abstrac-
tion common to each image. Although effective,
this technique does not find a match between
two graphs whose common abstraction does not
exist.

The two algorithms presented in [12] and
[6] use the many-to-many graph matching tech-
nique of [5] for automatically constructing an
abstract model from examples. The work in [12]
computes the multi-scale ridge/blob decomposi-
tion (AND-OR) graph for each input image and
obtains the many-to-many node correspondences
between each pair of graphs, yielding a match-
ing matrix. By exploring this matrix, the algo-
rithm first finds features that match one-to-one
across many pairs of input images. The many-to-
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Many-to-Many Graph Matching, Fig. 2 Example
many-to-many correspondences computed by [5]. After
representing two silhouettes as skeleton graphs, the
graphs are embedded into geometric spaces of the
same dimensionality. The embedded points are then

matched using the Earth Mover’s Distance algorithm. The
right part illustrates the many-to-many correspondences
between the vertices of the input graphs. Each dashed
ellipsoid represents a set of vertices from the original
graph

many matchings between these features are then
analyzed to obtain the decompositional relations
among them. The extracted features and their
relations are used to construct the final abstract
model.

After obtaining many-to-many node corre-
spondences based on [5], the algorithm in [6]
computes the abstracted medial axis graph by
first computing the averages of the corresponding
pairs of subgraphs to yield the nodes in the
abstracted graph, and then defining the overall
topology of the resulting abstract parts to yield
the relations. Each matching pair of subgraphs
corresponds to a single node in the abstracted
graph, and two abstracted nodes are connected
by an edge if the corresponding subgraphs are
adjacent in the original graphs. This procedure
forms the basis of an iterative framework in
which pairs of similar medial axis graphs are
clustered and abstracted, yielding a set of abstract
medial axis graph class prototypes.

In the domain of grammars, objects are
represented as variable hierarchical structures.
Each part in this representation can be defined
in terms of other parts, allowing an object to
be modeled by its coarse-to-fine appearance.
Overall, grammar-based models including AND-
OR graphs support structural variability. To
represent intra-category variation and to account
for many-to-many correspondence, the grammar
creates a large number of configurations from

a small vocabulary set. To scale to a large
number of object categories, the AND-OR graph,
learning, and inference algorithms are defined
recursively. Some examples of this type of
approach include [1, 21].

Experimental Results

In this section, some example results from
some of the many-to-many matching approaches
described in the Related Work section are
illustrated. After representing silhouettes as
skeleton graphs in Fig. 2, the algorithm
proposed in [5] obtains many-to-many node
correspondences through metric embedding,
as discussed earlier. Based on the many-to-
many correspondences of this algorithm, Fig. 3
demonstrates an example for the abstract shape
created by the approach presented in [6]. The
left part presents input silhouettes, their skeleton
graphs, and many-to-many correspondences. The
right part presents the abstract skeleton graph and
its shape reconstructed from this graph.

Graph edit distance is another important class
of many-to-many graph matching algorithms.
Figure 4 shows the result of matching the
skeleton graphs for two input shapes using
the graph edit distance algorithm described
in [16]. Same colors indicate the matching
skeleton parts while gray colors show spliced or
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Many-to-Many Graph Matching, Fig. 3 A shape
abstraction example of [6] based on many-to-many cor-
respondences obtained by [5]. The left image shows input
silhouettes and their skeleton graphs in which the same

color is used to show the corresponding parts. Using
these correspondences, the abstract skeleton graph and its
silhouette are created as shown on the right

Many-to-Many Graph Matching, Fig. 4 Graph edit
distance algorithms compute many-to-many correspon-
dences of a pair of graphs by finding the lowest cost
sequence of graph edit operations needed to transform

one graph into another. In the example, same colors
indicate the matching skeleton parts, while gray colors
show spliced or contracted edges. (The example is taken
from Ref. [16])

contracted edges. Observe that the many-to-many
correspondences are intuitive in these figures.
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Synonyms

Digital matting; Pulling a matte

Definition

An alpha matte has the same size as the input
image. It contains respective weights to linearly
blend latent foreground and background colors
for each pixel to form the observed color. Esti-
mating the alpha matte together with the fore-
ground color image is generally referred to as
matte extraction or digital matting.

Background

Classifying each pixel in an input image to
either foreground or background is called binary
segmentation, which is a fundamental computer
vision problem. Digital matting relaxes the hard
separation assumption and takes ubiquitous
foreground and background color blending in
image formation, which happens along almost
all object boundaries, into consideration. Results
from matte extraction can be used to generate a
new composite.

Color blending in natural images has a vari-
ety of causes, such as color interpolation during
image production and light photons received by
the camera sensor containing both background
and foreground color for some pixels. Without
additional information, digital matting is an ill-
posed problem with many unknowns. So gener-
ally, either multiple frames are taken or a certain
amount of user interaction is involved to sample
foreground and background color in image and
video matting.

Theory

In the digital matting framework, separating the
background image B and foreground image F
with respect to an alpha matte α from an input
natural image I is expressed as

I = αF + (1 − α) B. (1)

If α(x, y) = 1, the pixel with coordinate (x, y)
is definitely in the foreground. α(x, y) being 0
defines an absolutely background pixel. α(x, y)

http://arxiv.org/abs/1004.4965
http://dblp.uni-trier.de
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Matte Extraction, Fig. 1 Blue screen matting [1]. (a) Object against known constant blue. (b) Object against constant
black. (c) Pulled foreground. (d) New composite

can also be in between 0 and 1, indicating a
certain level of color mixing. Digital matting
aims to estimate α and F (sometimes also B) from
I. Existing methods follow one of the following
lines.

Blue Screen Matting
Blue screen matting [1], which is widely
employed in movie and commercial production,
needs to set up a controlled environment and uses
a single or multiple constant-color backgrounds
(as shown in Fig. 1). The blue screen matting
problem is directly solvable. Its triangular
matting technique, which captures images with
two backgrounds containing different shades of
the backing color, is particularly noteworthy
because a closed-form solution exists. This
technique can produce very accurate matting
results usable as ground truth data. Blue screen
matting can be applied in a frame-by-frame
fashion to video foreground object extraction.

Natural Image Matting
In natural image matting, background B is gen-
erally unknown and possibly contains complex

structures. In this case, simultaneously estimat-
ing α, F, and B becomes an ill-posed problem.
Several methods [2–4] need user input of addi-
tional segmentation information to constrain it.
Trimap is a popular format that partitions the
image into three regions, i.e., “definitely fore-
ground” (DF for short), “definitely background”
(DB for short), and “unknown region”, as shown
in Fig. 2b. In DF and DB, α is set to 1 and
0, respectively. Digital matting only estimates
α, together with the foreground and background
color, in the unknown region by gathering color
information from DF and DB.

There have been several methods proposed
to sample color from DF and DB. In knockout
[5], F is computed as the weighted average of
foreground color along the perimeter of the DF
region. B is computed similarly but with a final
refinement step. Ruzon and Tomasi [2] sample F
and B from local windows and then parameter-
ize them as a mixture of unoriented Gaussians.
Alpha values are computed by maximizing a
function that interpolates the mean and variance
of the Gaussians. Bayesian matting [3] gathers
color samples from DF and DB using sliding
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Trimap Alpha matte

Matte Extraction, Fig. 2 A trimap matting example.
(a) Input image. (b) The user-provided trimap where
definitely foreground and background are in white and

black, respectively. The gray pixels are unknown ones. (c)
Alpha matte estimate by global Poisson matting

Matte Extraction, Fig. 3 Matting with scribbles. (a) Input image with user-drawn scribbles. (b) The initial trimap. (c)
Alpha matte result of Wang and Cohen [6]

windows and fits them with oriented Gaussian
distributions. A maximum a posteriori (MAP)
estimation of α, F, and B is applied. The final
α values are chosen from the foreground and
background color pairs that maximize the prob-
ability. Global Poisson matting [4] contributes a
gradient-domain alpha matte estimation. When
the condition of locally smooth color change
in DF and DB is violated, user interaction is
involved to improve the matting result with the
supply of a group of filters.

The quality of results of these methods partly
depends on how accurate the trimap is since
color is sampled and the alpha matte is estimated
within windows. Many later approaches instead
require the user to only draw several foreground
and background scribbles to coarsely indicate

DF and DB and leave all unspecified pixels in
the unknown region. This scheme simplifies user
interaction but provides looser constraints for
digital matting, as shown in Fig. 3. Represen-
tative work that can robustly solve for alpha
mattes based on it includes (1) the iterative-
optimization method [6], which samples color
from user-drawn scribbles, builds the Markov
Random Field (MRF), and solves for segmen-
tation and matte extraction using belief prop-
agation, and (2) closed-form matting [7] that
introduces a color line model and based on it
derives a quadratic cost function only involving
α and a matting Laplacian, enabling linear opti-
mization. In addition, Rhemann et al. [8] extract
high-resolution mattes by trimap segmentation
and by employing gradient preserving alpha pri-
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ors. The soft-scissor method of Wang et al. [9]
can achieve real-time matting along with user
painting the foreground boundary.

There are also automatic image matting meth-
ods. A soft color segmentation method was pro-
posed in [10], where a global objective function
is modeled by global and local parameters. These
parameters are alternately optimized until conver-
gence. It can be applied to matting without inten-
sive user interaction. Spectral matting [11] is a
single image approach. It shows that the smallest
eigenvectors of the matting Laplacian span indi-
vidual matting components, making their estima-
tion equivalent to finding linear transformation
of the eigenvectors. Flash matting [12] captures
a pair of flash/no-flash images and assumes only
the foreground region is lit by flash. This method
can automatically extract foreground in a joint
Bayesian matting framework.

Albeit some inevitable limitations as described
in respective papers, all the above techniques
advance image matting from different aspects.
Other recommended readings also include
[13–15].

Video Matting
Digital matting was extended to videos in various
ways. Typical video matting methods deal with
foreground regions with hair, trees, or smoke,
where color blending exists for a large amount
of pixels. To preserve temporal coherence among
frames, with the input of a monocular video,
Bayesian video matting [16] propagates manually
specified trimaps from keyframes to other frames
using optical flow and suggests completing back-
ground using mosaic construction. This method
is improved in [17] by incorporating stronger
prior terms. The geodesic matting method [18]
introduces temporal neighbors for each pixel and
infers foreground and background scribbles in
the video based on user input in only sparse
frames. With the setup of special devices or
systems, defocus matting [19] and the camera-
array method [20] make use of multiple cameras
that take pictures with different focus settings
and with the existence of parallax respectively to
profit video matting.

The other set of methods [21, 22] adopt video
matting in a refinement step to improve fore-
ground boundary estimation after video cutout
where unknown regions are generally narrow-
bands around the boundaries.

Application

Digital matting exploits pixel-wise color
blending and is an indispensable technique
for high-quality object extraction from images
and videos. The matte estimate together with
the computed foreground color can then be
used to form a new composite with another
background image. Simple composition applies
linear color blending again based on (1), while
several other approaches, include drag-and-drop
pasting [23], context-sensitive blending [24], and
compositional matting [25], explore the structure
relationship between the source and target images
and combine color blending with other schemes.

Matte extraction and the corresponding
composite construction are fundamental tools for
image/video editing and finds many applications
in computer graphics and vision. Movie and
commercial production relies on it to naturally
insert objects into a virtual or real scene.
Digital matting can possibly be combined with
other decomposition, recognition, and tracking
techniques to further improve the performance
and expand the usability.

Experimental Results

Rhemann et al. [26] established a digital mat-
ting evaluation website containing data classified
into high, strong, medium, and little transparency
groups. Training data are also provided. This
website contains updated experimental results of
many approaches.
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Synonyms

Maximum likelihood estimator

Definition

Maximum likelihood estimation seeks to estimate
model parameters that best explain some given,
independent measurements according to a noise
model.
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Background

Many problems in computer vision can be for-
mulated as finding the parameters of a predefined
model given measurements or training examples.

For example in image segmentation one may
want to describe a region by a simple region
model, e.g., by a constant intensity value μ.
There are many measurements, namely all the
pixel intensities in the region. Assuming that
these pixel intensities are independently gener-
ated from the constant intensity model according
to a Gaussian distribution, the goal is to find
the most likely parameter μ given these mea-
surements. In this simple example, the optimal
parameter μ is the mean of all intensities.

There are many more similar problems in
computer vision, for instance, in the scope
of optical flow estimation, camera calibration,
image denoising, or pattern recognition. In
the special case of a Gaussian noise model,
maximum likelihood estimation comes down
to a least squares approach.

Maximum likelihood estimation is often
criticized because it ignores a-priori information,
which can be interpreted as assuming a uniform
prior density on the parameter space. This
becomes especially problematic when the model
is described by many parameters and there
are relatively few measurements. In cases
where good a-priori assumptions can be made,
maximum likelihood estimation should be
replaced by maximum a-posteriori estimation,
which takes the prior density into account.

Theory

Given a probabilistic model that is described by
a parameter vector w ∈ R

D and given N indepen-
dent measurements xn ∈ R

K, N ≥ D, one aims at
maximizing the likelihood

p (x1, . . . , xn|w) =
N∏

n=1

p (xn|w) . (1)

For numerical reasons, rather than maximizing
this probability, it is common to maximize its

logarithm, the so-called log-likelihood:

w∗ = argmax
w

log p (x1, . . . , xN |w)

= argmax
w

N∑

n=1
log p (xn|w) .

(2)

Application

Applying this to a simple regression problem,
where a line is to be fitted to a couple of points,
one has the constraints

w1x1,n + w2 = x2,n, n = 1, . . . , N. (3)

Assuming a Gaussian distribution with con-
stant covariance yields

N∑

n=1

logp (xn|w) ∝
N∑

n=1

(
w1x1,n + w2 − x2,n

)2
.

(4)

The connection to least squares estimation
can be seen immediately, but one could as well
assume a Laplace distribution, which is more
robust to outliers among the measurements and
would lead to

N∑

n=1

log p (xn|w) ∝
N∑

n=1

∣
∣w1x1,n + w2 − x2,n

∣
∣ .

(5)

A necessary condition for a maximum of this
expression is that the gradient with respect to the
parameter vector must vanish:

∂
∂w1

∑N
n=1

∣
∣w1x1,n + w2 − x2,n

∣
∣ = 0

∂
∂w2

∑N
n=1

∣
∣w1x1,n + w2 − x2,n

∣
∣ = 0

(6)

leading to the nonlinear system

∑N
n=1

1
2
(w1x1,n+w2−x2,n)x1,n|w1x1,n+w2−x2,n| = 0

∑N
n=1

1
2
(w1x1,n+w2−x2,n)|w1x1,n+w2−x2,n| = 0,

(7)
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which can be solved by iteratively keeping the
denominators fixed, solving the resulting linear
system and updating the denominator. Gaussian
distributions lead to linear systems that can be
solved directly. More details and examples on
maximum likelihood estimation can be found in
[1, 2].
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Related Concepts

� Shape from Specular Reflections

Definition

A mirror is an optical device used for beam-
forming or imaging based on the directional
reflection of electromagnetic radiation.

Background

Computer vision applications apply mirrors in a
twofold manner: for optical imaging and for illu-
mination purposes. Furthermore, mirrors them-
selves could be test objects in visual inspec-
tion systems. This leads, with regard to the 3D
shape of the mirror, to the shape-from-specular-
reflection problem and, in the context of visual
inspection systems, to deflectometry.

Theory and Application

Mirrors consist of a smooth substrate with a metal
coating (e.g., Au, Ag, Al) and/or dielectric layers.
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In the case of a surface mirror, the reflection
takes place at a metal coating on the front side
that has to be protected against scratches. The
main advantage of a surface mirror is the lack
of beam displacement due to the glass substrate.
Alternatively, the backside of a glass substrate
can be coated with a metal layer and with an addi-
tional protection against humidity and mechani-
cal damage. Backside mirrors are usually more
robust than surface mirrors, but lack their optical
characteristics mentioned above.

The physical effect leading to the reflection of
electromagnetic waves on metal surfaces can be
simply described as “short circuit” of the electri-
cal field. The reflection depends on wavelength,
incident angle, and polarization.

Dielectric mirrors are composed of multiple
thin layers of dielectric materials. They exhibit
very high reflectance values and very low
intrinsic absorption. The reflectance depends also
on wavelength, incident angle, and polarization.
Advanced multilayer structure designs can be
used to obtain certain functionality [1]:

• A broader reflection bandwidth
• A combination of desirable reflectivity values

in different wavelength ranges
• Special polarization properties (for non-

normal incidence, thin-film polarizers,
polarizing beam splitters)

• Non-polarizing beam splitters
• Edge filters, e.g., long-pass filters, high-pass

filters, band-pass filters
• Tailored chromatic dispersion properties

Such mirrors are especially used in laser applica-
tions.

Furthermore, thin metal layers allow semi-
transparent mirrors to be realized for coaxial
illumination.

The electromagnetic theory of light is funda-
mental for the physical understanding of specular
reflections [2]. Thereby, the law of reflection
describes the geometric aspects, and the Fres-
nel equations the reflection coefficients, i.e., the
radiometric behavior.

The law of reflection states the relationship of
the incident 	si and reflected 	sr light rays with the

normal of the specular surface 	n :

	si × 	n = 	sr × 	n , (1)

with ‖	si‖ = ‖	sr‖ = ‖	n‖ = 1.
Equation 1 leads, with ‖	si × 	n‖ = sin θi =

sin θr = ‖	sr × 	n‖, directly to the following two
conditions:

• The angle of the incident ray equals that of the
reflected ray (θi = θr).

• The incident and reflected ray are coplanar
with the surface normal.

In computer graphics and ray-tracing, the law
of reflection is often used in the form of a House-
holder transformation:

	sr = H 	si with H := I − 2	n	nT , (2)

with the identity matrix I .
The bidirectional reflectance distribution

function (BRDF; ρ(θi, ϕi; θr, ϕr)) describes the
reflectance characteristics of a surface, i.e.,
the ratio of incident and reflected radiance in
dependency of incident and observation angles,
Nicodemus et al. [3]. According to Horn and
Sjoberg [4], the BRDF for an ideal mirror is
(cf., Fig. 1):

ρ(θi, ϕi; θr, ϕr) = dLr

Li cos θi dΩi

= 2 δ(sin2θr − sin2θi) δ(ϕr

− ((ϕi + π) mod 2π)). (3)

In general, the amount of reflected light inten-
sity depends on the wavelength, incident angle,
and polarization of the incident light and on the
characteristics of the surface itself, e.g., refraction
index, shape, and roughness.

The Fresnel equations describe the relationship
between reflected intensity, incident angle, and
polarization state of the incident electromagnetic
wave of a smooth surface. These formulas
are applicable in the two cases of dielectric
and strongly absorbing materials (metals) and
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Mirrors, Fig. 1 Geometry of reflection and the BRDF,
thereby dΩi denotes an infinitesimal solid angle of the
incident radiation, Li, Lr the incident and reflected radi-
ance, and dEi the irradiance on the surface element dA

establish the theoretical basis for the creation of
polarized light with mirrors.

In Fig. 2, the reflectance of some metals is
plotted against the wavelength. Most metals have
a strong reflectance in the infrared spectrum.
For laser applications, mirrors with gold coat-
ings are often sufficient for low-power opera-
tion, whereas high-power lasers require advanced
dielectric multilayer structures.

With dielectric films even higher reflectance
values can be achieved.

Furthermore, the reflectance depends on the
surface quality. The dependency on surface
roughness σ (root-mean-squared roughness),
wavelength λ, and the reflectances Rσ for rough
and R for ideal smooth surfaces can be stated
as [6]:

Rσ = R exp

[

−
(
4πσ cos θi

λ

)2
]

. (4)

The surface roughness requirements in the far-
infrared spectrum are lower than in the visible

range. With large incident angles θi and surfaces
with very small roughness, mirrors applicable
even for X-ray applications can be manufactured.

The most familiar type of mirror is the plane
mirror, which has a flat surface. This mirror is
mostly used for beam deflection purposes. In
Fig. 3a, the geometry of reflection on a plane
mirror is shown.

Thereby the image of an object is virtual with
magnification equal to one, upright, right-left
inversed, without aberrations, and symmetric to
the mirror plane.

Figure 3b shows two plane mirrors in an angu-
lar mirror setup, whereby γ = 2δ. A special case
is a triple mirror with three pairwise orthogonal
planes (δ = 90◦), which is used as a retroreflect-
ing element.

Curved mirrors are also used, such as spher-
ical, ellipsoid, paraboloid, or conical mirrors.
Figure 4 shows convex and concave mirrors for
optical imaging. The focal distance of a spherical
mirror with radius r is given by:

f = r

2
. (5)

The mirror equation:

2

r
= 1

s
+ 1

s′ (6)

describes the relationship between object and
image distances (s, s′) with the mirror radius r .

A big advantage of mirrors above lenses is
the lack of chromatic aberrations, but with the
disadvantage of higher centering and adjustment
requirements.

Torrance and Sparrow [7] and Phong [8] have,
among many others, introduced surface models
which can be used to describe specular reflec-
tions. Modeling of mirrors or partially reflect-
ing surfaces is of ongoing interest for computer
graphics applications.

Open Problems

The main principle for the visual inspection
of mirrors is to use a highly controllable
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Mirrors, Fig. 2
Reflectance vs. wavelength
curves for gold (Au), silver
(Ag), and copper (Cu) at
normal incidence [5]
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environment, where a screen presenting a well-
designed pattern is observed via the specular
reflecting surface. Knowing that pattern, it is
possible to inspect the surface qualitatively and –
at least with certain additional knowledge – to
reconstruct the surface quantitatively. This recon-
struction problem is ill-posed in a mathematical
sense, and several regularization approaches have
been proposed. The reconstruction of large and
complex formed mirrors is still a challenge in the
field of computer vision [9–13].

Although the reconstruction problem is ill-
posed, humans can usually estimate the shape
of mirrors quite well, c.f., Fleming et al. [14].
The visual perception of mirror-like objects is an
ongoing research effort.

Another area of ongoing research is the devel-
opment of mirrors for the extreme ultraviolet
(EUV) spectral range, used in EUV lithography
tools. These mirrors can be standard Mo/Si mir-
rors or multilayer setups [15].
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Definition

Amobile (visual) observer is an agent or a system
that perceives its environment using vision. In
computer vision this typically is a mobile device
such as a robot carrying one or more cameras.

Background

Gibson [1] claimed that a mobile observer is
a prerequisite for natural vision. He discrim-
inated between ambient or ambulatory vision,
when the observer can move its head or body,
and snapshot or aperture vision in cases when
one or several images are recorded momentar-
ily at certain fixation points. All those aspects
are treated in computer vision, although current
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trends are on processing static images in the
spirit of snapshot or aperture vision. Computer
vision researchers began to study visual motion
in the 1970s, when it became possible to con-
nect video cameras to computers. This work did
not really concern mobile observers, but such
existed even earlier, when cameras were used
as input devices to robots, e.g., in the work on
“Shakey” [2]. Nowadays, mobile observers most
often occur in the context of mobile robots, but
recent developments on wearable vision have
widened the interest in the topic. Ambient vision
is what you have for instance in the case of pan-
tilt heads, which are used in a large range of
applications.

Theory

There have been attempts to find the notions
of active and mobile observers theoretically. In
biological vision Gibson’s work is of a land-
mark nature, but there are many other propos-
als as well, e.g., relating to functionalism [3].
In computer vision the problem has been con-
sidered from the point of view of active vs.
passive vision [4–6]. In [7–9] the theoretical
aspects are more directly addressed. However,
even with these attempts, one can hardly say that
there exists any complete theory for a mobile
observer.

Problems and Applications

The mobile observer obtains a stream or sequence
of images as input rather than single images. This
provides rich information about the environment
as well as of the movements of the observer.
However, observer motion also implies that there
is image motion in almost every point in the
sequence. In a static world, observer motion cre-
ates essentially all the variations over time in
the images, i.e., those that are due to change of
viewpoint and not, e.g., in illumination. If there
are things in the environment that also move,
the two types of motion are confounded in the
images.

A mobile observer can derive (static) scene
geometry through structure-from-motion algo-
rithms. Moreover, ego-motion, i.e., the motion
of the observer, can be estimated. Generally
such methods assume a static background that
is prominent in the field of view. Independently
moving objects can then also be detected, and
under certain conditions their motion can be
estimated. Ego-motion estimation obviously
plays an important role here. There are many
types of algorithms for this, e.g., based on optical
flow, monocular or binocular feature tracking, or
image stabilization. There also exist algorithms
for using omnidirectional or composite cameras,
which highlights the fact that effects of ego-
motion are manifested in a wide field of view. For
instance, small rotations of an observer moving
straight ahead can be estimated from peripheral
flow, something that is useful in driving and in
guiding of autonomous robots.

A mobile observer can be active or passive.
In the first case, it purposively guides its motion
and/or the way it directs its gaze on the basis
of tasks it is involved in and as a reaction to
what it observes. Gaze control and fixation in
dynamic situations have been studied extensively
in the field of active vision. In some cases
these mechanisms have been used to control
observer motion, e.g., for exploring a scene or
an object and to facilitate recognition. Then
viewpoint planning becomes an issue. However,
a more general case is when the observer
motion is only loosely dependent of what
is seen, except for possible control of gaze.
For instance, a mobile observer can induce
depth cues through parallax by (small) camera
motions that are not pure rotations. Another
example is given by a robot moving from one
point to another while observing an object
along its path, analogously to a person riding
in a car. Many applications contain elements
of both active and passive observations, for
instance in robot navigation including obstacle
avoidance and mapping (as in SLAM), hand-eye
control in grasping and manipulation, and in
general for an ambulant observer, such as those
studied in the context of wearable or egocentric
vision.
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Open Problems

The study of mobile observers from a computa-
tional perspective involves a broad range of prob-
lems traditionally addressed in computer vision.
However, there are certain issues that become
central. For instance, the correspondence prob-
lem is ubiquitous. In applications such as those
described above, the tight connection between
perception and action is apparent. Visual sensing
involving motor control raises problems on time
criticality and real-time computations [9]. Other
problems arise because the mobile observer con-
tinuously samples the visual world. Meaningful
behavior based on the huge amounts of infor-
mation requires methods for attention and visual
search. In all, although some of the problems
encountered in the study of mobile observers
largely overlap those generally treated in com-
puter vision, there are others that are specific to
this area.
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Synonyms

Object models; Object parameterizations; Object
representations; Visual patterns

Related Concepts

�Human Pose Estimation
�Object Detection

Definition

Model-based object recognition addresses the
problem of recognizing objects from images by
means of a suitable mathematical model that is
used to describe the object.

Background

In model-based object recognition, an object
model is typically defined so as to capture
object’s geometrical and appearance properties at
the appropriate level of specificity. For instance,
an object model can be designed to recognize a
generic “face” as opposed to “someone’s face”
or vice versa. In the former case, which is often
referred to as the object categorization problem,
the main challenge is to design models that are
capable of retaining key visual properties for
representing an object category, such as a “face,”
at the appropriate level of abstraction. Such

http://www.ai.sri.com/shakey/
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models can be then used to recognize novel object
instances from a query image. Moreover, a model
must be able to generalize across variations
in the object’s visual characteristics due to
viewpoint and illumination changes as well as
due to occlusions or deformations. Meeting all
of these desiderata can be extremely challenging.
This makes object recognition an open, yet key,
problem in computer vision.

Object Models for Recognition

The design of an object model must reflect its
ability to (i) capture geometrical and appearance
characteristics of the object at the appropriate
level of specificity and (ii) generalize across vari-
ations in viewpoint, illumination, occlusions, and
deformations. The complexity of the representa-
tion can be reduced by making assumptions on
the type of object specificity or the degree of
viewpoint, occlusions, and deformation variabil-
ity. Ultimately, the strategy in designing an object
model will depend on the relevant application
scenario.

Object models that are designed to recognize
objects at the highest level of specificity – e.g.,
“my face” as opposed to “a face” – are often
referred to as single-instance object models.
These models are capable of recognizing a
specific object instance while guaranteeing
the ability to handle occlusions and a large
degree of viewpoint variability. Research on 3D
object recognition, from early contributions [1–
9] to the most recent ones [10–13], follows
these assumptions. Since single-instance object
models do not need to accommodate any intra-
class variations, they often consist of a rigid
collection of visual features associated to a
number of 2D or 3D templates. In recognition,
by matching features of the query image with
those associated to the models, it is possible to
identify the object of interest and determine its
3D pose with respect to a common reference
system. This matching process is usually subject
to a geometrical validation phase that helps
verify that the appearance, and geometric
properties of the query object are consistent

with the estimated pose transformation between
observation and object model. While critical
for ensuring sufficient discrimination power for
recognizing single-instance objects as well as
for enabling large viewpoint variability, tight
geometrical constraints become inadequate when
shape and appearance intra-class variability must
be accounted for.

Object models that are designed to recognize
objects at a lower level of specificity – e.g.,
“a face” as opposed to “my face” – are often
referred to as categorical object models. The
ability to generalize across instances in the same
category is critical and is typically achieved by
characterizing the object as a collection of fea-
tures whose appearance and geometrical proper-
ties tend to systematically occur in the category of
interest. For instance, if the goal is to recognize
a car, appearance properties such as the “color
of the body” are not adequate to help obtain
the right level of generalization (abstraction),
whereas the orientation of edges associated to
a wheel can capture more general appearance
cues across instances. Appearance properties are
typically captured by image descriptors such as
[10, 14] associated to interest points that are
detected at different locations and scales of the
image. A popular design choice is to describe
the object appearance by histograms of vector-
quantized descriptors [15–17]. The ability of
image descriptors such as [10] to be invari-
ant to affine illumination transformations makes
the appearance models robust to variability in
illumination conditions. Geometrical properties
are captured by retaining the spatial organiza-
tion of features in the image and include simple
characterizations based on the 2D location of
either feature points or aggregation of features
(e.g., edges, parts, fragments) with respect to
a given object reference point [18–22]. Object
models constructed upon constellation of parts
such as [18–20] are suitable to accommodate
object variations due to occlusions and simple
2D planar geometrical deformations (isometries
or affinities). Suitable machine learning and prob-
abilistic inference techniques such as expectation
maximization (EM) [23], latent SVM (LSVM)
[24], Markov random field (MRF) [25, 26], con-



Model-Based Object Recognition: Traditional Approach 809

M

ditional random field (CRF) [27], generalized
Hough voting [28], and RANdom SAmple Con-
sensus (RANSAC) [29] are used to automatically
select appearance and geometrical properties so
as to reach the appropriate level of generalization
and discrimination power.

Most of the object models for object cate-
gorization mitigate the complexity of the repre-
sentation by assuming that objects are viewed
from a limited number of poses and learn an
object model that is specialized to identify the
object from a specific viewpoint. These are often
referred to as view-dependent object models. If
similar views in the training set are available,
the recognition problem is reduced to match the
new query object to one, or a mixture, of the
learnt view-dependent object models [30, 31].
The drawback of view-dependent object models
is that (i) they can accommodate very limited
viewpoint variability – mostly changes in scale
or 2D rotation transformations – and (ii) differ-
ent poses of the same object category result in
completely independent models, where neither
features or parts are shared across views. Because
each single-view models are independent, these
methods are often costly to train and prone to
false alarms, if several views need to be encoded.

Object models that can accommodate both
large viewpoint changes and large intra-
class variability (low degree of specificity)
overcome the above limitations by introducing
a representation that seeks to effectively captures
the intrinsic three-dimensional nature of the
object category. These models are typically
divided into two types: 2-1/2D layout models
and 3D layout models [34]. In the 2-1/2D
layout models [32, 33, 35], object diagnostic
elements (features, parts, contours) are connected
across views to form an unique and coherent
2-1/2D model for the object category (Fig. 1).
Relationships between features or parts capture
the way that such elements are transformed as the
viewpoint changes. These methods share some
key ideas with pioneering works in 3D object
recognition [1–6, 8, 9] as well as with the theory
of aspect graphs [7, 36]. In the 3D layout models
[37–42], object elements are organized in a
common 3D reference frame and form a compact

3D representation of the object category. Such
3D structures of features (parts, edges) can give
rise, for instance, to either a 3D generalization of
2D pictorial structures or constellation models or
to hybrid models where features (parts or edges)
lie on top of 3D object reconstructions or CAD
volumes.

Open Problems

Although object recognition has been a core
problem in computer vision for more than
four decades and several powerful models
have been proposed, state-of-the-art methods
are still far from the level of accuracy,
efficiency, and robustness that the human visual
system achieves in recognizing, detecting, and
categorizing objects from images. Recently,
several new paradigms have been explored to
address the above limitations. One major effort
involves large-scale object recognition. With the
introduction of ultra-large-scale datasets such as
the ImageNet [43] – a collection of millions of
images organized into a hierarchical ontology of
thousands of categories – it is now possible to
evaluate methods for object categorization that
seek to (i) efficiently process these many images
and categories and (ii) understand objects at
different level of specificity; this is also referred
to as to the fine-grain categorization problem
[44–46]. Another major effort is related to
the introduction of a recent paradigm whereby
objects are modeled and recognized by means
of their attributes. As pioneered by [47–49],
visual attributes such as “it is metallic”; “it has
wheels” can be used to obtain more effective
and descriptive characterizations of object
categories (i.e., a car or a truck). This has the
benefit of (i) making the “boundaries” between
different categories more fluid than in traditional
parameterizations, (ii) enabling more powerful
methods for fine-grained categorization [45],
and (iii) providing critical building blocks for
transferring visual properties across categories
(transfer learning, one short learning) [47, 49].

Other important problems for future work
include the ability to (i) overcome the traditional
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pi

pj

Model-Based Object Recognition: Traditional
Approach, Fig. 1 Example of 2-1/2D layout models
as introduced in [32] and generalized in [33]. Left panel:
An image of an object category of interest. Right panel:
In the 2-1/2D layout model, object parts are connected to
form a graph structure. Each node Pi captures diagnostic

appearance of the object part which is assumed to be
locally planar. Each edge describes an homographic
transformation that captures the viewpoint transformation
between parts. The homographic transformation is
illustrated by showing that some parts are slanted with
respect to others

paradigm whereby objects are identified as just
bounding boxes in images but rather provide a
richer characterization in terms of their accurate
outlines or segments, 3D properties (pose or
3D shape) [37, 42], as well as attributes; (ii)
find a common ground between bottom-up
representations (from pixels to features), akin
to recent developments on convolutional neural
networks [50, 51], and top-down models as
recently advocated in [52] and (iii) describe the
interplay between objects and their components
at different levels of semantic resolution [53,54].
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Monocular and Binocular People
Tracking

Chong Luo and Wenjun Zeng
Microsoft Research Asia, Beijing, China

Synonyms

Person following

Related Concepts

� Person Re-identification

Definition

People tracking is the process of estimating and
recording the locations of target people in 2D
image sequences (monocular computer vision) or
3D spaces over time (binocular computer vision).
It may also refer to the process of estimating and
recording the pose (or joint locations) of target
people.

Background

Visual object tracking is a fundamental problem
in computer vision. As a person is the most
important type of object, people tracking has
received tremendous interest from both academia
and industry. While generic object tracking meth-
ods can be directly applied to people tracking,

there are also many algorithms and schemes that
are tailored for people tracking.

Monocular People Tracking

Monocular people tracking finds applications in
surveillance, video indexing, and many other
video analytic applications. When a specific
person is considered, people tracking can be
treated as a generic visual object tracking prob-
lem. The most well-known tracking algorithm is
the Kanade-Lucas-Tomasi (KLT) feature tracking
algorithm [1]. The basic idea is to find a bunch
of good features to track and then estimate the
object changes based on the points movement.
It was the dominant tracking algorithm before
the MOSSE tracker [2] was proposed. MOSSE
tracker is a correlation filter (CF)-based tracker
designed for fast object tracking. There have been
several modifications to this method, including
kernelization [3] and scale adaptation [4]. In
recent years, the Siamese fully convolutional
network (SiamFC)-based trackers have attracted
much attention [5, 6]. These trackers also
perform fairly well on human objects. Figure 1
shows the architecture of the original SiamFC
tracker.

When multi-person tracking is considered, it
can be similarly treated as a generic multiple
object tracking (MOT) problem. In MOT
research, it is often assumed that object detection
results are given in each frame as input, and the
tracking task is to associate the detections to
find object trajectories. Existing works solve the
data association problem based on the Hungarian
algorithm, Markov decision process (MDP) [7],
or more complex graph models [8]. There are a
handful of efforts that treat object detection and
tracking as a coupled optimization problem [9].

For the human object, there is a stronger
demand to jointly optimize detection and
tracking. It is observed that people detectors
are able to locate pedestrians even in complex
street scenes, but false positives have remained
frequent. Tracking methods are able to find a
particular individual in image sequences but
are severely challenged by real-world scenarios
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Monocular and Binocular People Tracking, Fig. 1
Fully convolutional Siamese network for visual object
tracking [5], where z is the target object and x is the search
image. CNN denotes the convolutional neural network

for feature extraction, and * denotes the cross-correlation
operation. The output is a scalar-valued score map, where
the location of the maximal value indicates the location of
the object in the search image

such as crowded street scenes. Therefore, the
advantages of detection and tracking should
be combined in a single framework [10].
Breitenstein et al. [11] propose a tracking-by-
detection algorithm which uses the continuous
confidence of pedestrian detectors and online
trained, instance-specific classifiers as a graded
observation model. Tang et al. [12] propose
training people detectors explicitly on failure
cases of the overall tracker.

In addition to the tracking algorithms which
treat a human in its entirety, there are approaches
which utilize the body parts or articulations.
Rather than simply determining the position and
scale of a person, Andriluka et al. also extract
the 2D articulation [10] or 3D pose [13] for the
tracking task. Shu et al. [14] extend part-based
human detection methods to the tracking task.
Henschel et al. [15] use body parts, such as the
head and/or shoulder, to facilitate person tracking
in very crowded scenes.

Note that, although person reidentification
has been a separate research topic, it is a
highly related concept. Traditionally, person re-
ID addresses the association of people across
nonoverlapping cameras, but it can be used for
linking the detected persons across the whole
video after long-term occlusion in multi-person

tracking [16]. Some of the results achieved by
this work are shown in Fig. 2.

Binocular People Tracking

People detection and tracking are key capabilities
for a mobile robot acting in populated environ-
ments. It is often addressed in the context of
binocular vision because a robot can be equipped
with two cameras. Conversely, robot control and
human-robot interaction are the most important
applications of binocular people tracking.

Around a decade ago, when the mainstream
tracking algorithms were feature-based tracking,
Chen et al. [17] proposed a binocular person
following algorithm which uses Lucas-Kanade
feature detection and matching to determine the
location of the person in the image and thereby
control the robot. Matching was performed
between two images of a stereo pair, as well
as between successive video frames. It is one of
the earliest works that do not rely on clothing
colors for tracking.

Usually, depth information can be estimated
from a pair of stereo images. The depth
information complements the appearance model
and allows tracking algorithms to achieve good
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Monocular and Binocular People Tracking, Fig. 2 Some tracking results achieved by [16] on the MOT16
benchmark. The line under each bounding box indicates the lifetime of the track

results in challenging scenarios. The majority of
binocular people tracking algorithms are directly
based on RGB-D data, but the depth information
can be used in different ways. For example, Ess
et al. [18] consider multi-person tracking in busy
pedestrian zones. The depth information is used
to verify people candidates obtained by a people
detector. Luber et al. [19] combine a multi-cue
person detector for RGB-D data with an online
detector that learns individual target models. In
the 3D tracking method proposed by Cao et al.
[20], depth information obtained from a moving
binocular camera is used to detect and recover
from occlusions.

Open Problems

People tracking faces challenges when there
are appearance changes due to illumination,
pose changes, or cluttered background. But
the biggest challenge arises from the person
interactions and long-term occlusions in crowded
real-world scenes. These may cause identity
switches between multiple tracked people.
Incorporating long-range person re-ID into

the tracking algorithms could be a feasible
solution. Besides, joint detection and tracking
is a promising approach to improve the overall
system performance.
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Monte Carlo Annealing

� Simulated Annealing

Morphology

� Statistical Shape Analysis

Motion Blur

Neel Joshi
Microsoft Research, Redmond, WA, USA

Synonyms

Camera-shake blur; Object motion blur

Related Concepts

�Blur Estimation
�Deblurring
�Deconvolution
�Defocus Blur

Definition

Motion blur is due to motion of scene objects or
the camera, while the camera shutter is open, thus
causing scene points to be imaged over a large
area of camera sensor or film. The motion blur
is a projection of the motion path of the moving
objects onto the image plane. The motion path of
a point can be due to translation and rotation of
the camera or scene objects in three dimensions.
There can be different paths for different parts of
the scene, and in light-limited situations, when
using long exposures, these paths can be quite
large, resulting in very large blurs.
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Background

Image blur can be described by a point spread
function (PSF). A PSF models how an imaging
system captures a single point in the world –
it literally describes how a point spreads across
an image. An entire image is then made up of
a sum of the individual images of every scene
point, where each point’s image is affected by the
PSF associated with that point. For an image to
be “sharp” means that one ideally does not want
any image blur. Thus the PSF should be minimal,
i.e., a delta function, where each scene point
should correspond only to one image point. In
practice, PSFs can take on a range of shapes and
sizes depending on the properties of an imaging
system. When this PSF is large relative due to
camera or scene motion and relative to the image
resolution and pixel size, an image with motion
blur is captured.

The fundamental cause of motion blur is that
a camera does not sample light from a single
moment in time, but instead captures images by
integrating the light over an exposure window.
The relative motion between camera and scene
objects is the primary factor in motion blur, as
illustrated in Fig. 1. The path of motion during
exposure affects the PSF and thus the blur shape
and size. Properties such as exposure duration,
lens focal length, and pixel size play an additional
role.

Theory

Image blur is described by a point spread function
(PSF). The PSF models how an imaging system
captures a single point in the world.

The most commonly used model for blur is
a linear model, where the blurred image b is
represented as a convolution of a kernel k, plus
noise:

b = i ⊗ k + n, (1)

where n ∼ N(0, σ 2), which represents an addi-
tive Gaussian noise model. In this model, the blur
is assumed to be constant over the entire image,
i.e., spatially invariant; however, that is often not

true in practice [1, 2]. If there is depth variation
in the scene, the motion blur can change with that
depth due to parallax. Similarly, if there is scene
motion, the blur can change as a function of this
motion. In these cases, one can think of the blur
kernel, k, as being a function of image position,
i.e., k(x, y).

To model spatially varying blur, the spatially
invariant kernel and convolution in Eq. 1 can
be replaced by a sparse re-sampling matrix that
models the spatially variant blur, and the convo-
lution process is now a matrix-vector product:

b = Ai + i. (2)

Each column of A is the un-raveled kernel for
the pixel represented by that column. Thus the
blurred response at a pixel in the observed image
is computed as a weighted sum, as governed by
A, of the latent sharp image i formed into a
column-vector.

Representation To model motion blur, first, let
us consider the image a camera captures during
its exposure window. The intensity of light from a
scene point (Xt , Yt , Zt ) at an instantaneous time
t is captured on the image plane at a location
(ut , vt ), which is a function of the camera projec-
tion matrix Pt . In homogenous coordinates, this
can be written as:

(ut , vt , 1)
T = Pt (Xt , Yt , Zt , 1)

T . (3)

If there is camera motion, Pt varies with time
as a function of camera rotation and translation
causing points in the scene to project to different
locations at each time. If there is scene motion,
(Xt , Yt , Zt ) also varies with time, which also
affects where the points project on the image
plane. The integration of these projected obser-
vations creates a blurred image, and the projected
trajectory of each point on the image plane is
that point’s “point-spread function” (PSF). The
camera projection matrix can be decomposed as:

Pt = KΠEt, (4)
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MotionBlur, Fig. 1 With motion blur, the amount of blur
depends on the relative motion between the camera and
the scene objects; it depends on the focal length and of the
lens, the scene depth, and the motion trajectories of objects

in the scene. An example of camera motion blur is shown
in the middle, where the blur kernel is drawn for each
corner of the image. (From Joshi et al. [3]). An example of
object motion blur is shown on the right. (From Jia [11])

where K is the intrinsics matrix, Π is the canon-
ical perspective projection matrix, and Et is the
time dependent extrinsics matrix that is com-
posed of the camera rotation Rt and translation
Tt . In the case of image blur, it is not necessary to
consider the absolute motion of the camera, only
the relative motion and its effect on the image.
This can be modeled by considering the planar
homography that maps the initial projection of
points at t = 0 to any other time t [3], i.e., the
reference coordinate frame is coincident with the
frame at time t = 0:

Ht(d) = [K(Rt + 1

d
TtN

T )K−1] (5)

(ut , vt , 1)
T = Ht(d)(u0, v0, 1)

T , (6)

for a particular depth d, whereN is the unit vector
that is orthogonal to the image plane.

If the scene is not moving, given an image I

at time t = 0, the pixel value of any subsequent
image is:

It (ut , vt ) = I (Ht (d)(u0, v0, 1)
T ). (7)

This image warp can be re-written in matrix form
as:

It = At(d)I , (8)

where It and I are column-vectorized images and
At(d) is a sparse re-sampling matrix that imple-
ments the image warping and resampling due to
the homography. Each row of At(d) contains the
weights to compute the value at pixel (ut , vt )

as the interpolation of the point (u0, v0, 1)T =

Ht(d)−1(ut , vt , 1)T . Thus an alternative formula-
tion for image blur is the integration of applying
these homographies over time [3]:

B =
∫ s

0
[At(d)Idt] . (9)

The is leads to the spatially variant blur matrix in
Eq. 2:

A(d) =
∫ s

0
At(d)dt. (10)

For camera motion blur, A is a function of
depth. If there is scene motion, the full model can
be extended to handle the time-varying mapping
of scene points, (Xt , Yt , Zt ), to the image plane.

Application

Estimation of camera motion blur [1, 3–9] and
object motion blur [10–13] are extensively
researched areas. Estimated blur kernels are
typically used for improving image quality
by reducing blur using image deblurring and
deconvolution methods [1, 10, 14, 15]. There are
also methods that reduce motion blur or make
the blur more easily removable but changing how
images are captured [13, 16]. Recently, machine
learning approaches have been used to estimate,
characterize, and remove motion blur [17–21].
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Motion Capture

Nils Hasler
Graphics, Vision and Video, MPI Informatik,
Saarbrücken, Germany

Synonyms

MoCap; Motion capturing; Motion tracking; Per-
formance capture

Related Concepts

�Kinematic Motion Models
�Multiview Stereo

Definition

Motion capture is the process of recording the
motion of a subject, processing it on a computer,
and mapping it onto a virtual character.

Background

Parameterizing human motion is not just
of academic interest, e.g., for studying the
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musculoskeletal system of humans, but has many
applications in the industry. Historically, the first
motion capture systems have been developed in
the 1970s and 1980s to perform gait analysis in
clinical settings. Today, however, sports sciences
and the entertainment industry make heavy use
of the technology as well. The setups are also not
constrained to human gait analysis any longer.
Instead, full-body motion of several humans,
animals, stage props, and virtual cameras can be
processed in real time.

When capturing motion, it is commonly
assumed that the body or object can be
decomposed into rigidly moving parts connected
by joints. That way, the pose of a human, animal,
or mechanical stage prop can be parameterized
by a small set of joint angles organized in a
hierarchical tree, the skeleton. This hierarchy can
be inferred given trajectories of markers attached
to the body. Yet, since this step is computationally
expensive, the skeleton is normally supplied and
scaled to the size of the actor beforehand.

Classification
Motion capture systems can be categorized by
their use of sensors. Optical systems use cameras
operating in the visible or infrared spectrum,
whereas nonoptical systems are based on various
other modalities.

Nonoptical Systems
Various nonoptical motion capture systems have
been proposed using different sensors. They are
grouped here because compared to optical motion
capture, they occupy a marginal position. Yet,
all approaches discussed here, have in common
that they solve the main disadvantage of optical
systems, the sensitivity to occlusion.

Mechanical tracking systems measure the
angles of the joints mechanically, i.e., by
attaching goniometers to the joints of the subject.
Estimating the pose given the joint angles is
straightforward, but several problems exist with
the approach. The mechanical alignment of
the goniometers with the body joints can be
difficult, especially for joints with more than one
degree of freedom, e.g., the shoulder, the devices
are cumbersome, and limb lengths have to be

measured very accurately for every subject to
prevent drift.

Magnetic fields can be used to estimate the
orientation of a magnetic sensor relative to the
source of the field. By modulating magnetic coils
in the vicinity of the capture volume and measur-
ing the field at different points in time, position
and orientation of the sensor can be inferred.
The approach has the advantage that it does
not suffer from occlusion because the human
body is transparent to magnetic fields. However,
magnetic fields attenuate rapidly over distance
and are sensitive to interference with electrical
equipment. The latter is a severe shortcoming as
motion capture systems are frequently used in
conjunction with other equipment such as motion
picture cameras, computers, or stage lights.

Inertial sensors measure acceleration and
angular velocity of the limbs they are attached
to. Aside from the acceleration of the body,
accelerometers measure the gravitational
acceleration. After compensating for gravitation,
integrating measurements over time yields the
pose of the subject. This approach is, like the
previous methods, invariant to occlusion, but the
numerical integration of measurements leads to
drift in position and orientation. It can, however,
be used effectively in conjunction with a drift-
free method to compensate for drift and bridge
occlusions with the acceleration data.

Optical Systems
The most common systems today are optical,
i.e., they use one or more calibrated camera(s)
to estimate the pose of the subject. Most com-
mercial systems today require the actor to wear
markers to simplify the tracking. One of the first
marker-based systems used pieces of paper that
glow under ultraviolet illumination. Nowadays,
either small retroreflective balls or light-emitting
diodes (LEDs) operating in the visible or infrared
spectrum are used.

Passive systems are normally equipped
with infrared lights located in rings around
the cameras. This setup evokes a distinct dot
for each retroreflective marker in the captured
video frames. To further improve image quality,
infrared filters in front of the cameras help



820 Motion Capture

to reduce spurious highlights in the visible
spectrum. There are two main drawbacks
of passive marker-based systems. Since all
markers look alike, their trajectories can easily
be confused, and all optical systems have in
common that they suffer from occlusions.

Active markers, e.g., pulsed LEDs, have the
advantage that markers can be identified by the
blinking pattern. That way, confusing marker
trajectories becomes impossible. Additionally,
active marker systems are not restricted to studio
environments because the blinking patterns can
be distinguished effectively from interference
introduced by sunlight. One disadvantage of
active markers is that they have to be powered.
Carrying a battery pack is not a big burden for an
actor, but some stage props such as arrows cannot
easily be fitted with batteries.

Markerless systems are subject of intense sci-
entific research. However, first commercial sys-
tems are available as well. Yet, it is still unclear,
which of the proposed approaches will prove to
be the most effective in the long run. Most vision-
based approaches today use a combination of
edge features, silhouette constraints, texture anal-
ysis, and feature tracking or optical flow. Pose
optimization is performed using gradient descent,
particle filters, simulated annealing, belief propa-
gation, or a combination of these methods. The
main advantage of markerless systems is that the
amount of preparation of the subject is minimal.
Common drawbacks of current systems are that
they lack robustness or restrict the setting in
other ways than by adding markers, e.g., it is
assumed that the background is static. Mark-
erless systems also tend to be computationally
expensive. The most advanced systems today
are able to capture a single actor in real time,
compared to five actors with a marker-based
system.

Theory

Generally, the different motion capture systems
require different workflows to set up the system
and then to fit a skeleton to the captured data.

Since optical systems are the most common, in
the following, the procedure for this particular
pipeline is outlined.

As a first step, all camera-based systems today
need to be calibrated. That is, the relative posi-
tions of the cameras, their orientations, and their
internal parameters (distortion) have to be esti-
mated. This is commonly achieved by either plac-
ing a three-dimensional calibration object with
known dimensions inside the capture volume or
by covering the volume with a calibration wand,
a typically one-dimensional object with known
dimensions and marker positions. The advantage
of wand-based calibration is that it is easier to
cover the entire capture volume using only a
small object. Covering the capture volume as
exhaustively as possible is important to ensure
accuracy of the calibration. Calibration objects,
in contrast, tend to be as large as possible for
a similar reason. In either case, the parameters
of the cameras are extracted using a variation of
Structure from Motion.

When using marker-based systems, the next
step is to extract marker positions in the video
frames. Normally, centroids and extents of the
markers are extracted. The extents can be used
as a measure of quality of the marker. For
example, distant markers tend to be smaller and
should be considered less reliable. For large
systems, with dozens of cameras running at
high framerates ( > [100]Hz) and high resolution
( > [4]Megapixel), doing this processing close
to the cameras is essential because the required
bandwidth for transmitting the entire frames to
a central processing unit would be prohibitively
expensive.

Subsequently, the 2D dots can be combined
into 3D markers using the calibration matrices
of the cameras. For passive markers, this step
is ambiguous. So additional heuristics have to
be taken into account. For example, dots can be
tracked in 2D or 3D to propagate the identity
of a marker, established in a previous frame
to the current frame. 3D markers should also
be consistent with as many of the 2D dots as
possible. Finally, skeleton fitting can be posed as
a nonlinear minimization problem
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argmin
ξ

M∑

i=1

(mi − si (ξ))2, (1)

where mi is an estimated 3D marker position
and si(ξ ) is the corresponding marker attached to
the skeleton, as a function of the pose parame-
ters ξ . This problem can be solved in many dif-
ferent ways. Commonly, gradient descent, Gauss-
Newton, or Levenberg-Marquardt optimization is
used. These approaches make use of the tracking
assumption, i.e., the solution of the previous
frame is used as a starting point for the cur-
rent frame. Other methods, like particle filters
or simulated annealing, are less likely to lose
track by getting stuck in a local minimum but are
computationally more expensive.

Alternatively, the 3D marker reconstruction
step can be skipped. Instead, the nonlinear opti-
mization is performed in image space of the
cameras. That is, the distances between the pro-
jections of the skeleton’s markers and the 2D
markers are minimized rather than their distance
in world space.

Markerless systems have to solve a very sim-
ilar optimization problem. Only their method of
acquiring correspondences between 2D image
features and the tracked object is more sophis-
ticated. Frequently, different characteristics are
combined. Common features include edges, sil-
houettes, texture statistics, and corners.

Application

Historically, the first applications of motion anal-
ysis can be found in biomedicine. Gait analy-
sis is used to assess pathological conditions of
patients and to plan treatment such as orthopedic
surgery and for follow-up monitoring. Similarly
the methodology is applied in sports science,
where the motion of athletes is optimized or
monitored and automatically evaluated during
endurance exercises.

More recently, motion analysis and motion
capture have been applied in the entertainment
industry. In its earliest form this involved a pro-

cess called rotoscoping, i.e., an artist traced the
outline of an actor in every frame of a refer-
ence video to create 2D animations of a subject.
Nowadays, marker-based systems are frequently
used to capture motions for use in both computer
games and motion picture productions because
creating animations by hand with the fidelity
required in this industry is a very time-consuming
task. Most commercial marker-based systems are
still limited to controlled studio environments.
Although recently, systems using active markers
have been proposed that can be used outdoors or
in onset conditions.

Open Problems

Although the main challenges of marker-based
motion capture are generally considered solved,
there is still room for improvement. Directors ask
for ever more actors to be tracked simultaneously
in real time; systems that work in outdoor settings
are still only available using active markers or
do not support real-time feedback. Retroreflec-
tive markers cannot be used outdoors because
interference with other light sources prevents
detecting markers reliably. Vision-oriented sys-
tems may be able to solve these issues and in most
cases make less assumptions about the scene.
Many approaches use no markers and signifi-
cantly fewer cameras. In some cases, even mov-
ing backgrounds can be handled, or cameras are
not assumed to be static. However, vision-based
systems tend to be computationally expensive
and less robust. Overall, combining the general
capabilities of vision systems with the speed and
robustness of marker-based approaches would
significantly advance the state-of-the-art.

References

1. Sutherland DH (2002) The evolution of clinical
gait analysis: part II kinematics. Gait Posture 16(2):
159–179

2. Zhou H, Hu H (2008) Human motion tracking for reha-
bilitation – a survey. Biomed Signal Process Control
3:1–18



822 Motion Capturing

3. Moeslund TB, Hilton A, Krüger V (2006) A survey of
advances in vision-based human motion capture and
analysis. Comput Vis Image Underst 104(2):90–126

4. Menache A (1999) Understanding motion capture for
computer animation and video games. Morgan Kauf-
mann, San Diego

Motion Capturing

�Motion Capture

Motion Deblurring

�Blind Deconvolution

Motion Tracking

�Motion Capture

Multi-baseline Stereo

David Gallup
Google Inc., Seattle, WA, USA

Definition

Multi-baseline stereo is any number of techniques
for computing depth maps from several, typically
many, photographs of a scene with known camera
parameters.

Background

The goal of any stereo algorithm is to reconstruct
the 3D surface geometry of a scene from multiple

photographs. Multi-baseline stereo can be seen
as a generalization of binocular stereo, and it is
one instance of a broader class of multi-view
stereo algorithms. The classic binocular stereo
problem focuses on using two views of a scene
(the minimal case), whereas multi-baseline stereo
uses more than two and typically many more
views of the scene. More views not only provide a
better signal to noise ratio but also eliminate most
repetitive structure errors and offer new ways to
handle occlusions.

Another type of multi-view stereo is volumet-
ric stereo, which explicitly models the scene’s
surface in a volume, and is sometimes called
object-based. Multi-baseline stereo on the other
hand is image-based, and seeks to reconstruct the
scene by assigning depth values to the pixels of
one or more of the input images. Often this leads
to better sampling of the input data and greater
memory efficiency. The disadvantage is that spe-
cial care must be taken at depth discontinuities.

Theory

Multi-baseline stereo shares the same theoretical
concepts as other stereo problems. The inputs
consist of a set of n input images with camera
parameters. Camera parameters define a projec-
tion function which projects a 3D point into a
pixel in the image. The goal is to compute a
depth map for one or more of the input images.
For simplicity we will focus on computing a
depth map for a single view called the reference
view.

Computing a depth map from images
can be viewed as a maximum a posteriori
estimation problem. Given images I1, . . . ,
In, compute the depth map Z that maximizes
P (Z| I1, . . . , In) = P (I1, . . . , In|Z)P(Z). The
likelihood P (I1, . . . , In|Z) describes how well
the depth map fits the input data, and the prior
P(Z) describes desired properties of the depth
map such as smoothness. This formulation can
be expressed as an energy function:
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E(Z) =
∑

p∈Z

Edata (Z(p))

+
∑

(p,q)∈N
Esmooth (Z(p), Z(q)) .

(1)

The data term Edata measures how well the
depth value Z(p) matches the input images. These
matching scores can be computed by comparing
the intensity value in the reference view Iref(p) to
the intensity values of the projections of Z(p) in
the matching views, Ik(projk(Z(p))). Some views
may be occluded, meaning that Z(p) may not be
visible from that view and Ik(projk(Z(p))) will
not match Iref(p). Occlusion handling aims to
remove the influence of these occluded views and
is a critical part of stereo. The smoothness term
Esmooth penalizes variations between neighboring
depth values (given by the set N).

Matching Scores

Consider a known 3D point X on the surface
of the scene as shown in Fig. 1. Let x0, . . . ,
xk be the projections of X into each image. The
image intensities at these points should be photo-
consistent (have the same appearance) since they
are all images of the same point on the surface.
This will not necessarily be true for 3D points
off the surface of the scene. Brightness con-
stancy is the assumption that the intensity of light
does not change from viewpoint to viewpoint,
a property of Lambertian surfaces. This can be
measured by taking the absolute difference or
squared difference between the intensity value
in the reference view and the intensity value in
matching view. Typically a single pixel does not
carry enough information to make an informa-
tive matching score, and so often the differences
between patches of nearby pixels are also incor-
porated into the matching score. This yields the
sum of absolute differences (SAD) and sum of
squared differences (SSD) scores.

The brightness constancy assumption can be
violated for many reasons, for example, different

exposure settings between images and specular
surfaces that reflect light at different intensities
depending on the angle. To account for some
of these changes, patches can be normalized by
removing the mean intensity of the patch and
scaling the values so that variance is 1. This yields
the normalized cross-correlation score (NCC).
LetM and N be two rectangular image patches of
size w ×h. These patches can be flattened to form
vectors m and n of size w · h. The NCC score is
then

NCC(M,N) = (m − m) · (n − n)

var (m) var (n)
, (2)

where m is the mean of m and var(m) is its
variance.

When patches originate from highly slanted
surfaces, they may need to be corrected before
being correlated. The surface’s tangent plane can
be defined given the point’s surface normal, and
images can be aligned by projecting them onto
this plane. This transformation can be expressed
as a homography. This adds two additional angle
parameters per pixel to the problem. One method
to account for the surface normal is to compute
the matching score as the best score over all
surface normals [1]. A much faster alternative
is to consider only a small number of likely
candidates [2]. Another is to iteratively estimate
a depth map, using surface normals given by the
depth map from the previous iteration.

Summing the SAD, SSD, or NCC scores from
multiple views reduces the influence of noise as
well as disambiguates mismatches due to repet-
itive structures since it is less likely that a mis-
match will occur in all views simultaneously [3].

Occlusion Handling

Summing scores from multiple views treats all
images equally. In fact some images may be
occluded, meaning a different surface is seen
from that viewpoint, and the matching score is
arbitrarily bad. Handling these cases is important
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Multi-baseline Stereo,
Fig. 1 A surface point X is
projected into the images.
Matching view 2 is
occluded and should not
contribute to the matching
score

Multi-baseline Stereo, Fig. 2 Simple occlusion geom-
etry. Typically, either the left half-set or the right half-set
will be free of occlusion

for stereo, and multi-baseline stereo has advan-
tages in this regard. One method based on robust
statistics is to assume that at least k views are
unoccluded and to discard the rest. The sum of
the best k views can be obtained by sorting and
summing. Another method is to assume an object
will be occluded from one side and not another.
Assuming cameras are arranged in a line, the
unoccluded half-set will be either the left or right
half-set of cameras [4]. See Fig. 2.

Other methods seek to detect occlusions
explicitly by using the reconstruction itself to

identify occluded views. This is a chicken and
egg problem: the occlusions must be known to
reconstruct the scene, and the reconstruction
of the scene must be known to detect the
occlusions. Some methods model occlusions
probabilistically [5], and others start with a
safe configuration and update the reconstruction
convervatively [6].

Optimization

Optimizing Eq. 1 is difficult due to the non-
convex data and smoothness terms. Some
methods ignore the smoothness term, and each
pixel is optimized independently by exhaustive
search. The Z function is discretized into points
along viewing rays that project to individual
pixels in the matching views. Testing all points
for each pixel can be done efficiently using
graphics hardware which is well suited for this
type of embarrassingly parallel computation
[12]. Methods that do use the smoothness term
obtain better results, and if the benefits of
normalization (NCC) are not needed, patches
need not be used and single pixels can be
used. The ambiguity of single pixel matching is
resolved because the smoothness term regularizes
the solution. The optimization problem is
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NP-hard, but there are effective approximation
algorithms based on graph cuts [8] and belief
propagation [9].

Depth Resolution

The resolution of stereo as a depth sensor depends
on the distance of the surface from the cameras.
The depth resolution is the distance between pix-
els in a matching view projected onto a viewing
ray in the reference view. In the binocular case,
the resolution is

�z = z2

bf
, (3)

where �z is the resolution, z is the distance
to the reference view, b is the baseline or dis-
tance between camera centers, and f is the focal
length of the cameras. Depth measurement uncer-
tainty depends on the matching uncertainty which
describes how precisely the two observed pat-
terns can be registered and depends on factors
like texture and image noise. Depth measurement
uncertainty is proportional to depth resolution.
With enough views, multi-baseline stereo has the
advantage that the baseline can be treated as a
variable rather than a constant. This gives greater
control over the depth resolution and computation
time of the stereo algorithm [10].

Application

Multi-baseline stereo is applied to many 3D
reconstruction problems such as 3D city
modeling [11], view synthesis [12], and digital
archiving. Multi-baseline stereo is often used in
real-time applications where high-quality depth
can be computed from a large number of views
without the need for computationally intensive
optimization techniques. This is especially true
for video applications, where the camera moves
in a fairly linear manner, and so more general
multi-view stereo techniques are unnecessary.
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Definition

Multi-camera human action recognition deals
with using multiple cameras to capture several
views of humans engaged in various activities
and then combining the information gleaned
from the cameras for the classification of those
activities.

Background

Research on human activity recognition gathered
momentum in the mid- to late 1990s; much early
work is summarized in a review by Aggarwal and
Cai [1]. There emerged two dominant approaches
during this period: (1) state-space modeling of
human actions [2, 3] and (2) template matching
[4, 5]. The focus during that early phase of this
research was primarily on recognizing human
activities on the basis of the images collected
by a single camera. While this is still an active
research area in computer vision (see Aggarwal

and Ryoo [6] for a survey), it unfortunately
suffers from several serious shortcomings, many
of them owing to the limitations inherent to
images that are recorded from just one viewpoint.
Human activities, in general, are much too com-
plex in 3D to be described by cues extracted
from single-viewpoint 2D projections. While it
is true that the human eye (even just a single
eye) can do a wonderful job of categorizing
human activities, trying to replicate that in a
computer would be far too ambitious a research
project for a long time to come. It is not yet
fully understood how the human brain fills in the
information that it cannot see directly in order to
recognize objects and movements despite severe
occlusion and noise. While it is a proper exercise
in humility to be awed by the capabilities of
the human brain, it is nonetheless good to keep
in mind that even a human can be fooled in
its perception of an activity when the percep-
tion is limited to a single viewpoint. Magicians
frequently take advantage of such limitations of
human perception in order to produce their mag-
ical effects.

In addition to the problems caused by the
fact that a single camera provides only single-
viewpoint 2D projections of the scene, other rea-
sons for the more recent interest in multi-camera
approaches to activity recognition stem from the
current global interest in wide-area surveillance,
on the one hand, and in the design of intelli-
gent environments for the living spaces of the
future on the other. In both of these applications,
the goal is to characterize a human activity as
it is evolving with time and as it is occupy-
ing space that may not be limited to the cov-
erage provided by a single camera. Consider
a habitat of the future for the aged and the
infirm where you may wish to use a network
of cameras that silently watch for any undesir-
able human behavior, such as someone suddenly
collapsing on the floor or tripping over a piece
of furniture. To recognize such human activities,
the camera system would need to analyze the
sensed data over a period of time and, even
more particularly, over some a span of physical
space. Multi-camera imagery would obviously
lend itself much better to the sort of data analysis
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that would need to be carried out for the required
inferences.

With a view to gaining insight into the various
aspects of multi-camera human action recog-
nition, in the remainder of this chapter, sec-
tion “Theory” describes the theoretical details of
the different types of approaches that have been
proposed by researchers to accomplish multi-
camera action recognition. Owing to this chap-
ter’s intent of providing accessibility to the gen-
eral readers, significant details about the algo-
rithms are not discussed; rather, only the distin-
guishing highlights of the different approaches
are presented. Section “Application” presents a
discussion on some of the application areas that
will benefit from multi-camera action recogni-
tion as compared to the single-camera modal-
ity. Since human action recognition is a com-
plex and challenging problem, there are quite a
few open problems that need to be addressed
before this research becomes useful for main-
stream society. Section “Open Problems” enu-
merates some of these open problems related
to human action recognition in general and also
those that are specific to the area of multi-camera
action recognition. Finally, in section “Experi-
mental Results,” this chapter is concluded with
a performance comparison between the different
multi-camera approaches on a common bench-
mark dataset.

Theory

The first step in human action recognition
involves creating a library of models for different
human actions to be recognized. An action
model characterizes the unique motion patterns
associated with an action. These models can
be created from a temporal sequence of either
2D images or 3D reconstructions obtained by
combining multiple-camera images of a human
actor. Researchers have proposed different
approaches to creating the action models. For
example, an action model may comprise of
a set of local motion features extracted from
the spatiotemporal volume of the action image
sequence. Another example of an action model

is a set of exemplar human poses represented
either as 2D silhouettes or 3D reconstructions.
Yet another example is a set of spatiotemporal
trajectories of different human body parts. Once
the action models are created, new instances
of human actions can be recognized. Given a
test image sequence that contains an unknown
human action, the same technique used for
creating the action models is applied to the test
sequence to generate its action representation.
This action representation is then compared
against each action model in the library. Finally,
the test sequence is assigned the label of the
most similar action model. In terms of the
underlying operating principle, there is no
difference between human action recognition
and any other type of object recognition: a test
object whose category label is to be ascertained is
assigned the label of the closest matching model
whose category is known.

A common assumption in single-camera
action recognition is that the test action and the
model actions have been captured from identical
or very similar camera viewpoints. The quality
of match between the test action and the model
actions is a function of the conformity between
their camera views. As Souvenir and Babbs [7]
point out, it would be impractical for any human
motion analysis system to impose the constraint
that humans engaged in an activity are facing
the same direction relative to the camera view
at all times. In order to alleviate this problem,
several methods have been developed which
use multiple cameras in the training and/or
testing phases of action recognition. These
methods provide viewpoint invariance, i.e., the
ability to perform matching between a pair
of action observations even if they have been
acquired from different camera views. A good
overview of multiple-camera action recognition
approaches can be found in [8]. Based on the
distinct fundamental ideas of these methods, they
have been categorized into the following three
classes:

1. Multi-view geometry-based methods
2. View-invariant representation-based methods
3. Exhaustive search methods
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Multi-view Geometry-Based Methods
The multi-view geometry-based approaches
utilize the epipolar geometric constraints between
multiple cameras for human action recognition.
The intuition is that if two actors perform the
same action, then assuming the same temporal
rate of action execution and their postures at all
corresponding time instants is related by epipolar
geometric relationships. Such relationships
between the two views are applied to point
correspondences where the points are generally
chosen as the anatomical landmarks on the
human body, e.g., head, shoulders, hands, and
feet (see Fig. 1). Action recognition is performed
by measuring the similarity between the postures
of a test action sequence and a model action
sequence at every time instant. The similarity
measure can be expressed in terms of the
point correspondences and a matrix F known
as the fundamental matrix that is computed
using epipolar geometry (Fig. 2). Given at least
eight pairs of point correspondences

(
xi, x

′
i

)
,

the fundamental matrix F satisfies the relation
xT
i Fx′

i = 0, i = 1, . . . , n ≥ 8. In practical
settings, the point correspondences between the
action representations in two different views will
generally not be precise, and hence, the quantity
xT
i Fx′

i will not be exactly zero. Nevertheless,

the residual
∑

i

∣
∣xT

i Fx′
i

∣
∣2 can be used as the

matching cost or the similarity measure. If the
matching cost is below a certain threshold,
then the point correspondences come from the
same action represented in the different views.
Generally, the test action postures and the action
models are derived from different persons with
different body sizes and proportions; therefore,
certain anthropometric constraints may also
need to be imposed to normalize the landmark
points to a common coordinate frame before the
epipolar geometric constraints can be applied.
Such and other similar constraints on the point
correspondences have been used for matching of
different action instances in [9, 11–13].
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Multi-camera Human Action Recognition: Traditional Approaches, Fig. 1 The posture of a human actor at a
specific time instant. It is represented as a set of anatomical landmarks. (Gritai et al. [9], ©2004 IEEE)
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Multi-camera Human Action Recognition: Tradi-
tional Approaches, Fig. 2 Landmark points (yellow) in
one view. The other views show the epipolar lines which

contain the points corresponding to the landmark points.
(Sinha and Pollefeys [10], ©2009 Springer)
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View-Invariant Representation-Based
Methods
In addition to the multi-view geometry-based
approaches, there are other interesting methods
that accomplish viewpoint invariant action recog-
nition based on machine learning techniques. It
is a conceivable scenario that a discriminative
model of an action is available for one camera
viewpoint (source view) and the action recog-
nition needs to be performed in another view
(target view) for which such a model is not
available. This issue has been addressed in [14],
where a transfer learning approach is used along
with examples of corresponding observations of
actions from both views in order to learn how the
appearance of an action changes with the change
of viewpoint. It is worth noting that such learning
can be performed with one set of actions and
then applied to a new unknown action for which
the transfer model is not explicitly built. Transfer
learning is applied by splitting the source domain
feature space using the action descriptors and
the action labels to produce certain split-based
features. These split-based features are consid-
ered transferable between the source view and the
target view and therefore are used to construct an
action-discriminative split of the target domain
feature space. For a test action sequence in the
target view, its action descriptors are extracted,
and action recognition is performed by a nearest
neighbor matching with the action descriptors of
the model actions which were transferred from
the source view.

In [7], the variation in the appearance of
an action with viewpoint changes is estimated
by learning low-dimensional representations of
the actions using manifold learning. The action
descriptor used is theR transform surface which
is a temporal extension of the well-known Radon
transform (Fig. 3). In the figure, the horizontal
axes correspond to time t and the polar angle θ

used in Radon transform computations. The R
transform surface is a high-dimensional data that
lies on a nonlinear manifold, and hence it can be
embedded into a lower dimensional space. In this
low-dimensional space, learning how the data
varies as a function of the viewpoint provides
a representation which allows to avoid storing

action examples from all possible viewpoints.
Action recognition is performed by obtaining a
similarity measure between two R transform
surfaces S1 and S2, such as the L2 distance
‖S1 − S2‖. Another interesting approach has
been described in [15], where the temporal
self-similarity between the frames of an action
sequence was shown to be highly stable with
a changing viewpoint (Fig. 4). Specifically, for
the same action sequence recorded from very
different views, the so-called temporal self-
similarity matrices (SSMs) corresponding to
the different views were shown to be very
similar. This observation was consistent even
when different image features were used
for computing the self-similarity matrix. By
constructing histogram-based descriptors from
the elements of the SSM (as described in [15],
Sect. IV), action recognition can be performed
by applying classifiers like nearest neighbor or
support vector machine on these descriptors.
Recently, Kusakunniran et al. [16] proposed
a view transformation model based on support
vector regression for solving the multi-view gait
recognition problem. This view transformation
model uses local regions of interest (ROIs) in
one view to predict the motion information of
the corresponding regions in a different view.
In order to perform gait recognition, the gait
features from the different actors’ gait sequences
and possibly different view angles are first
normalized to a common viewing angle using
the view transformation model followed by
a similarity measure calculation between the
normalized gait features using the Euclidean
metric.

Exhaustive Search Methods
The third popular approach in the multi-camera
human action recognition is to perform an
exhaustive search in the space of multi-view
action poses to find the best match for the test
action poses. Such an exhaustive search can be
performed in 2D or 3D. During the training
time, a set of multiple fixed cameras installed
around the actor is used to record the multi-view
sequences of his or her actions (Fig. 5). In the
2D exhaustive search approach, an observation
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Multi-camera Human Action Recognition: Tradi-
tional Approaches, Fig. 3 Kicking action from two
different viewpoints and their correspondingR transform

surface action descriptors. They are quite similar despite
view point variation. (Souvenir and Babbs [7], ©2008
IEEE)
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Multi-camera Human Action Recognition: Traditional Approaches, Fig. 4 A golf swing action seen from two
different views and their corresponding temporal self-similarity matrices. (Junejo et al. [15], ©2011 IEEE)
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View 5 (+/− 180°)

View 4 (− 135°)

View 3 (− 90°)

View 2 (− 45°) View 8 (+ 45°)

View 6 (+ 90°)

View 6 (+ 135°)

View 1 (0°)

Multi-camera Human Action Recognition: Traditional Approaches, Fig. 5 Acquiring simultaneous multi-view
action sequences for training. (Ahmad and Lee [17], ©2006 IEEE)

is recorded for the unknown action and matched
against each recorded view from the training
session. The matching can be performed using the
shape features derived from the 2D silhouettes,
the motion features obtained from the optical
flow, or histograms of local spatiotemporal
cuboid features. In order to accomplish action
recognition, this 2D search is performed at every
time instant of the action sequence, and the
model action resulting in the smallest feature
distance over all the time instants is used to
label the unknown action. A limitation of the 2D
approach is that the same spatial configuration
of cameras has to be used during the training
and testing sessions. Generally, during the test
time, the observations are recorded from a single
view, but more than one view can also be used
with the appropriate changes in the matching
algorithm. The 2D approach has been used by
several research groups [17–19].

The 3D exhaustive search approach provides
more flexibility with regard to the placement
of the cameras in the monitoring environment.
Different spatial configurations of cameras can

be used during the training and testing sessions.
Here, instead of storing all the discrete views
of the action during the training time, they are
combined to produce an action model based on
3D reconstruction (Fig. 6). The key advantage of
such a strategy is that there is no restriction on
what camera view(s) can be used to record the
test action sequence. If the camera parameters
of the arbitrary camera view used during the
testing session are known, then the model 3D
action representations can be projected into that
2D view for matching with the observation. Some
examples of such an approach are [20, 21].

Application

Vision-based human activity recognition has
diverse applications. Generally, any practical
application related to monitoring human
activities requires that the monitoring can be
done over an extended physical space beyond
the viewing area of a single camera. It may
also be required to monitor an event from
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Multi-camera Human Action Recognition: Tradi-
tional Approaches, Fig. 6 An action model consisting
of 3D exemplars that were selected based on 11 types of
actions by 10 human actors [20]. Given a test sequence of

2D action silhouettes, action recognition involves finding
the best matching exemplar sequence and the best match-
ing 2D projections. (©2007 IEEE)

several viewpoints simultaneously so as to
obtain richer descriptions of complex human
activities. Such requirements necessitate the use
of multiple cameras for capturing the events. In
this section, some of the application areas are
briefly discussed where multi-camera human
activity recognition or multi-camera event
detection is currently being used or has strong
potential for use in the near future.

1. Wide-area surveillance – Facilities like
government buildings, military installations,
airports, subways, power plants, dams, and
so on require round-the-clock surveillance.
Some examples of the general human-related
activities that need to be monitored are
wide-area perimeter breaches by intruders,
a person approaching the doors after hours,
leaving of a suspicious unattended object by a
person, extended loitering around the facility
perimeter, and persons tampering with the
facility security systems. In such scenarios,
it is necessary to study not only the isolated
activities of the persons but also the patterns
of their interactions with their surroundings,
such as who are other persons they interact
with, are they carrying any objects, how long
have they been present, or are they loitering
around the security systems.

2. Monitoring the elderly and children – Assisted
living homes and day care centers require
constant monitoring of the activities of the
elderly and children to avoid incidents such
as an elderly person tripping over a furniture
and falling down or a child playing too close
to hazardous areas like a swimming pool or an

electrical appliance. Commercial applications
are available for day care centers that allow the
installation of multiple wireless surveillance
cameras in play areas, resting areas, or dining
areas, where the video and audio feed from
the cameras can be transmitted to a central
computer connected to the Internet. Parents
can thus check on the safety of their children
at any time by viewing over the Internet.

3. Three-dimensional human motion analysis for
sports and medicine – A 3D motion-based
system can be used to perform a marker-
based or markerless capture of the human
motion while performing ordinary activities
like walking or bending or sports activities
like a golf swing, swimming strokes, tennis
serves, gymnastics, and so on. In the field of
medicine, such human motion data is used to
characterize the dynamics of activities, dis-
cover the fundamental principles that gov-
ern movement, and understand the causes of
movement disorders. In the area of sports, the
motion data of the athlete can be analyzed by
the coach for recommending changes in the
dynamics to achieve more energy-efficient and
agile performance, or it may be compared with
the 3D reference motion of another expert
athlete.

4. Enhanced sports viewing experience –
Multiple cameras are routinely used in sports
like football, cricket, and soccer to capture
many views of a dynamic event for providing
an enriched fly through experience of the
scene to the viewers or for use by the referees
when it is difficult to make judgments based
on a single-camera view.
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Open Problems

In the last 15 years, substantial progress has been
made in the field of human action recognition.
The accomplishments have primarily been in the
area of single-person action recognition in an
uncluttered background and recognizing a set of
simple activities like walking, jumping, waving
hands, punching, and so on. This is evidenced
by the popularity of datasets like KTH, Weiz-
mann, and IXMAS for benchmarking the action
recognition algorithms (please see [8], Sect. 6
for description of these datasets). These datasets
capture simple actions performed by a single
human, with a clean background, and negligible
variations in spatial scale of the person or tem-
poral speed of execution. The challenge for the
research community, in most simple words, is to
extend the current recognition algorithms to work
on datasets comprising of video sequences cap-
tured in unconstrained settings such as the Holly-
wood movie dataset [22] or the YouTube video
dataset [23].

Specifically in the area of multi-camera action
recognition, an open problem is to obtain non-
rigid point correspondences on the human body
that are needed for applying the geometric con-
straints. The main underlying difficulty is the
reliable detection and tracking of human body
parts in an unconstrained visual setting. Similarly,
a limitation on the view-invariant representations
like self-similarity matrices [15] andR transform
surface [7] is that they are constructed from the
temporal variation of the features; hence, they
need the full video sequences to be available
offline. Real-time applications like video surveil-
lance and human-computer interaction will ben-
efit from the development of view-invariant fea-
tures that can be computed online.

Experimental Results

This chapter is concluded with a chronologi-
cal summarization of the different algorithms’
action recognition performances on a benchmark
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dataset named the INRIA Xmas Motion Acquisi-
tion Sequences (IXMAS) [24].

The IXMAS dataset is the most commonly
used dataset for evaluating the multi-camera
action recognition algorithms. It contains 13
daily-life actions, such as check watch, cross
arms, and scratch head. Each action is performed
3 times by 11 actors. The actions are captured
using five calibrated and synchronized cameras.
The actors are free to perform the actions in
any orientation, making this a fairly challenging
dataset.

Figure 7 presents the reported average
recognition accuracies of several recent works on
multi-camera action recognition. It is important
to note that not all the approaches use the
same evaluation methodologies, and, hence, it
is difficult to compare them merely based on
these values.

For easier comparison, these works are catego-
rized into three groups based on their evaluation
methodologies: (1) the methods, which use 3D
representations in the recognition stage [24–26];
(2) the methods, which report camera-specific
recognition accuracies [21, 27–29]; and (3) the
methods, which incorporate results from multiple
cameras (e.g., using simple voting) [19, 20, 30–
35]. These groups are distinguished by black, red,
and blue markers in Fig. 7, respectively.
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Definition

Multidimensional scaling (MDS) refers to a fam-
ily of techniques in data analysis that aim to real-
ize a given matrix of dissimilarities Dn×n (i.e., a
distance matrix), as n points in a k-dimensional
Euclidean space:

Find X ∈ R
n×k such that ‖xi − xj‖

is as close as possible to dij ∀ij.

Background

The various multidimensional scaling models can
be broadly classified into metric vs. nonmetric
and strain (classical scaling) vs. stress (distance
scaling)-based MDS models. In metric MDS, the
goal is to maintain the distances in the embed-
ding space as close as possible to the given
dissimilarities, while in nonmetric MDS, only
the order relations between the dissimilarities are
important (i.e., dij > dql). Strain-based MDS
is an algebraic version of the problem that can
be solved by eigenvalue decomposition. Stress-
based MDS uses a geometric distortion criterion
which results in a nonlinear and non-convex opti-
mization problem. Each of these models has its
own merits and drawbacks, both numerically and
application-wise. On top of these basic models,
there exist numerous generalizations, including
embedding into non-Euclidean domains, working
with different stress models, working in different
subspaces, and incorporating machine learning
approaches to obtain faster, more accurate, and
more robust embeddings. The following sections
will review these models, with emphasis on their
role in computer vision applications.

Historically, MDS first appeared (informally)
in the works of Dutch cartographer Jacob van
Langren in the seventeenth century who was the
first to show a table of distances alongside the
map corresponding to these distances in a single
figure [1]. The first modern version of MDS,
called classical scaling, is due to Torgerson who
used it within the field of Psychophysics [2].
Later works by [3–5] formulated the problem

as a minimization over a stress function and
introduced the first nonmetric MDS model. A
complete historical review can be found in [6].
A short review of the role of MDS in computer
vision is given in section of “Applications.”

Theory

Metric Multidimensional Scaling

Strain-Based Scaling (Classical Scaling)

The Euclidean case. Let Dn×n be a (sym-
metric) matrix of pairwise Euclidean distances
between n points {yi}ni=1 in R

m and denote by E

the matrix whose entries are the squares of these
distances, i.e., eij = d2

ij ≡ ‖yi − yj‖2. We have

E = 1c� + c1� − 2YY� (1)

where c is a vector containing the diagonal ele-
ments of YY�. Assuming n > m + 2, from (1)
we have that the rank of E is m + 2 [7]. Our goal
is to find a set of points {xi}ni=1 in R

k such that
‖xi − xj‖2 ≈ eij . Let H ≡ I − 1

n
11T denote

a centering matrix, i.e., multiplying a vector by
this matrix results in a vector with zero mean.
Applying H on both sides of a matrix is called
a double centering transform and results in a
matrix whose mean along both columns and rows

is zero. Since H1 = (
1�H

)� = 0, we get that

K ≡ −1

2
HEH = HYY�H (2)

is a positive semi-definite Grammatrix of rankm.
Classical (multidimensional) scaling aims at min-
imizing the following distortion criterion called
strain

min
X∈Rn×k

Strain (X) ≡ min
X∈Rn×k

∥
∥
∥XX� − K

∥
∥
∥
2

F
,

(3)
which amounts to finding the closest symmetric
positive semi-definite matrix of rank k ≤ m to
the matrix K . Let K = V ΛV � be the spectral
decomposition of K . The solution of (3) is given
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by

X� = V kΛ
1
2
k (4)

where V k denotes the first k columns of V ,

and Λ
1
2
k denotes a k × k diagonal matrix whose

diagonal elements are the largest k eigenvalues of
K. The distortion can be quantified by summing
over the smallest m − k eigenvalues:

Strain
(
X�

) =
m∑

i=k+1

λ2i . (5)

Note that

HEH = E− 1

n
E11�− 1

n
11�E+ 1

n2
1�E1 (6)

i.e., performing a double centering transform
does not require multiplication by a centering
matrix on both sides but rather can be done
efficiently by subtracting the mean from each
row and column and then adding back the mean
of the entire matrix.

The non-Euclidean case. The above derivation
assumed that the matrix D is a matrix of
Euclidean distances. In real applications, this
matrix represents a set of dissimilarities which
might not be Euclidean distances or not even
distances at all. A classical example is that of
the perceptual distances between the RGB color
channels in a digital image, as conceived by the
human eye. A small change in the green channel
is more noticeable than a similar change in the
blue channel due to the eye’s higher sensitivity
to green. In these cases, there is no guarantee
that the matrix K defined in (2) will be PSD or
even that it has k positive eigenvalues, as required
by (4).

Numerical Considerations. Despite (3) being
a non-convex optimization problem, it enjoys a
global solution in the form of an eigendecompo-
sition. Nevertheless, it suffers from a few draw-
backs:

– Classical scaling may be impossible to obtain
in case D is not a Euclidean distance matrix.

– Eigendecomposition techniques are expensive
to apply and require the availability of the
complete matrix D, which may be time-
consuming to obtain in the best case or
impossible to obtain in the worst case.

– Classical scaling is very sensitive to outliers
due to the double centering transform (2),
which spreads the effect of a single outlier to
the rest of the points in the same row/column.

– The strain distortion criterion relies on alge-
braic manipulations and lacks a geometric
interpretation. This sometimes results in infe-
rior embeddings (see, e.g., [8]).

These drawbacks require the introduction of dif-
ferent MDS models and more delicate optimiza-
tion methods. For example, iterative methods can
be used for strain minimization, which allow the
introduction of weights to handle missing entries
inD [9], at the expense of the global convergence
guarantees. Some of these approaches will be
outlined in section “Generalizations.”

Stress-Based Scaling (Distance Scaling)
As an alternative to strain minimization, consider
the following nonlinear optimization problem:

min
X∈Rn×k

σ (X)

≡ min
X∈Rn×k

∑

i<j

wij

(‖xi − xj‖ − dij

)2
. (7)

Here dij is a (symmetric) measure of dissimilarity
between two sample points i and j ; wij ≥ 0
is a (symmetric) weight assigned to the pairwise
term between those samples. The term σ(X)

is called Kruskal stress, LS-stress, �2-stress, or
simply stress.

One efficient way to solve (7) is via the SMA-
COF algorithm [10]. First, note that

σ(X) = Tr
(
X�V X

)
− 2Tr

(
X�B(X)X

)

+
∑

i<j

wij d
2
ij , (8)

where V and B(X) are symmetric row- and
column-centered matrices given by
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vij =
{

−wij i �= j
∑

k �=i wik i = j
(9)

bij =

⎧
⎪⎨

⎪⎩

−wij dij‖xi − xj‖−1 i �= j, xi �= xj

0 i �= j, xi = xj

−∑
k �=i bik i = j,

(10)
and define

h(X,Z) = Tr(X�V X) − 2Tr(Z�B(Z)X)

+
∑

i<j

wij d
2
ij , (11)

which is a convex (quadratic) function in X for a
given Z. By using the Cauchy-Schwarz inequal-
ity, it is possible to show that h(X) is amajorizing
function of σ(X), i.e., satisfying (see [11])

h(X,Z) ≥ σ(X) ∀X,Z (12a)

h(X,X) = σ(X). (12b)

We now define the following iteration:

Xk+1 = argmin
X

h(X,Xk) = V +BkXk, (13)

whereBk ≡ B(Xk), and V + denotes the pseudo-
inverse of the rank deficient matrix V . By virtue
of (12) and (13) it follows that

σ(Xk+1)≤h(Xk+1,Xk) ≤ h(Xk,Xk)=σ(Xk),

(14)
i.e., (13) is guaranteed to produce a sequence of
monotonically decreasing stress values.

The multiplicative update (13) suggests that
at each iteration, each coordinate in the current
embedding is a weighted mean of the coordinates
of the embedding from the previous iteration,
starting with an initial embedding X0, where the
weights are given by the ratio of the pairwise
distances, dij‖xi − xj‖−1.

Numerical Considerations Each iteration (13)
of SMACOF requires the computation of the pair-
wise Euclidean distances between all points in the
current embedding, a task of complexity O(n2),

and the solution of a linear system involving
the matrix V . Despite being rank deficient, V is
not necessarily sparse, and computing its pseudo-
inverse is of order O(n3), except when V has a
special form. For example, in case all the weights
wij are equal to 1, we get

V + = 1

n

(

I − 1

n
11�

)

, (15)

and since 1�B = 0, (13) reduces to

Xk+1 = 1

n
BkXk. (16)

Nonmetric MDS
In nonmetric MDS (nMDS), also called ordinal
MDS, the goal is to preserve (as best as possible)
the rank order of the distances in the embedding
space rather than their value. For example, for
any four points i, j, q, l satisfying dij > dql , the
goal is to find an embedding such that ‖xi −
xj‖ > ‖xq − xl‖. It is always possible to
find an order preserving embedding of D, using
the following methodology [13]: due to (2), the
following relation holds between the elements of
K and E:

eij = kii + kjj − 2kij . (17)

The matrix

K ′ = K − min (λmin (K) , 0) I (18)

is always positive semi-definite and can therefore
be decomposed as K ′ = XX�. We have:

‖xi − xj‖2 = k′
ii + k′

jj − 2k′
ij

= kii − min (λmin (K) , 0) + kjj

− min (λmin (K) , 0) − 2kij

= eij − 2min (λmin (K) , 0) . (19)

Thus, X is a Euclidean embedding of E

with all entries shifted by a constant factor
2min (λmin (K) , 0), and thus all relative
comparisons are preserved.
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Despite this nice theoretical result, it may not
serve as a practical algorithm since it usually
results in high-dimensional embeddings. For a
more practical approach, we model the nMDS
problem with the following distortion function,
the Shepard-Kruskal stress, also called stress-1

σ1 (X) = min
θ

∑
i<j

(‖xi − xj‖ − θ(dij )
)2

∑
i<j ‖xi − xj‖ ,

(20)
where θ(·) denotes an arbitrary monotonic trans-
formation. Other definitions of nonmetric stress
functions exist. This model makes sense, for
example, in Psychophysics, where the dissimi-
larities represent perceptual differences and their
value is therefore rather arbitrary. The straight-
forward way for minimizing (20) is by alternate
minimization:

1. Fix θ and solve for X, e.g., with gradient
descent.

2. Minimize over θ using isotonic regression.

It is also possible to combine nonmetric MDS
with a strain-based models, although it is quite
unusual [9].

Numerical Considerations
– Since (20) is not convex in X, the first step

may get caught in local minima.
– The above approach requires order relations

between all pairs of points. These order rela-
tions might be contradictory, as they often
come from human observations.

These problems can be addressed by a general-
ized nMDS scheme [13].

Acceleration Schemes
The algorithms discussed above scale poorly
due to slow convergence rate and quantities
that require long computation times and
large memory requirements. For example, the
complexity of eigenvalue decomposition, as
required by the classical scaling algorithm,
is in general O(n3). Computing a Euclidean
pairwise distance matrix between n points,

as required in (10), takes O(n2). Moreover,
the SMACOF algorithm (13), being a first-
order optimization method, requires hundreds
to thousands of iterations to converge. In
order to accelerate MDS algorithms, one can
resort to two different strategies: numerical
acceleration and approximation. In the first,
dedicated optimization techniques are used in
order to obtain faster convergence rates, without
compromising the accuracy of the embedding. In
the latter, a small compromise is allowed in order
to achieve drastic savings in computation time
and memory. These two approaches are often
used in conjunction, where an approximated
solution is successively refined as part of a larger
numerical scheme.

In [14], Newton’s method was explored as
an alternative to the SMACOF algorithm for
the minimization of (7). While the number of
iterations until convergence drops dramatically,
the cost per iteration becomes prohibitive for
even moderate values of n, making second-order
methods impractical. Several works [15–17]
propose to split the MDS problem into several
subproblems (“resolutions” or “scales”) by
embedding only a subset of carefully chosen
points. The coarse embedding obtained from
this sample set is then interpolated and refined.
One can distinguish between multiresolution
and multigrid approaches. The first solves each
subproblem independently before advancing to
the next, while the second takes into account
the higher-resolution subproblem already when
solving the lower resolution one. Such a multigrid
algorithm for MDS was described in [16]. The
setting requires the availability of an additional
structure, namely, a discrete manifold that can
be manipulated to obtain distances between
points in different scales. Specially constructed
decimation and interpolation operators allow
moving between scales, but since these are ad
hoc constructions, they are hard to generalize
for different manifolds. A spectral approach
was described in [17] which achieves better
performance and generalizes easily across
manifolds.

Another form of numerical acceleration relies
on vector extrapolation techniques [18]. These
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techniques try to extrapolate the next iteration
based on a few previous iterations, often leading
to substantial acceleration at a very modest cost
of some extra computations per iteration. Rosman
et al. [19] suggested to use the reduced rank
extrapolation (RRE) variant in order to accel-
erate the SMACOF iteration for distance scal-
ing. This technique indeed increases the con-
vergence rate, but a few iterations of the full
problem are still required in order to produce an
expressible subspace of search directions. Being
a meta-algorithm, it can be used together with
other acceleration techniques. For more details,
see [11].

Subspace Methods
Subspace methods restrict some of the quantities
appearing in the MDS algorithms to a lower-
dimensional linear subspace, thus achieving sig-
nificant improvement in computation time. This
reduced complexity is often traded for larger
embedding distortion, but one has to keep in
mind that the sought Euclidean embedding is
usually just an intermediate step within some
larger task which may overall benefit from this
kind of implicit regularization. The different sub-
spaces used vary between ad hoc and algebraic to
geometric constructions. Indeed, the MDS algo-
rithms described above rely only on the pro-
vided dissimilarity matrix and completely ignore
the way these dissimilarities were obtained. For
example, if these dissimilarities were obtained by
measuring geodesic distances between points on
a manifold M, having access to this manifold
opens up the possibility to refine the embed-
ding by incorporating the local manifold structure
into the optimization problem. A key tool in
these techniques is the Laplace-Beltrami operator
(LBO), an analogue of the Euclidean Laplacian
for manifolds. In the discrete setting, this oper-
ator is given by L = A−1W , where A is a
diagonal matrix with positive entries called mass
matrix, and W is a symmetric positive semi-
definite matrix whose rows and columns sum to
zero, called stiffness matrix. These matrices are
obtained from the discrete version of the mani-
fold, for example – by the well-known cotangent
scheme [20]. The spectrum of the Laplacian can

be obtained by solving the generalized eigenvalue
problem Wφ = λAφ. The matrices containing
the eigenvalues and eigenvectors of L shall be
henceforth denoted by Λ and Φ. These act as
non-Euclidean counterparts of “frequencies” and
“Fourier basis,” correspondingly.

Subspace approaches for classical scaling can
be used to interpolate the dissimilarity matrix
D from only a few entries dij i, j ∈ I, as a
preliminary stage to the standard classical scaling
algorithm. Aflalo and Kimmel [21] proposed
to perform the interpolation by minimizing the
Dirichlet energy

EDirichlet(D) ≡ 〈∇D,∇D〉M = Tr
(
D�WDA

)

+ Tr
(
DWD�A

)
, (21)

where 〈·, ·〉M denotes an inner product computed
on the manifold. This kind of energy function is
frequently used in computer vision as a means of
promoting “smoothness” of signals. Representing
D in the LBO eigenspace Φ,

D = ΦαΦ� (22)

leads to the following optimization problem:

min
α

Tr
(
α�Λα

)
+Tr

(
αΛα�)

s.t.
(
ΦαΦ�)

ij
= dij , ∀i, j ∈ I. (23)

In practice, since D is a smooth function on M,
the subspace Φ can be truncated, leading to dras-
tic savings in computation time. The choice of
this particular subspace is due to it being optimal
for the interpolation of functions with bounded
gradient norm on manifolds [22]. The combina-
tion of (21) together with (22) gives an additional
benefit: the Hessian of (21) is diagonalized by Φ,
leading to a simpler optimization problem. The
hard constraints in (23) can also be replaced by
a penalty, leading to an even simpler problem
that can be solved in closed form. The use of
(22) in the classical scaling algorithm from sec-
tion “Strain-Based Scaling (Classical Scaling)”
has been called spectral MDS [21]. A similar
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work suggested to work in the spatial domain
and use bi-Laplacian smoothing instead of the
Dirichlet energy, leading to smoother and more
accurate interpolations [23].

One prominent drawback of the spectral MDS
framework is that the savings in time for distance
computation due to the subspace representation
do not translate to savings in computation time of
the Euclidean embedding. Another drawback is
that while the LBO eigenbasis is optimal for the
interpolation of smooth functions, something bet-
ter can be done when interpolating a particular
function, for example – by using a basis extracted
from the data itself. Shamai et al. [24] proposed
to use q � n linearly independent columns of the
squared-Euclidean distance matrix E, encoded as
a matrix F n×q , and find a matrix Mq×n such that

E ≈ 1

2

(
FM + M�F�)

. (24)

Recall that in the Euclidean case, the rank of E is
m + 2 where m is the dimension of the original
Euclidean space; therefore such a decomposition
is possible without error, assuming q ≥ m + 2.
In the non-Euclidean case, E can still be approx-
imated as a low-rank matrix with small error.
Shamai et al. [24] proposed to do so using the
Nyström method, a standard numerical technique
for interpolation. A key advantage of working
directly onE instead ofD is that one can perform
classical scaling while keeping E in factorized
form (24) saving both memory and time. For
more details, see [24, 25].

Subspace approaches for distance scaling (i.e.,
stress based) restrict the embedding coordinates
X, or rather the displacement field δ ≡ X − X0,
to some linear subspace Φ ∈ R

n×p, i.e., δ =
Φα. In [17], the SMACOF iteration (13) was
reformulated to the case where δ is modeled as a
p-bandlimited signal on some manifoldM0, i.e.,
it can be approximated by a linear combination of
the first p eigenvectors of the Laplace-Beltrami
operator. This is justified by the fact that since we
are looking for a distance preserving embedding,
δ should be smooth in the sense that close points
on M0 should remain close on the final embed-
ding. The new update step in terms of α is given
by

αk+1 =
(
Φ�V Φ

)+
Φ� (BkXk − V X0) ,

(25)

where Xk+1 = X0 + Φαk+1. Drawing analogy
from the famous noble identity (Fig. 1), it turns
out to be enough to embed a subset of q ≈ 2p �
n points to obtain the coefficients α,

αk+1 =
(
Φ�S�V sSΦ

)+
Φ�S�

(
Bs

kSXk − V sSX0
)
, (26)

where V s,Bs are the matrices defined in (9),(10)
constructed only from the q sampled points, and
S is a sampling matrix. The final embedding
is obtained by X∗ = X0 + Φα∗. The entire
procedure is called spectral SMACOF. A single
iteration of (26) consists of two steps: majoriza-
tion, the construction of Bs(Xk), which requires
O(q2) operations, and minimization, the solution
of (26), which in general requires O(p3) for
the computation of (Φ�S�V sSΦ)+ in the first
iteration and O(p2) operations in the succeed-
ing iterations. A similar approach was carried
in [26] using a subspace constructed from the
data, akin to PCA, for the purpose of visualizing
multidimensional images. These modifications
drastically reduce the computation time of the
embedding and allow the application of distance
scaling to large-scale problems or within iterative
procedures that require multiple applications of
the SMACOF algorithm (Fig. 2).

Finally, it is possible to use a nonlinear para-
metric model for the embedding, fΘ (x) : Rm →
R

k , where Θ is a set of model parameters, whose
number is much smaller than n. For example, [27]
finds such a parametric mapping by training a
neural network to minimize the following loss:

L(Θ) =
∑

i>j

(‖fΘ (xi ) − fΘ (xj )‖ − dij

)2
.

(27)
Embeddings found by such a nonlinear paramet-
ric model result in smaller metric distortion per
number of embedded points compared to their
linear counterparts.
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Multidimensional Scaling, Fig. 1 The noble identity
states the conditions under which the order of down
sampling and linear filtering can be exchanged in the
Euclidean case. While the order can always be exchanged

in the⇒ direction, the exchange in the⇐ direction is only
possible if the filter has a special form: h[n] = 0 ∀n :
�n/M� /∈ Z

105
Spectral SMACOF

SMACOF

RRE

100 101

CPU time (sec)

S
tr

es
s

Convergence speed

102

Multidimensional Scaling, Fig. 2 Runtime comparison
between different numerical schemes for minimizing (7).
The matrix D contains geodesic distances computed on
the homer shape between 5103 points. The algorithms
compared are the original SMACOF algorithm [10], an
RRE vector extrapolation acceleration method [19], and
spectral SMACOF [17]. By embedding only 200 points

and extrapolating to the rest using the Laplace-Beltrami
eigenbasis (the green line), we achieve significant speedup
compared to the other methods. The blue line represents
additional SMACOF iterations at full resolution. The fig-
ures on the right are the original shape (top) and the results
of spectral SMACOF (bottom left) and regular SMACOF
(bottom right)

Generalizations
The literature on MDS is extensive, and along
the years there have been generalizations of the
basic schemes and algorithms in many ways.
In this entry we review a few of these gen-
eralizations, focusing on those oriented toward
computer vision applications.

Variations on the Stress Theme

Robust Classical Scaling As mentioned
in section “Strain-Based Scaling (Classical
Scaling),” the double centering transform (2)
makes the embedding produced by classical
scaling very sensitive to outliers in the distance

matrix. Moreover, if D is not a Euclidean
distance matrix, (2) might not be positive semi-
definite. To cope with these problems, a robust
MDS model was proposed by [28]. Note that the
following transformation applied to a PSD matrix
K produces a squared-Euclidean distance matrix
(see also (17)):

dist(K)ij = kii + kjj − 2kij . (28)

Consider the following optimization problem:

min
K∈Rn×n

‖E−dist (K) ‖1 s.t.

{
K � 0

rank (K) ≤ k.

(29)
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Equation (29) is a form of robust projection of
the matrix E onto the set of matrices whose
double centering transform is PSD with rank
at most k. The �1 norm handles the sparse set
of outliers, whereas the constraints make sure
that the obtained matrix is embeddable into a k-
dimensional Euclidean space. Once the solution
is obtained, dist(K) can be represented as XX�
as in the standard classical scaling algorithm.

Problem (29) can be solved by sub-gradient
or interior point methods [28] or by combining
the alternating direction method of multipliers
(ADMM) with manifold optimization techniques

[29]. The latter results in an efficient and simple
algorithm that converges fast and scales well. To
summarize this algorithm, we first introduce an
auxiliary variable Z and rewrite (29) as follows:

min
K,Z

‖Z‖1 s.t.

⎧
⎪⎨

⎪⎩

K � 0

rank (K) ≤ k

Z = E − dist (K) .

(30)

Introducing a (scaled) Lagrange multiplier U and
a scalar μ, this problem can in turn be written in
Lagrangian form

min
K,Z

‖Z‖1 + μ

2
‖Z − E + dist (K) + U‖2F s.t.

{
K � 0

rank (K) ≤ k.
(31)

Now the standard ADMM method [30] can be
invoked:

Kk+1 = argmin
K

‖Zk − E + dist (K) + U k‖2F s.t.

{
K � 0

rank (K) ≤ k
(32a)

Zk+1 = argmin
Z

‖Z‖1 + μ

2
‖Z − E + dist (Kk+1) + U k‖2F (32b)

U k+1 = U k + (Zk+1 − E + dist(Kk+1)) (32c)

where the optimization over B can be carried out
using manifold optimization techniques [31, 32],
and the optimization over Z is an unconstrained
non-smooth optimization problem which has a
closed form solution using the shrinkage operator
Tα(x) = (|x| − α)+ sign(x)

Zk+1 = T 1
μ

(E − dist(Kk+1) − U) . (33)

Robust Distance Scaling While the least
squares stress function defined in (7) is the most
common one, it exhibits similar shortcomings
to those often encountered when using the �2
norm in regression problems: the quality of the
solution deteriorates quickly with any additional
outlier added to the dataset. In order to cope with
outliers, one can replace the �2 stress defined in
(7) with a more robust version, say – the �1 stress

σ�1(X) =
∑

i<j

wij

∣
∣‖xi − xj‖ − dij

∣
∣ . (34)

One simple heuristic algorithm for the minimiza-
tion of (34), and in fact – of any other function of
the form

σρ(X) =
∑

i<j

ρ
(‖xi − xj‖ − dij

)
(35)

is the iteratively reweighted least squares (IRLS)
algorithm. The algorithm follows from a compar-
ison between the sufficient condition of optimal-
ity for minimizing (7)

∇σ(X)

=
∑

i<j

2wij

(‖xi − xj‖ − dij

)∇X

(‖xi − xj‖
)

= 0 (36)
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and (35)

∇σρ(X)

=
∑

i<j

ρ′ (‖xi − xj‖ − dij

) ∇X

(‖xi − xj‖
)

= 0. (37)

By setting the weights in (36) to

wij =
ρ′

(
‖x∗

i − x∗
j ‖ − dij

)

2
(
‖x∗

i − x∗
j ‖ − dij

) (38)

we get an equivalent LS-MDS problem to (35).
The IRLS algorithm works by solving a series
of LS-MDS problems with iteratively updated
weights:

1. set

wk
ij =

ρ′
(
‖xk

i − xk
j ‖ − dij

)

2
(
‖xk

i − xk
j ‖ − dij

) (39)

2. solve

Xk+1 = argmin
X

∑

ij

wk
ij

(‖xi − xj‖ − dij

)2
.

(40)

Another way to generalize distance scaling
is by adding a regularization term, weighted by
some constant μ > 0, to the LS-stress

min
X

σ(X) + μR(X). (41)

This regularization term can help reject outliers,
drive the embedding toward a favorable con-
figuration, or promote any other property that
we want the embedding to manifest. Assuming
the regularization function R(X) is convex, a
small variant of the SMACOF iteration described
in section “Stress-Based Scaling (Distance Scal-
ing)” can be used in order to minimize the reg-
ularized stress. Instead of using the majorizing
function h(X,Z) defined in (11), we shall use
h(X,Z) + μR(X). The update step (13) now
requires the solution of a convex optimization

problem

Xk+1 = argmin
X

h(X,Xk) + μR(X). (42)

Non-Euclidean Embeddings
We shall conclude the section by reviewing a few
schemes that consider embeddings to domains
other than R

k . The simplest choice of a non-
Euclidean domain is a k-dimensional unit sphere
Sm = {Z ∈ R

k+1 : ‖z‖2 = 1}. Embedding into
a sphere can be formulated as follows (using the
LS-stress):

min
Z

∑

i<j

wij

(
dSm(zi , zj ) − dij

)2 s.t. ‖zq‖=1 ∀q,

(43)
and can be solved by parametrizing z in
spherical coordinates and using gradient descent.
Embedding into a sphere with a different radius
r amounts to scaling the dissimilarities by 1/r.

Bronstein et al. [33] introduced generalized
MDS (GMDS) – an algorithm for isometric
embedding of one Riemannian manifold into
another. The algorithm works as follows:
given two such manifolds X,Y, discretized as
triangular meshes, we compute the geodesic
distances between all pairs of vertices on each
of the meshes – DX,DY. These distances can be
used to interpolate the distance between any
two points on the faces of the meshes. The
embedding of one manifold into the other is
represented in barycentric coordinates Un×3, and
the generalized stress

σGMDS(U) =
∑

i<j

‖dX(ui ,uj ) − dYij‖2 (44)

is minimized using gradient descent, subject
to U1 = 1. A spectral version of GMDS is
developed in [34], following the spectral MDS
algorithm [21].

Another form of non-Euclidean embedding is
given in [35], who suggested to decompose the
distance matrix D into XX�. Since D is sym-
metric, such a decomposition is always possible,
based on the spectral decomposition of D
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D = UΛDU�. (45)

X ≡ UΛ
1
2
D is an embedding of D into the

complex domain C
n without error. Since most

of the eigenvalues of D are of small magnitude
[7], the metric distortion introduced by truncating
the eigen-expansion is small, leading to highly
accurate embeddings at the cost of working in the
complex domain.

Applications

Multidimensional scaling (MDS) is one of the
most popular methods in data analysis, and it
would be impossible to provide a complete set of
applications in this short review. We will focus on
a few applications of MDS in computer vision.
Some of these applications are also detailed in
Fig. 4.

The main use of MDS algorithms is for
dimensionality reduction. It is popularly used
for visualization of high-dimensional signals by
embedding their dissimilarities into two or three-

dimensional Euclidean spaces. For example, [26]
uses it to visualize multidimensional images, and
[36] explores multiple visualization techniques
on the MNIST dataset of handwritten digits
[12] (Fig. 3). Apart from visualization, low-
dimensional isometric embedding is used as a
preprocess for algorithms that rely on Euclidean
distances. Many classical image processing and
computer vision algorithms have been developed
to work on RGB color images. A simple way
to adapt these algorithms to be used with
high-dimensional features is to embed these
features into a three-dimensional Euclidean
space, represented as a color image. For example,
[37] uses MDS to embed features that integrate
local color and gradient value distribution, and
[38] uses it to embed the co-occurrence statistics
of pixels in an image (Fig. 4a). These embeddings
are later used in classical segmentation and
optical flow estimation algorithms. Other image
processing tasks such as image retargeting can
be carried out efficiently with the subspace
version of MDS [17], where the idea is to
rescale an image in a way that preserves
distances in the salient regions and concentrate
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Multidimensional Scaling, Fig. 3 Top – a few examples
of 28 × 28 images of handwritten digits from the MNIST
dataset [12]. Bottom – embeddings in R

3 of Euclidean

distances between 2000 MNIST digits using classical
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the distortions in other parts while preventing
flip-overs.

In the field of geometry processing, MDS
found applications in tasks such as texture map-
ping [39], shape analysis [8], and shape synthesis
[40]. Classification of surfaces that is invari-
ant to isometric transformation is achieved by
embedding the surfaces to a Euclidean domain,
creating for each surface a “canonical form”
(Fig. 4b). These canonical forms can be aligned
with a rigid transformation, and a threshold on
the alignment mismatch rules weather two shapes

belong to the same class or not. This idea has
been carried out using multiple versions of the
MDS algorithms [8,21,23,24,35]. Alternatively,
the generalized MDS scheme (44) [33] or its
spectral version [34] can compare two surfaces
directly, without passing through an intermediate
embedding space. More recent works [41] use the
GMDS cost (44) as a loss function of a neural
network that is trained in an unsupervised way to
find optimal descriptors for shape matching.

In [40], MDS was used as part of the surface-
from-operator problem. MDS plays a part in

Multidimensional Scaling, Fig. 4 Applications of
MDS in computer vision. (a) Template matching. The
template on the left is found in the image on the right
with Lucas-Kanade optical flow. Using an embedded
image of co-occurrence scores (right) outperforms the
matching obtained with the regular RGB image (left).
(Image© taken from [38] with permission of the authors).
(b) Canonical forms. Embedding the geodesic metric
computed on the four approximately isometric horses on
top, results in canonical representations of these shapes
(bottom), related to each other by a rigid transformation

[8, 11, 23]. (The horse shape is taken from [42]). (c)
Perceptual embedding of BRDF maps (i.e., governing the
reflectance properties of a surface) using generalized non-
metric MDS. (Image© taken from [13] with permission
of the authors). (d) A three-dimensional embedding of the
camera pose manifold (images of the same object taken
with different elevation and azimuth) from a small subset
of distances using a machine learning-based nonlinear
parametric MDS model [27]. (Image courtesy of the
authors)
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reconstructing a surface from its discrete metric,
i.e., the lengths of the edges of the polygons
comprising the mesh.

Agarwal et al. [13] developed a generalized
nonmetric MDS model, able to cope with
missing and contradictory data, and used it for
visualizing dissimilarities between reflectance
maps of objects (Fig. 4c). Since nonmetric MDS
models are mostly used to perform perceptual
embeddings, they are rarely used in computer
vision applications. Nevertheless, there is a great
potential for using them in problems that rely
only on rank order of dissimilarities such as
correspondence problems between non-isometric
shapes.

Open Problems

One of the big and presently unsatisfactorily
solved problems related to MDS methods is
out-of-sample extension. We believe that more
research into the use of modern machine learning
tools, in particular, deep learning, could bring
new efficient solutions to this problem.
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Synonyms

Focus bracketing

Definition

Multi-focus images are a set of images of the
same scene focused at different depths in the
scene.

Background

Conventional imaging systems have a finite depth
of field (DOF), which depends on the aperture
size and the focal length of the lens. The DOF
is the depth range within which the scene points
appear sharp in the captured image. For scene
points within the DOF, the size of the defocus
blur is smaller than the minimum acceptable cir-
cle of confusion. Often, a single photo is unable
to capture the entire scene in sharp focus.

DOF can be increased by decreasing the aper-
ture size (increasing the F-number). However,
reducing the aperture size decreases the light
throughput, resulting in a dark and noisy image.
Multi-focus images offer a solution to increase
the DOF without decreasing light throughput. By
capturing different photos focused at different
depths in the scene and combining them, the
entire scene can be brought into focus. This cap-
ture procedure is also called “focus bracketing.”
This is similar to “exposure bracketing,” where
images are taken under different exposures and
combined to obtain a high dynamic range image.
However, a disadvantage with focus bracketing is
that the entire scene has to remain static during
the capture process.

https://colah.github.io/posts/2014-10-Visualizing-MNIST/
https://colah.github.io/posts/2014-10-Visualizing-MNIST/
http://tosca.cs.technion.ac.il/book/resources_data.html
http://tosca.cs.technion.ac.il/book/resources_data.html
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Theory

For a thin lens with focal length f and lens to
sensor plane distance u, the plane of focus is at
a distance v from the lens, where

1

v
= 1

f
− 1

u
. (1)

Let c be the size of the acceptable circle of
confusion and A be the aperture diameter. Then,
f-number N = f/A. The DOF is then spanned
between Dn and Df, where

Dn = vf 2

f 2 + Nc (v − f )
, (2)

Df = vf 2

f 2 − Nc (v − f )
. (3)

As shown in Fig. 1 the DOF region in front of
the plane of focus is not equal to the DOF region
behind it. Multi-focus images can be obtained by
capturing several images, each under a different
focus setting of the lens (change of u). Note that
other camera parameters such as aperture size,
exposure time, and zoom can also be modified
along with the focus setting of the lens during the
capture.

Minimizing the Capture Time
Since multi-focus images require the entire scene
to remain static during the capture process, it is
important to decrease the overall capture time.
In [1], the problem of imaging a scene with a
given depth of field at a given exposure level
in the shortest amount of time was considered.
The criteria for optimal capture sequence were
derived. Since the light throughput is quadratic
with respect to the aperture size but linear with
respect to the exposure time, increasing the aper-
ture size is more beneficial to reduce the overall
capture time. Intuitively, one should use a large
aperture and sweep the focus such that all scene
points are sharp in at least one of the captured
image.

Combining Multi-focus Images
Multi-focus images can be combined to generate
an image with larger DOF than any of the individ-
ual source images. This is also known as focus
stacking and is especially useful in macro pho-
tography and optical microscopy. The resultant
image is equivalent to the photo captured using a
small aperture but will be significantly less noisy.
Haeberli [2] showed how to combine multi-focus
images by choosing each pixel intensity from
the image where it appears to be the sharpest.
The sharpness measure can be defined using
local variance or local image gradients. Recent
approaches have used an energy minimization
framework to combine multi-focus images using
fast techniques such as graph-cuts [3].

Depth from Defocus and Focus
An additional advantage of multi-focus images
is that they can be used to estimate the scene
depths, since the defocus blur of a scene point
is related to its depth. Depth from defocus is an
active area of research in computer vision. Depth
from defocus techniques model the relationship
between depth and defocus blur using a paramet-
ric function and use it to estimate depth from
several defocused images. See [4] for a review on
such techniques. On the other hand, depth from
focus [5, 6] approaches use a focus measure to
identify the focus setting for each pixel, which is
converted to the metric depth via calibration.

Extended Depth of Field
Focus bracketing is an easy and practical solution
to increase the DOF of imaging systems with-
out any hardware modifications. The underlying
problem of extending depth of field has several
other interesting solutions such as (a) aperture
modification [7, 8], (b) light-field based digi-
tal refocusing [7, 9–12], (c) lens modifications
[13–15], and (d) sensor motion [16].

Application

Extending the DOF has applications in consumer
and sports photography, as well as scientific
imaging. Multi-focus images offer a viable
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Multi-focus Images, Fig. 1 DOF for a thin lens with focal length f lies between Df and Dn

solution if the scene is changing slowly compared
to the capture time required for focus bracketing.

Open Problems

Applying multi-focus images to a dynamic scene
is an open and interesting problem.
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Synonyms

Multiplexed sensing

Definition

In multiplexed illumination, multiple light
sources are used simultaneously in different
measurements of intensity data arrays. Then,
the intensity under individual sources is derived
by computational demultiplexing. This scheme
enhances the results: it increases the signal-
to-noise ratio of intensity data arrays, without
increasing acquisition resources such as time. It
also improves dynamic range.

Background

Measuring a set of variables is a common task.
For example, in computer vision and graphics,
there is a need to acquire multiple images under
various lighting conditions; in spectroscopy, there
is a need to measure several wavelength bands; in
tomography, measurements are taken at a set of
different directions; in microscopy, there is a set
of focal planes or a set of measurements under
several fluorescence excitation wavelength bands.
Usually these variables are measured sequen-
tially.

The measurements are subjected to noise,
which may yield a low signal-to-noise ratio

(SNR). In many cases, the SNR cannot be
improved simply by increasing the illumination
of individual sources or the exposure time.
Simultaneously combining signals corresponding
to multiple variables into a single multiplexed
measurement may be more efficient. This
way, in some cases, the total intensity of
multiplexed signals increases relative to the
noise. The acquired multiplexed measurements
are demultiplexed by a computer, yielding an
array of intensity values with a higher SNR.

Theory

Basic Multiplexing

Often, sensors seek measurement of a vector of
observable intensity variables n. Generally, the
acquired raw measurements form a vector a of
length n. This raw vector is related to i by

a = Wi + η, (1)

where η is a vector of measurement noise (the
noise is uncorrelated in different measurements).
Here W is a weighting matrix, referred to as a
multiplexing code. One case is W = I, where I is
the identity matrix. This special case is referred
to as trivial sensing: only a single component of
i is acquired at a time. More generally, multiple
components of i can be simultaneously summed
up (multiplexed) and acquired in each raw mea-
surement. The components of i included in the
mth measurement are determined by the mth
row of W. After the measurements are taken,
the vector i of intensities corresponding to the
individual source can be decoded from the vector
of measurements a, using

î = W−1a (2)

(whenW is invertible) or by an estimator such as
least squares.

A simple case in whichNsources = 3 is depicted
in Fig. 1. There, two sources are used simulta-
neously per acquired measurement. For general
number of sources, the vectors i and a are related
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by a linear superposition as in Eq. (1). The
elements wm,s of W represent [13] the normal-
ized radiance of source s in measurement m. If
wm,s = 0, then source s is turned off completely
at measurement m; if wm,s = 1, then this source
irradiates the object, at the source’s maximum
power. Generally, 0 ≤ wm,s ≤ 1.

The mean squared error (MSE) [5] of î is

MSEi = σ 2

Nsources
tr

[(
WT W

)−1
]

, (3)

where tr is a trace operation and σ 2 is the
variance of η. Based on Eqs. (2) and (3), i can
be reconstructed, with a potentially higher SNR
[5, 11, 13] than i which is trivially sensed using I.
The gain of using multiplexing (termed multiplex
advantage) is defined [5] as

GAINi =
√

σ 2/MSEi. (4)

Most related studies have aimed to maximize
the SNR of the recovered images î. Thus, Refs.
[5, 9, 11, 13] sought a multiplexing matrix that
minimizes Eq. (3):

Ŵi = argmin
w

MSEi. (5)

An optimal multiplexing code should yield the
highest SNR of the demultiplexed values. When
the signal dependency of noise is not consid-
ered, the optimal multiplexing codes are based on
Hadamard matrices [5].

According to the affine noise model [11],
the detector noise variance is composed of two
components, signal dependent and signal inde-
pendent. The gray-level variance of the signal-
independent noise is denoted by k2gray. Consid-
ering a diffuse object, each light source yields
a similar object radiance. Therefore, each source
yields a similar level of noise. If C sources are
activated in their maximum power, the total noise
variance of the measured gray level is [11, 14]

σ 2 = k2gray + Cμ2, (6)

where μ2 is the photon noise variance, caused
by object irradiance from a single source acti-
vated at its maximum power. If photon noise
dominates the noise (Cμ2 � k2gray), Hadamard
multiplexing codes degrade the decoded images.
The reason is that simultaneous sources increase

Standard
illumination

Standard
illumination

Standard
illumination

Multiplexed
illumination

Multiplexed
illumination

Multiplexed
illumination

a

b

Multiplexed Illumination, Fig. 1 Three light sources illumination [13]. (a) Standard (trivial) illumination: single light
source is active in each measurement. (b) Multiplexed illumination: two light sources are active in each measurement
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the image intensity, which in turn increases the
photon noise. Therefore, there is a need for gener-
alization of the multiplexing model to obtain new
and improved multiplexing codes.

Generalized Multiplexing
References [11, 12] derive optimal multiplex-
ing codes considering photon noise and satura-
tion. Saturation occurs when the total illumina-
tion radiance exceeds a certain threshold. If all
light sources yield a similar object radiance, then
this threshold Csat is expressed in units of light
sources (C = Csat). It is preferable to exploit the
maximum radiance for every measurement. Thus,
to account for saturation, the constraint

Nsources∑

s=1

wm,s = Csat (7)

is added to the optimization problem in Eq. (5).
By scanning a range of Csat values in Eq. (7) and
using C = Csat in Eqs. (3) and (6), the value that
yields the maximum gain Eq. (4) is found. This
accounts both for saturation and photon noise.

However, is a demultiplexed array i the true
goal of a vision system? Often not. Usually, the
recovered intensity or reflectance array i is by
itself an input to further analysis. For example, a
multispectral imager may recover a scene’s spec-
tral datacube, and multiplexing is helpful in this.
But the resulting multispectral datacube itself is
of little interest per se: usually (e.g., in remote
sensing) the user is interested in the underlying
spatial distribution of materials or objects that
created the spectral data. This is formulated as a
mixing model

i = X c, (8)

where X is a mixing matrix. The end product
of interest in this example is not demultiplexed
intensities or spectral reflectance (i) but a dis-
tribution of materials (c). Similarly, in multi-
spectral imaging of fluorescing specimen, inten-
sities (i) are just a means to obtain information
about molecular distributions in the specimen (c).
Recovery of c based on i is called unmixing.

Reference [2] showed that unmixing can (and
should) be fully integrated when optimizing the
multiplexing codes. Otherwise, the true underly-
ing variables of interest may be harmed by mul-
tiplexing. Let multiple sources be active in each
measurement (intentional multiplexing). Using
Eqs. (1) and (8), c can be estimated, for example,
by using weighted least squares

ĉ =
[

(WX)T
∑−1

noise
(WX)

]−1

(WX)T
∑−1

noise
a,

(9)

where
∑

noise is the covariance matrix of the raw
measurement noise η. Then, the MSE of c is

MSEc= 1

Nmaterials
tr

{[

(WX)T
∑−1

noise
(WX)

]−1
}

, (10)

where Nmaterials is the number of materials to
unmix. To multiplex measurements in a way that
optimally recovers c (multiplexed unmixing), a
multiplexing matrix W that minimizes the MSE
of c Eq. (10) is sought,

Ŵc = argmin
W

MSEc. (11)

Application

Multiplexed illumination is used in multispectral
imaging (array of spectral bands) [3, 9], spec-
troscopy [4], and lighting (reflection from an
array of light sources) [8, 11, 13]. It also has
analogue formulations in coded apertures (array
of spatial positions or viewpoints) and coded
shuttering [1, 6, 7, 10] (array of spatiotemporal
pixel values).
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Synonyms

Multiple view stereo; Multiview stereovision;
Multiview stereopsis

Related Concepts

�Dense Reconstruction
�Multi-baseline Stereo

Definition

Multiview stereo (MVS) refers to the task of
reconstructing the 3D shape of the scene from
multiple color or intensity images captured from
different viewpoints such that the field of view
of the associated cameras overlaps. Typically,
the cameras are assumed to be fully calibrated.
Various choices of 3D shape representations are
possible for the estimated 3D scene reconstruc-
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tion. For example, dense 3D point cloud or sur-
face mesh representations are common in appli-
cations that synthesize a new photorealistic image
of the scene using computer graphic rendering
techniques. The topics of multiview stereo and
multi-baseline stereo matching share key con-
cepts related to the recovery of dense 2D pixel
correspondences in multiple images.

Background

Reconstructing 3D geometry from images (often
referred to as 3D photography or image-based
3D modeling) involves using cameras or optical
sensors (and optionally illumination) to acquire
the 3D shape and appearance of objects and
scenes in the real world. Existing methods can be
broadly divided into two categories – active and
passive methods. Active methods usually require
additional special light sources, whereas passive
methods work with natural lighting. Active meth-
ods often use special-purpose sensors such as
laser range scanners and depth sensors (Kinect,
time-of-flight cameras) and can often capture
high-quality 3D models. However, developing
passive methods for ordinary cameras is also
important because of their greater ease, flexibil-
ity, and wider applicability.

Multiview stereo is a popular and well-studied
passive 3D reconstruction technique. It is based
on the principle that dense pixel correspondences
in multiple calibrated images captured from dif-
ferent viewpoints make it possible to estimate the
3D shape of the scene via triangulation. Trian-
gulation refers to the step where rays backpro-

jected from the corresponding pixels in different
images are intersected to estimate the position of
the associated 3D point in the scene. Multiview
stereo therefore requires the camera calibration
parameters to be known. Specifically, the intrin-
sic parameters are precomputed off-line or can
be computed along with the extrinsic parame-
ters (camera pose) from the input images using
structure from motion algorithms. Furthermore,
the input images are typically warped to remove
the effect of radial distortion before using them
for multiview stereo matching. The distortion is
removed by applying a suitable lens distortion
model and parameters that are included in the
camera intrinsic parameters. Figure 1 shows a 3D
reconstruction obtained using multiview stereo.

The main challenge in multiview stereo lies in
computing precise, dense pixel correspondence
between overlapping images. Difficulties arise
due to ambiguities in matching pixels in two
images of the same scene. Multiview stereo
works best when surfaces are textured and
Lambertian, i.e., when the local appearance of
a surface patch does not depend on the viewing
angle. Glossy or specular surfaces are non-
Lambertian and are more difficult to handle
compared to diffuse surfaces. Occlusions can
complicate the situation even further, especially
in the wide baseline setting where the camera
viewpoints are farther compared to the narrow
baseline setting, where the effect of occlusions is
less pronounced.

For reconstructing a static scene with mul-
tiview stereo, a single camera can be used to
capture images from multiple viewpoints over
time. Sometimes, images are captured with a

Multiview Stereo, Fig. 1 Images captured with a camera rig. Calibrated cameras and the final 3D model produced by
a state-of-the-art multiview stereo method rendered as a triangulated mesh
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static camera with the object placed on a rotating
turntable [11]. These techniques can also be
applied to dynamic scenes, provided multiview
video is captured from a calibrated, synchronized
multi-camera rig. The Virtualized Reality project
at CMU [16] was the first to demonstrate multi-
view 3D reconstruction of dynamic events within
a large scene.

Theory

A taxonomy was recently introduced to broadly
categorize multiview stereo approaches [24].
It proposed studying various methods based on
the following properties: 3D shape representa-
tions, the photoconsistency measure, visibility
handling, shape priors, and the reconstruction
algorithm. A recent tutorial [5] and an earlier
survey [26] are also excellent sources of
information on this topic.

3D Shape Representation
Many multiview stereo methods represent the 3D
scene at an intermediate stage as a set of depth
maps, one for each calibrated viewpoint, and
recover the 3D shape that is most consistent with
all the depth maps [7, 8, 20]. Other methods use
explicit surface-based representations. Polygonal
meshes are used both as an internal representation
in some methods [11] and as the representation
for the final 3D shape. Volumetric representations
such as a uniform 3D voxel grid where each voxel
is labeled as occupied or empty are common as
well for their flexibility in approximating a wide
variety of shapes [18, 19, 29]. Other volumetric
representations such as adaptive tessellation of
3D space into tetrahedral cells can be more com-
pact [13, 25]. Or the voxel grids could be used
to store discrete samples of the estimated signed
distance function of the 3D shape, from which the
final surface is extracted by computing the zero-
crossing iso-surface [2]. Finally, patch-based rep-
resentations are also very common in multiview
stereo [6, 9]. Recent multiview stereo methods
represent scenes using a finite set of locally pla-
nar, oriented 3D patches, referred to as surfels.
No connectivity information is stored as in a sur-

face mesh. While surface meshes and volumetric
representations are advantageous for reconstruct-
ing closed surfaces or 3D objects, depth maps
or patch-based representations are often better
choices for reconstructing large and extended
scenes [4, 6, 7, 20, 22].

Photoconsistency
The notion of photoconsistency is a fundamental
ingredient in all multiview stereo methods. It is
a measure for the photometric similarity of the
2D projections of any 3D scene point in a set
of calibrated images. For 3D points on surfaces
visible in a set of cameras, the 2D projections
in those images are expected to be similar or
photometrically consistent. Such points are said
to have high photoconsistency. On the other hand,
arbitrary 3D scene points not on any surface
are likely to have low photoconsistency in most
situations. Earlier MVS methods computed the
photoconsistency of a 3D point by measuring
the variance in pixel colors in images at 2D
locations where the 3D point projects and is visi-
ble. However, comparing individual pixels can be
ambiguous. Therefore, a more reliable approach
is to compare the similarity of image patches
centered at the pixel where a 3D point projects
(see Fig. 2). For narrow baselines, it is sufficient
to compare square-shaped patches centered on
the image pixels and aligned with the image axes.
However, by incorporating the geometry of the
3D patch, the matching patch windows can be
correctly adjusted to account for scale differences
in the images and slanted surfaces.

A pair of 2D image patches can be compared
using normalized cross correlation (NCC) after
resampling a n = k × k 2D grid at each patch
and comparing the vector of color values denoted
here as u and v, respectively:

NCC(u, v) =
∑n

j=0(uj − u).(vj − v)
√∑n

j=0(uj − u)2.
∑n

j=0(vj − v)2

(1)
The NCC values lie in the range [−1,1] where

a value closer to 1 indicates that the vectors are
similar in appearance. Other similarity measures
such as the sum of absolute differences (SAD),
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Multiview Stereo, Fig. 2 (a) A pixel in a reference
image and a square patch around it. (b) Corresponding
pixels and associated patches in the nearby images that
lie on respective epipolar lines. In calibrated images, the

search for correspondences reduces to 1D, i.e., along the
epipolar line. (c) A horizontal slice of the 3D cost volume
is shown, where the photoconsistency measure is the one
proposed in [29]

the sum of squared differences (SSD), or non-
parametric measures can be used to compute
photoconsistency as well. Unlike NCC, SAD or
SSD are affected by brightness changes across
images.

Photoconsistency Volume Computation
Many multiview stereo methods require the pho-
toconsistency function to be evaluated densely
on a 3D voxel grid for the volume containing
the scene which is then referred to as the cost
volume. Figure 2 shows an example. One simple
way to construct this cost volume is to evaluate
the photoconsistency of all 3D points (or voxels)
using a pairwise similarity measure such as NCC
and then compute the average NCC score from
multiple pairs of nearby images. There also exist
direct methods to compute the cost volume [14]
or approaches that are better at minimizing noise
in the photoconsistency estimates [29]. Being
able to estimate the visibility of a 3D point allows
one to select which images contribute to its pho-
toconsistency measure. Such visibility estimation
can be done on a per-point basis within the scene
[9,22]. A coarse approximation of the shape such
as the visual hull reconstruction obtained from
silhouettes is often sufficient when reconstructing
closed objects [11,25,29]. However, when a large
number of images are available, explicit visibil-
ity reasoning is typically not needed. Instead, a
more robust variant of photoconsistency can be
computed, and measurements involving occluded
views can be treated as outliers [9, 29].

Another general approach to construct the cost
volume involves first estimating depth maps from
each camera’s viewpoint using a state-of-the-art
multi-baseline stereo matching algorithm and
then merging them into a consistent volumetric
representation. Such an aggregation scheme
incorporates visibility information induced by the
independently estimated depth maps. Intuitively,
this can be seen as a way of probabilistically
carving out the 3D volume [8,12], an idea that is
closely related to the problem of fusion of range
images [2].

Plane Sweep Stereo and Depth Map Fusion
A class of methods referred to as plane sweep
stereo methods avoid building the cost volume
on a uniform 3D grid. Instead, they sweep the
scene with a set of parallel planes corresponding
to the candidate depths considered for pixels
in the reference image. These planes are typi-
cally fronto-parallel to the reference camera, and
their spacing is selected in uniform intervals with
respect to their inverse depth from the camera.
Neighboring images are warped onto these planes
using 2D homographies, and the photoconsis-
tency measure is computed at each pixel for each
candidate depth plane. Plane-sweeping strategies
are often chosen by incorporating some knowl-
edge of scene structure and are popular for 3D
reconstruction in urban scenes [7]. Their main
advantage over uniform voxel grids or other 3D
tessellations lies in the fact that they represent
large working volumes more efficiently, which is
important for reconstructing large open scenes.
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Plane sweep stereo can be combined with depth
map fusion which can be implemented using
an image space representation [20]. Artifacts
in the original depth maps are reduced in the
fused depth maps from which triangulated sur-
face meshes can be directly extracted. The fusion
step works better when per-pixel confidence esti-
mates associated with the depth estimates are
available.

Optimization Methods
Broadly all multiview stereo methods formulate
the reconstruction task in terms of a local or
global optimization problem. A local method
such as space carving [19] starts with an overes-
timate of the 3D scene and uses a greedy strategy
to remove voxels that are not photoconsistent one
at a time. Similarly, in fast plane sweep stereo [7],
each pixel’s depth is computed independent of
other pixels. These local methods are susceptible
to noise and outliers and cannot easily reconstruct
smooth geometric shapes. Part of the difficulty is
that the 3D reconstruction task is inherently ill-
posed since different 3D scenes can be consistent
with the same set of images. By assuming that
surfaces in the scene are primarily smooth, vari-
ous global optimization methods seek the optimal
3D shape which maximizes both photoconsis-
tency and smoothness. This is achieved by formu-
lating multiview stereo as a global optimization
problem with geometric regularization terms in
the objective function or energy function. These
are minimized either in the discrete or in the
continuous setting.

Global methods for depth map estimation
incorporate image-based smoothness constraints
into the formulation by designing suitable
energy functions that encourage neighboring
pixels to take on identical or similar depth
values. Such methods are often based on a 2D
Markov Random Field (MRF) framework for
which efficient optimization algorithms have
been developed in recent years. The MRF
framework can also be used for enforcing surface
regularization in volumetric methods on a 3D
uniform grid [29] where any binary labeling
of voxels in the grid corresponds to some 3D
shape. The optimal surface corresponding to

the global minimum of the energy function
can be efficiently computed using graph cut
algorithms in many situations [11, 12]. In case
of [13, 25], the minimal surface computed using
graph cuts directly produces a triangulated mesh.
These methods first solve a discrete optimization
problem to obtain a globally consistent solution
and then perform local refinement using contin-
uous optimization to recover finer geometric
details [11, 25]. Continuous optimization
methods based on convex relaxations have also
been developed to reduce discretization artifacts
common in graph cut-based methods [18].

Variational methods can also be used to extract
an optimal smooth surface from the cost vol-
ume using multiple iterations that progressively
minimize a global objective function. In [11],
this was achieved by evolving a deformable sur-
face mesh using photoconsistency cues. How-
ever, a good initial guess for the 3D shape was
required. Methods based on level sets are more
flexible as the surface topology is allowed to
change during the iterations. These approaches
represent the surface as the zero level set of
an evolving implicit function [21]. The energy
function is minimized by modeling the evolution
of the function using partial differential equa-
tions. These level-set methods have the advan-
tage of producing smooth surface reconstructions
but have the disadvantage of being susceptible
to local minima unless a good initialization is
available.

Patch-Based Multiview Stereo
Another class of popular multiview stereo
approaches represent surfaces as a set of
oriented patches without storing any connectivity
information. This makes the representation
flexible and suitable for reconstructing both
closed 3D shapes and open scenes. A watertight
surface mesh can be extracted using the Poisson
surface reconstruction algorithm as a post-
processing step. Patch-based methods are related
to region-growing methods as they typically start
from a few seed 3D points with known depth.
The algorithm proposed in [9] starts with a
sparse structure from motion 3D point cloud
and iteratively optimizes the depth and normals
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of the oriented patches using an NCC-based
photoconsistency measure. The pixels in the
reference image are processed in a matching
score-based priority order that ensures that
confident estimates are propagated first in the
surface-growing phase. This step produces semi-
dense depth maps which are then merged to
generate a global set of oriented 3D patches. This
method was used to perform 3D reconstruction
from Internet images of popular places and
showed that dense correspondences could be
reliably computed from large heterogenous
image collections.

Patch-based multiview stereo (PMVS) [6] is
another popular algorithm that also uses a seed
and grow reconstruction strategy and consists
of three important steps. First, seed patches
are created from sparse 2D keypoint correspon-
dences in neighboring overlapping views which
can be matched with high confidence. These
patches are iteratively expanded using a locally
planar model to generate new patches. This is
followed by a patch optimization and filtering
step which refines the position and orientation
of the patches and then removes noisy or outlier
samples based on photoconsistency and visibility
constraints. A publicly available implementation
of this algorithm is available as part of the
PMVS library [6]. Recently, this library was also
extended to support large-scale reconstructions
from Internet collections [4].

Robustness is a key challenge in MVS and
becomes crucial when dealing with MVS datasets
containing images in the wild such as Internet
photo collection datasets. The main difficulty in
computing dense correspondences lies in dealing
with noticeable changes in illumination and view-
point in the images. Moreover, the images could
be captured with different cameras and may have
very different image resolutions. Schoenberger
et al. [22] proposed a MVS method that deals
with these challenges. The main idea behind their
technique is to use the PatchMatch scheme to
perform joint inference of a depth map and a nor-
mal map for each viewpoint and also explicitly
estimate a per-pixel visibility and view selection
based on geometric and photometric cues. Patch-
Match [1] is a general-purpose method to com-
pute dense correspondence between images that

is based on a randomized search scheme involv-
ing sampling and optimization and has been used
in many different tasks in computer vision.

Learned MVS
Recent advances in using machine learning tech-
niques and, specifically, convolutional neural net-
works (CNNs) models have led to new improved
MVS techniques. A small CNN-based model was
proposed to compute a learned matching cost
to evaluate the similarity of multiple patches
to replace the traditional photoconsistency met-
ric [10]. Their learned model considers a set of
patches as input where each patch is sampled
from an image captured from a different view-
point. The shallow model applies on each input
patch two sets of successive convolution, tanh
nonlinearity and max pooling operations. Sub-
sequently the feature vectors are averaged and
passed through three more convolutional layers
which outputs the final similarity score. The aver-
aging step provides some flexibility in applying
the model on inputs where the number of patches
is not fixed. Their model computes a high similar-
ity score when all the patches are corresponding
and the underlying 3D point is visible in all the
views. Finally, the learned matching cost is used
with a standard plane sweep stereo method to
compute a depth map for a reference view.

Another notable learned MVS technique is
MVSNet [30]. In contrast to [10], theirs is a full
CNN model that directly outputs a depth map for
a reference view and is end-to-end trainable in
a supervised setting. In particular, the MVSNet
model extracts deep feature vectors and then
computes the 3D cost volume with respect to the
reference camera frustum using a differentiable
homography warping operation. Next, 3D con-
volutions are applied to regularize and regress
the depth map, which is then refined with the
reference image to generate the final output. Their
framework can also handle an arbitrary number
of input views using a variance-based cost metric
that maps multiple features into one cost feature.
The differentiable homography warping opera-
tion is crucial for encoding camera projections
indirectly in a way that makes end-to-end training
possible.
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Efficiency and Parallelism
Some MVS methods strive for high-fidelity
reconstructions and can be very computationally
intensive especially with high-resolution
images [4, 6, 9, 11, 28]. The main computational
bottleneck in multiview stereo lies in the
photoconsistency computation or computing
matching cost over many pairs of windows.
Typically, this can be accelerated by orders of
magnitude on massively parallel hardware and
is also perfectly suitable for the data parallelism
supported on modern programmable graphics
hardware (GPUs) with SIMD architectures.
Many variants of multiview stereo ranging from
plane sweep stereo [7] to depth map fusion [20]
have been successfully ported to the GPU,
and one or two orders of magnitude speedup
have been demonstrated. Modern deep MVS
methods [10, 30] also require powerful GPUs to
compute the forward pass of the network.

Benchmarks

In this section, we discuss datasets available for
benchmarking MVS methods.

Middlebury mview benchmark [24] This
dataset shown in Fig. 3a contains ground-truth
3D models created by scanning the models using
a laser stripe scanner and registering the 3D mesh
to the calibrated images captured with a gantry.
The benchmark has recently been quite popular
for evaluating multiview stereo algorithms. It
uses two criteria to evaluate the reconstructions
– accuracy and completeness. The model’s
accuracy is calculated by computing the distance
between the points sampled on the reconstructed
model and the nearest points on the ground-
truth model and reporting the distance (in mm)
such that 90% of the points on the reconstructed
model are within that distance from the ground-
truth model. Similarly, the completeness measure
is computed for a given threshold by finding
the nearest point on the reconstructed mesh
for each vertex in the ground-truth mesh and
the percentage of points on the ground-truth
model that is within a distance threshold of the
reconstructed model.

Strecha MVS Datasets [27] Another bench-
mark for evaluating multiview stereo reconstruc-
tion of large scenes is also available. Precise
laser-scanned models are provided for ground-
truth comparisons. Unlike Middlebury where the
scanned models are quite small (only 16 cm on
the longest dimension), these datasets consist of
high-resolution images and much larger outdoor
scenes. Two of the scenes captured in this bench-
mark are shown in Fig. 3b. Several multiview
stereo methods have demonstrated accurate result
on these datasets.

Tanks and Temples (https://www.tanksand-
temples.org/) [17] This benchmark provides
a total of 21 sequences captured in indoor and
outdoor scenes under uncontrolled conditions.
Ground-truth data was acquired using a laser
scanner. The benchmark is designed to test dense
3D reconstruction algorithms on high-resolution
video sequences. The MVS benchmark is set
up in a way such that the ground-truth data
geometry for 7 out of 21 datasets is provided
as training data. The remaining 14 datasets are
used for testing and benchmarking, with 8 and
6 datasets in the Intermediate and Advanced
groups, respectively. Results of MVS algorithms
are evaluated by comparing the estimated dense
3D point cloud with the ground-truth 3D point
cloud and reporting precision, recall, and F Score
metrics.

DTU [15] This benchmark contains several
datasets of objects captured in a controlled setting
using a robotic arm. The scenes include a wide
range of objects and materials with different
lighting conditions from directional to diffuse.
To collect ground-truth shape information,
an industrial robot arm was mounted with a
structured light scanner and the images were
taken by one of the cameras in the structured light
scanner. The dataset consists of 124 different
scenes out of which 44 consist mainly of
scenes that have been rotated and scanned 4
times with 90 degree intervals which can be
used to reconstruct complete 3D models of the
objects. The image resolution is 1600× 1200,
and accurate camera calibration data is
available.

https://www.tanksandtemples.org/
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Multiview Stereo, Fig. 3 Multiview stereo bench-
marks used for quantitative evaluation: (a) Middlebury
Dino and Temple datasets from the Middlebury mul-
tiview stereo benchmark (http://vision.middlebury.edu/

mview/). (b) Large scenes from the outdoor multiview
stereo benchmark (http://cvlab.epfl.ch/strecha/multiview/
denseMVS.html)

ETH3D [23] Similar to [17], this dataset
focuses on outdoor and uncontrolled scenes.
Specifically, the dataset contains 13 datasets with
454 high-resolution multiview DSLR images and
5 datasets with 4796 low-resolution multiview
video frames. Finally, there are 32 low-resolution
two-view stereo pairs captured with rig cameras.
For all these datasets, the ground truth is captured
using a Faro Focus X 330 laser scanner.

Software

There are now several publicly available
open-source MVS implementations as well
as commercial photogrammetry packages
implementing MVS algorithms. MVS algorithms
are being increasingly used for aerial 3D
scanning and photogrammetry, 3D object
scanning, and general-purpose 3D content
creation aimed at games and VR. PMVS2 [6] and
CMVS [4] were some of the earlier open-source
MVS implementations. Recently, COLMAP
(https://demuc.de/colmap/) and MVE (https://
www.gcc.tu-darmstadt.de/home/proj/mve/) [3]
were publicly released and provide complete
high-quality 3D photogrammetry pipelines
including MVS implementations with some
interoperability with other structure-from-
motion and dense reconstruction pipelines
and software. OpenMVS (http://cdcseacave.
github.io/openMVS/) is another full pipeline

for 3D reconstruction of scenes from images.
OpenMVS provides MVS implementations in
addition to implementations of techniques for
the subsequent steps, namely, mesh construction,
mesh refinement, and texturing. Some notable
examples of commercial photogrammetry tools
include those provided by Pix4D (https://www.
pix4d.com), Agisoft (https://www.agisoft.com),
and Altizure (https://www.altizure.com).
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Definition

Two numerical approximations of curvature-
driven flows are described for use in computer
vision and image processing. The level-set
methodology of Osher-Sethian that dominates the
field is of particular interest, and a more recent,
alternative interpretation of curvature flow, based
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on a stochastic evolution of density functions, is
also presented.

Background

Two separate methods for the numerical
approximation and computer implementation of
curvature-driven flows in the plane are described.
The first has become, perhaps, the standard in
the field: the level-set methodology of Osher and
Sethian [1–4]. This approach and its variants
(fast marching, narrow banding, etc.) dominate
the literature and practice in computer vision and
image processing.

There are, however, other possibilities that
may be useful when estimation is necessary. For
example, when tracking in a noisy, uncertain
environment, the lack of a geometric prior tends
to result in undesired topological changes (e.g.,
merging and breaking of contours) in response to
noise in the image data. There are several possi-
bilities that may be considered for such scenarios
described in books [5, 6]. A completely stochastic
method from [7, 8] also acts as a useful approxi-
mation in many circumstances. A stochastic inter-
pretation of curve-shortening flows is formulated,
bringing together the theories of curve evolution
and hydrodynamical limits, and thus impacts the
growing use of joint methods from probability
and PDEs in image processing and computer
vision.

It is emphasized that the various ways of
numerically implementing curvature-driven
flows in vision described above should be
regarded as complementary: each approach has
its own advantages depending on the application.
Thus, it is not intended to compare or critique
the methods in the present work; rather, they
described in some detail and give the interested
reader a guide to the relevant literature. Thus, this
entry will have a strong tutorial flavor. Finally,
derivations herein are not considered in complete
generality. For most of the entry, simply consider
the simplest case of Euclidean curve shortening
[9–11].

Theory

Evolution Equations
This section reviews mathematical background
on the basic evolution equations used in computer
vision. For complete details, the interested reader
is referred to books [12, 13] that also have an
extensive list of references.

Consider the families of embedded closed
curves C : S1 × (0, T ) → R

2 evolving according
to functions of the curvature. Here, S1 denotes
the unit circle. (Since this discussion is informal,
strong restrictions are not placed of the families
of curves under consideration. See [9–11, 14] a
formal mathematical treatment.) More precisely,
in vision problems, the general deformation of a
curve in the plane of interest is given by

∂C
∂t

= α (p, t) T + β̂ (p, t)N , (1)

where N is the unit (inward) normal, T is unit
tangent, and α, β̂ are smooth functions. Note that
positive orientation of a curve is defined such
that the interior is to the left when traversing
the curve. The curvature, orientation, and length
are defined in the standard way. The normal
is taken to point inward, where the inward or
outward directions are determined by the interior
or equivalently by the orientation of the curve.
Notice that since only shape is of interest, it
is admissible to take α = 0; changing α only
changes the curve’s parametrization and not its
shape. Furthermore, as is typical in this area, the
deformations are constrained to be determined by
the local geometry of the curve, that is, β̂ (p, t) =
β(κ) where κ(p, t) denotes the Gaussian curva-
ture of the curve C (p, t). The following basic
equations are obtained for curve evolution under
curvature-driven flow:

∂C
∂t

= β(κ)N . (2)

In the mathematics literature, a number of
cases for the function β have been explored.
For example, there has been a great deal of
work in connection with the geometric heat
equation in which β(κ) = κ . In this case, the
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isoperimetric ratio L2/A (L is the length of the
closed curve and A is the area enclosed by
the curve) approaches 4π as the enclosed area
approaches 0; in other words, the curve shrinks
to a round point as shown in [9, 10]. In computer
vision problems, the function β(κ) typically takes
the form

β(κ) = aκ + 1, (3)

where a≥ 0. The case a= 0, that is, β ≡ 1 is very
important; Eq. (2) reduces to an equation that has
been studied in relation to problems in geometric
optics [15], flame propagation [16], and shape
morphology [17], as well as shape decomposi-
tion. Indeed, this is the differential equation for
the Blum prairie fire model. In (3), aκ adds a
diffusive effect, while the constant part adds a
wave (hyperbolic) effect, which tends to create
singularities and break a shape into its constituent
parts. This point is elaborated below.

Some general properties of Eq. (2) are pre-
sented, beginning with some standard notation.
Let

ρ (p, t) :=
∥
∥
∥
∥

∂C

∂p

∥
∥
∥
∥

=
[

x2
p + y2

p

]1/2
(4)

denote the length along the curve. The arc-length

parameter s is then defined as

s (p, t) :=
∫ p

0
ρ (ζ, t) d ζ. (5)

Then it follows that

T := ∂C
∂s

= 1

ρ

∂C
∂p

, (6)

κ := 1

ρ

∥
∥
∥
∥

∂T
∂p

∥
∥
∥
∥

, (7)

N := 1

κρ

∂T
∂p

, (8)

L(t) :=
∫ 1

0
ρ (p, t) dp. (9)

Finally, let

κ(t) :=
∫ 1

0
|κ (p, t)| ρ (p, t) dp (10)

denote the total absolute curvature.
Behavior of the classical solutions to Eq. (2)

has been thoroughly analyzed and a number of
useful results (from the applied point of view)
have been proved [2, 3, 14, 18]; the results are
summarized below. Let C (p, t) be a classical
solution of Eq. (2) for t ∈ [0, t′) and suppose
that κβ(κ) ≤ M for all κ ∈ R (regarding β as a
function of κ). Then,

L(t) ≤ L(0)eM t . (11)

In the case β(κ) = aκ + 1,

L(t) ≤ min
(

L(0) + 2πt, L(0)e
t
4a

)

. (12)

Let C(t)(p) := C (p, t) be a classical solution
of (2) for t ∈ [0, t′). Suppose that κβ(κ) ≤ M and
βκ ≤ 0. Then,

κ(t) ≤ κ(0). (13)

Moreover, if (0, t′) is an interval on which a
classical solution exists, one may also show that

dH

(

C(t), C(0)
)

≤ √
4at, (14)

where dH denotes the Hausdorff metric on com-
pact subsets of R2. The above facts easily imply
that

lim
t−t ′

C(t) = C∗ (15)

in the Hausdorff metric, and curve C∗, regarded
as a mapping S1 → R

2, is Hölder continuous
with exponent 1/2. In vision, a major area of
interest is weak solutions of equations of type (2),
whose details follow in section “Geometric Heat
Equation”.
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Geometric Heat Equation
In this section, a key flow for nonlinear scale
space and active geometric contours is presented.
This flow is achieved by setting β(κ) = κ in (2).

So, when β(κ) = κ , where κ is the curvature,
and κ the inward unit normal, a plane curve
evolves according to the geometric heat equation

∂C
∂t

= κN . (16)

This equation has a number of properties
which make it very useful in image processing
and in particular, the basis of a nonlinear scale
space for shape representation [19].

Indeed, Eq. (16) is the Euclidean curve-
shortening flow in the sense that the Euclidean
perimeter shrinks as quickly as possible when
the curve evolves according to Eq. (16) [9–11].
Since similar argument is needed for the snake
model discussed in the next section, details are
presented.

Let C = C (p, t) be a smooth family of closed
curves where t parameterizes the family and p
the given curve, say 0 ≤ p ≤ 1. (Assume that
C (0, t) = C (1, t) and similarly for the first
derivatives.) Consider the length functional

L(t) : −
∫ 1

0

∥
∥
∥
∥

∂C
∂p

∥
∥
∥
∥

dp.

After differentiating and using integration by
parts,

L′(t) =
∫ 1

0

〈
∂C
∂p

, ∂2C
∂p∂t

〉

∥
∥
∥

∂C
∂p

∥
∥
∥

dp

= −
∫ 1

0

〈

∂C
∂t

,
1

∥
∥
∥

∂C
∂p

∥
∥
∥

∂

∂p

⎡

⎣

∂C
∂p

∥
∥
∥

∂C
∂p

∥
∥
∥

⎤

⎦

∥
∥
∥
∥

∂C
∂p

∥
∥
∥
∥

〉

dp

(multiplying and dividing by
∥
∥
∥

∂C
∂p

∥
∥
∥ in the latter

integral). Observing that

∥
∥
∥
∥

∂C
∂p

∥
∥
∥
∥

dp =: ds

is (Euclidean) arc length, and using the definition
of curvature, the last integral becomes

−
∫ L(t)

0

〈
∂C
∂t

, κN
〉

ds

and

L′(t) = −
∫ L(t)

0

〈
∂C
∂t

, κN
〉

ds.

Using the Cauchy-Schwartz inequality,

〈
∂C
∂t

, κN
〉

≤ ‖Ct‖L2‖κN‖L2;

therefore, the direction in which L(t) is decreasing
most rapidly is given by

∂C
∂t

= κN .

Thus, (16) is precisely a gradient flow.
A much deeper fact is that simple closed

curves converge to round points when evolving
according to (16) without developing singulari-
ties; see [9, 10]. This fact is key for geometric
active contour models considered below.

Level Curve Representations
When applying curvature-driven flows, as above,
to images, it is necessary to move from curves
to (gray-scale) images. Thus, it is essential to be
able to relate curve evolution theory to operations
on 2D images. Fortunately, the powerful algo-
rithms developed by Osher and Sethian for curve
evolution allow precisely this. In this section, a
sketch is given of the beautiful work of Osher
and Sethian on level curve evolutions. For more
details, see [1, 2, 4].

Let C (p, t) : S1 × (0, T ) → R
2 be a family

of curves satisfying the following evolution equa-
tion:

∂C
∂t

= β(κ)N . (17)

There are a number of problems which must
be resolved when implementing curve evolution
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equations such as (17) numerically. For example,
singularities may develop. Note for β ≡ 1 in
(17) that even a smooth initial curve can develop
singularities. The question is how to continue
the evolution after the singularities appear. A
natural way is to choose the solution which agrees
with the Huygens principle [3, 16], or as Sethian
observed, if the front is viewed as a burning
flame, this solution is based on the principle that
once a particle is burnt, it stays burnt [3, 16]. As
indicated above that from all the weak solutions
corresponding to (17), the one derived from the
Huygens principle is unique and can be obtained
via the entropy condition constraint.

In any numerical algorithm, the key
requirements of accuracy and stability must
be addressed. The numerical algorithm must
approximate the evolution equation, and it must
be robust. Osher and Sethian [1–4] showed that
a simple, Lagrangian difference approximation
requires an impractically small time step in order
to achieve stability. The basic problem with
Lagrangian formulations is that the marker parti-
cles on the evolving curve can become unevenly
distributed along the curve during the evolution.

The algorithm proposed by Osher and Sethian
[1–4] provides a reliable numerical solution for
curve (and hypersurface) evolution. It is based
on the Hamilton-Jacobi equation and viscosity
theory. First, the curve is embedded in a two-
dimensional surface, and then, the equations
of motion are solved using a combination of
straightforward discretization and numerical
techniques derived from hyperbolic conservation
laws [20].

The embedding step is done in the following
manner: the curve C (p, t) is represented by the
zero level set of a smooth and Lipschitz continu-
ous function 	 : R2 × [0, τ ) → R. Assume that
	 is negative in the interior and positive in the
exterior of the zero level set. The zero level set
defined by

{

X(t) ∈ R
2 : 	(X, t) = 0

}

. (18)

It is necessary to find an evolution equation of
	 such that the evolving curve C(t) is given by

the evolving zero level X(t), that is,

C(t) ≡ X(t). (19)

By differentiating 	(X, t) with respect to t,

∇	(X, t) · Xt + 	t (X, t) = 0. (20)

Note that at the zero level, the following rela-
tion holds:

∇	

‖∇	‖ = −N . (21)

In this equation, the left side uses terms of the
surface 	, while the right side is related to the
curve C. Using Eqs. (17)–(21),

	t = β(κ) ‖∇	‖ , (22)

and the curve C, evolving according to (17),
remains equal to the zero level set of the function
	, which evolves according to (22), throughout
the evolution. Osher and Sethian [2] called this
scheme an Eulerian formulation for front prop-
agation because it is written in terms of a fixed
coordinate system.Moreover, notice that Eq. (22)
gives the extension of curve evolution equations
to gray-scale images when 	 is interpreted as
intensity.

The second step of the algorithm consists of
discretizing Equation (22). If singularities cannot
develop during the evolution, as in the geometric
heat equation flow, a straightforward discretiza-
tion can be performed [2]. If singularities can
develop, as in the case of β = 1, a special
discretization must be implemented. In this case,
the implementation of the evolution of 	 is based
on a monotone and conservative numerical algo-
rithm derived from the theory of hyperbolic con-
servation laws [2, 20, 21]. For a large class of
functions β of this type, this numerical scheme
automatically obeys the entropy condition, that
is, the condition derived from Huygens prin-
ciple [20]. For velocity functions of the form
β = aκ + 1, a combination of both methods is
used [1, 2, 4].
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Of particular interest for handling hyperbolic
systems is the upwinding discretization [21]. For
example, with a second-order upwinding scheme,
a flux term ∂

∂x
F (u) = f (u)ux is discretized at a

grid coordinate xi as

∂

∂x
F (u)

∣
∣
∣
∣
xi

:= f +u−
x + f −u+

x ,

f + := max (f (ui ) , 0) ,

f − := min (f (ui ) , 0) ,

u−
x := 3ui − 4ui−1 + ui−2

2�x
,

Such an approximation for spatial derivatives
enables sharp features in the curve to be pre-
served while satisfying stability conditions.

It is important to note that the discretization of
the evolution equations is performed on a fixed
rectangular grid [1, 4]. This rectangular grid
can be associated with the pixel grid of digital
images making this discretization method natural
for image processing. Since the evolving curve
is given by the level set of the function 	, it is
necessary to find this level set (	 is discrete now).
This is done using a very simple contour-finding
algorithm described in [1, 4].

Curve Shortening as a Semilinear Diffusion
Equation
In this section, stochastic algorithms for imple-
menting curvature-driven flows following [7, 8]
are described. In order to formulate a stochas-
tic implementation of the curvature-driven flows
described above, it is necessary to reexamine the
evolution equations from a different point of view
and to modify slightly some previous notation.

As above, let C : T× (0, T ) → R
2 be a family

of plane curves, evolving according to the curve
shortening or geometric heat equation [9–11]. As
already described, such a family moves by curve
shortening

∂C
∂t

= ∂2C
∂s2

(23)

if and only if its curvature κ(p, t) satisfies

∂κ

∂t
= κss + κ3. (24)

For a given differentiable curve f in the family
C, the partial derivative with respect to the arc-
length variable s is defined by

∂f

∂s
= 1

g (p, t)

∂f

∂p
,with g (p, t) =

∥
∥
∥
∥

∂C
∂p

∥
∥
∥
∥

.

(25)

And g evolves by

∂g

∂t
= −κ2g.

The length

L(t) =
∫

C
ds =

∫ 1

0
g (p, t) dp

evolves by

L′(t) = −
∫

C
κ2ds = −

∫ 1

0
κ(p, t)2g (p, t) dp.

(26)

Renormalized arc length is given by

σ (p, t) = 1

L(t)

∫ p

0
ds = 1

L(t)

∫ p

0
g
(

p′, t
)

dp′

(27)

and evolves according to

∂σ

∂t
= −L′

L
σ − 1

L

∫ p

0
κ2ds

= −L′

L
σ −

∫ p

0
κ2dσ

= −
∫ p

0
κ2dσ + σ

∫ 1

0
κ2dσ.

The curves are parameterized by σ . The cur-
vature, as a function of σ , is denoted by k̂:

κ̂ (σ (p, t) , t) = κ (p, t) .
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Some calculus involving the chain rule shows
that

∂κ̂

∂t
= ∂κ

∂t
− ∂σ

∂y
κ̂σ,

and hence,

∂κ̂

∂t
= 1

L2 κ̂σσ +
(∫ σ

0
κ̂2dσ ′−σ

∫ 1

0
κ̂2dσ

)

κ̂σ +κ̂3.

Multiplying both sides by L(t)3

L3 ∂κ̂

∂t
= (

Lκ̂
)

σσ
+

(∫ σ

0

(

Lκ̂
)2dσ ′

−σ

∫ 1

0

(

Lκ̂
)2dσ

)
(

Lκ̂
)

σ
+ (

Lκ̂
)3

and defining an (unnormalized)density function
according to

K (σ, t) = L(t)κ̂ (σ, t) ,

the following time derivative is obtained:

∂K

∂t
= L

∂κ̂

∂t
+ L′κ̂ .

By (26),

L′(t) = −
∫ 1

p=0
κ2ds = −L

∫ 1

0
κ̂(σ, t)2dσ,

and so,

L2 ∂K

∂t
= L3 ∂k̂

∂t
+ K (σ, t)

∫ 1

0
K

(

σ ′, t
)2dσ ′

= Kσσ +
(∫ σ

0
K2dσ ′ − σ

∫ 1

0
K2dσ ′

)

Kσ

+ K

(

K2 −
∫ 1

0
K2dσ ′

)

= ∂

∂σ

{
∂K

∂σ
+

(∫ σ

0
K2dσ ′−σ

∫ 1

0
K2dσ ′

)

K

}

.

Let

bK (σ, t) =
∫ σ

0
K2dσ ′ − σ

∫ 1

0
K2dσ ′

be the drift coefficient; this equation can be writ-
ten as

L2 ∂K

∂t
= Kσσ + (bKK)σ .

Note that the total curvature of an embedded
closed curve is always 2π , so the following con-
servation law must hold:

∮

kds =
∫ 1

0
K (σ, τ) dσ = 2π. (28)

This equation can be turned into an
autonomous system by introducing a new time
variable

τ(t) =
∫ t

0

dt ′

L(t ′)2

so that L2 ∂
∂t

= ∂
∂τ
. Note that this has the effect

of pushing the singularity to infinity, that is, the
equation does not blow up at all. From the results
of [10, 11, 14], this property means that there is
no blowup as long as τ (t) is finite.

Thus,

∂K

∂τ
= Kσσ + (bKK)σ

dL

dτ
= −L

∫ 1

0
K2dσ

dt

dτ
= L2.

A system which admits only nonnegative den-
sities can be obtained by setting K = λ − μ and
letting λ and μ evolve by the following system:

∂λ

∂τ
= λσσ + (

bλ−μλ
)

σ
(29)

∂μ

∂τ
= μσσ + (

bλ−μλ
)

σ
(30)
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dL

dτ
= −L

∫ 1

0
(λ − μ)2dσ (31)

dt

dτ
= L2 (32)

in which

cbλ−μ (σ, τ ) =
∫ σ

0

{

λ
(

σ ′, τ
) − μ

(

σ ′, τ
)}2 dσ ′

− σ

∫ 1

0

{

λ
(

σ ′, τ
)−μ

(

σ ′, τ
)}2 dσ ′

(33)

and

(

bλ−μ

)

σ
= (λ − μ)2 −

∫ 1

0
(λ − μ)2dσ (34)

are simply the average-free part of (λ − μ)2.
The maximum principle will keep both λ and

μ positive as long as λ(·, t0), μ(·, t0) ≥ 0. For any
given initial K(·, t0), a suitable initial partition can
be, for example,

λ (σ, t0) = max (K (σ, t0) , 0) ,

μ (σ, t0) = max (−K (σ, t0) , 0)

(which have disjoint support) or

μ (σ, t0) = μ = − min
0≤σ≤1

K (σ, t0) ,

λ (σ, t0) = μ + K (σ, t0) .

Recovering the Curve
Equations (29)–(32) will only determine the
curve itself up to rotation and translation.
Therefore, given the initial curve C0, it is
necessary to couple these equations with the
evolution equation

∂C
∂τ

= (λ − μ)N , (35)

whereN denotes the (inner) unit normal. Further,
it is possible to decompose the evolving curve
C (τ ) into translational T(τ ) and rotational R(τ )
components composed with an evolving curve

C (τ ) whose evolution involves no overall trans-
lation or rotation, that is,

C (τ ) = R (τ ) C (τ ) + T (τ ) .

According to this decomposition, the evolu-
tion of C is given by

∂C
∂τ

= R′C + R
∂C
∂τ

+ T′ = (λ − μ)N . (36)

Thus, starting from an initial C (and initial
R = I and T = 0), it is possible to solve for R′
and T′ using Eq. (36) at two or more points on the
curve in order to completely specify the evolution
of C.

Stochastic Implementation
A stochastic implementation can be created by
the evolution of a density corresponding to Eqs.
(29), (30). Accordingly, using parametrization σ ,
the quantities λ and μ are interpreted as densities.

The approximations used here are based on so-
called interacting particle systems as described
in [22]. Notice that because of the special
parametrization, the diffusion terms of Eqs. (29)
and (30) are linear. In this case, there will be two
types of particles, one simulating the λ and the
other the μ, and the particles interact through the
drift rate.

Let TN = Z/NZ denote the discrete torus.
The configuration of particles at time τ is
given by the pair of functions

(

ηλ
τ (·) , η

μ
τ (·)) :

TN → N
2, and the construction is such that

(

ηλ
τ ([σN ]) , η

μ
τ ([σN ])

)

converges to (λ(σ , τ ),
μ(σ , τ )).

Let the diffusion rates N → R+ (with
g(0) = 0) and the drift rate hλ, hμ : TN ×R

N
2

+ →
R be given and define the Markov generator on
the particle configuration EN = N

TN × N
TN by

(

LNf
) (

ηλ, ημ
) = N2 (L0f )

(

ηλ, ημ
)

+ N (L1f )
(

ηλ, ημ
)

, f ∈ Cb (EN) ,

where
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(L0f )
(

ηλ, ημ
)= 1

2

∑

i∈TN

g
(

ηλ(i)
)[

f
(

ηi,i+1,λ, ημ
)

+ f
(

ηi,i−1,λ, ημ
) − 2f

(

ηλ, ημ
) ]

+ 1
2

∑

i∈TN

g (ημ(i))
[

f
(

ηλ, ηi,i+1,μ
)

+ f
(

ηλ, ηi,i−1,μ
) − 2f

(

ηλ, ημ
) ]

and

(L1f )
(

ηλ, ημ
) =

∑

i∈TN

hλ
(

i, ηλ, ημ
)

+
[

f
(

ηi,i+sgn
(

hλ
(

i,ηλ,ημ
))

,λ, ημ
)

−f
(

ηλ, ημ
)]

+
∑

i∈TN

hλ
(

i, ηλ, ημ
) [

f
(

ηλ, ηi,i+sgn
(

hμ
(

i,ηλ,ημ
))

,μ
)

−f
(

ηλ, ημ
)]

,

where, with � ∈ {λ,μ},

ηi,i±1,�(j) =
⎧

⎨

⎩

η�(j) + 1, j = i ± 1, η�(i) �= 0,
η�(j) − 1, j = 1, η�(i) �= 0,
η�(j), else

ηi,+,�(j) =
{

η�(j) + 1, j = i,

η�(j), else

ηi,−,�(j) =
{

η�(j) − 1, j = i, η�(i) > 0,
η�(j), else

Note that L0 will be used to approximate the
diffusion term of Eqs. (29), (30), while L1 will be
used to approximate the drift term.

Recall that for a Poisson random variable X of
parameter α, one has

E
(

X2
)

= α2 + α,E(X) = α.

Thus, referring to Eq. (34), in order to define
the rates, set the function B : EN × TN → R+ as

B
(

η, η′) (j) = 1
N

j∑

i=1

([

η(i) − η′(i)
]2

− [

η(i) + η′(i)
] − c

)

,

c = 1
N

N−1∑

i=0

([

η(i) − η′(i)
]2

− [

η(i) + η′(i)
] )

.

(37)

Note that if η(j), η′(j) are taken as independent
Poisson variables of rates λ(j/N, τ ), μ(j/N, τ ),
respectively, then

E
(

B
(

η, η′) (j)
) = bλ(j/N,τ)−μ(j/N,τ).

Following [7, 22], for (29), the rates can be
taken as follows:

g(k) = k, hλ
(

i, η, η′) = −B
(

η, η′) (i)η(i),

hμ
(

i, η, η′) = −B
(

η, η′) (i)η′(i).

Note that it is necessary to take the minus sign
in the drift since the equation describes a forward
diffusion. The rate for g is, of course, classical,
and the drift rate h is similar to [22], when one
takes into account the extra averaging due to the
nonlocal nature of the function bλ−μ.

Conclusions
Geometric-based partial differential equations
and curve evolution theory have proven to be
powerful tools for a number of key topics in
computer vision and image processing. In this
note, the theory and practice of two numerical
approaches used to implement these flows on
a computer have been introduced: the first is
based on level sets, and the second is based on
a stochastic interpretation of certain equations as
zero-range birth-death diffusion processes.

These equations are straightforward to imple-
ment in code and extend naturally to the case of
Lagrangians driven by image or video data. The
ease of implementation coupled with the natural
ability to regularize intrinsic geometry and deal
with topological changes has contributed to the
popularity of these methods. Some of the key
applications include active contours for segmen-
tation and tracking, which may be found in works
such as [6, 23, 24].
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Related Concepts

�Object Recognition

Definition

Object detection involves detecting instances of
objects from one or several classes in an image.

Background

The goal of object detection is to detect all
instances of objects from one or several known
classes, such as people, cars, or faces in an image.
Typically only a small number of objects are
present in the image, but there is a very large
number of possible locations and scales at which
they can occur and that need to somehow be
explored.

Each detection is reported with some form
of pose information. This could be as simple
as the location of the object, a location and
scale, a bounding box, or a segmentation mask.
In other situations the pose information is more
detailed and contains the parameters of a linear
or nonlinear transformation. For example a face
detector may compute the locations of the eyes,
nose, and mouth, in addition to the bounding box
of the face. An example of a bicycle detection that
specifies the locations of certain parts is shown
in Fig. 1. The pose could also be defined by a
three-dimensional transformation specifying the
location of the object relative to the camera.

Object detection systems construct a model for
an object class from a set of training examples. In
the case of a fixed rigid object, only one exam-
ple may be needed, but more generally multiple
training examples (often hundreds or thousands)
are necessary to capture certain aspects of class
variability. Broadly speaking, less training data
is needed when more information about class
variability can be explicitly built into the model.
However, it may be difficult to specify models
that capture the vast variability found in images.
An alternative approach is to use methods such
as convolutional neural networks [1] that learn
about class variability from large datasets.

Object detection approaches typically fall into
one of two major categories, generative methods
(see, e.g., [2–6]) and discriminative methods
(see, e.g., [7–11]). A generative method consists
of a probability model for the pose variability of
the objects together with an appearance model:
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Object Detection, Fig. 1
A bicycle detection
specified in terms of the
locations of certain parts

a probability model for the image appearance
conditional on a given pose, together with a
model for background, i.e., non-object images.
The model parameters can be estimated from
training data, and the decisions are based on
ratios of posterior probabilities. A discriminative
method typically builds a classifier that can dis-
criminate between images (or sub-images) con-
taining instances of the target object classes and
those not containing them. The parameters of the
classifier are selected to minimize mistakes on the
training data, often with a regularization bias to
avoid overfitting.

Other distinctions among detection algorithms
have to do with the computational tools used
to scan the entire image or search over possible
poses, the type of image representation with
which the models are constructed, and what type
and how much training data is required to build a
model.

Theory

Images of objects from a particular class are
highly variable. One source of variation is the
actual imaging process. Changes in illumination
and changes in camera position as well as digiti-
zation artifacts all produce significant variations

in image appearance, even in a static scene. The
second source of variation is due to the intrinsic
appearance variability of objects within a class,
even assuming no variation in the imaging pro-
cess. For example, people have different shapes
and wear a variety of clothes, while the handwrit-
ten digit 7 can be written with or without a line
through the middle, with different slants, stroke
widths, etc. The challenge is to develop detection
algorithms that are invariant with respect to these
variations and are computationally efficient.

Invariance
The brute force approach to invariance assumes
training data is plentiful and represents the entire
range of object variability. Invariance is implicitly
learned from the data while training the models.
In recent years, with the increase in annotated
dataset size and computational acceleration using
GPUs, this has been the approach of choice in
the context of the multi-layer convolutional neu-
ral network paradigm, as discussed later in this
article.

When training data is limited, it is necessary
to build invariance into the models. There are
two complementary methods to achieve this. One
involves computing invariant functions and fea-
tures; the other involves searching over latent
variables. Most algorithms contain a combination
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of these approaches. For example many algo-
rithms choose to apply local transformations to
pixel intensities in such a way that the trans-
formed values are invariant to a range of illumi-
nation conditions and small geometric variations.
These local transformations lead to features, and
the array of feature values is the feature map.
More significant transformations are often han-
dled through explicit search of latent variables
or by learning the remaining variability from
training data.

Invariant functions and features This method
constructs functions of the data that are invariant
with respect to the types of variability described
above and can still distinguish between object and
background images. This may prove difficult if
object variability is extensive. Invariant functions
that produce the same output no matter the pose
and appearance of the object necessarily have less
discriminative power.

There are two common types of operations
leading to invariant functions. The first involves
computing local features that are invariant to cer-
tain image transformations. The second operation
involves computing geometric quantities that are
invariant to some or all three-dimensional pose
variation. For example the cross-ratio among dis-
tinguished points is a projective invariant that has
been used to recognize rigid objects (see, e.g.,
[12]).

An example of a local feature, invariant to
certain photometric variations and changes in
illumination, is the direction of the image gra-
dient, from which a variety of edge features can
be computed. More complex features capture the
appearance of small image patches and are often
computed from edge features. An example would
be the histogram of gradient (HOG) features
[10]. Local features are usually computed at a
dense grid of locations in the image, leading to
a dense feature map. Features such as HOG were
designed by practitioners based on a variety of
considerations involving the desired invariance
and at times were motivated by certain analogies
to biological processing in the visual system. An
alternative approach, implemented in multi-layer
convolutional neural networks, learns the local

features as well as intermediate and higher-level
features as part of the training process. Inter-
estingly, the low-level features learned by such
networks often resemble oriented edge detectors,
like the designed features.

Local pooling of features is commonly used
to introduce some degree of invariance to small
geometric variations. A typical example is the
max or sum operation [2, 13]. In this case a
quantity that is to be computed at a pixel is
replaced by the maximum or sum of the quantity
in a neighborhood of the pixel. When the region
is extended over the entire window, the result is
a bag of features model [14], which counts the
number of binary features of different types that
occur within a window. In this case all spatial
information is lost, leading to models that are
invariant to fairly large geometric transforma-
tions.

For computational reasons it is often useful
to sparsify the feature map by applying local
decisions to find a small set of interest points. The
assumption is that only certain features are useful
(or necessary) for object detection. The approach
yields sparse feature maps that can be processed
much more efficiently. Examples of commonly
used sparse features are SIFT descriptors [15],
corner detectors, and edge conjunctions [2]. One
drawback of sparse features is that hard decisions
are being made on their presence, and if some
are missed, an algorithm may fail to detect an
instance of the object.

Note that it is possible to predefine a very
large family of features that is never fully com-
puted, rather, in training an informative subset is
selected that can produce the required classifica-
tion for a particular object class. One example
are the Haar features that compute differences
of intensity averages in adjacent rectangles of
varying sizes and locations [8]. Another example
are geometric edge arrangements of increasing
complexity.

Latent variables An explicit parameterization of
the object variability can be defined via latent
variables that are not directly observable from
the image data. These are not necessarily needed
for the final report on the object detections, but
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their values simplify the solution of the detection
problem. For example to detect faces at a range of
orientations, at each candidate region, one could
decide, for each possible orientation, whether or
not the region contains a face at that orientation.
In general a set Θ defines latent parameters that
could capture global illumination parameters, a
linear or nonlinear map from a model domain
into the image domain, or specify the locations
of a finite set of object parts. The last case is
common in part-based models where latent part
placements are used to decide if the object might
be present at a particular location in the image
[11]. The set of possible latent values, Θ , can
be quite large or infinite. This leads to compu-
tational challenges that have been addressed by a
variety of methods including coarse-to-fine com-
putation, dynamic programming, and geometric
alignment.

Detection via Classification
The most common approach to object detection
reduces the problem to one of classification. Con-
sider the problem of detecting instances from one
object class of fixed size but varying positions
in the image. Let W denote a reference window
size that an instance of the object would occupy.
Let L denote a grid of locations in the image.
Let Xs+W denote the image features in a win-
dow (sub-image) with top-left corner at s ∈ L.
One can reduce the object detection problem to
binary classification as follows. For each loca-
tion s ∈ L classify Xs+W into two possible
classes corresponding to windows that contain an
object and windows that do not contain an object.
The sliding-window approach to object detec-
tion involves explicitly considering and classify-
ing every possible window. Note that the same
approach can be used to detect objects of different
sizes by considering different window sizes or
alternatively windows of fixed size at different
levels of resolutions in an image pyramid. Clearly
the number of windows where the classifier needs
to be computed can be prohibitive. Many com-
putational approaches find ways to narrow down
the number of windows where the classifier is
implemented.

Generative Models
A general framework for object detection
using generative models involves modeling two
distributions. A distribution p(θ; ηp) is defined
on the possible latent pose parameters θ ∈ Θ .
This distribution captures assumptions on which
poses are more or less likely. An appearance
model defines, the distribution of the image
features in a window conditional on the pose,
p(Xs+W |object, θ; ηa). The appearance model
might be defined by a template specifying the
probability of observing certain features at
each location in the detection window under
a canonical choice for the object pose, while
θ specifies a transformation of the template.
Warping the template according to θ leads to
probabilities for observing certain features at
each location in Xs+W [2, 3, 5].

Training data with images of the object are
used to estimate the parameters ηp and ηa . Note
that the images do not normally come with infor-
mation about the latent pose variables θ , unless
annotation is provided. Estimation thus requires
inference methods that handle unobserved vari-
ables, for example, the different variants of the
expectation maximization algorithm [4, 5]. In
some cases a probability model for background
images is estimated as well using large numbers
of training examples of images not containing the
object.

The basic detection algorithm then scans
each candidate window in the image, computes
the most likely pose under the object model,
and obtains the “posterior odds,” i.e., the ratio
between the conditional probability of the
window under the object hypothesis at the
optimal pose and the conditional probability of
the window under the background hypothesis.
This ratio is then compared to a threshold τ to
decide if the window contains an instance of the
object

p(Xs+W |object, θ; ηa)p(θ; ηp)

p(Xs+W |background)
> τ.

When no background model has been trained
offline, a simple adaptive background model can
be estimated online for each window being tested.
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In this case no background training data is needed
[5]. Alternative background models involve sub-
collections of parts of the object model [16].

Discriminative Models
If no explicit latent pose variables are used, the
underlying assumption is that the training data is
sufficiently rich to provide a sample of the entire
variation of object appearance. The discrimina-
tive approach trains a standard classifier to dis-
criminate between image windows containing the
target object classes and a broad background
class. This is done using large amounts of data
from the object classes and from background.
Many classifier types have been used, including
neural networks, SVMs, boosted decision trees,
and radial basis functions.

Cascades Because of the large size of the back-
ground population and its complexity, discrimi-
native methods are often organized in cascades
[8]. An initial classifier is trained to distinguish
between the object and a manageable amount of
background data. The classifier is designed to
have very few false negatives at the price of a
larger number of false positives. Then a large
number of background examples are evaluated,
and the misclassified ones are collected to form
a new background data set. Once a sufficient
number of such false positives is accumulated, a
new classifier is trained to discriminate between
the original object data and the new “harder”
background data. Again this classifier is designed
to have no false negatives. This process can be
continued several times.

At detection time the classifiers in the cascade
are applied sequentially. Once a window is clas-
sified as background the testing terminates with
the background label. If the object label is cho-
sen, the next classifier in the cascade is applied.
Only windows that are classified as object by all
classifiers in the cascade are labelled as object by
the cascade.

Pose variables Certain discriminative models
can also be implemented with latent pose
parameters [11]. Assume a generic classifier
defined in terms of a space of classifier functions

f (x; u) parameterized by u. Usual training of
a discriminative model consists of solving an
equation of the form

min
u

n∑

i=1

D(yi, f (xi; u)) + C(u),

for some regularization term C(u) which prevents
overfitting and a loss function D measuring the
distance between the classifier output f (xi; u)
and the ground truth label yi = 1 for object and
yi = 0 for background.

The minimization above can be replaced by

min
u

∑

yi=1

min
θ∈Θ

D(1, f (θ(xi); u))

+
∑

yi=0

max
θ∈Θ

D(0, f (θ(xi); u)) + C(u).

Here θ(x) defines a transformation of the exam-
ple x. Intuitively for a positive example, one
would like there to be some transformation under
which xi is classified as object, while for a neg-
ative example one would like it to be the case
that there is no transformation under which xi is
classified as object.

Convolutional neural networks Due to the
limitations of low-level local features and
the difficulty of manually specifying higher-
level features, neural networks have become
increasingly popular as a method to learn
effective feature representations, from low-level
to high-level, using large annotated datasets.
These networks are composed of a hierarchy of
layers indexed by grids of decreasing resolution.
The input layer is the raw pixels of the input
image. Each subsequent layer computes a vector
output at each grid point using a list of local
filters applied to the data in the preceding layer.
This linear operation is typically followed by a
nonlinear operation applied coordinate-wise and
at certain layers the grid resolution is reduced by
subsampling following a local max or averaging
operation. The network terminates in one or more
output layers that make predictions according to
the design of the model (e.g., an object category
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classifier and a pose estimator, if the model
outputs pose information).

All of the filter coefficients and the parame-
ters of the output layers are trainable. Training
is done through stochastic gradient descent on
a loss function defined in terms of the output
layers and the labels in the dataset. Thus the
network jointly learns linear classifiers and a
complex hierarchy of nonlinear features that yield
the final feature representation. Such networks
were demonstrated to work for large-scale image
classification tasks [17] and then subsequently for
the more complex task of object detection [18].

Networks for image classification have a
relatively straightforward design since they
terminate with a single classification output for
the entire image. Networks for object detection
involve additional components that are designed
to address the more complex nature of object
detection. There are two dominant designs: one
stage (e.g., [19]) and two stage (e.g., [20]),
both of which are based on a sliding-window
approach, described next.

In both of these designs, two convolutional
sub-networks are applied in parallel. At each
location on a relatively coarse feature grid, one
of these sub-networks acts as a classifier and
the other as a pose predictor (see Fig. 2 left

“cls layer” and “reg layer,” for classification and
box regression, respectively). The pose estimator
predicts a relative shift and scaling of a detection
window, while the classifier predicts if it is an
object or background. By creating multiple pairs
of such layers, with each pair specializing to a
window of a specific size and aspect ratio, the set
of predefined sliding windows can better approx-
imate the set of all possible image windows. The
pose estimator is tasked with predicting the resid-
ual error between the quantized windows and
the ground-truth object bounding boxes. In the
first design paradigm, often termed “one-stage”
methods, the sliding window classifier makes a
multi-class prediction over the set of all object
categories and background. These predictions,
together with the refined windows, comprise the
output of the model.

In the second design paradigm, the sliding-
window classifier performs two-class classifica-
tion between object (of any category) vs. back-
ground. The refined windows are then used as
candidate object locations, often called regions
of interest (RoIs), for a subsequent classifica-
tion and window refinement stage. This second
stage, as is typical in cascaded processing, only
receives high-scoring RoIs from the object vs.
background classifier. The input features to the

k anchor boxes

conv feature map

intermediate layer

256-d

2k scores 4k coordinates

sliding window

reg layercls layer

image

Region Proposal Network

proposals

classifier

RoI pooling

future mps

conv layers

Object Detection, Fig. 2 Left: A sliding-window
Region Proposal Network (RPN) that performs classifica-
tion (“cls layer”) and window shift and scaling regression
(“reg layer”) for a set of reference windows (“anchor
boxes”) at each grid position. Right: The Faster R-CNN

system that uses RPN to generate candidate object pro-
posals for processing in a second stage as a part of an
overall convolutional neural network for object detection.
(The figure is reproduced with permission from [20])
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second stage are typically computed by extracting
features within each RoI from a feature map.
The RoI feature extraction process may involve
quantizing the RoI coordinates and using max
pooling [20] or bilinear interpolation of the fea-
ture map without performing quantization [21].
The output of the second stage is a multi-class
classification prediction and window refinement
(shift and scaling) for each RoI. See Fig. 2 right.
Two-stage methods can also be extended in a
straightforward manner to predict a binary seg-
mentation mask for each RoI [21]. In either
case, all parameters of these networks are trained
jointly using stochastic gradient descent on a
multi-task loss function that includes terms for
classification and pose estimation.

Computational Methods
The basic detection process consists of searching
over pose parameters to classify each hypothesis.
At a minimum this usually involves searching
over locations and sizes and is clearly a very
intensive computation. There are a number of
methods to make it more efficient.

Sparse features When sparse features are used,
it is possible to focus the computation only
in regions around features. The two main
approaches that take advantage of this sparsity
are alignment [22] and the generalized Hough
transform. Alignment uses information regarding
the relative locations of the features on the
object. In this case the locations of some features
determine the possible locations of the other
features. Various search methods enable a quick
decision on whether a sufficient number of
features were found to declare object, or not.
The Hough transform typically uses information
on the location of each feature type relative
to some reference point in the object. Each
detected feature votes with some weight for
a set of candidate locations of the reference
point. Locations with a sufficiently large sum of
weighted votes determine detections. This idea
can also be generalized to include identification
of scale as well. The voting weights can be
obtained either through discriminative training
or through generative training [2].

Cascades As mentioned above the cascade
method trains a sequence of classifiers with
successively more difficult background data.
Each such classifier is usually designed to be
simple and computationally efficient. When the
data in the window Xs+W is declared background
by any classifier of the cascade, the decision is
final, and the computation proceeds to the next
window. Since most background windows are
rejected early in the cascade, most of the windows
in the image are processed very quickly.

Coarse to fine The cascade method can be
viewed as a coarse to fine decomposition of
background that gradually makes finer and finer
discriminations between object and background
images that have significant resemblance to the
object. An alternative is to create a coarse to fine
decomposition of object poses [9]. In this case
it is possible to train classifiers that can rule out
a large subset of the pose space in a single step.
A general setting involves a rooted tree where
the leaves correspond to individual detections
and internal nodes store classifiers that quickly
rule out all detections below a particular node.
The idea is closely related to branch-and-bound
methods [14] that use admissible lower-bounds to
search a space of transformations or hypotheses.

Dynamic programming There are a number of
object detection algorithms that represent objects
by a collection of parts arranged in deformable
configurations or as hierarchies of such arrange-
ments of parts of increasing complexity. When
the hierarchies and the arrangements have the
appropriate structure, dynamic programming
methods can be used to efficiently search over
the spaces of arrangements [2, 3].

Convolutional neural networks Object detection
systems based on convolutional networks make
use of many classical techniques for reducing
computation, including cascades as previously
described. Coarse-to-fine approaches are also
common. By progressively reducing spatial
resolution, these networks operate on a coarse
grid of object locations. The loss in resolution is
compensated by predicting pose parameters that
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Object Detection, Fig. 3 Bounding boxes and segmentation masks produced by Mask R-CNN. The system is trained
to detect and segment 80 object categories from the COCO dataset. (Reproduced with permission from [21])

Object Detection, Fig. 4 Bounding boxes, segmenta-
tion masks, and joint positions produced by Mask R-
CNN. The system is trained to detect, segment, and predict

pose on the person categories from the COCO dataset.
(Reproduced with permission from [21])

recover some of the quantization error, resulting
in fine predictions. The progressive reduction in
spatial resolution can also be used to efficiently
construct a multi-scale pyramid representation
from a single input image scale [23], which is
more efficient than processing multiple input
image scales independently. These networks also
share nearly all the computation of the hierarchy
of features across all object categories, rather
than retraining a separate hierarchy for each
one vs. rest binary classification models, one for
each object category. The shared computation
enables such networks to scale to thousands
of object categories; the marginal per category
cost grows linearly but is small relative to the
computation shared between categories. Finally,
typical convolutional networks can be accelerated
both algorithmically via fast convolution
methods and with specialized hardware that

makes extensive use of parallel computation
(e.g., GPUs).

Application

Object detection methods have a wide range
of applications in a variety of areas including
robotics, medical image analysis, surveillance,
and human computer interaction. Current
methods work reasonably well in constrained
domains but still rely on thousands of training
examples per category in order to achieve
reasonable results.

A popular benchmark for object detection is
the COCO object detection challenge [24]. The
goal of the challenge is to detect objects from 80
common categories such as people, cars, horses,
and tables in photographs. The challenge has
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attracted significant attention in the computer
vision community over the last few years, and the
performance of the best systems has been steadily
increasing each year by a significant amount.

Detection methods that segment objects are
also steadily improving and are now deployed for
various applications, particularly in augmented
and virtual reality scenarios. Figure 3 shows
example output of Mask R-CNN [21]. Models
that additionally predict human joint locations, in
addition to bounding boxes and segmentation
masks, are also useful in many applications
including video conferencing systems that can
automatically keep participants framed within
the video steam. Mask R-CNN can be extended
to predict human pose, as illustrated in Fig. 4.
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Synonyms

Hazard detection

Definition

Obstacle detection is the process of using sensors,
data structures, and algorithms to detect objects
or terrain types that impede motion.

Background

Obstacle detection is applicable to anything that
moves, including robot manipulators and manned
or unmanned vehicles for land, sea, air, and
space; for brevity, these are all called vehicles
here. Obstacle detection and hazard detection are
synonymous terms but are sometimes applied in
different domains; for example, obstacle detec-
tion is usually applied to ground vehicle naviga-
tion, whereas hazard detection is often applied
to aircraft or spacecraft in the process of land-
ing, as in “landing hazard detection.” Obstacle
detection is a system problem that encompasses
sensors that perceive the world, world models that
represent the sensor data in a convenient form,
mathematical models of the interaction between
objects and the vehicle, and algorithms that pro-
cess all of this to infer obstacle locations. Obsta-
cle detection algorithms use the world model and
the interaction model to locate obstacles, to char-
acterize the degree to which the obstacles impede
motion, and to produce an obstacle map for use
by path planning algorithms. The complexity of
obstacle detection systems varies greatly, depend-
ing on the domain of operation, the size and
cost of the vehicle, and the degree of reliability
required.

Because sensor data is noisy and incomplete,
often it is necessary to combine many sensor
measurements into the world model to reduce
noise and fill in gaps in the world model before
applying obstacle detection algorithms; this
makes obstacle detection related to mapping.
Obstacles may completely block motion of the
vehicle or just make it more difficult to move,
such as having to move slowly over rough
ground; this makes obstacle detection related
to terrain classification.

Development of obstacle detection systems
has accelerated in the past decade, due to rapid
progress in sensors, embedded computing, and
growing markets for intelligent vehicles. The ris-
ing commercial importance of automated driver
assist systems (ADAS) and self-driving cars and
trucks has propelled development of obstacle
detection systems for vehicles on roads [1, 2].
This includes low-cost sensors, abilities to detect
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and predict the paths of moving obstacles, and
abilities to classify the types of obstacles (e.g.,
fence, pedestrian, bicycle, car) to better under-
stand how to react to them. The potential com-
mercial importance of unmanned air vehicles
(UAVs) similarly fuels development of small,
lightweight obstacle detection systems, as well
as other techniques, to allow such vehicles to
fly safely in shared airspace [3, 4]. At the most
remote end of the application spectrum, obsta-
cle detection has become important in planetary
exploration for rovers and landers [5, 6].

Sensors for Obstacle Detection

An early introduction to a broad range of sensors
for obstacle detection is included in [7]. Three-
dimensional perception plays a central role
in obstacle detection, because the geometry
of the world is a major factor in determining
what constitutes an obstacle. Three-dimensional
sensors include active ranging techniques, like
lidar [8–10], radar [11], and sonar [12], and
passive ranging techniques, like stereovision [13]
and structure from motion [14]. Appearance can
also be useful for discriminating obstacles from
non-obstacles, so color, texture, polarization, and
radiant temperature can also be important sensor
attributes. Since all 3-D sensors have limited
range, appearance attributes are especially
important for detecting obstacles at long range.
The very wide range of illumination present in
outdoor scene has been a challenge for selecting
cameras both for human viewing and for auto-
mated obstacle detection; this is being addressed
by advances in high dynamic range imagers
[15, 16].

Mechanical properties like the stiffness of
objects or terrain often are important to obstacle
detection, as well as geometric properties.
This requires sensors that directly or indirectly
give insight into mechanical properties of the
scene. These can be proprioceptive sensors, like
inertial sensors, wheel encoders, or instrumented
bumpers, that sense aspects of the vehicle-
world interaction as it occurs or remote sensors
that perceive the terrain ahead of the vehicle.

Examples of remote sensing to predict terrain
mechanical properties are using lidar [17] or
multispectral imagery [18] to infer whether
material is vegetation that can be pushed through
by the vehicle or is something more solid that
must be avoided (Fig. 1).

Environmental conditions like ambient illumi-
nation and atmospheric obscuration also impact
obstacle detection sensors [19, 20]. For example,
fog, smoke, and night operation may require
active sensors or thermal infrared cameras, while
thick dust or heavy precipitation may require
radar (Fig. 2). Dynamic environments require
sensors that measure the velocity of obstacles as
well as their size and location.

Choosing appropriate sensors is a critical first
step in obstacle detection, to ensure that the sen-
sors can discriminate obstacles under the required
conditions. This can be difficult; for example,
operation in high levels of airborne dust requires
use of sensors that measure range to solid objects
behind the dust, instead of to the dust. It can also
be very challenging to obtain appropriate sensors
that fit within the size, weight, power, and cost
constraints of the application.

Data Structures for Obstacle
Detection

Obstacle detection algorithms can be developed
to process raw sensor data or data that has
been transformed into another representation.
Raw data is often expressed in sensor space
(also called image space for some sensors);
these are data structures that are indexed by
the natural coordinate system of the sensor, such
as [row, column] or [azimuth, elevation]. With
two-axis lidar, for example, surface normals,
range discontinuities, and height aboveground
can be computed directly from range images
provided by the sensor, and obstacle locations
can be inferred from these quantities. Operating
in image space preserves pixel adjacency
information, which can be convenient for
segmentation. Performing obstacle detection in
sensor space minimizes computational cost and
obstacle detection latency, which is important for
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Obstacle Detection, Fig. 2 Smoke seen with visible spectrum and thermal infrared cameras; thermal infrared
penetrates smoke and fog far better than visible wavelengths

vehicles with limited computational resources or
that move very fast and must react very quickly
[21, 22].

An alternative to working in image space is to
work in a map space. These are often expressed in
a Cartesian reference frame that is either vehicle-
centered or has a fixed origin in the world; they
can also be expressed in polar coordinates with a
vehicle-centered origin. Map representations can
simply accumulate raw data from many sensors
or many points in time, such as point clouds from
range imaging sensors like lidar or stereovision.
Alternatively, they may be discrete grids that are
used to summarize range data over time, such as
elevation maps and 2-D or 3-D occupancy grids.
Elevation maps record the height of the ground
surface in each cell of a discretized map of the
ground plane; multiple heights or intervals of
heights may also be recorded for each map cell
in the ground plane. Occupancy grids record a
probability that each cell of the map is occupied
by solid material, instead of empty. These can
be defined in 2-D or 3-D; in 3-D, they are often
called voxel maps. Concepts of height maps and
voxels have also been combined in the same
system [24, 25]. Important issues for map data
structures are that they allow rapid access to and
update of information in each cell, rapid access to
neighborhoods, and efficient use of memory for
mapping large regions, including sparse represen-
tations. Trees, allocatable map tiles, voxel hash-
ing, and multi-resolution variants on these themes

are examples of techniques used to address these
issues [23, 24, 26, 27] (Fig. 3).

Shape of the raw sensor uncertainty distribu-
tion also can drive the choice of world model
representation, particularly for sensors with wide
beams (leading to polar representations) and for
passive triangulation from images, where inverse
range parameterizations can be useful, particu-
larly for image space representations [21]. Robot-
centered, 2-D polar-perspective maps are another
inverse range representation, where the radial
axis of 2-D polar maps is parameterized with
inverse range to match the spatial and range
resolution characteristics of stereovision [28].

Geometric representations fit geometric prim-
itives, like line segments or polygons for 2-D
maps and planar surfaces or bounding boxes for
3-D maps, to the raw sensor data or to segmented
gridded data. These are less commonly used for
obstacle detection than for visualization or for
strictly mapping purposes, but they have often
been used as compact world models for motion
planning algorithms. Other methods of compress-
ing raw point cloud data into a more compact
representation include clustering the points and
fitting the clusters with a mixture of Gaussian
distributions [29].

Map space representations are used for several
purposes. First, they are used to accumulate data
over time, which is valuable to “fill in” gaps that
may occur in individual frames of sensor data.
Second, they facilitate noise reduction, because
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Obstacle Detection,
Fig. 3 Hybrid 2-D cost
map [23], with a Cartesian
map closest to the robot
and a polar map further
away to reflect resolution
characteristics of
stereovision. White rings
are 5 m intervals. Blue
codes low cost, while red is
high cost, revealing
corridor between the
bushes in the upper left
image

the accumulated data can be averaged or filtered
for outliers. Third, they can effectively inter-
polate higher-resolution representations of the
world than are available from individual frames
of sensor data; an example is when occupancy
grids are used to build world models from wide-
angle sonar data [30]. Finally, they can be in
a coordinate system that makes some aspects of
obstacle detection easier; for example, transform-
ing range data from image space to a Cartesian
map space data structure makes it possible to
use shift-invariant algorithms to detect fixed-size
obstacles.

Uncertainty is inherent in sensors, therefore
also in maps and in obstacle detections, so
modeling that uncertainty is an important issue.
Common approaches to this include recursive
filtering of Gaussian models of uncertainty in
range or height measurements [31], and updating
map cell occupancy inferences is the use of
occupancy grids to estimate the probability that
map cells contain obstacles. Efforts to improve
elevation mapping have used Gaussian process
[34] and Markov random field formulations
[35]. Several techniques have been explored
to extend occupancy grids to improve their
spatial fidelity and/or statistical model, including
normal distributions transform occupancy maps

(NDT-OM) [32] and Hilbert maps [33]. Gaussian
mixture models have been applied to temporal
fusion of depth maps [36].

Vehicle-World InteractionModels for
Obstacle Detection

Obstacle detection algorithms implicitly or
explicitly use a model of how the vehicle interacts
with the world to determine where obstacles
exist. In the simplest case, the model may be
just a binary decision based on raw sensor data,
such as when single-axis scanning lidars are used
for obstacle detection indoors and any object
that produces a range measurement counts as an
obstacle. For outdoor navigation, the size of an
object affects whether or not it is considered an
obstacle; for example, small bumps on the ground
may be ignored, but large rocks are obstacles.
This distinction depends on characteristics of
the vehicle, such as wheel diameter, ground
clearance, velocity, and suspension stiffness.
In this context, interaction modeling can take
into account just the geometry of the vehicle and
world or varying levels of fidelity in the dynamics
of the interaction [37, 38], the energy cost of a
robot path [39], or other metrics [40] (Fig. 4).
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Obstacle Detection,
Fig. 4 Predictions of
driving energy for three
different vehicle paths
encountering different
slopes and predicted
slippage [39]

Algorithms and Systems for Obstacle
Detection

Obstacle detection algorithms use the vehicle-
world interaction model to transform the sensor
data and the world model into an intermediate
representation that enables efficient path plan-
ning. There are many approaches to this, which
depend on the application context. The sum-
mary here focuses on ground vehicles to illustrate
the diversity of issues and approaches involved;
methods tailored for maritime vehicles, flying
vehicles, and robot manipulators can be found in
the relevant literature.

Among the simplest and oldest methods are
those that apply to indoor ground vehicles with
2-D world models. Off-road vehicles require
more complex methods to cope with the 2.5-D
world model and the spectrum between rigid
and compliant obstacles. On-road vehicles face
complexities of other traffic, high speed, and
a wide range of illumination, weather, and
seasonal conditions that stress the need to address
obstacle detection algorithms in the context of a
multisensor autonomous driving system.

For indoor vehicles with 2-D world models,
binarized occupancy grids and analogous data
structures can be the obstacle map. The simple

abstraction of treating the vehicle as circular
enables expanding the obstacles by the radius of
the vehicle to allow motion planning algorithms
to treat the vehicle as a point in the 2-D ground
plane. Similar concepts have been applied to
stereo disparity maps to allow motion planning
with image space representations for ground and
air vehicles [21, 41].

For off-road vehicles, the world model must
be at least 2.5-D, the degree of rigidness versus
compliance of materials in the environment is
significant, and the effects of vehicle dynamics
are important at high speed. For Mars rovers,
which move very slowly in desert terrain with
no vegetation or moisture, obstacle detection
algorithms can test for ground clearance by
“kinematic settling” of an articulated vehicle
model onto an elevation map of the terrain [5].
Limited onboard computational power may lead
to using such algorithms in a hierarchical scheme
that uses simpler methods to conduct initial
terrain triage, for example, by fitting planes to
vehicle-sized patches of the elevation map to
distinguish regions that are very smooth or very
rough from those that need more careful analysis
of ground clearance. Sand dunes are compliant
terrain that increase wheel slippage and can get
the vehicle stuck. Research is in progress on
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terrain classification methods that use onboard
cameras to allow rovers to discriminate this
terrain type from rigid terrain like bedrock [43].

Off-road vehicles on Earth face a much greater
variety of terrain types and a wider range of
illumination and atmospheric conditions that
degrade sensor performance. Besides soft sand,
terrain types include other compliant materials
like vegetation, mud, and water bodies. A variety
of sensors and detection algorithms have been
explored for identifying these terrain types,
including image classification, reasoning about
3-D point cloud statistics, detecting polarized
reflections, and reasoning about temperature
of the scene as revealed by thermal images
[19, 44, 45] (Fig. 5). Manmade obstacles like
wire may be present, which are thin and hard to
see; specialized analysis of 3-D point cloud data
has been used to detect these [44]. Holes in the
ground of various sizes, including potholes and
ditches, are collectively referred to as negative
obstacles; these are hard to detect because they
project to a small area in image space. Under
some conditions, visible portions of the interiors
of negative obstacles have temperatures that
contrast with the surrounding terrain; this has
led to thermal cues being included in specialized
detectors for negative obstacles [47]. A variety of
self-supervised and imitation learning algorithms
have been explored for enabling vehicles to learn
about terrain types from their own experience and
from observing human driving examples [48,49].

Dynamic effects of vehicle interaction with off-
road terrain types is still a fairly immature topic,
especially for high-speed driving.

On-road driving generally has simpler vehicle-
terrain interaction than off-road driving, but it has
more demanding requirements for coping with
high speed; navigating among moving objects
that include motor vehicles, bicycles, pedestrians,
and other objects; being robust to degraded seeing
conditions (night, bad weather); and doing all of
this while respecting many rules of the road. This
requires detecting and classifying objects that
may be in the path of the vehicle, tracking moving
objects, and semantic labeling and segmentation
of the scene as a whole. Cameras and lidars
are primarily used for these tasks. Learning-
based algorithms using deep convolutional neural
networks have become very prominent in this
domain. Survey articles provide a good introduc-
tion to this complex problem [50].

Open Problems

The complexity of understanding the on-road
driving environment and the level of reliability
required in that environment continues to
have open problems, which strongly overlap
other computer vision problems like object
recognition, object tracking, and semantic
segmentation. Off-road driving also presents
difficult challenges for perceiving material types

Obstacle Detection, Fig. 5 Potential water hazard
detection based on geometric reasoning about reflections
in image and stereovision-based point cloud data [19].
Left: thermal image from a stereo image pair, with a
puddle in the foreground. Center: false color depth map

from stereo, with anomalous large range measured to the
reflection. Right: cost map for 100 m ahead of the vehicle,
with the puddle properly placed in the map after reasoning
about range around its borders
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and inferring whether they constitute obstacles
that must be avoided or compliant terrain that can
be driven over at some appropriate speed. There
currently is a heavy reliance on 3-D perception
with lidar for obstacle detection, but there is
strong interest in being able to do more with
cameras, because of potential for reducing cost
and reducing signals emitted by the sensors.
Poor seeing conditions (e.g., night, bad weather)
present challenges that are not fully addressed.
Obstacle detection in these domains is very
computationally intensive; there is a perpetual
interplay between development of more efficient
algorithms and higher performance onboard
computing systems to address this challenge.
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Definition

In computer vision, the term occlusion refers to
the phenomenon which occurs when a portion
of a 3D scene is not visible from the camera
or another sensor. Visual rays from 3D points
in such portions of the scene are obstructed or
blocked from reaching the camera by another
non-transparent surface or object that lies
between the obstructed region and the image
plane of the camera. Occlusion is a consequence
of the nature of 3D projections and arises from
the depth ordering of surfaces in the scene from
a particular viewpoint. The region which is
occluded, i.e., not visible from the camera, is
often referred to as the occluded region, whereas
the obstructing objects or surfaces are referred
to as occluders. Finally, the visible edge or
boundary of the occluder or occluding surface
is often referred to as the occlusion boundary.

Occlusions in Object Tracking

Occlusion occurs naturally in most 3D scenes
where multiple objects and complex geometric
shapes are present in arbitrary configurations or
when the scene is dynamic and objects deform
or move within the scene. The extent of the
occlusion may be higher in cluttered scenes com-
pared to scenes which contain very few objects.
The degree of occlusion may also depend on the
camera viewpoint in the scene. For example, in
an open outdoor scene, an upright camera slightly
above ground level may have significantly more
occlusion compared to a camera looking down-
ward into the scene from a greater height.

The presence of occlusion leads to a wide
range of challenges for a class of computer vision
techniques that solve various visual recognition
tasks, namely, object detection, object tracking,
segmentation, and visual recognition. Let us
briefly discuss why occlusions make object
tracking challenging. Figure 1a–c shows a person
in three video frames from a single camera. The
person’s face is occluded by the magazine in two
of the frames. In this case, the goal is to track

the person’s face. Specifically, the tracker should
estimate the corners of a 2D rectangle that fits
around the face on each frame, and we would
like these predictions to be robust to occlusion as
shown in Fig. 1d–f.

Most object tracking approaches construct and
maintain an adaptive appearance model of the
object being tracked. If the appearance model is
global, i.e., represents the appearance of the com-
plete object, a tracking approach that uses such a
model would be more susceptible to tracking fail-
ure due to occlusions. Note that the appearance
or shape of the occluder cannot be assumed to be
known and the tracking algorithm cannot assume
any knowledge of which parts of the person’s face
or to what extent it will be occluded.

To solve the problem more robustly in the
presence of occlusion, a more flexible appearance
model is typically used, one which constructs
and adaptively maintains multiple redundant
appearance representations of different parts of
the object. The basic principle is that when the
object is occluded, it will be assumed that at least
some of its parts are visible and this will allow
the detector or tracker to find the object under a
modest degree of occlusion.

Occlusions may cause object trackers to
lose track of an object in a long sequence.
This may in fact be inevitable if the object is
completely occluded behind some other scene
objects and disappears from the camera view.
However, when the object is visible again, an
occlusion-aware tracking approach will redetect
the object and recognize it to be the same object
instance observed before and tracking can be
reestablished.

Occlusion in Stereo and Optical Flow
Estimation

We now discuss how occlusion presents some
challenges in low-level image correspondence
recovery tasks such as stereo matching and opti-
cal flow. In stereo matching, the goal is to esti-
mate a dense set of pixel correspondences in two
or more images where the scene is assumed to
be rigid. This is possible, either with multiple
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Occlusion, Fig. 1 Occlusion creates some challenges
in object tracking. (a) A frame from the FACEOCC1
sequence showing a person, taken from the visual track-
ing benchmark [10]. (b) A different frame from the
video where the person’s face is considerably occluded.

(c) Another frame where a different part of the person’s
face is occluded. (d–f) Object tracking results that can be
expected on these images from a tracking technique which
is robust to occlusion

cameras in the scene or using a single moving
camera but by assuming the scene to be station-
ary. Similarly, in optical flow estimation, one also
seeks a dense set of pixel correspondences in
multiple images such as from consecutive frames
of video. In optical flow, general pixel motion
is allowed as would occur in a nonrigid scene
or a scene with rigid objects that are moving
independently.

Figure 2 shows an example of occlusion in the
binocular stereo problem. The leftmost and center
image depicts a pair of stereo-rectified images
where the corresponding pixels lie on identical
horizontal scanlines of the two images. Figure 2c
depicts a binary mask where the white pixels in
the mask image correspond to pixels in the left
image that are visible in the right image whereas
the black pixels in the mask image are not visible
in the right image. This binary mask is often
referred to as the occlusion mask.

Occlusion in the stereo matching setting arises
from the effect of parallax and is associated
with edges in the scene that form depth discon-
tinuities, i.e., where the depth of pixels changes
abruptly. While the fraction of occluded pixels in
a stereo pair depends on the scene geometry and
range of parallax, one typically observes a higher
degree of occlusion when the baseline between
the stereo cameras is increased. Scenes where
occlusion occurs more frequently are typically
more challenging for stereo matching. Estimat-
ing the disparity (or scene depth) of occluded
pixels requires reasoning using monocular cues
instead of stereo cues. Similarly, in the case of
optical flow estimation, occlusion is associated
with edges that form motion discontinuities, and
computing optical flow for sequences with fast
and large motion is typically more challenging
as they are likely to produce more occluded
pixels.
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Occlusion, Fig. 2 Occlusion makes stereo matching
more challenging. (a–b) The left and right image from
CONES, a pair of rectified stereo images from the Middle-
bury stereo matching benchmark [5]. (c) The occlusion
mask for the pixels in the left image. The white pixels in
the mask are visible, i.e., non-occluded in the right image,

whereas the black pixels are not visible, i.e., occluded in
the right image. (d) The left image shown again with two
occluded regions marked by black squares. (e–f) Images
showing zoom-ins of the patches within the black squares

It is possible to explicitly model the occlu-
sion phenomena in stereovision using geometric
reasoning. Such stereo matching methods typi-
cally infer the disparity map in both left and right
images [2, 7] and may involve explicit estima-
tion of the left and right occlusion maps. Typ-
ically such techniques require multiple phases,
where during the initial phase the occlusion maps
are estimated whereas in the subsequent phases
the estimated occlusion maps are used to adjust
appropriate terms in the objective function in an
occlusion-aware manner.

However, many stereo matching and optical
flow estimation methods avoid explicitly
modeling occlusions and instead treat the
occurrence of occlusions as outliers. These
methods implicitly deal with occlusion by either
using robust cost functions in the algorithmic
formulation or employing robust optimization

procedures to infer the correspondence. This
idea is quite effective in the multi-view stereo
task when several overlapping viewpoints are
available [9]. Most learning-based methods also
model occlusions implicitly and rely on many
examples in the training set to indirectly achieve
robustness to occlusions.

Occlusion Reasoning and Scene
Understanding

Reasoning about occlusions in a scene and detect-
ing occlusion boundaries can provide indirect
cues about the 3D scene geometry. It can also
help to decompose the scene into a set of discrete
layers which may aid 3D scene understanding.
For example, it is possible to detect occlusion
boundaries by performing background segmenta-
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tion on a moving object in a stationary scene and
then analyzing the edge and boundary statistics
of the foreground or object segments over time.
When the object has been observed to move
within the scene for a sufficiently long time,
the boundary statistics may reveal not just the
location of the occlusion boundaries but distinct
layers in the scene geometry (from the camera’s
viewpoint) and the relative ordering of these
layers [6]. Finally, occlusion reasoning can also
be performed on videos captured using multiple
calibrated cameras with overlapping viewpoints.
By segmenting moving objects from the respec-
tive background images in multiple views, it
is possible to both infer the 3D shape of the
stationary occluders in the scene and reconstruct
the dynamic objects more accurately based on
explicit geometric occlusion reasoning using a
probabilistic formulation [3].

Several other approaches have also been inves-
tigated to solve the occlusion boundary detec-
tion problem in single images using supervised
learning approaches [4], by utilizing low-level
motion cues based on optical flow computation
on video [8] and based on the detection of
T-junctions in images [1].

References

1. Apostoloff N, Fitzgibbon A (2005) Learning spa-
tiotemporal t-junctions for occlusion detection. In:
CVPR, vol 2. IEEE, pp 553–559

2. Bleyer M, Rother C, Kohli P, Scharstein D, Sinha
S (2011) Object stereo—joint stereo matching and
object segmentation. In: CVPR. IEEE, pp 3081–
3088

3. Guan L, Franco J-S, Pollefeys M (2007) 3d occlusion
inference from silhouette cues. In: CVPR. IEEE,
pp 1–8

4. Hoiem D, Stein AN, Efros AA, Hebert M (2007)
Recovering occlusion boundaries from a single
image. In: 2007 IEEE 11th international conference
on computer vision. IEEE, pp 1–8

5. Scharstein D, Hirschmüller H, Kitajima Y, Krathwohl
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Definition

Occlusion detection refers to the set of techniques
employed to detect which areas of the images
are occlusion boundaries or areas that appear
occluded in views of the scene.

Background

Occlusion is one of the fundamental phenomenon
that limits the information available in an image.
Given a 3-dimensional scene containing non
transparent objects, a projection of the scene into
the image will not include information about
all the surfaces in the scene. The backside of
the nontransparent objects will be occluded by
the frontside, and the foreground objects will
occlude the background surfaces. Which areas
are occluded and which ones are visible depends
on the position of the camera with respect to the
scene.

In natural images, occlusions are prevalent.
Knowing which are the occlusion boundaries in
an image helps segmenting pixels at the object’s
level and thus help processes such as objects
detection or relative depth estimation. The occlu-
sion areas depend on the camera position; thus,
most algorithms matching two or more images
are concerned with occlusion detection; since not
all the surface points visible in image I1 will
be visible in image I2, not all pixels in I1 will
have a corresponding pixel I2. Due to this stereo
matching, optical flow and object tracking algo-
rithms are particularly concerned with occlusion
detection.

Theory

For occlusion detection two cases should be
distinguished: single image or multiple images.
When a single image is available, no direct
observation of occlusion boundaries can be
done, and thus, the nature of the problem is
quite different from the multiple images case.

Single Image
If the depth assigned to each pixel was known,
then the occlusion boundaries would correspond
to where the depth is discontinuous. Without
any additional information but a single image,
estimating the occlusion boundaries corresponds
to estimating depth discontinuities when depth
information is not available. Without priors,
such problem cannot be solved. A common
assumption (in stereo matching and optical flow
estimation literature) is that depth discontinuities
generate color discontinuities. Classical edge
detection algorithms can be used to find the
color discontinuities and the occlusion detection
problem becomes a classification problem;
given the detected edges of the image, one
wants to know which one corresponds to depth
discontinuities and which ones correspond to
texture gradient over the same surface. Such
classification problem can be addressed using
machine learning techniques such as the one
described in [1].

Multiple Images
When multiple images are available, there are
means to access partial depth information. Such
information allows to have a more reliable
estimate of the occlusion boundaries. Multiple
images of the same scene may come from
multiple cameras observing the scene (multi-
view imaging, stereo imaging) or from one
moving camera observing the scene at two
consecutive instants.

Detecting Occlusion Areas via Pixel Matching
When multiple views of the scene are available,
it is possible to do pixel-level matching between
the multiple images. This is an instance of a
data association problem, and it is commonly
instantiated as a labeling problem in the vision
community. Each pixel in image I1 will be either
visible in I2, and thus should be matched or it may
be part of an occluded area in I2 and thus will
be rejected during the matching. This strategy is
effective for stereo matching (multi-view can be
reduced to a set of pair-wise matching problems),
and for optical flow cases.
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Simultaneously deciding which is the
displacement/disparity of each pixel and which
pixel is occluded or not is a difficult optimization
problem (see, for instance, [2]). A common
strategy to relax the problem is to focus on
symmetry constraints. Non-occluded pixels are
visible in both images; by definition occluded
pixels are visible in only one image or none.
Thus, a common strategy to detect occluded
pixels consists on matching first I1 to I2
(disregarding occlusion issues), then matching I2
to I1, and finally verifying which displacements
are consistent between the two matching results.
Occluded pixels are expected to have inconsistent
displacement.

This strategy has shown acceptable results for
stereo matching and optical flow problems [3, 4].

Detecting Occlusion Boundaries via Flow Cues
In the case of optical flow, there are additional
cues available other than simply pixel matching.
Due to parallax effects or actual object motion,
different objects will appear in the image
with different (2-dimensional) motion vectors.
Assuming object rigidity, it is then possible to
delineate objects boundaries by finding areas
where the optical flow is divergent [5]. Such
objects boundaries estimates are also occlusion
boundaries estimates.

Detecting Occlusions During Object Tracking
Previous sections describe occlusion detection
at the pixel level. Occlusion detection is also
a common concern when trying to track whole
objects across multiple frames (i.e., trying to
solve the object tracking problem). In its common
formulation objects tracking is a data association
problem of the same kind as pixel-level matching
for depth estimation or optical flow. In its sim-
plest form object-level occlusion detection will
be done either via a threshold on the appear-
ance similarity (if the appearance of the expected
object location is too different from the object
template, the object is considered occluded) or

via a temporal threshold on the objects detector
(if an object nearby the expected location has
not been detected for too long, it is considered
occluded) [6].

Application

When computing depth maps, optical flow, or
objects tracks for decision making, it is impor-
tant to know which areas are reliable and which
ones are not. By definition occluded areas offer
unreliable information (no data) and thus must
be detected. Once unreliable areas are detected,
the decision process is improved. In applica-
tions when the output must be complete (e.g.,
in computer graphics), knowing which areas are
occluded, enables applying infilling/interpolation
algorithms over them to provide pleasing results.
Occlusion areas and occlusion boundaries are
linked to object boundaries, and as such are
also an useful clue for object segmentation and
detection.
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Definition

Occlusion handling refers to the set of techniques
employed to mitigate the effects of occlusion
when doing inference from image.

Background

Occlusion is a fundamental phenomenon that
limits the information that can be extracted from
a camera observing a scene. Either when comput-
ing depth maps, optical flow, or tracking objects,
occlusion will interfere with the inference pro-
cess and create blank areas. In many application,
simply knowing which areas are occluded is good
enough for the desired output. In other applica-
tions, it is desired to have an infilled/interpolated
output without any blank. Occlusion handling
makes reference to the latter case.

Theory

How to tackle the occluded areas is an
application-specific problem. The three most
common tasks that have to deal explicitly with
occlusion are stereo matching, optical flow, and
objects tracking. Other applications, such as
visual odometry, also suffer from occlusion, but

they simply ignore it and consider it as input
noise.

Occlusion Handling in Pixel Matching
For stereo matching and optical flow, the com-
mon strategy is to do extrapolation. Due to occlu-
sion only a partial (non-occluded) view of the
background object/surface is available. It is com-
monly assumed that the background surface is
large, and thus covers also the occluded area.
Given this assumption, the occluded area is sim-
ply infilled using extrapolations from the sur-
rounding connecting background area.

For stereo matching, this can be done by
simply infilling row per row the occluded area
using the same disparity value as the lowest one
(farthest from the camera) between the right and
left side of the occlusion area. More sophisticated
approaches try to fit local planes to infill the
disparity map [1, Chap. 5].

For optical flow, the inpainting is can be done
via an edge-sensitive anisotropic smoothing, that
will naturally infill the blank areas using the
surrounding flow [2].

Occlusion Handling in Object Tracking
In object tracking, one must distinguish the
online case (only previous frames are available)
and the offline case (all image frames of a video
sequence are available).

For the online case, the appearance similarity
is the main clue available. When no data asso-
ciation is found between a current track and the
elements in the current frame, then the object
position is extrapolated using the motion model.
If too much time passes since the last successful
detection, then the track is aborted. Should the
object reappear later in the video, it will be anno-
tated with a different object identifier (identity
switch) unless a life-long set of detected objects
is kept, and the match between the re-apparition
and the object model is strong [3]. When objects
are re-detected and associated after occlusions,
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the track trajectory can be adjusted based on the
new evidence [4].

For the offline case, a global optimization
problem can be cast [5]. In such setup, the time
of occlusion is trade-off with the strength of the
global appearance similarity; it is then possible to
track objects through longer occlusions without
loosing the object identifier.
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Definition

An omnidirectional camera (from omni, meaning
all) is a camera with a 360-degree field of view
in the horizontal plane or with a visual field that
covers a hemisphere or (approximately) the entire
sphere.

Background

Most commercial cameras can be described as
pinhole cameras, which are modeled by a per-
spective projection. However, there are projection
systems whose geometry cannot be described
using the conventional pinhole model because
of the very high distortion introduced by the
imaging device. Some of these systems are omni-
directional cameras.

There are several ways to build an omnidi-
rectional camera. Dioptric cameras use a combi-
nation of shaped lenses (e.g., fisheye lenses; see
Fig. 1a) and can reach a field of view even bigger
than 180◦ (i.e., slightly more than a hemisphere).
Catadioptric cameras combine a standard camera
with a shaped mirror – such as a parabolic,
hyperbolic, or elliptical mirror – and provide 360-
degree field of view in the horizontal plane and
more than 100◦ in elevation. In Fig. 1b, you
can see an example catadioptric camera using a
hyperbolic mirror. Finally, polydioptric cameras
use multiple cameras with overlapping field of
view (Fig. 1c) and so far are the only cameras that
provide a real omnidirectional (spherical) field of
view (i.e., 4π steradians).

Catadioptric cameras were first introduced in
robotics in 1990 by Yagi and Kawato [1], who
used them for localizing robots. Fisheye cameras
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Omnidirectional Camera, Fig. 1 (a) Dioptric camera (e.g., fisheye); (b) catadioptric camera; (c) an example
polydioptric camera produced by Immersive Media

started to spread over only in 2000 thanks to new
manufacturing techniques and precision tools that
led to an increase of their field of view up to
180◦ and more. However, it is only since 2005
that these cameras have been miniaturized to
the size of 1–2 cm and their field of view has
been increased up to 190◦ or even more (see, for
instance, Fig. 2a).

In the next sections, an overview on omnidi-
rectional camera models and calibration will be
given. For an in-depth study on omnidirectional
vision, the reader is referred to [2–4] and to [5]
for a more detailed survey on omnidirectional
camera models.

Theory

Central Omnidirectional Cameras
A vision system is said to be central when the
optical rays to the viewed objects intersect in
a single point in 3D called projection center or
single effective viewpoint (Fig. 3). This property
is called single effective viewpoint property. The
perspective camera is an example of a central
projection system because all optical rays inter-

sect in one point, that is, the camera optical
center.

All modern fisheye cameras are central, and
hence, they satisfy the single effective viewpoint
property. Central catadioptric cameras conversely
can be built only by opportunely choosing the
mirror shape and the distance between the camera
and the mirror. As proven by Baker and Nayar
[6], the family of mirrors that satisfy the single
viewpoint property is the class of rotated (swept)
conic sections, that is, hyperbolic, parabolic, and
elliptical mirrors. In the case of hyperbolic and
elliptical mirrors, the single view point property
is achieved by ensuring that the camera cen-
ter (i.e., the pinhole or the center of the lens)
coincides with one of the foci of the hyperbola
(ellipse) (Fig. 4). In the case of parabolic mir-
rors, an orthographic lens must be interposed
between the camera and the mirror; this makes
it possible that parallel rays reflected by the
parabolic mirror converge to the camera center
(Fig. 4).

The reason a single effective viewpoint is so
desirable is that it allows the user to generate geo-
metrically correct perspective images from the
pictures captured by the omnidirectional camera
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Omnidirectional Camera, Fig. 2 (a) The fisheye lens
from Omnitech Robotics (www.omnitech.com) provides
a field of view of 190◦. This lens has a diameter of 1.7 cm.
This camera has been used on the sFly autonomous
helicopter at the ETH Zurich, [18]. (b) A miniature cata-
dioptric camera built at the ETH Zurich, which is also
used for autonomous flight. It uses a spherical mirror and

a transparent plastic support. The camera measures 2 cm
in diameter and 8 cm in height. (c) The muFly camera
built by CSEM, which is used on the muFly helicopter at
the ETH Zurich. This is one of the smallest catadioptric
cameras ever built. Additionally, it uses a polar CCD (d)
where pixels are arranged radially

(Fig. 5). This is possible because, under the single
view point constraint, every pixel in the sensed
image measures the irradiance of the light passing
through the viewpoint in one particular direction.
When the geometry of the omnidirectional cam-
era is known, that is, when the camera is cali-
brated, one can precompute this direction for each
pixel. Therefore, the irradiance value measured
by each pixel can be mapped onto a plane at
any distance from the viewpoint to form a planar
perspective image. Additionally, the image can
be mapped on to a sphere centered on the single
viewpoint, that is, spherical projection (Fig. 5,
bottom).

Another reason why the single view point
property is so important is that it allows the user
to apply the well-known theory of epipolar geom-
etry, which is extremely important for structure
from motion. Epipolar geometry holds for any
central camera, both perspective and omnidirec-
tional.

Omnidirectional Camera Model
and Calibration
Intuitively, the model of an omnidirectional cam-
era is a little more complicated than a standard
perspective camera. The model should indeed
take into account the reflection operated by the
mirror in the case of a catadioptric camera or
the refraction caused by the lens in the case of a
fisheye camera. Because the literature in this field
is quite large, this entry reviews two different
projection models that have become standards
in omnidirectional vision and robotics. Addition-
ally, Matlab toolboxes have been developed for
these two models, which are used worldwide by
both specialists and nonexperts.

The first model is known as the unified
projection model for central catadioptric
cameras. It was developed in 2000 by Geyer and
Daniilidis [7] (later refined by Barreto and Araujo
[8]), who have the merit of having proposed a
model that encompasses all three types of central

http://www.omnitech.com
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Omnidirectional Camera, Fig. 3 (a) A catadioptric
omnidirectional camera using a hyperbolic mirror. The
image is typically unwrapped into a cylindrical panorama.

The field of view is typically 100◦ in elevation and 360◦ in
azimuth. (b) Nikon fisheye lens FC-E8. This lens provides
a hemispherical (180◦) field of view

catadioptric cameras, that is, cameras using a
hyperbolic, parabolic, or elliptical mirror. This
model was developed specifically for central
catadioptric cameras and is not valid for fisheye
cameras. The approximation of a fisheye lens
model by a catadioptric one is usually possible –
however, with limited accuracy only – as
investigated in [9].

Conversely, the second model unifies both
central catadioptric cameras and fisheye cam-
eras under a general model also known as Tay-
lor model. It was developed in 2006 by Scara-
muzza et al. [10, 11] and has the advantage that

both catadioptric and dioptric cameras can be
described through the same model, namely, a
Taylor polynomial.

Unified Model for Central Catadioptric
Cameras
With their landmark paper from 2000, Geyer
and Daniilidis showed that every catadioptric
(parabolic, hyperbolic, elliptical) and standard
perspective projection is equivalent to a projec-
tive mapping from a sphere, centered in the single
viewpoint, to a plane with the projection center on
the perpendicular to the plane and distant ε from
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Omnidirectional
Camera, Fig. 4 (a) and
(b) Example of central
cameras: perspective
projection and catadioptric
projection through a
hyperbolic mirror. (c) and
(d) Example of noncentral
cameras: the envelope of
the optical rays forms a
caustic

Omnidirectional
Camera, Fig. 5 Central
catadioptric cameras can
be built by using
hyperbolic and parabolic
mirrors. The parabolic
mirror requires the use of
an orthographic lens

the center of the sphere. This is summarized in
Fig. 6.

The goal of this section is to find the relation
between the viewing direction to the scene point
and the pixel coordinates of its corresponding

image point. The projection model of Geyer and
Daniilidis follows a four-step process. Let P = (x,
y, z) be a scene point in the mirror reference
frame centered in C (Fig. 6). For convenience, we
assume that the axis of symmetry of the mirror
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Omnidirectional Camera, Fig. 6 Central cameras allow
the user to remap regions of the omnidirectional image
into a perspective image. This can be done straight-
forwardly by intersecting the optical rays with a plane
specified arbitrarily by the user (a). For obvious reasons,

we cannot project the whole omnidirectional image onto a
plane but only subregions of it (b–c). Another alternative
is the projection onto a sphere (d). In this case, the entire
omnidirectional image can be remaped to a sphere
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is perfectly aligned with the optical axis of the
camera. We also assume that the x and y axes of
the camera and mirror are aligned. Therefore, the
camera and mirror reference frames differ only
by a translation along z.

• The first step consists in projecting the scene
point onto the unit sphere; therefore,

Ps = P

‖P ‖ = (xs, ys, zs) . (1)

• The point coordinates are then changed
to a new reference frame centered in
Cε = (0,0,−ε); therefore,

Pε = (xs, ys, zs + ε) . (2)

Observe that ε ranges between 0 (planar mir-
ror) and 1 (parabolic mirror). The correct value of
ε can be obtained knowing the distance d between
the foci of the conic and the latus rectum l as
summarized in Table 1. The latus rectum of a
conic section is the chord through a focus parallel
to the conic section directrix.

• Pε is then projected onto the normalized
image plane distant 1 from Cε; therefore,

m̃ = (xm, ym, 1)

=
(

xs

zs + ε
,

ys

zs + ε
, 1

)
= g−1 (Ps) .

(3)

• Finally, the point m̃ is mapped to the camera
image point p̃ = (u, v, 1) through the intrinsic
parameter matrix K; therefore,

Omnidirectional Camera, Table 1 ε values for differ-
ent types of mirrors

Mirror type ε

midrule Parabola 1

Hyperbola d√
d2+4l2

Ellipse d√
d2+4l2

Perspective 0

p̃ = K m̃, (4)

where K is

K =
⎡

⎣
αu αu cot (θ) u0

0 αv v0

0 0 1

⎤

⎦ (5)

• It is easy to show that function g−1 is bijective
and that its inverse g is given by:

Ps = g(m) ∝
⎡

⎢⎣

xm

ym

1 − ε
x2
m+y2

m+1

ε+√
1+(1−ε2)(x2

m+y2
m)

⎤

⎥⎦ ,

(6)

where ∝ indicates that g is proportional to the
quantity on the right-hand side. To obtain the
normalization factor, it is sufficient to normalize
g(m) onto the unit sphere.

Equation (6) can be obtained by inverting (3)
and imposing the constraint that Ps must lie on
the unit sphere and, thus, x2

s + y2
s + z2

s = 1. From
this constraint, we then get an expression for zs as
a function of ε, xm, and ym. More details can be
found in [12].

Observe that Eq. (6) is the core of the pro-
jection model of central catadioptric cameras. It
expresses the relation between the point m on the
normalized image plane and the unit vector Ps in
the mirror reference frame. Note that in the case
of planar mirror, we have ε = 0 and (6) becomes
the projection equation of perspective cameras Ps

∝ (xm, ym, 1).
This model has proved to be able to describe

accurately all central catadioptric cameras
(parabolic, hyperbolic, and elliptical mirror)
and standard perspective cameras. An extension
of this model for fisheye lenses was proposed
in 2004 by Ying and Hu [9]. However, the
approximation of a fisheye camera through
a catadioptric one works only with limited
accuracy. This is mainly because, while the
three types of central catadioptric cameras can be
represented through an exact parametric function
(parabola, hyperbola, ellipse), the projective
models of fisheye lenses vary from camera to
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camera and depend on the lens field of view. To
overcome this problem, a new unified model was
proposed, which will be described in the next
section.

Unified Model for Catadioptric and Fisheye
Cameras
This unified model was proposed by Scaramuzza
et al. in 2006 [10, 11]. The main difference
with the previous model lies in the choice of the
function g. To overcome the lack of knowledge
of a parametric model for fisheye cameras, the
authors proposed the use of a Taylor polyno-
mial, whose coefficients and degree are found
through the calibration process. Accordingly, the
relation between the normalized image point m̃ =
(xm, ym, 1) and the unit vector Ps in the fisheye
(mirror) reference frame can be written as:

Ps = g(m) ∝
⎡

⎣
xm

ym

a0 + a2ρ
2 + · · · + aNρN

⎤

⎦ ,

(7)

where ρ = √
x2
m + y2

m. As the reader may
observe, the first-order term (i.e., a1 ρ) of
the polynomial is missing. This follows from
the observation that the first derivative of the
polynomial calculated at ρ = 0 must be null for
both catadioptric and fisheye cameras (this is
straightforward to verify for catadioptric cameras
by differentiating (6)). Also observe that because
of its polynomial nature, this expression can
encompass catadioptric, fisheye, and perspective
cameras. This can be done by opportunely
choosing the degree of the polynomial. As
highlighted by the authors, polynomials of
order 3 or 4 are able to model very accurately
all catadioptric cameras and many types of
fisheye cameras available on the market. The
applicability of this model to a wide range of
commercial cameras is at the origin of its success.

Omnidirectional Camera Calibration
The calibration of omnidirectional cameras is
similar to that for calibrating standard perspective
cameras. Again, the most popular methods take
advantage of planar grids that are shown by the

user at different positions and orientations. For
omnidirectional cameras, it is very important that
the calibration images are taken all around the
camera and not on a single side only. This is in
order to compensate for possible misalignments
between the camera and mirror.

It is worth to mention three open-source cali-
bration toolboxes currently available for Matlab,
which differ mainly for the projection model
adopted and the type of calibration pattern:

• The toolbox of Mei uses checkerboard-like
images and takes advantage of the projection
model of Geyer and Daniilidis discussed ear-
lier. It is particularly suitable for catadioptric
cameras using hyperbolic, parabolic, folded
mirrors, and spherical mirrors. Mei’s toolbox
can be downloaded from [13], while the theo-
retical details can be found in [14].

• The toolbox of Barreto uses line images
instead of checkerboards. Like the previous
toolbox, it also uses the projection model of
Geyer and Daniilidis. It is particularly suitable
for parabolic mirrors. The toolbox can be
downloaded from [12], while the theoretical
details can be found in [15, 16].

• Finally, the toolbox of Scaramuzza uses
checkerboard-like images. Contrary to the
previous two, it takes advantage of the
unified Taylor model for catadioptric and
fisheye cameras developed by the same
author. It works with catadioptric cameras
using hyperbolic, parabolic, folded mirrors,
spherical, and elliptical mirrors. Additionally,
it works with a wide range of fisheye lenses
available on the market – such as Nikon,
Sigma, and Omnitech Robotics – with field
of view up to 195◦. The toolbox can be
downloaded from [17], while the theoretical
details can be found in [10, 11]. Contrary
to the previous two toolboxes, this toolbox
features an automatic calibration process. In
fact, both the center of distortion and the
calibration points are detected automatically
without any user intervention. This toolbox
became very popular and is currently used
at several companies such as NASA, Philips,
Bosch, Daimler, and XSens.
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Omnidirectional
Camera, Fig. 7 Unified
projection model for
central catadioptric
cameras of Geyer and
Daniilidis

1

mirrornormalized
image plane

Ps

unit sphere

m
x

P

1
ε

Cε

C

Z

Application

Thanks to the camera miniaturization, to the
recent developments in optics manufacturing, and
to the decreasing prices in the camerasï£¡ market,
catadioptric and dioptric omnidirectional cam-
eras are being more and more used in differ-
ent research fields. Miniature dioptric and cata-
dioptric cameras are now used by the automo-
bile industry in addition to sonars for improving
safety, by providing to the driver an omnidi-
rectional view of the surrounding environment.
Miniature fisheye cameras are used in endoscopes
for surgical operations or onboard microaerial
vehicles for pipeline inspection as well as rescue
operations. Other examples involve meteorology
for sky observation.

Roboticists have also been using omnidi-
rectional cameras with very successful results
on robot localization, mapping, and aerial and
ground robot navigation [18–23]. Omnidirec-
tional vision allows the robot to recognize places
more easily than with standard perspective
cameras [24]. Furthermore, landmarks can
be tracked in all directions and over longer
periods of time, making it possible to estimate
motion and build maps of the environment with
better accuracy than with standard cameras;
see Fig. 2 for some of examples of miniature
omnidirectional cameras used on state-of-the-
art micro aerial vehicles. Several companies,
like Google, are using omnidirectional cameras

to build photorealistic street views and three-
dimensional reconstructions of cities along with
texture. Two example omnidirectional images are
shown in Fig. 7.
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Omnidirectional Stereo
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Synonyms

ODS; Omnistereo

Related Concepts

�Calibration of a Non-single Viewpoint System
� Image Stitching
�Omnidirectional Camera
�Video Mosaicing

Definition

Omnidirectional stereo (ODS) is a type of multi-
perspective projection that captures horizontal
parallax tangential to a viewing circle. This data
allows the creation of stereo panoramas that pro-
vide plausible stereo views in all viewing direc-
tions on the equatorial plane.

Background

The term “omnidirectional stereo” was first
coined by Ishiguru et al. [1] in 1990, who used
it in the context of autonomous mapping and
exploration of an unknown environment. Their
approach places a video camera on a rotating arm
that is driven by a stepper motor (see Fig. 1).
They then take vertical slit images from the
sensor image for creating the left/right stereo
panoramic views. As their primary goal is to map
an environment, they use ODS images for depth
estimation of scene points rather than display.
They also present a binocular stereo method for
depth estimation from two ODS images with a
measure for direction-dependent uncertainty.

http://www.isr.uc.pt/jpbar/CatPack/pag1.htm
http://www.isr.uc.pt/jpbar/CatPack/pag1.htm
http://homepages.laas.fr/cmei/index.php/Toolbox
http://homepages.laas.fr/cmei/index.php/Toolbox
https://sites.google.com/site/scarabotix/ocamcalib-toolbox
https://sites.google.com/site/scarabotix/ocamcalib-toolbox
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Omnidirectional Stereo, Fig. 1 Omnidirectional stereo
images can be captured with a single camera mounted on
an arm of length r that rotates about a point C. (Figure
adapted from Ishiguru et al. [1])

Before the term “omnidirectional stereo”
became established with its current meaning,
it was used more broadly for any stereo imaging
system, which captures stereo panoramas with
disparity, regardless of direction. Gluckman
et al. [2], for example, created a real-time
system consisting of two catadioptric cameras
that are vertically displaced. These cameras
capture omnidirectional views of an environment
that therefore primarily differ by vertical
disparity. While this works just as well for depth
estimation, these vertical stereo panoramas are
unsuitable for being viewed by humans. This is
because our eyes are horizontally displaced and
the human visual system thus expects horizontal
disparity, not vertical disparity. In the following,
the focus therefore lies on stereo panoramas with
horizontal disparity.

Since the early days of ODS for mapping
and robotics, the main application has shifted
toward display on monitors, projection screens,
and head-mounted virtual reality displays: Peleg
et al. [3] popularized “omnistereo” panoramas
with automatic disparity control, Richardt et al.
[4] proposed improvements for creating high-
quality, high-resolution stereo panoramas, and
Anderson et al. [5] and Schroers et al. [6] devel-
oped state-of-the-art systems for capture and dis-
play of real-world virtual reality video. The ben-
efit of ODS video is that time-varying stereo
panoramas can easily be packed into a traditional
video, which can be processed, stored, and trans-
mitted on existing video streaming platforms just
like any other video. This has established omni-
directional stereo as a widely supported format

Left panorama Right panorama

Omnidirectional Stereo, Fig. 2 Omnidirectional stereo
projection creates two panoramas, for the left and right
views, using rays tangential to the viewing circle

by video streaming pipelines and virtual reality
displays.

Theory

Omnidirectional stereo is fundamentally a multi-
perspective projection that is created from rays
that are tangential to a viewing circle [3]. This
projection can, for example, be captured by a
slit camera that moves along a circular path and
looks in the tangential direction. The slit images
captured at different positions on the viewing
circle are mosaicked into a panorama, producing
the ODS projection. The two possible tangential
directions give rise to the left and right panora-
mas, as illustrated in Fig. 2. The diameter of
the viewing circle is usually chosen to be the
average human interpupillary distance of 65 mm;
however, other sizes are possible.

As we shall see, most ODS systems do not
capture the ODS projection directly. The only
implementation of a pair of rotating slit cameras
is by Konrad et al. [7]. The key benefit of this
approach is that the system directly captures the
ODS projection without requiring computation-
ally expensive processing. In addition, this sys-
tem natively supports scenes containing nearby
objects, occlusions, thin and repetitive textures,
transparent and translucent surfaces, and specular
and refractive objects, which remain challenging
for other capture approaches. However, the pro-
totype camera was limited to only five frames
per second due to the fast rotation of the camera
assembly that is required for operation.
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Viewing circle Capture circle

Omnidirectional Stereo, Fig. 3 A single rotating cam-
era can capture all rays tangential to the viewing circle,
by rotating it on a larger circle. Note that this only
works perfectly within the plane containing the viewing
and capture circles; other rays are captured with vertical
distortion. (Figure adapted from Anderson et al. [5])

Ishiguro et al. [1] first described and Peleg
et al. [3] later popularized a single-camera
approach that rotates a standard perspective cam-
era on a larger capture circle that is concentric
to the viewing circle. The camera needs to rotate
a full 360 degrees to capture a complete ODS
panorama, which assumes a static scene during
the capture time. As illustrated in Fig. 3, the
camera can simultaneously capture rays for both
the left and the right stereo panorama. While this
works perfectly in the 2D equatorial plane, out-
of-plane rays introduce vertical distortion [5],
and perspective cameras introduce perspective
distortion. Richardt et al. [4] proposed techniques
for correcting perspective distortion and for
removing stitching artifacts using flow-based
blending. Stabilization steps were also introduced
that reduce drift from image alignment and
enable handheld capture, where the camera’s
pose often deviates from the ideal position and
orientation along the capture circle.

However, the rotating-camera approach is
not practical for capturing ODS videos, as the
camera needs to rotate a full 360 degrees for each
video frame. For example, this would require
very fast 30 revolutions per second for capturing
ODS video with 30 frames per second. Peleg
et al. [3] explored theoretical optical designs
involving spiral mirrors and spiral lenses that
would enable single-shot ODS capture and
thus single-camera ODS video. However, these
designs were never realized. The TORNADO
system by Tanaka and Tachi [8] was the first
practical implementation based on these designs.
Elongated prism sheets deflect the light rays

entering the cylindrical camera system and
emulate 32 slit cameras that rotate over time.
Inside the cylinder, a hyperboloidal mirror
reflects light rays into a stationary video camera.
The projections of the slit cameras into the video
camera are separated in two different ways:
(1) based on their spatial location in images
or (2) using linear/circular polarizers. Aggarwal
et al. [9] proposed a different approach that uses
a carefully designed mirror with a “coffee filter”
shape and reflects multiple slit camera images
into the video camera without any additional
optical elements. High-resolution simulations
validate this concept, but manufacturing inaccu-
racies severely reduce the visual quality of real-
world captures. Low visual quality and image
resolutions are problems shared by all current
catadioptric single-camera approaches [8, 9].

Approaches with multiple omnidirectional
cameras improve some of the quality prob-
lems caused by complex optical elements.
Chapdelaine-Couture and Roy [10] presented
an approach for three or more fisheye cameras
that are arranged in a regular polygon, with
parallel viewing directions toward the sky. They
observed that the planes spanned by the optical
axes of adjacent pairs of cameras can be used for
cutting their omnidirectional images and stitching
them together with minimal disparity mismatch.
However, this approach can only capture the
upper hemisphere of any scene. Matzen et al. [11]
proposed a system that uses two consumer spher-
ical cameras, which have two 180-degree fisheye
lenses each. The cameras are mounted side by
side with a distance of 64 mm, and the captured
imagery is sliced by the plane going through
the cameras (orthogonal to the optical axes) and
recombined to create the necessary left/right
panoramas for ODS imagery. Their approach
cancels vertical disparity at the seams using
warping in image space and uses this disparity
to correct horizontal disparity. As horizontal
disparity is maximal in front of the cameras but
zero along the camera baseline, this correction
depends on the azimuth angle. In both cases, the
resolution of the resulting ODS video was not
sufficient for high-quality virtual reality experi-
ences due to limited sensor resolutions [10, 11].
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The highest visual quality and image res-
olution of ODS video has been demonstrated
by approaches that use multiple video cameras
spaced evenly on a circle, like a discretized ver-
sion of the continuously rotating camera of earlier
approaches [1, 3, 4]. Anderson et al. [5] pack 16
GoPro cameras with fisheye optics into a tightly
packed ring of 28 cm diameter, demonstrating
that this is a sweet spot between more cameras
and a smaller ring diameter that reduces vertical
distortion. Their work comprises a detailed anal-
ysis of the sources of vertical parallax and distor-
tion and presents a flow-based stitching pipeline
that produces temporally coherent ODS video,
as available on YouTube, for example. Schroers
et al. [6] also use 16 video cameras, but formulate
their video pipeline based on continuous light
field reconstruction from sparse samples. This
naturally leads to a panoramic image formation
model that allows computer-generated imagery to
be composited with captured real-world content.
They also provide an analysis of the minimum
visible depth that can be stitched or reconstructed,
based on the number of cameras in the rig and
their field of view.

Application

The initial application for omnidirectional stereo
was for mapping and exploring environments
using robots [1]. In this scenario, a single rotating
camera provides a low-cost and effective solution
for reconstructing a given static scene. Ishiguro
et al. [1] demonstrate how to estimate the depth of
points from a single ODS image but also from a
binocular pair of ODS images. They further show
that the accuracy of depth estimation depends on
the direction relative to the camera baseline, with
parallel directions having the highest uncertainty.
This uncertainty can be decreased by integrating
multiple observations in the form of local maps
into a single global map.

Since then, omnidirectional stereo has become
the de facto standard projection for stereo panora-
mas that are used for virtual reality photography
and video. Google’s Cardboard Camera app, for
example, is based on the principles described

by Richardt et al. [4] for creating high-quality,
high-resolution stereo panoramas. Multiple inde-
pendently developed systems for VR videos –
including Google Jump [5, 6], and Facebook
Surround360 [12] – have arrived at remarkably
similar hardware: multi-view camera rigs with
14–16 cameras that are packed into a tight ring to
capture omnidirectional stereo video. As of 2019,
this defined the state of the art in widely available
virtual reality imagery and video.
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Related Concepts

� Field of View
� Fisheye Lens

Definition

Omnidirectional vision consists of the theoretical
and practical computer vision approaches devised
for images acquired by omnidirectional cameras,
that is, cameras with a very large field of view,
typically hemispherical or larger.

Background

Most regular cameras have a restricted field of
view, typically up to several tens of degrees.
Omnidirectional cameras, on the contrary, have
hemispheric or even larger, up to complete spher-
ical, fields of view. Computer vision theories and
algorithms dedicated to omnidirectional images
are subsumed under the expression omnidirec-
tional vision. Researchers working on omnidirec-

tional vision have also proposed novel designs of
omnidirectional cameras.

The interest of building omnidirectional cam-
eras arose rather soon after the invention of pho-
tography, with the first known panoramic camera
built in 1843 [1]. To be precise, this and other
early panoramic cameras had a restricted vertical
field of view and are thus not truly omnidirec-
tional.

There exist several technologies to acquire
omnidirectional images. The first to be used was
based on rotating a regular camera about its
optical center and optically or computationally
stitching images together to a panoramic image.
Panoramic cameras can be considered as a sub-
set of omnidirectional ones, in that they usually
deliver an extended field of view only in one
direction. If the camera is rotated about different
axes, acquired images may be stitched to form a
complete omnidirectional mosaic.

Probably the second omnidirectional technol-
ogy was based on multi-camera systems, where
the rotating camera was replaced by several colo-
cated cameras with overlapping fields of view.
Such systems were built at least as early as in
1884 [2, 3].

The most common single-camera solutions
that allow the acquisition of instantaneous omni-
directional images, that is, without having to
acquire multiple images while rotating a camera,
are fisheye cameras and catadioptric cameras.
The latter achieve large fields of view by having
one or more cameras look at a curved mirror or
one or more planar or curved mirrors.

Theory

When working with images acquired by
omnidirectional cameras, one usually first needs
an image formation model. Many camera models
have been proposed for omnidirectional systems.
Some of them resemble classical models for
radial and tangential distortion in that they
are based on polynomial expressions. Others,
typically models for fisheye lenses, use trigono-
metric functions and yet others are specific to
catadioptric cameras. A recent overview of such

https://doi.org/10.1109/ICCPhot.2013.6528311
https://doi.org/10.1109/ICCPhot.2013.6528311
https://doi.org/10.1145/3072959.3073645
https://doi.org/10.1145/3072959.3073645
https://github.com/facebook/Surround360/blob/master/surround360_design/assembly_guide/Surround360_Manual.pdf
https://github.com/facebook/Surround360/blob/master/surround360_design/assembly_guide/Surround360_Manual.pdf
https://github.com/facebook/Surround360/blob/master/surround360_design/assembly_guide/Surround360_Manual.pdf
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camera models can be found in [3]. Common to
all models is that they allow to project 3D points
onto image points and/or perform back projec-
tion, from image points to lines of sight in 3D.

Besides purely geometrical aspects of omni-
directional image formation, other aspects and
properties have been examined such as focus-
ing mechanisms, blur, and chromatic aberrations;
see, for instance, [4]. Generally speaking, these
issues all tend to be more complex than with
regular cameras.

The calibration of an omnidirectional camera
is in principle not different from that of a regular
camera, in that it exploits images of reference
objects with known shape or special properties,
for example, showing straight lines on their sur-
face. In practice, calibrating an omnidirectional
camera is usually more complex, since usual
calibration objects do not fill the field of view
completely, thus requiring the acquisition of more
images. Also, omnidirectional images are often
less sharp and are by definition less resolved, thus
making feature extraction and matching more
challenging.

Besides modeling and calibrating omnidi-
rectional cameras, other fundamental works in
omnidirectional vision are dedicated to image
processing. The goal of these works is to adapt
image processing operations, for example, for
edge or interest point extraction, to the image
formation model which usually includes strong
distortions, in order to enhance their performance
[5, 6].

Application

Once an omnidirectional camera is calibrated,
one can in principle use the same algorithms for
tasks such as pose estimation, motion estima-
tion, or 3D modeling as for regular cameras and
the usual model thereof (pinhole model). There
exist several differences though. For example, for
motion estimation, results with omnidirectional
cameras are often better than with cameras with
a smaller field of view [7]. With a small field
of view, a lateral translation and a lateral rota-
tion give rise to similar optical flows, whereas

in an omnidirectional image, the optical flows
in the “sidewards” looking parts of the image
will be very different for these two types of
motion. This explains why motion estimation
may be expected to be more stable when per-
formed with omnidirectional images. For pose
estimation, the converse is often the case, simply
because the spatial resolution is lower than with a
smaller field of view, decreasing the accuracy of
the estimated object pose. Further, as mentioned
above, processing of omnidirectional images may
have to have recourse to specific approaches, in
order to handle the strong distortions present in
them.

Typical applications of omnidirectional vision
are those where the extended field of view is
directly beneficial. Among the first applications
of omnidirectional images were the study
of cloud formations in meteorology and the
measurement of leaf coverage from fisheye
images of forest canopies. A main application
field for omnidirectional vision is the navigation
of mobile robots, where obstacles can be detected
instantaneously in all directions and where an
omnidirectional camera allows for a more stable
motion estimation and a more complete path
planning than a narrow field of view camera.
Other obvious usages are in video surveillance
and tele-presence applications.
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Synonyms

Opaque

Related Concepts

�Transparency

Definition

Opacity is the property of objects to not transmit
light. This non-transmittance can be due to sev-
eral factors: (1) absorption, (2) scattering, and (3)
reflection.

The corresponding adjective is “opaque.”
Opaque objects are neither transparent nor
translucent. Sometimes the opposite property is
referred to as transmittance (mostly in Physics).

In Computer Graphics, the opposite of opacity is
typically referred to as transparency.

The word opaque is often used in conjunction
with absorbing objects; however, it is important
to note that reflecting objects like mirrors are also
opaque.

Background

A common notion is that most computer vision
algorithms, whether designed for 3D reconstruc-
tion, object detection, object classification, etc.,
require the scene and the objects it consists
of to be opaque. However, with slightly more
precision, objects are required to be diffusely
opaque: in particular, specularly reflective objects
are opaque by the above definition, but most
vision techniques cannot handle them.

A multitude of research has gone into lifting
the restriction on scene opacity. When going
beyond opaque objects, images are typically
enhanced by an alpha channel – a fractional
measure of opacity or the amount by which an
object obscures the background in an image.

In television and film production, the alpha
channel is extensively used and usually estimated
by chroma keying [5]. This technique uses a
colored background in order to estimate the alpha
channel.

Theory

The following contains a discussion of the phys-
ical (optical) principles causing the perception of
opacity.

The four main interactions of radiation with
matter are absorption, scattering, reflection, and
transmittance. Accordingly, the overall radiant
energy, i.e., the energy carried by electromagnetic
radiation, at a non-emissive point in space is, due
to conservation of energy, given by [9]:

Qtot(λ) = Qa(λ)+Qs(λ)+Qr(λ)+Qt(λ). (1)

Here, Qtot is the total amount of energy,
whereas Qa is the absorbed, Qs the scattered,
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Opacity, Fig. 1 The major effects of radiative transport (from left to right): emission, absorption, out-scattering, in-
scattering, and two types of refraction

Qr the reflected, Qt the transmitted amount of
energy, and λ the wavelength of light. Division
by Qtot results in a fractional formula:

1.0 = A + S + R + T , (2)

where the terms, in order, correspond to the for-
mula given above. Opaque objects are therefore
those for which T = 0. An opaque object is
neither transparent (A = S = 0, R < 1) nor
translucent (A + S + R < 1).

In general, as indicated in Eq. 1, the values are
wavelength dependent and therefore the source of
color [9]. In some circumstances, the absorption
and re-emission can change the wavelength (flu-
orescence/phosphorescence) and incur temporal
delays (fluorescence ≈ 10−8s, phosphorescence
up to several hours). A more refined version of
Eq. 1 is therefore:

Qtot =
∫

Ω

∫ λmax

λmin

∫ ∞

t0

Qa(x, λ, t) + Qs(x, λ, t)

+ Qr(x, λ, t) + Qt(x, λ, t)dtdλdx. (3)

As an example, consider a laser pulse with
wavelength λ0 hitting an object at position x0

at time t0. If Qtot(xBS, λ, t) = 0 for a suitably
chosen set of points xBS defining the backside
of the object (Typically, the points xBS are in the
geometrical shadow of the object with respect to
the light source.) for all t ≥ t0, λ ∈ [λmin, λmax],
the object is said to be opaque to wavelength λ0.

In computer vision, we typically assume λ0

to be in the visible part of the spectrum, i.e.,
between approximately 380 and 650 nm. The
wavelength dependence is important since practi-
cally all materials are transparent in some wave-
length range. As an example, common materials

are transparent to x-rays, but materials that are
transparent in the visible can be opaque in other
wavelength ranges, e.g., optical glass in the UV
range.

Mechanisms
A look at the three main mechanisms that may
render a material opaque further elucidates the
property opacity. In general, the opacity depends
on the thickness of material that an object consists
of which is the reason to attribute opacity to
objects rather than to materials.

Absorption Absorption occurs due to mainly
two mechanisms: atomic and molecular absorp-
tion and absorption in solids.

(a) atomic and molecular absorption When a
photon’s energy is absorbed by the electronic
orbitals of an atom or molecule, atomic or molec-
ular absorption occurs. In this case, the pho-
ton’s energy Qe = hν must match the energy
difference between two atomic/molecular energy
levels, the lower one of which is occupied by an
electron. Here, ν is the photon frequency and h is
Planck’s constant. The electron takes up the pho-
ton’s energy and occupies the upper energy level
after the interaction, leaving the atom/molecule in
an excited state. This effect gives rise to discrete
absorption lines as, for example, seen in the solar
spectrum (Fraunhofer lines). The exact energy
levels are subject to many physical conditions
such as the vibrational and rotational state of
the atom, the presence of magnetic fields, the
presence of nearby other atoms or molecules,
etc. These conditions lead to discretely split or
continuously broadened energy levels. Their pre-
diction is in the domain of quantum mechanics.
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Atomic and molecular absorption will explain the
absorption seen in gases and liquids.

(b) absorption in solids The tight arrangement
of atoms in a solid has a strong influence on
the absorption properties of a material. One
generally distinguishes metals or conductors,
semi-conductors, and insulators or dielectrics.
Conduction takes place when free electrons
are present in the material. This is the case if
the material’s band (Bands replace the atomic
orbitals in dense substances since the individual
atoms’ orbitals merge. The band structure is
temperature dependent.) gap is negligible or non-
existent. Since light is electromagnetic radiation,
it acts on charged objects like the free electrons,
exerting a force, the so-called Lorentz force, on
them. The force results in an acceleration of
the electrons, increasing their velocities, which
results in increased heat. Conduction leads to
very efficient absorption, i.e., a transmitted wave
is only entering conducting materials up to a
depth of small fractions of a wavelength (on the
order of the skin depth [3], II-32-7). This effect
is, e.g., exploited in optical thin film sensors.

In semi-conductors, the electrons are lifted
across the band gap, which must be smaller than
the absorbed photon’s energy. This photo-electric
effect, discovered by Hertz and Hallwachs and
explained by Einstein, is used in photo-detectors
like CCDs and CMOS.

Absorption in insulators is mainly caused by
the interaction of the electromagnetic wave with
the electron orbitals and nuclei. The orbitals and
nuclei are put into vibration by the changing elec-
tromagnetic field, and energy is dissipated as heat
within the materials. For a detailed discussion,
see [3], II-32-3.

Scattering Scattering describes a broad range of
physical processes, both particle and wave phe-
nomena, upon interaction of light with a material.
The term itself describes deviation of light from
a straight path due to inhomogeneities in the
material that is being traversed. As an example,
scattering can be caused by small particles in
paints, droplets in clouds and water spray, soot
particles in smoke, and many more. If waves are

scattered by obstacles that are small in compar-
ison to the wave length, the scattering is often
termed diffraction. Properly speaking, reflection
and refraction can also be considered as (very
directed) scattering processes. However, the term
scattering is most often employed to refer to
microscopic light/material interactions. A formal
description of energy transfer in scattering media,
of which light transport is a special case, can be
found in [8].

If a scattering process preserves energy, it
is known as elastic scattering. The terminology
stems from mechanics where a perfectly elastic
collision is one that conserves kinetic energy and
momentum. In this case, photons are effectively
deviated. This may include the absorption and
re-emission of photons, however, keeping their
energy and thus the wavelength λ0 constant.

If the photon energy changes in the process
of absorption and re-emission, the scattering is
known as inelastic. Examples are the already
mentioned effects of fluorescence and phospho-
rescence.

Reflection The effect of reflection is a direct
consequence of the electromagnetic nature of
radiation. At material boundaries, where the
electromagnetic material constants (They are
not constant for different wavelengths of light.)
(specific conductivity, magnetic permeability and
electric permittivity) change abruptly, Maxwell’s
equations result in boundary conditions that
necessitate a reflected and a transmitted part in
response to an incident electromagnetic wave [1].
It is physically impossible to have only one
of them. Therefore, reflection and transmission
always occur when light interacts with a material
surface. The reflected part may be minimized by
anti-reflecting coatings. Similarly, the transmitted
part may be absorbed very quickly, as in the case
of metals (in the visible part of the spectrum).

Summary Opacity is a very broad term that
covers a wide variety of different physical effects.
Perfect opacity depends on the material thick-
ness, the bulk material properties, possibly even
the object shape, etc. It is a gradual process
throughout the volume of an object (even of at
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rather shallow depth beneath the surface) rather
than a binary classification scheme. When the
gradual effect is important, we speak of attenu-
ation (see below).

Further Reading The classic textbook by Born
and Wolf [1] and the informative book by Tilley
[9] feature a detailed discussion of the physical
effects pertaining to the concept of opacity. A
classic intuitive explanation can be found in the
Feynman Lectures on Physics [3], in particular
lecture I-31 “The Origin of the Refractive Index,”
lecture II-32 “Refractive Index of Dense Materi-
als,” and lecture II-33 “Reflection from Surfaces.”

Modeling
As outlined above, there is no single physical
process giving rise to what is known as opacity
in computer vision. There can be a multitude of
reasons for opacity to occur. The microscopic ori-
gins involved have been explained above. How-
ever, there are also macroscopic effects that may
give rise to (partial) opacity.

An example is sensor integration over the area
of a single pixel: If the scene consists of many
tiny objects that are somehow interacting with
the surrounding light, seen against a background,
sensor integration averages over the light contri-
bution from the objects and the background. This
can often be seen when observing thin structures
like hair or fur, or leaves on distant trees.

Correspondingly there is a wide variety of
models of different complexity and applying to
different scales of reality. Some of them are
physical (to be outlined first), and some are
purely phenomenological such as alpha blending
in computer vision.

Attenuation The attenuation of light is due
to the physical joint processes of absorption
and scattering as outlined above. On the
particle level, the absorption and scattering
processes are statistical. Their net effect,
however, is typically described in a continuous
manner. In this description, the magnitude of
absorption/scattering depends on the path length
of light in the traversed medium. It is given by
the Beer-Lambert Law:

L

L0
= exp

− ∫ s1
s0

σs◦c(s)+σa◦c(s)ds
. (4)

The ratio L/L0 of outgoing over incident
radiance is known as the optical path length
in the interval [s0, s1]. Here, L0 is the incident
radiance and L is the radiance after attenuation.
(Fresnel reflection (see below) is not included as
a source of transmitted energy loss.) The path of
the photon is described by the curve c(s) : R 
→
R

3, σs is the absorption coefficient and σa the
scattering coefficient. The scattering coefficient
describes the loss of light due to out-scatter, while
the absorption coefficient describes the loss due
to absorption. Sometimes, the factor α = σs + σa

is referred to as attenuation coefficient.
The linearized version of the Beer-Lambert

law

ln(L/L0) = −
∫ s1

s0

σs ◦ c(s) + σa ◦ c(s)ds (5)

is the basis for emission and absorption tomogra-
phy.

The Fresnel effect is a natural source of attenu-
ation and blending at interfaces of materials with
different refractive index. A ray is usually split
into a transmitted and a reflected part. While
the geometry and the law of reflection, respec-
tive Snell’s law, determine only the directions
of the reflected and refracted ray, the radiance
ratio can be computed with the Fresnel formulae.
The transmittance and reflectance depend on the
polarization state of the incident ray.

Scattering can occur both in transmission and in
reflection. As mentioned, the effect is statistical
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in nature. The prevalent modeling in the com-
puter vision literature uses distribution functions
that are essentially probabilities that a photon
will be reflected/refracted or scattered in different
directions.

We first discuss models for scattering at mate-
rial interfaces. Reflection scattering is usually
described by the (hemispherical) bidirectional
reflection distribution function (BRDF), whereas
transmissive scattering is described by the (hemi-
spherical) bidirectional transmission distribution
function (BTDF). These functions describe scat-
tering at an interface or due to thin transmis-
sive layers of material. Sometimes, the combined
effect of reflection and transmission at an inter-
face is described by a single (spherical) bidirec-
tional scattering distribution function (BSDF).

In contrast, for volumetric phenomena, the
redistribution of light is described by the scat-
tering phase function. For light traversing a vol-
ume of participating media, the major effects
are out-scattering, i.e., light being deflected from
its original, unobstructed path, and in-scattering,
i.e., light being deflected from elsewhere onto
the unobstructed path of a photon. If only a sin-
gle scattering event occurs, the process is called
single scattering; otherwise it is referred to as
multiple scattering. If both scattering and absorp-
tion occur, in-scattering can have an effect on the
attenuation coefficient described above.

Standard physical models for scattering
include Rayleigh scattering for scattering at
microscopic particles much smaller than the
wavelength of light and Mie scattering for
scattering off spherical particles. For a detailed
discussion, see e.g., [4].

Refraction
As previously discussed, a ray of light crossing
an interface is typically both reflected and trans-
mitted. The transmitted part is usually refracted
as well, i.e., the ray changes direction upon being
transmitted into the material. This results in a
different background pixel to be seen if a refrac-
tive object is moved into a ray that previously
hit the background. A single opacity value for
a camera pixel is thus not sufficient to explain
the complex change in light transport. Rather, the

opacity value must be associated with the ray in
question. For opaque objects, the attenuation of
the transmitted ray is very strong. They are thus
perceived as not transmitting light. A special case
of refraction occurs in unevenly heated media
like gases or liquids or in mixtures of different
gases. Here, continuous refraction is taking place,
resulting in curved light paths. In wave optics, the
complex refractive index is used as a mathemat-
ical tool to represent continuous refraction and
attenuation in one number.

Application

Alpha Matting
Alpha matting is an extension to chroma keying
discussed in the background section. Here, the
more general problem where the background is
arbitrary instead of consisting of a single color
is considered. This problem comes in several
flavors:

• dynamic scene, static known background,
• static scene, static unknown background, i.e.,

natural image matting,
• dynamic scene, static unknown background,

and
• dynamic scene, dynamic background, i.e.,

video matting [2].

The corresponding process of synthetically
overlaying an object image onto some back-
ground is known as alpha blending.

Apart from these two-dimensional appli-
cations, opacity has been used to three-
dimensionally model transparent or translucent
objects either phenomenologically as partially
transparent view-dependent visual hulls [7]
or for estimating the internal structure of
volumetric light-emitting or absorbing objects
and phenomena. The latter is usually performed
using tomographic techniques [6].

Tomography
Tomography is the process of determining a func-
tion from its projections. In the tomographic
sense, a projection is a line integral through some
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volumetric function. A collection of line inte-
grals, taken from many different directions, can
be used to compute the inner structure of volu-
metric phenomena. The best known application is
computed tomography (CT). In computer vision,
attempts to reconstruct volumetric phenomena
like fire, smoke, and plasmas using tomographic
techniques, even dynamically, have shown good
success.
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Synonyms

Principal axis

Related Concepts

�Center of Projection
� Image Plane
� Pinhole Camera Model

Definition

For rotationally symmetric imaging systems, the
optical axis is the (usually unique) axis of sym-
metry.

Background

The usual definition of optical axis in computer
vision is tied to the pinhole camera model, where
it is defined as the line passing through the center
of projection and that is orthogonal to the image
plane. For a perfectly aligned usual optical sys-
tem and where the image plane is parallel to the
lenses’ principal planes, the optical axis is the line
passing through the lenses’ centers.

Theory

A more general definition is to consider the opti-
cal axis as the (unique) axis of rotational symme-
try of an imaging system, if this symmetry exists.
Here, it may be advisable to examine rotational
symmetry of only the optical part of the image
formation process and not the entire process from
3D to the pixel domain. This is meant to exclude
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the way the photosensitive surface samples the
incoming light.

Let us examine this with the aid of the pin-
hole camera model as example. Suppose that the
aspect ratio equals 1, that is, pixel density is
identical in vertical and horizontal directions on
the image plane. Then, the projection function
from the 3D scene to 2D pixel coordinates is
rotationally symmetric relative to the pinhole
camera’s optical axis and the image plane’s prin-
cipal point. However, if the aspect ratio deviates
from 1, the rotational symmetry is broken. If one
looks at what happens before light rays hit the
image plane, then the projection function is still
rotationally symmetric though.

A similar example is a camera that exhibits
distortions due to the image plane not being
perfectly parallel to the lenses’ principal planes.
Again, the full mapping from 3D to 2D
pixel coordinates is not rotationally symmetric
here.

To consider rotational symmetry and thus the
existence of an optical axis, one may thus con-
sider the function that maps light rays coming
into the camera, to rays leaving the optics towards
the image plane. In that respect, rotational sym-
metry and the concept of optical axis are also
defined for noncentral cameras, that is, cameras
without a single center of projection, like some
catadioptric cameras.
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Synonyms

Optic flow

Related Concepts

�Rigid Registration

Definition

Optical flow is the vector field that describes the
perceived motion of points in the image plane.

Background

When working with image sequences, analyzing
the change of the image over time provides valu-
able information about the scene. The motion of
points in the image, as described by the optical
flow field, is an important cue in many computer
vision tasks, such as tracking, motion segmenta-
tion, and structure-from-motion.

Estimating the optical flow from pairs of
images is a classical computer vision task.
The problem is approached by matching certain
image structures, which are assumed to be more
or less stable over time, between two successive
images. While earlier estimation methods could
only provide sparse optical flow fields, nowadays
it is common to estimate a dense optical flow
field that provides a displacement vector for each
pixel in the first image, describing where this
pixel went in the second image.

Optical flow estimation is closely related to
the problem of nonrigid registration. The main
difference is that the latter problem often assumes
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a one-to-one mapping between two images. This
assumption is not satisfied for optical flow due to
occlusion.

Optical Flow Estimation

For estimating the optical flow field, a matching
criterion is needed. In most cases this matching
criterion is based on the pixel gray value or
color, which leads to the so-called optical flow
constraint:

I (x + u(x, y), y + v(x, y), t + 1)

− I (x, y, t) = 0, (1)

where I denotes the image sequence and w =
(u, v)� the optical flow field. As this constraint
is nonlinear in u and v, it is usually linearized to
yield

Ixu + Iyv + It = 0, (2)

where subscripts denote partial derivatives.
For each pixel, the optical flow constraint

yields one equation. Since we have two
unknowns per pixel to estimate, the problem
is underconstrained without additional assump-
tions. This is also known as the aperture problem.

There are two solutions to this problem. One
is to assume a parametric flow model in a fixed
neighborhood around each pixel. Choosing the
neighborhood (the aperture) large enough, one
collects enough information to estimate the
model parameters, which determine the flow.
This methodology was initially proposed by
Lucas and Kanade [1].

The other solution imposes a regularity con-
straint on the resulting flow field. Rather than
estimating flow vectors for each pixel indepen-
dently, this leads to a global estimation of the
whole flow field and is expressed as an energy
minimization problem. The first such model has
been introduced by Horn and Schunck [2] and
reads:

E(u, v) =
∫

(Ixu + Iyv + It )
2

+α
(
|∇u|2 + |∇v|2

)
dxdy. (3)

The energy is minimized via variational methods.
Since it is a convex functional, the global mini-
mizer (u, v)� can be found with standard tech-
niques such as gradient descent or by solving the
linear system emerging from the Euler-Lagrange
equations.

Numerous extensions of the basic Horn-
Schunck model have been presented over the
years to deal with several shortcomings of the
original model. One important modification
is to replace the quadratic penalizers in (3)
by nonquadratic ones [3, 4]. This can be
interpreted as replacing the inherent Gaussian
distribution model in (3) by one based on robust
statistics. Long-tailed distributions allow for
outliers in both the optical flow constraint and
the smoothness assumption, i.e., occlusion and
motion discontinuities are integrated into the
model. The most popular choice to date is the
use of a regularized Laplace distribution, which
leads to the l1-norm in the energy functional [5].
As the l1-norm is the limit between convex and
nonconvex penalizers, it allows for the maximum
number of outliers while still leading to a convex
optimization problem.

The linearization of the optical flow constraint
in (2) helps solving for the optical flow field,
but it includes the assumption that the image is
locally linear. In practice this is only true for very
small neighborhoods with a few pixels radius
and restricts the magnitude of the displacement
vectors that can be estimated. In [6] it was sug-
gested to work with the original, nonlinearized
optical flow constraint and to postpone the lin-
earization to the numerical scheme. As due to the
nonlinearized optical flow constraint the energy
becomes nonconvex, local minima are an issue
and need to be approached by appropriate heuris-
tics. In [5] this was shown to coincide with the
ideas of earlier multiresolution approaches [1,4].
The numerical scheme in [5] can be regarded
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as a Gauss-Newton method combined with a
continuation strategy to avoid local minima.

Contemporary variational methods for optical
flow estimation are based on the following energy
functional:

E(u, v) =
∫


 (I (x + u, y + v, t + 1)

−I (x, y, t))2
)

+α

(
|∇u|2 + |∇v|2

)
dxdy, (4)

where 
(s2) denotes a robust function, which is
often chosen as the regularized l1-norm 
(s2) =√

s2 + ε2 with a reasonably small regularization
constant ε.

Other improvements include extended
matching criteria that are invariant to brightness
changes [7] and orientation-specific, anisotropic,
or nonlocal regularizers [8, 9]. Multigrid solvers
and efficient GPU implementations have pushed
even advanced optical flow estimation techniques
towards real-time performance [10, 11].

Instead of these variational techniques, one
can approach optical flow estimation also with
combinatorial methods. The most straightforward
version of this is simple block matching, which
leads to unsatisfactory results though. More
enhanced combinatorial methods, e.g., based on
belief propagation, perform much better [12,13].

Nonetheless, variational techniques are cur-
rently the dominating way to estimate optical
flow. This is very much in contrast to the related
task of disparity estimation, where combinatorial
methods are much more powerful. This is mainly
because disparity estimation is a search problem
among an ordered set of labels, which allows for
efficient, globally optimal algorithms. In contrast,
the two-dimensional nature of optical flow esti-
mation leads to combinatorial problems that are
NP-hard. Without the advantage of global opti-
mality, pure combinatorial techniques are inferior
to variational techniques due to discretization
artifacts and missing subpixel accuracy. Most
combinatorial approaches alleviate these prob-
lems by running a variational approach as a post-

processing step. Combinatorial techniques are
promising in the sense that they can potentially
better deal with large motion as well as occlu-
sion. Brox and Malik [14] is an example of
combining a combinatorial search (simple block
matching) with variational methods to estimate
faster motion.

Application

Typical applications of optical flow are track-
ing, motion segmentation, and action recognition.
Tracking has again many applications in fields
like structure-from-motion and surveillance. The
most widely spread tracker, the KLT tracker
[15], is based on the Lucas-Kanade technique
described above. Trackers based on variational
optical flow have been proposed as well [16, 17].
In motion segmentation, one can directly cluster
the optical flow vectors, as done in the motion
layer framework by Wang and Adelson [18]. A
joint estimation of optical flow and corresponding
motion segments has been proposed in [19, 20].
Histograms of the optical flow can be used for
action recognition [21].

Open Problems

The main remaining problems in optical flow
estimation are concerned with occlusion and
precise motion boundary estimation, especially
in homogenous image areas. While both are
implicitly covered by state-of-the-art techniques
in areas with rich structure, homogenous image
areas yield the data term to be irrelevant and
the estimation results are solely driven by the
smoothness assumption, which is a relatively
weak prior for such situations.

Experimental Results

A quantitative comparison of a large number
of optical flow estimation methods is available
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Optical Flow: Traditional Approaches, Fig. 1 From
left to right: (a) Two-frame overlay showing large motion
especially at the foot of the person. (b) Optical flow
estimated with [5]. The motion of the upper body part
is estimated well, but the motion of the leg is missed.

(c) Optical flow estimated with large displacement optical
flow [14]. The fast motion can be captured. (d) Color code
used to represent the optical flow. For instance, red stands
for motion to the right

at [22]. However, the numbers must be treated
with care. As they are computed on the basis of
only eight image pairs, overfitting is an issue.
More complex methods with many partially
hidden parameters have a clear advantage, as
more parameters can be specifically adapted to
the needs of the benchmark. For this reason, the
top-performing methods in the benchmark are
not necessarily the best performing ones on a
more diverse set of natural videos. Nevertheless,
the benchmark allows to coarsely separate
techniques that lack certain qualities in the
lower part of the table. The computation times,
even though they are not directly comparable
due to the usage of different hardware, also
give hints on the applicability of techniques in
practice.

Measuring the quality of optical flow estima-
tion methods is generally hard, because deriving
ground truth flow in real videos comes with a very
big effort. With the improved rendering quality
in computer graphics, large sets of realistic, syn-
thetic test sequences could be a possible way out
of this dilemma and will ideally lead to larger
benchmark datasets that better cover the space of
scenes faced in optical flow applications.

Special properties of certain optical flow esti-
mation techniques can be observed also quali-
tatively. Figure 1 compares a method that can

explicitly deal with larger motion to one that does
not have this specific capability.
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Synonyms

Optimal parameter estimation

Related Concepts

�Ellipse Fitting
� Fundamental Matrix
�Maximum Likelihood Estimation

Definition

Optimal estimation in the computer vision
context refers to estimating the parameters that
describe the underlying problem from noisy
observation. The estimation is done according
to a given criterion of optimality, for which
maximum likelihood is widely accepted. If Gaus-
sian noise is assumed, it reduces to minimizing
the Mahalanobis distance. If furthermore the
Gaussian noise has a homogeneous and isotropic
distribution, the procedure reduces to minimizing
what is called the reprojection error.

Background

One of the central tasks of computer vision is
the extraction of 2D/3D geometric information
from noisy image data. Here, the term image
data refers to values extracted from images by
image processing operations such as edge filters
and interest point detectors. Image data are said
to be noisy in the sense that image processing
operations for detecting them entail uncertainty
to some extent.

http://vision.middlebury.edu
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For optimal estimation, a statistical model of
observation needs to be introduced. Let x1, . . . ,
xN be the observed image data. The standard
model is to view each datum xα as perturbed
from its true value x̄α by Δxα , which is assumed
to be independent Gaussian noise of mean 0
and covariance matrix V [xα]. Then, maximum
likelihood is equivalent to the minimization of the
Mahalanobis distance

I =
N∑

α=1

〈x̄α − xα, V [xα]−1(x̄α − xα)〉, (1)

with respect to the true values x̄α subject to given
knowledge about them. Hereafter, 〈a, b〉 denotes
the inner product of vectors a and b.

If the noise is homogeneous and isotropic,
in which case V [xα] = cI for all α for some
constant c and the identity matrix I , the Maha-
lanobis distance I is equivalent to the sum of the
squares of the geometric distances between the
observations xα and their true values x̄α . In this
case, I is often referred to as the reprojection
error. That name originates from the following
intuition: In inferring the 3D structure of the
scene from its projected images, maximum like-
lihood under homogeneous and isotropic Gaus-
sian noise means reprojecting the inferred 3D
structure onto the images and minimizing the
square distance between the reprojection of the
solution and the projection of the scene. Repro-
jection error minimization is also referred to as
geometric fitting.

Theory

The estimation procedure depends on the way the
knowledge about true values x̄α is represented.
A typical approach is to introduce some function
g(t, θ) to express x̄α in a parametric form

x̄α = g(tα, θ), (2)

where tα is a control variable that specifies the
identity of the αth datum and θ is an unknown
parameter that specifies the underlying structure.

After (2) is substituted, the Mahalanobis distance
I becomes a function of θ alone, which is then
minimized with respect to θ . This is the standard
approach in the traditional statistic estimation
framework and also known as regression.

This parametric approach, however, is quite
limited in computer vision applications. Often, no
such knowledge as (2) is available about the true
values x̄α except that they satisfy some implicit
equations of the form

F (k)(x, θ) = 0, k = 1, . . . , L. (3)

The unknown parameter θ allows one to infer the
2D/3D shape and motion of the objects observed
in the images.

This type of estimation leads to some theoreti-
cal problems. Usually, no restriction is imposed
on the true values x̄α except that they should
satisfy (3). This is called the functional model.
One could alternatively introduce some statistical
model according to which the true values x̄α are
“sampled.” This model is called structural. The
distinction is crucial when one considers limiting
processes in the following sense. Traditional sta-
tistical analysis mainly focuses on the asymptotic
behavior as the number of observations increases
to ∞. This is based on the reasoning that the
mechanism underlying noisy observations would
better reveal itself as the number of observations
increases (the law of large numbers) while the
number of available data is limited in practice.
So, the estimation accuracy vs. the number of
data is a major concern. In this light, efforts have
been made to obtain a consistent estimator in the
sense that the solution approaches its true value
in the limit N → ∞ of the number N of the
data.

In computer vision applications, in contrast,
one cannot repeat observations. One makes an
inference given a single set of images, and how
many times one applies image processing oper-
ations, the result is always the same, because
standard image processing algorithms are deter-
ministic and no randomness is involved. This is
in a stark contrast to conventional statistical prob-
lems where observations are viewed as “samples”
from potentially infinitely many possibilities; we
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could obtain, by repeating observations, different
values originating from unknown, uncontrollable,
or unmodeled causes, which is called noise as a
whole.

In vision problems, the accuracy of infer-
ence deteriorates as the uncertainty of image pro-
cessing operations increases. Thus, the inference
accuracy vs. the uncertainty of image operations,
which is called noise for simplicity, is a major
concern. Usually, the noise is very small, often
subpixel levels. In light of this observation, it has
been pointed out that in image domains the con-
sistency of estimators should more appropriately
be defined by the behavior in the limit σ → 0
of the noise level σ [1, 2]. The functional model
suits this purpose. If the error behavior in the
limit of N → ∞ were to be analyzed, one
needs to assume some structural model that spec-
ifies how the statistical characteristics of the data
depend on N . However, it is difficult to predict
the noise characteristics for different N . Image
processing filters usually output a list of points
or lines or their correspondences along with their
confidence values, from which only those with
high confidence are used. If a lot of data are
to be collected, those with low confidence need
to be included, but their statistical properties are
hard to estimate, since such data are possibly
misdetections. This is the most different aspect of
image processing from laboratory experiments, in
which any number of data can be collected by
repeated trials.

Maximum Likelihood with Implicit
Constraints
Maximum likelihood based on the functional
model is to minimize the Mahalanobis distance
(1) subject to implicit constraints in the form of
(3). In statistics, maximum likelihood is criticized
for its lack of consistency. In fact, estimation of
the true values x̄α , called nuisance parameters
when viewed as parameters, is not consistent as
N → ∞ in the maximum likelihood framework
[3]. However, the lack of consistency has no real-
istic meaning in vision applications as explained
above. On the contrary, maximum likelihood has
very desirable properties in the limit σ → 0
of the noise level σ : the solution is consistent

in the sense that it converges to the true value
as σ → 0 and efficient in the sense that its
covariance matrix approaches a theoretical lower
bound as σ → 0 [1, 2].

According to the experience of many vision
researchers, maximum likelihood is known to
produce highly accurate solutions. A major
concern is its computational burden, because
maximum likelihood usually requires com-
plicated nonlinear optimization. The standard
approach is to express each of x̄α explicitly
in terms of θ by introducing some auxiliary
parameters, or nuisance parameters. After all
the expressions are substituted back into (1), the
Mahalanobis distance I becomes a function of
θ and the nuisance parameters. Then, this joint
parameter space, which usually has very high
dimensions, is searched for the minimum. This
approach is called bundle adjustment, a term
originally used by photogrammetrists. This is
very time-consuming, in particular if one seeks a
globally optimal solution by searching the entire
parameter space exhaustively.

Linear Reparameterization
In many important vision applications, the prob-
lem can be reparameterized to make the functions
F (k)(x, θ) linear in θ (but generally nonlinear in
x), allowing one to write (3) as

〈ξ (k)(x), θ〉 = 0, k = 1, . . . , L, (4)

where ξ (k)(x) represents a nonlinear mapping
of x. This formalism covers many fundamental
problems of computer vision including fitting a
parametric curve such as a line, an ellipse, and a
polynomial curve to a noisy 2D point sequence or
a parametric surface such as a plane, an ellipsoid,
and a polynomial surface to a noisy 3D point
sets and computing the fundamental matrix or the
homography from noisy point correspondences
over two images [4, 5]. For this type of problem,
a popular alternative to bundle adjustment is
minimization of a function of θ alone, called the
Sampson error. Let us abbreviate ξ (k)(xα) to ξ (k)

α .
The first order variation of ξ (k)

α by noise is
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Δξ (k)
α = T (k)

α Δxα, T (k)
α ≡ ∂ξ (k)(x)

∂x

∣∣∣∣∣
x=x̄α

.

(5)
Define the covariance matrices of ξ (k)

α , k =
1, . . . , L, by

V (kl)[ξα] = E[Δξ (k)
α Δξ (l)�

α ]
= T (k)

α E[ΔxαΔx�
α ]T (l)�

α

= T (k)
α V [xα]T (l)�

α , (6)

where E[ · ] denotes expectation. The Sampson
error that approximates the minimum of the
Mahalanobis distance I subject to the constraints
in (4) has the form

K =
N∑

α=1

L∑

k,l,=1

W(kl)
α 〈ξ (k)

α , θ〉〈ξ (l)
α , θ〉, (7)

where W
(kl)
α is the (kl) element of (V α)−r . Here,

V α is the matrix whose (kl) element is

V α =
(
〈θ , V (kl)[ξα]θ〉

)
, (8)

where the true data values x̄α in the definition of
V (kl)[ξα] are replaced by their observations xα .
The operation ( · )−r denotes the pseudoinverse
of truncated rank r , (i.e., with all eigenvalues
except the largest r replaced by 0 in the spectral
decomposition), and r is the rank of V α , which
is equal to the number of independent equations
of (4). The name Sampson error stems from the
classical ellipse fitting scheme [6].

The Sampson error (7) can be minimized by
various means including the FNS (Fundamental
Numerical Scheme) [7] and the HEIV (Het-
eroscedastic Errors-in-Variable) [8]. It can be
shown that the exact maximum likelihood solu-
tion can be obtained by repeating Sampson error
minimization, each time modifying the Sampson
error so that in the end the modified Sampson
error coincides with the Mahalanobis distance
[5, 9]. It turns out that in many practical appli-
cations, the solution that minimizes the Sampson
error coincides with the exact maximum like-
lihood solution up to several significant digits;

usually, two or three rounds of Sampson error
modification are sufficient.

It can be shown that the covariance matrix
V [θ̂] of any unbiased estimator θ̂ of θ satisfies
under some general conditions the inequality

V [θ̂ ] �
( N∑

α=1

L∑

k,l=1

W̄ (kl)
α ξ̄

(k)

α ξ̄
(l)�
α

)−
r
, (9)

where ξ̄
(k)

α are the true values of ξ (k)
α and W̄

(kl)
α

is the value of W
(kl)
α defined earlier evaluated for

the true values of ξ (k)
α and θ . The symbol � means

that the left-hand side minus the right-hand side
is positive semidefinite. The right-hand side of (9)
is called the KCR (Kanatani-Cramer-Rao) lower
bound [1,2,5]. It can be shown that the covariance
matrix of Sampson error minimization solution
coincides with this bound in the leading order in
the noise level [1, 2].

Algebraic Methods
Recently, there has been a remarkable progress
in the study of algebraic methods. By “algebraic
methods,” we mean we solve some “algebraic
equations” (directly or iteratively), rather than
minimizing some cost function such as the repro-
jection error. Originally, algebraic methods were
thought of as an auxiliary to maximum likelihood
and used for initialization of maximum likelihood
iterations. In the last decade, however, it has been
found that some algebraic methods outperform
maximum likelihood in accuracy [5].

Algebraic methods solve a nonlinear equation
in the form

Mθ = λNθ , (10)

with

M =
N∑

α=1

L∑

k=1

W(kl)
α ξ (k)

α ξ (k)�
α , (11)

where W
(kl)
α are some weights that depend on

θ . Various methods with different names arise
according to the choice of the weights W

(kl)
α and

the matrix N in (10). This scheme was origi-
nally motivated to minimize 〈θ ,Mθ〉, which is
called the (weighted) algebraic distance, hence
the name “algebraic method,” subject to the con-
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straint 〈θ ,Nθ〉 = constant. The solution of (10)
is obtained by iteration: we first regard W

(kl)
α and

N as given and solve the generalized eigenvalue
problem (10), then update W

(kl)
α and N using the

resulting θ , and repeat this process.
If we choose W

(kl)
α = 1 and N = I (hence no

iterations are necessary), this method is nothing
but the standard least squares. If we choose
W

(kl)
α = 1 and N = V0[xα] (the covariance

matrix of xα up to scale), this reduces the method
of Taubin [10], which is known to produce a fairy
accurate solution. Efforts were made to improve
the accuracy of the Taubin method by choosing
optimal N , resulting in a scheme called HyperLS
[11], which is non-iterative. If we use the same
N as in the Taubin method but use the weights
W

(kl)
α that appear in (7) and (8), we obtain the

iterative scheme of renormalization [12]. Like
for HyperLS, we can optimize the matrix N of
renormalization to obtain hyper-renormalization
[13], which exhibits higher accuracy than maxi-
mum likelihood [5].

The superiority of hyper-renormalization is
confirmed by statistical analysis. If we regard
the input xα as random variables, the computed
solution θ of (10) is also a random variable.
It can be shown that the matrices M and N

of (10) control, respectively, the covariance and
the bias of θ (Fig. 1) and that the matrices M

and N of hyper-renormalization are such that the
covariance of θ reaches the KCR lower bound up
to O(σ 4) and the bias of θ is 0 up to O(σ 4).

On the other hand, efforts have been made
to improve the accuracy of maximum likelihood
by correcting the solution a posteriori, called
hyperaccurate correction [14]. It can be
shown that maximum likelihood followed by
hyperaccurate correction can achieve equivalent
accuracy to hyper-renormalization [5] (Fig. 2).
However, iterations for computing maximum
likelihood solution sometimes fail to converge
in the presence of large noise, compared to
which hyper-renormalization iterations are rather
robust.

θ
θ

θ
θ

Optimal Estimation, Fig. 1 Left: The matrix M controls the covariance of θ . Right: The matrix N controls the bias
of θ
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3
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Optimal Estimation, Fig. 2 Left: An edge image of a
scene with a circular object. An ellipse is fitted to the 160
edge points indicated. Right: Fitted ellipses superimposed
on the original image. The occluded part is artificially

composed for visual ease. (1) Least squares, (2) iterative
reweight, (3) Taubin method, (4) renormalization, (5)
HyperLS, (6) hyper-renormalization, (7) ML, (8) ML
followed by hyperaccurate correction. (From [4])
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Definition

The Oren-Nayar model computes the amount
of reflected radiance at a surface point accord-
ing to the lighting, viewing, and surface normal
directions at that point. It is characterized by
its high accuracy in modeling diffuse reflection
for rough surfaces. It was introduced by Michael
Oren and Shree K. Nayar [1] in 1994.

Background

When light arrives at surfaces, it can be reflected,
refracted, scattered, or absorbed. Reflectance
models are mathematical functions that describe
the interactions between light and surfaces.
Usually, they are functions of lighting, viewing,
and surface normal directions. There are various
reflectance models at different levels of precision
and complexity. Most reflectance models include
components describing diffuse and specular
reflection, respectively.

The Oren-Nayar model is a reflectance model
that accurately represents the diffuse reflection of
rough surfaces. In the field of computer vision,
diffuse reflection is often modeled by Lambert’s
model [2] which assumes the light is uniformly
reflected in all directions. However, many real
surfaces, especially rough surfaces such as clay
or concrete, exhibit significant non-Lambertian
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diffuse reflection. For example, the reflection
is often stronger when the viewing direction is
close to the lighting direction, which is called
backscattering. Oren and Nayar designed a more
accurate model to describe diffuse reflection of
rough surfaces. This model can be applied to
generate realistic computer graphic images or to
accurately infer scene properties such as shape
and material from observed image intensities.

Theory

Light reflected by a surface can be roughly
divided into specular and diffuse reflection.
The specular reflection accounts for the light
reflected directly at the surface without entering
it. Specular reflection typically is concentrated
within a small angle in space. In comparison,
diffuse reflection accounts for the light that enters
the surface and is distributed more uniformly in
all directions.

In computer vision, Lambert’s reflectance
model is often used to describe diffuse reflection,
which assumes that the diffuse reflection is
equally distributed on a hemisphere indicating all
the reflected directions. However, real surfaces,
especially rough surfaces like clay and concrete,
often exhibit non-Lambertian reflection. A
common non-Lambertian phenomenon is the
backscattering where more light is reflected
toward the incident direction and the surface
appears brighter when the viewing direction is
closer to the lighting direction. For example, this
phenomenon is observed in lunar photometry and
is modeled by Opik [3] and Minnaert [4].

Backscattering can be well explained by
studying the surface microstructures. As shown
on the right of Fig. 1, when the polar angle
of the incident light θi is large, some of the
microstructures are in shadows. When the
surface is viewed from a direction V iew1 that
is similar to the incident direction L, all visible
microstructures are illuminated and the surface
appears brighter. However, when the surface is
viewed from the direction V iew2, all visible
microstructures are shadowed and the surface
appears darker.

Oren and Nayar adopted a microfacet sur-
face model to derive the diffuse reflection of
rough surfaces, where surfaces consist of many
infinitely long V-cavities and each cavity facet is
Lambertian. The reflectance model of a surface
is derived by integrating the reflection of all
facets. A similar microfacet model is used by
the Cook-Torrance reflectance model [5] to study
specular reflection, where each microfacet acts
as a mirror. The Oren-Nayar model is derived in
three steps in the original paper [1]. Firstly, a
reflectance model I (1) is derived for anisotropic
surfaces consisting of V-cavities of the same
slope and the same direction. This model includes
two components, one for direct illumination and
the other for interreflection between microfacets.
Secondly, a reflectance model I (2) is derived for
isotropic surfaces consisting of V-cavities with
the same slope but all kinds of directions in a
plane. This model I (2) is derived by integrating
I (1) over different cavity directions. Thirdly, the
final Oren-Nayar model is derived for general
isotropic surfaces that consist of V-cavities whose
slopes follow a Gaussian distribution with mean
μ and variance σ 2 and whose directions follow a
uniform distribution. The Oren-Nayar reflectance
model I (3) can be derived by integrating I (2) over
different cavity slopes. This model includes a
component I

(3)
1 for direct illumination and a com-

ponent I
(3)
2 for microfacet interreflection. These

two components are defined as the following,
respectively,

I
(3)
1 (θr , θi , φr − φi; σ) = ρ

π
E0 cos θi

[
C1(σ )+

cos(φr − φi)C2(α;β;φr − φi; σ) tan β+

(1−| cos(φr − φi)|)C3(α;β; σ) tan

(
α+β

2

)]

(1)

and

I
(3)
2 (θr , θi , φr − φi; σ) = 0.17

ρ2

π

E0 cos θi

σ 2

σ 2 + 0.13

[
1 − cos(φr−φi)

(
2β

π

)2
]

.

(2)
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View1

View1
View2

View2

L
LV

qi qr

jr

ji

N

Oren-Nayar Reflectance Model, Fig. 1 Left: directions
involved in the definition of the Oren-Nayar model. N is
the surface normal direction, and L and V are the lighting
and viewing direction, respectively. Right: a rough surface
consists of many microfacets. When the polar angle of the
incident light θi is large, some of the microfacets are in

shadow and some of them are illuminated, as illustrated by
darker and brighter segments. The surface appears brighter
in the view 1 than in the view 2, because most of the
visible microfacets in view 1 are illuminated and those in
view 2 are shadowed

Here, (θi, φi) and (θr , φr) are the polar and
azimuth angles of the lighting and viewing
directions, respectively, as illustrated on the left
of Fig. 1, α = max(θr , θi), β = min(θr , θi),
E0 indicates the illumination intensity, and ρ

is the albedo in Lambert’s reflectance model
of microfacet. C1, C2, and C3 are evaluated
according to the following equations:

C1 = 1 − 0.5
σ 2

σ 2 + 0.33

C2 =
⎧
⎨

⎩

0.45 σ 2

σ 2+0.09
sin α if cos(φr − φi)≥0

0.45 σ 2

σ 2+0.09

(
sin α−

(
2β
π

)3
)

otherwise

C3 = 0.125

(
σ 2

σ 2 + 0.09

)(
4αβ

π2

)2

.

Experiments reported in [1] show that the
Oren-Nayar reflectance model matches the mea-
sured reflectance data from rough surfaces well
and captures the backscattering effect. An inter-
esting fact about this model is that it degen-
erates to Lambert’s model when σ 2 = 0. In
applications, to reduce computation and simplify
analysis, a simplified version of the Oren-Nayar
model is often desired. The term C3 and the
interreflection are found to be relatively small
during simulation. Hence, a simplified model
can be obtained by discarding C3 and ignoring
interreflection:

I (θr , θi, φr − φi; σ) = ρ

π
E0 cos θi(A + B max

[0, cos(φr − φi)] sin α tan β) (3)

Here, A= 1.0 − 0.5 σ 2

σ 2+0.33
and B = 0.45 σ 2

σ 2+0.09
.

Application

The Oren-Nayar reflectance model computes
reflected radiance according to the 3D shape,
viewing, and lighting configurations. Like many
other reflectance models, it can be used to create
computer graphic images. It is shown in [1] that
the Oren-Nayar reflectance model can generate
images of rough surfaces more realistically than
Lambert’s model. This reflectance model was
also applied for photometric stereo in [6] and
generated better results than the Lambertian
photometric stereo algorithm.
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Synonyms

Osculating quadric; Second order approximation.

Related Concepts

�Curvature
�Differential Invariants

Definition

Osculating paraboloids commonly occur in
second-order approximations where the first
order is irrelevant or can be transformed away.

Background

Despite the common occurrence of osculating
paraboloids in many settings, there appears to
be no literature dedicated to their shape space.

Although the standard taxonomy of quadrics in
Euclidean space is familiar to most, what is miss-
ing is the geometrical structure of the manifold
of all osculating paraboloids, inclusive a metric.
Here the two-parameter case (important in many
applications) is discussed in a little detail.

Theory

“Osculating paraboloids” are second-order
Monge patches:

xex + yey + z (x, y) ez
= xex + yey + 1

2

(
a20x

2 + 2a11xy + a02y
2
)
ez,
(1)

that occur in many contexts. Apparently they
inhabit a three-dimensional quadric shape space
that may be parameterized by the coefficient
triple {a20, a11, a02}.

Typically the z-domain will be some physical
parameter with a physical dimension different
from that of the xy-domain. The appropriate set-
ting then is not Euclidean. In most applications
one treats the z-dimension as isotropic, then the
space is a “singly isotropic space,” or “graph
space.”

Scaling and addition in this space correspond
to point-wise addition of heights, thus is well
defined and makes geometrical sense. The
quadric shape space is a linear space under
addition and multiplications with real numbers.
Thus it is of some interest to find a basis that
makes intuitive, and/or pragmatic sense.

One lead is that all such surfaces that differ
only by a rotation about the z-axis (ez) are geo-
metrically congruent and may often be grouped
as a single “shape.” This leads one to consider
the isotropic paraboloid:

x2 + y2

2
, (2)

to be “special,” since it is invariant under such
rotations. Moreover, the pair:
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xy,
x2 − y2

2
, (3)

is likewise “special” because they are the same
under a rotation over π

4 (notice that all quadrics
transform into themselves under rotations over
π). These shapes transform into their “negatives”
under rotations of π

2 , thus, in a sense, they are
their own negatives. This is not the case in gen-
eral, for instance, x2 + y2 cannot be transformed
into its negative (i.e., −(x2 + y2)) under any
rotation.

Thus the basis of quadrics contains only two
distinct shapes (Fig. 1), rather than three as one
might naively expect. Using this basis one evi-
dently has:

1
2

(
a20x

2 + 2a11xy + a02y
2
)

= r
x2−y2

2 + sxy + t
x2+y2

2 ,
(4)

with:

r = a20 − a02

2
, s = a11, t = a20 + a02

2
. (5)

By a suitable rotation any quadric may be
written in the canonical form

1

2

(
k1u

2 + k2v
2
)

, with k1 ≥ k2. (6)

Such a canonical form is convenient because
it abstracts away from the orientation about the
z-axis (Fig. 2). The general quadric is rotated
by angle ϕ with respect to the u-axis (the first
principal direction), where −π

2 < ϕ < π
2 . One

has:

a20 = k1 + k2

2
+ k1 − k2

2
cos 2ϕ, (7)

a11 = k1 − k2

2
sin 2ϕ, (8)

a02 = k1 + k2

2
− k1 − k2

2
cos 2ϕ, (9)

and, equivalently:

r = k1 − k2

2
cos 2ϕ, (10)

s = k1 − k2

2
sin 2ϕ, (11)

t = k1 + k2

2
. (12)

Introduce the Casorati curvature (see Fig. 3)
as:

k =
√

k2
1 + k2

2

2
, (13)

and the shape parameter (see Fig. 4) as:

σ = arctan
k1 + k2

k1 − k2
. (14)

These differential invariants can be written
into various forms, e.g.,

k =
√

a2
20 + 2a2

11 + a2
02

2
=
√

r2 + s2 + t2,

(15)

and

tan σ = a20 + a02√
(a20 − a02)

2 + 4a2
11

= t√
r2 + s2

.

(16)

This can be further simplified by identifying
the mean curvature 2H = κ1 + κ2 = a20 + a02,
the Gaussian curvature K = k1k2 = a20a02−a2

11,
and the “bending energy” E = k2

1 + k2
2 = a2

20 +
2a2

11 +a2
02. (Notice that H and K should be distin-

guished from the invariants of the same name in
Euclidean differential geometry. They correspond
to the case of infinitesimal height, or to isotropic
geometry.) The expression 1

2

√
r2 + s2 captures

the anisotropy of the quadric and may well be
denoted its “non-umbilicity.”

The Casorati curvature is perhaps less well
known, and it may be motivated as follows. One
has:

k =
√

k2
1 + k2

2

2
, (17)
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Osculating Paraboloids, Fig. 1 The basis of osculating quadrics. At left the isotropic paraboloid (x2 + y2)/2, at right
the anisotropic paraboloids xy and (x2 − y2)/2, these are mutually congruent

Osculating Paraboloids, Fig. 2 A suite of surfaces of the same Casorati curvature and shape parameter but different
orientations. The orientation domain is periodic with period π

Osculating Paraboloids, Fig. 3 A scale of surfaces of the same shape, the Casorati curvature varying by factors of
two

and thus κ vanishes only for the planar case. This
is different for the mean curvature 2H = κ1 + κ2,
which vanishes for minimal surfaces (t = 0), or
the Gaussian curvature K= κ1 κ2, which vanishes
for cylindrical surfaces. This is often confusing
to the beginner, for whom minimal surfaces and
cylinders are evidently “curved.” Moreover, one
easily verifies that when the “spatial average”

and “standard deviation” of a function F(x, y) are
defined as:

〈F (x, y)〉μ =
∫

R2
F (x, y)

⎛

⎜⎝
e
− x2+y2

2μ2

2πμ2

⎞

⎟⎠ dx dy,

and [F ]μ =
√〈

F 2
〉
μ

− 〈F 〉2
μ, (18)
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Osculating Paraboloids, Fig. 4 A suite of surfaces of the same Casorati curvature, the shape parameter taking values
of +π/2, +π/4, 0, −π/4, and −π/2

one has:

k =
[
k1x

2 + k2y
2
]

[
x2 + y2

] (19)

(where μ > 0 has fallen out of the equation). Thus
the Casorati curvature is essentially the root mean
square deviation from planarity.

The shape parameter σ is best understood as
a measure of the ratio of umbilicity (isotropy) to
non-umbilicity (anisotropy) of the shape. Shapes
that differ only in the sign of the shape parameters
stand in the relation as a cast to its mold. The
minimal shapes (σ = 0) “are their own molds”
as they can be fitted into their negatives after a
rotation over π

2 .
Now consider polar coordinates in shape

space, defined as:

� =
√

r2 + s2 + t2 = k (20)

ϑ = arctan
t√

r2 + s2
= σ, (21)

φ = arctan
s

r
= 2ϕ. (22)

The spheres concentric with the origin are
loci of constant Casorati curvature, and the ori-
gin represents the planar case. A “shape” is a
right circular cone with the t-axis as its axis.
The t-axis itself is such a (degenerated) cone,
it represents the umbilics. The rs-plane is also
such a (again, degenerated) cone, it represents the
minimal surfaces, which are the surfaces of zero
mean curvature. The cone with semi-top angle of

π
2 is the locus of parabolic (cylindrical) surfaces.
Each half-plane on the t-axis houses the complete
zoo of shapes up to orientation. A meridian con-
tains all shapes of the same curvature, a latitude
circle a single shape in all orientations. Thus one
obtains a complete overview of all quadric shapes
in a very natural parameterization (Figs. 5, 6, 7,
and 8).

On a general curved surface the shape of the
local osculating paraboloids will change from
point to point (see Figs. 5, 6, and 7). Since
the change will be smooth, the surface can be
mapped on a surface in shape space, a surface that
may well be expected to have self-intersections
and perhaps not everywhere smooth (e.g., have
edges of regression or swallowtails), but will be
continuous. This allows one to draw a number of
useful conclusions concerning generic surfaces,
e.g.:

• Planar points do not occur.
• Umbilics are isolated points.
• As a surface is deformed umbilics come and

go in pairs.
• Parabolic curves occur on curves; on a closed

surface they are closed curves.
• Minimal points occur on curves in hyperbolic

areas; on a closed surface they are closed
curves.

• Convex an concave regions are mutually iso-
lated through hyperbolic areas.

The local structure of these surfaces naturally
involves the osculating cubics, which can be
written as follows:
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Osculating Paraboloids, Fig. 5 At left plots of four ran-
dom surfaces. At right the surfaces have been color coded
with the shape parameter. The color scale uses Hering’s
“opposite colors” (G: Gegenfarben). The umbilics are red

(convex) and green (concave), the parabolic points yellow
(ridge) and blue (rut), whereas the minimal points (zero
mean curvature, symmetric saddles) are white

Osculating Paraboloids, Fig. 6 At left the surfaces of
Fig. 5 left have been shaded with the Casorati curvature.
The gray scale represents a nonlinear monotonic function
of the logarithm of the curvature. At right the surfaces

have been colored with the orientation of the direction
of largest principal curvature. Notice the singularities at
umbilical points

C (x, y) = 1

2!
(
a20x

2 + 2a11xy + a02y
2
)

+ 1

3!
(
a30x

3 + 3a21x
2y + 3a12xy2

+a03y
3
)

.

(23)

In an infinitesimal neighborhood of the origin
one finds:

a′
20 (x, y) = a20 + a30x + a21y, (24)

a′
11 (x, y) = a11 + a21x + a12y, (25)
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Osculating Paraboloids,
Fig. 7 Scales used to
indicate the parameters of
osculating quadrics; these
scales are used in Figs. 5
and 6

–∞ 1
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Osculating Paraboloids,
Fig. 8 A sphere of
constant Casorati
curvature. The shapes have
been indicated by their
Dupin indicatrices. The
equator has all orientations
of the symmetric saddle,
and each meridian has all
shape indices with the
umbilics at the poles. Each
latitude circle repeats a
shape at all orientations

a′
02 (x, y) = a02 + a12x + a03y. (26)

Thus the quadric is perturbed by a linear
combination of the two vectors in {r, s, t}-space:

∂

∂x
{r, s, t} = 1

2
{a30 − a12, 2a21, a30 + a12}

(27)

∂

∂y
{r, s, t} = 1

2
{a21 − a30, 2a12, a03 + a21}

(28)

with weights x and y. These tangent vectors span
a planar element in {r, s, t}-space. The planar
element will in general be nondegenerate, the
condition being that the two tangent vectors are
independent, implying the cubic indicatrix of
Dupin to have a single branch. Thus a neighbor-
hood of a generic surface point maps on a surface
in shape space. This allows one to infer various
generic properties in a most simple manner, for
instance that generic umbilics will be isolated
points, the locus of parabolic points will be a
curve on the surface, and so forth.
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The osculating quadrics shape space may also
be used to measure shape differences, a likely
metric being:

d�2 = dr2 + ds2 + dt2

r2 + s2 + t2 , (29)

which is invariant with respect to rotations and
homotheties about the origin. The metric can be
rewritten as:

d�2 = (d log k)2 + dσ 2 + sin2σdφ2, (30)

from which one sees that the geodesics are planar
logarithmic spirals in planes through the origin.
Lines through the origin and circles with the
center at the origin are degenerated cases. For
shapes of the same Casorati curvature the dis-
tance is simply a spherical arc length; in case the
shapes have the same orientation this becomes the
shape parameter, and for minimal surfaces it is
the orientation difference. For shapes of the same
shape parameter and orientation the distance is
the logarithm of the ratio of Casorati curvatures,
thus independent of the unit of length (or absolute
size).

The osculating paraboloids shape space has
numerous applications in very diverse contexts.

Open problem

The shape space concept described here appears
to be little known and there is a decided lack
of useful literature. The Casorati curvature
and shape parameter appear in the literature as
“curvedness” and (in a scaled version) as “shape
index.”
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� Pan-Tilt-Zoom (PTZ) Camera

Pan-Tilt Camera Calibration

� Simplified Active Calibration

Pan-Tilt-Zoom (PTZ) Camera

Sudipta N. Sinha
Microsoft Research, Redmond, WA, USA

Synonyms

IP camera; Network surveillance camera; Pan-tilt
camera

Related Concepts

�Camera Calibration
�Camera Model

Definition

A pan-tilt-zoom (PTZ) camera typically refers to
an active camera which has some degree of pan,
tilt, and zoom control. They are commonly used
to monitor large areas for visual surveillance
applications. The pan, tilt, and zoom controls
of most off-the-shelf PTZ cameras are often
programmable, enabling the camera to be
remotely controlled over a network. Some
variants of PTZ cameras are called network
cameras when they come equipped with a real-
time operation system which makes it possible
to stream video over a network in real time.
An example of such a camera is the Sony

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
https://doi.org/10.1007/978-3-030-63416-2
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SRG-300SE PTZ camera (https://pro.sony/ue_
US/products/robotic-cameras/srg-300se).

Background

Active PTZ cameras serve as a practical alter-
native to high-resolution omnidirectional cam-
eras in wide-area surveillance systems. On the
one hand, flexible pan and tilt ranges provide
most PTZ cameras a large effective field of view
(FOV) similar to an omnidirectional sensor, but
in addition to that, these cameras can also zoom
in on a small region of interest and capture it
in high resolution. However, unlike omnidirec-
tional sensors, PTZ cameras cannot simultane-
ously observe the complete scene. Since activities
of interest in a visual surveillance scenario typi-
cally occur in small regions within a large area,
simultaneous imaging is not always required. The
inability to simultaneously observe the complete
scene is often compensated by deploying a net-
work of static and PTZ cameras.

In order to utilize a programmable PTZ cam-
era, many systems require the knowledge of a
camera model that explains how 3D points in the
world project to the image plane of a PTZ camera
given a specific pan, tilt, and zoom configura-
tion. Analyzing images from PTZ cameras may
also require backprojecting a pixel on the image
plane to obtain its corresponding 3D viewing
ray (parameterized by the pan-tilt angles) on the
camera’s viewing sphere or the corresponding
3D ray in the world coordinate frame, provided
the camera position is also known. For example,
consider a calibrated PTZ camera monitoring a
car parking area. For a calibrated camera, pix-
els can be mapped to precise locations on the
ground plane. The model also makes it possible
to actively track a person in the scene while
ensuring that the PTZ camera is able to center
its view on the individual. When a scene is
monitored by a network of PTZ cameras, a cal-
ibrated camera model makes it possible to infer
associations between objects or events detected
in video captured from different viewpoints.

Conventional offline camera calibration meth-
ods such as [1] cannot easily be used to calibrate

PTZ cameras since both the observed scene as
well as the inter-camera baselines can be quite
large. This precludes the use of conventional
calibration objects which are typically too small
for such large scenes [2, 3]. Also an active cam-
era’s calibration parameters must be continually
estimated online by refining the pan-tilt angle
and focal length estimates using a closed-loop
mechanism [4] instead of relying on a set of
precomputed pan-tilt control settings computed
offline. This is due to the fact that the pan-
tilt controllers present in most off-the-shelf PTZ
cameras can be imprecise during operation.

Theory

PTZ Camera Model In many cases, PTZ cam-
eras can be modeled using a simple motion model
where the pan and tilt rotation axes are assumed
to pass through the center of projection of the
camera. However, depending on the camera’s
mechanical assembly and design, the pan and tilt
rotation axes may need to be modeled as arbitrary
axes not passing through the projection center
[5]. In either case, the 2D projection of a 3D
point onto the image plane can be computed using
a few matrix operations. For indoor scenes, the
intrinsic and extrinsic parameters of a network
of pan-tilt cameras can be estimated offline by
tracking a single moving LED over time within
the working volume [5].

In outdoor scenes, the simple model works
fine since the deviation of the rotation axes from
the projection center is negligible compared to
the average depth in the scene. This allows the
PTZ camera to be modeled as a purely rotating
and zooming camera for which self-calibration
algorithms are well-known [6]. A PTZ camera
is then treated like a pinhole camera with a fixed
projection center, but the camera intrinsics are
modeled as a function of zoom, and the camera’s
orientation obviously depends on the camera’s
pan and tilt settings.

Using homogeneous coordinates to represent
a 3D world point and the corresponding image
point denoted as X and x, respectively, the
imaging process can then be linearly modeled

https://pro.sony/ue_US/products/robotic-cameras/srg-300se
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as follows:

x = KzRpt [I | − C]X (1)

where Kz denotes the 3 × 3 camera intrinsic
matrix, Rpt denotes the 3 × 3 rotation matrix,
and C denotes the fixed projection center of the
camera in world coordinates. The subscripts z,
p, and t refer to the zoom, pan, and tilt settings
of the active camera. The rigid transformation
from world coordinates to camera coordinates is
defined by the rotation matrix Rpt and translation
vector tpt = −RptC which are often referred to
as the camera’s extrinsic parameters. Kz depends
on the zoom setting z and is defined in terms of
five intrinsic parameters – α, s, fz, uz, and vz. α

is the pixel aspect ratio (an unknown constant), s

is a skew parameter (typically set to 0), fz is the
focal length measured in pixel, and (uz,vz) is the
principal point in the image plane:

Kz =
⎛
⎝

αfz s uz
0 fz vz
0 0 1

⎞
⎠ (2)

Rotating and Zooming Cameras Let x and x′
be the 2D projections of a 3D point X for two
different PTZ configurations (see Fig. 1). Based
on (1), x = K [R t]X and x′ = K′[R′ t]X.
Selecting C as the world origin results in t = 0,
and then eliminating X leads to the following:

x′ = K′R′R−1K−1x

For rotation at constant zoom, the intrinsics are
constant. Therefore,

x′ = KRrelK−1x (3)

where Rrel = R′R−1 denotes the relative 3D
rotation about C between the two views and K
denotes the intrinsic for the fixed zoom level.
Similarly for a zooming camera with fixed ori-
entation,

x′ = K′K−1x (4)

These 2D homographies Hrot = KRrelK−1 and
Hzoom = K′K−1 are used for automatic calibra-
tion of PTZ cameras [7, 8].

Radial Distortion Correction PTZ cameras
deviate from an ideal pinhole model due to radial
distortion. This can be corrected using a standard
model [9, 10]. The effect of radial distortion
is more pronounced for smaller focal lengths,
i.e., for lower zoom settings. The coefficients of
radial distortion for a PTZ camera are therefore
functions of zoom. The center of distortion is
often assumed to coincide with the principal point
(uz, vz) which is also dependent on zoom [11].

PTZ Camera Calibration For a PTZ camera,
the camera calibration process involves estimat-
ing the camera intrinsics Kz and coefficients
of radial distortion for all zoom settings within
the admissible range. Some other methods only
model the variation of focal length with zoom
[8]. In practice, the intrinsics are computed at a
discrete set of zoom values, and during online
operation the intrinsics for any zoom setting can
be obtained by piecewise interpolation after look-
ing up values in a precomputed table [7, 8]. The
extrinsic parameters of a PTZ camera can be
computed using image observations of 3D points
with known coordinates [2, 10]. Alternatively,
structure from motion techniques may also be
used to calibrate a PTZ camera network where a
common area is visible to all the cameras. The
process is similar to the calibration of conven-
tional camera networks [12,13] but requires han-
dling dynamic network topologies due to chang-
ing visibility relations between active cameras in
the network [14].

To maintain precise calibration of an active
PTZ camera in deployment, one must also
address the fact that most PTZ cameras lack
precise and repeatable pan-tilt controllers. This
implies that even if the motorized controllers are
precalibrated, the true 3D rotation of the camera
for a particular pan-tilt setting of the camera
may differ from the orientation predicted based
on the precalibration. Systems where a precise
calibration must be maintained may require a
closed-loop calibration system depending on
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the accuracy of the PTZ controllers [7]. For
closed-loop calibration, a calibrated panoramic
mosaic must be computed offline. During online
operation, this image serves as a calibration
reference for all video frames captured online.
Every video frame can then be aligned to the
calibrated mosaic using a homography computed
online with an image registration method. This
provides a way to estimate the 3D directions on
the camera’s viewing sphere for all pixels in the
video stream of the active camera.

In [7], both camera intrinsics and the
calibrated mosaic are computed automatically
using the motion of natural scene features
induced by actively panning, tilting, and zooming
the camera. The 2D feature correspondences are
robustly computed using the 2D homography-
based motion model for rotating and zooming
cameras. Figure 2 shows parameters estimated
using this method for two common off-the-shelf
PTZ cameras. This method makes it possible to
automatically recalibrate PTZ cameras after they
are deployed on site.

PTZ Camera Control When a network of PTZ
cameras are used to monitor a large space, the
task of controlling the camera network and recon-
figuring the cameras becomes more challenging.
In this situation, a controller must determine

where each camera should focus in its field of
view given all the other cameras’ configurations
with the goal of improving the overall coverage
of an event from multiple viewpoints. Recently,
provably correct greedy algorithms have been
proposed to optimize the camera orientations
and zoom levels to maximize the coverage. The
concept of conic Voronoi diagrams is introduced
to solve the underlying sensor allocation problem
for camera networks [15].

Application

Capturing High-Resolution Images of
Humans Surveillance cameras monitoring large
scenes cannot capture images of human faces
at a sufficient resolution for identifying the
individual when they are at a distance. PTZ
cameras have been used to automatically zoom in
on the face and capture a series of high-resolution
face images once a pedestrian is detected (see
Fig. 3a) [16]. This has applications in forensic
video analysis. A multi-view video acquisition
system utilizing a network of controllable PTZ
cameras was also described in [17]. It was
designed to track a person within an indoor
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scene while automatically adapting the pan-tilt
camera controls to keep the individual centered
in all the views. Their system is used for video
conferencing [18] and event broadcasting.

Detection and Tracking PTZ cameras are often
deployed as part of a network of cameras for
visual surveillance. In certain cases, static cam-
eras provide a global view of the environment and
are used primarily for detection and for actively
steering the PTZ camera to regions of interest or
to actively track moving targets. Such systems
find applications in traffic monitoring, tracking
pedestrians, security systems, or automatic event
detection. To monitor more complex environ-
ments, smart surveillance systems can use mul-
tiple calibrated PTZ cameras working in cooper-
ation to track multiple targets [19, 20]. Accurate
calibration is required to correctly match targets
tracked by different PTZ cameras and for handing
off a moving target from one camera to another
[21].

PTZ Closed-Loop Calibration An open-loop
calibration system for PTZ cameras that rely only
on precomputed calibration of the PTZ controls

will tend to be inaccurate during operation due
to the imprecise nature of the PTZ controllers
or due to vibrations or other sources of insta-
bility. To deal with this, a closed-loop calibra-
tion system should be used which is based on
a calibrated panorama constructed offline (see
Fig. 3b for an example). Figure 4 shows an out-
door panorama used for closed-loop control in
[7]. Using feature-based image alignment, the
video frames are robustly aligned to the cali-
brated panorama which allows pixels in the video
stream to be precisely mapped to 3D directions
on the camera’s viewing sphere. When extrinsic
camera calibration is known, 3D scene reasoning
can be performed more effectively.

PTZ Cameras for Sports Video Analysis PTZ
cameras are frequently used to record and stream
sports, and the analysis of such sports videos
such as in soccer requires detecting, tracking,
and localizing the players and other objects such
as the ball on the soccer field. Performing these
tasks accurately requires the knowledge of the
camera pose during the operation of the PTZ
camera. The line markings on a soccer field
provide ground control points for recovering
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unwrapped cubemap generated by automatically stitching
images from a rooftop PTZ surveillance camera. (Bottom)
The calibrated cubemap is shown in the camera coordinate
system

Pan-Tilt-Zoom (PTZ) Camera, Fig. 4 Closed-loop con-
trol of an active PTZ camera. (Left-top) Video frame
captured online. (Left-middle) Frame generated from the

calibrated panorama based on predicted orientation. (Left-
bottom) The aligned video frame. (Right) The predicted
and aligned frames shown overlaid on the panorama



Pan-Tilt-Zoom Camera Calibration 947

P

the extrinsic and intrinsic pose of PTZ cameras.
Techniques have been proposed to accurately
detect corners or line intersections and junctions
between the line markings in the images and
use the point correspondences for recovering the
camera calibration and pose [22].
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Related Concepts

�Algebraic Curve
� Parametric Surface
� Splines

Definition

A parametric curve S in 2-dimensional Euclidean
space has the following form:

S (·) : R → R
2

t �→ (x(t), y(t)) , t ∈ [a, b]
(1)

where t is the parameter and varies in the domain
[a, b]. In practice, the domain [a, b] is often nor-
malized as a specific region, such as [0, 1]. And
x(t), y(t) are real-valued functions continuously
mapping to a 2D point on a curve.

Similarly, a parametric curve S in 3-
dimensional space has the following form:

S (·) : R → R
3

t �→ (x(t), y(t), z(t)) , t ∈ [a, b]
(2)

For example, an ellipse can be represented in
a parametric form as: x = a cos t, y = b sin t,
with t ∈ [0, 2π), in contrast with its implicit

representation: x2

a2 + y2

b2 − 1 = 0.

Background

Since parametric functions are easy to construct
and analyze, parametric curves are one of the
most popular representations of general curves
in computer graphics and computer vision. There
are many types of parametric curves because of

the flexibility in choosing the underlying ana-
lytic function. Spline curves are one of the most
widely used parametric curves. Some popular
spline curves are cubic curves, Hermite curves,
Bézier curves, and B-spline curves (see � Splines
for further details).

Compared to nonparametric representations of
curves, such as the implicit representation of
algebraic curves and other explicit representa-
tion, parametric curves are easier to control the
local geometry and thus attractive for interactive
curve design or representing the nonrigid defor-
mation; parametric curves are capable of approxi-
mating complex shapes with desired smoothness;
parametric curves are independent of the choice
of coordinate system and lend themselves well to
geometric transformations.

Application

In computer vision, parametric curves are gen-
erally used in modeling image edges, contours,
and 2D object boundaries. It is shown as a pow-
erful tool for shape fitting and manipulating.
There are numerous applications, such as image
segmentation, rigid/nonrigid object registration,
motion estimation, object tracking, that bene-
fit from parametric curve representations. For
example, in the Snake-based image segmentation
designed by Kass et al. [6] and modified by
Brigger et al. [2], splines are used to model the
image contours which converge to object shapes
by minimizing the energy guided by external
and internal forces. For image motion estimation,
Szeliski and Coughlan [11] proposed to represent
the local motion flow field using multi-resolution
splines. And grid-based splines, such as Thin-
Plate spline (TPS) [3] and Free Form Deforma-
tion (B-spline) proposed by Sederberg [9], can
be effectively applied to nonrigid image registra-
tion. Other types of parametric curves are pro-
posed for specific vision problems. For instance,
Rational Gaussian curves [5] does not require
a regular grid of control points and is suitable
for shape recovery. And elastic strings [8] have
metrics which are invariant under reparametriza-
tions of curves and are useful for modeling elastic
objects.
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Related Concepts

�Algebraic Curve
� Parametric Curve
� Splines

Definition

A parametric surface is a surface in the Euclidean
space R

3 which is defined by a parametric equa-
tion with two parameters,

S (·) : R2 → R
3

(u, v) �→ (x (u, v) y (u, v) , z (u, v)) ,
(1)

where u, v are the parameters and vary within
a certain 2D domain in the parametric uv-plane.
x(u, v), y(u, v), z(u, v) are the real-valued func-
tions continuously mapping to the points on a
surface.

For example, Bézier surface is one of the
most commonly used parametric surfaces (patch)
defined as

P (u, v) =
m∑

i=0

n∑
j=0

Bm
i (u)Bn

j (v)pij , (2)

where pij (∈R3) are the control points of Bézier
spline surface. Bn

i (·) : R → R are the basis
functions determined by Bernstein polynomials
of degree n (see the detail in contribution splines).

Parameterization is an important process of
deciding and defining the parameters necessary
for modeling a parametric surface. For exam-
ple, through a spherical parameterization, a unit
sphere can be described as

x = cos θ cos ϕ

y = cos θ sin ϕ

z = sin θ

− π
2 ≤ θ < π

2 , 0 ≤ ϕ < π.

(3)

Background

Parametric representation is the most general
method to represent a surface, because it is
capable of modeling a complex shape in a
compact set of parameters and with desired
smoothness. Surfaces that occur in two of
the main theorems of vector calculus, Stokes’
theorem and the divergence theorem, are
frequently given in a parametric form. Parametric
surfaces also provide a convenient way for
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computing the curvature and arc length of
curves on the surface, surface area, differential
geometric invariants such as the first and
second fundamental forms, Gaussian, mean,
and principal curvatures. Compared to implicit
representation, parametric representation is more
convenient for image rendering, due to the local
points on a surface that can be fast and precisely
determined. In addition, they may provide the
potential for feature retrieving and surface
modifying. Some typical parametric surfaces
(patches) are spline-based parametric surfaces,
such as bicubic patches, Bézier patches, and B-
spline patches (see the contribution splines).

Application

Parametric surface attracts attention in computer
vision, because of its convenience in handling 3D
image segmentation, nonrigid registration, and
recognition. For example, a classic method for
image segmentation, the level set method intro-
duced by Osher and Fedkiw [8], employs para-
metric curve/surface to represent image contours
(level sets) for tracking shapes. The parametric
curve/surface makes it easy to handle shapes
that change topology, e.g., shape splits in two,
develops holes, or the reverse of these operations.
The snake-based image segmentation designed
by Kass et al. [7] and modified by Brigger et al.
[2] employs splines to model the image contours
and serving for an energy minimization guided
by external and internal forces. Spherical har-
monics represented in spherical parameterized
coordinates play a special role in a wide variety
of topics including indirect lighting and in recog-
nition of 3D shapes [5]. And grid-based paramet-
ric surface, such as Thin-Plate spline (TPS) [3]
and Free-Form Deformation (B-spline) proposed
by Sederberg [9], can be effectively applied for
nonrigid object registration.
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PDE
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� Parametric Surface
� Stochastic Partial Differential Equations
�Variational Analysis
�Variational Method
�Viscosity Solution

Definition

A partial differential equation (PDE) is an equa-
tion involving functions of multiple independent
variables and their partial derivatives.

Background

Images can be thought of as functions on a two-
dimensional image domain, i.e., of two variables.
Output entities or objects that are sought in (espe-
cially low-level) computer vision are also often
described as functions or some aspect thereof.
Thus, the desired property of the output is often
described using a PDE involving the input image
and the output entity, often derived as a solution
to a variational problem. Such a PDE is then
solved, usually numerically, to obtain the output
with the desired property.

Application

Here, some basic and historical applications of
PDE used in computer vision and image process-
ing are illustrated. See the articles on the Related
Concepts for more examples.

Diffusion
Diffusion equation is the PDE that describes the
process of diffusion, which is the movement of
a substance from regions with high concentration
to those of low concentration. The PDE is usually
written as:

∂u

∂t
= div(D∇u), (1)

where u is the density of the substance as a
function of space and time, t is the time, and D

is a symmetric positive definite matrix that char-
acterizes the propagation of the density. When D

is the identity matrix, it describes a homogeneous
diffusion, just as the heat is dispersed in a mate-
rial. The equation is called the heat equation in
this case.

In image processing, the intensity at each point
in the image can be considered as the density, and
by diffusing it, i.e., numerically solving the PDE
with a given image as the initial condition, the
image can be smoothed. The simplest case, where
D is the identity matrix, is blurring (with, in fact,
a Gaussian kernel). By choosing different D’s,
the smoothing can be controlled in more sophisti-
cated ways than the simple blurring. For instance,
by using a scalar times the identity as D, and
decreasing the scalar as the function of the image
gradient, more diffusion occurs where there is no
edge, leading to an edge-preserving smoothing.
More general D would lead to anisotropic diffu-
sion, where the diffusion can also depend on the
direction.

For more details, see the article � “Diffusion
Filtering”

Geodesics
The shortest path between two points, which
is a line in the ordinary case, is in general a
curve called a geodesic. In computer vision
and image processing, various problems can
be solved by finding the shortest paths, where
“short” is defined to suit the purpose at hand.
For instance, edges are the points in the image
where the change in the image function is steep.
If the distance is defined to be inversely related
to the magnitude of the gradient along the path,
the shortest path according to this distance would
be more likely to go through edge points.

Let us represent a curve between points a and
b by a map v from a unit interval to the image
domain R ⊂ R

2:

v : [0, 1] → R, v(s) = (x(s), y(s)), (2)

v(0) = a, v(1) = b.

We usually assume that v(s) (i.e., x(s) and y(s))
is continuously differentiable. Then, the “length”
of the curve is defined by
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∫ 1

0
g(v(s))ds, (3)

where g : R → R
+ is a positive function on

the image domain that defines the local length
ratio. Note that the parametrization of v(s) has
a freedom that affects the integral, that is, by
replacing s with another parameter, the curve
on the image domain stays unchanged, while
the length as defined above changes. Thus it is
usually the practice to fix the parametrization so
that the speed |v̇| of the curve point measured
with respect to the ordinary (Euclidean) distance
is constant, where

v̇=dv
ds

=
(

dx

ds
,
dy

ds

)
, |v̇|=

√(
dx

ds

)2

+
(

dy

ds

)2

.

By changing the function g, different distances
to suit the purpose can be defined. To find edges
for instance, we may define g by

g(v) = 1

|∇I (v)| + ε
, (4)

where v ∈ R is a point on the image domain
and ∇I (v) is the gradient of the image function
I (v). We add ε, a small positive constant, to the
denominator so that g(v) does not go to infinity.
The length of the curve (2) with this function g

is, substituting (4) to (3),

∫ 1

0

1

|∇I (v(s))| + ε
ds. (5)

Then a shortest curve according to this length
would be more likely to go through edge points.

This can be generalized beyond length. For
instance, since the image gradient is a vector
field, the relative direction of the path and the
gradient can be also taken into account by defin-
ing

g(v, v̇) = 1

|∇I (v) × v̇| + ε
(6)

that also takes the tangent vector v̇, where × is
the exterior product of 2D vectors. The length is
now defined by

∫ 1

0
g(v(s), v̇(s))ds

=
∫ 1

0

1

|∇I (v(s)) × v̇(s)| + ε
ds. (7)

In this case, when the tangent vector v̇ is perpen-
dicular to the gradient vector ∇I , the |∇I × v̇|
becomes maximum, which makes it more likely
that the curve goes through edge points perpen-
dicular to the gradient direction, when its length
is minimized.

For more details and examples, see the articles
� “Geodesics, Distance Maps, and Curve Evolu-
tion” � “Numerical Methods in Curve Evolution
Theory” and �Parametric Surface”

Variational Methods
Finding the minimum length curve is an example
of variational problem. In computer vision, many
problems are successfully solved by the varia-
tional methods, where the object to be found is
defined as a function. Then, the object’s desired
property is characterized as a functional, so that
the problem of finding the object with the prop-
erty becomes the variational problem of finding
the function that achieves the extremum of the
functional, which is then solved, usually numeri-
cally, to obtain the object with the desired prop-
erty.

In the above example, the object to be found
is the curve, which is defined as the map v.
The curve’s desired property is characterized as
the length, which is a functional. Finding the
minimum-length curve is then the variational
problem.

Early examples of the vision problems solved
using the variational methods include Shape from
Shading [1] and Optical Flow [2].

Variational problems are sometimes solved
dynamically, i.e., by moving the function from
some initial solution to find the extremum of the
functional. Other times it is solved by deriving
an accompanying PDE called the Euler-Lagrange
equation and then solving it [3]. Yet other times,
it can be algorithmically solved by discretizing
the problem [4].
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For more details, see the article � “Variational
Method”

Active Contours
An active contour, also known as a snake [3], is
a particularly successful example of the methods
that represent curves as the map (2) and uses
the variational method. The curve is subject to
various constraints:

– Internal forces give the contour a tendency to
be smooth.

– Image forces push the active contour toward
salient image features such as edges.

– External constraint forces represent task-
specific influences such as user-specified
preferred region for the contour to be
attracted.

These forces are expressed by an energy func-
tional:

E(v) =
∫ 1

0

{
Eint(v(s)) + Eimage(v(s))

+ Eext(v(s))
}
ds, (8)

where Eint, Eimage, and Eext represent the
internal, image, and external forces, respectively.
This energy is then minimized as a variational
problem, by solving its Euler-Lagrange equation
numerically.

For more details, see the article � “Numerical
Methods in Curve Evolution Theory.”

Level Sets
When a curve is explicitly parametrized as in
(2), it can only be represented as a single open
curve. Topological changes such as detachment
into multiple curves and closing the curve cannot
be handled very well in this way. Curves can
be alternatively represented implicitly as a level
set, which is the cross section C of the graph
of a function z = f (x, y) on the image domain
by the plane z = c for some constant c, i.e.,
C = {(x, y) ∈ R|f (x, y) = c}. In such
a representation, the topology of the curve can
change naturally, e.g., closing, opening, or break-

ing a curve. Motion of curves represented this
way can then be described by a PDE involving
the function f (x, y). For instance, curves and
surfaces propagating with speed at each point that
is an arbitrary function of curvature at that point is
described in [5]. The formulation can also be used
for surfaces or sets of even higher dimension.
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Penumbra and Umbra,
Fig. 1 (a) Shadows cast in
the case of an object on a
surface and (b) shadows
cast in the case of an object
in free-space
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Penumbra and Umbra,
Fig. 2 Shadows cast in the
case of an object in free
space with a point source
of light
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Object

Source
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Definition

Umbra is the Latin name for “shadow” and
is typically used to refer to the shadow cast
by an object when illuminated by a light
source [2]. In the umbra region of the shadow,
the entire light source is occluded by the object.
The region around the umbra where only a
portion of the light is obscured is called the
penumbra [1].

Considering a simplistic arrangement of a
light source and an object, Fig. 1a shows the
regions denoted as the umbra and penumbra.
As well, Fig. 1b shows the antumbra, the region
where the light source actually appears bigger
than the object; an antumbra is typically formed
only when the object is in free-space, as opposed
to resting on a surface.

The above considerations are for an area light
source. In contrast, it is straightforward to see that
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for a point source of light, only an umbra is cast
(see Fig. 2).

In astronomical setups – similar to when
objects are in free space – observers who see
partial eclipses (of the sun or the moon) are
located in the penumbra.
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Synonyms

Multi-camera scene understanding; Multi-camera
tracking; Person Re-identification

Related Concepts

�Calibration of Multi-Camera Setups
�Multi-Camera Human Action Recognition:

Traditional Approaches
�Transfer Learning

Definition

The objective of person re-identification (re-id)
is to associate targets across cameras with non-
overlapping fields of view. Specifically, a per-
son re-identification algorithm takes two images
from two non-overlapping cameras and provides
a decision whether those two images are of the
same person or not.

Background

In the last few years, the problem of re-identi-
fying persons across multiple non-overlapping
cameras has received increasing attention. A thor-
ough recent survey on person re-identification
(re-id) can be found at [1]. Most existing person
re-id techniques are based on supervised learning.
These methods either seek the best feature repre-
sentation [2,3] or learn discriminant metrics [4,5]
that yield an optimal matching score between
two cameras or between a gallery and a probe
image. Recently, deep learning methods have
shown significant performance improvement on
image classification and have been applied to per-
son re-id [6, 7]. Considering that a modest-sized
camera network can easily have hundreds of cam-
eras, these supervised re-id models will require
huge amount of labeled data which are difficult
to collect in real-world settings. In an effort to
bypass tedious labeling of training data in super-
vised re-id models, there has been recent interest
in using active learning for labeling examples in
an interactive manner. In [8], an entropy-based
selection approach is proposed for reducing man-
ual annotation. In [9], the authors uses a dominant
clustering-based approach for probe relevant set
selection and utilize it for pair selection in a
dynamic setting.

http://www.britannica.com/EBchecked/topic/450494/penumbra
http://www.britannica.com/EBchecked/topic/613811/umbra
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Unsupervised learning has received little
attention in person re-identification because
of their weak performance on benchmarking
datasets compared to supervised methods.
Representative methods along this direction use
either hand-crafted appearance features [10] or
saliency statistics [11] for matching persons
without requiring huge amount of labeled
data. Recently, sparse dictionary learning-
based methods have also been utilized in an
unsupervised setting [12].

Domain adaptation [13, 14], which aims to
adapt a source domain to a target domain, has
been successfully used in many areas of com-
puter vision and machine learning, e.g., object
classification, and action recognition and speech
processing. Despite its applicability in classical
computer vision tasks, domain adaptation for
person re-identification still remains as a chal-
lenging and under-addressed problem. Only very
recently, domain adaptation for re-id has begun
to be considered [15]. However, these studies
consider only improving the re-id performance
in a static camera network with fixed number of
cameras. Furthermore, most of these approaches
learn supervised models using labeled data from
the target domain.

Main Text

With the advancement of imaging sensor technol-
ogy, surveillance systems have seen remarkable
increase in various applications ranging from law
enforcement to large retail applications, from
facility access and environment monitoring. Even
though the sensing devices are becoming cheaper,
monitoring a wide area by deploying a large
number of cameras is still not feasible due to the
amount of human supervision, privacy concerns,
and maintenance costs involved. As a result, only
a small part of the whole area is covered by a
number of cameras with non-overlapping fields
of view (FoVs). The non-overlapping camera
FoVs leave blind gaps which are critical in the
sense that no information can be obtained from
these areas. This raises the need for automated
methods able to extract and access high-level

semantic information carried by the extremely
high volume of recorded video data. As a result
of losing a person when he/she leaves a camera
FoV, it is extremely challenging to reassociate
the same person at a different location and time
among multiple persons. This inter-camera per-
son association problem is known as the person
re-identification problem.

In spite of a surge of effort put in by
the research community in recent years, re-
identification has remained quite an open
issue due to a number of hard challenges.
First, footages are recorded in an uncontrolled
environment by cameras with large FoVs,
generating low-resolution images of the targets.
This makes the acquisition of discriminating
biometric features (e.g., face and gait features)
hard as well as unreliable. Due to the poor quality
of the acquired biometric features, methods
relying on such features perform unsatisfactorily.
As a result, visual appearance features are, still,
the first choice in re-identification problems.
As a target’s appearance often undergoes large
variations across non-overlapping camera views
due to significant changes in viewing angle,
lighting, background clutter, and occlusion, the
appearance features for the target can be very
different from camera to camera.

The computer vision community has tried to
address the person re-identification problem by
designing discriminative signatures for each tar-
get or by finding a non-Euclidean metric which
minimizes the distance between features of the
same target across cameras. Similar to the most
other visual recognition problems, the most suc-
cessful approaches have been based on super-
vised training phases. Labeled data across pairs
of cameras are used to learn models that define
the transformation between the views in two cam-
eras, and these learned models are used to asso-
ciate between images during the testing phase.
However, this level of supervision hampers scala-
bility of the problem because of the need to label
quantities of data, which grows with the size of
the camera network and the variety of conditions
that may be encountered.

Below we discuss future research directions in
person re-identification, especially the possibility
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of significantly reducing the level of supervision
without any sacrifice in performance. This will
ensure that it is possible to scale person re-
identification problems to larger and larger net-
works of cameras without compromising accu-
racy of the association task. We specifically focus
on two problems. The first problem relates to
scalability of person re-identification as the num-
ber of people grows. The second relates to scala-
bility as the size of the camera network grows.

Optimal Subset Selection for
Labeling

Given unlabeled training data across a network of
cameras and a similarity measure, can we select a
minimal subset of images that should be labeled
and from which the person re-identification mod-
els can be learned? The intuition here is that if we
choose this minimal subset judiciously, the labels
can be propagated using the similarity measure
to the rest of the dataset. Thus, most of the
labels would be obtained automatically with only
a small subset of images being labeled.

Building on preliminary result on network
consistent re-id [16, 17], we now ask whether
consistency can be used to reduce the label-
ing effort. However, in order to take advantage
of consistency relations for reducing the label-
ing effort, we have to choose image pairs in a
judicious manner. Toward this objective, we can
represent a camera network as an edge-weighted
k-partite graph. Nodes on the graph are observa-
tions of the targets, and edge weights are com-
puted based on similarities in the observations.
We formulate the pair subset selection as the
following combinatorial optimization problem:
given a complete k-partite graph Gk = (V ,E)

with nonnegative edge weights and an integer B,
choose a maximum-weight set S of edges from
E such that G′ = (V , S) is triangle-free and
|S| ≤ B, where B is labeling budget. Once
the subset for labeling is selected, the remain-
ing labels can be obtained by label propagation
on the graph, and existing methods for learning
re-identification models can be used. Note that
this subset selection is a NP-hard problem as it

requires searching over every subset of image
pairs. Polynomial time sub-optimal algorithms
with linear or quasilinear time complexity can
be adopted to solve this problem in an efficient
way. Preliminary experiments in [18] have shown
that we are able to achieve same recognition
performance as the state of the art, with only 8%
manual labels on the challenging Market-1501
dataset with six fixed cameras [19].

On-Boarding New Cameras Through
Transfer Learning
We now address a very practical problem in cam-
era networks, which has received little attention
in the person re-identification literature. Given a
camera network where the inter-camera trans-
formations/distance metrics have been learned
in an intensive training phase, how can we on-
board new cameras into the installed system
with minimal additional effort? To illustrate such
a problem, let us consider a scenario with N
cameras for which we have learned the optimal
pair-wise distance metrics, so providing high re-
id accuracy for all camera pairs. However, during
a particular event, a new camera may be tem-
porarily on-boarded to cover a certain related area
that is not well-covered by the existing network of
N cameras. Despite the dynamic and open nature
of the world, almost all work in re-identification
assume a static and closed world model of the
re-id problem where the number of cameras is
fixed in a network. Given newly introduced cam-
era(s), traditional re-id methods will try to relearn
the inter-camera transformations/distance metrics
using a costly training phase. This is impractical
since labeling data in the new camera and then
learning transformations with the others is time-
consuming and defeats the entire purpose of tem-
porarily introducing the additional camera.

In [20], the authors have shown that it is
possible to add a new camera to an existing net-
work using transfer learning. First, they propose
an unsupervised method based on geodesic flow
kernel that can effectively find the best source
camera to adapt with a target camera. Given
camera pairs, each consisting of 1 (out of N)
source camera and a target camera, they first
compute a kernel over the subspaces representing
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the data of both cameras and then use it to
find the kernel distance across the source and
target camera. Then, they rank the source cameras
based on the average distance and choose the one
with lowest distance as the best source camera
to pair with the target camera. This is intuitive
since a camera which is closest to the newly
introduced camera will give the best performance
on the target camera and hence is more likely to
adapt better than others. Second, they introduce
a transitive inference algorithm to exploit infor-
mation from best source camera to improve accu-
racy across other camera pairs. Extensive exper-
iments on multiple benchmarks show that the
proposed method significantly outperforms the
state-of-the-art unsupervised alternatives while
being extremely efficient to compute.

Open Problems

We now discuss two open research problems in
re-identification, such as network-level knowl-
edge transfer and learning in mobile networks.

Knowledge Transfer Across Networks
Above, we explained how it is possible to add
a new target camera to an existing network of
cameras using transfer learning with no addi-
tional supervision for the new camera. How-
ever, transfer learning across networks is still
a largely under-addressed problem with many
challenges. Given multiple existing source net-
works and a newly installed target network with
limited labeled data, we first need to find the rele-
vance/similarity of each source network, or parts
thereof, in terms of amount of knowledge that it
can transfer to a target network. Developing effi-
cient statistical measures for finding relevance in
a multi-camera network with significant changes
in viewing angle, lighting, background clutter,
and occlusion can be a very interesting future
work. Furthermore, labeled data from source net-
works are often a subject of legal, technical,
and contractual constraints between data owners
and customers. Thus, existing transfer learning
approaches may not be directly applicable in such
scenarios where the source data is absent. The

question we want to ask here is whether learned
source models, instead of source data, can be
used as a proxy for knowledge transfer across
networks. Compared to the source data, the well-
trained source model(s) are usually freely acces-
sible in many applications and contain equivalent
source knowledge as well. Knowledge distilla-
tion [21] along with attention transfer techniques
can be adopted to transfer knowledge from a
number of existing labeled networks to an unla-
beled target network containing targets which
never appeared in the source network.

Learning in Mobile Camera Networks
Despite the success of existing person re-
identification works in static platforms, consid-
ering mobile cameras (e.g., network of robots)
opens up exciting new research problems in
terms of learning such data association models.
It is not possible to learn transformation models
between every possible pair of views in two
mobile cameras due to the constantly changing
nature of the videos being captured. Thus, in
order to efficiently learn data association models,
we need the data to represent the variety of
scenarios that will be encountered by the mobile
cameras. A semi-supervised pipeline that uses
limited manual training data along with newly
generated data through a generative adversarial
network (GAN) could be a possibility. One
initial approach could be to use the unlabeled
samples produced by a Multi-view Generative
Adversarial Network in conjunction with the
labeled training data to learn view-invariant
features in a mobile network. Moreover, apart
from generating samples, we may need to evolve
the learned models over time based on the
observed features.
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Synonyms

Pinhole camera

Related Concepts

�Camera Calibration
�Camera Parameters (Intrinsic, Extrinsic)
�Calibration of Projective Cameras
�Depth Distortion
� Perspective Transformation

Definition

A perspective camera is a mathematical model of
an ideal pinhole camera that follows perspective
projection.

Background

A modern camera generally consists of an
enclosed hollow with an opening (aperture) at
one end for light to enter, a lens positioned in
front of the opening, and a recording surface on
the other end. In an ideal pinhole camera, the
camera aperture is described as a point and no
lenses are used to focus light. In that case, the
camera can be modeled by a perspective transfor-
mation, thus also called perspective camera.

This model does not consider many effects of
a real camera such as geometric distortions or
blurring of unfocused objects caused by lenses
and finite-sized apertures. Therefore, the pinhole
camera model (perspective camera) can only be
used as a first-order approximation of the trans-
formation from a 3D scene to a 2D image. Its
validity depends on the quality of the camera and
the camera calibration process.



960 Perspective Camera

Lens distortion might be the major effect that
the pinhole camera model does not take into
account. It is sufficiently small if a high-quality
camera is used and thus can be neglected. Oth-
erwise, less distortion can be modeled through
camera calibration and can be compensated for
by applying suitable coordinate transformations
on the image coordinates (lens distortion correc-
tion). Because of that, the pinhole camera model
(perspective camera) has been the most popu-
larly used camera model in computer vision and
computer graphics to describe the relationship
between a 3D scene and an image.

Theory

Figure 1 shows a pinhole camera model. There is
a planeF at a fixed distance f in front of an image
plane I. The image plane is also called the retinal
plane. An ideal pinhole C is found in the planeF.
Assume that an enclosure is provided so that only
light coming through the pinhole can reach the
image plane. The rays of light emitted or reflected
by an object pass through the pinhole and form an
inverted image of that object on the image plane.
Each point in the object, its corresponding image
point, and the pinhole constitute a straight line.
This kind of projection from 3D space to a plane
is called perspective projection.

The geometric model of a pinhole camera thus
consists of an image plane I and a point C on
the plane F. The point C is called the optical
center, or the focus. The plane F going through
C and parallel to I is called the focal plane.
The distance between the optical center and the
image plane is the focal length of the optical
system. The line going through the optical center
C and perpendicular to the image plane I is called
the optical axis, and it intersects I at a point
c, called the principal point. It is clear that the
focal plane is also perpendicular to the optical
axis. Experiences have shown that such a simple
system can accurately model the geometry and
optics of most of the modern Vidicon and CCD
cameras [1].

Now let us derive the equations for the
perspective projection. The coordinate system

(c, x, y) for the image plane is defined such
that the origin is at the point c (intersection of
the optical axis with the image plane) and that
the axes are determined by the camera scanning
and sampling system. We choose the coordinate
system (C, X, Y, Z) for the three-dimensional
space as indicated in Fig. 1, where the origin is
at the optical center and the Z-axis coincides the
optical axis of the camera. The X- and Y-axes are
parallel, but opposite in direction, to the image
x- and y-axes. The coordinate system (C, X, Y,
Z) is called the standard coordinate system of
the camera, or simply camera coordinate system.
From the above definition of the camera and
image coordinate system, it is clear that the
relationship between 2D image coordinates and
3D space coordinates can be written as

x

X
= y

Y
= f

Z
. (1)

It should be noted that, from the geometric
viewpoint, there is no difference to replace the
image plane by a virtual image plane located on
the other side of the focal plane (Fig. 2). Actually
this new system is what people usually use. In the
new coordinate system, an image point (x, y) has
3D coordinates (x, y, f), if the scale of the image
coordinate system is the same as that of the 3D
coordinate system.

Perspective Projection Matrix
The relationship between 3D coordinates and
image coordinates, Eq. (1), can be rewritten lin-
early as

⎡
⎣

U

V

S

⎤
⎦ =

⎡
⎣

f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦

⎡
⎢⎢⎣

X

Y

Z

1

⎤
⎥⎥⎦ , (2)

where x = U/S and y = V/S if S 	= 0.
Given a vector x = [x, y, · · · ]T, we use x̃ to

denote its augmented vector by adding 1 as the
last element. Let P be the 3 × 4 matrix
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Perspective Camera, Fig. 1 The pinhole camera model

Perspective Camera,
Fig. 2 The pinhole camera
model with a virtual image
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P =
⎡
⎣

f 0 0 0
0 f 0 0
0 0 1 0

⎤
⎦ ,

which is called the camera perspective projection
matrix. Given a 3D point M = [X,Y, Z]T and its
image m = [x, y]T, the formula (Eq. 2) can be
written in matrix form as

sm̃ = PM̃, (3)

where s = S is an arbitrary nonzero scalar.

For a real image point, S should not be 0.
We now make an extension to include the case
S = 0. If S = 0, then Z = 0, i.e., the 3D point
is in the focal plane of the camera, and the
image coordinates x and y are not defined. For all
points in the focal plane but the optical center,
their corresponding points in the image plane
are at infinity. For the optical center C, we have
U = V = S = 0 (i.e., s = 0) since X = Y = Z = 0.

The reader is referred to the entry � “Cam-
era Parameters (Intrinsic, Extrinsic)” for
description of more general form of perspective
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projection matrix with intrinsic and extrinsic
parameters [2].
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� Perspective Transformation

Perspective Transformation
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Synonyms

Perspective camera; Perspective projection

Related Concepts

�Affine Camera
� Projection
�Weak Perspective Projection

Definition

A perspective transformation, also called per-
spective projection, is a mathematical model to
describe the projection performed by a perspec-
tive camera. Under perspective projection, an
object that is closer to the camera appears larger
than those farther away. See entry � “Perspective
Camera” for details.

PhongModel

� Phong Reflectance Model

Phong Reflectance Model

Ping Tan
School of Computing Science, Simon Fraser
University, Vancouver, BC, Canada

Synonyms

Phong model

Related Concepts

�Radiance
�Reflectance Models
� Specularity, Specular Reflectance

Definition

The Phong reflectance model calculates the
amount of reflected radiance at a surface point
according to the lighting, viewing, and surface
normal directions at that point. It is characterized
by modeling specular reflection as an exponential
function of a cosine function, which provides
moderate accuracy in a simple formulation. It
was introduced by Bui Tuong Phong in 1973 in
his PhD thesis and later published in [1].

Background

When light arrives at surfaces, it can be reflected,
refracted, scattered, or absorbed. Reflectance
models are mathematical functions that describe
the interactions between light and surfaces.
Usually, they are functions of lighting, viewing,
and surface normal directions. There are various

https://doi.org/10.1007/978-3-030-63415-5_526
https://doi.org/10.1007/978-3-030-63415-5_537
https://doi.org/10.1007/978-3-030-63415-5_538
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reflectance models at different levels of precision
and complexity. Most reflectance models include
components describing diffuse and specular
reflection, respectively.

The Phong model is a reflectance model
widely used for its simplicity and moderate
accuracy. It represents reflected light as a linear
combination of ambient, diffuse, and specular
components. This model is characterized by its
treatment of the specular component, which is
designed based on the empirical observation that
glossy surfaces have focused highlight that falls
off quickly and matt surfaces have extended
highlight that falls off slowly. Like many other
reflectance models, this model can be applied
to create computer graphic images or to infer
scene properties such as shape and material from
observed image intensities.

L

N
H

R

Vqr
qiqi

Phong Reflectance Model, Fig. 1 Directions involved
in the definition of Phong model. N is the surface normal
direction. L and V are the lighting and viewing direction,
respectively. H is the bisector of L and V . R is L mirrored
about N

Theory

Light reflected by a surface can be roughly
divided into specular and diffuse reflection.
The specular reflection, or highlight, accounts
for the light reflected directly at the surface
without entering it. Specular reflection typically
is concentrated within a small angle in space. In
comparison, diffuse reflection accounts for the
light that enters the surface and is distributed
more uniformly in all reflected directions.

The observed intensity of specular reflection
depends on the viewing direction. For exam-
ple, an ideal reflector like a mirror reflects light
toward a direction R that is the incident direction
L reflected about the surface normal direction
N . Hence, the reflectance is zero except when
the viewing direction V is coincident with R.
Here, R is within the same plane as L and N ,
and the angle between R and N is the same
as that between L and N . Mathematically, R

can be computed as R = 2N(N · L) − L.
All these directions are represented by unit vec-
tors. The geometric relations of these unit vectors
are shown in Fig. 1.

Most real surfaces are not ideal reflectors.
The Phong model can be used to describe their
specular reflection. According to this model, the
specular reflection is centered at the direction R

and falls off as an exponential function of cosine
of the angle between R and V . In other words, the
specular reflection is proportional to (V ·R)n. The
parameter n > 0 is known as shininess, which
determines the spread of the specular reflection. It

L L

N N

R R

n=5
n=25

n=25

n=80

qr qrqi qi

Phong Reflectance Model, Fig. 2 Left: the specular reflection of Phong model. Right: the specular reflection of
Blinn-Phong model
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is larger for glossy surfaces and smaller for matt
surfaces. Specular reflections with different shini-
ness are illustrated on the left of Fig. 2. When
n = ∞, it represents reflection of ideal reflec-
tors. It should be noticed that Phong model is
designed based on empirical observations rather
than physics. There are other physically based
reflectance models for specular reflection such as
Cook-Torrance model [2], Ward’s model [3], and
Ashikhmin’s model [4] that are more complicated
and accurate than the Phong model.

The complete Phong reflectance model repre-
sents reflected light as a linear combination of
ambient, diffuse, and specular components. The
ambient component is a small constant account-
ing for weak scattered light in the scene. The
diffuse component is represented by Lambert’s
model. Hence, the reflected radiance is com-
puted as

I = kaIa + kdId max(N · L, 0)

+ ksIs (max(V · R, 0))n . (1)

Here, Ia, Id , and Is are parameters to indicate
the illumination power for the ambient, diffuse,
and specular components. ka, kd , and ks are
scalars that determine the relative strength of
these three components. In color images, these
parameters are vectors with different values at
different wavelengths.

Variations There is a well-known variation of
the Phong model, the Blinn-Phong model, which
is proposed by Jim Blinn [5]. In the Blinn-Phong
model, the term V ·R is replaced by N ·H . Hence,
the reflected radiance is

I = kaIa + kdId max(N · L, 0)

+ ksIs (max(N · H, 0))n
′
, (2)

where H = L+V
||L+V || is the bisector of L and V ,

which is often called “halfway vector.” When V is
in the same plane as N and L, the angle between
N and H is half of that between V and R. Hence,
it is a close approximation to the original Phong
model. This model is illustrated on the right
of Fig. 2. The Blinn-Phong model is originally

proposed to speed up the computation of the
Phong model. It is the default shading model
in OpenGL [6] for its efficiency. According to
an experimental evaluation [7] with measured
reflectance data from real surfaces, the Blinn-
Phong model can represent real data more accu-
rately than the original Phong model.

Application

The Phong reflectance model computes reflected
radiance according to the 3D shape, viewing,
and lighting configurations. Like many other
reflectance models, it is widely used to create
computer graphic images. It also provides an
analytical tool for radiometric image analysis to
understand scene properties such as shape and
material from measured image intensities.
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Photo-Consistency

Yasutaka Furukawa
Google Inc., Seattle, WA, USA

Synonyms

Photometric consistency function

Related Concepts

�Camera Calibration
�Multi-baseline Stereo

Definition

Photo-consistency is a scalar function that mea-
sures the visual compatibility of a 3D reconstruc-
tion with a set of calibrated images.

Background

Automated 3D reconstruction from images has
been a core computer vision problem for years.
Multi-view stereo (MVS) is a process of recon-
structing 3D structure of an object or a scene from
multiple images [1]. MVS assumes calibrated
photographs, where camera calibration is often
achieved by a calibration chart (e.g., checker-
board patterns) or a Structure from Motion algo-
rithm [2].

In principle, how MVS algorithms recover 3D
information is the same as how humans perceive
depths with their two eyes, that is, triangulation
from correspondences. Therefore, the critical first
step of MVS is to establish feature correspon-
dences across multiple input images, where a
robust mechanism is necessary to evaluate the
goodness of such feature correspondences, which

is the role of a photo-consistency function. In a
sense, an MVS reconstruction process is to carve
out a 2D surface in a 3D space, where photo-
consistency scores are high.

Theory and Examples

Photo-consistency f(p, V) is a scalar function,
which measures the visual compatibility of a
given 3D reconstruction p with a set of images
V. Typically, p is a 3D point (p ∈ R

3), while more
sophisticated methods use an oriented point (a 3D
point with a surface normal) [3, 4] or a bounded
surface region such as a triangle in a polygonal
mesh model [5, 6]. For the moment, the visibility
information V is assumed to be given for p, where
details about visibility estimation are referred to
a later section.

A simple photo-consistency function at a 3D
point p is defined as follows: p is projected into
each visible image in V, and the similarity of
image textures near their projections is computed
as photo-consistency. Instead of comparing a sin-
gle pixel color in each image, a set of pixel
colors in each local image region is compared for
robustness. More concretely, let Ai

uv be the τ × τ

rectangular grid of pixel intensities centered at
the image projection of p in image Ii ∈ V (see
Fig. 1). Note that u and v are indexes of the
rectangular grid, and τ = 5, 7 is typically used.
Photo-consistency f(p, V) can be defined as

f (p, V ) =
∑

Ii ,Ij ∈V

∑
u,v

(
Ai
uv − Aj

uv

)2
, (1)

which evaluates a sum of squared differences
(SSD) of intensities for every pair of images. SSD
score is often used for binocular stereo problems,
where a pair of images have a narrow baseline
and are acquired under the same or similar light-
ing conditions. The main reasoning is that the
SSD score is sensitive to illumination changes
and non-Lambertian effects, which is often the
case of MVS problems. Instead of SSD, many
MVS algorithms employ the Normalized Cross
Correlation measure, which has shown to be more
robust:
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f (p, V ) =
∑

Ii ,Ij ∈V

∑
u,v

(
Ai
uv − Āi

uv

) (
A

j
uv − Ā

j
uv

)
√(∑

u,v

(
Ai
uv − Āi

uv

)2
) (∑

u,v

(
A

j
uv − Ā

j
uv

)2
) . (2)

Āi
uv is the average intensity of

{
Ai
uv

}
. Another

advantage of the NCC score is that the value is
guaranteed to be in a range [−1.0, 1.0], where 0.6
or 0.7 is usually a good photo-consistency score,

while 0.3 or 0.4 is bad. For a color image, where
Ai
uv represents a 3D vector (red, green, blue), the

formula slightly changes its form

f (p, V ) =
∑

Ii ,Ij ∈V

∑
u,v

(
Ai
uv − Āi

uv

)T ·
(
A

j
uv − Ā

j
uv

)
√(∑

u,v

∣∣Ai
uv − Āi

uv

∣∣2)
(∑

u,v

∣∣∣Aj
uv − Ā

j
uv

∣∣∣2
) ,

where the average intensity Āi
uv is computed for

each color channel independently.
This photo-consistency function works well

for a simple scene, where images in V have simi-
lar resolutions, distances to the point p, and rota-
tional parameters. For more complicated scenes,
more appropriate evaluation is necessary, which
is to first sample a rectangular grid of 3D points
{pij} around p in the 3D space, project all the
points into each image, and sample pixel colors
at their projections (see Fig. 2). Typically, 3D
points are sampled on a plane that is front parallel
to one of the images in V (Ii in Fig. 2), so that
image distances between the adjacent projected
points are roughly one pixel. Sampled pixel col-
ors are used in exactly the same way as before
(Eq. 1)–(3) to compute photo-consistency scores.
Figure 2 illustrates that this photo-consistency
function takes into account camera rotation (I2)
and resolution (I3) differences to sample colors at
the correct pixel locations.

Advanced Photo-Consistency Functions
For robustness, photo-consistency functions often
measure the similarity of image textures over a
local region instead of at a single point. In this
sense, a natural input to the function should be a
3D point plus some spatial support. One example
is an oriented point, which is a combination of
a 3D location (R3) and a surface normal (S2),
which essentially uses a tangent plane approxi-

mation of a surface to sample 3D points [3, 4].
Pons and Vu et al. initialize their reconstruction
as a polygonal mesh model, and in the process of
iterative mesh deformation, photo-consistency is
evaluated on the polygonal mesh model directly
[5, 6].

Visibility Estimation
Photo-consistency requires visibility information
V as an input. However, it is not easy to obtain
good visibility without a 3D model, simply
because occlusion information is unknown.
Similarly, without visibility, it becomes difficult
to obtain accurate 3D reconstructions – chicken-
and-egg problem. Furthermore, visibility should
reflect certain photometric factors such as
specular highlights – images with specular
highlights should be excluded from V. For-
tunately, researchers found out that accurate
visibility is not necessary to obtain a successful
3D reconstruction. Instead, a “robust” photo-
consistency function can be used to ignore
outlier images in V, while overestimating V.
There are several approaches in robustifying
photo-consistency functions. One approach
is to ignore images whose photo-consistency
function scores are worse than a predetermined
threshold, which is simple but has proven to
work well [3]. Vogiatzis and Hernández et al.
proposed more sophisticated approach that
handles outliers systematically, which boosted
their reconstruction accuracy [7].
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p τ = 3

I1

I2

I3

A11
1 A12

1 A13
1

A21
1

A11
2
A12

2
A13

2

A21
2 A11

3
A12
3
A13
3

A21
3

Photo-Consistency, Fig. 1 A simple photo-consistency evaluation starts by projecting a 3D point p into each visible
image and collecting pixel colors

{
Ai
uv

}
in each local image region

{pij}

I1

I2

I3
1

τ = 3

Photo-Consistency, Fig. 2 More appropriate and accurate photo-consistency evaluation is to sample points in 3D,
then project them into each image, which handles differences in camera rotations (I2) and resolutions (I3) properly
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Definition

Photogrammetry is the science and technology
of obtaining information about the physical envi-
ronment from images, with a focus on applica-
tions in surveying, mapping, and high-precision
metrology. The aim of photogrammetry is to
provide automated or semiautomated procedures
for these engineering tasks, with emphasis on a
specified accuracy, reliability, and completeness
of the information.

Background

Photogrammetry is a long-established engineer-
ing discipline, which dates back to the middle of
the nineteenth century, shortly after the invention
of the photographic process. It has its roots in sur-
veying, predominantly for aerial mapping of the
earth’s surface, although terrestrial “close-range”
photogrammetry has always been an integral part
of the discipline. Traditionally photogrammetry
has emphasized 3D geometric modeling of the
environment, since in an interactive setting this
implicitly encompassed the semantic interpreta-

tion of the image content. The use of geospatial
imagery with the primary purpose to infer seman-
tic object properties from radiometric intensities
is often referred to as “remote sensing.” Today
these two fields overlap in terms both of method-
ology and of applications.

Methods
The goal of photogrammetry is to extract geomet-
ric and semantic information from imagery.

In terms of geometric processing methods,
the photogrammetric measurement process is
essentially an application of structure-from-
motion theory [1], mostly (but not exclusively)
with calibrated camera intrinsics. In fact a large
part of the theory of camera calibration and
camera orientation was first developed and
applied in photogrammetry, including camera
orientation from 2D-to-3D correspondences [2,
3], relative camera orientation from 2D-to-2D
correspondences [4], and bundle adjustment [5].

The methods for semantic interpretation
comprise the entire armamentarium of image
understanding, from early rule-based systems [6]
through model-based object recognition [7]
to statistical learning with modern Bayesian
techniques [8]. For an overview on classical
techniques, see [9].

Deep learning is used for geometric and inter-
pretation tasks with remote sensing data for land
cover classification [10, 11], with aerial images
[12] for building extraction or with laser data
[13–15] for interpreting terrestrial environments.

Due to the complexity of the task, only semi-
automatic methods have so far found their way
into commercial software and operational pro-
duction pipelines.

Relation to Computer Vision
Since the advent of digital images in the
1970s, a main goal has been to automate
the photogrammetric process, and photogram-
metrists have developed or adopted pattern
recognition methods for tasks such as interest
point extraction [16], feature matching and
dense stereo reconstruction [17, 18], semantic



Photogrammetry 969

P

segmentation [19], and object category detec-
tion [20]. Thus, the science of photogrammetry
is increasingly converging with computer vision
and image understanding. Still photogrammetry,
being a practical engineering discipline, tends to
put greater emphasis on a defined (usually high)
accuracy, reliability, and completeness than on
total automation.

Recent Developments in Sensor
Technology
Since the 1990s, range images captured directly
with airborne and terrestrial laser scanners have
gained popularity with both practitioners and
researchers in geo-information and have become
a second main data source of photogrammetry
[21].

Hand in hand with that development, it has
become a standard routine to determine approx-
imate or even final sensor orientations directly,
rather than indirectly from observed points. The
practice of observing the position and attitude of
the camera during flight missions directly with a
highly accurate GNSS (global navigation satellite
system) receiver and IMU (inertial measurement
unit) is known as direct georeferencing.

With the advent of high-resolution satellite
sensors, spaceborne images from both optical and
microwave sensors nowadays also serve as input
data for the photogrammetric process. Mobile
mapping systems mounted on vehicles have led to
a growing interest in large-scale photogrammetric
mapping from the ground.

Classical photogrammetric textbooks are [22],
[23], and most recently [24].

Application

The most important application field of
photogrammetry is topographic mapping of
the earth’s surface at different scales. The
overwhelming majority of all existing maps
have been created through photogrammetric
processing of airborne or spaceborne imagery.
However, photogrammetry is also prominent for

small-scale mapping down to single villages,
mines, etc. A related endeavor has been the
mapping of other planets in the solar system
from images taken by spacecraft.

Non-topographic applications for a long
time occupied only a small fraction of the
market. They used to be subsumed under the
term “close-range photogrammetry,” the main
application fields being industrial metrology
(e.g., aircraft, ships, vehicle parts), construction,
cultural heritage documentation, forensics, and
the medical domain.

Although mapping remains the dominant
application area, the boundary between pho-
togrammetry and 3D computer vision is
dissolving more and more. Today tasks like
visual driver assistance and robot navigation,
motion capture, virtual and augmented reality,
object tracking, etc. are by many also considered
applications of photogrammetry.

Technology transfer between academia and
industry has always been well established in
photogrammetry, via the International Society for
Photogrammetry and Remote Sensing (ISPRS,
http://www.isprs.org) and the long-running bien-
nial Photogrammetric Week (http://www.ifp.uni-
stuttgart.de/publications/phowo.html).
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Definition

A photometric invariant is a function of an image,
or a function of a set of images, that is discrimi-
native with respect to some scene properties and
independent of others.

Background

J. J. Gibson was the first to write extensively
about computing useful “invariants” from
visual observations. According to Gibson, an
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invariant represents the extraction of persistent
scene properties despite changing environmental
conditions and therefore enables the concurrent
awareness of both persistence and change
within a scene. While he does not use the term
“photometric invariant,” he describes the concept
quite well [10]:

. . . the illumination can change in amount, in
direction, and in spectral composition. Some fea-
tures of any optic array in the medium will change
accordingly. There must be invariants for perceiv-
ing surfaces, their relative layout, and their relative
reflectances. They are not yet known, but they
almost certainly involve ratios of intensity and
color among parts of the array.

The notion of a photometric invariant is dif-
ferent from, but related to, the mathematical def-
inition of an invariant. In mathematics, an invari-
ant is a property that remains unchanged when
certain transformations are applied, whereas a
photometric invariant is a function of an image
(or set of images) that persists despite changes in
certain scene properties and conditions.

Photometric invariants are also related to, but
distinct from, image decompositions based on
the explicit separation of an image according to
scene characteristics, such as shading and light-
ness [11], diffuse and specular reflectance [12],
or illuminant and spectral reflectance [1]. Com-
puting such explicit decompositions is ill-posed,
whereas photometric invariants can be computed
directly from image intensities, often in closed
form. In fact, it is not uncommon for photometric
invariants to be used as initialization for iterative
image decomposition techniques.

Photometric invariants are used to discrimi-
nate among the scene properties of interest while
eliminating dependence on other “distractors.”
Insensitivity and discriminability are usually in
conflict, and in general one cannot obtain one
without sacrificing some of the other. For exam-
ple, it can be shown that there is no photometric
invariant computed from grayscale imagery that
can exactly discriminate between surface shapes
under variable lighting, because given any two
images, one can always find a single surface to

explain them [2]. A high-performing invariant,
therefore, is one that provides a balance between
insensitivity and discriminability and does so in
a way that is appropriate for the desired visual
task and operating environment. For this reason,
performance of photometric invariants should be
conducted empirically, preferably using imagery
that is representative of the end goal.

Theory

An early discovery of a photometric invariant was
made by Koenderink and van Doorn [13], who
considered matte (Lambertian) surfaces under
directional lighting. Under these conditions, cer-
tain stationary points of image isophotes cling
to parabolic surface points and therefore provide
information about surface shape that does not
depend on the locations of light sources.

Since then, the community has discovered a
diverse collection of photometric invariants, usu-
ally written as simple functions of intensity and
color at the image projection of one or more
scene points. Each of these invariants is derived
by assuming models for lighting, reflectance, and
spectral sensors and by doing so in the context
of an imaging model that expresses the measure-
ments in the kth channel as

Ik (x, L)=
∫

	

∫
S2

ck (λ)L (λ, ω) f
(
x, λ, n, ω, ω′)

max (0, 〈ω, n〉) dωdλ.

(1)

Here, {ck(λ)}k = 1 . . .K are the spectral
responses of a camera with K channels; f(x,
λ, n, ω, ω′) is the spatially varying, spectral
bidirectional reflectance distribution function
(BRDF) at the back projection of image point
x evaluated with surface normal n ∈ S

2, light
direction ω ∈ S

2, and view direction ω′ ∈ S
2;

and L(λ, ω) is the (spatially uniform) spectral
radiance distribution that illuminates the scene.
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The photometric invariants differ in their
assumptions about the sensors {ck(λ} as well
as their assumptions regarding reflectance and
lighting. In all cases, reflectance and lighting
models are based on factored representations
that separate the variation with respect to spatial
position, wavelength, and angular geometry:

f (x, λ, θ) =
N∑

n=1

mn (x, λ) gn (θ) , (2)

with θ � {n, ω, ω
′ } defined to simplify notation

and

L (λ, ω) =
M∑

m=1

em (λ) �m (ω) . (3)

The assumptions that underlie each derivation
provide some intuition for when each invariant
might be usefully employed. These assumptions
are categorized below; the resulting invariants
are listed in Tables 1 and 2; and visualizations
for some of them appear in Fig. 1. Note that
empirical evaluations of many of these invariants
reveal them to be useful when the underlying
assumptions are only approximately satisfied.

Reflectance model. Common factored models
are the Lambertian model (N = 1, g1(θ ) = con-
stant in Eq. 2) and the dichromatic model with
a neutral interface (N = 2, g1(θ ) = constant,
m2(x, λ) = m2(x)). Invariants for both of these
cases are listed separated in Tables 1 and 2.

Lighting model. The most common instance
of the factored lighting model has the same spec-
trum in every direction (M = 1 in Eq. 3), with the
associated spectrum e1(λ) being either arbitrary,
“even” (e1(λ) = constant, so that L(λ, ω) = �(ω)),
or Planckian and thus completely defined by its
color temperature T: e1(λ; T).

Color or grayscale. Invariants can be com-
puted from multiple spectral measurements (usu-
ally three), which are denoted by {Ik(x)}k = 1,2,3

in Tables 1 and 2. In some cases, they are com-
puted from a single spectral measurement (a
“grayscale” image), which is denoted by I(x).

Sensor model. For invariants based on color,
the three sensors {ck(λ)}k = 1,2,3 may be arbitrary,

or they may be delta functions (i.e., “narrow-
band” sensors): ck(λ) = δ(λ − λk). In between
these two extremes are possibly overlapping sen-
sors that nonetheless support spectral relighting
by independent per-channel gain factors. Such
sensors are said to support von Kries adaptation,
and, as described in [3], they must satisfy a tensor
rank constraint when integrated against all pairs
of material spectral (mn(·, λ)) and lighting spectra
(em(λ)) that could possibly exist in the operating
environment.

Single point or multiple points. Invariants
can be computed independently at each pixel, or
they may be computed by combining measure-
ments at distinct image points (denoted by I(xi)
in the tables).

Single image or multiple images. Similarly,
invariants can be computed from measurements
in a single image or by combining measurements
from multiple images captured under distinct
lighting environments (denoted by I(x, Lj) in the
tables).

Application

Photometric invariants can be viewed as an
alternative to learning-based approaches that
attempt to model the appearance of persistent
scene properties (shape, reflectance patterns, etc.)
over all configurations of lighting, viewpoint, and
other distractors. Instead of modeling this appear-
ance variation, they “hard-code” an invariance,
perhaps at the expense of discriminability. When
applicable, the main advantages of invariant-
based approaches are their computational
efficiency and reduced requirement for training
data. Whether a learning-based approach or an
invariant-based approach (or a combination of
the two) is more desirable depends on the visual
task and the operating environment.

Multiple-point photometric invariants that are
independent of geometry θ and light intensity
�(ω) isolate surface reflectance information, and
since they do not depend on light and viewing
conditions, they may improve performance on
object recognition and image indexing tasks [7,
15]. In some cases, performance may be further
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Photometric Invariants, Table 1 Photometric invari-
ants for surface reflectance of the form f(x, λ, θ) =
m(x, λ)g(θ ), which includes the Lambertian model as a

special case. Each is independent of certain scene prop-
erties and derived from assumed models of lighting and
sensors

Expression Independent of Comments
I1(x)

I1(x)+I2(x)+I3(x)
Geometry θ

Intensity �(ω)
– “Normalized RGB”
– Related: chromaticity, hue, saturation
– Reference: e.g., [9]
– Lighting: L(ω, λ) = �(ω)e(λ)
– Sensors: general

I (x1)
I (x2)

Geometry θ

Intensity �(ω)
Spectrum e(λ)

– “Reflectance ratio”
– x1, x2 must have same surface normal
– References: [7, 15]
– Lighting: L(ω, λ) = �(ω)e(λ)
– Sensors: von Kries

I1(x1)I2(x2)
I1(x2)I2(x1)

Geometry θ

Intensity �(ω)
Spectrum e(λ)

– Reference: [9]
– Lighting: L(ω, λ) = �(ω)e(λ)
– Sensors: von Kries

α log I1
I3

+ β log I2
I3

Geometry θ

Intensity �(ω)
Spectrum e(λ)

– (α1, α2) depend on camera sensors
– Reference: [5]
– Lighting: L(ω, λ) = �(ω)e(λ with e(λ)
Planckian
– Sensors: narrow band(

∂I2
∂x

I1 + I2
∂I1
∂x

)
/I 2

1 Geometry θ

Intensity �(ω)
Spectrum e(λ)

– Reference: [17]
– Sensors: c1(λ) and c2(λ) must
approximate
Gaussian spectral derivatives

I (x,L1)
I (x,L2)

Material m(x, λ) – “Photometric ratio”
– Reference: [17]
– Lighting: Lj(ω, λ) = �j(ω)e(λ)
– Sensors: general

Photometric Invariants, Table 2 Photometric invari-
ants for surface reflectance of the form f(x, λ, θ) =
m1(x, λ)g1(θ ) + m2(x)g2(θ), which includes the dichro-

matic model with neutral interface as a special case. Each
is independent of certain scene properties and derived
from assumed models of lighting and sensors

Expression Independent of Comments

atan
( √

3(I2−I3)
(2I1−I2−I3)

)
Geometry θ

Intensity �(ω)
– “Hue”
– Reference: [4]
– Lighting: L(ω, λ) = �(ω)
– Sensors: general

α1I1 + α2I2 + α3I3 Intensity �(ω)
Component m2(x)g2(θ)

– “Color subspace”
– {αi} depend on e(λ), sensors
– Reference: [18]
– Lighting: L(ω, λ) = �(ω)e(λ); generalizes to
M > 1 in Eq. 3
– Sensors: general

I1(L1)I2(L2)−I2(L1)I1(L2)
I1(L1)I3(L2)−I3(L1)I1(L2)

Geometry θ – “Ratio of determinants”
– Generalizes to BRDF with N > 2 in Eq. 2
– Reference: [14]
– Lighting: Lj(ω, λ) = �j(ω)e(λ)
– Sensors: general



974 Photometric Invariants

Photometric Invariants, Fig. 1 Visualization of photo-
metric invariants (bottom row) computed from one or two
input images (top row). From left to right that based on

normalized RGB, Planckian lighting [5], ratio of determi-
nants [14], and color subspaces [18]

improved by using an invariant that is also inde-
pendent of illuminant spectrum [9].

Invariants that are computed at a single
point and are independent of geometry can
also improve material-based segmentation and
boundary detection by reducing the occurrence
of false boundaries due to shading and specular
highlights. In some cases, this can be achieved
from a single image [8, 18], and additional
images can be used to handle more complex
BRDFs [14].

The Planckian invariant [5] has the unique
property of being independent of illuminant spec-
trum while also being computed at a single point.
For this reason, it can be used for detecting
and removing shadows in images that contain
mixtures of distinct illuminant spectra [6].

Photometric invariants that are computed at
a single point and are independent of material
properties can be used to extract surface shape
information. For diffuse surfaces, photometric
ratios [17] can provide access to surface curvature
information independent of surface albedo, and
for surfaces described by the dichromatic model,
color subspaces [18] can isolate the diffuse com-
ponent and therefore improve the performance
of shape-from-shading, photometric stereo, and
a variety of other Lambertian-based vision algo-
rithms.

Finally, as mentioned above, photometric
invariants may be used as initialization for
explicit image decompositions. The color
subspace invariant [18] (and one closely related
to it [16]) can be useful when decomposing an
image into its diffuse and specular components,
and the reflectance ratio [7, 15] is closely related
to retinex-like algorithms for decomposing an
image into shading and lightness [11].
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Related Concepts

�Active Stereo Vision
�Camera Response Function
�Lambertian Reflectance
� Shape from Shading

Definition

Photometric stereo is the problem of recovering
the three-dimensional shape of a stationary scene

given a collection of images of the scene taken
under variable lighting conditions.

Background

The amount of light reflected by an object is a
function of the incoming light, the shape of the
object, and its material properties. As a function
of shape, the light reflected by each surface point
depends on the inclination of the surface (the
surface normal) at that point relative to the light
sources. Early work in photometric stereo [1]
assumes that the lighting conditions are given
and that the material properties of the object
fare known. A collection of images of an object
taken under varying lighting conditions (with
both the object and camera stationary) can then
be used to compute the normals to the surface of
the object and subsequently its three-dimensional
shape. More recent photometric stereo methods
can additionally recover the lighting conditions
and material properties as part of the process.

Photometric stereo (PS) can be contrasted
with shape from shading (SFS), the problem of
recovering the shape of an object from a single
image [2]. The problem of SFS is generally
ill posed, and its solution typically requires
complete knowledge of lighting and material
properties. In addition, SFS is often cast as a
partial differential equation (PDE), and so its
solution relies on boundary conditions. These
boundary conditions generally require knowledge
of the 3D coordinates of a subset of the points
on the sought shape. In contrast, by using a
collection of images, PS generally leads to
more robust solutions; it can often be solved
also in the absence of knowledge of lighting
conditions or material properties requires no
boundary conditions, and its solution is generally
algebraic.

Theory

Let I1(x, y), I2(x, y), . . . Ik(x, y), (x, y) ∈ Ω ⊂
R

2, be a collection of k images depicting a
stationary scene pictured by a stationary camera.
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Suppose further that each image Ii is taken under
different lighting, which is denoted by Li . The
objective of photometric stereo is to recover the
3D shape of the scene, represented by z(x, y),
which depicts the depth value z at each point
(x, y).

In general terms, let n̂(x, y) ∈ S2 denote
the normal to the surface at (x, y, z(x, y))

(‖n̂(x, y)‖ = 1), and let ρ(x, y) denote the
reflectance properties of each scene point. The
light reflected by a scene point (x, y, z(x, y))

is determined by the surface normal n̂(x, y),
the reflectance properties ρ(x, y), and the
lighting conditions Li and can thus be expressed
as a function R(n̂, ρ, Li). (Note that this
expression does not model the effects of cast
shadows and interreflections, as these effects
depend more globally on the shape of the
observed object.) Each image then provides
a constraint on the surface normal of the
form Ii(x, y) = R(n̂, ρ, Li). With sufficiently
many images, these constraints can be used to
recover the surface normal at each point, n̂, and,
subsequently, the surface z(x, y).

For a concrete example, due to the pioneering
work of Woodham [1], consider a scene com-
posed of a matte surface whose reflectance is
described by the Lambertian model, and suppose
that in each image, the scene is illuminated by
a single directional source. Specifically, a direc-
tional source (also referred to as a point source
at infinity) is expressed by a vector li ∈ R

3

in the direction of the source whose magnitude
represents the light intensity. According to the
Lambertian law, the light reflected by a point
(x, y, z(x, y)) with normal n̂(x, y) and albedo
ρ(x, y) (the albedo of a scene point is a mate-
rial property representing the fraction of incident
light that is reflected by the surface at that point),
is given by the following:

Ii(x, y) = ρ(x, y)lTi n̂(x, y) (1)

where the superscript T denotes the transpose
operator. This law is applicable as long as
lTi n̂(x, y) ≥ 0; otherwise, the point is in shadow
(commonly referred to as attached shadow).
Note that for this equation, it is assumed that the

camera is calibrated so that the amount of light
recorded by the camera is identical to the amount
of light reflected by the surface.

Suppose now that k such images I1, . . . ., Ik

are obtained, in which the scene is illuminated by
directional light sources l1, . . . lk , respectively.
Let Ii ∈ R

p be a vector arrangement of the pixel
intensities in Ii(x, y), Ii = (Ii(x1, y1), . . . , Ii

(xp, yp))T , where p denotes the number of dis-
crete pixels in Ω . Let M = [I1, . . . Ik]T be a k×p

matrix whose rows include the intensity measure-
ments in all images. Let L = [l1, . . . , lk]T be a
k×3 matrix containing all k light sources. Finally,
let S = [ρ(x1, y1)n̂(x1, y1), . . . , ρ(xp, yp)

n̂(xp, yp)] be a 3 × p matrix whose columns
contain the surface normals of the scene
points scaled by the corresponding albedo
(with the columns of M and S organized
in correspondence). M is referred to as the
measurement matrix, L as the lighting matrix,
and S as the shape matrix. Then, the Lambertian
law for all the input images can be summarized
by the following matrix equation:

M = LS. (2)

Assuming that all the lighting directions and
intensities are known (so L is known) and that L

includes three linearly independent rows, then S

can be determined by solving the linear, possibly
overdetermined equation system above. In partic-
ular, if k = 3 and L is invertible, then

S = L−1M. (3)

Once S is recovered, the surface normals of
the scene can be recovered by normalizing each
column of S, i.e., let si denote the i’th column of
S and then

n̂(xi, yi) = si

‖si‖ (4)

ρ(xi, yi) = ‖si‖. (5)

Note that the collection of surface normals
of a differentiable shape uniquely determines the
depth values of its bounding surface up to an
additive constant.
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Integrability
To further obtain an explicit recovery of the depth
values z(x, y), integrability (or consistency) of
the recovered normals can be imposed. For inte-
grability, the surface z(x, y) is assumed to be
differentiable, and the normals can be expressed
in terms of its derivatives. Under these conditions,
it can be readily shown that the normal at a point
(x, y, z(x, y)) is given by the following:

n̂(x, y) = (zx, zy,−1)√
z2
x + z2

y + 1
(6)

where zx and zy represent the two partial deriva-
tives of z, zx = ∂z/∂x and zy = ∂z/∂y. An esti-
mate of these partial derivatives can be obtained
from the recovered shape matrix S using the
ratios zx = −s1/s3 and zy = −s2/s3, where s =
(s1, s2, s3)

T is the column of S corresponding
to point (x, y). Finally, a forward discretization
of the partial derivatives is used to obtain the
following first-order difference equations:

z(x + h, y) − z(x, y) = hzx(x, y) (7)

z(x, y + h) − z(x, y) = hzy(x, y) (8)

where h is the (known) mesh size (often h = 1).
This is an overdetermined system of linear equa-
tions in z(x, y) and can be solved to least squares
up to an additive constant which can be deter-
mined, e.g., by setting z(x0, y0) = 0 for some
point (x0, y0).

Simultaneous Recovery of Shape and Light
The method above assumes that the intensity and
direction of the light sources are known and uses
this information to recover the shape and albedo
of the object. However, these derivations can still
be used even when the lighting conditions are
unknown. The main observation is that in the
absence of noise, the measurement matrix M has
rank 3, and so it can be factored to recover the
lighting and shape up to a certain ambiguity [3].
In addition, when rank(M) exceeds 3, replacing it
by its rank 3 approximation can eliminate at least
some of the noise in the image.

To see that rank(M) is (at most) 3, note that it
is a product of the k × 3 lighting matrix L with
the 3 × p shape matrix S (Eq. 2). Hence, M can
be factored using singular value decomposition
(SVD) as follows. Let M̂ be the best rank 3
approximation to M , i.e., M̂ = argmin

M̃
‖M̃ −

M‖F , where ‖.‖F denotes the Frobenius norm
of a matrix. M̂ can be readily computed using
the SVD decomposition of M . Next, let M̂ =
UΣV T be the SVD decomposition of M̂ and
define L̂ = U

√
Σ and Ŝ = √

ΣV T . Evidently,
this decomposition is nonunique, as any 3 × 3
non-singular matrix A can be used to obtain
another valid decomposition, i.e.,

M̂ = (L̂A−1)(AŜ). (9)

Equation (9) therefore defines a nine-parameter
ambiguity – the entries of A. This ambiguity can
be reduced by imposing integrability [4], as is
explained below.

To impose integrability, the following equa-
tion can be used:

zxy = zyx (10)

which holds when z is twice differentiable,
zxy = ∂2z/(∂x∂y), and zyx = ∂2z/(∂y∂x). Let
A denote the ambiguity matrix, so that S = AŜ.
Then

zx = − s1

s3
= −aT

1 ŝ

aT
3 ŝ

(11)

zy = − s2

s3
= −aT

2 ŝ

aT
3 ŝ

, (12)

where (s1, s2, s3)
T is a column in the unknown

shape matrix S, ŝ is the corresponding column in
the recovered matrix Ŝ, and aT

i denotes the i’th
rows of A (1 ≤ i ≤ 3). Plugging these into (10),

∂

∂y

(
aT

1 ŝ

aT
3 ŝ

)
= ∂

∂x

(
aT

2 ŝ

aT
3 ŝ

)
, (13)

a linear equation in the components of AT A is
obtained for every column in S̃:
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aT
1 ŝy aT

3 ŝ − aT
1 ŝ aT

3 ŝy = aT
2 ŝx aT

3 ŝ − aT
2 ŝ aT

3 ŝx
(14)

with ŝx = ∂ŝ/∂x and ŝy = ∂ŝ/∂y. This (gener-
ally overdetermined) system of equations deter-
mines A up to a generalized bas-relief (GBR)
transformation [4], i.e., a depth estimate ẑ(x, y)

is obtained that is related to the original depth
z(x, y) by the following:

ẑ(x, y) = αx + βy + γ z(x, y) (15)

with arbitrary constants α, β, and γ .

Photometric Stereo with General Lighting
The derivations above assume that each of
the input images is produced by illuminating
the object by a single directional source.
More recently, Basri et al. [5, 6] proposed an
approach to extend this and to handle Lambertian
objects illuminated by arbitrary combinations
of directional and extended light sources. Their
algorithm is based on the observation that the
light reflected by Lambertian objects, as a
function of the surface normal, is a low-pass
filtered version of the surrounding ambient
light [7–9]. This allows one to describe the
images of Lambertian objects, with great
accuracy, as linear combinations of a small set
(typically four or nine) of basis images, which are
determined by the low-order spherical harmonic
functions of the surface normal. This linear
representation can now be exploited to construct
factorization algorithms to photometric stereo
under general lighting. The experimental results
below show an example of a reconstruction
achieved with this approach.

Application

Three-dimensional reconstruction is one of the
fundamental tasks of computer vision. Photomet-
ric stereo is a reliable method for reconstruction.
It is however used mostly in "laboratory condi-
tions" that are partly controlled. This is because

its required input should include a stationary
scene under variable lighting conditions.

Open Problems

The majority of existing photometric stereo meth-
ods (see review in [10]) are designed to han-
dle Lambertian objects. Initial work has been
devoted to handling objects that exhibit specu-
lar reflectance, either simply by removing high-
lighted pixels [11] or by a detailed modeling
of reflectance [12, 13]. Another challenge is to
model the effects of cast shadows and inter-
reflections (see, e.g., [14]). More recent work
uses learning-based techniques to approach these
problems, most often using deep learning archi-
tectures [15–18]. Finally, a challenging problem
is to recover the 3D shapes of objects when the
objects are moving with respect to a light source.
Preliminary work in this subject can be found
in [19–23].

Experimental Results

Figure 1 shows a photometric stereo reconstruc-
tion obtained with the algorithms proposed in
[5, 6] and a comparison to a laser scan of the
same object. In this experiment, 13 images of
a camel-shaped doll were obtained under vary-
ing lighting conditions. The lighting setting was
general and involved a number of sources along
with reflections from surrounding objects. A fac-
torization method was applied to recover both
the lighting and the three-dimensional shape of
the doll. Two results are shown. In the first case,
reflectance was approximated by a first-order
harmonic approximation. This approximation is
analogous to assuming that the lighting setting
includes a single directional source in addition
to a uniform, ambient source. In the second case,
reflectance was approximated by the more accu-
rate, second-order harmonic approximation. The
figure shows a subset of the input images and
the laser-scanned reconstruction along with the
shapes and albedos produced by the photometric
stereo algorithms. It can be seen that both meth-
ods managed to recover the shape of the camel
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Photometric Stereo, Fig. 1 Top row: five (of 13) images
used for reconstruction. Second row: the shape of the
camel obtained with a laser scanner (from left to right:
surface, albedo, and albedo-painted surface) and an image
taken from roughly the same view (right). Third row:

reconstruction using the first-order method (including
shape, albedo, albedo-painted shape, and difference from
the laser-scanned surface). Bottom row: reconstruction
using the second-order method (From [5, 6], used with
permission)

correctly (the results produced by the second-
order method are slightly more accurate), as can
be judged by comparing the reconstructions to the
shape produced by the laser scanner.
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Synonyms

Schott noise; Shot noise

Related Concepts

� Sensor Fusion

Definition

Photon noise, also known as Poisson noise, is
a basic form of uncertainty associated with the
measurement of light, inherent to the quantized
nature of light and the independence of pho-
ton detections. Its expected magnitude is signal
dependent and constitutes the dominant source of
image noise except in low-light conditions.

Background

Image sensors measure scene irradiance by
counting the number of discrete photons incident
on the sensor over a given time interval. In
digital sensors, the photoelectric effect is used
to convert photons into electrons, whereas film-
based sensors rely on photosensitive chemical
reactions. In both cases, the independence of
random individual photon arrivals leads to photon
noise, a signal-dependent form of uncertainty that
is a property of the underlying signal itself.

In computer vision, a widespread approxima-
tion is to model image noise as signal indepen-
dent, often using a zero-mean additive Gaus-
sian. Though this simple model suffices for some
applications, it is physically unrealistic. In real
imaging systems, photon noise and other sensor-
based sources of noise contribute in varying pro-
portions at different signal levels, leading to noise
which is dependent on scene brightness. Under-
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standing photon noise and modeling it explicitly
is especially important for low-level computer
vision tasks treating noisy images [2, 8] and for
the analysis of imaging systems that consider
different exposure levels [1, 4, 10] or sensor
gains [5].

Theory

Individual photon detections can be treated as
independent events that follow a random tem-
poral distribution. As a result, photon counting
is a classic Poisson process, and the number of
photons N measured by a given sensor element
over a time interval t is described by the discrete
probability distribution

Pr (N = k) = e−λt (λt)k

k! , (1)

where λ is the expected number of photons per
unit time interval, which is proportional to the
incident scene irradiance. This is a standard Pois-
son distribution with a rate parameter λt that cor-
responds to the expected incident photon count.
The uncertainty described by this distribution is
known as photon noise.

Because the incident photon count follows
a Poisson distribution, it has the property
that its variance is equal to its expectation,
E[N] = Var[N] = λt. This shows that photon
noise is signal dependent and that its standard
deviation grows with the square root of the signal.

In practice, photon noise is often modeled
using a Gaussian distribution whose variance
depends on the expected photon count [1, 2, 4,
5, 8, 10],

N ∼ N (λt, λt) . (2)

This approximation is typically very accu-
rate. For small photon counts, photon noise is
generally dominated by other signal-independent
sources of noise, and for larger counts, the central
limit theorem ensures that the Poisson distribu-
tion approaches a Gaussian.

Since photon noise is derived from the nature
of the signal itself, it provides a lower bound on

the uncertainty of measuring light. Even under
ideal imaging conditions, free from all other
sensor-based sources of noise (e.g., read noise),
any measurement would still be subject to photon
noise. When photon noise is the only significant
source of uncertainty, as commonly occurs in
bright photon-rich environments, imaging is said
to be photon limited.

In general, the only way to reduce the effect of
photon noise is to capture more signal. The ratio
of signal to photon noise grows with the square
root of the number of photons captured,

√
λt .

This shows that photon noise, while growing in
absolute terms with signal, is relatively weaker
at higher signal levels. However, in order to
capture more photons, longer exposure times are
required, and the number of photons captured in a
single shot is limited by the full well capacity of
the sensor. Note that while squeezed coherence
lasers and other forms of nonclassical light can
achieve amplitude noise below the photon noise
limit [11], such exotic lighting configurations
are typically not relevant for computer vision
applications.

In digital sensors, a related source of noise that
also follows a Poisson distribution is dark current
noise. Dark current refers to “phantom” photon
counts due thermal energy causing the sensor to
release electrons at random. While photon noise
is a property of the signal itself, dark current
comes from the embodiment of the sensor and
depends on both temperature and exposure time.

Application

Photon noise is inherent to the measurement of
light, has no parameters to be calibrated, and is
independent of other noise sources. As a result,
the effect of photon noise on imaging can be char-
acterized using the radiometric response function
that relates the photon count and the expected
pixel intensity [3, 6].

To handle the signal dependence caused by
photon noise, a first step is to estimate the noise
variance for each pixel. This can be approximated
in a straightforward way by inverting the forward
model for imaging noise [5, 6, 9]. For increased
accuracy, several other factors can be taken into
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account as well: the coupling between signal and
noise leads to a recursive estimation [3]; pixels
near saturation have reduced variance which can
lead to bias [2, 8]; and on-camera processing such
as demosaicking may introduce spatial correla-
tion [8].

Image processing methods that explicitly
incorporate more realistic signal-dependent
models of noise, either calibrated [3, 5, 6] or
inferred from the image [7, 8], adapt naturally
to pixels of different intensities. As a result,
for a variety of computer vision tasks such
as denoising [3, 8] and edge detection [7],
these methods can perform better than those
handicapped by the assumption of scene-
independent noise.

An alternative approach for handling signal-
dependent noise is to transform the image
using a variable-stabilizing transformation that
amounts to applying per pixel nonlinearities that
effectively reduce the signal dependence [2, 9].
Because the transformed signal approximates
one with signal-independent noise, it may be
processed using methods that assume a simpler
noise model.
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Definition

The pinhole camera model is the basic camera
model used in computer vision. Its name origi-
nates from the concept of pinhole camera and it
models perspective projections.

Background

The pinhole model is the basic camera model
used in computer vision. Its name stems from
the concept of pinhole camera [1] (also related
to the camera obscura [2]): usually, a closed
box into which a single tiny hole is made with
a pin, through which light may enter and hit a
photosensitive surface inside the box (cf. Fig. 1).
Pinhole cameras allow to take photographs of
objects, which usually requires long exposure
times due to the small aperture. The principles
behind pinhole cameras and the camera obscura
have been known, at least partially, since the
fourth century BC [2].

The pinhole camera model mimics the geo-
metrical projection carried out by a pinhole cam-
era, as follows (see also Fig. 1). The entire optics
and aperture of a camera are reduced to a single
point – the optical or center of projection. The
photosensitive surface is assumed to be planar
and is, geometrically, represented by the so-called

image plane. To determine where a 3D point is
depicted in the image, it suffices to construct a
straight line from that point and going through
the optical center (one may consider this as a light
ray). This line’s intersection with the image plane
gives the desired image point of the 3D point. A
key property of this model is that points that are
collinear in 3D get imaged to image points that
are also collinear.

The pinhole model is simple and neglects
many aspects of true cameras. For instance, aper-
tures are finite and thus most 3D points are not
imaged in a unique image point but within a
finite area of the image plane. Likewise, pixels
in digital cameras gather incoming light across
finite areas. Thus, the pinhole model does not
tell anything about blur, point spread functions,
quantization, or other effects such as vignetting
that occur in true cameras.

Other effects that are not modeled by it are
radial or other geometric distortions, which usu-
ally occur with small focal lengths and that vio-
late the above property of mapping collinear
points in 3D to collinear points in the image. To
handle such distortions, the pinhole model may
be extended by adding models for radial distor-
tion for instance, or by using different models
altogether, such as becomes necessary for fisheye
cameras. Despite the above limitations, the pin-
hole model is already a good approximation for
many regular cameras.

Theory

Above, the geometrical projection mapping
described by the pinhole model is described.
Before translating this into an algebraic
formulation, a few notations are introduced.
The focal length f is the distance between the
center of projection and the image plane. The
line passing through the optical center and that
is orthogonal to the image plane is called optical
axis. The intersection point of the optical axis
and the image plane is the principal point. These
definitions are only based on the optical center
and the image plane. When considering digital
cameras, one in addition needs to take into
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Center of
projection

Image plane

Pinhole CameraModel, Fig. 1 Left: sketch of a pinhole
camera. Right: the two basic constituents of the pinhole
camera model are the center of projection and the image
plane. The true image plane shows inverse images of
objects. To ease drawings, a common convention is to

replace the true image plane by a virtual one between the
center of projection and the scene, at the same distance
from the center as the original image plane and parallel to
it. This image plane produces an identical image, but that
is “correctly” oriented

account the layout of pixels in the image plane.
The usual layout consists of a regular rectangular
grid (although other arrangements, such as log-
polar ones, were also experimented with [3, 4]):
pixels are arranged into rows and columns. Let ku
and kv be the column-wise and row-wise density
of pixels, respectively (e.g., measured as number
of pixels per millimeter). The value of ku/kv is
also called the aspect ratio of a camera. Usually,
the two densities are equal to one another, that is,
cameras have a unit aspect ratio, but especially
with video cameras, this should not be taken for
granted.

The following coordinate systems are used
to derive algebraic expressions for the pinhole
model (Fig. 2). The camera coordinate system
has its origin in the optical center. A usual con-
vention is to define the Z-axis as being coincident
with the camera’s optical axis and the X/Y-axes
to be parallel to the columns and rows of pixels
in the image plane. The image coordinate sys-
tem has its origin in the principal point. The x-
axis and y-axis are parallel to the X-axis and Y-
axis, respectively, of the camera coordinate sys-
tem. Typically, the camera and image coordinate
systems use metric units. To represent the final
digital image, one defines the pixel coordinate
system. Its origin usually lies in one of the image
area’s corners. Let its coordinates, relative to
the image coordinate system, be (−x0, −y0).
The two axes, u and v, are parallel to x and
y, respectively; their unit is (number of) pixels,
counted row-wise and column-wise, respectively.

Note that the above choices of coordinate systems
are not unique; other choices are possible, for
example, for the X and Y axes and the origin of the
pixel coordinate system, although care should be
taken to use right-handed systems. The following
equations will have to be adapted accordingly.

With the above definitions, the projection car-
ried out by the pinhole camera model can be
formulated as follows. Let (X, Y, Z) be the coor-
dinates of a 3D point, expressed in the cam-
era coordinate system. From the comparison of
similar triangles, one obtains the image point’s
coordinates in the image coordinate system as:

x = f
X

Z
y = f

Y

Z
.

The coordinates in the pixel coordinate system
are obtained by applying a translation corre-
sponding to the shift of origin and scalings cor-
responding to the conversion from metric coordi-
nates to pixel ones:

u = ku (x + x0) = kuf
X
Z

+ kux0

v = ku (y + y0) = kvf
Y
Z

+ kvy0.

It is often useful to express these projection
equations using homogeneous coordinates for the
3D and image points:
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Pinhole Camera Model, Fig. 2 The components of the pinhole camera model. The distance between the center of
projection and the image plane is the focal length f

⎛
⎝

x

y

1

⎞
⎠ ∼

⎛
⎝

kuf 0 kux0 0
0 kvf kvy0 0
0 0 1 0

⎞
⎠

⎛
⎜⎜⎝

X

Y

Z

1

⎞
⎟⎟⎠ , (1)

where ∼ signifies equality up to scale of vectors
or matrices.

It is common to replace the above “metric”
entities f, ku, kv , x0, and y0 by equivalent ones
given in pixel units:

αu = kuf αv = kvf u0 = kux0 v0 = kvy0.

Here, αu and αv measure the focal length in
number of pixels (column-wise and row-wise,
respectively) and (u0, v0) are the coordinates
of the principal point given in the pixel coordi-
nate system. These four entities are also called
the intrinsic parameters of the pinhole camera
model, since they describe what happens “inside”
a camera. They are often grouped together in an
upper triangular so-called calibration matrix:

K =
⎛
⎝

αu 0 u0

0 αv v0

0 0 1

⎞
⎠ . (2)

Sometimes, a fifth intrinsic parameter is added
to the model – a so-called skew parameter
that replaces the zero in the first row of the
calibration matrix and which allows to model
pixel layouts with skewed axes or cameras with
desynchronized pixel readout. With modern
digital cameras, these issues can usually be
neglected though.

In order to model cameras in motion or multi-
camera systems, one needs to describe the posi-
tion and orientation of a camera. To do so, a final
coordinate system, the world coordinate system,
is considered. This may be attached to a physical
object, for instance, an object to be inspected;
otherwise, it can be assumed arbitrarily, as long
as it remains fixed throughout an application. Let
t be the coordinates of the center of projection
in the world coordinate system and let the rota-
tion matrix R represent the camera’s orientation.
Then, a 3D point is mapped from the world to the
camera coordinate system, as:

⎛
⎜⎜⎝

X

Y

Z

1

⎞
⎟⎟⎠ =

(
R −Rt
0T 1

)
⎛
⎜⎜⎝

Xw

Yw

Zw

1

⎞
⎟⎟⎠ , (3)
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where as above, homogeneous coordinates are
used.

Putting together (Eq. 1) and (Eq. 3), we get
the complete expression of the pinhole camera
model:

⎛
⎝

x

y

1

⎞
⎠∼

⎛
⎝

kuf 0 kux0 0
0 kvf kvy0 0
0 0 1 0

⎞
⎠
(

R −Rt
0T 1

)
⎛
⎜⎜⎝

Xw

Yw

Zw

1

⎞
⎟⎟⎠.

With the above definitions of intrinsic param-
eters and calibration matrix (Eq. 2), this can be
written more compactly as:

⎛
⎝

x

y

1

⎞
⎠ ∼ KR (Id3 − t)︸ ︷︷ ︸

P

⎛
⎜⎜⎝

Xw

Yw

Zw

1

⎞
⎟⎟⎠ ,

where Id3 is the 3 × 3 identity matrix. The 3 × 4
matrix P is called projection matrix or camera
matrix.

The projection expressed by the pinhole model
is a perspective projection. Even simpler camera
models exist in the form of orthographic or other
affine projections.

Application

The pinhole camera model, like any other camera
model [5], can be used to infer geometrical infor-
mation about an imaged scene, from one or more
images. Some of the most common applications
are sketched below. It is usually assumed that a
camera is calibrated prior to an application, that
is, that its intrinsic parameters are known through
a camera calibration procedure. Most camera
calibration procedures utilize a reference object
of known shape, a calibration grid. However,
there also exist approaches for self-calibration (or
autocalibration or on-line calibration) that allow
to compute the intrinsic parameters directly from
images of an unknown scene.

Pose estimation refers to the computation of
an object’s position and orientation relative to a
camera, or vice-versa. Here, it is usually assumed

that the object’s shape is known and the camera
calibrated. Motion estimation is the determina-
tion of the camera’s motion between two or
more acquisitions; this is possible even if the
scene is unknown, that is, if it does not contain
any reference object of known shape or type.
Motion estimation usually requires some amount
of image matching, that is, the determination of
projections of the same scene feature in differ-
ent images. 3D modeling is usually done from
two or more images of a rigid scene and also
usually requires image matching, although excep-
tions exist, such as shape-from-shading, pho-
tometric stereo, and interactive single-view 3D
modeling.

Note that none of these applications is specific
to the pinhole model, although the theory under-
lying them has most extensively been studied for
this model, as parts of perspective multi-view
geometry [6]. It is also reminded, as said above,
that the pinhole model neglects many aspects
of image formation and does not model non-
perspective image distortions. A camera model,
be it the pinhole or another one, should only
be used in an application if it is sure that it is
appropriate for the camera used.
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Synonyms

Blackbody radiator; Thermal radiator

Definition

The Planckian locus as it relates to color is the
locus of points in a color space that would be
followed by an incandescent blackbody radiator
as its temperature changes. This locus is typically
described in the CIE x, y or CIE u′, v′ chromatic-
ity spaces.

Background

The CIEXYZ color space is defined by

X = k

∫
λ

x̄(λ)i(λ)r(λ)dλ

Y = k

∫
λ

ȳ(λ)i(λ)r(λ)dλ

Z = k

∫
λ

z̄(λ)i(λ)r(λ)dλ, (1)

where k denotes a normalization factor that is
set to 683 lumens/Watt in the case of absolute
colorimetry and to 100/

∫
λ
ȳ(λ)i(λ)dλ for rela-

tive colorimetry and i(λ) denotes the spectrum of
an illuminant. The functions x̄(λ), ȳ(λ), z̄(λ) are
the CIE color-matching functions.

In the case of relative colorimetry, this means
that a value of Y = 100 denotes the brightest
color – the illuminant reflecting from a perfect
reflecting diffuser [1, 3].

Planck’s radiation law describes the spectral
distribution of radiant excitance Me as a function
of wavelength λ and temperature T and is given

by Planck’s Law:

Me(λ, T ) = c1

λ5

[
exp

(
c2
λT

)
− 1

] (2)

where c1 = 2πhc2 = 3.74183 × 10−16W.m−2,
c2 = h.c/k = 1.4388 × 10−2m.K (c is the
speed of light in vacuum, h is Planck’s constant,
k is Boltzmann’s constant), and the excitance is
defined in units of W.m−3.

Radiation emitted from blackbody radiators
is defined by Planck’s Law and is among the
few radiations from sources that has its relative
spectral power distribution match those of illu-
minants. In other words, blackbody radiators are
the select few sources of illumination that match
standard illuminant spectral power distributions –
this may be seen as valid in the case of the
equivalence of standard illuminant “A” and a
blackbody with a temperature 2,856 K. Radiation
from these radiators is typically seen as “white”
to human observers. This makes it important to
plot a locus of these points in a space such as
CIEXYZ, or shown in a simpler view such as
the two-dimensional space of the CIE x, y chro-
maticity diagram. The locus of points followed
by illuminants defined by Planck’s Law is called
the Planckian locus. Figure 1 shows the spectral
power distribution of various blackbody radiators
from 1,000 to 10,000 K, with all spectral power
distributions normalized to unity at 560 nm. As
the blackbody gets hotter (T increases), one can
see that the red content in the spectrum reduces
and the blue content increases – an indication
of the color as would be seen by the human
observer.

The projection of the emission spectra of var-
ious blackbody radiators onto the CIEXYZ color
space via Eq. (2), and then further projected onto
the CIE x, y 2-D chromaticity diagram, is shown
in Fig. 2, for the CIE 2-degree observer [1]. One
can see that the cooler blackbody radiators (lower
T ) are more red in their appearance (as given
by their location in the chromaticity diagram)
and the hotter blackbody radiators (higher T ) are
more blue in their appearance – the chromaticity
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diagram is red at the bottom right, green at the
top, and blue at the bottom left.
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Related Concepts

�Multi-baseline Stereo

Definition

Plane sweeping is a multi-view stereo algorithm
notable for its efficiency, especially on modern
graphics hardware (GPU).

Background

Plane sweeping addresses the stereo problem,
which is to find the surface of a scene, given two
or more calibrated views of the scene. Assuming
that surfaces are Lambertian and that there are
no occlusions, a point on the surface will have
the same appearance in all views. Therefore, a
conceptual solution to the stereo problem is to
find the points that maximize photoconsistency.

This can be done by searching along the viewing
rays for some image. The distance to the surface
along the ray is called depth, and the set of all
depths is called a depth map. Plane sweeping is
a technique for efficiently organizing this search
by sweeping a plane through space. Projecting
all points on a plane into a perspective camera
is simply a homography transformation, which
can be executed efficiently on modern graphics
hardware (GPU) [8].

Binocular stereo would typically rectify a pair
of images such that searching along a viewing ray
is equivalent to looping over the pixels in a row of
the other image [6]. But three or more views, in
general, cannot be rectified simultaneously. Plane
sweeping avoids this problem by operating in
3D, searching along rays, one plane at a time,
instead of searching image pixels. However, the
proper sampling of 3D space is an issue. The
image signal is sampled in 2D image space, and
the sampling of the plane sweep must map to a
similar sampling rate in image space. The right
sampling is important for both correctness and
efficiency.

Theory

The input to the plane sweep algorithm is a set
of views. Let a view be defined as an image plus
camera parameters. For simplicity, choose one
view to be a reference view. All other images
will be compared against the reference image
to measure photoconsistency. The output of the
algorithm will be a depth map for the reference
view. Let the reference camera be identity, that is,
its camera matrix is

Pref = Kref

⎡
⎣

1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎦ . (1)

Let I = {I1, I2, . . . , IN} be a set of matching
views whose cameras are P = {P1,P2, . . . ,PN },
where

Pi = Ki [Ri ti] . (2)
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Let a plane π be defined as

π = [
nx ny nz d

]ᵀ
. (3)

The plane can be swept through space in
direction n by varying d. For a given plane, photo-
consistency will be evaluated on the plane at each
point. This can be accomplished by projecting all
images onto the plane and comparing the image
values. Ultimately, it is desired to compute pho-
toconsistency in the image to be reconstructed,
and so, each image will be projected onto the
plane and then into reference image. This trans-
formation is known as a plane homography. The
equation for the plane homography from Iref to Ii
via the plane π is

Hπ
i = Ki

(
Ri − tinᵀ

d

)
K−1

ref . (4)

The homography Hπ
i maps from the reference

image to the image i so that pixel (x, y) in the
warped image can be computed as

Ĩi (x, y) = I

(
x̃

w̃
,

ỹ

w̃

)
where

[
x̃ ỹ w̃

]ᵀ

= Hπ
i

[
x y w

]ᵀ
. (5)

The photoconsistency at any point in the ref-
erence view can be computed using any number
of matching scores. Common choices include
the sum of squared differences (SSD), sum of
absolute differences (SAD), and normalized cross
correlation (NCC). These scores are window-
based because they operate over a neighborhood
or correlation window. This produces a more
robust matching score at the expense of some
overextension artifacts [3]. As an example, the
SSD can be computed as follows:

SSD (x, y) =
N∑

i=1

∑

(i,j)∈N

(
Iref (x + i, y + j)

−Ĩi (x + i, y + j)
)2

.

(6)

The SSD is actually a photoconsistency cost,
and it will be minimized by points near the sur-
face. Defining the neighborhood N in the space
of the reference image assumes that points in
the neighborhood are on the plane π . For scenes
with highly slanted surfaces, better results can be
achieved by sweeping the plane through space
in different directions (different n). Searching
all directions is slow, but in some cases, like
man-made scenes, a few dominant directions are
sufficient [1].

Equation 5 assumes that all matching views
are unoccluded, but this is often not the case,
and an occluded view can produce an arbitrarily
high matching cost. Because plane sweeping can
use many views, occlusion handling amounts to
summing over some subset of views likely to
be unoccluded. In the case where the camera
path is close to linear, the subset can be
either the previous or the subsequent half-set
of matching views. A more general solution
is to assume the best 50% of scores are
unoccluded [4].

While sweeping the plane through space, the
plane with the best photoconsistency score is
recorded per pixel. The depth for each pixel can
be computed by intersecting the viewing ray with
the recorded best plane. The warped images at
various positions in the plane sweep are shown
in Fig. 1.

Proper sampling of the 3D space during the
plane sweep is important for both correctness
and efficiency. Sampling too sparsely could miss
the photoconsistency optimum, and sampling
too densely is inefficient. During the plane
sweep, the plane should move so that the motion
of the warped images is no more than 1 pixel
(or the desired image sampling rate). Not all
pixels move at the same rate, but measuring the
corner pixels of the reference image is sufficient.
Since the planar warps are linear, the interior
points are linear combinations of corners and are
therefore bounded. Sampling can be sped up by
using downsampled images, effectively making
pixels larger. Varying the resolution as well as
varying the set of matching images (to control the
baseline) can be used to control the sampling rate
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Plane Sweeping, Fig. 1 Plane sweep of a synthetic scene. As the plane sweeps from front to back, you can see the
alignment of the teapot followed by the mat behind it

to achieve an optimal balance between efficiency
and precision [2].

Application

The plane sweep algorithm has been popular for
several real-time and large-scale systems, where
efficiency is a key concern. The Urbanscape sys-
tem is able to process VGA resolution video
at over 30 frames per second, allowing it to
reconstruct entire cities from street-level video in
a matter of hours [1, 5].

A plane sweep approach was used in [7] for
real-time view synthesis which allowed virtual
views of the scene to be rendered from camera
positions that were not physically captured. This
algorithm differs slightly from plane sweep stereo
in that the most consistent color, rather than the
depth, is returned.
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Synonyms

Image-Based Rendering

Related Concepts

�Light Field
�Lumigraph

Definition

The plenoptic function describes the intensity of
each light ray in the world as a function of visual
angle, wavelength, time, and viewing position.

Background

The term plenoptic was derived from the word
roots plen- (plenus) and opti- (optos), which
means full/complete and eye/view, respectively.
The plenoptic function was coined by Bergen and
Anderson [1] to describe the intensity of each
light ray in the world as a function of visual
angle, wavelength, time, and viewing position. It
captures everything that can potentially be seen

by an optical device and is related to previous
concept of J. J. Gibson’s “the structure of ambient
light” and Leonardo da Vinci’s “visual pyramid.”

A light ray in the space can be parameterized
by a position with three dimensions and a
direction or visual angle in two dimensions
(Fig. 1). Therefore, together with the wavelength
and time dimensions, the plenoptic function
is a seven dimensional (7D) function. The
study of early vision is thus closely related to
the sampling and processing of the plenoptic
function. For instance, the derivatives of the
plenoptic function with the position and time
give usual information regarding the motion
of objects, etc. In computer vision and video
processing, the wavelength domain is simplified
by sampling in the (R, G, B) color system.
Consequently, images and videos are just two-
dimensional (2D) and three-dimensional (3D)
special cases or samples of the 7D plenoptic
function. Based on this function, theoretically,
novel views at different positions and time can
be reconstructed from its samples, provided that
the sample rate is sufficiently high. Because of
the multidimensional nature of the plenoptic
function, various such simplifications called
image-based representations have been proposed
to render new views from the representations with
different complexity/functionalities trade-offs.
This is the foundation of image-based rendering
(IBR) without using geometry, and it usually
requires large amount of samples.

As the plenoptic function observed is a
consequence of the interaction of the light
sources with objects in the scene, which further
involve their geometries and surface properties,
there is considerable redundancy in the plenoptic
function, which can be further exploited
by estimating or measuring the geometry,
lightings, and surface properties of the scene
to different extent. Image-based representations
employing such modeling approach and auxiliary
information, called image-based modeling,
generally will provide improved user interaction
and require fewer samples for rendering. The
capturing, sampling, rendering, and processing
of the plenoptic function are important areas of
research in IBR and related applications such
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Plenoptic Function,
Fig. 1 Plenoptic function
as a light energy received

φ

θ

as computational photography, 3D/multiview
videos and displays, etc.

Theory

The amount or intensity of light along a ray is
measured in radiance which is the power trans-
mitted per unit area perpendicular to the direc-
tion of travel, per unit solid angle. Therefore,
the plenoptic function that describes the radi-
ance along light rays traveling in every direction
through every point, denoted by l, is in watts
(W) per meter squared (m2) per steradian (sr)
(W/(m2sr)).

The 7D plenoptic function can be parameter-
ized using different coordinate systems, such as
the familiar Cartesian, spherical, or cylindrical
coordinates system. For instance, if the position
V is parameterized by the Cartesian coordinates
(x, y, z) while the direction is parameterized by
the spherical coordinate (θ , φ) where θ and φ are
the elevation and azimuth angles, respectively, as
shown in (Fig. 1), the plenoptic function can be
written as l(x, y, z, θ , φ, λ, τ ) where λ and τ

denote respectively the wavelength and time. By
employing different parameterization and sim-
plification, different image-based representations
can be derived from the plenoptic function.

Representation
The conventional camera employs a lens to com-
press the light rays passing through an opening
called the aperture and obtain a 2D image by
placing an array of imaging sensors at the focal
plane of the lens. For static scene, one can rotate

the camera along the camera center and capture
the rays at a given position V with different eleva-
tion and azimuth angles. The plenoptic function
is then reduced to a panorama lV(θ , φ) with
two dimensions. Since the sensor array is usually
rectangular in shape, some rebinning or stitching
of the images is necessary [5, 19]. Moreover,
due to the finite field of view of cameras, the
samples may be incomplete near the two poles of
the sphere. This spherical set of rays can also be
projected on a cube or a cylinder, which provides
other convenient representation of panoramas. A
panoramic video can be obtained by employing
multiple closely spaced video cameras, instead of
rotating a single camera, to obtain a 3D plenopic
function lV(θ , φ, τ ) for dynamic scenes. The
close relationship between plenoptic function and
image-based rendering was due to McMillan and
Bishop [14] who proposed plenoptic modeling
using the 5D complete plenoptic function for
static scene l(x, y, z, θ , φ).

In the free space, the radiance along
rays remains constant. This one-dimensional
redundancy in the plenoptic function allows us
to reduce it to a 4D function for static scene,
which is called the light field [11] and lumigraph
[8] in computer graphics. A similar concept in
video communications is called the ray space [7].
The collection of light rays in a 4D static light
field can be parameterized in a number of ways.
A commonly used parameterization is the two-
plane parameterization, where a light ray in the
light field is parameterized as its intersections or
coordinates with two parallel planes. These rays
can be captured by taking a series of pictures
on a 2D rectangular plane, which results in an
array of images. Lumigraph differs from light
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Plenoptic Function, Fig. 2 A taxonomy of plenoptic functions

field in that geometry in form of depth map
is utilized to improve the rendering quality,
which paves the way to more sophisticated
representations in image-based modeling. For
more information, see the section on light field
and lumigraph. In [17], an outward facing camera
moving on a circle was used to capture a series
of densely sampled images, called concentric
mosaic, of a static scene. This gives rise to a
3D representation, which can be used to render
views inside the circle. A brief summary of these
classical representations is given in Fig. 2. See
the section on IBR for more illustration. These
parameterizations can be further simplified by
restricting the camera locations to line, line
segments [4, 23], circle, circular arc, etc. to
reduce hardware complexity of the capturing
system. This gives rise to a wide range of image-
based representations specified by different
camera geometry [18]. For time-varying or
dynamic scenes, similar parameterization can
be employed. However, light rays at the viewing
locations have to be captured continuously. This
can be done by an array of video cameras or
specially design capturing devices.

The plenoptic function of static scene has also
been extended to include the change of illumi-
nation direction as in the plenoptic illumination

function [21] at the expenses of increased data
samples to be recorded at different lighting direc-
tions. Since the effect of multiple light sources
is additive, one can relight a panorama or light
field with arbitrary lightings using such represen-
tations.

Plenoptic Cameras
The term plenoptic camera was coined by Ander-
son and Wang [2]. It is a camera that captures
a chunk of the optical structure of the light
impinging on the lens. Basically, it records infor-
mation about how the world appears from all
possible viewpoints within the lens aperture. The
plenoptic camera in [2] collects light with a single
lens, but it uses a microlens or lenticular array
at the image plane to redirect lights at certain
directions at this location as collected from the
lens aperture onto the sensor array (Fig. 3). Effec-
tively, the plenoptic camera captures the cylindri-
cal or spherical light fields over the lens aperture
as macropixels onto a sensor array, depending
respectively on whether a cylindrical or spherical
lenticular array is used. The same principle has
been used to produce autostereoscopic/multiview
3D display [10]. As a ray has to be mapped to an
imaging pixel and there may be several directions
to be recorded in a macropixel, the effective
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Plenoptic Function, Fig. 3 Plenoptic camera employing lenticular lens [2]

resolution of sensor array will be reduced. In
[2], a (5 × 5) macropixel is employed. One
can therefore expect such resolution reduction
will be more severe for spherical than cylindrical
lenticules.

Using the rays or light field recorded by the
plenoptic camera, one can render novel views by
arranging the light rays captured as in light field
rendering. The images captured by a cylindrical
lenticules is a 3D light field which support view-
point changes along a horizontal line, whereas
a spherical lenticules is able to capture a 4D
light field as demonstrated and refined later by
Ng et al. [16]. Moreover, as mentioned in [2], one
can measure the parallax corresponding to these
virtual displacements and derive depth estimates
for objects in the scene. Since the virtual dis-
placement, and hence the potential resolution of
depth, is somewhat limited by the size of the lens
aperture, it tends to be lower than using stereo
cameras.

The concept of inserting optical elements or
masks in the camera for 3D imaging dates back
nearly a century ago, called integral photography
or parallax panoramagrams and realized using a
fly-eye lens array or a slit plate [9, 13]. Basically,
these manipulate the 4D light field spectrum by
modulation or reparameterization to make it fit

into a 2D sensor array [2]. Another technique is to
make use of coded aperture or shutter as an opti-
cal modulator to capture stereoscopic images [6]
and more recently to preserve the high-frequency
components of motion-blurred images and to
provide high-dynamicrange. Another recent tech-
nique is to employ multiple capturing of the scene
sequentially by using beam splitters and camera
arrays where at each exposure, the image param-
eters such as lighting, exposure time, focus, view-
points, or spectral sensitivity are made different.
After processing, a quality image or additional
information is obtained. In [12], a coded aperture
implemented using a programmable liquid crystal
array, and multiple exposure was employed to
capture light field using a single camera and
derive the corresponding depth information.

Early systems for capturing light fields or
plenoptic function for large environmental model
usually involves camera arrays [4, 15, 20, 22, 23].
They are more expensive and difficult to build, as
compared with a single plenoptic camera. On the
other hand, due to their large baseline, it can also
support a larger range of possible view points.

Sampling and Compression
During the capturing and display of plenoptic
function, it is important to determine the
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Plenoptic Function, Fig. 4 Multiview display employing (a) lenticular array and (b) parallax barrier

number of samples required and how to obtain
a satisfactory rendering quality. This problem
was first studied for the light fields in [3]
using the concept of Fourier transform. For
Lambertian surfaces and rectangular sampling
(see the section on light field for a more
detailed treatment), it was found that the
maximum camera spacing in the v plane is

�tmax = 1/
(

2πK�vf
(

1
zmin

− 1
zmax

))
(assuming

the notation of the lumigraph), where zmin

and zmax denote respectively the minimum and
maximum depth values of the scene and K�v is
the maximum frequency of the light field in the v

plane, which depends on the maximum frequency
of texture variations Bv , the resolutions of the
sampling camera 1/�v, and the rendering camera
1/δv as K�v = min (Bv, 1/ (2�v) , 1/ (2δv)).
Similar results hold for the s plane. To reduce
the sampling rate and avoid dense sampling,
the value of K�v can be decreased by reducing
Bv and 1/(2�v), through prefiltering the light
field images, to the desired rendering resolution.
A more thorough discussion on the effect of
geometry on this minimum sampling density or
rate can be found in [18, 22]. It was found that the
sampling rate can be reduced by decomposing
the light fields into depth layers. Therefore,
recent research has focused on the estimation
of geometry of objects using stereo or multiview
vision techniques, special depth sensing devices,
and lighting techniques as in photometric
stereo.

Since the plenoptic function is a high-
dimensional and highly correlated signal, they
need to be compressed for efficient storage

and transmission. Comprehensive reviews of
the subjects are available at [18]. See also the
sections on image-based rendering and light field.

Multiview Displays
Multiview three-dimensional displays consist
of view-dependent pixels that reveal a different
color according to the viewing angle and offer
viewing of simple plenoptic function such
as light fields with limited number of views
without glasses. A view-dependent pixel can be
implemented by multiplexing the image pixels of
different views and rely on a lenticule arranged
in an array or slits arranged in parallel (parallax
barriers) to angularly separate (filter) them to
create the given color at the desired viewing
direction. This is illustrated in Fig. 4 for a display
using the lenticular array and parallax barriers,
respectively. To suppress the artifacts due to the
periodic lenticules and slits in automultiscopic
displays, they are slightly slanted so that pixels
of a given view are made nonuniform rather
than widely separated as periodic vertical lines.
Prefiltering has to been applied to generate the
nonuniform samples so as to avoid aliasing due to
down-sampling since all the pixels from all views
have to be multiplexed on the same display [10].

The bandwidth of such displays is also limited
because an object with increasing depth becomes
smaller, and smaller and hence it will eventu-
ally reach the minimum sampling interval and
aliasing will occur. To display a light field on
such multiview displays, one may also need to
bandlimit the plenoptic function [24] as studied
in plenoptic sampling [3].
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Application

The plenoptic function serves an important con-
cept for describing visual information in our
world. Its sampling analysis also serves as a basic
for designing plenoptic cameras and automulti-
scopic displays for capturing and displaying such
high-dimensional function, respectively.

Open Problems

The efficient capturing and processing of plenop-
tic function has always been a problem in visual
computing and vision research. Due to the multi-
dimensional nature of the plenoptic function and
its dependence on the scene geometry, the analy-
sis is very difficult because the function itself may
not even be bandlimited. Appropriate optical ele-
ments have to be used to reduce the aliasing due
to sampling. This makes a general analysis very
difficult, though some simple cases such as Lam-
bertian surface, occlusion, and lighting on light
field spectrum have been analyzed and found to
be useful in practice. Recent advances in compu-
tational photography, microelectronics, and pro-
cessing algorithms have accelerated the develop-
ment of more sophisticated capturing devices and
techniques to improve the rendering quality and
reducing the hardware complexity. However, how
to achieve high-quality renderings supporting a
wide range of view points in large scale environ-
mental modeling remains open.
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Related Concepts

� Fresnel Equations
� Polarized Light in Computer Vision
� Polarizer

Definition

Polarization refers to the orientation distribu-
tion of the electromagnetic waves that constitute
light rays. Light can assume a range of polar-
ization states including unpolarized (uniformly
mixed orientations), linearly polarized (fixed ori-
entations), and circularly polarized (rotating field
about the line of sight).

Background

The polarization of light is a property that relates
to the directionality of the constituent electric
and magnetic fields. In free space, light consists

of sinusoidally oscillating electric and magnetic
fields that are orthogonal to each other and to the
direction of propagation. In the case of perfectly
linearly polarized light, as shown in Fig. 1, the
two types of field remain in a fixed plane through
space. For unpolarized light, the orientations of
these planes are randomized through temporal
and spatial location. Circular and elliptical polar-
izations are also possible, whereby in a plane
normal to the ray, the field is radial at each point
with an orientation following a circular or ellip-
tical temporal pattern. Finally, it is possible to
have light consisting of combinations of polariza-
tion types. For example, partially linearly polar-
ized light involves fields oscillating in all direc-
tions but with one particular preferred direction.
Polarization can be caused by a range of phe-
nomena such as scattering, reflection, and trans-
mission through media interfaces. In most com-
puter vision and industrial applications, polarized
light is generated and measured using polarizing
filters.

Theory

Plane Wave Versus Photon Representation
Most texts on polarization regard light as an
electromagnetic wave and explain the various
phenomena via interactions of the constituent
electric and magnetic fields with matter or other
waves. However, in the realm of quantum optics,
light consists of streams of particles known as
photons. The details of this [1] are beyond the
scope of this entry, although it is worthwhile
noting a few basic points:

– Each photon has an associated energy that is
proportional to its frequency.

– The angular momentum of each individual
photon is quantized and can only take values
of −h/2π or +h/2π , where h is the Planck
constant [2].

– Circular polarization consists of identical
photons (for monochromatic light) all with
angular momentum vectors oriented either
parallel to the direction of propagation (left-
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Polarization, Fig. 1 A linearly polarized wave consist-
ing of vertical magnetic fields (B) and horizontal electric
fields (E)

or L-state) or antiparallel to the direction of
propagation (right- or R-state).

– Linear polarization (P-state) can be described
by a linear combination of L- and R-states.

For the remainder of this entry, the electromag-
netic wave description of light will be employed.

Linear Polarization
In linearly polarized light, the electric and mag-
netic fields assume a fixed orientation through
space, as shown in Fig. 1. For the remainder
of this entry, the focus will be on the electric
field (similar arguments to those below can be
applied to the magnetic component – see [3] for
a thorough description). In the simplest case, the
electric wave of linearly polarized light can be
described using a standard equation of a plane
wave:

E (z, t) = x̂E0 cos (kz − ωt) (1)

where the coordinate axes (x, y, z) and unit vec-
tors x̂, ŷ, and ẑ are defined in Fig. 1, E0 is the
amplitude of the wave, k is the wave number, ω

is the angular frequency, and t is time. A detailed
overview of the construction of the plane wave
equation and its manipulation can be found in [4].

The wave described by (1) is horizontally
oriented. Of course, it is possible to replace the
x̂ in (1) with ŷ, in which case, a vertical plane
polarized wave will be represented. In general,
an arbitrary case can be represented as a sum of
orthogonal components:

E (z, t) = Ex (z, t) + Ey (z, t) (2)

where

Ex (z, t) = x̂E0x cos (kz − ωt) (3)

Ey (z, t) = ŷE0y cos (kz − ωt + φ) (4)

Here, E0x and E0y refer to the amplitude compo-
nents in the x and y directions, respectively, and
φ is the phase difference between the components
(the absolute phases are irrelevant).

A wave is linearly polarized wherever φ =
mπ , where m is an integer:

E (z, t) = (
x̂E0x + ŷE0y

)
cos (kz − ωt) even m

E (z, t) = (
x̂E0x − ŷE0y

)
cos (kz − ωt) odd m

(5)

where
(
x̂E0x + ŷE0y

)
and

(
x̂E0x − ŷE0y

)
define

both the amplitude and direction of the electric
field (or plane of polarization) for each case.

Circular and Elliptical Polarization
The linear polarization case of (5) is essentially
a special case of the general electric field equa-
tion (2). A second special case is where φ =
π (m − 1/2), where m is, again, an integer. For
the case where E0x = E0y = E0, (4) can
be substituted into (2), to generate the following
wave:

E(z, t) = E0
(
x̂ cos (kz− ωt)+ ŷ sin(kz− ωt)

)

even m

E(z, t) = E0
(
x̂ cos (kz− ωt)− ŷ sin(kz− ωt)

)

odd m

(6)
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This case has two interesting properties.
Firstly, in contrast to the linearly polarized case
(5), the scalar amplitude is fixed at E0. Secondly,
the direction of the electric field is rotating at a
fixed angular velocity in a clockwise (for even m)
or anticlockwise (for odd m) direction relative to
the direction of propagation. An alternative way
to envisage this is that for a given point along
the line of propagation of the wave, the tip of
the electric field vector follows a circular motion
about that point. The clockwise case is referred
to in the optics literature as right circularly
polarized light, while the anticlockwise case
is called left circularly polarized. Note that a
superposition of right and left circularly polarized
light gives rise to a linearly polarized wave of
amplitude 2E0. This is conducive to the photon
angular momentum arguments discussed earlier.

For the general case, where E0x 	= E0y , and
for nonintegral values of m, the tip of the elec-
tric field vector follows an elliptical path. This
can be found by seeking a time- and position-
independent solution to (2) and (4). The result [1]
is that

(
Ex

E0x

)2

+
(

Ey

E0y

)2

− 2

(
Ex

E0x

)(
Ey

E0y

)
cos φ = sin2 φ (7)

This is the equation of an ellipse oriented at an
angle, γ , given by

tan 2γ = 2E0xE0y cos φ

E2
0x − E2

0y

(8)

For the simplest case, where γ = 0 the relation-
ship reduces to

E2
x

E2
0x

+ E2
y

E2
0y

= 1 (9)

Elliptically polarized light is often referred to as
the E-state.

Partial Linear Polarization
Often in nature and technology, light assumes a
partially polarized form. The most common of
these is partially linearly polarized light. This
consists of a superposition of linearly polarized
light and unpolarized light. It is often desirable
to define a quantity known as the degree of
polarization, ρ, that relates the intensity (or flux
density) of the polarized component, Ip, to that
of the unpolarized component, Iu:

ρ = Ip

Ip + Iu
(10)

This is often expressed as a percentage, such that
light of equal components is 50% polarized. The
degree of polarization can be analyzed using a
polarizing filter (often referred to as an “ana-
lyzer” in optics texts). If the maximum and mini-
mum transmitted light intensities as the polarizer
is rotated are Imax and Imin, then Imin = Iu/2 and
Imax = Iu/2 + Ip so that

ρ = Imax − Imin

Imax + Imin
(11)

Alternative Representation

Stokes Vectors
In many practical applications of polarized light,
the physical wave description above is of little
use due to the minuscule quantities involved. The
Stokes vectors aim to represent the polarization
state of light in a compact form that most detec-
tors can measure (see [5] for derivations and
further details).

The general Stokes vector is defined by

S = [S0, S1, S2, S3]T (12)

The first of the parameters of the Stokes vector,
S0, is simply the intensity of the light. The second
parameter, S1, quantifies the tendency for vertical
or horizontal polarization and is related to the
difference in the corresponding vertical and hor-
izontal components of the wave’s electric field.
Where S1 > 0, the light resembles a horizontal
P-state, while S1 < 0 relates to vertical P-
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states. For the case where S1 = 0, there is no
tendency either way as in circular polarized light,
elliptical light at 45◦, and unpolarized light. S2

is interpreted in a similar fashion but relates to
angles of 45◦ and −45◦. Finally, S3 relates to the
handedness of the polarization (S3 > 0 is right-
handed, S3 < 0 is left-handed, and S3 = 0 is
neither).

Often, the Stokes vectors are normalized by
S0 so that, for example, unpolarized light has
S = [1, 0, 0, 0]T ; vertically linearly polarized
light has S = [1,−1, 0, 0]T ; linearly polarized
light at 45◦ has S = [1, 0, 1, 0]T ; and right
circularly polarized light has S = [1, 0, 0, 1]T .
Furthermore, light may consist of superpositions
of different states, in which case the individual
vectors are simply added together.

The Stokes vectors provide useful representa-
tions of polarization for incoherent light, which
is abundant in nature. Computer vision and other
fields may utilize the Stokes representation of the
degree of polarization. In the case of partially
linearly polarized light, for example, the degree
of polarization is

ρ =
√

S2
1 + S2

2

S0
(13)

Jones Vectors
For coherent light, typically from lasers, an alter-
nate representation is also possible. The Jones
vector of a polarized light wave is simply given
by

E =
[

Ex (t)

Ey (t)

]
(14)

The electric fields in the Jones vectors are gen-
erally represented as a wave via the imaginary
number approach [4] (E = E0e

i(kz−ωt+φ)).
They are then normalized by the intensity in a
similar fashion to the Stokes vectors. The results
[1] are that horizontal and vertical P-states are
given by [1, 0]T and [0, 1]T , respectively; P-

states at 45◦ are given by
(

1/
√

2
)

[1, 1]T and(
1/

√
2
)

[1,−1]T ; and R- and L-states are given

by
(

1/
√

2
)

[1,−i]T and
(

1/
√

2
)

[1, i]T .

The advantage of the Jones representation
(aside from its compactness) is that certain
optical operations can be described sequentially
in terms of matrix operations. For example, light
passing through a linear vertical polarizer has its
Jones vector modified by the a Jones matrix of[

0 0
0 1

]
. A related set of matrices for operating

on Stokes vectors has also been derived. These
are called Mueller matrices and have dimensions
of 4 × 4. Further details of Jones and Mueller
matrices can be found in [1] and references
therein.

Polarized Light in Nature
Sunlight, which constitutes the overwhelming
majority of natural light on Earth, is unpolarized.
Despite this, linearly polarized light is abundant
in nature as a result of various phenomena that
convert unpolarized light to polarized light.
Circularly polarized light by contrast is rare
in nature and only occurs under certain ideal
conditions. The two most common causes
of polarization are reflection from surfaces
and light scattering in the atmosphere, and
these are discussed below. Other causes [6]
include internal reflection, rainbows, clouds,
and birefringence (in materials where optical
properties are anisotropic).

Reflection
Consider a light wave impinging upon a smooth
dielectric surface, as shown in Fig. 2. A fraction
of the light penetrates the surface and the remain-
der is reflected. In real surfaces, the penetrated
light undergoes a series of complicated scattering
interactions according to the radiative transfer
equation [7]. However, the problem can be sim-
plified by assuming that no scattering occurs
apart from at the interface. In this case, the
transmitted wave is refracted according to the
well-known Snell’s law [1]:

ni sin θi = nt sin θt (15)

where ni and nt refer to the refractive indices of
air (≈1) and the reflecting material and θi and
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Polarization, Fig. 2 Polarization from specular reflec-
tion

θt refer to the incident and transmitted angles,
respectively.

Consider the component of the electric field
of the wave that is parallel to the plane of inci-
dence. This component results in electron dipole
oscillations in the medium at angle θt (see Fig. 2).
These dipoles close to the interface emit the
reflected wave. However, this reflected wave is at
a different angle to θt meaning that the parallel
component of the reflected wave is attenuated
due to foreshortening. For the component of the
electric field that is perpendicular to the plane of
incidence, the foreshortening effect is not present.
This difference in wave attenuation caused by
foreshortening gives rise to a partially linearly
polarized reflection.

Note that, for the case where θi + θr = 90◦,
foreshortening eliminates the parallel component
of the reflection entirely. The angle at which this
occurs is known as the Brewster angle, θB , and it
follows from (15) that, for the case where ni = 1,

θB = arctan nt (16)

Much of the light present in everyday life is
not specularly reflected from surfaces, as dis-
cussed above, but diffusely reflected. That is,
the light is scattered either at the surface or
below the surface, and both of these phenom-
ena affect the polarization state of the reflected
light. For the latter case, several efforts have
been made to model the precise means by which

θi′

θi′
θi′

E0||

e−

Polarization, Fig. 3 Polarization from diffuse reflection
(refraction)

light is scattered to form a reflection [8]. The
important point, so far as polarization is con-
cerned, is that after undergoing internal scat-
tering, the light impinges upon the air-medium
interface from within, as shown in Fig. 3. This
light then undergoes a refraction as it passes
the interface. A similar argument to that above
for specular reflection can then be applied to
establish that a foreshortening effect polarizes
the diffusely reflected light also. Note however,
that as the incident wave can never be perpen-
dicular to the reflected wave, there is no angle
by which the diffusely reflected light becomes
completely polarized. The degree and angles of
polarization can be determined from the Fresnel
equations and are discussed in detail in the entry
“� Polarized Light in Computer Vision.” Note
also that polarization by refraction occurs as light
from the Sun enters water, causing light near the
surface of lakes, seas, and oceans to be partially
polarized.

For the case of surface scattering, several
attempts to model the microscopic roughness
patterns have been made, such as [9,10]. For both
specular and diffuse reflection, the random nature
of microscopic surface corrugations has the effect
of mixing the orientations of reflected light fields.
One of the effects of this is to depolarize the
reflection. As predicted by the Umov effect [11],
rough surfaces with lower albedo retain higher
degrees of polarization than light surfaces. This
is due to the fact that fewer inter-reflections take



Polarization 1003

P

A

CB

D

E

x

y

E

Polarization, Fig. 4 Polarization from scattering

place on dark surfaces before the light waves are
completely absorbed by the medium. This effect
was first noted in astronomy, where the degree of
polarization of an astronomical body is inversely
proportional to its albedo.

Scattering
As unpolarized light is scattered by small parti-
cles (e.g., a molecule in the atmosphere or a dust
particle), it becomes partially linearly polarized.
The effect can be explained in a similar fashion
to that with surface reflection. Consider a light
wave impinging on a particle. The particle will
scatter the light in a range of directions. It turns
out that, when viewed at an angle of 90◦ to the
direction of the light wave, the scattered light is
completely polarized, while the waves that are
scattered close to the direction of propagation or
scattered by ≈ 180◦ are only slightly polarized.
This phenomenon is observed on a grand scale
in the Earth’s atmosphere. When a clear sky is
viewed at an angle of 90◦ from the Sun, it can
be observed to be ≈ 75% polarized, compared
to almost no polarization at ≈ 0◦ and approach-
ing 180◦. In practice, light scattered at 90◦ is
not completely polarized due to a range of fac-
tors such as molecular anisotropies and multiple-
scattering depolarization.

The phenomenon of polarization by scattering
can be explained as follows. The wave shown
in Fig. 4 induces an oscillating dipole in the
scattering particle as a result of the redistribution
of the electron cloud and nucleus location caused
by the electric field. The dipole, in turn, generates
the scattered wave. Assume that the impinging
wave is linearly vertically polarized, as in Fig. 4.
The new wave has maximum amplitude at an
angle perpendicular to the dipole orientation and
zero amplitude when parallel to the dipole due
to foreshortening. In relation to Fig. 4, amplitude
maxima would be found in directions A, B, and
C (in addition to backscatter), while no scattering
occurs in directions D or E. Next consider an
impinging wave that is polarized horizontally. In
this case, directions A, D, and E are the maxima,
while directions B and C have no scattering.
Finally, by representing an unpolarized incident
wave as a linear combination of randomized lin-
early polarized states, it can be seen that direction
A and backscatter remain unpolarized, directions
B and C retain only the vertical polarization,
and directions D and E retain only the horizon-
tal polarization. Directions intermediate between
those discussed will, of course, become partially
linearly polarized. For such angles with the com-
mon case of scattering by atmospheric dust or
smoke, the degree of polarization is given by [3]

ρ = sin2 β

1 + cos2 β
(17)

where β is the scattering angle. This is known as
Rayleigh scattering. However, complete polariza-
tion is not typically observed due to the reasons
mentioned above.

Application

Many creatures, including some insects and
marine animals, have eyes that are sensitive to
the polarization state of light [12]. Bees and ants,
for example, use the polarization pattern in the
sky or water to aid navigation [6]. Several marine
creatures use similar patterns found underwater
for the same purpose [13]. There is evidence [14]
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that certain aquatic creatures use polarization
to isolate objects of interest within their field
of view. It is also believed that some species
communicate by reflecting light only of a certain
polarization angle.

In everyday life, a common application of
polarization is in sunglasses and camera filters. A
pair of polarizing sunglasses with vertical trans-
mission axis blocks out large amounts of specular
glare from surfaces as Fig. 2 suggests. A correctly
oriented camera lens filter can also be used to
diminish glare. In addition, such a filter can
increase contrast between clouds and the sky by
cutting out the polarized component of sky and
having less impact on light from clouds.

Liquid crystal displays (LCDs) are based on
crystals placed between crossed polarizers. Light
is transmitted or absorbed in different segments,
depending on which areas is subjected to a volt-
age. Where the voltage is applied, the crystals
rotate the angle of polarization by 90◦. Stress
patterns of many materials can be analyzed by
placing samples between crossed polarizers and
measuring the transmitted intensity patterns. This
is possible due to the changing birefringence
properties of materials under strain. In enter-
tainment, 3D images can be generated by time-
multiplexing different polarization states onto a
screen, with each state representing a different
viewpoint of the object being displayed. The
viewers wear polarizing spectacles that transmit
each state to separate eyes. Finally, polarization
is prevalent in astronomy. For example, trans-
mission and absorption effects in strongly mag-
netic regions of the Sun’s surface cause circular
polarization, while interstellar dust is respon-
sible for polarization by scattering over long
distances.

Within the field of computer vision, polariza-
tion has been used for a range of tasks, including
the following (further details and references can
be found in the separate entry on “� Polarized
Light in Computer Vision”):

– Specularity reduction
– Shape recovery
– Reflectance analysis
– Image enhancement

– Reduction of inter-reflections
– Separation of reflectance components
– Image segmentation
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Definition

Polarization refers to the orientation distribution
of the electromagnetic waves that constitute light
rays. The phenomenon of light polarization has
been exploited in computer vision for a range
of applications including surface reconstruction,
specular/diffuse separation, and image enhance-
ment.

Background

Light consists of orthogonal electric and mag-
netic fields. Most natural light is unpolarized and
so consists of randomly fluctuating field direc-
tions. However, a range of natural phenomena
(e.g., scattering and reflection) and human inven-
tions (e.g., polarizing filters and liquid crystal
displays) cause the light to become polarized.
That is, the electric and magnetic fields become
confined to specific planes or get constrained
in other ways. In the field of computer vision,
both natural and artificially generated polarized
light has been utilized for a range of applications
including specularity reduction, shape recovery,
reflectance analysis, image enhancement, auto-
mated inspection, segmentation, and separation
of reflectance components.

Theory

The majority of research into polarization meth-
ods for computer vision rely on passively analyz-
ing the polarization state of incoming light using
either uncontrolled, or at least unpolarized, illu-
mination. However, one of the most common uses
of polarization in computer vision is to remove
specularities from images using a more active
approach. This entry first describes this method
and is followed by descriptions of techniques
for polarization measurement. It then covers the
relevant theory of the two most common natural
causes of polarization (reflection and scattering)
and their exploitation in computer vision.

Polarization and Specularities
The images of the porcelain bear model in Fig. 1
were obtained using a camera with one linear
polarizer (often referred to as an “analyzer” in
optics texts) mounted on the lens and another
in front of the only light source. For the first
image, the two polarizers were oriented parallel
to each other, while for the second image they
were at 90◦. The second image clearly shows
a minimization of specularity. This is of great
benefit to a range of computer vision methods
that assume specularities are absent from images
such as shape-from-shading [1] and photometric
stereo [2].

The theory behind the specularity reduction is
that the polarized incoming light induces electron
oscillations in the reflecting medium in only one
direction (see the entry on � “Polarization”). This
means that the specularly reflected light, which
is generated by these oscillations, has an electric
field that is constrained to a single plane also. If
the lens polarizer is oriented at right angles to this
plane, then all of this light is blocked from the
camera. On the other hand, the diffusely reflected
light is depolarized by subsurface scattering and
surface roughness. This means that much of the
diffusely reflected light is transmitted through the
lens polarizer.

Polarization Imaging
For the cases where the incident light is unpolar-
ized, the simplest and most common method of
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Polarized Light in Computer Vision, Fig. 1 Left: Uncrossed polarizers, center, crossed polarizers; right, difference
image [3]. N.B. The difference image has been inverted and undergone nonlinear intensity scaling to aid clarity

measuring polarization is to take a sequence of
images with a rotating linear polarizer. Consider
a camera’s field of view where the incoming
light is partially linearly polarized with varying
degrees between 0% and 100% (see the entry on
� “Polarization” for the definition of the degree
of polarization). The aim is to acquire a polar-
ization image: a three-channel image where each
pixel has components corresponding to (1) the
grayscale intensity, (2) the degree of polarization,
and (3) the phase angle (not to be confused with
the phase of the electric and magnetic fields of the
wave that constitute the light ray) of the linearly
polarized component of the incoming light.

As the polarizer on the lens rotates, the trans-
mitted intensity at each point is given by the
transmitted radiance sinusoid:

I (θ pol, ϕ)

= Imax + Imin

2
+ Imax − Imin

2
cos (2θ pol − 2ϕ)

(1)

where θ pol is the polarizer orientation, Imin and
Imax are the minimum and maximum observed
pixel brightness, and ϕ is the phase angle. The
transmitted radiance sinusoid is shown graphi-
cally in Fig. 2.

The complete polarization image is then
constructed by fitting the transmitted radiance
sinusoid to three or more different intensity
images for different polarizer angles. This
assumes that the pixel brightness is proportional
to the light impinging on the sensor –
i.e., the camera response function is linear. For

typical 8-bit imaging equipment, the intensity
component is in the range [0, 255], the degree
of polarization is always in the range [0, 1],
and the phase is always in the range [0, 180◦).
Figure 3 shows a synthetic example of the three
components of a polarization image.

A major weakness of many polarization meth-
ods until recently is the amount of time needed
to acquire the data (the actual processing of the
data is often highly efficient). For the rotating
polarizer method described above, three or more
images are required with the polarizer at different
orientations. If exactly three or four polarizer
angles are used, then sinusoid fitting can be done
using a closed-form solution [4]. Otherwise a
least-squares fit is needed. Either way, the need
for multiple sequential images limits applications
to static scenes. Matters were improved after
the development of polarization cameras [5]
that used liquid crystals to rapidly switch the
axis of the polarizing filter. Subsequently, PLZT
(polarized lead zirconium titanate) cameras [6]
were designed with the aim of recovering all
four components of the Stokes vectors (defined
in the entry on � “Polarization”) [7]. The Stokes
vectors, in turn, yield the phase and degree of
polarization from a single image [4].

More recently, specialist cameras have been
commercialized that embed micro-filter arrays
directly onto the sensor elements [8]. These
generally involve precise placement of a pattern
of polarizing filters onto each sensor pixel and
are oriented at angles of 0◦, 45◦, 90◦, and 135◦
relative to the image. A simple algorithm is then
applied to deduce the Stokes Vectors [4]. There
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Polarized Light in Computer Vision, Fig. 3 Synthetic rendering of a polarization image of a hemisphere. Left,
intensity; center, phase angle; right, degree of polarization

are, of course, variations in terms of how the
filters are applied to the sensor [9,10], but all have
the advantage of capturing all required data in a
single exposure.

Other methods of rapid polarization image
capture include placing multiple cameras with
different polarizers but near-parallel optical axes
[11]; using a detector array-like Bayer pattern to
capture the polarization field on chip [9]; using
a lightfield camera, where the aperture is divided
into segments, some of which contain polarizers
[12]; and employing multiple CCDs to capture all
the polarization components using beam splitters
[13]. The interested reader is also referred to
[4, 14] for a detailed survey.

Polarization and Reflection in Images
Perhaps the most common exploitation of polar-
ization in computer vision is to measure the polar-
ization state of light reflected from dielectric sur-
faces [15]. As described in the entry on � “Polar-
ization”, natural light undergoes partial polariza-
tion when it is reflected from surfaces. Consider

a specular reflection being viewed through a
rotating polarizer. Because the electric field of the
reflected wave is most attenuated in the plane of
reflection, the greatest transmission through the
polarizer occurs when it is oriented at right angles
to the plane. Minimum transmission occurs when
the polarizer is parallel to the plane. Note how-
ever, that the polarizer is unable to distinguish
two planes of reflection oriented 180◦ apart. If
α is the azimuth angle of the surface (the angle
of the projection of the surface normal onto the
image plane), then there are two possible values
for a given measurement of ϕ:

α
(s)

1 = ϕ − 90◦ α
(s)

2 = ϕ + 90◦ (2)

where the superscript s indicates that the reflec-
tion is specular.

As explained in [15], the Fresnel equations can
be used to represent the maximum and minimum
intensities passing through a rotating polarizer as
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Imin = R‖(n, θ)

R⊥(n, θ) + R‖(n, θ)
Ir (3)

Imax = R⊥(n, θ)

R⊥(n, θ) + R‖(n, θ)
Ir

Here R‖ and R⊥ are the parallel and perpen-
dicular Fresnel intensity reflectivity components,
respectively (see the entry on � “Fresnel Equa-
tions”), n is the refractive index, θ is the angle of
incidence, and Ir is the magnitude of the specu-
larity. In an imaging situation, θ is equivalent to
the zenith angle of the surface (the angle between
the surface normal and the line of sight of the
camera). Rewriting in terms of the degree of
polarization and rearranging gives [15]

ρs (n, θ) = 2 sin2 θ cos θ
√

n2 − sin2 θ

n2 − sin2 θ − n2 sin2 θ + 2 sin4 θ
(4)

where the suffix s is appended to the degree of
polarization as this assumes a purely specular
reflection.

Equations 2 and 4 allow one to impose con-
straints on the angle of a reflecting surface for
shape recovery applications using measurements
taken of ϕ and ρ. The azimuth angle of the
surface has two possibilities as shown by (2) and
Fig. 2. Apart from at the Brewster angle, where
ρ = 1, there are also two solutions to (4),
meaning two zenith angles are also possible.

Combining the above theory with the subsur-
face scattering model of reflection [15, 16], the
following relations for diffuse reflection can be
derived:

α
(d)
1 = ϕ α

(d)
2 = ϕ + 180◦ (5)

ρd = (n − 1/n)2 sin2 θ

2 + 2n2 − (n + 1/n)2 sin2 θ + 4 cos θ
√

n2 − sin2 θ

(6)

On this occasion, there is only one solution for
the zenith angle, but the degree of polarization
is lower and therefore more difficult to measure.
Indeed, the information contained in this degree
of polarization is only useful for large zenith
angles [17].

Outdoor Polarization Imaging
One of the most common causes of polarization
in nature is atmospheric scattering [18]. Consider
the imaging process of a distant outdoor object or
scene. Light that arrives at a detector consists of
a component transmitted from the object itself,
D, and a component of “airlight,” A. The former
of these is typically reflected sunlight, while the
latter is light scattered from the atmosphere, as
shown in Fig. 4. The total intensity at the camera
can be represented by

I tot = A + D (7)

It can be shown [19] that

A = A∞ (1 − t (z)) (8)

D = Lobjt (z) (9)

where A∞ is the airlight radiance for an object
at infinity, Lobj is the object radiance, z is the
distance to the object, and t (z) is given by

t (z) = exp

(
−

∫ z

0
β(z′)dz′

)
(10)

where β is called the coefficient of extinction.
As explained in the � “Polarization” entry,

atmospheric scattering causes polarization. The
degree of polarization for the airlight component
is be given by

ρ = A⊥ − A‖
A⊥ + A‖

(11)

where A⊥ and A‖ are the scattered components
parallel to and perpendicular to the plane of
scattering, respectively. If it is assumed that the
target object is emitting/reflecting unpolarized
light, then the light measured through a linear
polarizer is a transmitted radiance sinusoid, as
in Fig. 2, but with an intensity offset equal to
the light directly transmitted from the target
object. Clearly, the simple task of rotating a
lens-mounted polarizer to the angle that allows
minimum transmission removes some of the
airlight and so enhances the image of the target
object. Taking images at more than one polarizer
orientation allows to solve for the unknowns in
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Polarized Light in
Computer Vision, Fig. 4
Haze in an image due to
atmospheric scattering

D

ScatteringA

Target

object

z

(7)–(11) and dehaze an image more effectively
[19]. A related polarization analysis can also be
used for images taken in murky water [20].

Application

The above theory, and extensions thereof, has
been used in a range of areas within computer
vision. Perhaps the most studied is in shape
recovery. This is due to the ease by which strong
constraints can be placed on the surface normals
from single viewpoints. Polarization therefore
offers huge benefits to shape-from-shading and
related methods. As explained above, the normals
are not fully constrained using these techniques,
so additional methods are required to complete
the reconstruction [17, 21]. It is also possible
to model surfaces that are usually inaccessible
to computer vision such as transparent surfaces
[21]. As already mentioned, polarization from the
atmosphere has been applied to image enhance-
ment outdoors [19] and underwater [20].

The difference in polarizing properties
between metallic and dielectric reflection [18]
has been used for segmentation [15], while
the difference between specular and diffuse
properties has allowed the two reflection
components to be separated [22]. Related work
has allowed improved laser-based range finding,
by minimizing the effects of inter-reflections
[23]. Other work has exploited polarization by
specular reflection for separating transmitted
scenes from reflected scenes in a glass window
[24, 25]. Polarization has also found a range of

other applications including reflectance analysis
[26] and cosmetics [27] and inspection [28].
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Polarizer

Daisuke Miyazaki
Graduate School of Information Sciences,
Hiroshima City University, Asaminami-ku,
Hiroshima, Japan

Synonyms

Polarization filter; Polarizing film

Related Concepts

� Polarization

Definition

The device which polarizes the light when the
light goes through it.

Background

Polarizers makes the light oscillate in one direc-
tion. The polarization state of light changes if it
hits any materials, and polarization of the light
is useful in many application fields. Polarizers
are made artificially since natural objects usually
do not change the light to be always perfectly
polarized.

Theory

There are two kinds of perfectly polarized light:
linearly polarized light and circularly polarized
light. This entry first explains linear polarizers,
and then explains circular polarizers.

Figure 1 is the typical illustration of linear
polarizer. Linear polarizer is often expressed as
a circle with some straight lines inside. The
orientation of the lines expresses the orientation
of oscillation of the light transmitted through the
polarizer. Figure 1 represents the case when the
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Polarizer, Fig. 1 Illustration of linear polarizer

Polarizer, Fig. 2 Dichroic polarizer

unpolarized light goes through the polarizer, and
then, the electric vector field of the transmitted
light oscillates only in vertical direction.

Typical polarizers are dichroic polarizers and
wire-grid polarizers. The typical material used
in dichroic polarizer is iodine. As is shown in
Fig. 2, if the long axis of iodine molecule is lining
up horizontally, the light transmitted through the
polarizer will be vertically polarized. In this case,
the horizontal component of the light is absorbed
by the iodine molecule. The same applies to the
wire-grid polarizers: If the wire-grid is alined

horizontally, the transmitted light becomes verti-
cally polarized.

Polarizers composed of prisms are also widely
used. The typical material used in these polarizers
is calcite. There are many types of prism polariz-
ers such as Glan Taylor Polarizer, Glan Thomp-
son Polarizer, Wollaston Polarizer, Rochon Polar-
izer, Nicol Polarizer, etc. Figure 3 is an illustra-
tion of Glan Taylor Polarizer. Two calcite prisms
are separated by thin layer of the air. Calcite is a
birefringent material, and the extraordinary ray is
only transmitted through this polarizer.
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Polarizer, Fig. 3 Polarization prism which is called Glan Taylor Polarizer

Unpolarized

light

Linear

polarizer

1/4 wave

retarder

Linearly

polarized

light

Left-handed

circularly

polarized light

45°

Polarizer, Fig. 4 Circular polarizer

Circularly polarized light is generated by cir-
cular polarizer. The circular polarizer is consisted
of linear polarizer and 1/4 wave retarder as is
shown in Fig. 4. The angle between the transmis-
sion axis of linear polarizer and the fast axis of
1/4 wave retarder is set to be 45◦.

Application

Liquid crystal display and liquid crystal projector
use two linear polarizers in order to change the
brightness of the light. In order to produce a
three-dimensional view using projectors, polar-
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ized 3D glasses are often used. The viewer wears
the polarized 3D glasses, and watch the screen.
Two images are superimposed into the screen;
however, each eye perceives different image. This
structure makes the viewer to recognize the 3D
effect.
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Polarizing Film

� Polarizer

Principal Axis

�Optical Axis

Principal Component Analysis
(PCA)

Takio Kurita
Graduate School of Engineering, Hiroshima
University, Higashi-Hiroshima, Japan

Synonyms

Karhunen–Loève transform (KLT)

Related Concepts

�Dimension Reduction
�Eigenspace Methods

Definition

Principal component analysis (PCA) is a standard
tool in modern data analysis and is used by almost
all scientific disciplines. The goal of PCA is to
identify the most meaningful basis to reexpress
a given data set. It is expected that this new
basis will reveal hidden structure in the data
set and filter out the noise. There are so many
applications such as dimensionality reduction,
data compression, feature extraction, and data
visualization.

Background

Describe the background of the entry. The mod-
ern form of PCA was formalized by [1] who
also introduced the term principal component. It
is also known as the Karhunen–Loève transform.

Observations are often described by several
dependent variables which are, in general,
intercorrelated and include noise. PCA is used
to extract the important information from such
observations and to reduce the noise. To achieve
this goal, PCA computes a set of new orthogonal
variables called principal components which are
obtained as linear combinations of the original
variables. The values of these new variables
for the observations are called factor scores.
They can be interpreted as the projections of the
observations onto the principal components. PCA
can be also formulated as the linear projection
that minimizes the average projection cost
defined as the mean squared distance between
the data points and their projections [2].

Several reformulations or extensions of PCA
have been proposed. PCA can be expressed as the
maximum likelihood solution of a probabilistic
latent variable model [3]. This reformulation is
known as probabilistic PCA. A nonlinear gen-
eralization of PCA, which is known as kernel
PCA, is also proposed by using the approach of
kernel learning [4]. Sparse principal component
analysis finds sparse coefficients by introducing
a constraint on the norm of the coefficients [5].
This sparseness makes the interpretation of the
results of PCA easier.
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Theory

Let X = [x1, . . . , xN ] be the data set to be
analyzed by PCA, where each column is a single
observation described by M variables. Then the
sample mean vector x̄ and the sample covariance
matrix � can be represented by

x̄ = 1

N

N∑
i=1

xi (1)

� = 1

N

N∑
i=1

(xi − x̄)(xi − x̄)T = 1

N
X̃X̃T (2)

where the matrix X̃ is defined as X̃ = [x1 −
x̄, . . . , xN − x̄].

To extract the important information from the
observations, PCA computes factor scores as lin-
ear combinations of the original variables

y1i = aT
1 (xi − x̄), (i = 1, . . . , N) (3)

where a1 = (a11, . . . , aM1)
T is a set of weights

of the linear combinations. The optimum weight
vector a1 is obtained so that the sample vari-
ance of the new variable is maximized under the
normalization constraint aT

1 a1 = 1. Since the
sample variance is represented by

V (y11, . . . , y1N) = aT
1 �a1, (4)

the optimization problem can be defined by using
Lagrange multiplier λ1 as the maximization of
the Lagrange function

L(a1, λ1) = aT
1 �a1 − λ1(a

T
1 a1 − 1). (5)

By setting the derivative of the Lagrange function
with respect to the weight vector a1 equal to zero,
the solution of this problem can be obtained as
a unit eigenvector of the covariance matrix �

corresponding to the largest eigenvalue λ1 as

�a1 = λ1a1. (6)

If the vector a1 is multiplied from the left, the
maximum variance is given by

Principal ComponentAnalysis (PCA), Fig. 1 An exam-
ple of principal axis for two-dimensional samples

V (y11, . . . , y1N) = aT
1 �a1 = λ1. (7)

Figure 1 shows an example of the first princi-
pal axis for the two-dimensional samples.

The second principal components

y2i = aT
2 (xi − x̄), (i = 1, . . . , N) (8)

can be defined as a new variable which maxi-
mizes the projected variance among all possible
directions orthogonal to the first principal axis
under the constraint on the normalization. The
optimum coefficient vector a2 is also obtained as
a unit eigenvector of the covariance matrix � cor-
responding to the second largest eigenvalue λ2.
Similarly, additional principal components can be
defined in an incremental fashion. For the general
case of L-dimensional projection, the optimal
linear projection of PCA

Y = AT X̃ (9)

can be obtained by taking the L eigenvectors A =
[a1, . . . , aL] of the covariance matrix � corre-
sponding to the L largest eigenvalue λ1, . . . , λL.
Then the eigenvector equation is given by

�A = A	, (10)

where 	 = diag(λ1, . . . , λL).
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PCA is closely related with the singular value
decomposition (SVD) of the data matrix. The
data matrix X̃ can be decomposed by SVD as

X̃ = S�V T , (11)

where S is the matrix of left singular vectors, V is
the matrix of right singular vectors, and � is the
diagonal matrix of singular values. By using this
relation, the covariance matrix can be rewritten as

� = 1

N
X̃X̃T = 1

N
S�V T V �ST = 1

N
S�2ST .

(12)
By multiplying S from the right, the eigenvector
equation is obtained as

�S = S
1

N
�2. (13)

This shows that the weight vectors A are equal
to S and the diagonal matrix of the eigenvalues
	 is equal to 1

N
�2 if the number of principal

components L is equal to the rank of the data
matrix X̃. From these relations, the matrix of
factor scores Y can be represented as

Y = AT X̃ = ST S�V T = �V T . (14)

This shows that the principal components are also
obtained from the SVD of the data matrix X̃.
By using this relation, the data matrix X̃ can be
represented as the product of the score matrix by
the weight vectors A:

X̃ = S�V T = AY = AAT X̃. (15)

This means that the original data matrix X̃ can be
reconstructed from the factor scores.

If the number of principal components L is
less than the rank of X̃, this reconstruction gives

an approximation of the original data matrix. The
mean squared errors between the original obser-
vations and the approximations are then given by

ε2(L) = 1

N

N∑
i=1

||(xi − x̄) − AAT (xi − x̄)||2

=
rank(X̃)∑

i=1

λi −
L∑

i=1

λi (16)

which is simply the sum of the rank(X̃) − L

smallest eigenvalues. This means that PCA
is minimizing this approximation errors by
selecting the principal subspace spanned by
the eigenvectors corresponding to the L largest
eigenvalues.

Application

There are many applications of PCA in pat-
tern recognition or computer vision. One of the
famous applications of PCA is for face recogni-
tion [6]. Face images are decomposed into a set of
characteristic feature images called “eigenfaces,”
which are the eigenvectors computed by PCA to
the training set of face images. Recognition is
performed by projecting a new face image into
the subspace spanned by the eigenfaces and then
classifying the face by comparing the distances
of factor scores. Figure 2 shows examples of the
eigenfaces computed from 200 face images.

PCA is also used to construct 3-D object
models from their appearances [7]. To obtain a
low-dimensional subspace of object appearance
parameterized by pose and illumination, PCA
is applied to a large set of images obtained by
varying pose and illumination. Then a new image
is projected to the constructed subspace, and the

Principal Component Analysis (PCA), Fig. 2 Examples of eigenfaces computed from 200 face images
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recognition is performed on the subspace. The
object’s pose in the image is also determined from
the position of the projection on the subspace.
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Principal Distance

� Focal Length

Probabilistic Hill Climbing

� Simulated Annealing

Programming by Demonstration

�Learning-from-Observation

Projection

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen, China

Related Concepts

�Affine Camera
�Depth Distortion
� Perspective Camera
� Perspective Transformation
�Weak Perspective Projection

Definition

A projection is an image of a geometric figure,
with or without its appearance property, repro-
duced on a line, a plane, or a surface. It is usually
a mapping from a higher dimensional space to a
lower dimensional subspace. A camera performs
a projection from a 3D scene to a 2D picture. See
related concepts listed above.

ProjectionMatrix

� Projection Transformation

Projection Transformation

Zhengyou Zhang
Tencent AI Lab & Robotics X, Shenzhen, China

Synonyms

Projection matrix
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Related Concepts

�Affine Camera
� Perspective Camera
� Perspective Transformation

Definition

Projection transformation describes the transfor-
mation from a 3D scene to a 2D image.

Background

The actual projection transformation depends on
the camera’s projection model and is determined
by the relationship between the center of pro-
jection (optical center) and the projection plane
(image plane). If the center of projection is at
a finite distance from the projection plane, it
is a perspective transformation. If the center of
projection is at infinity, the projection is parallel,
known as an orthographic projection. There are
several possible transformations between the two
extremes, and the reader is referred to entry
� “Affine Camera” for more information.

In computer graphics a projection trans-
formation transforms three-dimensional eye
coordinates into points in three-dimensional clip
coordinates. Besides various types of projection
as mentioned above, it defines the viewing
volume, which determines which objects or parts
of objects are projected onto the screen. The
viewing volume, also known as viewing frustum,
is an six-sided enclosure defined by clipping
planes: Primitives outside the viewing volume
are not displayed.

Projective Calibration

�Weak Calibration

Projective Reconstruction

Richard Hartley
Department of Engineering, Australian National
University, Canberra, ACT, Australia

Synonyms

Projective structure and motion

Related Concepts

�Euclidean Geometry
�Exploration: Simultaneous Localization and

Mapping (SLAM)

Definition

From several images of a scene and the coordi-
nates of corresponding points identified in the dif-
ferent images, it is possible to construct a three-
dimensional point-cloud model of the scene and
compute the camera locations. From uncalibrated
images the model can be reconstructed up to an
unknown projective transformation, which can
be upgraded to a Euclidean model by adding or
computing calibration information.

Background

Projective reconstruction refers to the computa-
tion of the structure of a scene from images taken
with uncalibrated cameras, resulting in a scene
structure, and camera motion that may differ from
the true geometry by an unknown 3D projective
transformation.

Suppose that a set of interest points are
identified and matched (or tracked) in several
images. The configuration of the corresponding
3D points and the locations of the cameras that
took these images are supposed unknown. The
task of reconstruction is to determine the values
of these unknown quantities.
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Formally, assume that a set of image points
{xij} are known, where xij represents the image
coordinates of the j-th point seen in the i-th
image. It is generally not required that every
point’s location be known in every image, so
only a subset of all possible xij are given. The
structure-from-motion (SfM) problem is to deter-
mine the camera projection matrices Pi and the
3D point locations Xj such that the projection of
the j-th point in the ith image is the measured xij.
Assuming a pinhole (projective) camera model,
this relationship is expressed as a linear relation-
ship:

xij = PiXj , (1)

where Pi is a 3 × 4 matrix of rank 3, Xj and
xij are expressed in homogeneous coordinates,
and the equality is intended to hold only up
to an unknown scale factor λij. More precisely,
therefore, the projection equation is

λijxij = PiXj . (2)

In the SfM problem, cameras Pi and points
Xj are to be determined, given only the point
correspondences.

Homogeneous Coordinates
Both 2D (image) points and 3D (world) points
are most conveniently expressed in homogeneous
coordinates. Thus, an image point x is repre-
sented by a 3-vector x = (u, v, w)�, known as its
homogeneous representation. The relationship to
the standard Euclidean (nonhomogeneous) coor-
dinates (x, y) of the point is given by x = u/w
and y = v/w. This process of division by the
final coordinate of the homogeneous vector is
known as dehomogenization. Note that two vec-
tors x= (u, v, w)� and x′ = (u′, v′, w′)� represent
the same point in Euclidean coordinates if and
only if x= kx′ for some nonzero constant k. Thus,
a given point may be expressed in infinitely many
different ways in homogeneous coordinates. This
is analogous with the way a given rational num-
ber has many different representations, such as
1/2 = 2/4 = 3/6 = k/2k for any k. One particu-
larly convenient homogeneous representation of

a point is the 3-vector with unit final coordinate:
(x, y, 1)�.

Homogeneous coordinates (3-vectors) with
final coefficient zero do not coincide to any real
point in nonhomogeneous coordinates, since the
process of dehomogenization involves division
by zero. Such points are commonly known as
points at infinity. The vector (0, 0, 0)� is not
considered to be a valid set of homogeneous
coordinates.

In a similar way, 3D points are represented
by homogeneous 4-vectors X = (x, y, z, t)�.
The main advantage of using homogeneous coor-
dinates to represent world and image points is
that Eq. (1) has a particularly simple form as
a linear relationship between the homogeneous
coordinates of the points.

Two homogeneous vectors differing by a
constant multiplicative factor are considered to
be equivalent representations of the same point.
The set of all equivalence classes of (nonzero)
homogeneous (n+1)-vectors form the projective
n-space, Pn. In studying projective recon-
struction, it is conventional to consider image
points to lie in projective 2-space P2, whereas
3D points lie in projective 3-space P3. This
identifies the projective space P2 consisting of
the (image) plane, augmented with points at
infinity. Similarly, P3 consists of R3 along with
a plane of points at infinity.

Ambiguity
Expressed in full generality, the solution to the
reconstruction problem may only be determined
up to an unknown projective transformation,
applied both to points and cameras.

A projective transformation of P3, the model
for 3-space containing world points, is a map-
ping:

X �→ HX

where H is a non-singular 4 × 4 matrix repre-
senting a mapping between homogeneous coor-
dinates. Using this relationship, it is easily seen
that the determination of camera matrices Pi and
points Xj cannot be unique, given only corre-
sponding image coordinates xij. Consider
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xij = PiXj

=
(
PiH

−1
) (

HXj

)

= P′
i X

′
j .

(3)

In this relationship, new points X′
j = HXj

are defined in terms of points Xj and similarly
new camera matrices P′

i = PiH−1 in terms of
the camera matrices Pi. Since both ({Pi}, {Xj})
and ({P′

i}, {X′
j }) give rise to the same projected

image coordinates xij, there is no way to choose
between these two solutions to the reconstruction
problem. In fact, there exists a complete family
of solutions to the problem, corresponding to
all possible choices of the matrix H. All such
solutions are related to each other by the applica-
tion of a projective transformation and are hence
called projectively equivalent. A particular solu-
tion, consisting of camera matrices Pi and points
Xj satisfying Eq. (1) is known as a projective
reconstruction of the scene, computed from the
given corresponding image points.

The effect of projective ambiguity is given
shown in Fig. 1.

The Projective Reconstruction Theorem
The above analysis does not rule out the possi-
bility that other solutions to this reconstruction
problem exist, not related to a particular obtained
solution by any projective transformation.

However, this possibility is excluded by the
projective reconstruction theorem, which essen-
tially says that if the set of corresponding points
xij are sufficiently numerous (at least 8 in num-
ber), and do not lie in some degenerate configura-
tion, then the solution to the reconstruction prob-
lem is unique up to a projective transformation.

The exact statement of the theorem requires
the definition of the fundamental matrix which
will be considered next.

Theory and Applications

Two View Reconstruction
Consider the reconstruction problem for only two
images. Rather than using a subscript, entities

belonging to the second camera are distinguished
by a prime. Thus, the given input to this problem
consists of corresponding points xi ↔ x′

i; i =
1, . . . , n, where the points xi come from one
image and the x′

i are the corresponding points in
the other.

Let the camera matrices (unknown) be P and
P′, and let Xi be the 3D point corresponding to the
image points xi ↔ x′

i . The projection equations
are

λixi = PXi

λ′
i x

′
i = P′Xi ,

where the scale factors λi and λ′
i are explicitly

written (but are unknown). These equations may
be written in a single system

[
P xi

P′ x′
i

]⎛
⎝

Xi

− λi

− λ′
i

⎞
⎠ = 0. (4)

Since this equation must have a nonzero
solution (Xi ,−λi,−λ′

i )
�, the determinant of

the matrix on the left (which shall be denoted as
A) must be zero. Since the point coordinates xi
and x′

i each appear in a single column, it follows
that the determinant is a bilinear expression in
(xi , x′

i ), and hence, the equation det(A) = 0 can
be written in the form

x′�
i Fxi = 0, (5)

where F is a 3 × 3 matrix depending only on the
two camera matrices P and P′. Consequently, this
equation will hold for any pair of corresponding
points (xi , x′

i ). The matrix F is called the funda-
mental matrix corresponding to the camera pair
(P, P′).

Closer examination of the matrix A appearing
in (4) reveals the exact form of the matrix F.
Expanding det(A) by cofactors down the last two
columns yields the following formula:

Fjk = (−1)j+k det

[
P(∼j)

P′(∼k)

]
, (6)
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Projective
Reconstruction, Fig. 1
Projective reconstruction.
(Top) Original image pair.
(Bottom) Two views of a
3D projective
reconstruction of the scene.
The lines of the wireframe
link the computed 3D
points. The reconstruction
requires no information
about the camera matrices
or information about the
scene geometry. In a
projective reconstruction,
the resulting model is
distorted by an arbitrary
projective transformation
from the true geometrically
correct model. (Figures
derived from [15])

where P(∼j) is the 2 × 4 matrix obtained by
omitting the jth row of P and P′(∼k) is similarly
defined.

Another way of writing the Eq. (5) is

(
xi ⊗ x′

i

)� f = 0, (7)

where (xi ⊗ x′
i )

� is the vector

(
u′
i ui , u

′
i vi , u

′
i wi , v

′
i ui , v

′
i vi ,

v′
i wi ,w

′
i ui ,w

′
i vi ,w

′
i wi

)
(8)

expressed in terms of coordinates xi = (ui, vi,
wi)� and x′

i = (u′
i , v

′
i ,w

′
i )

�. Further, f is the
vector (F11, F12, . . . , F33)� made up of the
entries of the fundamental matrix F.

Computing the Fundamental Matrix
Note that the Eq. (7) is a linear equation with
unknowns equal to the entries of the fundamental
matrix. The explicit form of the equation is given
by (8). Given n ≥ 8 point correspondences, one
has a set of linear equations

Af = 0,

where A is an n × 9 matrix, with entries deter-
mined by the coordinates of the matched image
points. This set of equations is solved to find f.

Since this is a set of homogeneous equations,
there is a solution f = 0, which is not interesting;
a nonzero solution is required. With exactly 8-
point correspondences, there is an exact solution
to this problem. With more points, a least-squares
solution is computed. This is most conveniently
done by solving the problem

Minimize ‖Af‖
subject to ‖f‖ = 1,

where the condition ‖f‖ = 1 is imposed in order
to obtain a unique solution (apart from sign). The
solution is the eigenvector of A�A corresponding
to the smallest eigenvalue. Alternatively, if A has
singular value decomposition

A = UDV�,

then the required f is the last column of V (assum-
ing that the singular values of D are in descending
order). Once the solution f is found, the funda-
mental matrix F is reconstituted from the entries
of f.
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The algorithm just described is the so-called
8-point algorithm for computing the fundamental
matrix [20]. In order to get good results, it is nec-
essary to preprocess the input image coordinates,
using the so-called normalized 8-point algorithm,
which will be described later.

Projective Reconstruction Theorem
This discussion leads to the basic theorem of
projective reconstruction, which states that under
appropriate conditions, the reconstruction of a
scene from sufficiently many point correspon-
dences in two views is unique up to projective
transformation.

Theorem 1 Let xi ↔ x′
i; i = 1, . . . , n be

point correspondences in two views and let(
P,P′, {Xi}

)
be a pair of camera matrices, and

some 3D points forming a 3D reconstruction
specifically stated

λixi = PXi

λ′
i x

′
i = P′Xi

(9)

for some unknown λi, λ
′
i 	= 0. Let H be an

invertible 4 × 4 matrix H, and define

P̃ = PH−1

P̃
′ = P′H−1

X̃i = HXi .

(10)

Then the triple
(
P̃, P̃

′
,
{
X̃i

})
is also a recon-

struction satisfying the Eq. (9).
Furthermore, if the set of vectors

(
xi ⊗ x′

i

)
has

rank 8 (spans a linear subspace of dimension
8 in R9), then any reconstruction (P̃, P̃

′
, {X̃i})

satisfying (9) is related to the original reconstruc-
tion

(
P,P′, {Xi}

)
by (10) for some non-invertible

matrix H.

This theorem was proved in [17, 16].
Note the condition that the set of vectors(

xi ⊗ x′
i

)
has rank 8 is exactly the condition that

the set of equations of the form (7) has a unique
solution. If the rank of the vectors

(
xi ⊗ x′

i

)
is

equal to 9, then there is no solution to the Eq. (7)
and the point correspondences xi ↔ x′

i cannot be

a valid set of points corresponding to projections
of a set of 3D points in two images.

If the vectors
(
xi ⊗ x′

i

)
span a space of dimen-

sion less than 8 (for instance, if there are fewer
than 8-point correspondences), then there is not
a unique matrix F satisfying the condition (5),
and the reconstruction may not be unique up to
projectivity.

Extraction of Camera Matrices
Once the fundamental matrix has been computed,
it is possible to extract a pair of camera matrices
directly from F. The decomposition is not unique,
since according to Theorem 1, there are many
pairs of camera matrices (P, P′) that correspond
to the same fundamental matrix F. It is always
possible to assume that one of the camera matri-
ces is of the form P = [I|0], so the problem is
simply to compute the other camera matrix P′.

An algorithm to do this is as follows:

1. Compute the singular value decomposition

F = UDV�,

where D ≈ diag(p, q, 0). Note that since F should
have rank 2, the last singular value should be
zero, but with noise this will not exactly hold.

2. Define matrices

W =
⎡
⎣

0 −1 0
1 0 0
0 0 1

⎤
⎦ ;Z =

⎡
⎣

0 −1 0
1 0 0
0 0 0

⎤
⎦ .

Define D̂ = diag (p, q, r) for some value of r,
and observe that

F = UDU� =
(
UZU�) (

UW�D̂V�)
= SM,

(11)

where S is a skew-symmetric matrix and M is
defined by this equation. The value of r may be
arbitrarily chosen.
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3. A pair of camera matrices corresponding to
the fundamental matrix F is now

P = [I|0] ;P′ = [M|u3] (12)

where u3 is the third column of U.

Notes
1. The vector u3 satisfies u�

3 F = u�
3 S = 0; it is

the generator of the left null-space of F.
2. The value of r, the last diagonal entry of D̂,

may be chosen arbitrarily, but a good choice
is to set r = (p + q)/2 so that M is far from
singular.

3. If r = 0, the matrix M is singular, but has
a particularly simple form, namely, M = SF.
The corresponding camera P′ = SF|u3] is
sometimes used, but it has the property that
the right-hand 3 × 3 block is singular, so the
camera center lies at a nonfinite point.

Complete Projective Reconstruction
Algorithm
It is now possible to state a complete algorithm
for projective reconstruction of a scene from two
images. Suppose a set of image correspondences
xi ↔ x′

i; i = 1, . . . , n are given.

1. From the image correspondences, compute the
fundamental matrix F linearly from Eq. (7), as
described in section 3.1.

2. From F find the two camera projection matri-
ces P = [I|0] and P′ = [M|t], as in section 3.2.

3. The corresponding 3D points Xi may be com-
puted linearly as the least-squares solution to
Eq. (4). This process is called triangulation.

The linear triangulation method via Eq. (4)
does not give optimal results. A method optimal
in the presence of noise is given in [13, 14].

The Normalized Eight-Point Algorithm
It was pointed out in [11] that the simple version
of the 8-point algorithm given above can lead to
very poor results in some circumstances, but this
problem is largely alleviated by simple normal-
ization of the image coordinates.

The issue with the 8-point algorithm for com-
puting F is that the vector (Eq. 8) expressed
in terms of image-point coordinates can contain
entries of widely different magnitude. This leads
to poor conditioning of the linear equations used
to solve for F. In addition, the results are depen-
dent on the particular coordinate system (origin
and scale) used to express image points.

Given corresponding image points xi ↔ x′
i ,

one may define normalized coordinates x̂i and
x̂′
i obtained from the original coordinates by the

following operations:

1. Each xi is replaced by xi − x, where x is the
mean (barycenter) of all the coordinates xi.
This corresponds to a shift of the coordinate
origin so that the mean of the xi is at the origin.

2. The points are scaled so that their average
(alternatively, their root-mean-squared) Eucli-
dean distance from the origin is equal to

√
2.

This is done by applying a common scaling to
all the points xi − x. The resulting point is x̂i .

The reason for choosing an average distance of√
2 is so that the average point has homogeneous

coordinates (1, 1, 1)�.
One applies these operations to the points xi

and x′
i independently. Note that both normaliza-

tion steps are simple affine transformations of the
points. These transformations may be written as

x̂i = Txi : x̂′
i = T′x′

i (13)

where T and T′ are 3 × 3 matrices acting on the
homogeneous representations of the points.

Once this normalization has taken place, the
computation of the fundamental matrix and the
complete projective reconstruction may be car-
ried out using the normalized coordinates. The
result is a fundamental matrix F̂ satisfying the
condition

x′�
i F̂x̂i = 0 (14)

from which by substitution using (13), one has

(
x′�
i T′�)

F̂ (Txi ) = 0 = x′�
i Fxi .



Projective Reconstruction 1023

P

From this it follows that F = T′�F̂T is the
fundamental matrix corresponding to the original
points.

Similarly, if P̂ and P̂
′ are camera matrices

belonging to a reconstruction from the normal-
ized image coordinates, then

x̂i = P̂X̂i; x̂′
i = P̂

′X̂i .

Once more, substituting for x̂i and x̂′
i , it fol-

lows that

xi = T−1P̂X̂i; x′
i = T′−1P̂

′X̂i

which implies that the reconstruction (P, P′, {Xi})
for the original points xi ↔ x′

i is given by

P = T−1P̂;P′ = T′−1P̂
′;Xi = X̂i .

This normalized 8-point algorithm gives
markedly superior results to the unnormalized
algorithm, which should never be used directly.
For more details and analysis, see [11].

Three View Reconstruction

The 8-point algorithm and other methods involv-
ing the fundamental matrix are useful for recon-
struction from two views.

If three images of a scene are available and
point correspondences are known across all three
views, then such linear methods can be extended
to three-image reconstruction, using the trifocal
tensor. This is an extension of the fundamental
matrix to three views.

In this analysis of three-view reconstruction, it
is convenient from a notational point of view to
denote the three camera matrices as A, B, and C,
instead of P1, P2, and P3.

Given a three-way image-point correspon-
dence xi ↔ x′

i ↔ x′′
i , the goal is to find camera

matrices A, B, and C and points Xi such that

xi = AXi; x′
i = BXi; x′′

i = CXi . (15)

This may be written in a form similar to (4), as
follows:

⎡
⎣
A xi

B x′
i

C x′′
i

⎤
⎦

⎛
⎜⎜⎝

Xi

− λi

− λ′
i

− λ′′
i

⎞
⎟⎟⎠ = 0. (16)

In this case, the 9 × 7 matrix on the left is
not square. Nevertheless, since there is a solu-
tion

(
Xi ,−λi,−λ′

i − λ′′
i

)�, the matrix must be
rank-deficient. Consequently, any 7 × 7 sub-
matrix must have vanishing determinant. Each
such determinant implies a trilinear relationship
between the coefficients of the matching points
xi ↔ x′

i ↔ x′′
i .

It is not necessary to consider all possible
7 × 7 submatrices to obtain useful relationships.
Given three camera matrices A, B, and C, one can
define a triply indexed entity T qr

i :

T qr
i = (−1)i+1 det

⎡
⎣
A(∼i)

B(q)

C(r)

⎤
⎦ . (17)

Here, all indices range from 1 to 3. Further,
B(q) and C(r) represent rows q and r of the matri-
ces A and B, whereas A(∼i) means the matrix
A with row i omitted. This results in a 4 × 4
matrix, whose determinant with the indicated
sign is the chosen value T qr

i . This triply indexed
set of 27 values is known as the trifocal tensor
corresponding to the three cameras. Note that this
tensor depends only on the camera matrices and
not any image points.

Now, it may be shown [12, 15] that the coor-
dinates of any matching triple xi ↔ x′

i ↔ x′′
i

satisfy trilinear relations:

3∑
i,j,k,q,r=1

xix′j x′′kεjquεkrvT qr
i = 0uv. (18)

This relation is to be interpreted as follows:

1. The indices on the point coordinates, such as
xi, denote the ith coordinate of the homoge-
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neous vector representing the point x = (x1,
x2, x3)�.

2. The symbol ∈jqu (and similarly ∈krv) has value
0 unless j, q, and u are all distinct; otherwise,
it is +1 if jqu is an even permutation of the
three indices 1, 2, and 3 and −1 if it is an odd
permutation.

3. The indices u and v are free indices, and each
choice of u and v leads to a different trilinear
relation, for a total of 9 distinct relations.
However, only 4 of these relations are linearly
independent.

In the case where the first camera matrix A has
the canonical form [I|0], the expression (Eq. 17)
for the trifocal tensor may be written simply as

T qr
i = b

q
i cr

4 − b
q

4cr
i , (19)

where b
q
i is the element in row q and column i of

B and cr
i is defined analogously.

A complete three-view reconstruction algo-
rithm can then be outlined as follows:

1. From point correspondences xi ↔ x′
i ↔ x′′

i

for i = 1, . . . , n, each relation of the form (18)
gives 4 linearly independent linear constraints
on the entries of the trifocal tensor. From 7-
point correspondences there are sufficiently
many equations to compute T qr

i linearly.
2. As with two-view reconstruction, it is possible

to determine the form of the two other camera
matrix B and C from the entries of the trifocal
tensor using the formula (19).

3. Finally, by triangulation from three views
based on the Eq. (16), one can find the image
points Xi, completing the reconstruction from
three views.

A few more comments.

1. In the definition (18), the first camera matrix
A is treated differently from the two others
(in that two rows of A appear in the determi-
nant, but only one from B and C). There are
two other similarly defined trifocal tensors in

which matrices B or C are distinguished in this
way.

2. Unlike with the fundamental matrix, there are
relations similar to (18) that hold for line cor-
respondences or mixed line and point corre-
spondences. Thus, computation of the trifocal
tensor and hence projective reconstruction is
possible not only from point correspondences
but from mixed correspondences of this type.

Minimal Configurations
The reconstruction algorithms from two or three
views described in Sections “Two View Recon-
struction” and “Three View Reconstruction”
require 8 or 7 points, respectively. However, it
is possible to carry out reconstruction using only
7 points from 2 views, or as few as 6 points from
3 views.

From two views, the algorithm is easily
explained. Given only 7-point correspondences,
the set of equations x′�

i Fxi = 0 represents a
set of 7 homogeneous equations in the 9 entries
of F. The solution to this equation set is a two-
parameter family F = λF1 + μF2 where F1 and
F2 are determined by solving this system.

The condition that the fundamental matrix F
must be a singular matrix gives a further equation
det F = 0. Since F is a 3 × 3 matrix, this
leads to a cubic homogeneous equation in λ and
μ. Solving this cubic equation gives either one
or three real solutions for the ratio λ : μ and
hence one or three solutions (determined as ever
up to scale) for the fundamental matrix F. In
short, from 7-point correspondences one or three
possible fundamental matrices may be computed.
From these possible values of F, the rest of
the method described previously will lead to a
projective reconstruction, in fact either a unique
or three possible reconstructions.

A method for computing the projective recon-
struction from three views of 6 points is described
in [27].

Factorization Algorithms

The algorithms described previously for projec-
tive reconstruction work on two or three images.
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In many cases, one has many more images of a
scene to use for reconstruction. To handle this
situation, a variant of the Tomasi-Kanade factor-
ization algorithm [30] may be used to do recon-
struction from many views at once. This is the
algorithm of Sturm and Triggs [29] for projective
reconstruction.

As input, consider a set of image points xij
for i = 1, . . . , m and j = 1, . . . n, where xij
represents the image of the jth point in the ith
image. It is assumed (and required) that every
point should be visible in every image, so xij is
defined for all (i, j).

The projection equations are of the form

λijxij = PiXj , (20)

where the constants λij are required scale factors,
the so-called projective depths of the points. This
set of equations may be put together in one matrix
equation as follows:

⎡
⎢⎢⎢⎣

λ11x11 λ12x12 · · · λ1nx1n

λ21x21 λ22x22 · · · λ2nx2n

...
. . .

...

λm1xm1 λm2xm2 · · · λmnxmn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

P1

P2
...

Pm

⎤
⎥⎥⎥⎦ [X1 X2 . . . Xn] .

(21)

In this equation the matrix on the left has
dimension 3m × n, since each λijxij is a 3-vector.

This set of equations has the form

	 � W = PX (22)

where

	 =
⎡
⎢⎣

λ11 . . . λ1n

...
. . .

...

λm1 . . . λmn

⎤
⎥⎦ ;W =

⎡
⎢⎣
x11 . . . x1n

...
. . .

...

xm1 . . . xmn

⎤
⎥⎦

(23)

and � is to be interpreted as an elementwise
product, so that 	 � W is the matrix on the left
of (21).

From the form of (21), it is evident that the
matrix on the right has rank 4, since it is the
product PX of matrices of dimension 3m × 4
and 4 × n. This is a low-rank constraint on
the matrix 	 � W of depth-weighted image
coordinates.

Unfortunately, although the matrix W of image
coordinates is known, the matrix 	 of projective
depths is not known. With an incorrect set of
projective depths, the matrix 	 � W will not
have the expected rank 4. This suggests an
algorithm in which the factorization and the
projective depths are estimated alternately as
follows:

1. Form the matrix W of homogeneous image
coordinates as given in (Eq. 23), and define
	0 in which all λ0

ij = 1. Then carry out the
following steps iteratively for k= 0, . . . , N:
(a) Find the closest rank-4 matrix Wk to 	k

� W.
(b) Define 	k+1 to be the matrix of weights

λk+1
ij so that 	k+1 � W is as close as

possible to Wk under Frobenius norm.
2. Compute a final factorization WN = PX, to

obtain P and X providing the camera matrices
and point locations, respectively.

In step 1(a), the low-rank factorization is
carried out by singular value decomposition.
Suppose 	k � W = UDV�. Let D̂ be the
matrix obtained by setting all but the four first
(largest) diagonal entries of D to zero. Then set
Wk = UD̂V�. The number of iterations N is
vaguely defined in this algorithm. The intention
is to continue until “convergence,” but as will
be remarked below, continuing to convergence is
problematic.

Variants of the Method
It has been observed [24] that the bare projective
algorithm as given above will converge to a
trivial limit in which all the values of λij will
be zero, except for those values in 4 columns of
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	. This solution is spurious, since zero values
of the projective depths are not possible for a
geometrically valid reconstruction. In addition,
convergence is very slow. Therefore, different
variants on the algorithm have been proposed,
as follows:

1. In the original paper of Sturm and Triggs
[29], an initialization of the projective depths
is proposed, in which projective depths are
derived from two-view reconstructions.

2. A viable strategy is to carry out only a fixed
small number of alternation steps, since this
significantly improves the solution without
encountering a trivial solution.

3. A further step of normalization of the pro-
jective depths λij may be used [15]. Observe
that if λijxij = PiXj, for all (i, j), then for any
constants ci and dj,

cidjλikxij = (ciPi )
(
djXj

)
. (24)

Thus, each λij may be replaced by cidjλij with-
out materially changing the factorization. Thus,
one may at will multiply each ith row of 	

by ci and the jth column by a constant dj. In
[15] it is suggested that constants ci and dj may
be chosen so that first the rows and then the
columns of 	 sum to unity. However, no anal-
ysis of this normalization procedure is given
there.

4. More complex schemes for normalization
schemes are given in [24] and [21, 22],
for which convergence to a meaningful
(local) minimum of some cost function is
demonstrated.

5. Methods to accommodate missing data
or outliers in projective factorization
algorithms have been proposed. Though
many algorithms have addressed missing
data in matrix factorization (for instance,
[2–4, 18, 28]), a notable paper address-
ing projective factorization specifically
is [5].

6. L1-factorization has been recognized as more
robust alternative to matrix factorization; an
effective method is given in [6].

Bundle Adjustment

Given measured image points xij in several
images, the projection equations λijxij = PiXj

cannot be satisfied exactly if there is any
inaccuracy, or noise, in the measurements.
Therefore, in finding the projection matrices
Pi and 3D points Xj to satisfy these equations,
it is appropriate to find an approximate solution.
Typically, this solution will be one that minimizes
some appropriate cost function representing a
residual error in the solution.

Since errors arise in the measurement of the
coordinates of image points, it is appropriate to
seek a solution that minimizes the error with
respect to the measured image coordinates. This
corresponds to choosing a cost function of the
form

C
({
Xj

}
, {Pi}

) =
∑

i,j∈N
d
(
xij ,PiXj

)2
, (25)

where N is a set of pairs (i, j) for which xij
is measured. Further, d(xij, PiXj) represents the
Euclidean distance in the two-dimensional image
plane between the measured point xij and the
projected point PiXj. This is commonly referred
to as the reprojection error. The cost is to be
minimized over all choices of Pi and Xj. This is
a nonlinear function. The choice of the squared
distance means that a nonlinear least-squares cost
function is to be minimized. The motivation for
this choice is the observation that the solution
to this least-squares problem represents the
maximum likelihood (ML) solution, under the
assumption that each image measurement error
conforms to an isotropic Gaussian distribution,
each point measurement being independent of
the others.

Minimizing the cost function (25) over all
choices of the variables Pi and Xj is known
as bundle adjustment. Since this is a nonlinear
optimization problem, an iterative algorithm is
required. The most common algorithm used to
minimize this cost function is the Levenberg-
Marquardt algorithm [15, 19, 23, 31]. In order to
converge to the globally optimal solution, a good
initial solution is necessary. Such an initial solu-
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Projective
Reconstruction, Fig. 2
Stratification. The
projective reconstruction
(top row) obtained by
uncalibrated reconstruction
techniques is first upgraded
to an affine reconstruction
(second row). In the affine
reconstruction, parallel
lines in the image are
parallel in the
reconstruction, but
geometric structures are
still skewed. In the final
stage of the reconstruction,
the true Euclidean model
(third row) is computed, in
which angles and
dimensions are correct up
to an indeterminate scale.
The fourth row shows two
views of the
texture-mapped model.
(Figures derived from [15])

tion is found by applying any of the algorithms
previously described in this chapter.

Robust Cost Functions
The cost function (25) is suitable and represents
the ML solution if the measured point coordinates
conform to a Gaussian distribution, and may
be used if there are no gross errors (outliers)
among the measured points. In most cases, this
is unlikely, and a more robust cost function is to
be preferred. In this case, the squared Euclidean
distance function d(·, ·)2 is replaced by some
other function f(·, ·) that is more tolerant of
outliers, meaning that f(x, y) grows less rapidly

than d(x, y)2 as the distance between the two
arguments x and y increases. A good choice of
robust cost function is the Huber cost function
[15, 17]:

C
({
Xj

}
, {Pi}

) =
∑

i,j∈N
H

(
d
(
xij ,PiXj

))2
,

(26)

where H(x)2 is quadratic for |x| < δ and linear for
|x| ≥ δ, and δ is some threshold approximately
equal to the standard deviation of the measure-
ments.
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Projective
Reconstruction, Fig. 3
Views of reconstruction of
San Marco, Venice, from
Flickr images. The top
image shows San Marco
Cathedral and the doge’s
palace. Below is shown the
campanile at left and the
palace on the right. Black
pyramids show the position
and orientation of the
cameras. (Figures are
reproduced with thanks to
Noah Snavely)

Sparse Methods
A reasonable sized reconstruction problem may
involve 1,000 camera matrices Pi and 100,000
points Xj. Consequently, the cost function (25)
depends on a large number of variables (311,000
parameters if the cameras are parametrized
by 11 parameters). Since the central step in
the Levenberg-Marquardt optimization process
involves the solution of equations to compute the
update of the parameters, this would involve
solving a very large set of equations in all
the variables. For a dense set of equations
in 300,000 parameters, this would be almost
impossible.

Fortunately, the set of equations involved
in this update process is quite sparse, so the
problem is tractable. To see this, note that if a
single point Xj is moved, then only the image
points xij involving this point are affected.

Similarly, if some camera matrix Pi is altered,
then only image points xij are changed. This
means that each image measurement depends
only on the parameters of one 3D point and one
camera. This sparse dependence structure for the
cost function results in a special sort of sparse
structure for the Jacobian matrix. Sparse solution
methods may then be used to accelerate the
update step and allow it to be run in reasonable
time. Methods that are used for this numerical
problem include the Schurr complement method
[15], in which the sparseness of the Jacobian
is used to allow the camera updates to be
computed first, followed by the point updates.
The exact form of the equations is given in [15].
Alternatively, conjugate gradient methods [1]
may be used; in such methods the sparseness of
the equation set lends itself naturally to sparse
methods.
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Euclidean Update

A projective reconstruction may be used as
an initial step towards a geometrically correct
(Euclidean) reconstruction. There are various
ways in which this can be done:

1. By determining or knowing the calibration
of the cameras. The camera calibration may
be known a priori, or determined through the
process of auto-calibration [9]. Constraints on
the camera parameters, such as known focal
length, or an assumption that some cameras
have the same shared internal parameters, may
be enforced easily during bundle adjustment.
Automatic methods for auto-calibration often
compute an affine reconstruction first, fol-
lowed by an update to a Euclidean reconstruc-
tion and full determination of the camera cali-
bration parameters [8, 10, 25]. This process is
known as stratification.

2. By the knowledge of the 3D Euclidean coor-
dinates of some number of ground-control
points, at least five such points are required
[16].

3. If partial camera calibration is known, the full
calibration and Euclidean reconstruction may
be computed more simply than if no cali-
bration information is given. A notable paper
demonstrating this is [26] and more details on
self-calibration given different types of partial
camera calibration are given in [15].

Figure 2 illustrates the steps from projective to
Euclidean reconstruction via stratification.

A large-scale reconstruction, computed from
thousands of images, is shown in Fig. 3.
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Synonyms

Action prototype trees

Definition

Human movement modeling is a static and
dynamic human appearance representation with
feature descriptors. Typical feature descriptors
include local and holistic descriptors. Local
descriptors mean sparse features extracted
locally, i.e., local features [1] or local space-
time features [2]; holistic descriptors means
dense features extracted inside a human bounding
region, i.e., shape/appearance descriptors [3], and
motion descriptors [4, 5].

Prototype-based methods [6–9] are a category
of approaches representing original feature
descriptors with a finite set of indices through
feature quantization. Given a large number of
descriptors extracted from training images or
videos, a vector quantization (or data clustering)
algorithm is used to divide the feature space
into nonoverlapping cells where each cell is
uniquely represented with an integer index.
Given the quantization, each test feature can
be mapped to an integer index (corresponding
to the center of a quantization cell or cluster
center) based on exact (or approximate) nearest
neighbor search, and finally, recognition can be
performed through simple index matching. This
scheme is significantly more efficient than the
direct descriptor matching schemes due to the
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speedup in calculating Euclidean distances in
high-dimensional feature spaces.

Background

There are two categories of methods to model
human appearances and movements. The first
category is local feature-based approaches. In
this category, usually a set of local features
are extracted across all image regions or video
frames, and recognition is based on matching of
those features either via histogram comparisons
or class voting. For example, a bag-of-features
representation is computed and used as the
descriptors [10, 11], or a Hough voting-based
approaches [12] are used to simultaneously locate
humans and recognize their movements.

The second category is holistic feature-based
approaches. These approaches typically extract a
single high-dimensional feature descriptor from
a hypothesized bounding region and classifies
it with pre-trained classifier. Typically, a slid-
ing window approach is used over all possible
sub-rectangles across images [3] or across all
space-time volumes [9, 10], and for every hypo-
thetical bounding region, a holistic descriptor
(consisting of appearance descriptor [3] and/or
motion descriptor [4]) is extracted and classi-
fied into human/nonhuman (for human detection)
or action IDs (for action recognition) based on
a discriminative classifier trained off-line. The
descriptors extracted from hypothetical human
bounding region are invariant to human trans-
lation and scale variations and typically contain
more information due to dense extraction; con-
sequently, those features are much more reliable
for recognition. In case of human movement
understanding or activity recognition, typically, a
generic human detector [3] is used to locate most
probable human bounding boxes, and holistic
descriptors extracted from all the frames are used
for recognition.

Once feature descriptors are extracted from
human images or videos, they will be fed into
a classifier for recognition and categorization
purposes. The classification modules are mostly
based on machine learning or pattern recognition

techniques as in the object recognition litera-
ture. Classifiers commonly used include NN/k-
NN classifiers [6, 7], Support Vector Machine
(SVM) classifiers [2], boosting-based classifiers
[5, 13], dynamic time warping [8] for sequence
alignment and matching, etc.

Direct descriptor matching and classification-
based schemes have been common for human
movement recognition. However, for large-scale
action recognition problems, such a matching
scheme may require tremendous amount of time
for computing similarities between descriptor
sequences and learning discriminative classifiers.
Also, sequence matching (action recognition)
involves frame alignment issues. In this regard,
an efficient and effective descriptor matching
scheme is needed to handle both scalability to the
number of training classes and training examples
and ability to handle sequence alignment.

Theory

Prototype-based approaches have been very
effective in handling scalability to large training
data. These approaches typically represent a
human action as a sequence of basic action
units [6–9]. Each action frame or frame segment
(multiple consecutive frames) is represented as
one of the holistic action units trained off-line
or histogram of local action units (similar to bag
of visual words). The action units are usually
obtained by feature quantization such as k-means
clustering in the feature space. The centers of
quantization cells are defined as action units,
and all test descriptors belong to a cell are
assigned the same index (i.e., the index of the
cell).

In [6], an action is represented as a set of
pose primitives and n-Gram models are used for
action matching. Weinland and Boyer [7] models
an action as a set of minimum distances from
exemplars to action frames in an exemplar-based
embedding space. These action representation
methods are compact and efficient but might be
limited in capturing global temporal consistency
between actions because they either use low-
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order statistics such as histograms and n-Grams
or use a minimum-distance-based representation
which does not enforce temporal ordering.

Relaxing temporal constraints [6] makes
action representation more invariant to intra-
class variation and, consequently, might be
effective in recognizing small numbers of
actions, but when the number of action classes
is large, global temporal consistency is very
important for action recognition due to small
inter-class variability (i.e., increased ambiguity
between actions). In fact, there have been
approaches modeling the global temporal
consistency.

Prototype Tree-Based Method
Recently, tree-based methods have been popular
for human detection and activity recognition
problems. Mikolajczyk and Uemura [14]
proposes a random forest method on large
number local features for action recognition.
Although this method is efficient due to fast
nearest neighbor search and can handle action
detection problems in difficult cases, action frame
time alignment issue is not explicitly addressed.
Lin et al. [8] learns an action prototype tree
based on hierarchical k-means clustering [15]
and aligns action sequences with a fast dynamic
time warping algorithm in order to compute
accurate similarities between action sequences.
More specifically, the cluster centers of leaf
nodes (of the tree) are defined as the set of
action prototypes. Distances between action
prototypes are precomputed and stored in a
lookup table, so the sequence alignment and
matching stage is very efficient. The action
prototype tree-based method learns action
prototypes in joint shape and motion space so
that human movements can be described more
accurately and compactly. This prototype tree
model is also applied to sliding window-based
framework for simultaneous action detection
and recognition in [9]. The prototype tree-based
motion modeling methods can also be combined
with a Markov model to incorporate prototype
transition priors between frames.

Application

Appearance prototype-based methods generally
can be applied to all the human-related recog-
nition problems in computer vision including
appearance-based human identification, human
detection, and human action detection and recog-
nition. More broadly, they can be applied to video
surveillance, human-computer interaction, virtual
reality, and multimedia understanding.

Open Problems

Human movement modeling still remains chal-
lenging due to articulated nature of human bod-
ies and varying camera viewpoints. Although
there has been a significant progress on view-
dependent appearance and movement modeling,
view-invariant human movement modeling is still
an open research topic. There has been several
efforts to introduce view-invariant descriptors for
human movements, but still more research is to
be done to be practical in real applications.
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Related Concepts

� Irradiance

Definition

Radiance L is defined as the power received or
emitted per unit solid angle dω and per unit
projected area dA cos θ at a point x in direction
(θ, φ):

L(x, θ, φ) = d2Φ

dωdA cos θ
.

Φ is the radiant power, which describes the total
amount of energy that flows through a surface
per time interval [1]. θ is the angle between the
surface normal of the differential area dA and
the direction under consideration (see Fig. 1). The
unit of radiance is watt per steradian per square
meter (W · sr−1 · m−2).

Radiance, Fig. 1 Geometric setting

Background

Radiance is a concept from radiometry, the sci-
ence of measuring radiant energy transfer. It is
an essential concept for global illumination algo-
rithms [1]. In computer vision, it is mostly used
in the context of light transport in scenes [2]. The
equivalent concept in photometry is luminance,
with the key difference being that luminance is
adjusted to account for the varying sensitivity
of the human eye to different wavelengths of
light.

Theory

An important aspect of radiance is that it is con-
stant along a line of sight in an empty medium.
This follows from the conservation of energy
in a small bundle of light rays between two
differential surface patches. More formally, given
two points x and y at distance r = |x − y| and
two small areas dx and dy located at x and y,
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K. Ikeuchi (ed.), Computer Vision,
https://doi.org/10.1007/978-3-030-63416-2

https://doi.org/10.1007/978-3-030-63416-2


1036 Radiometric Calibration

respectively, the radiance leaving dx towards dy

is written as

L(x → y) = d2Φ

dωx←dy cos θxdx
. (1)

dωx←dy denotes the solid angle covered by dy as
seen from x. Similarly the radiance arriving at dy

from dx is written as

L(y ← x) = d2Φ

dωy←dx cos θydy
. (2)

Considering a total vacuum and no additional
source of power, all energy in the system must
be conserved. This means that all energy leaving
from dx towards dy must arrive at dy. Therefore
d2Φ is equal in both equations, and we can
derive

L(x → y) = d2Φ

dωx←dy cos θxdx
(3)

= d2Φ

cos θydy

r2 cos θxdx

= d2Φ

cos θxdx

r2 cos θydy
(4)

= d2Φ

dωy←dx cos θydy
= L(y ← x).

(5)

Application

An application of the fact that radiance is constant
along a ray can be seen in photography. The cor-
rect exposure is hereby determined by measuring
the radiance (or more precisely the luminance) of
a scene or part of a scene that should be correctly
exposed. Once exposure is determined, the scene
can be photographed from an arbitrary distance
without changing the exposure settings of the
camera.
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Related Concepts

�Camera Response Function
�Radiance
�Radiometric Response Function

Definition

Radiometric calibration is a process of determin-
ing radiometric response functions, which relate
sensor irradiance with measured intensity values.

Background

Many computer vision algorithms rely on the
assumption that image intensities are linearly
related to the image irradiance recorded at the
camera sensor. Since most cameras non-linearly
alter irradiance values for purposes such as
dynamic range compression, this assumption
generally does not hold. It is, therefore, important
to calibrate the response function of a camera, so
that the non-linear mapping can be inverted and
subsequent algorithms can assume linearity of
intensity observations.

Radiometric calibration aims to estimate the
response function f of a camera. The radiometric
response function f maps the irradiance I that is
captured at the sensor to the image intensity M in
the image:
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M = f (I). (1)

For vision algorithms that require irradiance val-
ues I rather than measured intensity M as input,
the inverse response function g = f−1 needs to
be determined so that measured intensities can
be made linear with respect to irradiances. Since
response functions f are monotonic and con-
tinuous, they are invertible to determine inverse
response functions g uniquely.

Theory

Radiometric calibration methods require means
to collect samples of the radiometric response
function with some known relationship. One tra-
ditional approach is to use a special target, such
as a Macbeth color chart [1], which has color
patches with known reflectances. By uniformly
illuminating the target, known radiances from
the color patches are recorded. The radiometric
response function is then obtained by relating the
sensor irradiance I with the recorded intensity
values M . Nayar and Mitsunaga [2] use an optical
filter with spatially varying transmittance; the
variation corresponds to the radiance ratio.

To avoid using such special equipment, some
methods use a set of images of a static scene from
a fixed viewpoint, taken with different exposure
times, so the radiance ratio is known. Known
exposure times provide information about sen-
sor irradiance ratios, which are the ratios of
exposure times. In a similar manner with the
approach of using a special target, by relating
the sensor irradiance I with the measured inten-
sities M , a radiometric response function is esti-
mated. The early work of Mann and Picard [3]
uses a gamma correcting function to represent
response functions. With known exposure ratios,
their method can successfully recover the inverse
response function in the parametric form. With
only approximate knowledge of relative exposure
levels, Mitsunaga and Nayar [4] iteratively solve
for a response function based on the assumption
that it has a polynomial form. Other iterative
estimation methods include that of Tsin et al.
[5], which estimates non-parametric responses

using a statistical model of the CCD imaging
process, and of Pal et al. [6], which utilizes
probabilistic imaging models and prior models of
response functions to compute response functions
that can differ from image to image. Debevec
and Malik [7] assumed a smoothness property
of the response functions and estimated them in
a non-parametric manner. As pointed out in [8–
10], without the knowledge of exposure ratios,
the estimate still has an exponential ambiguity.
While not unique, such an estimate is still useful
for many applications, such as radiometric align-
ment, high-dynamic range image production, and
image stitching.

Several methods have been developed that
use multiple exposures, but do not require pre-
cise registration. Grossberg and Nayar [8] use
the relationship between the intensity histograms
of two scenes imaged with different exposures
because intensity histograms are relatively unaf-
fected by small changes in the scene. Kim and
Pollefeys [9] compute point correspondences
between images. Mann [11] estimates response
functions from a rotating and zooming camera.

Instead of using varying exposure times, some
approaches use statistical or physical properties
embedded in images to achieve radiometric
calibration. Tsin et al.’s method [5] estimates
non-parametric response functions using a
statistical model of the CCD imaging process.
Pal et al. [6] used probabilistic imaging models
and weak prior models for deriving response
functions to produce high-quality high-dynamic
range images. Matsushita and Lin [12] proposed
to use the symmetric property of image noise
by observing noise distributions contained in
images. Takamatsu et al. [13, 14] improved
the noise-based method with a probabilistic
intensity similarity measure, which requires a
fewer number of images. Lin et al. [15] and Lin
and Zhang [16] proposed a method that takes
only a single image as input. Their method uses
edges for obtaining color or grayscale histogram
distributions, and the optimal inverse response
function is determined by transforming linear
distributions. Their method uses a database
of response functions (DoRF) compiled by
Grossberg and Nayar [17]. In a similar manner,
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Wilburn et al. [18] use temporal color mixtures
to directly sample the response function by
observing motion blur in an image. More
recently, Shi et al. [19] show a calibration
method from images taken under varying lighting
conditions. In their approach, an inverse response
function is determined by linearizing color
profiles that are defined as a set of measured
RGB values at a pixel across images.

Open Problem

In many practical situations, the input dataset is
naturally restricted by the camera’s capability or
application scenarios. For example, it is difficult
to obtain multiple images at different exposures
with ordinary web cameras. A more general and
robust approach for radiometric calibration is still
to be investigated.
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Synonyms

Camera response function
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Related Concepts

�Radiance
�Radiometric Calibration
�Vignetting

Definition

Radiometric response function is a function that
transforms sensor irradiance into measured inten-
sities that are the output from the camera.

Background

In most cameras, there exists a radiometric
response function that relates sensor irradiance
to measured intensity values. The radiometric
response functions are typically nonlinear. This
nonlinearity is intentionally designed by camera
manufacturers for purposes, such as compressing
the dynamic range of scene brightness or taking
into account the nonlinear mapping of display
systems.

While many computer vision algorithms
assume a linear (or affine) relationship between
the sensor irradiance and the measured image
intensity, the radiometric response functions
are typically unknown, and these vary with
camera parameter settings. Therefore, it is
important to estimate the response function to
linearize the measured image intensity values
for vision algorithms to work. The process
of determining radiometric response functions
is called radiometric calibration. Once the
radiometric response function is determined,
the measured intensity can be linearized and
transformed into sensor irradiance with a scaling
ambiguity.

Theory

The radiometric response function f maps irradi-
ance I that is captured at the sensor to the image
intensity M by

M = f (I). (1)

For computer vision algorithms that require irra-
diance values I rather than measured intensity M

as input, the inverse response function g = f−1

needs to be determined so that measured inten-
sities can be made linear with respect to irradi-
ances. Since response functions f are continuous
and monotonic, they are invertible to determine
inverse response functions (Fig. 1).

Representation Many parametrization methods
have been used to represent radiometric response
functions f . To deal with the scale difference
between irradiance I and measured intensity M ,
both are normalized in the range of [0, 1] so that
f (0) = 0 and f (1) = 1.

When representing a radiometric response
function in a certain form, there is a trade-off
between complexity and flexibility. A simpler
representation makes the estimation problem
more tractable at the cost of approximation
accuracy. On the other hand, a more flexible
representation requires an uneasy solution
method. Here we review major representations of
radiometric response functions.

Mann and Picard [1] represent the response
functions in the form of a gamma correction
function as

M = f (I) = α + βIγ , (2)

where α and β are offset and scale factors and γ

is the power-law parameter.
Mitsunaga and Nayar use a high-order (order

of N ) polynomial function as the model of
inverse response functions g as

I = g(M) =
N∑

n=0

cnM
n, (3)

where cn are the coefficients of the polynomial
function.

Grossberg and Nayar apply principal compo-
nent analysis (PCA) to a database of real-world
response functions (DoRF) and show that the
space of response functions can be represented by
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Radiometric Response Function, Fig. 1 A radiometric response function relates the incoming sensor irradiance to
measured intensity values

a small number of basis functions [2].

g = ḡ +
N∑

n=1

cngn. (4)

In the above equation, ḡ is the mean inverse
response, and gi is the i-th principal component
of the inverse response functions.

Debevec and Malik [3] use a non-parametric
form of the radiometric response functions. The
non-parametric representation has great descrip-
tive power, but it is necessary to estimate f (I) (or
g(M)) for each intensity level (e.g., 256 for 8-bit
images). Therefore, the solution methods tend to
become more complex. The same representation
is also used by Tsin et al. [4].

Existing methods can estimate radiometric
response functions from a set of images taken
with different known exposure times from a
fixed view point [5–7]. More recent methods
use different cues to achieve the estimation in
more general settings. These include methods
using single-image edges [8, 9], image noise
observations [10–12], and motion blur [13].
These estimation methods are detailed in the
entry “radiometric calibration”.

Application

Estimation of radiometric response functions
constitutes an extensively researched area due to
its fundamental importance for many computer

vision algorithms, such as shape-from-shading,
photometric stereo, high-dynamic range imaging,
and photo stitching. Estimated radiometric
response functions are used to linearize the
measured intensity values as pre-processing for
these computer vision algorithms that require a
linear (or affine) relationship with the irradiance.
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Synonyms

Computer vision

Definition

Vision is a scientific field that investigates bio-
logical systems and machines how to use light
to gain information about their environments. It
covers several subfields such as optics, percep-
tion, psychophysics, neurophysiology, informa-
tion science, signal processing, cognitive science,
and related subjects.

Background

Background section will not be a review of all
the contributions to the field of vision from all
the subfields mentioned above. Rather it shall
concentrate on how different subfields try to solve
the problem vision and how this field has evolved
over time due to better understanding of the prob-
lems but also due to more powerful technological
tools.

Fundamentally vision utilizes the spatial and
temporal information (structure) that stems from
the reflection of light from the environment. The
focus will be on the computational aspects of
processing of this visual information, asking how
visual information is represented for recognition,
mobility, and manipulation, hence computational
vision.

Much of the machine vision has been
motivated by various applications: military
medical, industrial, cultural, and commercial.
The application-driven solution can be a separate
article by itself. In this article the emphasis
will be more on the scientific rational for
computational vision than all the other reasons.

Motivation for this scientific endeavor comes
from two very different sources:

1. How to model (mathematically and/or algo-
rithmically) the biological process of vision.
Can one design vision-based processes that
explain visual perceptual phenomena?

2. How to design machines that will produce the
desired outcome (recognition or navigation of
a robot) from visual data.

The goals and the evaluation of success of
these two approaches are very different.

Computational models of biological systems
and machine vision is a very broad subject
because it entails mammals as well as humans.
It also encompasses fields such as computational
neuroscience, through psychophysics up to com-
putational cognitive modeling. In this article only
some representative works will be mentioned
which in no way does justice to this field. It
covers modeling at different scale from neurons
with prominent work of Hodgkin–Huxley model
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[1] and Hubel and Wiesel [2], through sensory
processing and communication of Barlow
[3]. Psychologists have seriously considered
computational models, especially how to explain
visual illusions (exemplars are Gregory [4] and
Frisby [5]), mechanisms of binocular vision (see
Julesz [6]), and theory of color vision in retinex
theory (by Land [7]).

Coincidentally, the engineering community
also was heavily engaged in developing
computational models for processing data
coming from cameras. The limitations of
poor resolution of cameras (64 by 64 pixels),
limited memory, and compute power limited the
applications of this era. Hence the topics were
primarily two-dimensional picture recognition,
such as digit recognition, finger print recognition,
and in medical domain chromosome recognition.
The methodologies used were statistical pattern
recognition represented by Duda and Hart [8],
signal-image processing by Rosenfeld and Kak
[9], syntactic pattern recognition by K.S. Fu [10],
and many others.

In early 1970s another trend emerged from
the newly established Artificial Intelligence Lab-
oratories at MIT and Stanford Universities. This
trend emphasized the need for recognizing three-
dimensional (3D) objects and scenes, arguing that
today beings live in the 3D world; therefore the
visual objects need to be represented as such.
Guzman [11] was the first one who dealt with this
problem using principles of projective geometry.
Binford and Agin [12] and his students proposed
a generalized cylindrical model (skeleton and
corresponding cross-sections) as a generic model
of 3D objects. It was argued that the model
can represent parts and in turn the part-whole
relationships can be represented as graphs.

This was more or less object-centered repre-
sentation as oppose to the viewer-centered rep-
resentation, proposed by Koenderink and van
Doorn [13] as aspect graphs. This debate object-
centered representation vs. viewer-centered rep-
resentation is still ongoing!

In meantime David Marr [14] in late 1970s
and early 1980s questioned the scientific
approach of engineering community as ad
hoc and not anchored in scientific theory. He

argued that the validation of the engineering
approaches must be guided by what is known
from neuroscience and psychophysics about
human visual processing (this at present is the
best model).

He outlined three levels of analysis:

1. The computational theory, specifying the
goals of the computation

2. Representation and algorithm, giving a repre-
sentation of the input and output which trans-
forms one into the other

3. The hardware implementation, how algorithm
and representation may be physically realized

Concurrently with Marr’s effort in the UK,
Christopher Longuet-Higgins [15] introduced
cognitive science as the interdisciplinary study of
how information is represented and transformed
in the brain. It spans many levels of analysis,
from low-level learning and decision mechanisms
to high-level logic and planning. This field
has blossomed with many works of modeling
of perceptual and cognitive processes (see
Newel and Simon [16], Hinton [17], and many
others).

The 1980s benefitted from rapid advance-
ments in hardware both in better cameras and
computing power. This development enabled
to perform some real-time computation and
connect signal processing and perception with
action. Motivated by Gibson [18] and Bajcsy
[19] proposed a new research paradigm, called
Active Perception. In this new framework, it has
been shown that there is benefit in controlling the
data acquisition and serves as way of modeling
focus of attention.

Simultaneously progress has been made in
various basic algorithms such as stereo recon-
struction, motion detection and interpretation,
multiple view reconstruction, shape from shading
and photometric stereo, and shape–object–scene
representation. Several textbooks cover these
advancements, just to cite a few: Faugeras [20],
Forsyth and Ponce [21], and Ma et al. [22]:

• Another challenge for machine perception
comes from Gestalt psychology founded by
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Max Wertheimer [23], in the beginning of the
twentieth century. The word Gestalt means
a unified or meaningful whole. The laws of
Gestalt theory of perceptual organization are
as follows:

• The Law of Similarity
• The Law of Pragnanz
• The Law of Proximity
• The Law of Continuity
• The Law of Closure

Computationally however, they are hard to
define and map into an algorithm since they deal
with rather vague concepts such as proximity
and similarity. From the beginning of computa-
tional vision, this problem has attracted atten-
tion, first just building some distance function
(Zobrist and Thompson [24]) later looking at
these laws as a guide to perceptual organiza-
tion (Low [25]) and more recently as “image
segmentation,” the partitioning of an image (or
video streams) into sets of pixels that correspond
to “objects” or parts of objects. This process is
based on bottom-up cues such as similarity of
pixel brightness, color, texture, and motion as
well as top-down input derived from familiar
object categories such as faces. Malik and his
coworkers [26] aimed at developing a scientific
understanding of grouping, both in the context
of human perception and for computer vision,
and have shown progress in this area but also its
limitations.

At the onset of the twenty-first century, the
abundance of images on Internet has spurred
an interest in Machine Learning Technologies
(MLT) as they apply to object recognition and
classification. The latest premier vision confer-
ences ICCV and ECCV have been representa-
tive examples of this research. The theoretical
development related to this effort is compressed
sensing; see Emmanuel Candès and Terence Tao
[27]. They discovered important results on the
minimum number of data needed to reconstruct
an image even though the number data would
be deemed insufficient by the Nyquist–Shannon
criterion. Further effort in combining the com-
pressed sensing with principal component pursuit
is in [28].

In conclusion, the scientific community has
seen serious progress in computational vision
afforded by technological advances (cameras,
computing power) but also by the community
mastering much more sophisticated mathematical
and computational tools than ever before. The
emphasis on robustness, sharing code, and
creating standard data bases where different
approaches can be tested is very good.

Open Problems

The basic representations of visual objects and
their dynamics are still open problems. Further,
the adaptive nature and flexibility of biological
vision is still a dream to be accomplished by the
computational vision community
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Synonyms

Appearance scanning; BRDF measurement;
Reflectometry

Definition

Recovering reflectance properties refers to the
process of measuring and modeling the manner
in which a material scatters incident light. This
often involves estimating the parameters of a light
scattering function based on measurements of a
physical sample.

Background

Along with its 3D shape, another crucial aspect of
an object’s appearance is the manner in which it
scatters incident light, often referred to generally
as its reflectance. In the case of opaque objects,
it may be assumed that any light which strikes
the surface is either reflected back into the envi-
ronment at that same incident location, possibly
in different amounts along different directions,
or absorbed by the material. Translucent objects
require consideration of the way light scatters
internally within the medium. Only metallic sur-
faces are technically opaque, although dielectrics
may be treated as opaque at an appropriate mea-
surement scale. Further, the reflectance of many
objects varies spatially over their surface. This
entry focuses on techniques for measuring and
representing the optical properties of opaque sur-
faces.

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/vision_group.html
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Recovery of Reflectance
Properties, Fig. 1
Geometry of the BRDF.
The incident direction ωi
and exitant direction ωo are
defined with respect to the
local surface frame defined
by the surface normal n
and tangent t. These
directions are often written
in terms of their respective
elevation and azimuthal
angles θ and φ
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Theory

The appearance of a homogeneous opaque sur-
face is completely characterized by the Bidirec-
tional Reflectance Distribution Function (BRDF)
[1]. This is a scalar-valued function of the ratio
of the differential radiance dI leaving the surface
along direction ωo with respect to the differential
surface irradiance dE from light arriving along
direction ωi with wavelength λ

fr (ωi, ωo, λ) = dI (ωo, λ)

dE (ωi, λ)

[
sr−1

]
. (1)

This is a function of five variables (note
that the directions are unit length and thus
occupy a 2D domain) defined with respect to the
local tangent frame attached to a location on a
2-manifold surface (Fig. 1). A very nice overview
of the radiometry underlying the BRDF is
available in a chapter written by Pat Hanrahan
entitled “Rendering Concepts” in the textbook by
Cohen and Wallace [2].

Note that Eq. (1) does not differentiate
between the wavelength of the incident and
exitant light and thus it cannot capture photo-
luminescence effects such as phosphorescence or
fluorescence. Furthermore, the full dependence
on wavelength is often ignored (as will be the
case in this entry), in which case λ in Eq. (1)

is omitted and the BRDF is a function of four
variables defined within a trichromatic color
space such as RGB. The dimensionality of the
BRDF can be further reduced to three if the
material’s reflectance is isotropic, meaning it is
unaffected if the incident and exitant directions
are rotated together around the surface normal.
This is in contrast to anisotropic materials
which exhibit a visible surface grain that causes
the reflectance to depend on this azimuthal
component such as brushed metal, satin, silk,
and velvet.

In many cases, the surface BRDF will vary
from one surface location to the next (e.g., a
wooden object with visible spatially varying
grain densities). The spatially varying BRDF
(svBRDF) is used to characterize the reflectance
of these inhomogeneous surfaces, and it simply
adds surface position x to the angular variables
in the BRDF: S(x, ωi, ωo). The svBRDF is thus
a function of six variables since two numbers are
required to specify a surface location.

Representations

A considerable amount of research has focused
on developing efficient BRDF representations
that apply to a wide range of materials.
This includes a number of early and still
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widely popular phenomenological models
such as the Phong [3] and related Blinn-
Phong models [4], which offer reasonable
approximations for plastics and smooth painted
surfaces.

An alternative approach is to derive the BRDF
from the laws of physics based on a hypoth-
esized physical model of a material’s surface.
These physically based models include the sem-
inal Torrance-Sparrow [5] and Cook-Torrance
models [6], both of which assume that the sur-
face is composed of randomly oriented micro-
scopic mirrors, or microfacets. These models cap-
ture important effects predicted by Fresnel equa-
tions including color shifts near highlights and an
overall increased specular response near grazing
angles (i.e., as ωo and ωi approach the horizon
in opposite directions). The He-Torrance-Sillion-
Greenberg (HTSG) model [7] was derived using a
similar methodology, but considers wave-related
effects such as diffraction and interference. The
Oren-Nayar model [8] is also based on a micro-
facet theory, but one in which the individual
microfacets are perfect Lambertian reflectors and
are meant to reproduce the reflectance of matte
materials such as dust or chalk. The Kajiya-Kay
model [9] considers the way light is reflected
from small fibers modeled as cylinders and is
intended to model the appearance of hair and fur.
In all of these cases, the resulting BRDF is an
analytic expression with a handful of parameters
that control the magnitude, color, and shape of
dominant lobes in the BRDF that are commonly
either diffuse (largely nondirectional), specular
(forward scattering), or retroreflective (backward
scattering).

Another family of BRDFs was derived to
fit empirical data. This includes the Lafortune
[10] and Ward [11] models. These are both
analytic models with parameters similar to those
described above. The Lafortune model is defined
as the sum of an arbitrary number of cosine lobes
and can express a wide range of phenomena. The
Ward BRDF is functionally more similar to the
Cook-Torrance or Blinn-Phong model, but can
produce elongated specular highlights that match
a common form of anisotropic reflectance.

More recent research has considered non-
parametric representations of the BRDF which
are often constructed directly from measured
data. These range from straightforward tabulated
models [12] to compressed representations
obtained by projecting the measurements
into either a fixed basis defined over the
double hemisphere (e.g., Zernike polynomials,
spherical harmonics, wavelets, radial basis
functions [13]) or a specialized basis estimated
from the measured data itself. In the latter
case, this can be achieved using common
dimensionality reduction algorithms such as
Principal Component Analysis (PCA) or cast
as a matrix factorization problem [14, 15].
The accuracy of these representations is greatly
affected by the way the BRDF is parameterized.
A particularly useful parameterization was
introduced by Rusinkiewicz [16] and is
based on the half-angle and difference angle
(inset at right). The half-angle is simply the
bisector of the incident and exitant directions
h= (ωi + ωo)‖ωi + ωo|, and the difference angle

n

t

h

θd

θhωo

φd

φh

ωi

(θd, φd) is the incident direction expressed with
respect to the half-angle. This parameterization
has the desirable property of aligning common
BRDF features to the transformed coordinate
axes – including specular peaks [6], grazing-
angle effects, and retroreflective peaks [8] – and
as a result, only a relatively small amount of data
is needed for an accurate representation.
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Acquisition

The most basic requirements of a BRDF mea-
surement system are a light source to illumi-
nate the surface and a photodetector to record
the amount of energy reflected in a particular
direction. The difficulty of measuring the BRDF
of a material lies in the high dimensionality of
these functions and the calibration requirements
of existing setups.

Gonioreflectometers
BRDFs were originally measured using a
gonioreflectometer, a term that incorporates the
Latin word for angle (gonio). These consist of
a single photodetector and light source that can
be moved to arbitrary locations on a hemisphere
centered around a small planar sample (Fig. 2).
Gonioreflectometers are only suitable for
acquiring relatively sparse angular measurements
since densely sampling the full BRDF domain
would lead to infeasible acquisition times.
However, they are very accurate and repeatable

and are thus still used to validate newer designs
and maintain reflectance standards.

In order to use the data recorded by a goniore-
flectometer in a practical system, it is often nec-
essary to estimate the regions of the BRDF that
were not directly measured. This is often done by
fitting the parameters of one of the analytic BRDF
models described previously to the measured
data. This process involves solving a nonlinear
optimization problem with many variables and is
often difficult and error prone in practice [19].

Camera-Based Systems
A seminal development was Greg Ward’s use of a
curved mirror and camera [11] (Fig. 3). Note that
a single image recorded by the camera contains a
densely sampled 2D slice of the BRDF at a fixed
incident direction. Recording multiple images at
different light source positions allows probing the
full 4D domain. This setup enables efficiently
measuring a considerably larger portion of the
BRDF domain than was previously possible with
gonioreflectometers and led to the development
of a new anisotropic BRDF model that is still in
wide use today.

Detector

Source

Sample holder and turntable

Off-axis encoder gears

Stepper
motors

Optical
encoder

Light
Source

Folding
mirror

Polarizer

Focusing
lens

Spectro-
radiometer

Motor 1
axis

Source arm pivots
around sample

(Motor 3)

Large ring bearing

Recovery of Reflectance Properties, Fig. 2 Two
gonioreflectometer designs. Left: the apparatus developed
by White et al. [17] has four degrees of freedom and
achieves an angular resolution of approximately 0.1◦ and
is accurate to within 0.3◦. (Image reproduced from [17].)

Right: the design of Li et al. [18] has three degrees
of freedom and is thus restricted to measuring isotropic
material samples. Due to the use of a spectroradiometer,
this system can measure the BRDF at 10 nm increments
over the visible spectrum
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Recovery of Reflectance Properties, Fig. 3 Two
camera-based BRDF measurement systems. Left: Ward’s
acquisition rig used a curved half-silvered mirror and a
camera to enable efficient acquisition of dense BRDF

measurements. Right: Marschner’s setup exploited the
same principle through the use of a curved specimen and
camera

Ghosh et al. [20] describe a related setup
that uses a digital projector and multiple curved
mirrors to achieve a similar acquisition process,
but one that does not require any moving parts,
which significantly decreases acquisition time.
Dana et al. [21] also explore using a mirrored
dome and camera to accelerate BRDF capture. A
key aspect of their design is that it allows translat-
ing the material sample within the measurement
plane in order to sample the spatial dimensions of
the svBRDF.

The camera-based BRDF measurement sys-
tem introduced by Marschner et al. [22] was
another significant step in the field, which traded
Ward’s curved mirror for a curved sample to
achieve a similar effect (Fig. 3 right). A unique
measurement of the object’s BRDF is recorded at
each pixel since each pixel observes a different
orientation of the surface (recall that the BRDF is
defined with respect to the local surface frame).
Assuming that the sample object’s reflectance is
homogeneous (i.e., no perceptible spatial varia-
tion), this provides a dense 2D slice of its BRDF,
although the one that differs from the slices is
acquired with Ward’s setup. Matusik et al. [12]
refined Marschner’s design and measured the
BRDFs of nearly one hundred isotropic spherical
samples at unprecedented angular resolutions.
Ngan et al. [19] extended this design further to
allow measuring anisotropic samples that were

formed into thin strips and wrapped around a
cylinder.

Although camera-based systems can achieve
a much higher angular resolution than traditional
gonioreflectometers, the quality of the individual
measurements is generally lower. This is due
to the reduced quality of the individual photo-
sensitive elements in a typical CCD or CMOS
array, the need for more complex optical systems
which can produce internal reflections, and the
way wavelength is sampled using, for example,
a Bayer filter [23]. However, this is beginning to
change with the steady improvement in digital
camera technology and the development of tun-
able narrowband color filters. Additionally, the
high angular resolution of the data returned by
these systems enables the use of non-parametric
representations discussed previously. The advan-
tage of these models is that they often provide a
much more accurate fit to the measured data com-
pared to an analytic model and require solving a
linear optimization problem which is more stable.

In the aforementioned camera-based systems,
the geometry of the target sample and its loca-
tion with respect to the camera and light source
must be known in order to properly interpret the
recorded images as BRDF measurements. This
calibration step is notoriously difficult and is
often simplified by using samples with a specific
known geometry: planar, spherical, or cylindrical.
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A recent research focus has been on developing
systems for measuring the BRDF or svBRDF
of samples with arbitrary geometry. On the one
hand, this task is considerably harder since exist-
ing techniques for scanning geometry often rely
on assumptions about the surface reflectance. On
the other hand, all that is needed is the normal
direction and, for anisotropic surfaces, the tan-
gent direction at each image pixel as opposed to
a complete 3D model.

One of the first general systems for measuring
the reflectance of arbitrarily shaped spatially
varying opaque isotropic objects was proposed
by Lensch et al. [24]. Their approach has multiple
steps. First, the geometry of the target object is
acquired using either a penetrative method such
as a computed tomography (CT) scanner or with
a standard laser scanner after first coating the
object in a diffuse powder. In a second step, the
object is photographed from different viewpoints
under variable point lighting (Fig. 3). Third, the
3D geometry in the first step is registered to the
images in the second step using a silhouette-
based alignment algorithm. The extraction of
BRDF data can proceed using the surface normal
of the registered 3D model at each image pixel.
Finally, they use the resulting BRDF data to
estimate the parameters of a Lafortune model
[10] at each vertex in a triangle mesh of the
surface. To make this fitting process more robust,
they assume that the object’s reflectance can
be accurately modeled with only a handful of
unique basis BRDFs and corresponding spatial
blending weights. Therefore, as opposed to
storing a unique set of Lafortune parameters at
each vertex, only a set of nonnegative barycentric
coordinates (unity of partition) over the set of
basis BRDFs is computed instead. Computing
these basis BRDFs and blending weights is cast
as a clustering problem.

A related system was proposed by Goldman
et al. [25]. The key difference is that they jointly
estimate the surface normal at each pixel in a
fixed camera along with the coefficients of the
Ward BRDF model by solving a large non-linear
optimization problem. On the one hand, this
avoids having to scan the geometry in a separate
step and subsequently register this geometry to

the set of images, significantly simplifying the
experimental setup and processing. On the other
hand, this approach recovers only the normals
and BRDFs for the portion of the object visible
from the chosen viewpoint. This approach can
be regarded as a generalization of Lambertian
photometric stereo [26] since the surface BRDFs
are drawn from a much larger space (i.e., the
space of BRDFs expressible by the Ward model).
Goldman et al. follow a similar strategy as
Lensch et al. and assume that object reflectance
at each pixel can be expressed as a convex
combination over a small basis of homogeneous
BRDFs. They demonstrate the importance of this
representation of the svBRDF for achieving a
stable optimization.

More recent work has extended the basic
approach of Goldman et al. to avoid relying
on a parametric BRDF model. The downside
to using a parametric model such as the Ward
BRDF is that this imposes a particular structure
on the surface reflectance. Whenever the object’s
actual reflectance deviates from what this model
can express, errors are introduced. The system
presented by Alldrin et al. [27] jointly estimates
the surface normal and BRDF at each pixel in
a fixed camera where the BRDF is modeled
using a tabulated bivariate representation. This
can significantly improve the accuracy of the
resulting model in many situations.

Another related approach is due to Wang
et al. [28] which focuses on measuring the
reflectance of anisotropic surfaces. Their system
works in two steps. First, they acquire densely
sampled angular measurements of the BRDF at
a small number of strategically chosen points on
the object surface. Second, they record sparse
angular measurements sampled densely over the
object surface. The sparse measurements in the
second step are used to estimate a convex com-
bination of the densely sampled BRDFs in order
to recover a model of the svBRDF that is dense
in both the spatial and angular dimensions. This
basic strategy of combining dense angular data at
a small number of surface locations with sparse
angular data sampled densely over the surface
represents a compelling trade-off between acqui-
sition time and final model quality. Wang et al.
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also estimate the tangent direction at each surface
location as a by-product of their optimization and
model the BRDF using a hybrid representation
that combines a tabulated (nonparametric)
normal distribution function (NDF) with analytic
(parametric) expressions for the shadowing,
masking, and Fresnel components [19].

A Note on Bidirectional Texture
Functions

This entry has focused on methods for measuring
the BRDF or svBRDF of physical objects. There
is a family of related techniques that focus on
the bidirectional texture function (BTF) [29].
Despite having the same domain as the svBRDF,
the BTF conveys a slightly more general notion
of reflectance. A BTF quantifies the amount of
light that is exchanged (scattered) between pairs
of angles located along the surface of a proxy
geometry that does not necessarily coincide with
the actual surface. As a result, the BTF couples
visibility, interreflections, and local reflectance in
complex ways that are perceptible at the chosen
measurement scale. Technically, the difference
between BTFs and svBRDFs is a matter of the
degree to which this proxy geometry deviates
from the actual object surface, and indeed, no
real-world surface is ever perfectly smooth or
exhibits exactly the microfacet structure assumed
by many BRDFs. Nevertheless, some objects are
more suitable than others to be represented as
an svBRDF plus a surface, whereas others (e.g.,
cloth and other hairy or fuzzy surfaces) do not
allow resolving the geometry at a fine enough
resolution to isolate the local reflectance, and
the BTF is perhaps the only option. Systems for
measuring BTFs [29, 30] are nearly identical to
those for measuring svBRDFs. The difference is
a matter of how the resulting data is interpreted.

Application

Measuring and modeling the reflectance of real-
world materials is a key component of most
graphics and vision systems. For example, recre-
ating a visually rich and realistic virtual 3D world

requires populating it with materials with the
same variety and intricacy as those found in
nature. Similarly, any vision system that attempts
to infer information about the 3D structure of a
natural image must reason about the way light is
absorbed and reradiated by the various surfaces
that compose the scene. Therefore, it is impor-
tant to have efficient and accurate techniques for
measuring or scanning the reflectance of physical
samples.

Open Problems

Developing techniques for measuring and
modeling BRDFs and svBRDFs is an active
area of research. Much of this work focuses on
expanding the set of materials that can be reliably
measured to include those with anisotropic and
translucent properties. Another thrust of current
research focuses on the usability and operation
of appearance acquisition systems themselves.
Measurement systems will need to be much
more efficient and easier to calibrate before
they can be reliably deployed in non-laboratory
conditions. Finally, extending camera-based
systems to measure the spectral dimensions of
BRDFs is beginning to receive serious attention.
This includes resolving the spectral profiles
of the incident and exitant light in addition to
photoluminescence effects caused by materials
that absorb energy at one wavelength and emit it
at another wavelength.
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Synonyms

Recurrently connected neural network; RNN

Related Concepts

�Deep Learning Based 3D Vision
�Long Short-Term Memory

Definition

A recurrent neural network is a type of neural
network tailored to handle sequential data. It is
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characterized by the recurrent connection in the
hidden state.

Background

Sequential data, a type of data consisting
of ordered homogeneous elements, appear
frequently in the real world. For instance, videos
captured by surveillance cameras comprise
sequential data, where each video is composed of
a temporal sequence of visual frames.

Let us consider sequence data Y with an arbi-
trary length T (≥ 2):

Y = {y1, y2, . . . , yT }. (1)

Above, the random variable yt corresponds
to the observation at the t-th step (time). Impor-
tantly, variables {yt }Tt=1 are mutually dependent
as Y has its own dynamics in practice. Our goal
is to model the probability of Y , p(Y ). Generally,
p(Y ) is decomposed by means of the Bayes rule
as

p(Y ) = p(y1, y2, . . . , yT )

= p(y1)

T∏

t=2

p(yt |yt−1, . . . , y1). (2)

The graphical model of this process is illus-
trated in Fig. 1a. Theoretically, a trained model
is required to output yt based on all previous
observations. However, this is very difficult in
practice because an immense amount of data is
necessary to fill the combinatorially large input
space. Therefore, the Markov process, where the
current variable is sampled conditioned only on a
certain number of previous variables, is a reason-
able approximation. In particular, the first-order
Markov process is a frequently employed model
in practice. Namely, it is assumed that

p(yt |yt−1, . . . , y1) � p(yt |yt−1). (3)

Therefore, the overall probability of a
sequence is approximated as

Recurrent Neural Network, Fig. 1 Graphical models
for sequential data. (a) General Bayes rule, (b) first-order
Markov process, and (c) hidden Markov model

p(y1, y2, . . . , yT ) � p(y1)

T∏

t=2

p(yt |yt−1).

(4)

In this model, the current variable yt is depen-
dent only on the last observation yt−1 (Fig. 1b).
When the state space of yt is discrete, it is called
the first-order Markov chain, where the state
transition probabilities p(yt |yt−1) are stored in
the transition matrix as the model parameter.

Despite its usefulness, a vanilla Markov chain
has many drawbacks. Because this is a memory-
less model that only refers to the previous
observation, it is impossible to capture long-term
dynamics in the sequence. Moreover, basically
it is difficult to apply it to nondiscrete variables.
Therefore, the Markov chain has a limitation in
modeling complex real-world sequential data.

The hidden Markov model (HMM) is an
extension of the Markov chain that has an
unobserved hidden state and is an important
model that has been successfully applied in many
fields such as speech recognition and action
recognition [10]. As illustrated in Fig. 1c, an
observed variable yt is dependent only on a
hidden state (latent variable) ht at each step
t . Meanwhile, the sequence of hidden states
H = {h1, . . . ,hT } constitutes a first-order
Markov chain. Here, the probability of the
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observed sequence can be obtained as

p(Y ) = p(y1, y2, . . . , yT ) (5)

= p(y1|h1)p(h1)

T∏

t=2

p(yt |ht)p(ht |ht−1).

In the HMM, the observed variable yt no
longer forms a Markov process. Also, yt does not
need to be discrete as long as p(yt |ht ) is properly
modeled. Theoretically, with a sufficiently large
and well-defined hidden state space, HMM can
memorize the information regarding the past out-
puts as a hidden state. However, because ht is
discrete, its memory capacity is at most log2 N

bits, where N is the size of the state space.
Because this is not scalable to memorize long-
term dependencies, it is desirable to represent the
hidden state in a continuous vector space, in other
words, to use distributional representations for
hidden states.

The linear dynamical system (LDS) is also an
important model closely related to HMM. This
is equivalent to the same stochastic process of
HMM (Fig. 1c) when hidden states are defined in
a continuous space, and p(ht |ht−1) and p(yt |ht )

are modeled with Gaussians [9]. LDS is more
commonly described by the following linear tran-
sition equations and has been frequently used in
the field of control engineering:

ht = Aht−1 + wt , (6)

yt = Cht + vt , (7)

wt ∼ N(0, Γ ), (8)

vt ∼ N(0,Σ). (9)

Here, wt and vt are noise in the system, and
A and C represent fixed linear projections. N
denotes a multivariate Gaussian distribution, and
Γ and Σ denote the covariance matrices of the
Gaussians.

In fact, LDS shares basically the same
structure with a recurrent neural network (RNN).
A major difference is that LDS simply repeats
linear state transition and therefore, all input–
output relations are eventually represented
by linear models. RNN can be interpreted
as a nonlinear version of LDS and has
additional activation functions after each linear
transformation to have a richer representational
power.

Theory

Model Formulation of Recurrent Neural
Network
The general formulation of RNN considers the
generation process of an output sequence Y con-
ditioned on a certain input sequence X, i.e., a
discriminative model. Among a few variations of
RNNs, let us focus on the most standard one,
the Elman network [4], which is formulated as
follows (Fig. 2a):

h̃t = V xt + Uht−1 + bh, (10)

ht = σh(h̃t ), (11)

ỹt = Wht + by, (12)

Recurrent Neural
Network, Fig. 2 (a)
Structure of a recurrent
neural network. (b)
Temporally unrolled
network
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ŷt = σy(ỹt ). (13)

Since the output of an RNN is decisive, it
is referred to as ŷt to be distinguished from
yt which is based on a stochastic process. V ,
U , and W are weight matrices and bh and by

are bias vectors. σh and σy are the activation
functions at the hidden layer and the output layer,
respectively. The tangent hyperbolic (tanh) func-
tion is usually used as σh which is applied to
each element of an input vector independently
(i.e., elementwise function). The selection of σy

is dependent on the task. For example, if clas-
sification is performed at each step, the softmax
function is an appropriate choice.

RNN repeats the updating of the hidden state
ht at each step t using the input xt and the
previous hidden state ht−1. This is basically the
same structure as that of LDS. As is obvious from
the recursive structure of Eq. 10, the output ŷt is
influenced by all past inputs and the current input,
{x1, . . . , xt }. In this sense, theoretically, RNN is
expected to be able to represent dynamic relation-
ships between inputs and outputs in arbitrary time
scales.

While the recurrent structure of RNN might
seem somewhat complicated, it can be repre-
sented by a static network by unrolling the inter-
nal loop (Fig. 2b). As this is nothing but a mul-
tilayer perceptron sharing parameters over all
time steps, it can be trained by the standard
backpropagation method. This methodology is
called backpropagation through time (BPTT) as
the error flows from future to past.

Backpropagation Through Time
Let Lt (x1, . . . , xt ,gt ) denote the loss at step t

where gt represents the ground-truth output and
L =∑T

t=1 Lt denote the overall loss of an output
sequence. First, let us consider error propagation
through the hidden states. From Eqs. 10 and 12,
the derivative with respect to ht−1 is derived as
follows:

∂L
∂ht−1

= U	 ∂L
∂h̃t

+W	 ∂L
∂ỹt−1

. (14)

As a special case, in the last step t = T , the
gradient is obtained as ∂L

∂hT
= W	 ∂LT

∂ỹT
, which is

the starting point of backpropagation. Since σh is
an elementwise function, from Eq. 11, it follows
that

∂L
∂h̃t

= ∂ht

∂h̃t

∂L
∂ht

= σ ′h(h̃t )� ∂L
∂ht

, (15)

where σ ′h denotes the derivative of σh, which is
also an elementwise function. � represents the
elementwise product of vectors. Similarly, from
Eq. 13, it follows that

∂L
∂ỹt

= ∂ŷt

∂ỹt

∂L
∂ŷt

= ∂ŷt

∂ỹt

∂Lt

∂ŷt

. (16)

For a concrete example, in a classification
problem, the softmax function and the cross-
entropy loss are commonly used as σy and Lt ,
respectively. In this case, the derivative becomes
∂L
∂ỹt
= ŷt − gt , where gt is the ground-truth one-

hot vector at step t . Therefore, it is not necessary

to compute the Jacobian matrix ∂ŷt

∂ỹt
explicitly.

Next, let us consider the gradients with respect
to the model parameters. Since the same param-
eter is repeatedly applied in the network, it is
necessary to distinguish its overall gradient from
the local gradient at each step (i.e., each edge in
the graph in Fig. 2b). For this purpose, the right
shoulder suffix (t) is introduced to refer to the
latter.

First, for the parameters in the output layer, the
following is obtained from Eq. 12:

(
∂L
∂W

)(t)

= ∂L
∂ỹt

h	t , (17)

(
∂L
∂by

)(t)

= ∂L
∂ỹt

. (18)

Similarly, the following is obtained from
Eq. 10:

(
∂L
∂U

)(t)

= ∂L
∂h̃t

h	t−1, (19)
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(
∂L
∂bh

)(t)

= ∂L
∂h̃t

, (20)

(
∂L
∂V

)(t)

= ∂L
∂h̃t

x	t . (21)

Finally, the overall gradients over the sequence
are obtained as follows:

∂L
∂W

=
T∑

t=1

(
∂L
∂W

)(t)

=
T∑

t=1

∂L
∂ỹt

h	t , (22)

∂L
∂U

=
T∑

t=2

(
∂L
∂U

)(t)

=
T∑

t=2

∂L
∂h̃t

h	t−1, (23)

∂L
∂V

=
T∑

t=1

(
∂L
∂V

)(t)

=
T∑

t=1

∂L
∂h̃t

x	t , (24)

∂L
∂bh

=
T∑

t=1

(
∂L
∂bh

)(t)

=
T∑

t=1

∂L
∂h̃t

, (25)

∂L
∂by

=
T∑

t=1

(
∂L
∂by

)(t)

=
T∑

t=1

∂L
∂ỹt

. (26)

Generative Mechanism and Decoding
While the discriminative model has been consid-
ered so far, RNN can also be used as a gener-
ative process. Although it is straightforward to
consider a model omitting input in Eq. 10, in
the current standard method, the previous out-
put is recursively input to more explicitly store
the information regarding past outputs in the
sequence [5, 8]. Specifically, the final output
variable yt is sampled in accordance with the
conditional probability p(yt |ŷt ) at each step t

and then used as the input for the next step, i.e.,
xt+1 = yt (Fig. 3). p(yt |ŷt ) should be designed
carefully for each task. In the text generation
task, for example, the state space of yt is discrete
where each state corresponds to each word in the
dictionary. Since the softmax function is used as
σy for this task, it is possible to directly assume

Recurrent Neural Network, Fig. 3 Sequence genera-
tion with a recurrent neural network

its output to be the probability. Namely, p(yt =
1k|ŷt ) = ŷk

t , where ŷk
t is the k-th element of ŷt

and 1k is a one-hot vector whose k-th element is
one.

In the pure generative model, the hidden state
is initialized by inputting a dummy variable as the
first input x1. It is also possible to explicitly set
h1 using some external mechanisms to condition
the generation process accordingly. In this case,
the network is often called a decoder as it is
interpreted to be decoding information stored in
vector h1. As described later, one can realize
various applications by combining a decoder with
encoder networks that embed the input informa-
tion into a vector.

In a decoding process, the final score (proba-
bility) of an output sequence is given by

p(Y ) =
T∏

t=1

p(yt |ŷt ). (27)

To generate a useful sequence, it is neces-
sary to search over the solution space using the
above criterion. The ideal goal is to find the
optimal sequence that maximizes the score. How-
ever, because the solution space of sequence data
expands exponentially as the number of steps
increases, searching the optimal one is NP-hard.
Therefore, some approximate search methods are
required. Usually, an empirical method called
beam search is used for this purpose. It basically
performs a breadth-first search as the decod-
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ing proceeds, keeping the best candidates in the
working memory.

Sequence-to-Sequence Modeling
RNN is also often used as a sequence encoder
that embeds the input sequence into a vector. An
example of the encoder is illustrated in Fig. 4
(left). The input tokens are simply aggregated
in the hidden state while ignoring the output at
each step. Eventually, the hidden state at the final
step becomes a vector representation of the whole
input sequence.

By connecting this encoder with a decoder,
one can easily build a sequence-to-sequence
model [12], which can convert an input sequence
to another sequence (Fig. 4). Namely, the
hidden state of the decoder is initialized by
the output of the encoder. This framework is
more generally called the encoder–decoder
architecture. By means of end-to-end learning
in which backpropagation is performed through
output to input, both decoder and encoder
parameters are simultaneously optimized to
achieve the overall task.

Advanced Techniques
Although RNN is a reasonable sequence model,
some weaknesses are also known. First, although
RNN can handle sequence dynamics at arbitrary
scales in theory, in practice, it is difficult to learn
long-term dependencies because of the problems
of vanishing or exploding gradients [2]. This
is because RNN usually becomes a very deep
network whose number of layers is the length of
the sequence. Therefore, in the current standard,

more powerful techniques are commonly used to
represent the hidden state, such as long short-
term memory (LSTM) [6], which has a gating
mechanism to control information flow so that
gradients are properly preserved.

It is also known that decoding all input infor-
mation from only the embedding vector given by
the encoder is very difficult in practice. In par-
ticular, information regarding the order of input
elements tends to be lost. To alleviate this prob-
lem, the attention mechanism is proposed as a
powerful tool to refocus important input elements
at each step of decoding [1, 7]. In the cur-
rent standards, sequence-to-sequence models are
commonly implemented with LSTM and atten-
tion mechanisms.

Another important issue is the enhancement of
the representational power of RNN architectures.
A basic RNN conveys information in only one
direction, i.e., past to future. Nevertheless, it is
sometimes useful to consider future information
as well when it is available in the task. For exam-
ple, in action recognition, there might be more
noticeable visual features in somewhat future
frames rather than in that of the exact moment of
the action. To include such information, bidirec-
tional RNN (BiRNN) [11] incorporates a future-
to-past stream as well as the standard past-to-
future stream and then combines the two streams
at the output layer.

Moreover, as the original RNN has a relatively
shallow structure in the input-to-output path at
each step, it is also common to stack multiple
RNN streams to further improve representational
ability [5].

Recurrent Neural
Network, Fig. 4
Sequence-to-sequence
model applied to machine
translation
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Application

Machine Translation
The most representative application of sequence-
to-sequence modeling is machine translation,
which is one of the earliest successes of deep
learning in natural language processing [12].
Here, the input and output are sentences (i.e.,
word sequences) in a source language and a target
language, respectively. Merely by concatenating
a source language encoder and a target language
decoder, one can build the translation model and
perform supervised learning (Fig. 4). Because
traditional machine translation methods were
based mostly on domain-specific knowledge and
engineering, the success of this simple model
greatly affected the community.

Image and Video Captioning
One of the important advantages of the encoder–
decoder framework is its high versatility. With
properly designed encoder and decoder networks,
one can realize arbitrary input–output application
in the same manner as in machine translation. For
example, end-to-end image captioning systems
can be realized by combining a CNN encoder
and an RNN decoder [15], which describes the
contents of input images (e.g., objects, scenes,
actions) using natural language. This is known
as a typical fusion task of image recognition and
natural language processing.

Similarly, video captioning can be realized by
aggregating visual features extracted from each
frame with an encoder RNN and connecting it
with a decoder RNN [14].

Open Problems

Although RNN and LSTM are established as
standard tools for sequence modeling, it is impor-
tant to pay attention to the progress of other
approaches as well. In particular, many other
powerful methods have been developed recently
for sequence encoding. For example, some meth-
ods simply use pooling to aggregate input infor-
mation, or apply one-dimensional CNN [3, 16],
resulting in faster computation with similar or

better performance. Moreover, it has been argued
whether it is really necessary to aggregate infor-
mation in one hidden state. In fact, the trans-
former model [13] performs sequence encod-
ing and decoding only by attention mechanisms
and has achieved state-of-the-art performance in
machine translation as of 2018. Now, the trans-
former is becoming a new standard of sequence
embedding in place of RNN. It is essential to
keep in mind that RNN is not necessarily the best
choice and to carefully choose methods appropri-
ate for the desired task.
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Related Concepts

�Camera Calibration
� Perspective Camera
� Perspective Transformation
� Projection Transformation

Definition

A reference plane is a plane used as a reference
or a constraint to solve various computer vision
problems.

Background

A reference plane, because of its known geome-
try, can be used in many applications:

– Plane-based camera calibration [1]
– Single-view metrology [2]
– Ground plane as a reference plane for vehicle

navigation
– 3D structure recovery using a reference plane

The key observation is that an image of a plane
is related to the plane in space by a homography
(plane projective transformation). A point not on
the plane will not be mapped by the homography,
resulting the so-called plane parallax.

Theory

Projective transformation is a concept used in
projective geometry to describe how a set of
geometric objects maps to another set of geo-
metric objects in projective space. The basic
intuition behind projective space is to add extra
points (points at infinity) to Euclidean space,
and the geometric transformation allows to move
those extra points to traditional points, and vice
versa.

Homogeneous coordinates are used in projec-
tive space much as Cartesian coordinates are used
in Euclidean space. A point in two dimensions is
described by a 3D vector. A point in three dimen-
sion is described by a 4D vector. If the homoge-
neous coordinates of a given point are multiplied
by a nonzero scalar, the resulting homogeneous
coordinates represent the same point. That is, λm
(λ �= 0) and m represent the same point. Consider
a point p = [u,v]T on a plane in Euclidean space;
its corresponding homogeneous coordinates are
m= λ[u, v, 1]T. A point at infinity on the plane is
represented by [α, β, 0]T, i.e., the last element
is 0. A point at infinity in 2D space can be
used to describe the direction of a line on the
plane. Now consider a point p = [x, y, z]T in 3D
Euclidean space; its corresponding homogeneous
coordinates are m = λ[x, y, z, 1]T. A point at
infinity in 3D space is represented by [α, β, γ ,
0]T, i.e., the last element is 0.

Projective linear transformations do not pre-
serve sizes and angles. They do preserve inci-
dence (e.g., points on a line remain on a line
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after transformation; two lines intersecting with
each other will intersect after transformation) and
cross ratio. A projective linear transformation
are also known as a collineation or projectivity.
In the case of projective plane (P2), it is also
known as a homography or plane projectivity. In
computer vision, homography plays an important
role because any two images of the same planar
surface are related by a homography.

A camera is modeled by the usual pinhole (see
Fig. 1). A 2D point is denoted by m = [u, v]T.
A 3D point is denoted by M = [X, Y, Z]T. We
use x̃ to denote the augmented vector by adding
1 as the last element: m̃ = [u, v, 1]T and M̃ =
[X, Y,Z, 1]T . The relationship between the 3D
point M and its image projection m is given by

sm̃ = A [R t] M̃ (1)

where s is a scale factor; (R, t), called the extrin-
sic parameters, is the rotation and translation
which relates the world coordinate system to the
camera coordinate system; and A is called the
camera intrinsic matrix.

Without loss of generality, we assume the ref-
erence plane is on Z = 0 of the world coordinate
system. Let us denote the ith column of the
rotation matrix R by ri. From Eq. (1), we have

s

⎡

⎣
u
v

1

⎤

⎦ = A
[
r1 r2 r3 t

]

⎡

⎢⎢⎣

X

Y

0
1

⎤

⎥⎥⎦

= A
[
r1 r2 t

]
⎡

⎣
X

Y

1

⎤

⎦ .

By abuse of notation, we still use M to denote
a point on the model plane, but M= [X, Y]T since
Z is always equal to 0. In turn, M̃ = [X, Y, 1]T .
Therefore, a model point M and its image m is
related by a homography H:

sm̃ = HM̃ with H = A
[
r1 r2 t

]
. (2)

As is clear, the 3× 3 matrix H is defined up to
a scale factor.

Furthermore, two images of the same plane are
related with each other also by a homography. We
use the superscript (1) and (2) to indicate the image
points related to images 1 and 2, respectively.
From Eq. (2), we have

s(1)m̃(1) = H(1)M̃, (3)

s(2)m̃(2) = H(2)M̃. (4)

C

θ

α

β

(u0,v0)

=

Z

Y

X

M

m

(R,t)

Reference Plane, Fig. 1 Pinhole camera model
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It is easy to see that image point m(2) is related
to image point m(1) by

s(21)m̃(2) = H(21)m̃(1) with H(21) = H(2)H(1)−1.

(5)

H(21) is the homography from images 1 to 2.
For a point not on the reference, say P = [X,

Y, Z, 1]T, its projection onto the reference plane
is M= [X, Y]. Mapping it to the image plane with
the homography gives

sm̃ = HM̃ = A
[
r1 r2 t

]
M̃.

The real image of point P, however, is given
by

t p̃ = A
[
R t
]
P̃ = A

[
r1 r2 t

]
M̃+ Ar3Z.

Clearly, the plane-mapped point m is not the
same as the real image point p. The difference
is the plane parallax. The farther away the point
P is from the reference plane, the larger the
plane parallax is. Plane parallax is an important
quantity in 3D structure recovery based on a
reference plane.
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Related Concepts

� Photometric Stereo
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Definition

A reflectance map is a function that gives scene
radiance as a function of surface orientation.

Background

The amount of light reflected by a surface ele-
ment in a given direction depends on its optical
properties, on its microstructure, and on the spa-
tial and spectral distribution of the light sources.
For many materials, the fraction of the total irra-
diance reflected toward the viewer depends only
on the surface orientation. Horn [1] introduced
the reflectance map as a way to specify scene
radiance as a function of surface orientation,
given the following simplifying assumptions:

1. The direction toward the viewer is the same at
every visible point on the surface. This holds
when image projection is orthographic.

2. The direction toward the light source is the
same at every visible point on the surface. This
holds for point light sources at infinity and for
parallel (i.e., collimated) light sources.

3. Reflectance is isotropic about the surface nor-
mal. This holds when there is no inherent
directionality in surface microstructure, mak-
ing reflectance invariant to rotation of the
surface about the surface normal.

A reflectance map compiles the relevant infor-
mation about surface material, light source dis-
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tribution, and viewing geometry into a single
function. It is central to physics-based vision
including shape from shading and photometric
stereo.

Work to recover height profiles from intensity
measurements originated in lunar astronomy. The
height variation of points on the lunar surface
is small compared to the overall distance of the
moon from the earth, making image projection
effectively orthographic. Direct sun illumination
on the lunar surface is effectively illumination of
a point light source at infinity.

As originally formulated by Horn [1], the
reflectance map used the gradient to represent
surface orientation. Earlier, Mackworth [2] used
gradient space to express geometric constraints
in the interpretation of line drawings of polyhe-
dra. Defining the reflectance map as a function
of the gradient combines radiometric and geo-
metric constraints in a common representation,
the gradient space. Subsequent variants of the
reflectance map have used other representations
for surface orientation including the (unit) surface
normal, spherical coordinates, and stereographic
coordinates.

Theory

A standard geometry is assumed. Let the visible
surface be given explicitly by z = f(x, y) in a
left-handed Euclidean coordinate system, where
the viewer is looking in the positive z direction,
image projection is orthographic, illumination is
parallel, and the image in the xy-axes coincides
with the scene in the xy-axes. The surface gradi-
ent (p, q) is defined by

p = ∂f (x, y)

∂x
and q = ∂f (x, y)

∂y
(1)

so that a surface normal vector is [p, q, −1]. The
gradient (p, q) is one way to represent the two
degrees of freedom of surface orientation.

The reflectance map, R(p, q), determines scene
radiance as a function of the gradient for a spe-
cific surface material, scene illumination, and
viewing geometry. Further, if an ideal (calibrated)

camera produces image intensity proportional to
scene radiance, then the image irradiance equa-
tion is

E (x, y) = R (p, q) (2)

where E(x, y) is image irradiance. Equation (2)
is a nonlinear, first-order partial differential equa-
tion. Shape from shading methods determine a
surface, z = f(x, y), that satisfies the image irra-
diance equation over some domain, �, including
any initial conditions specified on the boundary,
∂�, or elsewhere. Sometimes, a priori constraints
on the reflectance map simplify shape analysis.
Three such cases are:

1. If R(p, q) is symmetric about the origin in gra-
dient space, then it is a function of

√
p2 + q2

alone and Eq. (2) is eikonal. An eikonal image
irradiance equation can often be achieved by
aligning a single light source direction with
the viewing direction.

2. For the special case of material in the maria
of the moon and other materials for which
reflectance depends only on the ratio of the
incident and emergent angles, R(p, q) is linear
in p and q.

3. For an ideal diffuse (Lambertian) reflector, Eq.
(2) becomes linear if the (unit) surface normal,
rather than the gradient, is used to represent
surface orientation.

Application

Generic robot vision tasks such as object recogni-
tion, pose determination, and inspection typically
assume that measured brightness depends upon
surface shape. When the illumination and surface
material are fixed, it becomes possible to relate
measured brightness directly to shape, as the
reflectance map demonstrates.

Remote sensing, on the other hand, typically
assumes that (multispectral) measurements
define a “spectral signature” that depends
upon surface material (i.e., ground cover). Not
surprisingly, difficulties arise when rugged
terrain and illumination change confound the
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measurements. Reflectance maps have been used
to decouple geometric effects, associated with
elevation, slope, and aspect, and from spectral
effects, associated with surface material.

Determining the Reflectance Map
Reflectance maps are used in methods to deter-
mine shape and surface material from measured
brightness and color. But, how are the appropriate
reflectance maps determined? There are three
approaches:

1. Reflectance can be modeled phenomenologi-
cally. That is, one imagines how an idealized
material might reflect light and derives the
expression for scene radiance accordingly.
Ideal diffuse (Lambertian) reflection is one
example of a phenomenological model. Phong
shading, popular in computer graphics, is
another. A reflectance map is obtained when
the gradient (p, q) is used to represent surface
orientation.

2. There is a standard nomenclature for
reflectance [3]. The intrinsic reflectance
properties of a surface material are specified
by its bidirectional reflectance distribution
function (BRDF). When the BRDF and light
source distribution are known, the reflectance
map can be derived analytically. Specific
examples are given in [4].

Analytic modeling extends to taking sim-
ple phenomenological models, like ideal dif-
fuse or ideal specular reflection, and applying
them to a surface microstructure of known
(or assumed) particle shape and distribution.
For example, in reflectance spectroscopy, a
technique in analytic chemistry, materials are
grounded into fine powders of known particle
size and shape. Analytic models are developed
to relate measured reflectance of the powders
to the optical properties of the material of
which they are composed.

3. Finally, a reflectance map can be measured
directly using a goniometer-mounted sample
or indirectly from images of a calibration
object of known shape, such as a sphere.
Empirical measurement has the benefit of
automatically compensating for the transfer

characteristics of the camera (or other sensor).
Calibration results are directly applicable
to the analysis of other objects of different
shape but made of the same material as the
calibration object and illuminated and viewed
under the same conditions. In this way, a
material with any reflectance characteristic
can be handled, provided that the necessary
calibration can be done. In some applications,
it has been useful to use paint (or other
coating) to match reflectance properties
between a calibration object and other objects
to be analyzed.

Empirical measurement over a wide range
of viewpoints and illumination conditions is
both data and time intensive. This has led
to approaches that are best termed semiem-
pirical. Reflectance is assumed to take on a
particular functional form, typically a linear
combination of certain basis reflectance func-
tions, and empirical measurement is used to
estimate the parameters associated with the
assumed functional form.

Open Problems

Image irradiance equations can be generalized
to accommodate perspective projection, nearby
light sources, reflectance that is not isotropic
about the surface normal, and optical proper-
ties of the medium through which the radiant
energy is transmitted. Increasingly, the spectral
dependence of reflectance also is made explicit.
This adds complexity to the associated optical
equations, in the case of analytic models, and to
the associated calibration/storage requirements,
in the case of empirical models.

Unfortunately, with empirical models, it is
difficult to use measurements acquired under one
condition of illumination and viewing to predict
the reflectance map for other conditions of illu-
mination and viewing. Specifically, there is no
fundamental, scale-independent distinction to be
made among intrinsic optical properties (i.e., the
BRDF), surface microstructure, and gross surface
shape.
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Any reflectance map is subject to error in the
presence of cast shadows and interreflection. No
purely local definition can succeed since these
phenomena are inherently nonlocal. Interreflec-
tion, for example, causes changes in the local
illumination owing to the secondary reflections
from adjacent object points.
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Synonyms

Analytic reflectance functions; Bidirectional
reflectance distribution function; BRDF models

Definition

Reflectance models are analytic functions speci-
fying the ratio of reflected radiance to irradiance
at a point.

Background

Whether for recognition or image synthesis, it is
frequently necessary to have a model for how
much light a surface will reflect. Though a sur-
face may reflect a different amount of light at
each position, the bidirectional reflectance distri-
bution function (BRDF) embodies the reflectance
at a single point, for every possible angle of
incident and exitant light. It is defined [1] as the
ratio of reflected radiance in a direction ωo to
irradiance from direction ωi:

fr(ωi → ωo) = fr(θi, ϕi, θo, ϕo)

= dLo(ωo)

dEi(ωi)
. [sr−1] (1)

Note that this equation is defined in terms of
irradiance, which implicitly includes the famous
“cosine law” of incident light. Thus, the BRDF
must be multiplied by cos θi in order to obtain the
full variation of reflected light as a function of the
angle of incidence (for a distant light source).

Though research into photorealistic image
synthesis increasingly uses dense BRDF
measurements (including thousands of samples
across different angles of incidence and
exitance) [2], the reflectance of many surfaces is
adequately predicted by simple analytic functions
with few free parameters. Assuming such an
analytic model makes it practical to infer the
complete bidirectional reflectance from a small
number of measurements, fitting the function and
obtaining its parameters based on the available
data [3]. This function, in turn, may be used to
interpret further images.

Theory

Three general classes of reflectance models
have been developed in the literature. Physically
based models attempt to model reflectance from
first principles, beginning with the solution
to Maxwell’s equations on surfaces of known
geometry. Microfacet models assume a rough
surface geometry, which is not known exactly but
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may be characterized statistically. Finally, ad hoc,
phenomenological, or empirical models capture
some qualitative features of reflectance without
necessarily striving for, or achieving, certain
aspects of physically plausible reflectance.

Physical plausibility in reflectance typically
refers to two specific properties satisfied by all
actual surfaces. The first is energy conservation:
because all incident light must be either reflected
or absorbed and no light may be created during
reflection, it is impossible for a surface to reflect
more light than was incident on it. Mathemati-
cally, the integral of the BRDF over all outgoing
directions, scaled by a cosine term to account for
foreshortening, must be less than one:

∀ωi :
∫

�

fr(ωi, ωo) cos θo dωo ≤ 1. (2)

A second, more subtle, property of BRDFs is
that they must be unchanged when the angles of
incidence and exitance are swapped:

fr(ωi → ωo) = fr(ωo → ωi). (3)

This is a condition known as Helmholtz
reciprocity and is due to the symmetry of
light transport [4]. Some systems, such
as the work on Helmholtz stereopsis [5],
have relied on this property, which often
expressed as camera/projector duality: in many
imaging systems, it is possible to interchange
the roles of camera and projector, provided that
cosine terms are properly accounted for.

Lambertian Reflectance
We now turn to specific reflectance models. The
simplest is just a constant:

fr = const. = ρ/π. (4)

(It is important to keep in mind that the BRDF
is defined in terms of irradiance, which has the
“incident cosine law” implicitly included.) This
results in a matte or diffuse appearance and is
known as ideal Lambertian reflectance. This
BRDF is frequently written as a constant ρ

divided by π . In this case, ρ is interpreted as

the diffuse albedo: it is the fraction of light that
is reflected (vs. absorbed) by the surface, and a
surface with this reflectance conserves energy
precisely when the albedo is less than or equal
to one. Because this model is independent of
the directions of incidence and exitance, it also
satisfies reciprocity.

Phong and Blinn-Phong BRDFs
Another simple analytic BRDF, designed to
empirically mimic the appearance of glossy (also
called shiny or specular) materials, is the Phong
model [6]:

fr = ks (r · v)n, (5)

where v is the direction toward the viewer and
r is the mirror reflection of the light direction
from the tangent plane. Note that a frequently
used version of the Phong “BRDF” includes an
additional 1/ cos θi factor, which is canceled by
the irradiance cosine law. The latter is there-
fore not a physically plausible BRDF: it does
not exhibit reciprocity and does not conserve
energy.

A common variant of this model is sometimes
known as the Blinn-Phong model [7]:

fr = ks (n · h)n, (6)

though again it is often stated as a physically
implausible shading model rather than a BRDF.
In this equation, h is the “halfway” vector, which
is midway between the light direction l and the
viewer direction v:

h = l + v

‖l + v‖ . (7)

In contrast to the Lambertian BRDF, the dis-
tribution of reflected light in these models is
not constant. In fact, there is a lobe centered
around the direction of ideal mirror reflection
for each incident angle, containing significantly
more energy than the rest of the domain. This is
known as the specular lobe, and its size and width
(fall off) are controlled by the parameters ks and
n, respectively.
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Lafortune BRDF
A popular model used for fitting analytic func-
tions to measured BRDF data is the Lafortune
model [8]:

fr =
(
Cxlxvx + Cylyvy + Czlzvz)

n, (8)

in which lx, vx, etc. represent the com-
ponents of the light vector l and view
vector v, in a coordinate system in which
the surface normal is oriented along the
z-axis. This model reduces to Phong by choosing
−Cx = −Cy = Cz = n

√
ks but through

suitable choice of parameters can also represent
non-Lambertian diffuse reflection, off-specular
reflection, anisotropy, and retro reflection. It is
also common to fit a sum of multiple lobes of
(Eq. 8) to measured datasets.

Ward BRDF
Another popular BRDF used in fits to measure-
ments is the Ward model [9]:

fr = ks

e
− tan2 θh

(
(cos2 φh)/α

2
x + (sin2 φh)/α

2
y

)

4π αxαy
√

cos θi cos θo
. (9)

Compared to the Blinn-Phong BRDF, the Ward
model includes a specular peak shaped by a Gaus-
sian function (as opposed to a power-of-cosine
model) but also can model anisotropic reflection
by using separate Gaussian widths αx and αy in
two perpendicular directions.

Microfacet BRDFs
Numerous BRDFs have been derived from first
principles that predict the aggregate reflectance
for surfaces that at a small scale consist of tiny,
mirror-reflective “microfacets” oriented in ran-
dom directions. An early microfacet BRDF was
originally developed in the physics community
by Torrance and Sparrow [10], introduced in
graphics by Blinn [7], and later refined by Cook
and Torrance [11]:

fr = D G F

π cos θi cos θo
. (10)

There are three major terms in the model that
describe the angular distribution of microfacets,
how many are visible from each angle, and how
light reflects from each facet.

The first term D in the Torrance-Sparrow
model describes the density of facets facing in
any possible direction:

D = e−(tan2 θh)/m2

4 m2 cos4 θh
, (11)

where θh is the angle between the halfway vector
h and the surface normal n. Notice that part of
this term resembles a Gaussian, and this is not a
coincidence: the Torrance-Sparrow model makes
the assumption that the microfacet normals have
a Gaussian distribution controlled by a “rough-
ness” parameter m. The cos4 θh term occurring
here is a change-of-basis term: it is included
to properly normalize a probability distribution
expressed in terms of the halfway vector.

The next term G in the Torrance-Sparrow
model accounts for the fact that not all facets are
visible from all directions, because they are hid-
den by the facets in front of them. It includes both
“shadowing” and “masking” effects, representing
occlusion from the point of view of the light and
viewer, respectively:

G = min

{
1,

2 cos θh cos θi

cos θd
,

2 cos θh cos θo

cos θd

}
.

(12)
This formula is derived by considering a particu-
lar microgeometry: the microfacets are assumed
to form V-shaped grooves in the surface, which
are symmetric about the (macroscopic) surface
normal.

Finally, the reflection from each facet is
described by the Fresnel term F , which predicts
that reflection increases toward grazing angles.
This term arises from a solution to Maxwell’s
equations on a surface:

F = 1

2

(
F⊥ + F‖

)
= 1

2

[(
sin(θt − θd)

sin(θt + θd)

)2

+
(

tan(θd − θt)

tan(θd + θt)

)2
]
, (13)
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where θd is half the angle between the incident
and exitant directions, θt = sin−1((sin θd)/η

)
, η

is the index of refraction of the surface, and the
two terms represent the portion of reflected light
polarized perpendicular and parallel to the plane
of incidence. Note that the “difference angle”
θd is the angle of incidence (and exitance) on
a microfacet oriented to produce mirror reflec-
tion between the desired angles of incidence and
reflection.

More recently, Ashikhmin et al. [12] gener-
alized these types of microfacet BRDFs to allow
expressing arbitrary half angle distributions.
They demonstrate how to modify these BRDFs
to replace the analytic distribution in Eq. 11 with
alternative analytic forms or tabulated (sampled)
functions that can express arbitrary patterns.

More Complex Analytic BRDFs
In addition to models for primarily specular
surfaces, physically based BRDFs have been
derived for rough diffuse surfaces (the Oren-
Nayar model [13]) and for dusty surfaces (the
Hapke/Lommel-Seeliger model, developed to
model lunar reflectance [14]). They range in
complexity from simple formulas that ignore
many real-world effects to complex models that
attempt to account for most actually observed
surface phenomena (e.g., the He-Torrance-
Sillion-Greenberg model [15]). While a detailed
description of these models is beyond the
scope of this entry, they are sometimes used
in rendering or vision systems. The Oren-Nayar
model, in particular, is often combined with the
Torrance-Sparrow model (with the abbreviation
TSON) to model surfaces with both a specular
and non-Lambertian diffuse component. One
drawback of these models, however, is that their
additional complexity and many parameters
can make it difficult or unstable to fit them to
measured data.
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Synonyms

Lasso; Occam’s razor; Ridge regression

Related Concepts

�Constrained Optimization

Definition

The regularization is a technique for an optimiza-
tion problem with both under-constraint and over-
constraint conditions. By adding a regularization
term which restricts the range of variables, a
penalty is imposed against the complexity or ill-
posedness of the original cost function to improve
the stability of the solution [1, 2]. The variable
restriction is usually for smoothness and bounds
of the vector space norm of variables.

The regularization is defined as, to an original
cost function of Eorg(w) which is optimized in
subject to w = (w1, . . . ,wn), a regularization
term (or regularizer) R(w) is added and

Ereg(w) = Eorg(w)+ λR(w) (1)

is totally optimized. In this form, λ is a hyper-
parameter which controls the importance of the
regularization term. The cost function, usually for
the computer vision problem, is given as the data-
fitting error to a model described by the parameter
variables w = (w1, . . . ,wn), and the optimization

is to find the most probable model parameters to
the given image data.

The most general forms of the regularization
term are with Lp norms of ‖ w ‖pp, especially
in the machine learning applications. When we
apply the L1 or L2 regularizations for the linear
regression models, that is,

Ereg = ‖ Y −Xw ‖2 + λ ‖ w ‖pp (2)

where X represents a linear weighting model with
parameter variables w and Y is a set of given data.
The L1 regularization (p = 1) is called the Lasso
[3], and the L2 regularization (p = 2) the ridge
regression [4].

Background

The most of computer vision problem is catego-
rized to the model fittings. The typical models
are those of the perspective imaging of cameras.
From the image data obtained by the camera, the
problem is to reconstruct the 3D world situations
of the image acquisitions. It includes camera opti-
cal parameters, camera position and poses, object
3D shapes, and other conditions represented by
the parameters of w in the imaging model. In
other words, it must be treated as “inverse prob-
lem.”

Sometimes, we have too many image data to
determine the true parameters. But, it is rather
common that the data is insufficient to the param-
eter identification. For both cases, the regulariza-
tion must work to compensate between the model
fitting and reasonable parameter identification.

It is commonly believed that, if we employ
the more number of parameters to describe the
model, the more truly fine real-world model will
be realized. However, we must compromise the
number of data and reliability of the model.
The regularization provides a go-between tech-
nique for them, so that sometimes it is called an
Occam’s razor.
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Regularization, Fig. 1 A simple schematical example of the regularization process

Theory

Figure 1 shows a simple schematic example of
the effect of the regularization term. Assume
that we are now fitting a model to a set of
observed data. The problem is to determine the
most probable model parameter w for this data
set by evaluating the fitting error. But, the fitting
error Eorg(w) is given as multiple peak and valley
form with respect to w as shown in (a). Also
we assume to have a prior knowledge about w
that it must be near to a. Then, we introduce the
regularizing term as R(w) = (w−a)2 as shown in
(b) (in the figure, a = 0), so that the optimization
is to minimize Ereg(w) = Eorg(w) + λ(w − a)2

shown in (c) instead of the original error Eorg(w)

only. In this case, we obtain a unique optimal
“regular” solution as shown.

With the regularization term of Lp norms, the
regularized cost function will be

Ereg(w) = Eorg(w)+ λ
1

p
‖w‖pp

= Eorg(w)+ λ
1

p

∑

i

|wi |p (3)

For these cases, the partial differentiations of the
cost function by the model parameters are given
as

∂Ereg(w)

∂wi

= ∂Eorg(w)

∂wi

+ λwi : for L2 (4)

= ∂Eorg(w)

∂wi

+ λ sgn(wi ) : for L1

(5)
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Regularization, Fig. 2 Polygonal approximation of a
figure with fine or coarse models

Regularization, Fig. 3 Measure of fitness of the polyg-
onal approximation with the ith edge

These mean that, when the steepest descent
method and the stochastic gradient descent are
employed for the optimization, the L2 regular-
ization moves the solution wi closer to 0 by an
additional value proportional to the regularization
parameters. The L1 regularization does it by λ, if
|wi | is greater than λ. Otherwise, wi = 0.

Regularization, Fig. 4 Experimental results of proposed
polygonal approximation method for a silhouette contour
of a key of (a). (b) Initial vertex settings for iterative
minimization of the criterion. (c) Obtained vertices of
polygon with λ = 0.05 and (d) with λ = 0.09

The latter case of L1 regularization can be
interpreted as a kind of “model selection,”
because it may make some model parameters
be 0 and achieves the sparsity.

Open Problems

The role of the hyper-parameter λ is an important
open problem. Some important interpretation of
the regularization results with the change of the λ

was reported [5].

Experimental Results

Here, a typical application of the regularization
technique for a polygonal fitting to a contour
figure is shown [5]. A contour figure in Fig. 2 can
be approximated with fine or coarse polygonal
model to capture its structure. The basic idea of
the approximation model fitting problem is to
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optimize such the criterion function as,

Ereg = Eorg(fitting error to the model)

+ λ R(complexity of the model) (6)

This is conceptually equivalent to the application
of the regularization theory to model fitting prob-
lems [6, 7].

When a polygon of n line segment edge is
employed to fit the contour, the criterion is given
as,

Ereg =
∑

i

si − λ

∑
i l2

i

(
∑

i li )2 (7)

where, as shown in Fig. 3, si is the difference
area between ith linear side of the approximating
polygon and the corresponding segment piece of
the given contour figure and li is the length of the
ith linear side of the polygon.

The first term is the total fitting error between
the given contour and the model, and it becomes
smaller when the polygonal sides run closer to the
given contour. The fractional part of the second
term represents the simpleness of the model.
That is, it becomes greater when the number of
the polygonal sides is smaller, and for the same
numbers, it becomes greater when the polygon

Regularization, Fig. 5
Polygonal approximations
of the figure of Fig. 2 with
variations of λ

Regularization, Fig. 6 Another example of polygonal approximations by changing the λ
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includes some longer sides than when it consists
of equal length sides.

These two terms are generally of trade-off and
not compatible for most of contour figures. The
weight λ compromises between these two terms
to obtain “fit and simple” polygon minimizing the
total criterion Ereg.

Now we discuss, when the value of λ changes,
how the form of obtained approximation polygon
will change.

Figure 4a shows a silhouette contour of a
key consists of 830-digit chain code. For this
figure approximation polygons minimizing the
criterion Ereg with various λ are obtained. The
minimization was started by firstly setting many
candidate vertices of the polygon on the contour
as shown in (b). Figure 4c is the final result of
the optimization with λ = 0.05 which shows
the vertex positions of approximation polygon on
the original contour. Then, with λ ≥ 0.06, the
approximating pattern of (d) was obtained (The
figure shown was with λ = 0.09).

This figure shows important results. That is,
for various values of λ, we obtained only two
types of polygons: one of which has its vertices
at every sharp convex or concave point of the
original contour, and the other is a simple trian-
gle representing its global shape. Secondly, the
change between these two types of approximating
polygons occurs drastically when the value of λ

changes across some value.
Some other experimental results are shown in

Figs. 5 and 6.
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Definition

Reinforcement learning (RL) is a framework that
aims to optimize a decision-making rule called
a policy to maximize the long-term cumulative
reward of the agent. The policy is a map from
state space to the set of actions, and an agent
following the policy π is prompted to take action
π(s) at each state s. In the general setup, the
action selection by the policy is stochastic. In this
case, π(s) for each s is a random variable over
the set of actions. The major policy optimization
methods can be grouped into two categories.
The first category first estimates the action-value
function that evaluates the goodness of the action
at a given state and uses this function to look
for the optimal policy. The second category, on
the other hand, directly parametrizes the policy
and seeks to optimize the policy-parameters using
gradient descent-type approaches.

Background

RL originates from two academic fields,
behavioral psychology and optimal control. The
word reinforce in RL has its origin in behavioral
psychology. By observing animals under various
environments, behavioral psychology has studied
how the animals reinforce their behaviors as
they seek to obtain more reward and receive
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less punishment. This setup is clearly different
from that of supervised learning, in which
the teacher signal is explicitly given to the
learning agent. The word reinforce here is also
used to make a distinction from supervised
learning. As opposed to the scientific approach of
behavioral psychology to understand the animals’
reward-seeking behavior, optimal control theory
provides an answer to a mathematical problem
in which the task is to find the control policy
that can optimize the future reward in a given
environment. In the 1950s, Richard E. Bellman
proved that the optimal (state) value function
in a Markov decision process is given by a
solution to the Bellman equation. This comes
from the necessary condition the optimal policy
should satisfy [4]. If the optimal value function is
obtained, one can derive the optimal policy with
the knowledge of the dynamics of the system.
Although it is possible to compute the optimal
value function numerically through dynamic
programming methods, the computation cost
increases exponentially with the size of the
state space. Bellman called this problem the
curse of dimensionality. Meanwhile, also in the
1950s, Marvin Minsky discussed the usefulness
of the temporal difference error inspired by
the concept of the secondary reinforcers in
behavioral psychology [10]. Sutton and Barto
later refined the idea to develop the computational
model of temporal difference learning [17].
Chris Watkins, in his seminal 1989 paper [20],
proposed the idea of Q-learning and regarded
it as asynchronous dynamic programming. In
contrast to the state value function, the state-
action value function (a.k.a. Q-function) is a
function not only of a state but also of an action.
Q-function makes it possible to estimate the
optimal policy without knowing the dynamics of
a system (environment). In general, Q-learning
can be performed without the explicit knowledge
of the environmental dynamics. Instead, Q-
learning is able to learn from state-action samples
generated from an arbitrary policy. RL has
attracted attention as a learning framework
that may realize goal-oriented learning with
limited supervision and limited prior knowledge.
However, historically, there has only been a

modest number of success cases reported, such
as TD-gammon. It has been shown that off-policy
learning and/or nonlinear function approximation
makes the learning process unstable [3, 19],
leading people to believe that it might be difficult
to make RL work in high-dimensional state
spaces.

The turning point came in the 2010s when
Google DeepMind presented the Deep Q-
Network (DQN), which demonstrated human-
level performance on several Atari games, by
combining the power of convolutional neural
networks and Q-learning [11]. Two important
techniques are implemented in DQN: the first
is the fitted-Q [6] which fixes the target of
the Q-function for a certain period to avoid
the instability caused by bootstrapping, and the
other is the use of experience replay [9] that
uses a replay buffer to store a large amount of
samples and updates the network parameters by
using samples randomly drawn from the replay
buffer to decorrelate the batch of samples used
for the stochastic gradient optimization. DQN
opens the door to so-called deep RL where
deep neural networks are used to represent
the value function and/or the policy. One
celebrated achievement of this new technology
is AlphaGo, which succeeded in defeating one
of the world’s best Go players, Lee Sedol.
Before the appearance of AlphaGo, there was
no AI agent that had beaten a professional Go
player in a regular Go game. It was widely
believed that only in the far future would an
AI agent beat a professional Go player. By
combining DQN with Monte Carlo tree search
(MCTS), AlphaGo made possible the efficient
exploration of seemingly infinite state space
by restricting its search to the set of promising
moves.

AlphaGo is not a work of “pure” RL, as it
uses methods of MCTS and supervised learn-
ing as well. However, it was shown later that
AlphaGo can be eclipsed by a more pure RL
approach. For example, AlphaGo Zero [16] suc-
ceeded in using pure RL self-training to outper-
form AlphaGo without relying on the knowledge
of human-expert strategy. Schrittwieser et al. [12]
later went even further to develop a method
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that does not explicitly rely on the rules of Go
itself. They also demonstrate the wide applicabil-
ity of their method by defeating the top computer
games agents in the board games of Chess and
Shogi.

Theory

In the conventional setting of RL, the agent-
environment interaction is often formulated as a
Markov decision process (S,A, P, r, P0). In this
tuple, S is the state space and A is the action
space. At any time of the process, the agent is at
some s in S, and it is allowed to choose an action
a from A. P is state transition distribution P :
S × S × A → [0, 1], and P(s′|s, a) denotes the
probability of transitioning from s ∈ S to s′ ∈ S

when the agent takes action a ∈ A. Also, r : S ×
A×S → R represents the reward function, where
r(s, a, s′) denotes the reward granted to the agent
upon taking action a and transitioning from s to
s′. When the reward r is stochastic, one often
uses expected reward r(s, a, s′) = E[r|s, a, s′].
Finally, P0(s) is the probability of the initial state
of the agent. Hereafter, let subscript t be the
(relative) temporal order.

The agent starts from the initial state drawn
from P0. At each st , the agent is prompted to
take action from some behavior policy, which
is a stationary distribution on A conditioned on
st . The term behavior policy is often used to
make distinction from ‘target policy, which is
often used to represent the policy to be optimized.
When the target policy is trained with the samples
collected by the behavior policy, the learning
is called off-policy learning. The celebrated Q-
learning algorithm is a member of off-policy
family.

The agent transitions to a new state and
receives a reward according to the state
transition distribution P and reward function r ,
respectively. This cycle is continuously repeated.
The purpose of RL is to obtain the target policy
that maximizes the expected cumulative rewards
maxπ Eπ [∑T

t=1 γ t−1rt ]. Here, T is a time
horizon, and γ is a constant called the discount

factor that is allowed to take a value in [0, 1].
The problem setting in which T = ∞ is called
the infinite horizon problem setting, and γ in
this case is chosen to be γ < 1 to prevent the
cumulative reward from becoming infinite. In
a typical RL setting, it is often assumed that
the transition distribution is not known to the
agent, so that the agent cannot use knowledge of
P to choose an action at each state. Thus, in a
typical RL problem, one must optimize the policy
using just the collection of state transitions and
rewards experienced by the agent. This condition
is different from the setting of optimal control
theory where the state transition distribution and
reward function are assumed to be known to the
agent.

Many RL algorithms for obtaining the optimal
policy have been proposed to date. Among them,
the actor-critic framework is one of the basic
frameworks and is a good starting point because
it has connections to a wide variety of algorithms.

The actor-critic method of two steps: policy
evaluation step where the critic evaluates the
actor’s current policy and the policy improvement
step where the policy is improved based on the
critic’s evaluation. In the policy evaluation step,
the performance of current policy is often quanti-
fied by the so-called value function. There are two
types of value functions. A state-value function
V π(s) is a function that estimates the cumulative
reward over the episode in which the agent starts
from the initial state s and uses the policy π

to choose an action at each state. The action-
value function Qπ(s, a), on the other hand, is an
analogue of V π(s) in which the agent’s action at
the initial state s is a:

V π(s) = Eπ

[ ∞∑

t=1

γ t−1rt |s0 = s

]
, (1)

Qπ(s, a) = Eπ

[ ∞∑

t=1

γ t−1rt |s0 = s, a0 = a

]
.

(2)

In the policy improvement step, the policy π ′
is updated so as to satisfy the following for any
state,
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Eπ ′ [Qπ(s, a)|s] ≥ Eπ [Qπ(s, a)|s], ∀s ∈ S,

(3)

as long as the policy improvement is performed
for all states. The condition (3) does not just
guarantee that the new policy π ′ is better than
π when evaluated using Qπ . By using the self-
consistent equation known as Bellman equation,

Qπ(st , at ) = Eπ [rt+1 + γQπ(st+1, at+1)|st , at ],
(4)

one can also guarantee that Eπ ′ [Qπ ′(s, a)] ≥
Eπ [Qπ(s, a)].

It is worth noting, however, that this improve-
ment only guarantees the convergence to the local
optimum unless the objective is convex, which
is often not the case. An additional set of con-
ditions is necessary to guarantee the convergence
to global optimum or near-global optimum. The
iteration of these two steps is also called as
(generalized) policy iteration.

The problem is then how to estimate Qπ(s, a)

at every update of π for the policy evaluation.
One popular way to estimate Qπ(s, a) is to utilize
the so-called Bellman operator. Bellman operator
T π is an operator that receives a function F

as an input and returns function T πF as an
output. T πF is defined by the right-hand side of
Bellman equation (4) as T πF = Eπ [rt+1 +
γF(st+1, at+1)|st , at ] for all (st , at ). This
Bellman operator is a contraction in supremum
norm when 0 < γ < 1, i.e., ||T πF (s, a) −
T πG(s, a)||∞ ≤ γ ||F(s, a) − G(s, a)|| for any
function F(s, a) and G(s, a). By Banach’s fixed
point theorem, the sequence of the functions
F(s, a), T πF (s, a), (T π )2F(s, a), · · · will
converge to a unique stationary function,
Qπ(st , at ), irrespective of the initial function F .

In practice, the expectation in the Bellman
operator is approximated by the sample average.
In particular, the following update is known as Q-
learning:

Q(st , at )← Q(st , at )+
α(T̂ ∗Q(st , at )−Q(st , at ))

= Q(st , at )

+ α(rt+1 + γ max
a

Q(st+1, a)

−Q(st , at )), (5)

where T̂ ∗Q(st , at ) is a sample estimate of the
optimal Bellman operator T ∗Q(st , at )=E[rt+1+
γ maxa Q(st+1, a)|st , at ] and (st , at , st+1) is a
transition sample obtained by the behavior policy
and the state transition distribution. If the update
(5) is repeated sufficiently many times at all state-
action pairs with α that decays at a moderate rate,
this iterative algorithm always converges to the
optimal action value function [20]. ε-greedy is a
popular choice for the behavior policy to cover
the broad state-action space, which takes the
greedy action a∗ = arg maxa Q(st+1, a) with
probability 1 − ε and takes a uniform random
action with probability ε. The term “Q-learning”
is often used to reference an algorithm that uses
the policy improvement step in which the new
policy is constructed using the deterministic
greedy rule a∗ = arg maxa Q(st+1, a). Note this
target policy always satisfies the condition (3) as
it is the solution of maxπ Eπ(a|st+1)[Q(st+1, a)].
Policy improvement usually refers to this greedy
way of updating based on Q. Meanwhile, there is
also an important family of algorithms in which
the target policy is not defined by Q(st+1, at+1).
This family will be introduced later.

The concept of Q-learning is built on the
assumption that there is a way to update Q at each
(s, a) independently. This assumption, however,
becomes practically impossible when the state
space is too large. The cardinality of the state
space can even be infinite when it is continuous!
In such a case, function approximation is neces-
sary. Suppose w is the parameter of the action
value function, Qw(s, a). The mathematical ana-
logue of (5) in the parameter space is given by

w← w+ αEρ(s)πb(a|s)[(T̂
∗
Qw(s, a)

−Qw(s, a))∇wQw(s, a)], (6)

where ρ(s) denotes some distribution of the state,
and πb(a|s) is a behavior policy. Unfortunately,
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however, this update does not necessarily induce
a contraction about Q. By examining the Taylor
expansion of (6) about w, Achiam et al. [1]
showed that (6) cannot be a contraction unless α

is sufficiently small and ρ(s) > 0 for all s in the
state space. The convergence of this update rule
may fail also if Qw(s, a) is very sensitive to w at
states that are not involved in the estimation of
the Bellman error T̂ ∗Qw(s, a)−Qw(s, a).

In practice, algorithms of DQN [11] often
mitigate this instability problem by modifying the
Bellman error into a regression error by using
T̂ ∗Qw′ with a fixed parameter w′ �= w as a target
network over each subinterval of the training. To
stabilize the training, DQN also uses experience
replay [9] where the expectation in Eq.(6) is taken
with respect to a uniform distribution over the
pool of latest transition samples (s, a, s′) called
a replay buffer.

So far, the target policy derived from Qw(s, a)

has been used only implicitly in the policy
improvement step, and the policy π has never
appeared as an explicit variable. There is also
another important family of methods that does
not directly derive the target distribution from
the Q-function Qw(s, a). Such cases may arise
in robot control, for example, in which the
space is continuous and the computation of
a∗ = arg maxa Q(st+1, a) is difficult.

Suppose the target policy πθ is parameterized
by the parameter θ and θ is updated during the
policy improvement step as θ ← θ + αΔθ to
improve the parameters in terms of Qπ(s, a).
Practically, this is done in a form of gradient
method. Every time, the parameter θ is updated
as θ ← θ + εΔθ instead of Eq. (3),

Δθ ∝ ∂Eρ(s)πθ ′ (a|s)[Qπθ (s, a)]
∂θ ′

∣∣∣∣
θ ′=θ

= Eρ(s)πθ (a|s)
[

∂ log πθ ′(a|s)
∂θ ′

∣∣∣∣
θ ′=θ

(Qπθ (s, a)− b(s))

]

= Eρ(s)

[∫
∂πθ ′(a|s)

∂θ ′

∣∣∣∣
θ ′=θ

(Qπθ (s, a)− b(s))da

]
, (7)

where b(s) denotes a baseline function.
The equality in Eq. (7) is known as the pol-

icy gradient theorem [18], and the algorithms
based on this theorem are often referred as policy
gradient methods. It is known that the update
in Eq. (7) is equivalent to gradient descent of
the loss function Eπ

[∑∞
t=1 rt |s0

]
on the episodic

task with γ = 1 if ρ(s) is a distribution that
represents the fraction of time spent in each state
when following policy π .

Any function can be used for the baseline
function b(s) as it does not affect the expected
value. Meanwhile, the variance of the gradient
is affected by the choice of b(s). Because this
is generally a gradient descent optimization of
a non-convex objective function, the algorithm
does not necessarily converge to the optimal
policy. The convergence to the global optimum,
however, can be guaranteed if the policy class

is appropriate, e.g., softmax policies applied to
finite state and action MDPs [2].

Sometimes a reparameterized policy, such as
πθ ′(a|s) = ∫

N(ε|0, I )δ(a − fθ (s, ε))dε, is
used to help reduce the variance of the gradient.
Substituting this policy in the first expression of
Eq. (7), the following policy gradient is obtained:

Δθ ∝ Eρ(s)N(ε|0,I )[(∇θfθ (s, ε))∇aQ
πθ (s, a)].

(8)

Several relevant algorithms are worthy of note.
To perform a policy gradient update, it is nec-
essary to estimate Qπθ (s, a) at every update of
π . One can estimate Qπθ (s, a) by using the
sample estimate of the Bellman operator similar
to Eq. (6). REINFORCE is an algorithm that
uses the Monte Carlo method to approximate
Qπθ (s, a). Deep Deterministic Policy Gradient
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(DDPG) [8] is an algorithm that uses the version
of (8) that uses deterministic f ; in other words,
DDPG uses the policy gradient with fθ (s, ε) =
fθ (s) that does not depend on the random vari-
able ε. Some algorithms interpret the steepest
gradient descent (7) as a solution to the opti-
mization problem maxθ ′ Eπθ ′ [Qπθ (s, a)] subject

to
√

ΔθT Δθ ≤ α. By replacing the constraint√
ΔθT Δθ ≤ α with

√
ΔθT FΔθ ≤ α where F

is a Fisher information matrix, the correspond-
ing update rule would become natural gradi-
ent descent, which regularizes the distributional
change of the policy in terms of the Kullback-
Leibler divergence. Natural Policy Gradient [7],
Trust Region Policy Optimization (TRPO) [13],
and Proximal Policy Optimization (PPO) [14]
all belong to the family of methods that use the
natural gradient, but differ in their approximation
method and the model of Q-function and policy
distribution.

In order to guarantee the convergence of these
policy gradient algorithms, it is necessary to
ensure that ρ(s) > 0 for a sufficiently wide range
of the state space, and doing so requires extensive
exploration of the state space. To encourage
the exploration, a behavior policy is thus often
created by adding the noise to the target policy
or by adding an entropy term to the objective
maxπ Eπ(a|st+1)[Q(st+1, a) − λ log π(a|st+1)]
where λ is a nonnegative coefficient.

Open Problems

It is believed that humans utilize some type of
RL because we do not usually rely on supervised
learning in many decision making problems.
However, there are great differences between
current RL and human learning. Current RL
does not have a good generalization ability
and usually overfits to the specific environment
used for the training. This makes RL difficult
to apply to a wide variety of real problems
because it is often difficult to simulate the
real environment completely. On the contrary,
current RL is successful when there are little
differences between the training environment and
test environment such as Atari games, Go, or any

artificial simulation environments. Therefore,
many researchers are interested in methods
that can adapt quickly to new environments. In
particular, quick adaptation from the simulation
environment to real environment is called
sim2real transfer. Meta-learning (or learning to
learn) is sometimes applied in combination with
RL to quickly adapt to the new environment. In
general, improvement of generalization ability in
standard context alone is often not sufficient
in training an agent with quick adaptability.
For example, there are similar games in Atari
platform as categorized by shooting games,
racing games, or action games. But current RL
agents cannot adapt instantly to new games even
if the RL agent is sufficiently trained on a similar
game, most likely because it is overfitting to the
training environment. On the other hand, a human
could quickly learn to solve the similar game. It
is speculated that humans learn a good prior that
is applicable to different environments through
learning. In other words, humans learn abstract
concepts that are applicable to a wide class of
environments. It has been experimentally shown
that humans’ quick adaptation actually relies on
some prior knowledge of the visual appearance
of the objects in the Atari game platform [5].
This line of research leads to hierarchical RL
or the lifelong learning that aims to learn the
common abstract knowledge useful for the quick
adaptation or generalization. Other important
problems are the efficient exploration in large
state-action space and the designing of a good
reward.
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Definition

Retinex theory is a computational model for
human color constancy. It defines a mechanism
for computing lightness values from an image.
Retinex theory proposes that the lightness values
for each class of photoreceptors are derived
independently and that this triplet of values
correlates with perceived reflectance.

Background

The human visual system is remarkable in
its ability to deal with varying illumination.
Throughout the day, the visual system encounters
both artificial and natural illumination, yet the
appearance of the world seems stable. For
example, a piece of white paper on a desk
does not appear to change color when taken
outside.

But anyone who has used a camera knows
that the world is not as simple as it appears.
Sometimes photographs captured outdoors have
a blue color cast, while photographs captured
indoors appear yellow. These color shifts are
due to the different sources of illumination, e.g.,
sunlight versus an incandescent bulb. For a cam-
era to capture the scene as it appears to the
human visual system, it needs to determine, or
be configured with, the color of the illumination.
This setting in the camera is known as white
balance.

While a camera needs to be configured for the
type of illumination, the human visual system
accounts for illumination changes automatically.
This ability is known as color constancy. The
process is fast and effortless – many people do
not realize how much the measured color of
an object changes under different light sources
because its appearance seems stable. In a sense,
the human visual system has an automatic
white balance mechanism that operates without
the need for a reference or knowledge of the
illumination.

Land and McCann investigated color
constancy under varying illumination in a

Retinex Theory, Fig. 1 An arrangement of colored rect-
angles similar to “Mondrian-like” stimuli used by Land
and McCann [1]

series of experiments known as the “Mondrian”
experiments [1]. The stimuli for the experiments
consisted of a large array of rectangular colored
papers that were arranged to resemble a painting
by the artist Mondrian; see Fig. 1. The papers
were illuminated by three projectors with filters
designed to pass long waves, middle-length
waves, or short waves. Focusing on one of the
papers (e.g., a green paper), they adjusted the
flux from each of the projectors to achieve a
predetermined set of luminance values at the
eye, as measured by a photometer. The subject
in the study noted the color name of the paper
in question. The process was repeated for other
pieces of paper – first adjusting the lights to
achieve the same set of luminance values, then
asking the subject to note the color name. The
subjects consistently reported the correct color
names for the papers, despite receiving the same
luminance triple at the eye from all papers. Thus,
in a controlled environment, Land and McCann
verified the ability of the visual system to identify
correct color names under varying illumination,
even when the luminance values at the eye in all
cases were the same.
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Theory

Retinex theory grew out of the Mondrian experi-
ments and it defined a computational model for
the color constancy of the Mondrian stimuli.
Land and McCann coined the name “Retinex” to
signify that, in humans, this process could involve
both the retina and the cortex [1].

The main principle of Retinex theory is that
images from the three classes of photoreceptors
(i.e., color channels) are processed separately into
three lightness images. The lightness values at
different regions in the image correlate with the
true reflectance of the region and are as inde-
pendent of illumination differences as possible.
Therefore, the color constancy problem is cast
into a lower-dimensional problem of understand-
ing the lightness of a single-channel image.

Retinex theory describes an algorithm for
computing lightness images from intensity
images. There were five main components in
the original algorithm: ratio, sequential product,
reset, threshold, and average [1].

Land and McCann realized the perceptual
importance of edges and made the ratio of
luminances across edges the fundamental unit
of their algorithm. To compare areas that were
not directly next to each other, they introduced
the notion of a sequential product. The sequential
product accumulates edge ratios along a one-
dimensional path. The initial value for the
sequential product is set to one, and the sequential
product can become greater than one if the path
crosses a region with greater reflectance than
the initial region. In this case, the sequential
product is reset to one to account for the highest
reflectance found along the path.

Across large areas of uniform reflectance,
adjacent pixels may have slightly different
luminance values, leading to ratios near, but not
equal to, one. The threshold component discards
these small changes to make the algorithm more
robust to gradual changes of illumination across
the scene.

The sequential product reveals the relative
reflectance of a region with respect to the highest
reflectance seen along a one-dimensional path.
The Retinex algorithm considers several one-

dimensional paths through the same region and
averages the relative reflectances to obtain the
lightness value for the region.

Through the five operations, the Retinex algo-
rithm converts a grayscale intensity image into
a lightness image. The triple of lightness values
from three color channels were shown to correlate
with color judgments, regardless of illumination
conditions [2].

Since the original Retinex paper, there have
been further studies on the roles of the different
operators and modifications to these operators [3,
4]. For example, the length of the path used in
the sequential product affects the ability of the
algorithm to model color constancy. Short paths
include little of the surrounding context, while in
the limit, infinite paths result in a scaling of the
image and are a poor model for human perception
[5]. Later variants of the Retinex algorithm also
discarded the threshold step [6], though other
authors have found the threshold step to be impor-
tant for separating shading and reflectance effects
in images [7–9].
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Definition

Retroreflection is a type of reflectance which is
characterized by a peak in the backward or illumi-
nation direction. Thus, materials that backscatter
scatter light primarily in the direction from which
it is illuminated.

Background

The reflectance of natural, opaque, rough surfaces
can be described by the Bidirectional Reflectance
Distribution Function (BRDF) [7]. BRDFs that
are common and well known are those of
Lambertian, perfectly diffusely scattering, and
of specular surfaces. Such surfaces scatter light
in all directions (diffuse scattering) or primarily
in the mirror direction (specular reflection).
However, natural surfaces can scatter light in
many other ways. Retroreflection is just one
such manner. Retroreflection can be caused
by, for instance, hemispherical concavities
in the surface [5, 8]. Even if the surface is
locally Lambertian, such a “thoroughly pitted
surface” shows retroreflection. Another example
is the triple mirror retroreflector, which is,
for instance, used in reflectors for cars and

bicycles (in small-scale versions) and in distance
measurements (relatively large-scale versions).
Many reflectors for outside applications (e.g.,
clothes of roadworkers, number plates) consist
of a thin layer of small spherical particles with a
refraction index of 2. Natural phenomena that are
caused by retroreflection are “Heiligenschein”
(the halo you can see around your head if you
look at wet or dewy grass with the sun at a low
angle behind you; for examples see [3]) and
the Seeliger effect (reflective objects that are in
opposition to the sun are brighter than in other
positions).

Theory

The geometrical optical models with retroreflec-
tion lobes which were mentioned above result
in quite complicated BRDFs. It is possible to
fit retroreflection characteristics in a convenient,
simplified formula (note that basic physical con-
straints should hold, e.g., nonnegativity, energy
conservation, and Helmholtz reciprocity) [4]. For
instance, the following BRDF model,

B (i, j,n) = 1

π2k

(1+ i · j)k
(i+ j) · n , (1)

is a perfect backscatterer in the sense that the
BRDF equals (2π (i · n))−1 for coincident direc-
tions of incidence and viewing (i = j): When the
normal irradiance is HN, the irradiance becomes
HN(i · n) and the backscattered radiance HN/2π ,
i.e., independent of the slant of the surface. Thus,
the full moon would appear as a featureless disk.
It may well be the simplest analytical expression
that leads to a pronounced backscatter lobe. The
BRDF peaks at i = j; the parameter k determines
the width of the peak. The albedo is a complicated
function, for instance, for k = 1 the albedo is

lAB (ϑi) = 1

2
(1+ cos ϑi − cos 2ϑi)

+1

4
(cos ϑi − cos 3ϑi) log

cos ϑi

1+ cos ϑi

,

(2)
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where cos ϑi = i · n. This albedo is 1
2 for normal

incidence and rises to 1 for grazing incidence.
For k > 1 the expressions for the albedo become
unwieldy, but numerical integration reveals that
the albedo remains lower than one and approx-
imately constant for a large range, then rises
to one at grazing incidence. It is not obvious
how to write down a backscatter BRDF with
unit albedo throughout. Other possibilities for
simplified formulations may be found in graphics
as so-called backscatter shaders. However, care
should be taken that many of these rendering
applications do not fulfill the above-mentioned
basic physical constraints.

Open Problems

BRDFs of natural surfaces can probably be cat-
egorized into about a dozen different modes.
Currently only the forward, backward, diffuse,
and surface scattering modes have been described
by formal optical models.

Reflectance estimation from images suffers
from image ambiguities. Prior knowledge on the
reflectance statistics of natural materials plus for-
mal descriptive models for the common modes of
natural BRDFs can constrain this problem.
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Definition

A manifold is a topological space that is locally
Euclidean, indicating that near every point, there
is a neighborhood that is topologically the same
as the open unit ball in R

n. A smooth manifold
equipped with an inner product on each tangent
space is called a Riemannian manifold, where
various notions such as length, angles, areas (or
volumes), curvature, and divergence of vector
fields can be defined.

http://www.cs.columbia.edu/CAVE/curet
http://www.weatherscapes.com/album.php?cat=optics&amp;subcat=heiligenschein
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Relevance to Computer Vision

The need of using the manifold concept and
Riemannian geometry arises naturally when con-
sidering the intrinsic properties of images. It is
convenient to treat an image of size 64 × 64
as a data point in a 4096-dimensional vector
space. Then we want to measure the distance
or similarity between any two data points in
this high-dimensional space. However, using the
flat Euclidean structure in large scales seems
to make little sense in this space. If you take
two images that are very different, for example
Arnold Schwarzenegger and Hillary Clinton, you
cannot interpolate between them at all to get a
facial image. (This example is from Kilian Q.
Weinberger’s homepage). One way is to impose
some special metric in this space to make it
curved, or equivalently we can transform these
images into another feature space.

We can imagine an intuitive example of
interpolating between digits 9 and 3. By
directly doing linear interpolation in the original
Euclidean space, we get blurry images. However,
if following the curved manifolds of digits 9 and
3, we obtain a continuum of slowing morphing
from 9 to 3. And this way, the interpolated images
in the gap of two manifolds make much sense
from the aspect of human eyes.

Furthermore, Riemannian geometry may play
a role in the situations where a camera moves in
a curved path (such as a circle) or a robot arm
rotates along a given track.

Mathematical Background

The concept of a manifold is central to many
parts of geometry and modern mathematical
physics, because it allows complicated structures
to be described and understood in terms of
the simpler local topological properties of
Euclidean space. Manifolds arise naturally in a
variety of mathematical and physical applications
as "global objects." The study of manifolds
combines many important areas of mathematics:
it generalizes concepts such as curves and

surfaces as well as ideas from linear algebra
and topology.

In mathematics, a manifold is a topological
space that locally resembles Euclidean space
around each point. Precisely, each point of an
n-dimensional manifold has a neighborhood that
is homeomorphic to an open subset of Euclidean
space R

n. In other words, manifolds constitute a
generalization of curves and surfaces into high-
dimensional spaces. One-dimensional manifolds
include lines and circles, but not figure eights
“8” because they have crossing points that are
not locally homeomorphic to Euclidean 1-space.
Two-dimensional manifolds, also called surfaces,
include the plane, the sphere, and the torus, which
can all be embedded in three dimensional real
space. On the other hand, the structure of three
planes (e.g., the xy, yz, and zx planes in a xyz
coordinate chart) intersected at the origin is an
example of a non-manifold, since a neighborhood
of any intersection point is neither 2D
nor 3D.

Although a manifold locally resembles
Euclidean space, globally it may not: manifolds
in general are not homeomorphic to Euclidean
space. An intuitive example is the round/flat
Earth problem: the whole surface of the sphere
is not homeomorphic to the Euclidean plane.
The ancient belief is that the Earth was flat, as
contrasted with the modern evidence that it is
round. The discrepancy arises essentially from
the fact that on the small scales, the Earth does
indeed look flat, whereas on the large scales,
the Earth surface is a sphere approximately. In
general, any object that is nearly “flat” on small
scales is a manifold. In a region it can be charted
by means of map projections of the region into
the Euclidean plane; in the context of manifolds,
they are called charts. More concisely, any object
that can be “charted” is a manifold.

When a region appears in two neighboring
charts, the two representations may not coincide
exactly, and a transformation is needed to pass
from one chart to the other, called a transition
map. Smooth manifolds (also called differentiable
manifolds) are manifolds for which overlapping
charts "relate smoothly" to each other, meaning
that the inverse of one followed by the other is
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an infinitely differentiable map from Euclidean
space to itself. Such two charts are called “com-
patible.” A differentiable manifold is a type of
manifold that is locally similar enough to a linear
space to allow one to do calculus. One may
then apply calculus while working within the
individual charts, since each chart lies within a
linear space to which the usual rules of calculus
apply. If the charts are suitably compatible (viz.,
the transition from one chart to another is differ-
entiable), then computations done in one chart are
valid in any other differentiable chart. With this
differentiable structure equipped on manifolds,
we can define the globally differentiable tangent
space, differentiable functions, and differentiable
tensor and vector fields.

Differentiable manifolds are very important in
physics. Special kinds of differentiable manifolds
form the basis for physical theories such as clas-
sical mechanics, general relativity, and the Yang-
Mills theory. It is possible to develop a calculus
for differentiable manifolds, and the study of
calculus on differentiable manifolds is known as
differential geometry.

A Riemannian metric on a differentiable man-
ifold allows distances and angles to be mea-
sured. A “Riemannian manifold” is a differen-
tiable manifold in which each tangent space is
equipped with an inner product 〈·, ·〉 in a manner
which varies smoothly from point to point. Given
two tangent vectors u and v, the inner product
〈u, v〉 gives a real number. This allows one to
define various notions such as length, angles,
areas (or volumes), curvature, and divergence of
vector fields.

Carl Friedrich Gauss (1777–1855) may have
been the first to consider abstract spaces as math-
ematical objects in their own right. His Theorema
Egregium (Remarkable Theorem or Totally Awe-
some Theorem) gives a method for computing
the curvature of a surface without considering
the ambient space in which the surface lies. In
modern terms, the theorem proved that the Gaus-
sian curvature K = κ1κ2 of the surface is an
intrinsic property, where κ1 and κ2 are principal
curvatures at one point. Since then, manifold
theory has come to focus exclusively on these
intrinsic properties (or invariants), while largely

ignoring the extrinsic properties of the ambient
space.

Bernhard Riemann (1826–1866) was the first
one to do extensive work generalizing the idea
of intrinsic geometry to higher dimensions. The
name manifold comes from Riemann’s original
German term, Mannigfaltigkeit, which William
Kingdon Clifford translated as "manifoldness."
Riemann developed his theory of higher dimen-
sions and delivered his inaugural lecture at Göt-
tingen in 1854 entitled “Ueber die Hypothesen
welche der Geometrie zu Grunde liegen” (“On
the hypotheses which underlie geometry”) [1].
Riemann found the correct way to extend to n

dimensions the differential geometry of surfaces,
which Gauss (as Riemann’s tutor) proved in his
Theorema Egregium. This lecture founded the
field of Riemannian geometry.

Gauss highly appreciated Riemann’s lecture
“which surpassed all his expectations, in the
greatest astonishment, and on the way back
from the faculty meeting he spoke to Wilhelm
Weber, with the greatest appreciation, and
with an excitement rare for him, about the
depth of the ideas presented by Riemann.”
[2, Vol.2, pp.134]

Riemann’s inaugural lecture was only
published 12 years later in 1868 by Dedekind,
2 years after his death. Its early reception
appears to have been slow. But it is now
recognized as one of the most important works
in geometry and specifically set the stage for
Albert Einstein’s general theory of relativity
(published in 1916). Einstein used the theory
of Riemannian manifolds (formally pseudo-
Riemannian manifolds) to develop his general
theory of relativity. General relativity generalizes
special relativity and Newton’s law of universal
gravitation, treating the gravity of space and time
(or spacetime) as the curvature of a Riemannian
space. In particular, his equations for gravitation
are constraints on the curvature of space-time. As
Riemann laid the foundations of the mathematics
of general relativity, Riemannian geometry had
received extensive attention in mathematics and
theoretical physics from that time.

For more material on the background, one can
refer to https://en.wikipedia.org/wiki/Manifold

https://en.wikipedia.org/wiki/Manifold
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and https://en.wikipedia.org/wiki/Riemannian_
manifold.

Theory

In the following we present formal definitions
and several elementary results [3].

Definition 1 A manifold M of dimension d is
a connected paracompact Hausdorff space for
which every point has a neighborhood U that is
homeomorphic to an open subset Ω of Rd . Such
a homeomorphism x : U �→ Ω is called a
(coordinate) chart. An atlas is a family {Uα, xα}
of charts for which the Uα constitute an open
covering of M .

Definition 2 An atlas {Uα, xα} on a manifold is
called differentiable if all chart transitions

xβ ◦ x−1
α : xα(Uα ∩ Uβ) �→ xβ(Uα ∩ Uβ)

are differentiable of class C∞ (in case Uα∩Uβ �=
∅). A maximal differentiable atlas is called a
differentiable structure, and a differentiable man-
ifold of dimension d is a manifold of dimension
d with a differentiable structure.

The next key concept is called “tangent
space,” which is a generalization of the
tangent plane of a 2D surface. Suppose that a
regular surface S is represented by r(u, v) =
{x(u, v), y(u, v), z(u, v)}, where (u, v) ∈ R

2

and (x, y, z) ∈ R
3. Thus as a main part of the

functional increment, the differential

dr(u, v) = ru(u, v)du+ rv(u, v)dv

gives a tangent vector with (du, dv) as coor-
dinates under the basis {ru, rv} (generally not
orthonormal). This vector space formed by basis
{ru, rv} is called a tangent space of surface S at
point p, denoted by TpS.

Definition 3 Let p be a point in an d-
dimensional differentiable manifold M , and
attach at p a copy of R

d tangential to M . The

RiemannianManifold, Fig. 1 The tangent space

resulting structure is called the tangent space of
M at p, denoted by TpM . If γ is a smooth curve
passing through p, then the derivative of γ at
p (also known as the velocity of the curve) is a
tangent vector in TpM .

See Fig. 1 for an illustrative example. Other
definitions of the tangent space are possible. For
example, a tangent vector at p may be defined as
directional derivatives X of smooth functions on
M that satisfies the Leibniz rule

X(f · g)(p) = X(f (p))g(p)+ f (p)X(g(p)),

which does not involve local coordinates.

Definition 4 Let M be a differentiable manifold
of dimension d and p ∈ M . A Riemannian metric
on M is a family of (positive definite) inner
products gp : TpM × TpM �→ R such that for
all differentiable vector fields X, Y on M , p �→
gp(X(p), Y (p)) defines a smooth function M �→
R. In other words, a Riemannian metric g is a
symmetric (0,2)-tensor that is positive definite
(i.e., g(X,X) > 0 for all tangent vectors X �=
0). A Riemannian manifold is a differentiable
manifold equipped with a Riemannian metric.

The inner product of two tangent vector
X, Y ∈ TpM with coordinate representations
X =∑i Xi ∂

∂xi , Y =
∑

j Y j ∂
∂xj then is

〈X, Y 〉 = gp(X, Y ) = gij (p)XiY j .

In particular 〈 ∂
∂xi ,

∂
∂xj 〉 = gij . Formally, the

metric tensor can be written in terms of the dual
basis {dx1, . . . , dxd} of the cotangent space as

https://en.wikipedia.org/wiki/Riemannian_manifold
https://en.wikipedia.org/wiki/Riemannian_manifold
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g =
∑

i,j

gij dxi ⊗ dxj .

For a smooth parametrized curve γ : [a, b] �→
M , its length is defined as

L(γ ) =
∫ b

a

∥∥∥∥
dγ

dt
(t)

∥∥∥∥ dt

=
∫ b

a

√〈
dγ

dt
(t),

dγ

dt
(t)

〉
dt

=
∫ b

a

√√√√
〈
∑

i

∂γ

∂xi

dxi

dt
,
∑

j

∂γ

∂xj

dxj

dt

〉
dt

=
∫ b

a

√√√√
∑

i,j

g

(
∂γ

∂xi
,

∂γ

∂xj

)
dxi

dt

dxj

dt
dt

=
∫ b

a

√√√√
∑

i,j

gij

(
γ (t)

)dxi

dt

dxj

dt
dt,

which is exactly the original starting point of
Riemann.

Similarly, a volume element can be expressed
by

dV =
√

det(gij )dx1 ∧ · · · ∧ dxn,

where det(gij ) is the determinant of the matrix
representation of the metric tensor and {dxi}
is the dual coframe. Hence the volume of an
oriented manifold M is defined to be

∫

M

dV =
∫

M

√
det(gij )dx1 ∧ · · · ∧ dxn.

The following theorem provides a guarantee
of the existence of the Riemannian metric.

Theorem 1 Each differentiable manifold may be
equipped with a Riemannian metric.

One can read [4] for more details on Rieman-
nian geometry and [3] for connections to geomet-
ric analysis. For those not familiar with differen-
tial geometry of curves and surfaces, please refer
to [5] (without tensor analysis).

Application

Riemannian normal coordinates, introduced by
Riemann in his inaugural lecture in 1854, have
been used to manifold learning. Local coordinate
charts can be constructed to embed data points
from a high-dimensional ambient space into a
low-dimensional feature space [6].

Riemannian manifolds have found successful
applications for video representations in visual
classification tasks, since a discriminant Rieman-
nian metric can encode the nonlinear geometry
of the underlying Riemannian manifolds. In [7]
a metric learning framework was presented to
learn a distance metric across a Euclidean space
and a Riemannian manifold to fuse the average
appearance and pattern variation of faces within
one video.

Visual data often forms a special manifold
structure lying on a lower dimensional space. An
efficient clustering method on Riemannian mani-
folds was proposed in [8], and experiments over
several image and video datasets demonstrated
the favorable computational complexity of the
proposed clustering algorithm.

In video analysis and more generally activity
recognition, temporal evolutions of features can
be viewed as trajectories on Riemannian mani-
folds. A transported square-root vector field [9]
on Riemannian manifolds was used to model
these trajectories, which successfully applied to
visual speech recognition.

Grassmann manifold, as a special case of gen-
eral Riemannian manifolds, has attracted much
interests in the community of computer vision. A
robust estimation approach based on Grassmann
manifolds [10] was employed for chromatic noise
filtering, fundamental matrix estimation, planar
homography, and affine motion factorization.
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The monograph [11] presents a comprehen-
sive treatise on Riemannian geometric compu-
tations and related statistical inferences in sev-
eral computer vision problems, including face
recognition, activity recognition, object detec-
tion, biomedical image analysis, and structure
from motion.

Recently, Riemannian geometry has been
applied to the study of deep neural networks [12].
They found that neural networks are learning
systems of differential equations governing
the coordinate transformations that represent
the data manifold. Also a closed form solution
of the metric tensor on the underlying data
manifold can be found by back-propagating
the coordinate representations learned by neural
networks.
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Synonyms

Rigid alignment; Rigid localization; Rigid match-
ing; Rigid positioning; Rigid transformation esti-
mation

Definition

Given two copies of an object surface at different
locations and orientations in space, or two parts
of the surface of a single object with at least
some shared overlapping area, find a translation
and rigid rotation which places the two copies,
or corresponding parts of the object, at the
same location and orientation. This process
is called rigid registration. In practice, many

approaches to rigid registration work by finding
point-to-point correspondences between parts
of the object surface in each dataset and use
these to estimate the geometric transformation
in either the least-squares or weighted least-
squares sense with closed-form solution. Often,
registration algorithms also output the point-
to-point correspondences which can be just as
useful to many applications as the transformation
itself. A correspondence is such a pair of points
that while described in two different coordinate
systems, they represent the same point on the
object surface in 3D space.

Sometimes, multiple captured datasets need
to be registered either simultaneously or sequen-
tially in a pairwise manner. Sometimes, captured
data need to be registered against, say, a stored
CAD model of an ideal version of the object, etc.
Thus, in some cases, the “reference” shape comes
from the data itself, while in other cases, there is
an external reference shape.

Background

Current laser scanning technologies such as
Kinect sensor released by Microsoft in 2010
enable the acquisition of both depth and intensity
information from an object of interest in the form
of range (depth) and RGB images as illustrated
in Fig. 1. In this case, the object of interest
is a pitcher and is represented as structured
points. In Fig. 1, missing points can be seen
in its surrounding areas, boundaries, mouth,
and the areas behind the handle and the body
due to inability of the scanner to capture data:
occlusion, discontinuity in depth, orientation, and
highly reflective surface. The occurrences and
locations of such holes, occlusions, and clutter
vary from one dataset to another and are usually
unpredictable. While the range images describe
the geometry of the object of interest, the inten-
sity images describe its appearance. Since laser
scanning systems (range cameras) have a limited
field of view, and one part of the object may
occlude another, a number of images have to be
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Rigid Registration, Fig. 1 Real range images used.
From the top left to the bottom right: the former 6,
bunny0, bunny20, cow38, cow42, duck0, and duck 20

were captured using a Minolta Vivid 700 range camera
[14]. The seventh and eighth are the RGB and depth
images of a pitcher captured using a Kinect sensor [11]

captured from different viewpoints to obtain rea-
sonably complete coverage of the object surface;
even then small gaps may remain. Each image
is recorded in a local laser scanning system-
centered coordinate system. If two images cover
the same part of the object surface of interest,
they have overlap, and the shapes represented by
these two images are called overlapping shapes,
in which one shape is usually called the reference
shape and the other is called the data shape.
To combine these images to give an overall
model of the object by fusing the geometrical
and/or optical information in these images, all
the images have to be placed and aligned in a
single global coordinate system. This process is
called registration. The ultimate goal of shape
registration is to estimate the underlying trans-
formation parameters that bring one shape into
the best possible alignment with the other. Once
the underlying transformation is known, it is
straightforward as a by-product to establish cor-
respondences between two overlapping shapes.
Fixing either of these two steps renders the other
easier. However, they are in practice interwoven,
complicating the shape registration process.

Suppose that the object of interest is rigid and
represented using a set of points. Then interpoint
Euclidean distances on the object surface are
invariant with respect to changes in viewpoint
from which the object is imaged. Let a general

point on the object surface belong to the overlap-
ping area between two views. Suppose it is seen
in these two views as points with coordinates
(p,p′). This pair is called a correspondence
between the views. These points are related by
a rigid transformation (Fig. 2), which may be
expressed using a rigid rotation matrix R ∈ R

3

and a translation vector t ∈ R
3: p′ = Rp + t.

As a rigid rotation matrix, R has to satisfy two
conditions: (1) unit determinant: det(R) = 1 and
(2) orthonormality: RT R = I. R and t describe
the relative orientation and position, respectively,
of points seen in the second view (V iew2) in the
coordinate system of the first view (V iew1).

Automatic shape registration is a challenging
problem for various reasons: (1) imaging noise,
the captured data is corrupted by noise due to spa-
tial sampling, variations in reflectance properties,
depth discontinuities, mechanical control errors,
signal quantization, signal detection processes,
etc.; (2) occlusion, points may be absent in certain
views, as one part of the object hides another; (3)
limited field of view, this characteristic of scan-
ning devices means that there is often relatively
little overlap between adjacent views; (4) ambi-
guity between foreground and background, to
facilitate data capture, a background is usually set
up with different reflectance properties from the
foreground to help separate the background data
from the foreground data. However, this is not
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Rigid Registration, Fig. 2
The relationship of a
correspondence (p,p′)
between two views View1
and View2 can be
described using a rigid
rotation matrix R and a
translation vector t:
p′ = Rp+ t

View 1

View 2

Rotation: R
Translation vector: t

Object of interest

p

p’

Appearing area
Field of view

Field of view
Disappearing area

Overlap area

always fully successful, resulting in the former
being contaminated by the latter; and (5) compu-
tational complexity, the amount of captured data
is large, leading to ever more time-consuming
computations as the scanner resolution and field
of view increase.

Problem Statement

Firstly, we outline the rigid registration problem
and briefly discuss the de facto standard method
for this task: iterative closest point (ICP) algo-
rithm [3]. In the next section, several of its
representative variants will then be outlined and
discussed.

Assume that the two shapes to be registered
are represented as two sets of unorganized
points P = {p1,p2, · · · ,pn} and P′ =
{p′1,p′2, · · · ,p′n}, representing two different
parts of the same free-form shape from two
different nearby viewpoints with a certain amount
of overlap in 3D space (Fig. 2). Here, we assume
that the number of points in both point sets is
identical and it is n. Generally, the 3D points
are represented in d dimensional space, i.e.,
pi ,p′i ⊂ R

d . They can be a set of 3D coordinates
(x, y, z) plus other measured features like
color, normal vector, etc. Traditionally, only 3D
coordinates are considered as input. As discussed
in section “Background”, the goal is to estimate
(R, t). To this end, the following matching
objective function M(R, t) is built about the
mean-squared error between the two point clouds
(P,P′):

M(R, t) = E(||RP+ t− P′||2)

= 1

n

n∑

i=1

||Rpi + t− p′i ||2. (1)

Minimization of this objective function leads
to a closed-form solution [22] to (R, t) as follows.
The covariance matrix H between the two point
clouds is given by:

H =
n∑

i=1

(pi − E(P))(p′i − E(P′))T , (2)

where

E(P) = 1

n

n∑

i=1

pi , E(P′) = 1

n

n∑

i=1

p′i , (3)

and the superscript T denotes the transpose of a
vector or a matrix.

Singular value decomposition (SVD) is
employed to decompose the given covariance
matrix H into its orthogonal space, i.e., H =
USV T . Using SVD, the rotation matrix R and
translation vector t can be simply obtained
with a closed-form solution from the following
equations:

R = V

⎛

⎝
1 0 0
0 1 0
0 0 det (V UT )

⎞

⎠UT , (4)

and
t = E(P′)− RE(P) (5)

where det (·) denotes the determinant of a matrix.
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Since the corresponding point pairs (pi ,p′i )
are normally unknown, the objective function
defined in Eq. 1 must be revised to account for
point matching F(P,P′) between (P,P′) as:

M(R, t) = E(||RP+ t− F(P,P′)||2), (6)

where a mapping F from each point pi in point
cloud P to its corresponding point p′f (i) in point
cloud P′ is defined as:

F : pi → P′,

where p′f (i) = argmin
p′j∈P′

||Rpi + t− p′j ||, (7)

which minimizes the Euclidean distance between
the transformed point Rpi + t and any point p′j
in P′. Equations 6 and 7 are recursively updated
until (1) the mapping objective function M(R, t)
in Eq. 1 has reached its local optimal value, or
(2) the maximum number MaxI ter of iterations
has been reached. The tentative correspondences
(pi ,p′f (i)) are finally employed in the covariance
matrix to yield through Eqs. 2, 3, 4, and 5 the
desired rotation matrix R and the translation
vector t.

ICP is a simple yet effective algorithm to align
two overlapping point clouds subject to relatively
small transformations. When this is not the case,
the feature extraction and matching method such
as the signatures of the histograms of orienta-
tions (SHOT) method [20] can be employed
to estimate the underlying transformation for its
initialization. ICP has a particular advantage in
that it is robust to false-positive matches (out-
liers). Its key step is to find the point matches
(pi ,p′f (i)) between (P,P′), whose brute force
search and evaluation has a computational com-
plexity of O(n2) [7]. When n is small, fewer
than thousands, for example, then it is efficient.
Otherwise, effective data structures such as k-D
tree should be used to accelerate the search for the
closest points, whose computational complexity
can then be reduced to O(n log n). Note that
ICP [3] assumes that P represents a subset of
P′ in 3D space. This assumption seldom holds in
practice. Thus, the evaluation of the established

point matches (pi ,p′f (i)) to what extent they are
correct is key for successful registration of the
given partially overlapping shapes. To address
these issues, many variants [2, 4, 13, 15, 19, 21]
have been proposed. Unfortunately, these ICP
variants have caused some confusion or bias in
subsequent publications and comparative studies
in the literature, since it is not always clear
which ICP variants they refer to and whether the
selected ICP variants are applicable to the given
data.

Theory

The conventional ICP algorithm [3] is a de facto
method for the registration of overlapping 3D
shapes; it has attracted intensive attention from
the community, leading many variants [2, 13, 15,
19, 23] to be proposed for the improvement of its
performance. In this section, we select four rep-
resentative ICP variants [2,4,19,23] and describe
their main differences from those outlined in the
preceding section.

Iteratively Re-weighted
Least-Squares-Based ICP (IRLS-ICP)
After the tentative correspondences (pi ,p′f (i))

have been established using Eq. 7, it is criti-
cal to evaluate to what extent they are correct.
Iteratively re-weighted least-squares-based ICP
(IRLS-ICP) is proposed in [2]. Firstly, the error
ei of each tentative correspondence (pi ,p′f (i)) is
calculated as ei = ||p′f (i)−Rpi − t||. Then these
errors are scaled with the parameter τ : Ei =
ei/τ where τ is a function about the standard
deviation σ of the errors of all such tentative
correspondences (pi ,p′f (i)): τ = 7.0589σ where
σ is an optimal estimation of the standard devi-
ation of the errors of these tentative correspon-
dences: σ = 1.9em. If σ < 0.000001emax, then
σ = 0.3emax; if em = 0, then σ = 1 where
em = medianiei and emax = maxi ei . Finally,
the weight wi of each tentative correspondence
(pi ,p′f (i)) is estimated using the Tukey’s func-

tion as: if ei < τ , then wi = (1−E2
i )2; otherwise,

wi = 0.
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Due to the introduction of the weights of
the tentative correspondences (pi ,p′f (i)), Eqs. 2
and 3 have to be updated accordingly as:

H =
n∑

i=1

wi (pi − E(P))(p′f (i) − E(P′))T , (8)

where

E(P) =
∑n

i=1 wipi∑n
i=1 wi

, E(P′) =
∑n

i=1 wip′f (i)∑n
i=1 wi

.

(9)
The condition for the objective function in

Eq. 1 to reach its local optimal value is that the
relative difference of the averages of the errors of
the tentative correspondences that are smaller
than 1.5σ between two successive iterations
must be smaller than a predetermined threshold,
0.00001.

Point-to-Plane ICP (PtP-ICP)
While the IRLS-ICP algorithm outlined above
minimizes the point-to-point distances and usu-
ally converges slowly, it is proposed in [4] to min-
imize the point-to-plane distances between the
established tentative correspondences (pi ,p′f (i))

instead. In this case, Eq. 1 has to be modified as:

M(R, t) = 1

n

n∑

i=1

((Rpi + t− p′f (i))
T n′f (i))

2,

(10)
where n′j is the normal vector at point p′j . This
essentially minimizes the squared distances from
the transformed points Rpi + t to the tangent
planes passing through, or of the correspondence
vectors Rpi + t− p′f (i) along the normal vectors
at, the correspondents p′f (i). This is a nonlinear
function about the Euler rotation angles α, β, and
γ around the x, y, and z axes of the rotation
matrix R:

R =
⎡

⎣
cos(γ ) cos(β) − sin(γ ) cos(α)+ cos(γ ) sin(β) sin(α) sin(γ ) sin(α)+ cos(γ ) sin(β) cos(α)

sin(γ ) cos(β) cos(γ ) cos(α)+ sin(γ ) sin(β) sin(α) − cos(γ ) sin(α)+ sin(γ ) sin(β) cos(α)

− sin(β) cos(β) sin(α) cos(β) cos(α)

⎤

⎦

(11)

and thus is more challenging to optimize and no
closed-form solution exists. Since the transforma-
tion is relatively small, using the approximations
of sin(α) = α, αβ = 0, and cos(α) = 1, this
objective function can then be linearized as:

M(R, t) = 1

n

n∑

i=1

((
pi × n′f (i),n

′
f (i)

)T

x

+ (pi − p′f (i)

)T n′f (i)

)2

(12)

where x = (α, β, γ, tx, ty, tz)
T . This is a linear

least-squares problem in x which can be easily
solved as x = (AT A)AT b where A = {ai}, b =
{bi}, ai = (pi ×n′f (i),n

′
f (i))

T and bi = (p′f (i)−
pi )

T n′f (i).
Suppose the existing transformation is (R0, t0)

and the incremental transformation (R, t) is

estimated above, then the former will be updated
as R0 ← RR0 and t0 ← Rt0 + t, due to the
fact that the relationship between (pi ,p′f (i)) is
represented as: R(R0pi + t0) + t = p′f (i). Thus
the total concatenated transformation is then the
updated (R0, t0).

Different conditions can be defined to judge
whether the objective function in Eq. 1 has
reached its local optimal value. In this case, it
is defined as both the relative differences of the
rotation vector (α, β, γ )T and the translation
vector (tx, ty, tz)

T between two successive
iterations being smaller than a threshold, 0.001.

Symmetric Point-to-Plane ICP (SPtP-ICP)
From Eq. 12, it can be seen that the objective
function is not symmetric with regard to the order
of (pi ,p′f (i)) or their normal vectors (ni ,n′f (i)).
To address this issue, and it is also proposed in
[19], to transform the tentative correspondences
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(pi ,p′f (i)) toward each other to meet in between,
instead of always transforming P toward and to
meet at P′, it is modified as:

M(R, t) = 1

n

n∑

i=1

((
Rpi + t− R−1p′f (i)

)T

(
ni + n′f (i)

))2
. (13)

To further improve the robustness of the
method, it is proposed to center the tentative
correspondences (pi ,p′f (i)) to their barycenters,
respectively, as (p̄i , p̄′f (i)) where p̄i = pi −E(P),

p̄′f (i) = p′f (i) − E(P′), E(P) = 1
n

∑n
i=1 pi ,

and E(P′) = 1
n

∑n
i=1 p

′
f (i). Thus, Eq. 13 can

be rewritten as:

M(R, t) = 1

n

n∑

i=1

((
Rp̄i + t− R−1p̄′f (i)

)T

(
ni + n′f (i)

))2
. (14)

Assume that the rotation matrix is represented
in rotation axis h and rotation angle θ and the lat-
ter is relatively small, then this objective function
can be linearized as:

M(R, t) = 1

n

n∑

i=1

((
p̄i + p̄′f (i)

)× Ni ,Ni

)T
x

+ (p̄i − p̄′f (i)

)T
Ni )

2 (15)

where x = (ax, ay, az, bx, by, bz)
T and Ni =

ni + n′f (i). This is again a linear least-squares
problem in x which can be solved using the
method outlined above.

Then the transformation parameters rotation
axis h, rotation angle θ , and translation
vector t can be derived from x as h =
(ax/ρ, ay/ρ, az/ρ)T , θ = tan−1(ρ), and t =
cos(θ)(bx, by, bz)

T where ρ =
√

a2
x + a2

y + a2
z .

The rotation matrix R is derived as R =
I + sin(θ)H + (1 − cos(θ))H2 where H =⎡

⎣
0 −hz hy

hz 0 −hx

−hy hx 0

⎤

⎦ and I is the 3 by 3 identity

matrix. The final total transformation (R0, t0)
is derived from Eq. 14 as: R0 = RR and
t0 = Rt + E(P′) − R0E(P). It is interesting
to note that while R0 has the same rotation axis
as R, the rotation angle of R0 is twice that of
R. This means that the estimated rotation angle
can be half that of the ground truth, and this is
likely to mitigate the requirement of the initial
transformation.

The termination condition of SPtP-ICP is the
same as that for PtP-ICP above.

Deep Closest Point (DCP) Algorithm
Inspired by the recent success of convolutional
neural networks (CNNs) [6, 17, 24] in solving
highly complicated problems, Wang and
Solomon [23] proposed a learning-based method,
named deep closest point (DCP), that estimates
a rigid transformation between two overlapping
point clouds.

The DCP algorithm is elegant, since (1) it
combines the feature extraction and matching
step with the transformation estimation step in
an end-to-end manner and (2) it embeds the
conventional ICP algorithm in the framework
of deep learning and does show that the deep
learning methods can be developed for the reg-
istration of overlapping rigid shapes. While it has
great potential for the registration of overlapping
shapes, its requirement of training data limits
its applicability. In this case, we just outline
its main ideas and will not go into the details
for re-implementation in this section. While its
architecture is presented in Fig. 3, it consists of
the following three main steps:

(i) Use the dynamic graph CNN [24] to map
input point cloud data from 3D space into
a higher-dimensional feature space, through
extracting and convolving the edges between
the point of interest and its neighbors;

(ii) Form attention models fi and f ′j through
adding necessary changes about the global
context to the extracted local features and
then match these features probabilistically
with weights wij for tentative correspon-
dences (pi ,p′j ); and
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Rigid Registration, Fig. 3 Network architecture of DCP. Ψ is a mapping function ψ(.) : Rn×3 �→ R
n×d and Φ :

R
n×d × R

n×d �→ R
n×d is an attention function

(iii) Estimate the rigid transformation using SVD
over the tentative correspondences (pi ,p′′i )
where p′′i =

∑n
j=1 wijp′j∑n
j=1 wij

.

During the training, the estimated rigid trans-
formation (R,t) is refined with regard to the
ground truth (RG, tG). The loss function in DCP
is defined as:

L = ||RT RG− I||2+||t− tG||2+λ||Ψ ||2, (16)

where the third term denotes Tikhonov regular-
ization of the DCP parameters Ψ for reducing the
complexity of the network.

From the outline above, it can be seen that
DCP follows the assumption of the traditional
ICP algorithm [3] that every point pi in P can find
a correspondent in P′. This is a strict assumption
that limits its applicability in the real world. Even
though the idea is elegant, it has to be developed
further to handle typical imaging conditions and
produce accurate and stable registration results.

Application

Rigid registration of overlapping free form
shapes finds numerous applications in digital
shape reconstruction, map building, robot

navigation, object recognition, and inspection,
to just name a few. These applications can be
classified into three main categories according to
the information sought:

• Merging information from different views for
shape modeling. Rigid registration is applied
in [9] to the complementary data captured
using a terrestrial laser scanner (TLS) and
an unmanned aerial vehicle (UAV) from the
ground and top of a site in different view-
points. Registration allows redundant points in
the overlapping areas to be fused and the com-
plementary points to be integrated, leading to
a full digital 3D model. This has been used to
create a digital shape archive documenting the
Magoksa Temple, located in Gonju, Repub-
lic of Korea. A UAV-assisted laser scanning
system has been described in [10] for the
modeling of an unstructured terrain and envi-
ronments. It includes four steps: (1) a UAV
is used to capture the data from 30 m above
the ground and employs the structure from
motion technique to construct a coarse map
of the environment; (2) the scanning loca-
tions are planned through maximization of the
coverage area and visible voxels with enough
distances between each other; (3) the object
detection-based potential vector field method
is employed for path planning; and finally
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(4) an existing simultaneous localization and
map (SLAM) building method is employed to
build a dense color map of the environment
through registering the scanned point clouds
from the laser scanner at different locations to
the coarse map with appearance information.

• Using underlying transformations for
localization and loop closure. A pose graph
SLAM system is described in [18] for a
quadruped robot to navigate indoor and
outdoor environments over a long distance. To
construct the map, the existing point clouds
are registered with an existing auto-tuned ICP
algorithm to the current point cloud, captured
using a LiDAR scanner without being affected
by existing illumination conditions in the
environment. To facilitate the registration,
the kinematic-forward odometry is employed
to initialize the ICP algorithm. From the
movement of the robot, a factor graph is
built. To correct the drift of the odometry,
the closure of the loops is detected in two
scenarios: (1) small environment, through
the current pose and poses in the factor
graph, and (2) large environment, through a
learning approach to detect, represent, and
match planar segments in different point
clouds. To make sure the reliability of the
robot navigation, all the registrations of the
point clouds are verified so that they have
similar normal vectors. The path for the robot
to return is finally selected using Dijkstra’s
algorithm.

• Making comparisons between an original
view or a CAD model and a new view of a
scene/object for recognition and inspection.
The multi-view depth (MVD) features are
extracted from given point clouds in [8] for
object recognition. To this end, the robust
local reference frames are firstly extracted,
based on which the local depths of the
neighboring points are then projected onto
x − y, y − z, and x − z planes and their
distributions are represented as histograms,
respectively. All these histograms are finally
concatenated as the MVD feature. These
MVD features from a model and a scene
are matched, from which the hypothesis is set

up and verified that the scene was generated
from this model. A complete system has been
described in [12] for scanning and inspecting
industrial parts. An industrial part is firstly
scanned through a laser line scanner with the
original signal denoised. Then the scanned
point cloud and the CAD model point cloud
are registered using the 4-points congruent
sets method [1] whose results are further
refined with the conventional ICP algorithm.
The registration results show that most of
the deviations of the points are within the
range of±50 μm. The method is effective and
efficient.

Open Problems

Automatic registration of overlapping free form
shapes is challenging, and the following issues
remain open:

• Point sampling. When a scanner is used to
image an object of interest, it essentially sam-
ples the object surface. In this case, the points
sampled in different views of the surface are
sampled at different locations. The nature of
this imaging process implies that no exact
point will be sampled from two different view-
points. The variation in location of the sam-
pled points is determined mainly by the res-
olution of the scanner. The higher the resolu-
tion, the smaller the variation. Even though the
sampling resolution can be increased, it has a
limit. Consequently, no matter how good the
scanner is, typically, the correspondences are
never fully correct and must have some errors.

DCP essentially maps each 3D point to a
high 1024-dimensional feature space. To facil-
itate the implementation without requiring too
much storage space and computational time,
a small number of 1024 points have been
sampled as input. Such a small number of
1024 points creates further issues: (1) how to
sample such 1024 points. Normally, a uniform
sampling is performed; and (2) such a small
number of 1024 points can hardly represent
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the geometry, topology, and details of the
object surface of interest, especially when it is
relatively complex such as an aeroplane. This
also explains why the registration results are
usually not as good as expected.

• Computational efficiency. In theory, only three
correct correspondences are needed for the
estimation of the underlying rigid transforma-
tion. In practice, since the correspondences
are usually contaminated by noise, more cor-
respondences must be used instead to obtain
a consensus. On the other hand, the more
measured points there are for each shape to
be registered, the more candidates that must
be considered in the search for correct corre-
spondences. DCP and generally deep learning
algorithms require GPU devices for feasible
computation. These mean that computational
complexity plays an important role in the
quality of registration, especially for dense
models. For instance, DGCNN needs about
310,000 parameters for the feature extraction
of 1024 points! In practice, many point clouds
have more than 500K 3D points, and it is
almost impossible to apply them all directly to
the current DCP. Furthermore, real-time appli-
cations like mobile robotics and autonomous
driving need lightweight networks. Develop-
ing lightweight yet effective deep learning
algorithms seems more appealing.

• Robustness. When the shapes of testing and
training datasets are similar to each other,
ICP variants work well. However, 3D scanned
shapes in the real world usually contain out-
of-distribution samples and are subject to dif-
ferent samplings, noises, and distortions that
significantly influence the captured datasets.
Outliers/clutters are another big problem in
the scanned data. They come from either back-
ground, other parts of the same surface, other
objects, or artifacts from the scanning process.
In practice, the number and distribution of the
outliers usually vary, and they can be clustered
rather than spread uniformly through the data.
Robust algorithms need to take such issues
into account. The unpredictable proportion,
distribution, and location of the outliers render
it difficult to evaluate the relative quality of the

established correspondences. These failures
have two main causes: (1) ICP variants depend
upon some parameters and assumptions, many
of which are data dependent, and (2) since ICP
variants usually consider just 3D coordinates,
no prior knowledge is available about such
factors as distribution of points, colors, normal
vectors, occlusion, appearance and disappear-
ance of points, imaging noise, and the magni-
tude of the transformation. If such knowledge
is available, expected locations of overlapping
and nonoverlapping points can be used to
guide the registration process. To tackle these
problems, the future works must focus on
robustness.

• Performance measurement. Various methods
have been developed in the literature to assess
the performance of registration algorithms:
the root-mean-squared-distance (RMSD)
[15], mean squared error (MSE) [21], or
the average of registration errors of reciprocal
correspondences [13]. However, no single
parameter can always successfully measure
the performance of different algorithms with
different data. All these methods measure
different aspects of the success of registration
algorithms. A further problem arises when the
underlying rigid transformation is modeled as
nonrigid [5], using, e.g., thin-plate splines
(TPS). In such cases, these performance
measures may indicate low errors, but this
does not necessarily mean that the registration
is accurate. This can happen because the TPS
has n+4 degrees of freedom and often overfits
noisy points and outliers in the data.

Experimental Results

In this section, we show some typical results from
three selected ICP variants with an advantage
of easy implementation and no need of train-
ing: iteratively re-weighted least-squares-based
ICP (IRLS-ICP) [2], point-to-plant ICP (PtP-
ICP) [4], and the symmetric point-to-plane ICP
(SPtP-ICP) [19]. The initial transformation is the
pure translational transformation R0 = I and
t0 = E(P′) − E(P). While the IRLS-ICP algo-
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rithm directly handles the outliers (wrong cor-
respondences), both the PtP-ICP and SPtP-ICP
algorithms use the following two rules to reject
wrong correspondences for easy implementation:
(1) ei must be smaller than 2.5 times the standard
deviation of all ei , which is optimally estimated
as 1.4826 times em; and (2) the normal vectors at
the tentative correspondences must point in the
same direction and thus their dot product must
be positive. The maximum number MaxI ter of
iterations was set as 100.

Three pairs of range images, bunny0-20,
cow38-42, and duck0-20 (Fig. 1), captured
using a Minolta Vivid 700 range camera were
selected for the experiments. These images have a
resolution of 200×200. Unless the rotation angle
of the rigid transformation is known from the
naming of the image files, the other parameters
are unknown. The k-D tree was used to speed up
the search of tentative correspondences for the
sake of computational efficiency.

The following parameters are of interest
for validating the performance of different
techniques: the estimated rotation axis ĥ, rotation
angle θ̂ and translation vector t̂ of the underlying
transformation, the number N of reciprocal
correspondences (RCs), the average eμ and
standard deviation eσ of the errors of the RCs,
and the number I t of iterations and time in
seconds used for convergence:

• Rotation axis and angle: Given the estimated

rotation matrix R̂ =
⎡

⎣
r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤

⎦, its rota-

tion angle θ̂ and rotation axis ĥ are estimated,
respectively, as θ̂ = cos−1((r11 + r22 + r33 −
1)/2), ĥ← ĥ/||ĥ||, and ĥ = (r32− r23, r13−
r31, r21−r12)

T / sin θ̂ , where θ̂ cannot be zero.
• Registration errors: We also report the aver-

age eμ and standard deviation eσ of registra-
tion errors of the finally established recipro-
cal correspondences (RCs): eμ = 1

N

∑N
i=1 ei

and eσ =
√

1
N

∑N
i=1(ei − eμ)2, where ei =

||p′f (i)− R̂pi− t̂|| and a RC (pi ,p′f (i)) is such
a correspondence that pi in P finds p′f (i) in P′

as its match and p′f (i) in P′ also finds pi in P
as its match. The determination of RCs has an
advantage of easy implementation as they do
not involve any threshold.

• The number I t of iterations: While the maxi-
mum number MaxI ter of iterations allowed
is set to 100, an ICP variant may converge
early, and thus I t should be smaller than 100.

• Computational time in seconds: All the exper-
iments were carried out on a 64-bits computer
with Intel(R) Core(TM) i7-8750H CPU @
2.20 GHz processors and 16 GB RAM.

The experimental results are presented Table 1
and Fig. 4. In the figure, the yellow color rep-
resents the transformed first data shape P, and
the green color represents the second reference
shape P′.

Figure 4 shows that the bunny0-20 shapes
have all been properly aligned by three ICP
variants with a large amount of interpenetration
between the transformed bunny0 and the ref-
erence bunny20 shapes. However, the PtP-ICP
failed to register the cow38-42 shapes which are
more challenging to register due to two main
factors: relatively large transformations underly-
ing the shapes with a rotation angle as large as
40◦ and the reference cow42 shape that includes
a cluttered background. While the former may
violate the assumption that the underlying trans-
formation is relatively small for the establishment
of tentative correspondences and linearizing the
objective function with a least-squares solution,
the latter makes it more difficult to distinguish the
correct matches from the wrong ones. The bill of
the duck in the transformed duck0 shape has been
clearly displaced by the IRLS-ICP algorithm with
regard to that in the reference duck20 shape.
Both PtP-ICP and SPtP-ICP algorithms aligned
the duck0-20 shapes properly.

These results have been verified by Table 1.
Both the IRLS-ICP and SPtP-ICP algorithms
aligned the cow38-42 shapes properly; however,
the former did not converge within the maximum
number MaxI ter of iterations allowed, resulting
in a slightly higher average registration error
eμ. While the IRLS-ICP algorithm converges
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Rigid Registration, Fig. 4 Registration results of dif-
ferent ICP variants over different overlapping free form
shape pairs. Left column, IRLS-ICP; middle column, PtP-

ICP; right column, SPtP-ICP. Top row, bunny0-20; middle
row, cow38-42; bottom row, duck0-20

Rigid Registration, Table 1 The parameters of interest of different ICP variants for the registration of different pairs
of overlapping free form shapes

Images Method ĥ θ̂ t̂ N eμ eσ It time (s)

Bunny IRLS-ICP (0.02, 0.87, 0.49) 20.04 (199.43, 12.18, −31.82) 5075 0.22 0.10 73 3

0-20 PtP-ICP (0.03, 0.87, 0.49) 20.06 (200.21, 12.17, −32.06) 5037 0.22 0.10 70 3

SPtP-ICP (0.02, 0.87, 0.49) 20.07 (200.14, 12.30, −32.05) 5038 0.22 0.10 15 1

Cow IRLS-ICP (−0.01, 0.70, 0.71) 39.89 (597.89, 162.45, −152.29) 2674 0.75 0.40 100 4

38-42 PtP-ICP (−0.24, −0.93, −0.27) 27.23 (−3190.67, −9117.55, 3528.12) 1 10185 0.00 9 37

SPtP-ICP (−0.02, 0.69, 0.72) 40.16 (593.19, 172.14, −152.32) 2618 0.73 0.40 15 2

Duck IRLS-ICP (0.26, 0.96, −0.01) 8.08 (119.63, −33.40, −7.39) 8931 0.56 0.37 31 11

0-20 PtP-ICP (0.03, 0.89, 0.45) 19.91 (271.16, 31.75, −42.45) 11211 0.40 0.23 100 12

SPtP-ICP (−0.04, 0.89, 0.46) 20.29 (274.34, 34.13, −43.60) 11181 0.40 0.22 88 9
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prematurely and the PtP-ICP algorithms did not
converge for the registration of the duck0-20
shapes, the convergence speed of the former is
slow but that of the latter is faster with the
estimated rotation angle close to the ground truth
of 20◦, and the former increases eμ of the lat-
ter by 40%. These results confirm the obser-
vations made in the community of 3D imag-
ing that the point-to-point-based ICP algorithm
usually converges slowly with local linear con-
vergence, the point-to-plane-based PtP-ICP algo-
rithm converges faster with superlinear conver-
gence, and the SPtP-ICP algorithm is the fastest
with quadratic convergence [19]. The PtP-ICP
algorithm is not as stable as the latest SPtP-
ICP algorithm. This is because while the former
minimizes approximately the local point-to-plane
distances or the local quadratic approximants
to the squared point-to-point distances [16], it
allows one shape to slide on the other at locally
flat patches with zero residual at optimal align-
ment for faster convergence. In contrast, the latter
essentially minimizes the difference between the
second-order (constant curvature) properties of
the local surface patches; it thus allows one shape
to slide on the other as long as their local surface
patches have constant curvatures.
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Synonyms

Robust clustering; Robust regression

Related Concepts
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�Ellipse Fitting
� Interactive Segmentation
�Riemannian Manifold
� Statistical Independence
�Wide Baseline Matching

Definition

The goal of robust algorithms in computer vision
is to extract all the information necessary to
solve a vision task while discarding everything
unrelated. The algorithms can be nonparamet-
ric, returning cluster centers, or parametric
implementing regression estimations. In real-
life applications, a robust procedure is always
required. Deep learning methods, returning
complex objects without a mathematical
description, are not discussed in this entry.

Background

A data point can be an inlier or an outlier. If
for a given task there are several inlier structures,
the outliers are either on another inlier structure
(structured outliers) or completely unstructured.
If more than one type of inlier structure exist in
the data, e.g., regression of planes and spheres,
post-processing is required with all the inliers
found in the estimations processes together.

Nonparametric Estimation
Known also as location estimation. The data
points in the original space are transformed into
clusters in the feature space. An algorithm finds
the cluster centers, associates the points with their
centers, and leaves out the outliers.

The k-nearest neighbor (k-NN) method is not
considered robust since the user has to specify
correctly several constants each time. The kernel
density estimation is used today in computer
vision with the 2D image segmentation being an
example. The mean shift algorithm [1] computes



1100 Robust Estimation Techniques

Robust Estimation Techniques, Fig. 1 2D Image segmentation. Left: Original. 321 × 481 pixels. Right: Mean shift
segmentation. Spatial bandwith 100, very large. Range bandwidth 8

over each small regions of the data the kernel
density in both the xy, spatial space, and the
color L*u*v*, range space. See the Color Spaces
entry. The modes of this five dimensional den-
sity are found iteratively and correspond to the
cluster centers. All the points converging to a
center define a cluster. There are no limitations
in the shape of the clusters. The mean shift
automatically returns the number of clusters. The
spatial and range bandwidths are the only two
parameters and can be loosely defined. In fact,
instead of the given spatial bandwidth, the spatial
limits can be extracted from the spatial borders of
the range bandwidth. The segmentation results do
not change much (Fig. 1). Mean shift can be used
in other nonparametric estimations too.

Regression Estimation
The parametric regression estimation is defined
by nonlinear relations in 2D, between 2D to 2D,
2D to 3D or in 3D. For example, epipolar geome-
try defines pairs of corresponding homogeneous
points between two 2D images satisfying the
fundamental matrix constraint yT

2 Fy1 = 0. See

the Epipolar Geometry entry. A pair is an outlier
when the two points do not corrrespond. The
robust estimation returns the correct 3× 3 matrix
F. See the Fundamental Matrix entry.

A robust estimator rewrites the nonlinear rela-
tion at the input into a higher dimensional linear
relation. The new variables in the linearized space
are x, containing the original variables y and
the pairwise products of the components yjyk .
For fundamental matrix, the linear relation has
eight variables θ . The four original variables and
the four products formed by multiplying the two
coordinates from the first image with the two
coordinates from the second.

The n points of y at the input are assumed
to have the same independent additive noise,
which is true only for the inliers. A linear relation
satisfied by n1 < n inliers is

xT
i θ − α ≈ 0 i = 1, . . . , n1 (1)

where the m-dimensional vector θ̂ and the scalar
intercept α̂ have to be estimated. Which xi-s are
the inliers in (1) is selected by the n1 samples
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returned by the estimation. Most robust algo-
rithms don’t take into account the heteroscedas-
ticity of the covariance matrix of xi , depending
of the original point yi .

There are n − n1 outlier points in (1).
If structured outliers exist, the n1 points are
removed, and a new inlier structure estimation
starts. The procedure ends when no significant
inlier structure remains. Most estimators also
take into account the constraint θ̂

T
θ̂ = 1, which

reduces the ambiguity of θ̂ to an orthonormal
gauge matrix [2].

The nonlinearities at the input disappear when
it is rewritten into the linear relation. If additional
constraints related to y exist, it should be trans-
formed together with the main problem.

The user must supply the threshold between
the detected inlier structures and the outliers. If
the inlier noise is significant, more than four/five
inlier structures are difficult to recover.

The majority of the robust estimators are unbi-
ased, converging toward the theoretical values of
the estimates. Only a few problems, like ellipse
estimation, are biased [3]. See the Ellipse Fitting
entry.

When the relation (1) is extended to ΘT x−α,
the m × k matrix Θ̂ and the k-dimensional
intercept α̂ have to be estimated. The constraint

Θ̂
T
Θ̂ = Ik×k defines a k-dimensional

Grassmann manifold in m-dimensions. See the
Riemannian Manifold entry. After Θ̂ and α̂ were
obtained, if the estimation is applied again in
the Grassmann manifold, it can improve the
estimates [4].

Important RegressionMethods

Robust regression appeared about the same time
around 1960 both in statistics and computer
vision independently.

Hough Transform
The Hough transform was proposed in 1959 [5]
and patented in 1962 for the detection of linear
trajectories of subatomic particles in a bubble
chamber. The book of Rosenfeld [6] introduced

it to computer vision. In the Hough transform, a
2D data point draws a sinusoid with angles from
0◦ to 180◦ on the abscissa and the corresponding
signed distances on the ordinate. Points belong-
ing to a line in the xy space intersect in a sin-
gle location in this polar representation. Several
lines could be detected. The amount of the noise
and the type of the noise distribution strongly
influence the dimensions of the bin quantizing
the transformed space. The Hough transform was
extended to planes, circles, ellipses, and analyt-
ical and nonanalytical shapes, but does not gen-
eralize beyond curve detection. Today the Hough
transform is only rarely used.

M-Estimator
The first robust estimator in statistics, the M-
estimator, was proposed in 1964 by Huber [7].
The user has to provide, before the estimation
s, the scale of the inlier noise. The M-estimator
generally recovers only a single inlier structure
and is not considered a robust estimator for vision
problems. Often is part of a more complex proce-
dure.

In computer vision the M-estimator has the
loss function

0 ≤ ρ(u) ≤ 1 |u| ≤ 1 ρ(u) = 1 |u| > 1
(2)

where ρ(0) = 0, is even symmetric ρ(−u) =
ρ(u) and nondecreasing with increasing |u|.
The derivative ψ(u) being redescending, the
objection function

∑
ρ(u) is nonconvex, and the

M-estimator converges only to a local optimum.
Examples of loss functions can be found in [7]
and [8]. The scale s being given, u = e/s where
e is the residual. The inliers are |e| ≤ s, while the
outliers are |e| > s.

To solve the simplest M-estimation, an orig-
inal variable y[k] = z is moved to the left side
z = xT θ − α. The residual for zi is

ei = zi − [xT
i θ̂ − α̂] i = 1, . . . , n (3)

and the M-estimator minimizes
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argmin
α,θ

1

n

n∑

i=1

ρ
(ei

s

)
(4)

where the m-dimensional vector θ̂ and the scalar
intercept α̂ have to be estimated. The number of
inliers n1 < n emerges from the estimation and
m! n1.

Using all the n points, the nonrobust total
least squares (TLS) initialize the estimate. The
M-estimator is an iteratively reweighted least
squares (IRLS). In each iteration, the sum of the
gradients of ρ(ei/s) in θ and α is equal to zero.
The relation was multiplied and divides with the
residual ei .

n∑

i=1

(
xi

1

)[
zi − (xT

i θ̂ − α̂)
] 1

ei

dρ(ei/s)

de
= 0.

(5)
The nonnegative weights are computed from
ψ(u)/e = ρ′(u)/e as

w(ei) = wii = 1

ei

ψ(ei/s) ≥ 0 i = 1, . . . , n

(6)
and the n × n diagonal weight matrix W can be
defined. A data point is either an inlier with |ei | ≤
s and wii > 0 (wii = 0 for |ei | = s) or an outlier
with |ej | > s and wjj = 0. The outliers do not
participate in the estimation.
The n× (m+ 1) matrix A and the column vector
z are

A =
⎛

⎝
xT

1 1
. .

xT
n 1

⎞

⎠ z =
⎛

⎝
z1

.

zn

⎞

⎠ (7)

and the matrices A and W have full rank. Each
iteration l = 1, 2, . . . returns

(
θ̂

(l)

α̂
(l)

)
= [A	W[l−1]A]−1A	W[l−1]z. (8)

The procedure converges after a few iterations at
l = t . To reduce the ambiguity, θ̂ has to satisfy

θ̂
T
θ̂ = 1. From θ̂

(t)
/||θ̂ (t)|| and α̂

(t)
/||θ̂ (t)||, the

original estimates can be computed.
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Robust Estimation Techniques, Fig. 2 The M-
estimator may not recover the correct 2D estimate even
with the correct s

The correct scale estimate often is difficult to
find beforehand. If the estimation is performed
over a sequence, the scale may change signifi-
cantly. If the initial estimate with TLS was com-
pletely wrong, even with the correct s, to recover
the true estimate may not be possible (Fig. 2).

The least median of squares (LMedS), intro-
duced in statistics in 1984 by Rousseeuw [9],
were used in computer vision at the end of 1980s
[10]. The LMedS recovered a single inlier struc-
ture which contained more than 50 percent of the
points as inliers. A survey of M-estimators and
LMedS, including their limitations, can be found
in [8]. The special issue of Computer Vision and
Image Understanding [11] gave an overview of
the robust procedures at the 1990s.

RANSAC
Today almost everybody uses the RANdom
SAmple Consensus (RANSAC) estimator. The
RANSAC was introduced by Fischler and Bolles
in 1980 and in 1981 was published [12]. See [13,
Sec. 4.7] for a more recent description.

The estimation in RANSAC is based on
hypotheses drawn with elemental subsets. An
elemental subset is the smallest number of data
points required to estimate all the unknowns,
which for nonlinear inputs is from (1). The
3 × 3 matrix in 2D homography needs four-
point correspondences since each point pair



Robust Estimation Techniques 1103

R

corresponds to two unknowns. See the Wide
Baseline Matching entry. The fundamental matrix
needs eight points because the 3 × 3 matrix
F introduces eight unknowns in the linearized
equation. See the Eight-Point Algorithm entry.

The user have to provide beforehand the scale
s of the inlier noise. RANSAC cannot achieve
the global optimum being based on elemental
subsets.

RANSAC has a binary loss function ρzo(u)

ρzo(u) = 0 |u| ≤ 1 ρzo(u) = 1 |u| > 1.

(9)
The residual ei = xT

i θ − α is zero when xi is on
the estimate. Inliers have |ei | ≤ s, and outliers
have |ej | > s.

The algorithm minimizes the number of out-
liers in N elemental subset trials and returns the
RANSAC estimates θ̂ and α̂

argmin
α,θ

n∑

i=1

ρzo

(
xT
i θ − α

s

)
in N trials.

(10)
The value of N can be up to a few thousands, gen-
erally larger if the elemental subset needs more
points. When the estimate does not change sig-
nificantly for larger N , the given N is enough.

• Repeat N times:
– Choose an elemental subset by random

sampling without replacement.
– Find the linear model candidates θ, α.
– Assume these estimates are valid for all n

points.
– Compute the distance for each point from

the linear model.
– Distances less than the scale s, called the

consensus set, are inliers.
• The candidate having the largest consensus

set, smallest set of outliers, returns the
RANSAC estimates θ̂ and α̂.

• Perform total least squares (TLS) for the
inlier points. Normalize the solution with

θ̂
T

tls θ̂ t ls=1. Compute the original estimates.

Figure 3 shows an elemental subset processing.
If RANSAC is successful, a good inlier/outlier

separation is obtained. While the scale s is always
present, now often is no longer explicitly given in
the papers.

The RANSAC can fail if there are multiple
inlier structures, if an image is resized but the
scale did not change, and if in a sequence of
images the scale changed significantly. Even if
the correct scale is given, for asymmetric outliers
RANSAC may not work (Fig. 4).

Robust methods are applied to all nonparamet-
ric and parametric models, both in 2D and 3D.
Regression estimations mainly use RANSAC.
The other methods are more complicated and
may not work for a given application. At least in
the industry, the emphasis is on the final product
and not on how to get there. Tuned to a specific
task, if RANSAC does the job, it is enough.

Beyond RANSAC
The literature for robust estimation is very large,
and many estimators, most related to RANSAC,
were proposed. They try to improve RANSAC
by the scale coming from the data, the sampling
is guided, the model verification is hierarchical,
etc. Even today papers appear about binomial
constraints, maximum consensus, graph-cut
RANSAC, latent RANSAC, and parametric
robustness by deep learning. Each of them, using
a small set of other estimators, tries to prove that
the described new estimator is better. However,
no breakthrough happened in the last 40 years.
A few algorithms are presented below which
achieved some success. Most of the references
are in [14].

In progressive sample consensus (PROSAC),
Chum and Matas used similarity scores to
build recurrence relations for sampling the
data nonuniformly. The correspondences could
led to degenerate configurations. Torr and
Zisserman maximized the likelihood through
maximum likelihood estimation sample consen-
sus (MLESAC) [11]. It was extended by Tordoff
and Murray to guided sampling. In locally
optimized RANSAC (Lo-RANSAC), Chum et
al. were based on an inner RANSAC having the
currently best subset of inliers, updated if a larger
number of inliers were detected. In preemptive
RANSAC, Nister scored a fixed number of the
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Robust Estimation Techniques, Fig. 3 Left: The two
red points define an elemental subset for 2D line fitting
with RANSAC. The distances of the points from the

model are in green. Right: Only a few points are inliers
for the given scale s
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Robust Estimation Techniques, Fig. 4 2D line fitting with the correct s in RANSAC. Left: The symmetrical outliers
are filtered out. Right: For asymmetric outliers RANSAC failed

hypotheses for the i-s point and retained only
the bests for the (i + 1)-s point. The process
continued till only one hypothesis remained.
Frahm and Pollefeys used RANSAC for quasi-
degenerate data (QDEGSAC) by first detecting
the degeneracy.

In Generalized Principal Component Analysis
(GPCA), Vidal et al. [15] estimated the inlier
subspaces by analyzing the derivatives of polyno-
mials derived from the data. The subspaces could
had different dimensions, but in the presence of
unstructured outliers, the estimator failed. In Pro-
pose Expand and Re-estimate Labels (PEARL),
Isack and Boykov [16] started with RANSAC
and applied energy minimization with alternative

steps of expansion for inlier classification and
reestimation of the errors. Several other labora-
tories did similar PEARL-type procedures.

All the above cited methods recovered para-
metric inlier structures, but the inlier estimations
were not completely independent. The scale was
unique and generally not estimated from the data.
The estimations stop when it is assumed that no
significant inlier structure still exists, which is not
always true.

MISRE
The Multiple Input Structures with Robust Esti-
mator (MISRE) [17] eliminates the problems
described in the previous paragraph. The MISRE
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Robust Estimation Techniques, Fig. 5 Left: A 2D image from the toy sequence. Right: The segmented 3D planes
and 3D spheres with MISRE. See text

independently processes each structure without
labelling as inliers or outliers, and only the classi-
fication puts the significant inlier structures first.
At the end of the estimation, a straightforward
inlier/outlier threshold is the only role the user
has.

The Mahalanobis distances measure how far
is from α the projection zi = x	i θ , normalized
by the standard deviation of zi without σ . The n

distances in an elemental subset trial are sorted
in increasing order. After N trials, the working
sequence is the sequence which has the minimum
sum of Mahalanobis distances for the first 5% of
the data. If significant inlier structures still exist,
with high probability the working sequence will
contain one of them.

The scale estimate is computed from many
independent expansions. Each expansion has seg-
ments of Mahalanobis distances starting at 5%
of the data until no expansion is possible. Every
expansion ends when the average of the pro-
cessed points is larger than twice the number of
points in the next segment. The largest scale in
the region of interest is the scale estimate. Mean
shift [1] refines the structure, and the structures
density is computed.

The classification is based on decreasing
density. The significant inlier structures at the
top because the outliers have large scales and
small densities. The structures being estimated

independently, if the amount of outliers increase
only the weakest inlier structure, may disappear
at the beginning.

In Fig. 5a 2D image is shown from the 36
images in the toy sequence. The professional
ReMake software program returned 10854 points
in 3D. For spheres estimation, the first two inlier
structures were spheres, and about 7300 points
are deleted. For planes estimation, the first three
inlier structures were planes, and several thou-
sand points are deleted. The post-processing real-
located some of the points between the planes
and the spheres (Fig. 5b). The results could be
improved with stronger preprocessing, the dark
plane in the background practically don’t appear,
and post-processing.

Open Problems

The performance of a machine is ultimately
judged by the human observer performing the
same task. The human visual system is much
more sophisticated than any machine today
meaning that robust estimation can grow a
lot. The MISRE introduced above applied to
images with several thousand pixels in each
dimension can be further improved. Increasing
the importance of the preprocessing, the number
of outliers can be reduced without significantly
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reducing the number of inliers. The estimation
starts from a “better input,” and more inlier
structures can be recovered. However, this also
means that all the low-level algorithms have to be
reexamined.
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Definition

In imaging, saturation is a type of distortion
where the recorded image is limited to some max-
imum value, interfering with the measurement of
bright regions of the scene.

Background

The role of a sensor element is to measure
incident irradiance and record that quantity as
an image intensity value. However, physical
constraints limit the maximum irradiance that
can be measured for a given camera setting. In
the absence of noise, the mapping from irradiance
to image intensity is fully described by the

radiometric response function, a monotonically
increasing function whose range is restricted by
the maximum irradiance. Pixels whose intensity
corresponds to this maximum are known as
saturated.

Saturated pixels contain less information
about the scene than other pixels. While non-
saturated pixels can be related to the incident
irradiance by applying the inverse of the
radiometric response function, saturated pixels
provide only a lower bound on irradiance.
Therefore, estimating the irradiance of saturated
pixels is similar to other image “hallucination”
tasks such as inpainting [2].

Since many computer vision algorithms
assume a linear relationship between sensor
irradiance and the measured image intensity, it is
important to identify saturated pixels and handle
them appropriately. In practice, saturated pixels
are often treated as missing values or otherwise
ignored.

Theory

In the idealized noise-free case, the image inten-
sity M of a pixel can be described as mapping the
incident irradiance I according to the radiometric
response function f(·), limited by the maximum
irradiance Imax,

M = f (min (I, Imax)) . (1)

© Springer Nature Switzerland AG 2021
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For an irradiance of Imax or higher, the image
intensity will saturate at its maximum value of
Mmax = f(Imax). Since saturated pixels do not
have unique corresponding irradiance values,
they provide no direct information about incident
irradiance beyond imposing a lower bound of
Imax.

Identifying saturated pixels is straightforward
in practice, since many saturated pixels have the
nominal maximum pixel value of Mmax. Sensor
noise and other on-camera processing introduce
the minor complication that saturated pixels may
have values slightly less than this maximum.
This effect is easily addressed, however, by using
a lower, more conservative threshold to detect
saturation [6, 8].

Saturation is caused by underlying physical
characteristics of the sensor which limit the high-
est irradiance that can be measured for the given
settings of the camera. In a digital sensor, where
incident photoelectrons are recorded as electric
charge, each sensor element can store a maximum
amount of charge known as the full well capacity.
Together with the exposure time and amplifier
gain, the full well capacity imposes a limit on
the maximum irradiance that can be measured
before saturation. Film-based sensors are subject
to saturation as well, but the mechanism limiting
their photosensitivity is chemical [9].

While modern digital sensors are designed
to dissipate excess charge above the full well
capacity, for very bright parts of the scene, excess
charge from a saturated pixel can spill over to
adjacent regions. This artifact, known as bloom-
ing, can lead to saturation in pixels that would not
otherwise be saturated.

Application

Saturation can pose problems for computer
vision algorithms that assume linearity unless
saturated pixels are identified and handled
appropriately. For example, methods operating
in the Fourier domain require special attention to
saturation [1, 18], because the global nature of
the transform means that even isolated saturated

pixels can corrupt the whole image. The two
main approaches to dealing with saturated
pixels are explicitly treating them as missing
values and interpolating them from surrounding
pixels.

The effect of saturation should also be taken
into account when estimating the parameters of
sensor noise from an image [5, 11]. Pixels near
saturation will demonstrate reduced variance in
general, since the maximum value imposed by
saturation will make their samples closer on aver-
age.

From the standpoint of photography, cam-
era settings should be chosen to avoid satura-
tion in regions of interest, otherwise important
detail or color information may be lost. Pho-
tographers describe saturated images as being
overexposed or as having clipped or blown high-
lights. Although ill-posed, a problem of great
practical interest to photographers is recovering
detail in saturated regions of the scene or at least
hallucinating plausible detail.

Under mild overexposure, only partial color
information may be lost due to saturation. Par-
tial saturation results from the different spectral
sensitivities of each color channel, leading one
channel to saturate before the others. In this
setting, the main approach for restoring detail is
to represent the correlation between color chan-
nels, using either global [19] or spatially varying
[7, 12] color distribution models, then using this
correlation to transfer information from the non-
saturated color channels.

With greater overexposure, pixels become sat-
urated in all color channels. The most common
approach for restoring detail in this setting is to
blindly extrapolate smooth peaks within saturated
regions [7, 15, 17]. In fact, saturated regions can
sometimes provide quantitative evidence about
the underlying irradiance. Provided that over-
exposure is moderate and the scene is suffi-
ciently smooth, the band-limitation of irradiance
[1] or the resulting noise distribution [4] can
be exploited to recover detail in fully saturated
regions. For more severe overexposure or larger
saturated regions, none of these methods are
generally sufficient. In such cases, user guidance



Saturation (Imaging) 1109

S

may be enlisted to help transfer plausible high-
frequency detail from other sources [17].

In general, choosing the exposure setting for a
photo requires balancing competing goals. While
overexposure causes loss of detail in the high-
lights due to saturation, underexposure leads to
higher relative noise. The relationship between
noise and saturation defines the dynamic range of
the sensor and determines the range of irradiances
that can be captured acceptably in a single shot.
When restricted to a single shot, one should
generally choose the exposure setting so that the
brightest region of interest falls just below the
saturation point [14].

For scenes with large dynamic range, such
considerations have motivated high dynamic
range imaging methods based on capturing
multiple photos with different exposure times [3],
each of which saturates at a different irradiance.
There is also an ongoing effort to develop new
kinds of high dynamic range sensors offering
higher effective saturation levels [10]. A broad
range of new designs have been proposed,
including sensors that record the precise length
of exposure time needed to reach saturation and
sensors with a logarithm-like response. Each of
these designs presents unique tradeoffs, including
different noise characteristics over their operating
range [10]. An orthogonal imaging approach is to
use spatial multiplexing to incorporate multiple
types of sensor elements, each having different
sensitivities [13, 18] or sizes [16].
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Synonyms

Automatic scale selection; Scale-invariant image
features and image descriptors

Related Concepts

�Corner Detection
�Edge Detection

Definition

The notion of scale selection refers to methods for
estimating characteristic scales in image data and
for automatically determining locally appropriate
scales in a scale-space representation, so as to
adapt subsequent processing to the local image
structure and compute scale-invariant image fea-
tures and image descriptors.

An essential aspect of the approach is that it
allows for a bottom-up determination of inherent
scales of features and objects without first recog-
nizing them or delimiting, alternatively segment-
ing, them from their surroundings.

Scale selection methods have also been devel-
oped from other viewpoints of performing noise
suppression and exploring top-down information.

Background

The concept of scale is essential when comput-
ing features and descriptors from image data.
Real-world objects may contain different types of
structures at different scales and may therefore
appear in different ways depending on the scale
of observation. When observing objects by a

camera or an eye, there is an additional scale
problem due to perspective effects, implying that
distant objects will appear smaller than nearby
objects. A vision system intended to operate
autonomously on image data acquired from a
complex environment must therefore be able to
handle and be robust to such scale variations.

For a vision system that observes an unknown
scene, there is usually no way to a priori know
what scales are appropriate for extracting the rel-
evant information. Hence, a multi-scale represen-
tation of the image data is essential, whereby the
original signal is embedded into a one-parameter
family of signals using scale as the parameter.
Given an N -dimensional signal f : RN → R and
with the notation x = (x1, . . . , xN) ∈ RN , the
scale-space representation [1–3] of f is defined
by the convolution operation

L(x; t) =
∫

ξ∈RN
f (x − ξ) g(ξ ; t) dξ, (1)

where g : RN × R+ → R denotes the Gaussian
kernel

g(x; t) = 1

(2πt)N/2 e−|x|2/2t (2)

and the variance t = σ 2 of this kernel is referred
to as the scale parameter. Based on this repre-
sentation, Gaussian derivatives, or scale-space
derivatives, at any scale t can then be computed
by differentiating the scale-space representation
or equivalently by convolving the original image
with Gaussian derivative kernels

Lxα (·; t) = ∂xαL(·; t) = (∂xαg(·; t)) ∗ f (·)
(3)

(with multi-index notation α = (α1, . . . , αN) for
∂xα = ∂

x
α1
1

. . . ∂
x

αN
N

). Such Gaussian derivatives

can be used as a basis for expressing a large num-
ber of visual modules including feature detection,
feature classification, image matching, motion,
shape cues, and image-based recognition [4].
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Theory

The notion of scale selection complements
traditional scale-space theory by providing
explicit mechanisms for generating hypotheses
about interesting scales.

Scale Selection from γ -Normalized
Derivatives
A particularly useful methodology for computing
estimates of characteristic scales is by detecting
local extrema over scales of differential expres-
sions in terms of γ -normalized derivatives [5, 6]
defined by

∂ξ = tγ /2 ∂x. (4)

A general and very useful property of this con-
struction is that if two signals f and f ′ are related
by a scaling transformation

f ′(x′) = f (x) with x′ = s x, (5)

and if there is a local extremum over scales at
(x0; t0) in a differential expression Dγ−normL

defined as a homogeneous polynomial of Gaus-
sian derivatives computed from the scale-space
representation L of the original signal f , then
there will be a corresponding local extremum
over scales at (x′0; t ′0) = (s x0; s2t0) in the
corresponding differential expression Dγ−normL′
computed from the scale-space representation L′
of the rescaled signal f ′ [5, Sect. 4.1].

This scaling result holds for all homogeneous
polynomial differential expressions, including
rotationally invariant differential invariants,
and implies that local extrema over scales of
γ -normalized derivatives are preserved under
scaling transformations. Thereby, such local
extrema over scales provide a theoretically well-
founded way to automatically adapt the scale
levels to local scale variations.

Specifically, scale-normalized scale-space
derivatives of order |α| = α1 + · · · + αN

at corresponding points will then be related
according to

L′
ξ ′α (x

′; t ′) = s|α|(γ−1)Lξα (x; t), (6)

which means that γ = 1 implies perfect scale
invariance in the sense that the γ -normalized
derivatives at corresponding points will be equal.
If γ �= 1, the difference in magnitude can on
the other hand be easily compensated for using
the scale values of corresponding scale-adaptive
image features.

These results imply that detection of image
features and computation of image descriptors
at scale levels equal to or proportional to the
scales at which there are local extrema over
scales constitutes a very general methodology
for obtaining scale-invariant image features and
scale-invariant image descriptors.

Indeed, it can also be axiomatically shown
that the notion of γ -normalized derivatives
arises by necessity, given the condition that
local extrema over scales of scale-normalized
derivatives should be preserved under scaling
transformations [5, Appendix A.1].

Relation to Frequency Estimation
There is a conceptual similarity between this
principle and local frequency estimation from
peaks in the Fourier transform. For a one-
dimensional sine wave

f (x) = sin(ωx), (7)

it can be shown [5, Sect. 3] that there will be
a peak in the magnitude of the mth order γ -
normalized derivative at a scale

σmax =
√

γm

2π
λ (8)

proportional to the wavelength λ = 2π/|ω| of
the signal. Two conceptual differences compared
to Fourier-based frequency estimation, however,
are that (i) no window size is needed for comput-
ing the Fourier transform and (ii) this approach
applies also to nonlinear differential expressions.

Relations to Image Statistics
It can be shown [5, Sect. 9.1] that the notion
of γ -normalized derivatives corresponds to nor-
malizing the mth order N -dimensional Gaussian
derivatives to constant Lp-norms over scale with
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p = 1

1+ m
N

(1− γ ),
(9)

where the perfectly scale-invariant case γ = 1
corresponds to L1-normalization for all orders m.

It can also be shown [5, Sect. 9.2] that the γ -
normalized derivatives are neutral with respect to
self-similar power spectra of the form

Sf (ω) = |ω|−N−2m(1−γ ). (10)

Natural images often show a qualitative behavior
similar to this [7].

Scale-Space Signatures
Figure 1 illustrates the basic idea, by showing the
so-called scale-space signatures accumulated in
the two-dimensional case (In the specific 2-D
case, the simplifying notation (x, y) ∈ R2 is
used instead of x = (x1, x2) ∈ R2, implying
that Lx1x1 = Lxx , Lx1x2 = Lxy , Lx2x2 =
Lyy , etc.) for two generally applicable differential
entities for scale selection: the scale-normalized
Laplacian [3, Sect. 13.3] [5, Sect. 5] (with γ = 1)

∇2Lnorm = t (Lxx + Lyy) (11)

and the scale-normalized determinant of the Hes-
sian [3, 5] (also with γ = 1)

detHnormL = t2 (LxxLyy − L2
xy). (12)

In the scene in Fig. 1, there are strong perspec-
tive scaling effects due to differences in depth
between similar objects in the world. These scale
variations are reflected in the scale-space signa-
tures in the respect that the local extrema over
scales are assumed at finer scales for distant
objects and at coarser scales for nearby objects.
If one computes the ratio between the scale val-
ues in terms of a scale parameter σ = √

t of
dimension [length], then the ratio between the
scale values is in very good agreement with the
ratio between the sizes of the objects in the image

domain as measured by a ruler. This property
illustrates one of the scale-invariant properties of
the scale selection mechanism.

General Framework for Defining
Scale-Invariant Image Descriptors
By computing an image descriptor at a scale
proportional to the detection scale t̂ of a scale-
invariant image feature or by normalizing an
image patch by a corresponding scaling factor
σ̂ = √t̂ , provides two very general scale normal-
ization mechanisms that can be used for defin-
ing much wider classes of scale-invariant image
descriptors [5, 9] (see the “Application” section
below for two specific examples regarding image-
based recognition). The scale-invariant properties
of these descriptors originate from the general
scale-invariant property of local extrema over
scales of differential expressions in terms of γ -
normalized derivatives.

Figure 2 illustrates how scale normalization
can be performed in this way by rescaling the
local image patches around the two details in
Fig. 1 using the scale values σ̂ = √

t̂ at which
the Laplacian ∇2

normL and the determinant of
the Hessian, respectively, assumed their strongest
local extrema over scales. In this sense, scale
normalization from the detection scales t̂ consti-
tutes a general mechanism for establishing a com-
mon scale-invariant reference frame with regard
to scaling transformations [8].

It should be noted, however, that multiple
extrema over scales may in general be found in
the scale-space signature, as can be seen in Figs. 1
and 2, where two significant local extrema over
scales are obtained in each scale-space signature,
with the coarser-scale response corresponding to
the lamp as a whole and the finer-scale response
corresponding to the light bulb inside. Because
of this inherent multi-scale nature of real-world
objects, a vision system intended to interpret
images from a natural environment must in gen-
eral be able to handle multiple scale hypotheses
over scales.
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Scale Selection, Fig. 1 Scale-space signatures accumu-
lated for image structures of different size in the image
domain. The upper part of the illustration shows windows
around two details from the image at the bottom, with cor-
responding scale-space signatures of the scale-normalized
Laplacian ∇2

normL and the scale-normalized determinant
of the Hessian detHnormL accumulated at the central
point in each window. As can be seen from the graphs,

the local extrema over scales are assumed at coarser scales
for the larger-size object than for the smaller-size object.
Specifically, the ratio between the scale values at which
the local extrema are assumed provides an estimate of the
relative amount of scaling, when measured in dimension
[length] (In the graphs, the horizontal axis represents
effective scale [3, pp 180–182] approximated by τ ≈
log2(1+ t)). (Reprinted from [8] with permission)
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Scale Selection, Fig. 2 In this illustration, local win-
dows around two of the lamps in Fig. 1 (shown in the left
column) have been rescaled by scaling factors σ̂ = √

t̂

obtained from the dominant response over scales of the
Laplacian ∇2

normL and the determinant of the Hessian

detHnormL (shown in the middle column) to compute
a scale-normalized window (shown in theright column)
around each detail. In this way, scale selection can be used
for defining a scale-normalized reference frame for subse-
quent computation of scale-invariant image descriptors.
(Reprinted from [8] with permission)
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Scale-Space Extrema
The notion of scale selection from scale-
normalized derivatives can be complemented
by spatial selection by detecting points in scale
space that assume local extrema with respect
to both space x and scale t . Such points are
referred to as scale-space extrema. Specifically,
detection of scale-space extrema of rotationally
invariant differential invariants provides a
general, effective, and robust methodology
for detecting interest points with built-in
scale selection [3, 5, 9]. Thus, given a scale-
normalized differential expression Dγ−normL,
one simultaneously obtains spatial positions x̂

and scale estimates t̂ according to

(x̂; t̂ ) = argmaxminlocal
(x; t)

(Dγ−normL)(x; t).

(13)
Figure 3 shows the result of detecting

the 50 strongest scale-space extrema of the
scale-normalized Laplacian ∇2

normL and the
scale-normalized determinant of the Hessian
detHnormL from an image that contains two
objects of different sizes. Each scale-space

extremum has been illustrated by a circle with
the radius proportional to the detection scale
σ̂ = √

t̂ . In Fig. 4, each feature has been
visualized by a sphere in the 3-D scale-space
volume of the 2-D image, with the radius of the
sphere increasing with the detection scale. As can
be seen from this illustration, the notion of scale-
space extrema can effectively reveal interest
points and characteristic scales of those (see
the “Application” section below for more details
about scale-invariant interest point detectors).
Specifically, the differences in the radii of the
circles in the 2-D illustration and in the heights
over the image plane in the 3-D graphics reveal
the scale differences between corresponding
image features from the two objects.

The differential operators ∇2
normL and

detHnormL in general both produce strong
responses at the centers of blob-like structures
that are either brighter or darker than their
surrounding, provided that the these differential
entities are computed at scale levels that roughly
match the size of the corresponding image
structures. For this reason, they constitute very
useful differential entities for blob detection.

Original image Laplacian ∇2
normL detHessian detHnormL

Scale Selection, Fig. 3 2-D illustration of the 50
strongest scale-space extrema of the Laplacian ∇2

normL

and the determinant of the Hessian detHnormL computed
from an image with two similar objects of different physi-
cal sizes. Each feature is illustrated by a circle centered at

the position (x̂, ŷ) of the scale-space extremum and with
the radius proportional to the detection scale σ̂ = √t̂ . Red
circles represent scale-space maxima, while blue circles
represent scale-space minima
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Scale Selection, Fig. 4 3-D illustration of the 50
strongest scale-space extrema of the Laplacian ∇2

normL

and the determinant of the Hessian detHnormL computed
from the image in Fig. 4. Here, each feature is illustrated

by a red sphere centered at the position (x̂0, ŷ0; t̂0) of the
scale-space extremum and with the radius increasing with
the detection scale t̂0. The blue spheres have been inserted
to simplify visual interpretation

Discrete Implementation
Detection of scale-space extrema from an N -
dimensional discrete image can be performed
by nearest-neighbor comparisons in the N +
1-dimensional scale-space volume. For a 2-D

image, this implies that nearest-neighbor compar-
isons are performed by local comparisons with
the 26 neighbors in a 3×3×3 neighborhood over
space and scale [3] [5, footnote 16] [10]. Scale
estimates and position estimates of higher accu-
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racy can then be obtained by fitting a parabola
to the data around any scale-space extremum
[10, 11].

Discrete analogues of γ -normalized deriva-
tives can be obtained either by (i) variance-based
normalization which implies that the discrete
derivative approximations δxαL are multiplied by
an appropriate power of the scale parameter

Lξα (·; t) = L
ξ

α1
1 ...ξ

αN
N

(·; t)

= (tγ /2)|α| (δxαL)(·; t) (14)

or by using the notion of (ii) lp-normalization
[5, Appendix A.4.2]

Lξα (·; t) = L
ξ

α1
1 ...ξ

αN
N

(·; t) = Cα (δxαL)(·; t),

(15)
where the discrete normalization constants Cα

are determined such that the lp-norms of the
scale-normalized discrete derivative approxima-
tion kernels δxαT [3, Chap. 5] are to be equal to
the Lp-norms of the corresponding γ -normalized
Gaussian derivative kernels ∂xαg

Cα

⎛
⎝ ∑

n∈RN

|(δxαT )(n; t)|p
⎞
⎠

1/p

=

(tγ /2)|α|
(∫

x∈RN
|(∂xαg)(x; t)|p dx

)1/p

.

(16)

Experiments in [11] show that the notion of
lp-normalization gives more accurate scale esti-
mates in situations where discretization effects
become important.

A particularly convenient way of implement-
ing scale-space smoothing in this context is by
convolution with the discrete analogue of the
Gaussian kernel [3, pp 84–87]

T (n; t) = e−t In(t), (17)

which implies that the semigroup property of the
Gaussian scale space holds exactly also for the
discrete scale-space kernels T (·; t1)∗T (·; t2) =
T (·; t1+ t2) and the cascade smoothing property

L(·; t2) = T (·; t2 − t1) ∗ L(·; t1), (18)

for t2 ≥ t1 ≥ 0 implies that one can perform
a set of incremental convolutions with kernels of
smaller support instead of computing each scale
level from the original signal f independently.

The notion of scale selection from scale-
normalized derivatives can also be transferred
to a pyramid representation to allow for real-time
implementation on standard processors [10–12].

Alternative Approaches to Scale Selection
A number of other mechanisms for scale selec-
tion have also been developed based on ideas
of:

– Detecting peaks over scales in weighted
entropy measures [13] or Lyapunov
functionals [14],

– Minimizing normalized error measures over
scales in order to compute more accurate
localization estimates for coarser-scale corner
features [5, Sect. 7.2] or for coarse-to-fine
matching of highly noisy image data [15],

– Determining minimum reliable scales for fea-
ture detection according to an a priori deter-
mined noise suppression model [16],

– Determining optimal stopping times in nonlin-
ear diffusion-based image restoration methods
using similarity measurements relative to the
original data [17],

– Performing image segmentation from the
scales at which a supervised classifier delivers
class labels with the highest posterior [18,19],

– Considering subspaces generated by local
image descriptors computed over multiple
scales to improve the performance of stereo
matching [20, 21].

Relations Between the Different
Approaches to Scale Selection
The different approaches to scale selection may
have quite different properties, depending on
the types of data they are applied to. For noise-
free data, an adaptive noise suppression scheme
optimized for suppressing high-frequency noise
can be expected to not smooth the data at all,
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thus implying the selection of a zero scale,
whereas scale selection based on local extrema
over scales will always select a scale level
reflecting a characteristic length in the image
data.

Provided that the characteristic lengths of the
relevant image features are greater than the typi-
cal characteristic lengths in the noise, scale selec-
tion based on scale-normalized derivatives will
therefore lead to scale-invariant image features.
Smoothing approaches that are optimized for
suppressing superimposed high-frequency noise
will on the other hand lead to an amount of
smoothing that is primarily determined by the
noise level and therefore not necessarily cor-
responding to scale-invariant image descriptors.
In this respect, these two types of scale deter-
mination approaches can lead to fundamentally
different results.

If the task is to detect fine-scale details with
amplitude and/or characteristic scales compara-
ble to the noise, it does, however, not seem
unlikely that the two types of approaches could
possibly benefit from each other.

Application

Interest Point Detectors with Built-In Scale
Selection
Below, four different interest point detectors with
automatic scale selection will be presented. A
more general set of scale-invariant interest point
detectors defined according to a similar method-
ology can be found in [9] with an in-depth theo-
retical analysis of their scale selection properties
in [22].

Blob Detection
Based on the notion of scale-space extrema,
straightforward methods for blob detection
can be obtained by detecting scale-space
extrema of either (i) the scale-normalized
Laplacian ∇2

normL = t (Lxx + Lyy) or (ii) the
scale-normalized determinant of the Hessian
detHnormL = t2 (LxxLyy − L2

xy) [3, 5].
Specifically, using the Laplacian operator one
can detect:

– Bright blobs from negative scale-space min-
ima of ∇2

normL

– Dark blobs from positive scale-space maxima
of ∇2

normL

Using the determinant of the Hessian, one can on
the other hand detect:

– Bright blobs from positive scale-space max-
ima of detHnormL that satisfy ∇2L < 0

– Dark blobs from positive scale-space maxima
of detHnormL that satisfy ∇2L > 0

– Saddle-like image features from negative
scale-space minima of detHnormL

These two blob detection approaches do both
satisfy the basic scale selection property that if
the scale-adaptive blob detector is applied to a
two-dimensional Gaussian blob with scale value
t0, i.e., f (x, y) = g(x, y; t0), then the selected
scale t̂ will be equal to the scale of the blob in the
input data, i.e., t̂ = t0.

In comparison, the image features obtained
from the determinant of the Hessian blob detector
do often have better repeatability properties under
affine image deformations than Laplacian image
features [5, 9, 22].

Figure 5 shows the result of applying these
interest point detectors to a gray-level image.
Please note how the variations in the detection
scales of the blob responses reflect the perspec-
tive scaling effects in the scene.

Corner Detection
A straightforward method for scale-invariant cor-
ner detection can be obtained by detecting posi-
tive scale-space maxima and negative scale-space
minima of the scale-normalized rescaled level
curve curvature measure

κ̃(L) = t2γ |∇L|2 κ(L)

= t2γ
(
L2

xLyy + L2
yLxx − 2LxLyLxy

)
,

(19)

where κ(L) denotes the curvature of the level
curves of the Gaussian smoothed image at any
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Scale Selection, Fig. 5
Scale-invariant interest
points obtained from the
1,000 strongest scale-space
extrema of the Laplacian
∇2

normL and the
determinant of the Hessian
detHnormL with the size of
each circle reflecting the
detection scale of the
corresponding feature. Red
circles represent local
maxima of the operator
response, while blue circles
indicate local minima

scale and γ = 7/8 turns out to be a good choice
[5, Sect. 6] [22]; see Fig. 6a for an illustration.

The Harris-Laplace operator [23] is struc-
turally different in the respect that it uses different
entities for spatial selection (the Harris measure)
and scale selection (∇2

normL); see Fig. 6b.

Edge Detection
With regard to edge detection, the evolution prop-
erties over scales of the scale-normalized gradi-

ent magnitude

|∇L|norm = tγ /2
√

L2
x + L2

y (20)

can be shown to reveal local characteristics of the
type of edge [6, Sect. 4]. Specifically, by choosing
γ = 1/2, a local maximum over scales will be
assumed at a scale corresponding to the diffuse-
ness of a one-dimensional diffuse step edge
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Scale Selection, Fig. 6
Scale-invariant interest
points obtained from the
1,000 strongest scale-space
extrema of the rescaled
level curve curvature κ̃(L)

and the Harris-Laplace
operator. The size of each
circle reflects the detection
scale of the corresponding
feature. For the rescaled
level curve curvature
operator κ̃(L), the color of
the circles show the sign of
the curvature; red circles
represent a local maxima
of the operator response,
while blue circles indicate
local minima


(x; t0) =
∫ x

u=−∞
g(u; t0) du (21)

and may then provide cues to, e.g., focus blur,
shadow edges, or diffuse edges.

Ridge and Valley Detection
Let ep and eq denote the eigendirections of the
Hessian matrix HL such that the mixed second-
order derivative in this coordinate frame is zero

Lpq = 0 and denote the eigenvalues of the Hes-
sian matrix by Lpp and Lqq . These eigenvalues
are also referred to as principal curvatures, and
these directions are assumed to be ordered such
that Lpp < Lqq .

Then, a differential geometric definition of the
ridges in the image at any scale can be expressed
as the set of points that satisfy [6, Sect. 5.2]

Lp = 0, Lpp ≤ 0, |Lpp| ≥ |Lqq |. (22)
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Similarly, the valleys at any scale can be defined
from [4]

Lq = 0, Lqq ≥ 0, |Lqq | ≥ |Lpp|. (23)

With Rγ−norm denoting a scale-normalized mea-
sure of ridge strength (or valley strength) defined
from the principal curvatures Lpp and Lqq , one
can also express ridge and valley detection meth-
ods with automatic scale selection by detecting
scale-space ridges using the definition

Lp = 0, Lpp ≤ 0, ∂t (Rγ−norm) = 0,

∂tt (Rγ−norm) ≤ 0 (24)

and scale-space valleys according to

Lq = 0, Lqq ≥ 0, ∂t (Rγ−norm) = 0,

∂tt (Rγ−norm) ≤ 0. (25)

Specifically, it can be shown that for nat-
ural measures of ridge or valley strength, the
choice γ = 3/4 implies that the selected scale
will reflect the width of a Gaussian ridge (or
valley) [6]. For generalizations to 3-D images,
see [24–26].

Feature Tracking
By adapting the scales for feature detection by
a local scale selection mechanism, the resulting
image features will be robust to scale changes,
which means that they can be matched over
substantial size variations [27]. Indeed, the vari-
ations over time in the characteristic scale esti-
mates obtained during feature tracking can, if
appropriately implemented, be robust enough for
computing estimates of time to collision [11,34].

Image-Based Matching and Recognition
The SIFT descriptor [10] comprises a bottom-
up keypoint detection stage with scale-space
extrema detection in a differences-of-Gaussians
(DoG) pyramid. The scale-invariant properties of
the SIFT descriptor can be explained as follows.

From the way that the DoG operator is imple-
mented in the pyramid in [10], it follows that

the normalization will be similar to the scale-
normalized Laplacian. Using the fact that the
scale-space representation satisfies the diffusion
equation, it follows that the Laplacian operator
can be approximated from the difference between
two levels in the scale-space representation:

1

2
∇2L(x, y; t) = ∂tL(x, y; t)

≈ L(x, y; t +�t)− L(x, y; t)

�t

= DOG(x, y; t,�t)

�t
, (26)

i.e., from the difference of two Gaussian
smoothed images.

With the scale levels distributed such that the
ratio between successive scale levels is k when
measured in terms of σ = √

t , (i.e., σi+1 = k σi

and ti+1 = k2 ti which implies that �ti = (k2 −
1) ti), it follows that [9]

DOG(x, y; t) = L(x, y; k2t)− L(x, y; t)

≈ (k2 − 1) t (∂tL(x, y; t))

= (k2 − 1) t
1

2
∇2L(x, y; t)

= (k2 − 1)

2
t ∇2L(x, y; t)

= (k2 − 1)

2
∇2

normL(x, y; t).

(27)

Hence, with self-similar sampling of the scale
levels, the pyramid-implemented DoG interest
point operator can be interpreted as an approx-
imation of the scale-adapted Laplacian operator
in Eq. (11).

In the SURF descriptor [28], local feature
detection is performed by detecting local extrema
over space and scale of an approximation of
the determinant of the Hessian operator in terms
of Haar wavelets, with the filters normalized
to constant l1- or Frobenius norm over scales.
According to Eq. (9), the γ -normalized deriva-
tive concept corresponds to normalization of the
Gaussian derivative operators to unit Lp-norm
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over scales. Furthermore, it was shown in [11]
that normalizing the filter responses to constant
lp-norm over scales gives better accuracy in a
practical implementation than normalization of
the discrete filters by multiplication with the scale
parameter raised to a power of mγ/2, where
m denotes the order of differentiation. Hence,
the initial feature detection step in the SURF
descriptor can be seen as an approximation of
the scale-normalized determinant of the Hessian
operator in Eq. (12).

The scale-invariant property of the actual
image descriptors in the SIFT and SURF
descriptors does in turn follow from the scale-
invariant properties of the initial feature detection
step, in line with the general framework for
computing scale-invariant image descriptors
from scale estimates obtained from local extrema
over scales of scale-normalized differential
expressions, as described in the “Theory” section
above.

In these ways, the notion of scale selection
constitutes a general mechanism for computing
scale-invariant image descriptors for image-
based matching and recognition.

Extensions of this (spatial) scale selection
methodology to temporal and spatio-temporal
scale selection are given in [29–32]. Extensions
of these (sparse) scale selection methodologies
to dense scale selection, where local estimates
of spatial and/or temporal scales are obtained at
every point and/or temporal moment in space,
time, or space-time, are presented in [33].
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Definition

Scene classification is the process of identifying
the semantic category of the place (e.g., a living
room, a coast, a rainforest) where a given photo-
graph is taken.

Background

Scene classification has been one of the hallmark
tasks of computer vision, allowing the definition
of context for object recognition. This task is
challenging due to the large variation in the
spatial structure and the occurrence of different
objects across scene categories. The key step
toward achieving human-level scene recognition
capability is designing the categorical represen-
tations that are able to summarize the properties
of various scene categories as well as distinguish
among the image samples from different scene
categories. Some image samples of Places dataset
[1, 2] are shown in Fig. 1. We can see there is a
large variation in their spatial properties such as
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Scene Classification, Fig. 1 Scene image examples from the Places dataset [2]

openness and naturalness, as well as the different
objects occurred.

Theory

The early cognition studies have demonstrated
that human perception systems integrate enough
information about the meaning of a scene in less
than 200 ms [3]. This suggested the recogni-
tion of real-world scenes may be initiated from
the encoding of the global spatial configuration,
ignoring the most detailed information about the
objects in a scene [4]. Inspired by the human
scene recognition studies, the field of scene clas-
sification in computer vision follows a succession
of designing scene representations by extracting
the holistic properties, rather than focusing on the
underlying objects.

The commonly used models for scene clas-
sification consider the scene image as whole
for feature extraction and bypass the segmen-
tation or detection of the objects. For example,
one of the earliest scene models is the gist of
the scene [5]. It defines various global scene
properties such as naturalness, openness, and
depth to describe the given photos. Such seman-
tic properties create a low-dimensional feature
for classification. Meanwhile, the bag-of-words
models, which are commonly used in text clas-

sification, have been extended by modeling the
image regions as the visual words for classify-
ing scenes [6, 7]. Furthermore, to better capture
the geometric correspondence in scene repre-
sentation, a scene model improves the orderless
bag-of-features image representation with spatial
pyramid match kernels [8]. Most of these tradi-
tional scene representations only work for image
datasets with a few thousand samples.

Recently with the rise of million-sized scene
dataset Places [1, 2], the data-driven deep learn-
ing models such as deep convolutional neural
networks (CNNs) [9, 10] have greatly improved
the state of the art for the large-scale scene clas-
sification. After training on 1.8 million images
from 365 scene categories from the Places, the
Places365-ResNet is able to achieve more than
85% top-5 accuracy on its validation set, outper-
forming the traditional scene classification mod-
els with more than 10% margin. The deep fea-
tures from the CNN trained on Places also show
a great generalization ability to improve other
scene-centric tasks such as scene attribute predic-
tion [2] and scene parsing [11].

The CNN models trained on large-scale image
datasets benefit from the end-to-end training
for learning the representation and classifier
jointly. However, given the millions of model
parameters and the outstanding performance
on scene classification for the Places CNNs, it
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was unclear what has been learned inside the
deep representation for classifying scenes. The
study of comparing the deep representations
trained on ImageNet [9] and Places [1] shows
that object detection emerges inside a CNN
trained to recognize scenes, even more than
when trained with ImageNet [12]. The result was
surprising because many internal convolutional
filters emerge as object detectors, in a supervised
setting tuned to scene classification rather than
object classification. It reveals that the CNN
can support the recognition at several levels of
abstraction (e.g., edges, texture, objects, and
scenes).

In the real world, objects never occur in
isolation. Thus recognizing scenes provides
the contextual information to be exploited by
the object recognition and detection [13, 14].
A better integration of scene classification and
object recognition will lead to a new generation
of computer vision systems. Furthermore, there
are other scene understanding tasks closely
relevant to scene classification, such as scene
layout estimation [15], scene attribute prediction
[16], scene parsing [11], as well as the recent
topic on embodied AI where an agent or a
robot actively explores the real environment
or inside a realistic virtual environment to
understand the surroundings [17]. Automated
scene classification systems have the potential to
make a significant impact to those relevant topics.

Open Problems

Because of the recent progress in deep neural
network models and the emergence of large-scale
image dataset such as Places [2], the accuracy
of scene classification has been greatly improved
close to the human-level recognition. However,
the performance is measured on the predefined
scene categories of a dataset. Given the wide vari-
ation of scenes we encounter in the real world,
designing scene recognition systems that are able
to generalize to other unseen scenes and envi-
ronments in an open-ended setting is still very
challenging. Meanwhile, though deep neural net-

works have greatly advanced the state of the art
for visual recognition, there still lacks enough
understanding on what has been learned in deep
models. It leads to the broader and more gen-
eral interest toward developing interpretable and
human understandable machine learning models.
Finally it remains an open problem on making the
scene recognition and object recognition mutu-
ally benefit each other.

Experimental Results

The progress of scene recognition is closely tied
with the development of scene recognition bench-
marks. The first benchmark for scene recogni-
tion was the Scene15 database [8], extended
from the 8 scene dataset in [5]. This dataset
contains only 15 scene categories with a few
hundred images per class, and current classifiers
are saturated, reaching near human performance
with more than 95% accuracy. The MIT Indoor67
database [18] with 67 indoor categories and the
SUN (Scene UNderstanding, with 397 categories
and 130,519 images) database [19] provided a
larger coverage of place categories, but still ran
short in data samples for training deep neural
networks. Recent Places dataset [2] with 10
million images from 434 scene categories has
facilitated the development of deep neural net-
works for scene classification. The deep neural
network models trained on Places already achieve
close to human-level scene recognition accuracy.
Besides, the scene classification web demo [20]
powered by the pretrained Places scene recog-
nition models allows users to take a photo and
upload it for scene recognition. Noticeably from
the 9,925 anonymous feedback collected from
the web demo, the top-5 recognition accuracy of
the recognition web demo in the wild reaches
about 72%, which is impressive given that peo-
ple uploaded all kinds of photos from real life
and not necessarily scenes-like photos. Screen-
shots of the scene classification demo are shown
in Fig. 2. Improving the scene classification in
such an open-ended setting is one of the future
works.
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Scene Classification, Fig. 2 Scene classification demo by Places model [20]. Both the scene categories and the scene
attributes are accurately predicted for the two uploaded photos
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Synonyms

Object segmentation; Scene/image parsing

Definition

Semantic image segmentation describes the
task of partitioning an image into regions that
delineate meaningful objects and labeling those
regions with an object category label. Some
example semantic segmentations are given in
Fig. 1. It can be seen as a generalization of
figure-ground segmentation [1] where one
segments a particular object, say a horse, from
the background.

Background

Images typically contain multiple objects, includ-
ing things such as people, cars, and cows and stuff
such as grass, sky, and water. The imaging pro-
cess composites the appearances of these objects,
leaving (at most) an intensity edge between one
object and the next. Semantic image segmenta-
tion aims to recover the image regions corre-
sponding directly to objects, as well as labeling
those regions with the relevant object category.

The task is usually approached as supervised
or semi-supervised machine learning, using a set
of training images that are manually segmented
and labeled. The learning algorithm then dis-
covers relevant image features that help discrim-
inate regions belonging to different categories
in unseen test images. Other cues such as lay-
out and context further help resolve ambiguities;

http://places2.csail.mit.edu/demo.html
http://places2.csail.mit.edu/demo.html
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Semantic Image Segmentation: Traditional Approach, Fig. 1 Top row: three input images. Bottom row: the
corresponding semantic segmentations where colors represent object categories

for example, a pixel that neighbors a car pixel
is likely to have the same label, and a region
containing a cow is likely to be above a region
containing grass.

Semantic image segmentation has been of
interest since at least 1989 [2], but only fairly
recently [3, 4] have processor speeds started to
allow the rich models for high accuracy across
many object categories.

Theory

Problem Formulations In essence, the semantic
segmentation task can be treated as a pixel-
labeling problem. The different methods pro-
posed for solving this problem can be categorized
based on the relationships they encode between
different pixels (see Fig. 2). Some methods for
semantic segmentation solve the pixel-labeling
problem by classifying each pixel independently
[5, 6]. Another class of methods works by group-
ing pixels into segments (or super-pixels) and
assigning a single label to each group [7]. Super-
pixels are computed from the image in a bottom-
up fashion [8–10] and can aid computational effi-
ciency but may lead to a final incorrect labeling.

Many semantic segmentation algorithms
are based on the pairwise Markov Random
Field (MRF) [11] or Conditional Random
Field (CRF) models [12, 13] which enforce

relationships between pairs of neighboring
pixels [5]. They encourage adjacent pixels
that are similar in appearance to take the same
semantic label, and lead to segmentation results
with smooth boundaries. A related notion of
layout consistency was explored in [14].

Some methods go beyond pairwise interac-
tions between pixels and enforce higher-order
relationships between groups of (or even all)
pixels in the image. For instance, they encourage
groups of pixels to take the same semantic
label [15], or make sure that some semantic
label is taken by at least one pixel in the
image [16]. These models also allow the use
of top-down object detection results to prime
the segmentation [6, 17]. In related work, data-
driven Markov Chain Monte Carlo (DDMCMC)
was used to parse images with a rich generative
model [18]. A nonparametric approach to
semantic segmentation was proposed in [19],
where labels were transferred between nearest-
neighbor images matched using SIFT flow
features.

Features Used for Pixel/Super-Pixel
Classification
There are many informative image cues that can
be used for semantic segmentation, including
intensity, color, texture, context, motion, and 3D
structure. Dense interest point descriptors can
be used, for example, [20–22], or light-weight
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Semantic Image Segmentation: Traditional Approach, Fig. 2 Different approaches for semantic image segmenta-
tion

region integrals of textons [5,6], or even features
based on histogram of gradients [16]. Motion-
derived 3D structure was used in [23] to segment
images from a video sequence. Range images
or depth cameras have been used for semantic
segmentation in [24].

Incorporating Context
Context can be incorporated in several ways:
(i) appearance context [5] captures the notion
that a sheep might typically stand on something
green, (ii) semantic context [6, 25–27] captures
the notion that a sheep might typically stand on
grass, and (iii) auto-context [6, 28] describes a
recursive classification procedure whereby the
classification uses contextual features from a pre-
vious stage of classification, capturing the notion
that this pixel might belong to sheep because
a nearby pixel was classified as sheep at the
previous stage.

Datasets
To a large extent, the quality of the semantic
segmentation algorithm is related to the quality
of the training dataset. Most techniques require
fully pixel-wise labeled images which are
expensive to obtain. Other approaches reduce
this requirement in various ways, including
multiple over-segmentations [29], co-segmenting
several images at once [30], incorporating image
or region labels [6, 17, 31], and exploiting
probabilistic aspect models [32].

Early datasets for semantic segmentation
include Corel and Sowerby [33] and the MSRC
dataset [5]. Recently, more challenging dataset
have been proposed that dramatically increase

the variability in the images and thus bring us
much closer to solving semantic segmentation
as a real-world problem. LabelMe [34] used
a web interface to capture a large number of
image labels. The Pascal VOC Segmentation
Challenge [35] runs yearly and deliberately
tries to remove contextual clues in the data
to foster the best object detection algorithms.
The SUN 09 dataset [36] goes to the other
extreme of labeling many objects per image to
include as much context as possible. LabelMe,
Pascal VOC, and SUN 09 for the most part only
provide labels for things and not stuff, often
leaving the background a single heterogenous
category.

Application

Accurately segmenting and recognizing what
those objects are opens up many potential
applications. Not only does it tell us what things
are in an image but also where they are and
how they look. This information can be used
in, for example, image search, image editing,
augmented reality, robot navigation, and medical
image analysis.
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Semidefinite Programming

Chunhua Shen and Anton van den Hengel
School of Computer Science, The University of
Adelaide, Adelaide, SA, Australia

Synonyms

Convex minimization; Semidefinite optimization

Definition

Semidefinite programming is a subtopic of con-
vex optimization. Convex optimization refers to
minimization of a convex function subject to a
set of convex constraints. Semidefinite program-
ming involves minimization of a linear objective
function over the intersection of linear constraints
and the cone of positive semidefinite matrices.
Clearly, semidefinite programming is a special
case of convex optimization.

Background

Many computer vision problems can be formu-
lated as convex optimization problems. The main
advantage of convex optimization is that if a local
minimum exists, then it is also a global minimum.
In other words, the convexity guarantees to attain
the global optimum if it exists.

In a semidefinite programming problem,
one minimizes a linear function subject to
the constraint that an affine combination of
symmetric matrices is positive semidefinite.
Semidefinite programming unifies a few
standard problems such as linear programming,
quadratic programming, and second-order cone
programming. Semidefinite programming has
many applications in computer vision.

Theory

Mathematically, semidefinite programming
solves the following problem:

min
X
〈C,X〉 , s.t. 〈Ak,X〉

= bk, (k = 1, . . . , m) ,X � 0.

(1)

Here, the optimization variable X ∈ rD × D is a
symmetric and positive semidefinite matrix. The
operator 〈A,B〉 =∑

ij Aij Bij calculates the inner
product of two matrices (or vectors). The last
constraint X� 0 means X is positive semidefinite.
Such a constraint is nonlinear and nonsmooth

http://www.pascal-network.org/challenges/VOC/
http://www.pascal-network.org/challenges/VOC/
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but convex. The following statements about a
semidefinite matrix are equivalent: (1) X � 0;
(2) All eigenvalues of X are nonnegative; and (3)
∀u ∈ rD, u� Xu ≥ 0.

We can easily write the dual problem of (Eq. 1)
by finding the saddle point of its Lagrangian:

max
y
〈b, y〉 , s.t.

m∑
i=1

ykAk � C. (2)

Here, y ∈ rm is the variable to optimize. The
notation A � B means B − A � 0. Weak duality
and strong duality hold for the primal problem
(Eq. 1) and dual problem (Eq. 2) under mild con-
ditions. In particular, strong duality means that
optimal values of the primal and dual problems
are the same. Strong duality follows from Slater’s
condition for constraint qualification [1], which
is stated as follows. If (Eq. 1) and (Eq. 2) both
are feasible and there is a strictly interior point
for either (Eq. 1) or (Eq. 2), then optimal primal
and dual solutions exist and the corresponding
optimal values are the same.

Semidefinite programming can be viewed
as an extension of linear programming where
the element-wise inequalities between vectors
become linear matrix inequalities (LMIs). An
LMI takes the form of

∑m
k=0ykAk ≥ 0, with

y = [y0 . . . ym] being a vector and matrices Ak

being symmetric matrices. An LMI enforces a
convex constraint on the vector y. Indeed, the
interior-point methods for linear programming
can be generalized to semidefinite programming.
In fact, as shown by Nesterov and Nemirovsky
[2], in principle interior-point methods for linear
programming can be generalized to all convex
optimization problems. Significantly, interior-
point methods enable semidefinite programs
to be solved very efficiently. It is theoretically
guaranteed that the effort needed to solve a
semidefinite program to a prescribed accuracy
grows no faster than a polynomial of the problem
size. Off-the-shelf solvers include CSDP [3],
SDPT3 [4], and SeDuMi [5]. One can also
use optimization modeling languages such as
CVX [6] and YALMIP [7] to greatly simplify the
problem modeling process.

Although interior-point methods are
polynomial-time algorithms, they do not scale
well. If the number of constraints m is of
order O(D2) with the semidefinite matrix being
D × D, at each iteration, the computational time
is of order O(D6). This high computational
complexity makes interior-point methods
impractical for large-scale problems. Recently,
first-order augmented Lagrangian approaches
have been proposed for solving large problems.
In particular, as shown in [8], the alternating
direction method is applied to solve the dual
augmented Lagrangian problem of the standard
semidefinite problem. This method is much more
scalable than the conventional interior-point
methods.

Application

Semidefinite programming has attracted exten-
sive research interests in computer vision and
machine learning due to its many applications in
these fields.

Max-cut approximation and image segmenta-
tion. It is well known that semidefinite program-
ming can be used to approximately solve some
difficult combinatorial optimization problems. It
is a useful tool for approximating NP-hard prob-
lems. Such an example is the Max-cut problem,
which can be described as follows. Given a graph
G = (V, E), output a partition of the vertices V
so as to maximize the number of edges crossing
from one side to the other. This problem can be
expressed as an integer quadratic problem:

max
u

∑
(i,j)∈E

1−uiuj

2
, s.t.ui∈ {−1, 1} ,∀i=1, . . . , n.

(3)

This problem is NP-hard due to the discrete
constraints. To obtain a semidefinite relaxation,
we lift each scalar variable ui to a higher dimen-
sion ui ∈ rn and ‖u‖2 = 1. We introduce another
variable substitution Uij = u�i uj to bring (Eq. 3)
into a semidefinite program:
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max
U

∑
(i,j)∈E

1− Uij

2
, s.t.Uii = 1,

∀i = 1, . . . , n;U � 0.

(4)

The constraint U � 0 is due to the fact
Uij = ui� uj. The optimal value of (Eq. 4) is
an upper bound of the original problem (Eq. 3).
It is easy to see that (Eq. 4) is a semidefinite
problem. Hence, the global solution of (Eq. 4)
is guaranteed. Approximate solutions to the
original problem can be computed by rounding
the vector solution of (Eq. 4). The solutions
of the SDP formulation suggest to cut nodes
i and j if Uij = ui� uj is close to −1. The
Goemans-Williamson randomized rounding
technique is to choose a uniformly random
hyperplane through the origin and use it to
cut vectors into separate parts. See [9] for
details. Similar ideas can be applied to solve
combinatorial problems of minimizing quadratic
functionals in binary decision variables subject to
linear constraints, which has many applications
in image segmentation, perceptual grouping, and
image restoration. See, for example, [10].

Maximum variance unfolding. Another
application is embedding high-dimensional data
(such as image data) into an underlying low-
dimensional space by maximizing the variance
while maintaining the data’s local neighborhood.
Here, the input data are assumed to be sampled
from a much lower dimensional manifold that
is embedded inside of a higher dimensional
vector space. The primary idea of maximum
variance unfolding is to create a mapping that
preserves local neighborhoods at every point of
the underlying manifold.

Let ui (i= 1, . . . n) be the original data points
in the high-dimensional manifold and vi be the
unfolded low-dimensional data points. For (i, j)
∈ E are neighbors, the local isometry constraints
are

∥∥vi − vj

∥∥2
2 =

∥∥ui − uj

∥∥2
2 = dij ,∀ (i, j) ∈ E.

(5)

If we constrain the embedded data to center at
the origin, we have

∑
i

vi = 0. (6)

The variance of the embedded data can be
written as 1

n

∑
iv
�
i vi . So the optimization prob-

lem becomes

max
v

∑
i

v�i vi , s.t.
∑

i

vi = 0,
∥∥vi − vj

∥∥2
2

= dij ,∀ (i, j) ∈ E.

(7)

This problem is a non-convex quadratic pro-
gram. To formulate it into a semidefinite problem,
we introduce a new variable Vij = v�i vj , the
same as in the first example. We can then relax
(Eq. 7) into

max
V

〈V, I〉 , s.t.
∑
ij

Vij = 0, Vii + Vjj − 2Vij

= dij ,∀ (i, j) ∈ E;V � 0.

(8)

Here, I is an identity matrix. Problem (Eq. 8)
is a relaxation of (Eq. 8). The optimal value of
(Eq. 7) is an upper bound of the one of (Eq. 7)
because the feasibility set of (Eq. 8) is a superset
of (Eq. 7)’s feasibility set. The advantage of
this relaxation is that now (Eq. 8) can be
efficiently solved using off-the-shelf semidefinite
programming solvers. The embedded points v
can be obtained via Cholesky decomposition of
the matrix V. Weinberger and Saul [11] applied
maximum variance unfolding to detect low-
dimensional structure in high-dimensional data
sets of images.
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Synonyms

Multisensor data fusion

Related Concepts

�Data Fusion
� Information Fusion

Definition

Sensor fusion refers to systems, techniques, the-
ory, and tools that exploit the synergy in the
information acquired from multiple sensors to
enhance system performance.

Background

Conventional systems used single sensors for
monitoring phenomenon of interest and make
inferences regarding them. Due to significant
advances in sensing, networking, and comput-
ing technologies, multiple sensors are increas-
ingly being used. This provides improved sys-
tem performance, resulting in a better under-
standing of the phenomenon being monitored. In
addition, distributed sensing improves robustness
and extends spatial and temporal coverage while
resulting in shorter response time [1–3]. In order
to optimally fuse information acquired from dif-
ferent distributed sensing architectures, advances
in theory and algorithm design are required.

Theory

Data from multiple sensors can be combined
at three possible levels. In data-level fusion,
raw sensor data is combined. This requires
that data acquired from different sensors
be commensurate and the data needs to be
transported to a fusion center for centralized
processing. This approach has the potential of
achieving the best possible performance at the
expense of large communication requirements.
For noncommensurate data, either feature-level
fusion or decision-level fusion is employed. In
feature-level fusion, features are extracted from
the data which are then fused. In decision-level
fusion, higher-level decisions such as detections
and estimates are obtained based on data from
individual sensors. These decisions are then
fused at the fusion center. In feature-level fusion
and decision-level fusion, data transmission
requirements are lower, but the quality of
fused result degrades due to data compression

http://cvxr.com/
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involved in the feature extraction and decision-
making processes. Several topologies for sensor
fusion such as parallel, serial, tree, and network
topologies can be used. Choice of topology is
often application dependent, but parallel topology
is used quite commonly.

Sensor fusion is employed to solve a number
of generic problems that results in improved
situational awareness for the phenomenon under
observation. Object and event detection using
multisensor data is carried out based on dis-
tributed detection theory and decision fusion [4–
6]. For conditionally independent observations, a
likelihood ratio-based quantizer is employed at
the sensors, and the fusion rule is based on a
weighted sum of incoming quantized data. For
parameter estimation or tracking problems, quan-
tized data are fused at the fusion center [7, 8].
For tracking, a number of distributed filtering and
track fusion algorithms are employed [9, 10].
When tracking multiple objects, data association
is a major challenge [11, 12]. When sensor data
is image and video data, data-level image fusion
techniques are employed. One popular approach
is to transform image data into another domain,
e.g., wavelet domain, perform fusion in the trans-
formed domain, and then transform the fused data
back to the image domain [13]. Sensor fusion
approaches are often problem and sensing modal-
ity dependent. New approaches are constantly
being devised, such as distributed inference based
on probabilistic graphical models [14] or through
consensus and gossip algorithms [15, 16]. More
recently, there has been a lot of interest in the
fusion of heterogeneous multimodal data and the
use of deep learning methods for information
fusion [17].

Application

There are many military and nonmilitary appli-
cations of sensor fusion. In military applica-
tions, sensor fusion is employed for the detec-
tion, location, tracking, and identification of mil-
itary entities such as aircrafts, ships, submarines,
ground units, emitters, and weapons. Different
sensing modalities such as radar, sonar, electro-

optic imagers, infrared imagers, and electronic
intelligence are employed. Nonmilitary applica-
tions are numerous and continue to increase.
Wireless sensor networks [18,19] and distributed
camera networks [20, 21] are being deployed
for many application domains. These include air
traffic control, homeland security, medical diag-
nosis, smart homes and buildings, monitoring of
critical infrastructures, robotics, vehicle health
management, remote sensing, and environmen-
tal monitoring. Other more recent applications
include wearable sensors for health monitoring
[22], target tracking using swarms of unmanned
aerial vehicles [23], and the Internet of Things
(IoT) paradigm [24] for a variety of consumer
products and services [25–27].

Open Problems

There are many theoretical and practical chal-
lenges to fully utilize the potential of distributed
sensing and sensor fusion. These include scal-
ing, fundamental limits on achievable perfor-
mance, fusion of heterogeneous, multimodal sen-
sors, treatment of dependent data, fusion of hard
and soft data, sensing resource management, and
security of information fusion systems.
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Synonyms

Depth from defocus

Related Concepts

�Active Stereo Vision
�Motion Deblurring

Definition

Shape-from-(de)focus is a method that recon-
structs 3D shape of the captured scene (object)
using multiple differently focused images
obtained by changing position of the lens with
respect to the image sensor such as CCD and
CMOS. This entry provides a summary of
shape-from-(de)focus techniques including both
classical model-based and recent learning-based
approaches.
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Background

Exploiting differently blurred versions of images
captured with different focus settings allows not
only to estimate 3D shape of the captured scene
but also to restore the latent all-in-focus image
[8,9]. Therefore, shape-from-(de)focus technique
has been studied for several decades to retrieve
3D shape (i.e., depth map) from a single camera
and to improve the image quality by removing the
blur by defocus [1, 3].

Shape-from-(de)focus is one of well-
known inverse problems. To solve the highly
ill-posed inverse problem, traditional approaches
simultaneously estimate the shape of the scene
and the all-in-focus image by optimizing energy
functions based on physical modelling [3, 4, 6],
and recent learning-based approaches predict the
dense depth maps through deep neural networks
without explicitly taking into account the all-in-
focus image during inference [2, 5, 7].

Theory

Traditionally, shape-from-(de)focus problem
has been dealt with by model-based energy-
minimization techniques, but due to the recent
development of learning-based approaches,
methods using deep neural networks (DNNs)
are being studied very actively and showing good
performance.

Model-based Approach Under an assumption
that a camera lens is thin, defocus blur of a 3D
scene point is depending on the depth of the scene
and the distance from the focus plane to the lens
(i.e., focal distance), and a defocused image can
be modeled at a pixel location (x, y) as:

B(x, y) = (K(D(x, y), F )R)(x, y), (1)

where B denotes a given (partially) defocused
image and R is a radiance and the all-in-focus
image without defocus blur. The focal distance
is F , depth of the scene is D, and a linear oper-
ator K which is called the point spread function
(PSF) is depending on the scene depth D and the

camera parameter F . We assume that the camera
parameter F is available from camera metadata
(e.g., EXIF data). Note that, PSF K is nonuniform
and spatially varying since the depth map D can
vary over pixel locations.

The goal of shape-from-(de)focus is to
estimate the scene depth D based on the model
in (1); however, it is very challenging and difficult
to achieve since it requires to infer the radiance
R jointly. Therefore, additional regularization
terms are necessary to solve the joint problem,
and it yields the following energy minimization
formula.

arg min
D,R

ψ(D,R)+ λ · ‖K(D, F )R− B‖p, (2)

where ψ(.) is a regularization function which
enforces smoothness of the radiance and depth
maps among neighboring pixel values. To be spe-
cific, sparse gradient models which can preserve
edges while suppressing noise at homogeneous
regions are favored to regularize the latent all-
in-focus image, and smoothness models such as
Potts model and Ising model are used to regu-
larize the depth map. The second term is a data
term which measures the data fidelity based on
the blur constraint in (1), and p-norm is used in
measuring the similarity between the observed
image B and blurred version of the all-in-focus
image K(D, F )R. User parameter λ controls the
weight between the regularization and data terms.

In general, the objective function in (2) is
not a convex function and thus difficult to min-
imize. In practice, to solve the problem, iterative
and alternating optimization technique is widely
employed. To do so, the original objective func-
tion is decomposed into several subproblems,
and each subproblem is solved via conventional
optimization tools such as iteratively reweighted
least squares (IRLS) in turn. To be specific, for
being fixed R, the subproblem becomes depth
estimation problem, and the scene depth D is
updated. In addition, for being fixed D, the sub-
problem becomes a defocus deblurring problem
and the radiance map R is improved alternatingly.
This alternating optimization is repeated several
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times until convergence, and the scene depth and
all-in-focus image are produced in the end.

Learning-based Approach Classical shape-
form-(de)focus algorithms require complex joint
optimization technique based on the physical
modeling including prior and likelihood models.
However, recent learning-based approaches
which adopt deep neural networks can infer
the scene depth without estimation of the all-
in-focus image R and show promising results
with the aid of a large number of training datasets
and very deep neural networks (DNNs). To train
the DNNs which predict depth map from a stack
of differently focused images, a great number of
paired images including focal stacks as network
inputs and corresponding depth maps as training
targets are required. Note that focal stacks can
be easily generated by light-field images which
enable to change the depth of focus and ground-
truth depth maps can be collected by RGB-D
camera which is calibrated to the light-field (or
plenoptic) camera.

Let {B} be a stack of multiple differently
focused image and an input of the network. Then,
the network parameter θ can be trained through
minimization of a loss function as follows:

arg min
θ

1

N

N∑
i=1

‖Di − fθ ({B}i )‖2
2, (3)

where the function f denotes the deep neural net-
work and i represents the index of a training sam-
ple, and the loss function is typically defined with
L2-norm. To solve this regression problem in (3)
with large datasets, conventional optimizers such
as SGD and ADAM can be used. The learned
parameter θ can yield the desired outputs near
real-time during the test-period unlike classical
approaches which require test-time optimization.

Applications

A typical application of the shape-from-(de)-
focus algorithm is refocusing that generates
photos focused to different depths and provides

aesthetically better photographs. To obtain a
refocused image, partially blurring the all-in-
focus image R according to the depth map D
is carried out. Note that, the inputs R and D
for refocusing task are achievable by the shape-
from-(de)focus technique. Similarly, the outputs
produced by shape-from-(de)focus technique can
be used to create high-quality effects such as
tilt-shift and dolly zoom.

Open Problems

In the classical model-based approaches, conven-
tional alternating and iterative optimization algo-
rithms do not give a guarantee to find a globally
optimal solution, and the solutions are sensitive
to initialization of the latent depth maps and
all-in-focus images. Moreover, in the learning-
based approaches, domain misalignment (e.g.,
nonidentical distributions of training datasets and
real input data) can cause severe artifacts, but
acquiring a large number of realistic training
datasets is a very time-consuming and expensive
open problem.
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Related Concepts

�Radiance

Definition

Shape from Interreflections is a method for recov-
ering shape and reflectance in the presence of
interreflections from a set of intensity observa-
tions of a surface under different illumination
conditions.

Background

Shape from intensity methods aim at recovering
shape and reflectance from intensity observa-
tions, for example, shape from shading and pho-
tometric stereo. Many of these methods assume a
simple image formation model where interreflec-
tions, or mutual illuminations, are inexistent. In
the early 1990s, the effect of interreflections to
intensity observations has been studied by Nayar,
Ikeuchi, and Kanade [1, 2] and also by Forsyth
and Zisserman [3, 4], and it has been pointed
out that shape from intensity methods are sig-
nificantly affected by the effect of unmodeled

interreflections. To overcome the issue, a method
of shape from interreflections has been devel-
oped [1, 2] by explicitly accounting for the effect
of interreflections.

Theory

Let us consider a Lambertian surface illuminated
by a distant point light source. The radiance L(x)
at the scene point x is related to its irradiance
E(x) via reflectance (albedo) ρ as

L(x) = ρ(x)
π

E(x). (1)

When there are no interreflections, e.g., the case
of a concave surface where no other surface
points are visible from the scene point x, the
irradiance E(x) is purely due to the light source.
It results in L(x) = Ls(x), where Ls(x) rep-
resents the x’s outgoing radiance to the direct
illumination from the light source. On the other
hand, when there are interreflections, the radiance
L(x) is affected by radiance from other scene
points that are visible from the surface point x.
Let X be the set of all points that are visible
from the scene point x, then the total radiance
L(x) leaving x becomes the sum of Ls(x) and the
radiance due to interreflections as

L(x) = Ls(x)+ ρ(x)
π

∫
X

K(x, x′)L(x′)dx′,
(2)

in which x′ ∈ X is a surface point visible from
x, K(x, x′) is a function depends on the visibility
of x′ from x, surface orientations at x and x′, and
their distance.

It has been shown by Nayar et al. [1] in
their shape from interreflections paper that, by
discretizing the expression of (2), a closed-form
solution to the forward interreflection problem
can be derived. Based on the result, they develop
a method for recovering shape and reflectance in
the presence of interreflections.

By assuming the surface consists of discrete
facets, Eq. (2) can be written in a discrete form as
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Li = Lsi + ρi

π

∑
j �=i

LjKi,j , (3)

where i and j are facet indices and Ki,j =
K(xi , xj )dxj . In a matrix form for m facets, it
becomes

L = Ls + PKL, or L = (I− PK)−1 Ls ,(4)

in which L = [L1, . . . , Lm]� ∈ R
m, Ls =

[Ls1, . . . , Lsm]� ∈ R
m, P is a diagonal m × m

matrix defined as P = 1
π

diag (ρ1, . . . , ρm), and
K is an m×m kernel matrix defined as

K =

⎡
⎢⎢⎢⎢⎢⎣

0 K1,2 . . . 0
K2,1 0 . . . 0

...
. . .

...

0 . . . 0 Km−1,m

0 . . . Km,m−1 0

⎤
⎥⎥⎥⎥⎥⎦

.

Now let us define a facet matrix F as F def=[
ρ1
π
n1, . . . ,

ρm

π
nm

]�, where ni∈S2, S2={v∈R3 :
‖v‖ = 1} is a unit surface normal vector and
ρi ∈ R+ is the reflectance at point i. Using a unit
(column) light source direction vector s ∈ S2, the
following holds with a Lambertian assumption:

Ls = Fs. (5)

Thus, Eq. (4) can be written as

L = (I− PK)−1 Fs. (6)

Let us define a pseudo facet matrix Fp as
Fp = (I− PK)−1 F. The pseudo facet matrix
Fp contains the pseudosurface normal and pseu-
doreflectance, which are computed by a local
shape from intensity method that do not account
for interreflections. Given three radiance vectors
L1, L2, and L3 observed under three different
illumination directions s1, s2, and s3, the pseudo
facet matrix can be obtained by

Fp =
[
L1 L2 L3

] [
s1 s2 s3

]−1
(7)

if the inverse
[
s1 s2 s3

]−1
exists.

The shape from interreflections method pro-
posed by Nayar et al. [1] uses an iterative method
to obtain the facet matrix F starting from the
pseudofacet matrix Fp by the following proce-
dure.

1. Initialization: F0 = Fp

2. Compute Pk ← P(Fk) and Kk ← K(Fk)

3. Fk+1 = (
I− PkKk

)
Fp

4. If not converged, go to Step 2.

As the iteration progresses, more accurate esti-
mates of shape and reflectance in the form of
facet matrix F are obtained. The readers are
referred to [1] for the convergence property.

Applications

In contrast to shape from intensity methods that
only consider the direct illumination component
[5–7], shape from interreflections accounts for
the existence of interreflections for accurately
determining shape and reflectance. It has been
successfully applied to a camera-based photo-
copier [8], with which 3D shape of an unfolded
book surface can be recovered.

More recently, it has been shown that there
exists a set of linear operators that cancel inter-
reflections [9], which enables the extraction of
the n-th bounce of scene radiance. Since the
first bounce of the scene radiance only contains
the effect of direct illumination component, by
extracting it the effect of interreflections can be
naturally neglected. It has also been shown in
[10] that, with a high-frequency binary illumina-
tion pattern emitted from a projector light source,
the direct and global (i.e., interreflections) illumi-
nation components of a scene can be separated.
These approaches allow extraction of the direct
component; thus, a simpler method that does not
account for interreflections can be used.
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Synonyms

Depth from Scattering

Definition

Light scatters in the presence of volumetric media
such as fog, smoke, mist, dust, and murky water.

Volumetric scattering results in several daily
life visual effects, such as the glow around the
streetlights and car headlights on a foggy day
and the murky appearance of underwater scenes.
From a computer vision point of view, while
on one hand, volumetric scattering degrades
images by reducing contrast, it also provides
important shape/depth cues, especially for
outdoor scenes. This entry provides a summary of
various techniques and algorithms for recovering
shape/depth using scattering.

Background

Volumetric scattering in the atmosphere
(atmospheric scattering) has been studied for
over two centuries in the atmospheric optics
literature. Some of the prominent sources of
literature on the subject are books by Minnaert
[1], Middleton [2], and McCartney [3]. In
computer vision literature, Cozman and Krotkov
[4] and Narasimhan, Schechner, and Nayar [5–
12] were among the first to develop techniques
for scene analysis under volumetric scattering.
Excerpts from these papers are used in several
locations in this entry. Most of the algorithms
presented in these papers required capturing two
or more images of the scene under different
weather/imaging conditions. Note that while the
models and techniques in this entry are discussed
in the context of atmospheric scattering, they are
valid in general for other volumetric scattering
scenarios, such as underwater imaging [13, 14].

Theory

Mechanisms of Atmospheric Scattering: There
are two main mechanisms for getting depth from
atmospheric scattering: attenuation and airlight.

Attenuation: Light gets deflected and
absorbed as it travels through a volumetric
medium (e.g., haze, mist, murky water), resulting
in exponential attenuation of the intensity.
Consider a collimated beam of light traveling
through a medium from point A to point B.
Suppose the irradiance of the beam at point A
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is EA(λ), where λ is the wavelength of light.
The irradiance of the beam at point B after the
attenuation is given as

EB (λ) = EA (λ) e−
∫ B

Aσ(x,λ)dx, (1)

where σ (x, λ) is the attenuation coefficient of
the medium for light of wavelength λ. σ (x, λ) is
directly proportional to the volume density ρ(x)
of the medium. For homogeneous media, σ (x, λ)
is constant with respect to the spatial location,
that is, σ (x, λ) = σ (λ). Thus, in the presence of
homogeneous media, the attenuated intensity at
point B is given as

EB (λ) = EA (λ) e−σ(λ)d , (2)

where d is the distance between points A and B.
So far in this entry, light attenuation only for

a collimated light beam has been considered. For
diverging beams from point light sources, there is
an additional inverse-square falloff. Given a point
light source at point A with a radiant intensity of
Io(λ), the irradiance at point B is

EB (λ) = g
Io (λ) e−σ(λ)d

d2 , (3)

where the constant g accounts for the optical
parameters of the camera and conversion between
radiant intensity and irradiance.

Airlight: A second mechanism causes the
atmosphere to behave like a source of light. This
phenomenon is called airlight [15], and it is
caused by the scattering of environmental illu-
mination by particles in the atmosphere towards
the observer. The environmental illumination can
have several sources, including, direct sunlight,
diffuse skylight, and light reflected by the ground.
Consider an observer at a distance d from a
physical object. The total radiance due to airlight
at the observer is given as (for a derivation, see
[5])

L (d, λ) = L (∞, λ)
(

1− e−σ(λ)d
)

, (4)

where L(∞, λ) is the radiance due to airlight
for an object at infinity (e.g., horizon). While
attenuation causes the scene radiance to decrease
with path length, airlight increases with path
length. It therefore causes the apparent brightness
of a scene point to increase with depth.

Application

1. Depth from Attenuation: Consider the image
of a scene at night. Suppose the scene has arti-
ficial light sources, for example, street lights,
building windows, and car headlights. There is
no airlight due to sunlight or skylight. In this
setting, the dominant scattering mechanism is
attenuation. The observed irradiance due to
a light source of radiance intensity I(λ) at a
distance d is

E (d, λ) = g
I (λ) e−σ(λ)d

d2 , (5)

where, as before, σ (λ) is the attenuation coef-
ficient of the medium and g is the parameter
which accounts for the conversion between radi-
ant intensity and irradiance. If the detector of the
camera has spectral response s(λ), the final image
brightness value recorded is determined as

E′(d) = ∫
s (λ)E (d, λ) dλ

= ∫
gs (λ)

I(λ)e−σ(λ)d

d2 dλ.

(6)

Since the spectral bandwidth of the camera is
limited (visible light range when camera is black
and white and even narrower spectral bands when
the camera is color), it is safe to assume the
attenuation coefficient σ (λ) to be constant over
this bandwidth. Then

E′(d) = g
e−σd

d2

∫
s (λ) I (λ) dλ = g

e−σd

d2
I ′.

(7)

If the light source is observed under two dif-
ferent weather conditions, for example, dense
fog and mild fog (or one condition could be
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clear weather with σ = 0), there are two differ-
ent attenuation coefficients σ 1 and σ 2. Taking
the ratio of the two resulting image brightness
values,

R = E′1
E′2

= e−(σ1−σ2)d . (8)

Using the natural log,

R′ = ln R = (σ1 − σ2) d. (9)

This quantity is independent of the sensor
gain and the radiant intensity of the source. By
computing the above quantity (log of ratio) for
two different light sources in the scene and taking
their ratio, the relative depths of the two source
locations can be computed:

R′i
R′j

= di

dj

. (10)

Hence, the relative depths of all sources (with
unknown radiant intensities) in the scene can be
computed from two images taken under unknown
but different haze or fog conditions.

2. Depth from Airlight: Under dense fog and
close-by objects or mild fog and distant
objects, attenuation of object brightness is
severe, and airlight is the main cause of
image irradiance. Also, in the case of dense
haze around noon, airlight dominates. In
these scenarios, scaled scene depths can be
computed from a single image [5, 9].

Let a scene point at depth d produce airlight
radiance L(d, λ). If the camera has a spectral
response s(λ), the final brightness value recorded
for the scene point is

E′(d) = g

∫
s (λ) L (d, λ) dλ, (11)

where, as before, g accounts for the constant
of proportionality between scene radiance and
image irradiance. Substituting the model of
airlight from Eq. 4:

E′(d) =
∫

gs (λ)L (∞, λ)
(

1− e−σ(λ)d
)

dλ.

(12)

By assuming that the scattering coefficient
σ (λ) is more or less constant over the spectral
band of the camera,

E′(d) = E (∞)
(

1− e−σd
)

. (13)

This equation gives a relationship between
the observed airlight intensity E′ and the scaled
scene depth σd. E(∞) is the image intensity
corresponding to a scene point at infinity and can
be measured from the image if the horizon is
visible (this part can be identified as the brightest
region of the image). Then, the scaled depth can
be computed as

σ d = ln

(
E (∞)

E (∞)− E′(d)

)
. (14)

3. Depth from Chromatic Decomposition: So far
in the entry, attenuation and airlight have been
considered separately. At night, there can be
no airlight (since there is no environmental
illumination) and hence, attenuation domi-
nates. In contrast, under dense fog or haze
during daylight, the radiance from a scene
point is severely attenuated and hence airlight
dominates. However, in most situations,
the effects of both attenuation and airlight
coexist.

Narasimhan and Nayar presented a
technique [6, 9] to recover depths for these
situations by considering the chromatic effects
of atmospheric scattering. The key idea is that
the spectral composition of the irradiance at
a scene point is the weighted sum of two
distributions, corresponding to the direct
transmission after attenuation and airlight.
The weights are a function of the weather
conditions. Using this model, the authors
showed that it is possible to recover depths by
capturing and performing simple arithmetic
operations on two images of the scene under
different bad weather conditions. For details,
the reader is referred to Refs. [6, 9].
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4. Depth from Dehazing: There are several tech-
niques which explicitly remove the effects of
scattering from the images, for example, using
polarization [8, 10] or image priors [16, 17,
18]. While the primary goal of these dehaz-
ing techniques is to improve visibility in the
images, as a by-product, scene depths are also
recovered by using the technique outlined in
the section Depth from Airlight on the sepa-
rated haze layer (airlight).

Open Problems

A long-standing open problem has been single
image dehazing, that is, removing the effects
of atmospheric scattering using a single image.
This would enable image and scene recovery for
dynamic scenes. Recently, there have been a few
techniques which have addressed this problem
[16, 17, 18]. In order to account for the under-
constrained nature of the problem, these tech-
niques use a variety of scene priors [16, 17, 18].
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Related Concepts

�Radiance
�Reflectance Map

Definition

Shape from shading (Shape-from-Shading;
SfS) is a method for determining the three-
dimensional shape of a smooth and opaque
surface in the form of surface normal from a
single image taken under a known light direction.
Unlike stereoscopy based on matching and
triangulation, it exploits the observed shading
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Shape from Shading, Fig. 1 Shape from shading recovers a 3D shape from a single shading image

(gradations of reflected light intensity) to
determine the shape. While a human can naturally
achieve this task, it is computationally nontrivial
and remains as one of the central problems in
computer vision (Fig. 1).

Background

The problem of shape from shading was first
introduced by Horn in 1970 in his Ph.D. thesis
[1]. Since then, because of its mathematically rich
problem structure and importance to computer
vision, it has stimulated various sophisticated
studies. Its major difficulty is due to the fact that
the problem is inherently under-constrained, i.e.,
there are many solutions that exhibit the same
appearance. In other words, there exists a set
of shapes that yields precisely the same shading
appearance under a fixed light direction.

The early approaches to this problem used
simplifying assumptions, such as an orthographic
projection of scene points to the image coordi-
nates, uniform Lambertian surface, and a point
light source at infinity.

More recently, for the purpose of making
shape from shading applicable to real-world
scenarios, there are threads of works that aim at
relaxing the restrictive assumptions. They include
the relaxations of known and uniform albedo
assumption [2] using a coarse depth information,
spatially uniform illumination assumption [3],
and known illumination assumption [4] with
a discriminative learning approach. With

these advancements, shape from shading has
been successfully applied to some real-world
applications, such as endoscopy [5], recovery of
shape with high-frequency details [6,7], and face
recognition [8] to list a few.

Theory

Let us assume a uniform Lambertian surface
illuminated by a distant point light source with
a unit brightness. The measured brightness E ∈
R+ of a surface point can be written as

E = ρl�n, (1)

where ρ ∈ R+ is a reflectance (albedo) of the sur-
face, n ∈ S2, S2 = {v ∈ R

3 : ‖v‖ = 1} is a unit
three-dimensional vector representing a surface
normal, and l ∈ S2 is a unit light direction vector.
Let us further assume an orthographic image pro-
jection and that the viewing direction is parallel
to the z-axis; thus the surface can be written as
a height map function z(x, y). Let p � ∂z/∂x

and q � ∂z/∂y; then the surface normal n can be
written as

n = 1√
1+ p2 + q2

[−p, −q, 1
]�

. (2)

Therefore, Eq. (1) can be written using l =
[lx, ly, lz]T as
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E= ρ√
1+ p2 + q2

[
lx, ly, lz

] [−p, −q, 1
]�

.(3)

To simplify the notation, we assume that the
image coordinates are aligned with the world
x-y coordinates. Thus the measured brightness
E(x, y) is the brightness of the pixel that cor-
responds to the radiance of the surface point
[x, y, z]. Equation (3) shows that there are two
unknowns (i.e., p and q) per pixel while only one
equation is given per pixel, even if we know the
light source direction l and reflectance ρ. This
shows the inherent ambiguity in the shape from
shading problem.

Image-irradiance equation and reflectance
map It has been shown that under a fixed
distant light l and surface reflectance properties
ρ, the observed image brightness E(x, y) directly
relates to a particular surface gradient [p, q]. This
association is expressed as the image-irradiance
equation [9–11] using a reflectance map R(p, q)

as

R(p, q) = E(x, y). (4)

The reflectance map is a convenient tool for rep-
resenting a constraint over p and q given a bright-
ness observation E(x, y). For example, given
a light direction l expressed in p-q-coordinates

as l = [
lx, ly, lz

]�= 1√
1+p2

l +q2
l

[−pl, −ql, 1
]�

and by assuming that reflectance ρ = 1, Eq. (3)
can be rewritten for the intensity observation
E(x, y) as

R(p, q) = E(x, y)

= 1+ plp + qlq√
1+ p2 + q2

√
1+ p2

l + q2
l

. (5)

The surface normal variables (p, q) form a curve
in the p-q-space as illustrated in Fig. 2. As seen in
the figure, for E(x, y) < 1, (p, q) forms an iso-
brightness contour in the space, which indicates
the ambiguity in determining p and q because
any point on the curve can be a solution for

(p, q). In another view, p and q are constrained
by the curve represented by the reflectance map.
Only for the case of E(x, y) = 1 it can be
seen that p and q can be uniquely determined as
(p, q) = (pl, ql).

Integrability and smoothness constraint To
constrain the surface normal variables p and
q, by assuming that the surface z(x, y) is of
class C2, i.e., the second-order derivatives of
z(x, y) exist and are continuous, an integrability
constraint has been introduced to the shape from
shading problem by Brooks [12]:

∂2z

∂x∂y
= ∂2z

∂y∂x
⇐⇒ ∂p

∂y
= ∂q

∂x
. (6)

The integrability shows that the partial derivatives
of z with respect to x and y are independent of the
order of differentiations.

As another way to constrain the surface nor-
mal variables p and q, Ikeuchi and Horn [13]
introduced a smoothness constraint, which says
that surface orientations smoothly vary over the
x-y space, i.e., surface normals at neighboring
scene points should be similar. Specifically, they
have used the following objective function for
representing the smoothness constraint:

∂f

∂x

2

+ ∂f

∂y

2

+ ∂g

∂x

2

+ ∂g

∂y

2

→ min., (7)

where f = 2p(
√

1+ p2 + q2 − 1)/(p2 + q2)

and g = 2q(
√

1+ p2 + q2 − 1)/(p2 + q2)

are on the stereographic plane (see [13]). This
parameterization has been used for avoiding p

and q being infinity when the surface normal is
perpendicular to the viewing direction.

Classical solution methods One of the first
practical solution methods for shape from
shading was based on regularized optimization
by Ikeuchi and Horn [13]. Using a weight factor
λ ∈ R+, they put together the image-irradiance
equation and smoothness constraint in the energy
minimization framework as:
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Shape from Shading,
Fig. 2 Iso-brightness
contours on a reflectance
map R(p, q)

∫ ∫ {
∂f

∂x

2

+ ∂f

∂y

2

+ ∂g

∂x

2

+ ∂g

∂y

2

+ λ (E(x, y)

−Rs(f, g))2
}
dxdy → min., (8)

where Rs is a reflectance map defined on the
stereographic coordinates. The regularization
factor λ controls the degree of smoothness with
respect to the error of the image-irradiance
equation.

Horn and Brooks [14] introduced a variational
approach, in which a functional F defined over
the image-irradiance equation and the integrabil-
ity constraint is minimized:

F(p, q, z)=
∫∫ {

(R(p, q)− E(x, y))2

+ μ(x, y)

(
∂p

∂y
− ∂q

∂x

)}
dxdy,

(9)

where μ is a Lagrange multiplier enforcing the
integrability constraint ∂p

∂y
= ∂q

∂x
. The minimiza-

tion of F leads to the associated Euler-Lagrange
equations, and it has been shown that the shape
can be determined up to convex/concave and
offset ambiguities.

An excellent survey of the early methods is
found in [15]. A newer survey [16] provides
a comprehensive summary of recent shape from
shading methods.

Application

To alleviate the difficulty of determining a unique
surface from a single shading observation, a pho-
tometric stereo approach [17] that uses multiple
observations under different light directions has
been developed. It has been shown that, for a
Lambertian surface, a surface can be uniquely
recovered from observations under three distinct
(non-coplanar) light directions.

References

1. Horn BKP (1970) Shape from shading: a method of
obtaining the shape of a smooth opaque object from
one view. Ph.D. thesis, Massachussetts Institute of
Technology

2. Barron JT, Malik J (2011) High-frequency shape and
albedo from shading using natural image statistics. In:
Proceedings of computer vision and pattern recogni-
tion (CVPR), pp 2521–2528

3. Forsyth DA (2011) Variable-source shading analysis.
Int J Comput Vis 91(3):280–302



1148 Shape from Shadows

4. Richter SR, Roth S (2015) Discriminative shape from
shading in uncalibrated illumination. In: Proceedings
of compupter vision and pattern recognition (CVPR),
pp 1128–1136

5. Wu C, Narasimhan SG, Jaramaz B (2010) A
multi-image shape-from-shading framework for near-
lighting perspective endoscopes. Int J Comput Vis
86(2):211–228

6. Wu C, Wilburn B, Matsushita Y, Theobalt C (2011)
High-quality shape from multi-view stereo and shad-
ing under general illumination. In: Proceedings of
compupter vision and pattern recognition (CVPR),
pp 969–976

7. Yu L-F, Yeung S-K, Tai Y-W, Lin S (2013) Shading-
based shape refinement of RGB-D images. In: Pro-
ceedings of compupter vision and pattern recognition
(CVPR), pp 1415–1422

8. Smith WAP, Hancock ER (2002) Face recognition
using shape-from-shading, pp 1–10

9. Horn BKP (1977) Understanding image intensities.
Artif Intell 8(2):201–231

10. Horn BKP (1981) Hill shading and the reflectance
map. Proc IEEE 69(02):14–47

11. Horn BKP, Sjoberg RW (1979) Calculating the
reflectance map. Appl Opt 18(11):1770–1779

12. Brooks MJ (1979) Surface normals from closed
paths. In: Proceedings of international joint confer-
ence on artificial intelligence, pp 98–101

13. Ikeuchi K, Horn BKP (1981) Numerical shape
from shading and occluding boundaries. Artif Intell
17(1):141–184

14. Horn BKP, Brooks MJ (1986) The variational
approach to shape from shading. Comput Vis Graph-
ics Image Process 33(2):174–208

15. Zhang R, Tsai P-S, Cryer JE, Shah M (1999) Shape
from shading: a survey. IEEE Trans Pattern Anal
Mach Intell 21(8):690–706

16. Durou J-D, Falcone M, Sagona M (2008) Numerical
methods for shape-from-shading: a new survey with
benchmarks. 109(1):22–43

17. Woodham R (1992) Photometric method for deter-
mining surface orientation from multiple images. Opt
Eng 19(1):139–144

Shape from Shadows

Pascal Mamassian
Laboratoire Psychologie de la Perception,
Université Paris Descartes, Paris, France

Definition

Shape from shadows is the inference of the three-
dimensional shape of objects from their shadows.

Background

David Waltz first introduced to computer vision
the problem of shape from shadows while
attempting to segment objects that had sharp
edges in a three-dimensional scene under various
lighting conditions [1]. The problem was then
refined to arbitrary surfaces [2]. Nowadays,
shape from shadows is a cue commonly used
when one is interested in inferring the three-
dimensional structure of a visual scene. A
benefit relative to other cues such as stereopsis
or motion parallax is that it is available in a
single image. Shape from shadows differs from
shape from shading because in the latter the
useful information is the gradient of reflected
light on a curved surface, whereas shape from
shadows considers that the information coming
from the area inside cast shadow is uniform
(there are no variations inside the shadow that are
related to the scene geometry [3]). However, it is
important to remember that similar to most cues
to three-dimensional shape, shape from shadows
is an under-constrained problem in the sense
that several critical scene parameters are often
unknown, in particular the light source position
and the nature of the surface on which the shadow
is cast.

Shadow Identification
The first serious problem in shape from shadows
is to identify a region of the image as a shadow.
Dark regions on a surface can be caused by the
absence of illumination or by a darker surface
reflectance (albedo). The cues that allow humans
to distinguish variations in light intensity from
variations in material properties include lumi-
nance relations across shadow borders, figural
relations, 3D-shape, depth, color, texture, and
motion [4]. In computer vision, very promising
results have been obtained if a shading model is
assumed [5].

Another dichotomy exists between self-
shadows (or attached shadows, i.e., shadows
cast on the object itself) and cast shadows
(shadows cast on a remote surface) [6]. This
differentiation can be achieved to some extent
by using some invariant color properties [7].
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In addition, a variety of geometrical constraints
of self-shadows on a smooth surface have been
derived [8, 9]. The list of shadow properties that
human and artificial visual systems could use is
still open [10].

Shadow Correspondence Problem
In order for shadows to be useful, appropri-
ate parts of an object should be matched to
corresponding parts of shadows. The choice of
the appropriate features to solve the correspon-
dence problem is still a topic of intense research
[11]. Potential candidates include points of high
curvature along the object and shadow contours,
some Fourier components for textured surfaces
[12], or only the low spatial frequencies if one
is merely interested in inferring where an object
is relative to the background [11]. The shadow
correspondence problem is more complex when
the receiving surface is not flat. In particular,
perceptual problems are thought to arise when the
receiving surface is saddle shaped [13].

Using multiple images of the scene under var-
ious illuminations, especially if the light source
positions are controlled in an active way, is highly
beneficial [14, 15]. Multiple images can also be
useful to detect the presence of concavities in an
object [16].

Open Problems

Object segmentation and recognition are believed
to be easier when shadows are absent from the
image [17]. Is it true, and if so, what is the best
method to eliminate shadows in a scene?

The dual problem of shape from shadows is to
infer the illumination from shadows [18]. Should
we separately estimate the shape and the illumi-
nation from shadows or is it better to attempt to
infer both simultaneously?

Moving shadows bring new challenges for
object segmentation and tracking [19]. So why do
human observers appear to excel at extracting the
spatial layout of a scene when moving shadows
are present [20]?
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Shape from Silhouette

David C. Schneider
Image Processing Department, Fraunhofer
Heinrich Hertz Institute, Berlin, Germany

Synonyms

Shape from outlines of projection; Visual hull

Related Concepts

�Visual Hull

Definition

Shape from silhouette (SfS) algorithms compute
the (approximate) 3D shape of an object from
multiple 2D projections considering only the out-
line of the object in the projections. The most
important class of SfS methods are Visual Hull
algorithms.

Background

The problem of computing shape from outlines
(silhouettes) of projections is generally under-
constrained. Depending on the object’s geometry
and the number of available views, approxima-
tions can be computed which are sufficient for
some applications. Often, the SfS output serves as
initialization for appearance-based shape recon-
struction methods such as volumetric reconstruc-
tion or multiview stereo.

The most general class of SfS approaches,
where no assumptions about the type of objects
to reconstruct are made, are the Visual Hull
algorithms (e.g., [1–4]). These are treated in a
dedicated article.

If the class of objects to handle is restricted,
specialized model-based algorithms can solve
SfS-like problems even for a single view. In this
case, the 3D shape is not actually reconstructed.
The algorithms rather compute a shape within
the scope of the model that satisfies silhouette
constraints and otherwise maximizes domain-
specific priors (e.g., a likelihood with respect to a
learned distribution). Examples are [5, 6], where
human body pose is estimated from a single
silhouette, or [7] where the shape of a head is
estimated from a face profile.

References

1. Baumgart BG (1974) Geometric modeling for com-
puter vision. PhD thesis, Stanford

2. Ahuja N, Veenstra J (1989) Generating octrees from
object silhouettes in orthographic views. IEEE Trans
Pattern Anal Mach Intell 11(2):137–149

3. Laurentini A (1991) The visual hull: a new tool for
contour-based image understanding. In: Proceedings
of the 7th Scandinavian conference on image analysis.
Pattern Recognition Society of Denmark, Aalborg East

4. Szeliski R (1993) Rapid octree construction from
image sequences. CVGIP 58:23–32

5. Balan AO, Sigal L, Black MJ, Davis JE, Haussecker
HW (2007) Detailed human shape and pose from
images. In: Proceedings of the IEEE conference on
computer vision and pattern recognition (CVPR’07).
IEEE, Piscataway, Minneapolis, pp 1–8

6. Guan P, Weiss A, Balan AO, Black MJ (2009) Esti-
mating human shape and pose from a single image. In:
Proceedings of the IEEE 12th international conference
on Computer Vision (ICCV), Kyoto, pp 1381–1388

7. Schneider DC, Eisert P (2009) Fast nonrigid mesh
registration with a data-driven deformation prior. In:
Proceedings of the IEEE 12th international computer
vision workshops, Kyoto, pp 304–311

Shape from Specular Reflections

� Shape from Specularities



Shape from Specularities 1151

S

Shape from Specularities

Silvio Savarese
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Synonyms

Shape from specular reflections

Definition

Specular reflections or specularities carry valu-
able information about the geometry of reflective
surfaces and can be used to recover their shape.

Background

Cues such as texture and shading are often
inadequate for recovering the shape of shiny
reflective objects. For such objects it is not
possible to observe their surfaces directly, rather
only what they reflect. Yet, specular reflections
present an additional cue that potentially may be
exploited for shape recovery. A curved mirror
produces “distorted” images of the surrounding
world. For example, the image of a straight line
reflected by a curved mirror is, in general, a
curve (Fig. 2). It is clear that such distortions
are systematically related to the shape of the
surface. Is it possible to invert this map and
recover the shape of the mirror from its reflected
images? The general “inverse mirror” problem is
under-constrained: by opportunely manipulating
the surrounding world, we may produce a great
variety of images from any curved mirror surface.
This inverse problem may become tractable
under the assumption that some knowledge about
the structure of the scene, the shape of the object,
or the observer is available.

Theory

The basic shape from specularities problem is
formulated as follows: Let M be a reflective sur-
face whose shape is unknown (Fig. 1). Consider
a camera observing M and let c be the camera
projection center. Given a scene point (or light
point source) p, let q be the image of p observed
in the image plane through a specular reflection
on the reflective surface at r. Let nr be the unit
normal to the surface at r (i.e., the normal of the
tangent plane of M at r). The main objective of
the shape from specularities problem is to recover
the 3D location of r in the camera reference sys-
tem given the observation q. Often, it is desirable
to recover higher-order local shape information
around r. In this case the objective is to estimate
r, the unit normal nr, and second- or higher-order
local parameters of M at r such as, for instance,
directions and magnitudes of the surface principal
curvature at r.

If the camera is calibrated (i.e., if the internal
camera parameters are known), the surface posi-
tion at r is completely determined by a single
distance parameter s. This is easy to show: It
follows from the perspective projection constraint
that the point r must belong to the line defined by
c and q, resulting in the following relationship:

r = c+ sd, (1)

where the unit vector d = (q − c)/‖q − c‖ is
parallel to the line of sight and s = ‖r − c‖ is the
distance from c to r. It follows that r is known
up one degree of freedom (i.e., s). Notice that no
information about the surface normal nr or other
higher-order surface parameters can be obtained
in this case.

Assumptions on geometrical configuration of
the scene (light source) or the reflectance prop-
erties of the surface lead to further constrains
for estimating s and higher-order local shape
information around r. Some of the most notable
cases are:

– Single calibrated scene point (light point
source). If one assumes that the location of
p is known in the camera reference system,
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Shape
from Specularities, Fig. 1
The basic shape from
specularity problem. Given
a scene point reflected off a
specular surface M at r and
given its observation in the
camera image plane at q,
the goal is to recover 3D
location of r and
higher-order local
parameters of M around r

d

Reflective
surface M

Scene point

Image plane

Tangent 
plane

Camera

it can be shown that r and nr are known
up to one-dimensional family of solutions
parameterized by s [1, 2]. This unknown can
be determined if one further assumes that p is
at infinity [3].

– Extended calibrated scene (light source). The
following assumptions are made. Assume that
(at least) three points {pi, pj, pk} can be iden-
tified within a neighborhood of a scene planar
patch and their reflection {ri, rj, rk} off the
surface M are observable in the image plane
as {qi, qj, qk} (Fig. 2). Assume that correspon-
dences between image points and scene points
can be established (e.g., one knows that qi is
the observation of reflection ri of scene point
pi, for any i). Then, it can be shown that loca-
tion of {ri, rj, rk} and corresponding surface
normals at {ri, rj, rk} can be recovered as long
as {pi, pj, pk} are close enough and are not col-
inear. Moreover, second-order information of
M at {ri, rj, rk} (i.e., directions and magnitudes
of principal curvature) can be estimated up to
one-dimensional family of solutions. Details
of this analysis are presented in the theoretical
work by Savarese et al. [1] where necessary
and sufficient conditions for reconstructing the
local shape of a specular surface from one or
multiple reflected calibrated points and (or)
lines are discussed.

– Known reflectance model for the surface. If
the reflected light is modeled using a phys-
ical reflectance model such as the Torrance-
Sparrow BRDF model [4], a reflected point

on the surface. can be in general character-
ized by an extended pattern which is typically
indicated as a highlight. It can be shown that
by measuring the radiance falloff of specular
highlights [5], the local curvature can be esti-
mated.

Several practical methods have been proposed
for recovering the shape of specular surfaces
that use a setup similar to that in Figs. 1 and
2 wherein a calibrated fixed camera observes a
scene element (light source) being reflected off
the surface. Methods vary depending on whether
the scene is calibrated or uncalibrated, static or
time varying, and point source or extended. Pio-
neering work by Ikeuchi [3] and, later, works by
Sanderson et al. [6] utilize distant light sources
which are sequentially activated so as to generate
sequences of point source reflections. Halstead
et al. [7] and Tarini et al. [8] use extended scene
structures composed of conically shaped patterns
and a sequence of striped patterns, respectively.
These methods recover the complete surface of
a shiny object by iteratively fitting a parametric
representation of the shape to local measure-
ments. Zheng and Murata [9] propose a system
where the object rotates while being illuminated
by extended radial light sources. Savarese et al.
[1] use a single calibrated grid pattern simi-
lar to that in Fig. 2 to obtain sparse local sur-
face estimates (up to second order). Rozenfeld
et al. [10] extend this analysis and demonstrate
that dense reconstruction can be obtained from



Shape from Specularities 1153

S

pi

pj

pk

qi

qj

qk

rj

rk

ri

Scene

M

c

Shape from Specularities, Fig. 2 Local shape of a
reflective surface M can be recovered up second order
if (at least) three points {pi, pj, pk} (along with their

observations {qi, qj, qk}) can be identified within a small
planar patch in the scene [1]

sparse correspondences between scene points and
observations. Kutulakos and Steger [11] exploit
directed ray measurements of a calibrated planar
target reflected off the surface and positioned at
different locations in the world reference system.
Adato et al. [12] show that it is possible to relax
the hypothesis of calibrated scene by analyzing
the reflection of a time varying distant unknown
scene observed by an orthographic camera.

Additional constraints for estimating the
reflection point r (along with higher-order shape
information) can be obtained by having multiple
observations of r from different vantage points.
These observations can be generated from a
moving camera. Unfortunately, standard structure
from motion (SFM) constraints based on epipolar
geometry [13] cannot be used in this case: As the
camera vantage point changes, reflected points
move (flow) on the surface following the law of
reflection; this violates the assumption of static
3D points which is essential in SFM methods. As
shown in the pioneering studies by Koenderink
and van Doorn [14], Blake [15], and Zisserman
et al. [2], even when multiple observations of the
same reflected point r are available, r and nr can
still be estimated up to one-dimensional family
of solutions (whereas the local concave/convex
shape ambiguity can be determined [15]).

Similarly to the case of static cameras, additional
constraints are required to estimate the unknown
parameters. The theoretical analysis in Oren
and Nayar [16] and more recently the level set
formulation by Solem et al. [17] demonstrate
that camera movements allow to recover 3D
surface profiles if boundary conditions at object
occluding contours are used. Bonfort and Sturm
[18] develop a discrete multi-view approach
where the surfaces reflect a calibrated 3D scene
using a volumetric stereo framework [19]. Roth
and Black [20] relax the assumption of calibrated
scene by introducing a probabilistic formulation-
based expectation-maximization that combines
cues from specular and diffuse components, the
former being defined as specular flow.

Application

Modeling the shape of reflective surfaces is valu-
able in numerous research and industrial appli-
cations such as digital archival (e.g., acquisi-
tion of digital models for preservation of artistic
artifacts with reflective components), medicine
(e.g., noninvasive inspection of organs such as the
cornea of the eye [7]), and metrology of industrial
parts.
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Shiftable Windows for Stereo

Sing Bing Kang
Zillow Group, Seattle, WA, USA

Synonyms

Spatially shiftable windows

Related Concepts

�Binocular Stereo
�Multi-baseline Stereo
�Multiview Stereo
�Occlusion Handling
� Plane Sweeping

Definition

In window-based stereo matching, shiftable
windows refer to the strategy of finding the best
matching window for a particular pixel p in order
to determine its depth. The window can be the
usual central window (in which p is located in
the middle) or an offset version, as long as it
contains p.

Background

In a multi-view stereo problem, we are given a
collection of images {Ik(x, y), k = 0 . . . K} and
associated camera matrices {Pk, k = 0 . . . K}.
I0(x, y) is the reference image for which we wish
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to compute a disparity map d(x, y) such that
pixels in I0(x, y) project to their corresponding
locations in the other images when the correct
disparity is selected.

In the classic forward-facing multi-baseline
stereo configuration [1], the camera matrices are
such that disparity (inverse depth) varies linearly
with horizontal pixel motion:

Îk(x, y, d) = Ik(x + bkd(x, y), y), (1)

where Îk(x, y, d) is image Ik warped by the
disparity map d(x, y). In a more general (plane
sweep) multi-view setting [2, 3], each dispar-
ity corresponds to some plane equation in 3D.
Hence, the warping necessary to bring pixels at
some disparity d into registration with the refer-
ence image can be represented by a homography
Hk(d):

Îk(x, y, d) = Hk(d) ◦ Ik(x, y), (2)

where the homography can be computed directly
from the camera matrices P0 and Pk and the value
of d [3].

Given the collection images warped at all
candidate disparities, we can compute an initial
raw (unaggregated) matching cost

Eraw(x, y, d, k) = ρ
(
I0(x, y)− Îk(x, y, d)

)
,

(3)

where ρ(·) is some (potentially) robust measure
of the color or intensity difference between the
reference and warped image (see, e.g., [4, 5] for
some comparative results with different robust
metrics).

The task of stereo reconstruction is then to
compute a disparity function d(x, y) such that
the raw matching costs are low for all images (or
at least the subset where a given pixel is visible)
while also producing a “reasonable” (e.g., piece-
wise smooth) surface. Since the raw matching
costs are very noisy, some kind of spatial aggre-
gation or optimization is necessary. The two main
approaches used are local methods, which only
look in a neighborhood of a pixel before making a

decision, and global optimization methods, which
minimize some objective function over the entire
image.

The simplest aggregation step is the classic
sum of sum of squared distances (SSSD) formula,
which simply aggregates the raw matching score
over all frames:

ESSSD(x, y, d)=
∑
k �=0

∑
(u,v)∈W (x,y)

Eraw(u, v, d, k),

(4)

where W (x, y) is an n × n square window cen-
tered at (x, y). This can readily be seen as equiv-
alent to a convolution with a three-dimensional
box filter. This aggregation step can be used in a
local method or global method (in the latter case,
being part of the objective function).

After the aggregated errors have been com-
puted, local techniques choose the disparity with
the minimum SSSD error, which measures the
degree of photoconsistency at a hypothesized
depth. The best match can also be assigned a local
confidence computed using the variance (across
disparity) of the SSSD error function within the
vicinity of the best match [6].

To handle occlusions or depth discontinuities
for window-based stereo matching, aggregation
for a given pixel may be an offset window version
to avoid locally straddling two objects at different
depth. This strategy is termed shiftable window.
In cases where there are more than two input
images, an additional strategy of view selection
(or “best camera selection") is required for better
performance.

Theory

When a conventional-centered window approach
is used for stereo matching, the results are
degraded by pixels that are either occluded in
one view but not the other. This occurs at object
boundaries with depth discontinuities. Figure 1
illustrates this problem.

The principle of shiftable windows is illus-
trated in Fig. 2. The idea is to find support for a
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Shiftable Windows for Stereo, Fig. 1 A simple three-
image sequence (the middle image is the reference image),
with a frontal gray square (marked F), and a station-
ary background. Regions B, C, D, and E are partially
occluded. A regular SSD algorithm will make mistakes

when matching pixels in these regions (e.g., the window
centered on the black pixel in region B) and also in
windows straddling depth discontinuities (the window
centered on the white pixel in region F). From [7] (used
with permission of IEEE©)

Shiftable Windows for Stereo, Fig. 2 Shiftable win-
dows help mitigate the problems in partially occluded
regions and near depth discontinuities. The shifted win-
dow centered on the white pixel in region F now matches
correctly in all frames. The shifted window centered on

the black pixel in region B now matches correctly in the
left image. View selection is required to disable matching
this window in the right image. From [7] (used with
permission of IEEE©)

pixel that avoids straddling two different depths
within the same window. If there are more than
two input images, it is advisable to also imple-
ment some form of view selection to avoid match-
ing possible occluded regions in non-reference
views.

View selection as a means of handling occlu-
sions and disocclusions can be illustrated by
considering selected error profiles depicted in
Fig. 3. To generate the error graph, the root-mean-
square (RMS) error for frame k is computed
based on Eq. (3), with ρ(x) = x2 and RMS(k)

=
√∑

(u,v)∈W (x,y) Eraw(u, v, dX, k) for point X.

The corresponding disparities at points A, B, and
C (dA, dB , and dC , respectively) are assumed
known for illustrative purposes. Points such as A,
which can be observed at all viewpoints, work

without shiftable windows and view selection.
Points such as C, which is an occluding point,
work better with shiftable windows but do not
require view selection. Points such as B, however,
which is occluded in a fraction of the viewpoints,
work best with both shiftable windows and view
selection.

Rather than just picking the preceding or suc-
ceeding frames (one-sided matching), a more
general variant would be to pick the best 50%
of all images available. In this case, we compute
the local SSD error for each frame separately
and then sum up the lowest values. This kind
of approach can better deal with objects that are
intermittently visible along a camera trajectory,
which is caused by the presence of thin fore-
ground occluders.
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ShiftableWindows for Stereo, Fig. 3 Error profiles for
three points in reference image. A: point seen all the time,
B: point occluded about half the time, C: occluding point.
Left: Reference image, Right: Error graph at respective

optimal depths with respect to the frame number (frame
#6 is the reference). See text for explanation on RMS error
computation. From [7] (used with permission of IEEE©)

ShiftableWindows for Stereo, Fig. 4 Comparison with
different window-based stereo techniques. Top: middle
(reference) image of an 11-image flower garden sequence.
Bottom, from left to right: conventional-centered win-

dow, shiftable windows and using all neighboring frames,
shiftable windows and using best 5 of 10 neighboring
frames, shiftable windows and using better half sequence.
From [7] (used with permission of IEEE©)

The discussion above assumes a fixed window
size. There are other extensions, such as adaptive
window sizes (e.g., [8–10]) and adaptive soft
window shapes in the form of spatially variable
support weights (e.g., [11–13]).

Application

Stereo is a fundamental problem in computer
vision, and it has been used in applications which
require depth information. Examples include 3D

modeling, augmented reality (AR), creation of
photo or video special effects such as bokeh and
background modification, and obstacle detection
for advanced driver-assistance systems (ADAS)
and autonomous vehicles.

Experimental Results

Figure 4 shows results for different variants
of window-based stereo, with and without the
strategy of shiftable windows. Notice that in
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this case, using just shiftable windows improves
depth at object boundaries only slightly over the
conventional-centered window. Using shiftable
windows in conjunction with view selection
significantly improves results.
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Shock Graph
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Related Concepts

�Many-to-Many Graph Matching

Definition

The shock graph is obtained from the 2D Blum
medial axis by incorporating properties of the
radius function along the skeleton. The direc-
tion in which the radius function increases, or
equivalently, the direction of the grassfire flow,
is used to order groups of skeletal points and to
derive parent-child relationships. This results in
a directed acyclic graph whose nodes represent
skeletal points and whose edges represent adja-
cency relationships. A variant of this construction
associates skeletal points with edges, with the
nodes representing the adjacencies.

Background

When Blum conceived of the medial axis or
skeleton, his goal was to use it as a means to cate-
gorize objects from their projected (2D) outlines
[4]. Specifically, by associating the direction of
increasing radius value along a skeletal branch,
or equivalently the direction of propagation of
singularies of the grassfire flow, he proposed the
concept of an axis-morphology or a-morph by
which to achieve object categorization. His basic
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insight was that this could lead to a decompo-
sition that reflected the qualitative part structure
of the object. As an example, ignoring their
detailed boundary geometry, outlines of hands
would have similar a-morphs and these would be
quite distinct from those of outlines of humans,
fish or other object classes. In fact, he drew
upon these later examples towards the end of his
classic paper [4], where he also sketched possible
extensions to 3D.

Whereas much has been written about medial
or skeletal representations over the years (see
[23] and also the medial axis/skeleton entry in
this encyclopedia) the idea that an a-morph was
essentially a directed graph which could be used
for object recognition caught on only in the early
1990s. One likely reason is that it took the image
analysis and computer vision communities many
years to develop robust algorithms for skeleton
computation. Since this time, however, a variety
of successful approaches to view-based recogni-
tion using shock-graphs have been proposed and
have been validated on large databases. Several
of these are described in the present entry. There
also exist more recent variants of the shock graph,
such as Macrini et al.’s bone graph [14], which
attempt to mitigate the representational instability
of the Blum medial axis. In fact, the mapping of
the Blum skeleton to a graph-based representa-
tion, of which the shock graph is the most widely
researched example, remains an active area of
investigation.

Theory

The Blum medial axis or skeleton of a 2D outline
is homotopic to it and is comprised of three types
of skeletal points: endpoints of skeletal curves,
interior points and branch points. The branch
points are generically of degree 3, i.e., three
skeletal curves are connected at a branch point.
A formal classification is presented in [11]. The
shock graph takes the 2D skeleton of a simple
closed curve as input (one without holes) and

labels each skeletal point according to whether
the radius function at it is increasing monotoni-
cally (a 1-shock), is a local minimum (a 2-shock),
is constant (a 3-shock) or is a local maximum
(a 4-shock). Groups of adjacent 1-shocks are
considered together, as are groups of 3-shocks.
Given this interpretation, a directed acyclic graph
is obtained by considering the skeletal points with
the largest radii, which are the last to form in
the grassfire flow, as the children of a dummy
root node. The children are then placed, recur-
sively, in order of decreasing radius value. This
process of reversing the grassfire flow and adding
1-shock groups or 3-shock groups as children, is
governed by the rules of a grammar, as shown
in [24].

Rather than provide all the details of the gram-
mar in this entry, the reader is referred to the
examples in Fig. 1, which show the construction
of the shock graphs of two brush shapes. The
medial axis of each object is shown in the bottom
row, with distinct groups of shocks being given
a unique color (3-shocks are shown in yellow).
In the labeling, the shock type appears first,
followed by a unique identifier. The associated
shock graphs are shown in the top row. It is
clear that each shape is abstracted by a single
root node (the 3-shock group describing the elon-
gated portion of the brush), with its children
being additional protrusions (1-shock groups).
One of these protrusions has a 3-shock group as a
child, which describes the handle of each brush.
From this example it is evident that the shock
graph is a formalization of Blum’s a-morph, with
the advantage that it lends itself to the use of
graph-based methods for object categorization, as
detailed below.

It is also important to point out that there is
a variant of the shock graph where the represen-
tation places the skeletal points at edges of the
graph, with the nodes representing connections.
This variant is described in detail in [18, 19]. This
representation has lead to different but equally
successful methods for object recognition, based
on a notion of the edit-distance between two
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Shock Graph, Fig. 1 The shock graphs derived for two
different views of a brush using the algorithm of Siddiqi
et al. [24] are represented in the top row. The bottom row

depicts the correspondences between nodes in the shock
graphs computed by the matching algorithm

graphs. The results of using this approach are also
briefly described below.

Shock Graph-Based Object
Categorization

An object categorization system based on shock
graphs consists of two components: (1) an index-
ing component, which takes an input shock graph
and returns, from a large database of model shock
graphs, a small number of candidate shock graphs
that might account for the input; and (2) a match-
ing component, which takes one of the candidates
and the input, and computes a similarity (or
distance), along with a set of node correspon-

dences. Under ideal conditions, the input shock
graph would contain no artifacts due to noise,
occlusion, or clutter, and would be isomorphic to
one of the model shock graphs (provided that the
input object represents one of the model objects).
However, such conditions are highly unlikely, for
in addition to noise, occlusion, and scene clutter,
ligature-induced instabilities [1] often lead to
spurious nodes/edges as well as medial branch
oversegmentation. Formulating the problem as
graph isomorphism, subgraph isomorphism, or
even largest isomorphic subgraph will not lead to
a meaningful solution, for large, or even signifi-
cant isomorphisms may simply not exist between
two shock graphs that represent instances of the
same category. The shock graph indexing and
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matching problems are therefore inexact graph
indexing/matching problems.

Indexing Shock Graphs
Given an input shock graph, the goal of the index-
ing module is to quickly (sublinearly) retrieve
a small number of candidate model database
shock graphs among which the input is likely
included. As mentioned above, the input shock
graph may be corrupted in a number of ways, pre-
cluding a simple global (based on the entire input)
indexing framework. For example: (1) occlu-
sion may remove part of the input shock graph
and replace the missing part with a shock graph
(or subgraph) belonging to a different object;
(2) shadows or poor ilumination may simply
delete some portion of the input shock graph; (3)
scene clutter may embed the object shock graph
(or portion thereof) in a much larger “scene”
shock graph; and (4) ligature-based instability
may introduce spurious nodes or may overparti-
tion other nodes in the input shock graph. These
factors require a part-based indexing framework
that can operate in the presence of noise, occlu-
sion, clutter, and ligature-based instability.

One such indexing framework that is applica-
ble to not only shock graphs but any hierarchical,
graph-based representation (specifically, any
directed acyclic graph-based representation)
was introduced by Shokoufandeh et al. [22],
originally for the purpose of shock graph
indexing. The key concept behind the approach
is to capture the abstract shape of a graph
(or subgraph) with a low-dimensional vector,
yielding an efficient indexing mechanism.
Capturing the abstract shape of a graph is
important so that the index is invariant to
noise and minor within-class shape deformation.
Indexing at the part level is important in the
presence of occlusion and scene clutter. Mapping
a discrete graph structure to a low-dimensional
point facilitates a simple nearest-neighbor search
in a geometric space for similar model parts
which, in turn, can vote for those model objects
that contain those parts. Those model objects
receiving the largest votes represent those
candidate objects passed to the shock graph
matching module for a more detailed analysis.

The graph-based shape abstraction is
computed at every non-leaf node, and captures
the abstract “shape” of the underlying subgraph
rooted at that node. Therefore, each non-leaf
node (with only four shock graph node types,
leaf nodes are far too uninformative/ambiguous)
“votes” for those objects that share its substruc-
ture; the root of the graph would therefore vote at
the object level, and would be meainingful only if
the object were unoccluded and not embedded in
a larger scene. Mapping the structure of a rooted
subgraph to a vector assigned to the subgraph’s
root is based on a spectral analysis of the graph’s
structure. The eigenvalues of a graph’s adjacency
matrix (whose values are 0,1, −1) capture
important properties of the degree distribution
of the graph’s nodes. The eigenvalues can be
combined to yield a low-dimensional abstraction
of the graph’s shape in terms of how and where
the edges are distributed throughout the graph.
Moreover, such a spectral “signature,” called
the topological signature vector, is proven to
be stable under minor perturbations of graph
structure due to noise. Details of the approach are
found in [22], while an application of the same
indexing framework to a different hierarchical
graph, specifically a 3-D medial surface graph,
can be found in [25].

Matching Shock Graphs
Given two shock graphs, e.g., one representing
the input and one representing a model candi-
date, the matching component needs to return not
only a similarity or distance measure that can be
used to rank order the candidates, but also an
explicit correspondence that defines which model
nodes correspond to which input nodes. Such
correspondence is necessary, for in the case of
a cluttered scene, those nodes found to match
a given model would be removed, and another
candidate model matched to the remaining nodes.
Moreover, the correspondence need not be one-
to-one, for in the case of ligature-induced medial
branch oversegmentation, node correspondence
many be many-to-many.

Siddiqi et al. [24] developed a matching algo-
rithm for shock graphs which, like the index-
ing framework of Shokoufandeh et al. [22] dis-
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cussed above, can be applied to the matching
of any directed acyclic graph structure, provided
that a domain-dependent node similarity function
is given. The algorithm is based on the same
spectral graph theoretic abstraction that forms
the heart of the indexing component described
above. The algorithm formulates the matching of
two graphs as finding a maximal matching in a
bipartite graph over the two nodes sets (input and
model). The edge weights (each spanning one
input shock graph node and one model shock
graph node) in the graph have two components:
(1) the distance between the two nodes’ respec-
tive topological similarity vectors, defining the
similarity of their underlying graph structures
(rooted at the two nodes); and (2) a node similar-
ity function (the only domain-dependent compo-
nent of the algorithm) that defines the similarity
of the node attributes (for shock graphs, this
encodes the geometric similarity between the
two skeletal branches corresponding to the two
nodes).

At first glance, the matching algorithm would
seem to throw out all the important hierarchical
structure in the two graphs (absent in the bipartite
graph); nodes in one graph are matched to nodes
in the other graph, but the edges in the two
original graphs appear to play no role. However,
the key contribution of the algorithm is that the
hierarchical edge structure is brought back via
the topological signature vector similarity term.
For the bipartite matching algorithm to match
two nodes (i.e., select that edge in the matching),
both their geometric similarity and their topo-
logical similarity must be high. In other words,
the contents of the two nodes must be similar
and the subgraphs rooted at the two nodes must
be similar. The algorithm iterates by computing
a matching, selecting the best edge from the
matching (having maximum similarity), adding it
to the solution set, and recursively continuing the
process on the remaining graphs (after removing
the pair of matching nodes defined by the best
edge). Details of the approach are found in [24],
while its application to other shape matching
problems is described in [21] (multiscale blob
and ridge graphs), [25] (medial surface graphs),
and [8, 26] (curve skeleton graphs).

The above algorithm eventually yields a one-
to-one node correspondence between the two
graphs. However, because the algorithm gener-
ates the node correspondence in a coarse-to-fine
manner, stopping the algorithm at the level of a
coarse node-to-node correspondence defines an
explicit many-to-many correspondence between
the nodes in the subgraphs rooted at the coarse
nodes. Moreover, since the topological signature
vectors are stable under small amounts of additive
graph noise, similarity can remain high even
though the two subgraphs may have different
numbers of nodes. As the cardinalities of the two
graphs’ node sets begin to differ more dramati-
cally, for example due to heavy under- or over-
segmentation, the method breaks down and more
powerful many-to-many graph matching must be
employed.

One such method for many-to-many graph
matching of medial axis-based graphs was
proposed by Demirci et al. [9, 10]. Their
algorithm transforms the graphs into a finite
dimension metric space in which an approximate
solution to the many-to-many matching problem
becomes tractable. The embedding step will
result in a set of points, each representing a
vertex of the original graph. Their proposed
embedding has the additional property that
pairwise distances between points in the target
metric space closely resemble the shortest-path
distances between the corresponding nodes in
the graphs. Matching two graphs can then be
formulated as the problem of matching their two
embeddings. The many-to-many matching of the
two embeddings then can be computed by solving
a transportation problem using the Earth Mover’s
Distance algorithm [7]. The solution of this latter
problem computes the mass which flows from
one weighted point set to another that minimize
the total transportation cost. The computed
flows, in turn, define the many-to-many node
correspondences between the original graphs.

The problemof matching shock graphs has
also been studied in the context of edit-distance
methods [18, 29]. These algorithms estimate the
cost of matching as a function of edit opera-
tions, including node relabelings, additions and
deletions, and edge contraction that transform
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one graph into another. A fundamental issue
in devising algorithms based on edit-distance is
the choice of cost of each operation. Torsello
and Hancock [29] use the heuristic proposed by
Bunke [5] for the cost associated with their edit
operations. For example, the cost of relabeling
elements is less than the cost of performing a
deletion followed by inserting a new node with
a new label. In contrast, Sebastian et al. [18]
propose a multi-step heuristic to derive their edit
costs. Their overall heuristic is centered around
the notion of a shape cell, i.e., a collection of
shapes which have identical shock graph topol-
ogy. They define the cost of the deformation oper-
ation as a function of the discrepancy between
matching shock attributes of shapes within a
given cell. The cost associated with other edit
operations is derived as the limit of the deforma-

tion cost when a shape moves to the boundary a
shape cell.

Caelli and Kosinov [6] show how inexact
matching can be utilized for measuring
shape similarity between shock graphs. Their
method establishes correspondence between
sets (clusters) of vertices of two given graphs
and as such can be viewed as a many-to-many
matching approach. Their algorithm can be
viewed as a generalization of the approach of
Scott and Longuet-Higgins [17]. The actual
matching is established using the renormalization
of projections of vertices into the eigenspaces
of graphs combined with a form of relational
clustering. Similar to other inexact matching
algorithms, their eigenspace renormalization
projection clustering method is able to match
graphs with different numbers of vertices.

Shock Graph, Fig. 2 Similarity between database and class prototypes computed using the algorithm of Siddiqi et al.
[24]. In each row, a box is drawn around the most similar shape
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Experimental Results

This section presents some examples of shock
graphs and their matchings using the approaches
described above. Figure 1(top) illustrates two
shock graphs, describing different views of a
brush, computed by the algorithm of Siddiqi
et al. [24]. The underlying shocks, along with the
computed matchings between segments (nodes),
are shown in Fig. 1(bottom). Figure 2 represents
the ability of the algorithm to compare objects
based on their prototipical or coarse shape. Here,
columns 2 through 10 denote the prototype views
for each of nine object classes. The similarity
between the prototypes and some of the objects in
the database is reflected in the rows of this table.
For each row, a box has been placed around the
most similar shape. Demirci et al. [9] also eval-
uated the effectiveness of their matching algo-
rithm for shape retrieval based on shock graphs
from the Rutgers Tool Database [24]. Figure 3
shows some examples of the many-to-many fea-
ture matching results obtained from the algo-
rithm for some of the objects in the Rutgers
Tools Database. Finally, Fig. 4 shows the results
obtained from applying the edit-distance algo-
rithm of Sebastian et al. [18] to the matching
of shock segments. Note that their edit distance
algorithm will also produce a sequence of inter-
mediate shock graphs that identify the steps of
the transformation of one input shock graph to
another.

Open Problems

Symmetry is a powerful shape regularity
that has formed the basis of many shape
representations, including generalized cylinders
[3], superquadrics [16], and geons [2]. Just as
geons provide a qualitative and discrete shape
abstraction of a generalized cylinder, shock
graphs provide a discrete and qualitative shape
abstraction of a medial axis. The resulting graph
is ideally suited to shape categorization, for
it is part-based, is stable under within-class
deformation, and is stable under part articulation.
However, the shock graph also faces some

Shock Graph, Fig. 3 The results of matching skeleton
graphs for some pairs of shapes in the Rutgers Tools
Database using the algorithm of Demirci et al. [9]. Cor-
responding segments are shown using the same color.
Observe that correspondences are intuitive in all cases

important challenges. First of all, it assumes
that a closed contour has been recovered from an
image, separating figure from background. While
figure-ground segmentation remains an open
research problem, it is important to note that in
a categorization system, a perfect figure-ground
separation may not be necessary. If a significant
portion of the figure’s boundary is correctly
segmented, a significant portion of the resulting
shock graph may be correct – enough to yield
the correct candidate (among the list of returned



Shock Graph 1165

S

Shock Graph, Fig. 4 The matching results for a few
shock graphs produced by the edit-distance algorithm of
Sebastian et al. [18]. Matching shock branches are shown

using the same color, while the gray colored edges in the
shock graphs indicate that they are spliced or contracted

candidates) during indexing. Still, while a shock
graph does preserve locality of representation,
significant figure-ground segmentation errors can
propagate through the representation, disrupting
it to a degree that prevents effective indexing.
A recent attempt to recover a symmetric part
decomposition from a cluttered scene has been
reported by Levinshtein et al. [13], in which
symmetric parts are detected locally (bottom-up)
and then grouped to form an approximation to a
medial axis.

The second challenge facing the shock graph
is the ligature-based instability discussed ear-
lier [1]. A number of approaches exist to try
and regularize the medial axis through boundary
smoothing, e.g., [12, 20, 27]; however, these
methods do not effectively address the ligature
structure. Other methods have sought to abstract
the medial axis by regularizing out small internal
branches, e.g., [28, 30]; however these meth-

ods don’t explicitly target ligature structure. A
recent promising approach to abstracting out lig-
ature structure is proposed by Macrini et al.
[14, 15], yielding a representation, called the
bone graph, whose parts are the non-ligature
medial branches that represent the salient parts
and whose edges represent the “glue” (defined by
the ligature branches) that binds the parts.
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Synonyms

Active camera calibration; Pan-tilt camera cal-
ibration; Pan-tilt-zoom camera calibration; PTZ
camera calibration
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Related Concepts

�Camera Calibration

Definition

Simplified Active Calibration (SAC) is defined
as a set of closed-form and linear mathemat-
ical equations to estimate the internal camera
parameters in active platforms where the camera
rotations are known or can be estimated.

Background

One of the main steps in many computer vision
applications is Camera Calibration to find a
mapping between the 3D world and its projection
on the 2D image. Estimating this mapping is
a twofold process consisting of intrinsic and
extrinsic parameters. Intrinsic or internal camera
parameters are focal length, center of projection,
pixel skew, and aspect ratio. Knowing these
internal elements, one can project points that
are in the camera coordinates onto the 2D
image coordinates. Extrinsic parameters, on the
other hand, transfer the points into the camera
coordinate system and are comprised of rotation
and translation of the camera.

A classic way of calibrating cameras is to
relate the 3D world to the 2D image using cal-
ibration objects such as grids, wands, or LEDs
or even by adding augmented reality markers
to a camera [14]. This imposes a major lim-
itation on the calibration task since the cam-
era can be calibrated only in off-line and con-
trolled environments. To address this issue, May-
bank and Faugeras [9, 12] proposed the so-
called self-calibration approach in which they
used the information of matched points in several
images, taken by the same camera from different
views, instead of using known 3D points (cali-
bration objects). In their two-step method, they
first estimated the epipolar transformation from
three pairs of views and then linked it to the
image of an absolute conic using the Kruppa
equations [12]. Not long after the seminal work of

Maybank and Faugeras, Basu proposed the idea
of Active Calibration [1, 2] in which he included
rotations of a camera and eliminated point-to-
point correspondences.

The main downside of the Active Calibra-
tion strategies (A and B) in [1–3] is that it
calculates the camera intrinsics using a compo-
nent of the projection equation in which a con-
straint is imposed by the degenerate rotations. For
example, after panning the camera, the equation
derived from vertical variations observed in the
new image plane is unstable. Furthermore, the
small angle approximation using sin(θ) = θ and
cos(θ) = 1 decreases the accuracy of strategies
when the angle of rotation is not very small. Also,
rolling the camera [4] is impractical (without
having a precise mechanical device) because it
creates translational offsets in the camera center.

Theory

Simplified Active Calibration (SAC) [5, 6] has
been inspired by the novel idea of approximating
the camera intrinsics using small rotations of the
camera which was initially proposed in [1,2] and
extended in [3, 4]. SAC is used for calibrating
active cameras that are mostly rotated around the
center of the camera. Therefore, the translation
vector of the camera has three zero elements.
The estimates obtained by the SAC equations
can then be used as an initial guess in a nonlin-
ear refinement process. More specifically, closed-
form equations for estimating the focal length of
the camera using only three images have been
proposed in [5]. Later in [6], linear solutions
for approximating the coordinates of the principal
point using the same three images that have been
used to estimate the focal length along with the
focal lengths have been proposed and evaluated.

Rotation Formulation
The rotation of the camera is defined by the Euler
angles and is denoted by a separate 3× 3 matrix.
The final rotation matrix can be calculated by:

R = RzRyRx (1)
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where Rx , Ry , and Rz denote the rotations about
x, y, and z, respectively. The elements of the final
rotation matrix are represented as:

R = [rij ]3×3 (2)

where i denotes the row-wise element indices and
j represents the column-wise element indices.

Camera Model
SAC makes an assumption that the camera is
placed at the origin of the Cartesian coordinate
system and is looking along z-axis where the
principal point is specified. It should be noted
that f represents the focal length of the camera.
Furthermore, the principal axis coincides with the
z-axis, and the image plane is perpendicular to the
principal axis. A point on the normalized camera
coordinates is denoted by x = [x y 1]T . Also,
the column (u) and row (v) coordinate axes of the
reference image plane are parallel to the x-axis
and the y-axis of the camera, respectively.

Every 3D point X = [X Y Z]T in the world
that is visible to the camera can be projected onto
a specific point v = [u v 1]T of the image plane
and can be calculated using the camera intrinsic
matrix.

K =
⎡
⎣fu s u0

0 −fv v0

0 0 1

⎤
⎦ (3)

Note, fu = f mu is the focal length of the
camera in the u direction (in pixels) and fv =
f mv represents the focal length of the camera
in the v direction. With modern cameras it is
reasonable to assume that sensor elements are
perpendicular and so the value of the camera
skew (s) is zero [10].

Also, any camera transformation is equivalent
to a similar transformation of the scene but in the
opposite direction [11]. For stationary cameras
that freely rotate but stay in a fixed location,
the camera transformation is only modeled by its
rotation. In other words, the translation of the
camera is zero. Therefore, every point v in an

image seen by a stationary camera is transformed
to a point v′ in another image taken after camera
rotation. The mathematical relationship between
v and v′ is thus represented by:

wv′ = KRT K−1v (4)

where w is the scale of the projection and repre-
sents the depth of the point. It should be noted
that RT = R−1 because the rotation matrix is
orthonormal.

Simplified Active Calibration Algorithm
Having access to the rotation of the camera, SAC
proposes a three-step process to calibrate the
camera:

1. Estimate the focal length in the u direction:
A closed-form solution to calculate an approx-
imation of the focal length in the u direction
(fu) using an image taken after a pan rotation
of the camera, assuming that u and v represent
the two major axes of the image plane.

fu ≈ u′ − r11u− (1− r11)cu

r31
(5)

where rij are known elements of the rotation
matrix at row i and column j .

2. Estimate the focal length in the v direction:
A closed-form solution to calculate an approx-
imation of the focal length in the v direction
(fv) using an image taken after a tilt rotation
of the camera.

fv ≈ r22v − v′ + (1− r22)cv

r32
(6)

where cu and cv are image centers in the u and
v directions, respectively.

3. Principal point: Having an image taken after
a pan and tilt rotation of the camera and
a reference image, SAC forms a system of
linear equations to estimate the location of the
principal point (u0, v0) in the image.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A+ I1 −Gu′1 B −Hu′1
...

...

A+ In −Gu′n B −Hu′n
D − v̂′1G E − I1 −Hv′1

...
...

D − v̂′nG E − In −Hv′n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
δu
δv

]

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

û′1I1 − C1
...

û′nIn − Cn

v̂′1I1 − F1
...

v̂′nIn − Fn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

where

A = −r11 , B = r21
fu

fv

C = r11û+ r21v̂
fu

fv

+ r31fu

D = −r12
fv

fu
, E = r22

F = r12û
fv

fu
+ r22v̂ + r32fv

G = − r13

fu
, H = r23

fv

I = r13
û

fu
+ r23

v̂

fv

+ r33

and û = u − cu, v̂ = cv − v where Cu and
Cv are image centers in the u and v directions,
respectively.

Therefore, SAC estimates the four main compo-
nents of the intrinsic matrix, namely, fu, fv, u0,
and v0, and hence, it requires three pairs of
images, one taken before and after a small pan
rotation, one taken before and after a small tilt
rotation, and one taken before and after a small
pan-tilt rotation.

Application

Generally, SAC can be used in any platform in
which information about the camera motion is
provided by the hardware, such as in robotic
applications where the rotation of the camera
can be extracted from the inertial sensors or in
surveillance control softwares that are able to
rotate the PTZ cameras by specific angles.

SAC has made a basic assumption about the
rotation of a fixed camera; i.e., to solve the pro-
posed equations, knowing the rotation angles of
the camera is necessary. The proposed formula-
tion can be used in practical applications such as
surveillance, because in PTZ cameras accessing
the camera motion information is straightfor-
ward.

The proposed closed-form formulations for
estimating the focal lengths can be solved with
only one point correspondence. Finding the cor-
respondence point is straightforward. Following
recent developments in feature extractors, one
can extract repeatable regions from a pair of
images. This is especially useful for applica-
tions that favor no point correspondences but
instead contour-to-contour correspondences that
were done in the original Active Calibration [4],
where instead of the reference and transferred
points in Eqs. 5 and 6, the average of contour
points or the centroid of the region can be used.
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Simulated Annealing

Juergen Gall
University of Bonn, Bonn, Germany

Synonyms

Monte Carlo annealing; Probabilistic hill climb-
ing; Statistical cooling; Stochastic relaxation

Definition

Simulated annealing is a stochastic computa-
tional technique derived from statistical mechan-
ics for finding near globally minimum-cost solu-
tions to large optimization problems [1].

Background

Many computer vision problems require the min-
imization of an application-dependent objective
function in a high-dimensional state space subject
to conflicting constraints. Finding the global min-
imum can be an NP-complete problem since the
objective function tends to have many local min-
ima. A procedure for solving hard optimization
problems should sample values of the objective
function in such a way as to have a high probabil-
ity of finding a near-optimal solution and should
also lend itself to efficient implementation. A
method which meets these criteria was introduced
by Kirkpatrick et al. [2] and independently by
Černy [3] in the early 1980s. They introduced
the concepts of annealing in combinatorial opti-
mization. These concepts are based on a strong
analogy between the physical annealing process
of solids and the problem of solving large combi-
natorial optimization problems.

Theory

Statistical mechanics is the study of the behavior
of very large systems of interacting components,
such as atoms in a fluid, in thermal equilibrium at
a finite temperature. If the system is in thermal
equilibrium at a given temperature T , then the
probability πT (s) that the system is in a given
state s depends upon the energy E(s) of the state
and follows the Boltzmann distribution:

πT (s) =
exp

(
−E(s)

kBT

)
∑

s′∈� exp
(
−E(s′)

kBT

) , (1)

where kB denotes a physical constant known as
the Boltzmann constant and � the set of all
possible states.

Using a technique developed by Metropolis
et al. [4], one can simulate the behavior of
a system of particles in thermal equilibrium at
temperature T . Suppose that at time t the system
is in state qt . Then, a subsequent state rt+1 is
generated by a perturbation mechanism which
transforms the current state into a next state. If the



Simulated Annealing 1171

S

energy difference, E(rt+1) − E(qt ), is less than
or equal to 0, the state rt+1 is accepted as current
state. Otherwise, the state rt+1 is accepted with
probability

p = πT (rt+1)

πT (qt )
= exp

(
−E(rt+1)− E(qt )

kBT

)
.(2)

Since the method accepts states that decrease the
energy as well as those that increase the energy,
it is the principle that avoids entrapment at a
local minimum. It can be shown that as t →
∞, the probability that the system is in a given
state s equals πT (s) and thus that the distribution
of states generated converges to the Boltzmann
distribution [5].

In order to obtain a low-energy state of the
energy function E, one must use an annealing
process, where the temperature of the system is
elevated, and then gradually lowered, spending
enough time at each temperature to reach thermal
equilibrium. Applying simulated annealing to an
optimization problem in computer vision where
the energy function becomes the objective func-
tion to minimize requires two ingredients:

– An annealing schedule consisting of a starting
temperature, a decreasing set of temperatures,
and the amount of time to spend at each
temperature;

– A perturbation mechanism that generates new
states.

The annealing algorithm proposed by
Kirkpatrick et al. [2] consists of running the
Metropolis-Hastings algorithm [4, 6] at each
temperature in the annealing schedule for the
amount of time prescribed by the schedule and
selecting the final state as a near-optimal solution.

Geman and Geman [5] applied simulated
annealing to image restoration and determined
an annealing schedule sufficient for convergence.
Specifically, for a given sequence of temperatures
{Tt } such that Tt → 0 as t →∞ and Tt ≥ c

log(t)

for a large constant c, the probability that the
system is in configuration s as t → ∞ is equal
to π0(s). For a finite set �, the optimal annealing

schedule for the convergence of the generated
states to the set of global minima with probability
1 was determined by Hajek [7].

Simulated annealing is not limited to discrete
state spaces. It can also be applied to minimize
objective functions defined on Euclidean spaces,
i.e., � ⊆ R

d , where similar convergence results
have been proved [8]. Further convergence results
and detailed discussions on simulated annealing
are given in the books [9, 10].

In the discrete case, the perturbation mecha-
nism depends usually on the application where
some examples are given in [9]. In the simplest
case, a new state is randomly sampled from a
local neighborhood of the previous state, e.g.,
by permutations, swapping, or inversions. In the
continuous case, the visiting distribution can be
modeled as Gaussian distribution that favors local
search, and the algorithm is also called the Boltz-
mann machine, but also other distributions like
the Cauchy-Lorentz distribution, known as fast
simulated annealing [11], can be applied. This
distribution results in frequently local searches
but can also generate a state that is very distant to
the current state. Having the state qt , a new state
rt+1 = qt +�s is generated by sampling from

gt (�s) = 1

(πTt )
d
2

exp

(
−‖�s‖2

Tt

)

(Boltzmann machine), (3)

gt (�s) =�(d+1
2 )

π
d+1

2

Tt

(‖�s‖2 + T 2
t )

d+1
2

(Cauchy machine). (4)

The new state is then accepted according to the
probability p (2). An approach that covers Gaus-
sian and Cauchy-Lorentz distribution as special
cases is called generalized simulated annealing
[12]. The generalized acceptance probability (2)
reads

p =
(

1+ (a − 1)(E(rt+1)− E(qt ))

T a
t

)− 1
a−1

,

(5)
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the generalized visiting distribution is defined by

gv
t (�s) =

(
v − 1

π

) d
2 �

(
1

v−1 + d−1
2

)

�
(

1
v−1 − 1

2

)

(T v
t )−

d
3−v

(
1+ (v − 1)

‖�s‖2

(T v
t )

2
3−v

) 1
v−1+ d−1

2

, (6)

and the generalized annealing schedule is given
by

T b
t = T b

1
2b−1 − 1

(1+ t)b−1 − 1
b ∈ {a, v}. (7)

Additional parameters (a, v) give an additional
flexibility where (1, 1) corresponds to the Boltz-
mann machine and (1, 2) to the Cauchy machine.
In practice, the optimal choice of (a, v) depends
on the objective function and needs to be empiri-
cally determined.

For speeding up simulated annealing, the algo-
rithm can be implemented in parallel [9]. The
annealing principle is also used for other opti-
mization methods. For instance, a deterministic
annealing method has been proposed for cluster-
ing [13], or an interacting particle system with
annealing properties has been proposed in [14]
and applied to human motion capture [15], where
at each iteration, a set of particles estimates the
current distribution.

6

a b

c
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Simulated Annealing, Fig. 1 (a) Function h(x, y). (b)
Visited points using Boltzmann machine and initial tem-
perature 100. The starting point, (0.8, 0.8), and the final

estimate are indicated by a white star. (c) Visited points
using Cauchy machine. The Cauchy machine cools down
faster, focusing the search more on low-energy regions
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Simulated Annealing, Table 1 Average and standard deviation for the obtained estimate (x̂, ŷ), its function value
h(x̂, ŷ), and the number of required function evaluations at different initial temperatures T1

T1 (x̂, ŷ) h(x̂, ŷ)× 10−5 � function evaluations

Boltzmann 1 (−0.02, 0.04)± (0.23, 0.37) 1.14± 2.00 1,681.9± 507.5

Cauchy 1 (0.42, 0.38)± (0.38, 0.43) 700.61± 3241.27 1,504.4± 461.0

Boltzmann 10 (−0.04,−0.01)± (0.38, 0.51) 7.16± 12.01 1,740.9± 573.0

Cauchy 10 (0.00,−0.02)± (0.46, 0.39) 0.20± 0.55 1,732.0± 580.7

Boltzmann 100 (−0.02, 0.03)± (0.34, 0.33) 2.41± 4.02 1,733.9± 560.8

Cauchy 100 (0.00, 0.02)± (0.19, 0.24) 0.50± 1.12 1,802.6± 494.0

Application

Since its introduction in 1983, simulated anneal-
ing has been applied for solving complex, non-
convex optimization problems in image process-
ing and computer vision. An overview of applica-
tions in the 1980s including the work of Geman
and Geman [5] is given in [9]. Nowadays,
simulated annealing is still an easy-to-implement
and practically useful tool for solving a wide
spectrum of optimization problems, particularly
for solving hard problems where no completely
successful heuristics exist. For an optimal per-
formance, however, the algorithm needs to be
tailored to the problem at hand.

Experimental Results

The following example for global optimization in
R

2 is taken from [16]: Let

h(x, y) = (x sin(20 y)+ y sin(20 x))2 · cosh

(sin(10 x) x)+ (x cos(10y)−y sin(10 x))2 ·
cosh(cos(20 y) y) (8)

be the objective function to minimize (Fig. 1). Its
global minimum is 0, attained at (x, y) = (0, 0).

In Table 1, results are shown for the Boltz-
mann and the Cauchy machine. The starting point
was (0.8, 0.8), and each simulation was repeated
100 times. Each simulation was stopped when the
average change in value of the objective function
in 1,000 iterations was less than 10−6. The table
contains the average and standard deviation for
the obtained estimate (x̂, ŷ), its function value

h(x̂, ŷ), and the number of necessary function
evaluations.
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Definition

Spectral decomposition is an expression of a
symmetric matrix in terms of its eigenvalues and
eigenvectors, while singular value decomposition
is a similar expression of a nonzero rectangular
matrix in terms of its singular values and singular
vectors.

Background

A linear mapping from Rn to Rm is represented
by an m × n matrix A. It is determined by the
images a1, . . . , an ∈ Rm of an orthonormal
basis {u1, . . . , un} of Rn in the form

A =
n∑

i=1

aiu�i . (1)

From the orthogonality 〈ui ,uj 〉 = δij (Kronecker
delta), where 〈 · , · 〉 denotes the inner product
of vectors, we can confirm that Aui = ai holds
indeed.

For an n × n symmetric matrix A, there exist
a real value λ, called eigenvalue, and a nonzero
vector u ( �= 0), called eigenvector, such that

Au = λu. (2)

An n×n symmetric matrix has n eigenvalues λ1,
. . . , λn (with possible overlaps), and the corre-
sponding eigenvectors u1, . . . , un can be chosen
to be mutually orthogonal unit vectors. Hence,
{u1, . . . , un} serve as an orthonormal basis of
Rn. Eigenvalues and eigenvectors are easily com-
puted using mathematical software [1, 2].

The relationship Aui = λiui , i = 1, . . . , n,
implies that A maps an orthonormal basis {u1,
. . . , un} to λ1u1, . . . , λnun. Letting ai = λiui in
(1), we can write the matrix A in the form

A =
n∑

i=1

λiuiu�i , (3)

which is called the spectral (or eigenvalue)
decomposition of A.

Theory

For a nonzero m×n matrix A( �= O), there exists
a positive value σ (> 0), called singular value,
a nonzero m-dimensional vector u ( �= 0), called
left singular vector, and a nonzero n-dimensional
vector v ( �= 0), called right singular vector, such
that

Av = σu, A�u = σv. (4)

The left and right singular vectors are referred to
simply as singular vectors.

Multiplying the first and the second equations
of (4) by A� and A, respectively, we can see that
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AA�u = σ 2u, A�Av = σ 2v. (5)

Namely, u and v are, respectively, the eigenvec-
tors of the m×m symmetric matrix AA� and of
the n × n symmetric matrix A�A for eigenvalue
σ 2. Hence, the number of singular values of
A equals the number of nonzero eigenvalues of
AA� and A�A, which is equal to the rank r of
A. Singular values and singular vectors are easily
computed using mathematical software [1, 2].

Since the singular vectors ui and vi are eigen-
vectors of symmetric matrices, the singular vec-
tors {ui} and {vi}, i = 1, . . . , r , can be chosen as
orthonormal sets. The set {vi}, i = 1, . . . , r , can
be extended to an orthonormal basis {vi}, i = 1,
. . . , n, of Rm, in such a way that vi , i = r + 1,
. . . , n, are the null vectors, i.e., eigenvectors for
eigenvalue 0, of A�A. Hence,

Avi = 0, i = r + 1, . . . , n. (6)

This and (4) imply that A maps an orthonormal
basis {v1, . . . , vm} to σ1u1, . . . , σrur , 0, . . . , 0.
Hence, from (1), the matrix A is written as

A =
r∑

i=1

σiuiv
�
i , (7)

which is called the singular value decomposition
(SVD) of A.

Pseudoinverse

If an m × n matrix A ( �= O) has the singular
value decomposition (7), its pseudoinverse (or
generalized inverse) of Moore-Penrose type is
defined by

A− =
r∑

i=1

viu�i
σi

. (8)

Some authors write A− for general (not neces-
sarily of Moore-Penrose type) pseudoinverse and
specifically write A+ for the Moore-Penrose type
to distinguish it from others.

Note that inverse is defined only for nonsingu-
lar (hence square) matrices, while pseudoinverse

is defined for all nonzero (generally rectangular)
matrices. The inverse of a nonsingular matrix
is defined so that its product with the original
matrix is the identity. This is not necessarily so
for pseudoinverse. From (7) and (8), we can see
that

AA− =
r∑

i=1

uiu�i (� PU), (9)

A−A =
r∑

i=1

viv
�
i (� PV). (10)

The matrix PU represents projection onto the
subspace U spanned by u1, . . . , ur . In fact, the
orthogonality 〈ui ,uj 〉 = δij implies that PUu =
u for u ∈ U and PUu = 0 for u ⊥ U. From
(7), we see that U coincides with the subspace
spanned by the columns of A. Similarly, the
matrix PV represents projection onto the sub-
space V spanned by the rows of A. Thus, the
product of a matrix A with its pseudoinverse A−
is the projection onto the subspace spanned by
the columns or the rows of A. Since the columns
and rows of a nonsingular matrix span the entire
space, for which the identity is the projection
onto it, pseudoinverse is a natural extension of the
inverse to arbitrary rectangular matrices.

Since the columns of A span the subspace U
and the rows span V, the following identities hold:

AA−A = A, A−AA− = A−. (11)

Historically, the first equation is the definition
of the general (not necessarily of Moore-Penrose
type) pseudoinverse, and the Moore-Penrose type
is obtained by requiring the second equation
(called reflexivity) and the condition that AA−
and A−A be symmetric.

Since pseudoinverse is defined for any
nonzero matrices, it can be defined for vectors,
regarded as n×1 and 1×n matrices. For a vector
a, the definition of pseudoinverse implies

a− = a�

‖a‖2 , (a�)− = a

‖a‖2 . (12)

Consider a linear equation
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Ax = b, (13)

where A is a nonzero m × n matrix, x is an n-
dimensional unknown vector, and b is a given m-
dimensional vector. The expression

x = A−b (14)

gives a least-squares solution such that (i) it
minimizes ‖Ax − b‖2 over all x and (ii) if the
minimum is not unique, it returns x for which
‖x‖2 is the smallest among them. This procedure
is an essential component of multiview 3D recon-
struction, using redundant geometric constraints
in the presence of noise [3].

Subspace Fitting

Given N points x1, . . . , xN in Rn, we consider
the problem of finding an r-dimensional subspace
(r < N ) that is the closest to them, where
the closeness is measured by the sum of square
distances. We assume that the coordinate system
is translated so that the origin O coincides with
the centroid of the N points. Let

S =
N∑

α=1

xαx�α. (15)

This matrix is called by many different names
such as the “moment matrix” and the “scatter
matrix” (both from physics). Here, let us call it,
for convenience, the covariance matrix, a term
borrowed from statistics.

The form of (15) implies that it is a positive
semidefinite symmetric matrix, having nonnega-
tive eigenvalues. Let σ 2

i be its eigenvalues and ui

the corresponding unit eigenvectors, i = 1, . . . , n.
The spectral decomposition of S has the form

S =
n∑

i=1

σ 2
i uiu�i . (16)

We can show that u1 is the direction of the line
from which the sum of square distances of the N

points is the smallest, u2 is the direction of the

line from which the sum of square distances of
the N points is the smallest among all directions
orthogonal to u1, u3 is the direction of the line
from which the sum of square distances of the
N points is the smallest among all directions
orthogonal to u1 and u2, and so on. Thus, it is
concluded that the r-dimensional subspace that
best approximates the N points is spanned by u1,
. . . , ur . They are called the principal directions
of the N points.

Hierarchical construction of such subspaces of
dimensions r = 1, 2, . . . is called the Karhunen–
Loéve (KL) expansion in the domain of sig-
nal processing, expanding individual signals with
respect to {ui}. The efficiency of transmission
and display of the signal improves by omitting
those basis vectors with small contributions. In
statistics, this scheme is called the principal com-
ponent analysis (PCA), used for extracting a
small number of statistics that characterize the
data well.

For most vision applications [4], however, we
need not compute the covariance matrix S. In
fact, let

X = (
x1 · · · xN

)
(17)

be the n×N matrix consisting of the data vectors
xα , α = 1, . . . , N , as its columns. The covariance
matrix S of (16) equals

S = XX�. (18)

The singular value decomposition of X has the
form

X =
n∑

i=1

σiuiv
�
i , (19)

because, as seen from (5), the eigenvalues of
S = XX� equals the squares of the singular
values of X; ui and vi are the eigenvectors of
XX� and X�X, respectively. Hence, the basis of
the fitted r-dimensional subspace is given by the
singular vectors u1, . . . , ur of X. This approach
considerably reduces the computational complex-
ity, since we need not compute the covariance
matrix S, which requires O(n2N) operations, and
the complexity of eigenanalysis is O(n3), while
for singular value decomposition, it is O(n2N)
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for N ≥ n and O(nN2) for n ≥ N [1], i.e., the
complexity is linear in the length of the “shorter
side” of the matrix.

Exploiting this fact, we can see that 3D recon-
struction, for example, from hundreds of thou-
sands of data points, which would require several
hours of computation using spectral decomposi-
tion, can reduce to several seconds using singular
value decomposition [3].

Matrix Product Representation

The spectral decomposition (3) is written as

A = (
λ1u1 · · · λnun

)
⎛
⎜⎝
u�1
...

u�n

⎞
⎟⎠

= (
u1 · · · un

)
⎛
⎜⎝

λ1
. . .

λn

⎞
⎟⎠
⎛
⎜⎝
u�1
...

u�n

⎞
⎟⎠

= U�U�, (20)

where U is the n × n matrix consisting of
the eigenvectors ui as its columns and � =
diag(λ1, . . . , λn). Multiplying the above equation
by U from right and U� from left, we obtain
U�AU = �, which is known as diagonalization
of the symmetric matrix A.

Using the same rewriting as (20), we can
express the singular value decomposition (7) in
the form

A = U�V �, (21)

where U and V are the m × r and n × r

matrices consisting of the singular vectors ui

and vi as their columns, respectively, and � =
diag(σ1, . . . , σr ). Then, the pseudoinverse (8) is
written as

A− = V �−1U�. (22)

Application

The singular value decomposition in the form
of (21) is utilized in the method of factoriza-

tion for 3D reconstruction from images [4, 5].
The singular value decomposition also plays a
central role in 3D vision computation problems
including optimal fundamental matrix estimation,
optimal rotation estimation, and multiview 3D
reconstruction computation [3].
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Synonyms

Generically describable situation; Situation
scheme

Definition

Situation Graph Trees (SGTs) provide a deter-
ministic formalism to represent the knowledge
required for human behavior modeling.
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Background

In many domains, high-level descriptions to rep-
resent the status of an environment are desirable.
Describing a situation requires to conceptual-
ize the knowledge about the possible actions of
the actors involved in the environment and their
possible interactions. Conceptual descriptions of
different application domains like traffic analy-
sis [1], parking lot security [2, 3], and human
behavior recognition [4] are of primary impor-
tance. The conceptualization can proceed from
simple descriptions (simple events) to complex
descriptions (complex events). Following rela-
tions, concepts can be aggregated into more com-
plex concepts. Hence, an event can be described
as a sequence of simple events. To allow such
an incremental description of the events, two
main processes are required: (a) modeling of the
behaviors and (b) the reasoning engine. Different
approaches like Bayesian networks [5], hidden
Markov models [6], SVM [7], and deep learning
[8] have been investigated. However, in complex
environments, such models are difficult to apply
as they would require a large amount of data for
training the models. In such cases, a formalism
to model behaviors by means of temporal and
semantic relationships or specialization of funda-
mental concepts can be useful. Situational Graph
Trees (SGTs) represent such a modeling tool.

Theory

The Situation Graph Trees (SGTs) [9] provide a
deterministic formalism to represent the knowl-
edge necessary to describe an actor behavior.
Generally, SGTs are based on the description of
the situation that consists on an agent state and
the possible actions that the agent can actuate in
such a state. Thus, a hierarchy of possible situa-
tion is defined on temporal and conceptual terms.
This means that given a recognized situation only,
its possible successor is evaluated at the next time
instant.

The fundamental block of the SGT is the
situation scheme that represents the knowledge

of an agent for a given time instant. A situation
scheme is composed by sections:

– State: describe the state of an agent in terms of
predicates

– Action: describe the possible and supposed
actions that an agent can do whenever one of
the state predicates is satisfied

Situation schemes are connected by means of
direct edges (called prediction edges) to define
a temporal successor relationship between sit-
uation schemes. When an agent is instantiated
by its predicates, a possible next situation is
represented by a scheme pointed by a prediction
edge originated by the current situation. If an
agent keeps on staying in its current situation for
more than a single time instant, self-prediction
edges, starting from a situation and pointing to
itself, are used to model such a behavior. Thus, a
situation scheme can be a ring of a chain of situa-
tion schemes describing a sequence of situations.
Such sequences, composed by situation schemes
and prediction edges, are called situation graphs.
A situation can be temporally or conceptually
refined by particularizing its situation scheme. In
such a case, a situational graph is connected to a
situational scheme by means of a particularized
edge. Following [9], it is possible to derive the
following definitions for SGTs:

Definition 1 (SGT-episode) Any sequence E of
situations inside a situation graph G that is a path
from a start situation to an end situation is defined
as SGT-Episode.

Definition 2 (Particularized SGT-episode) Any
SGT-Episode of a situation graph G particulariz-
ing a situation scheme s is defined as a particular-
izing SGT-Episode.

Definition 3 (SGT-event) Given a SGT T , an
event is defined as:

– Any SGT-Episode E within the root situation
graph of T .

– Given an SGT-Event E, replacing any situa-
tion S in E with a particularized SGT-Episode
of S is a new SGT-Event.
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Definition 4 (Particularized SGT-event) Given
a SGT T and a SGT-Event E, a SGT-Event Ê is
defined as a particularized SGT-Event of E iff Ê

is obtained from E by substituting any situation
scheme S of E with a particularized SGT-Episode
of S.

Definition 5 (Maximal event) Given a SGT T ,
any SGT-Event E is a maximal event iff there
not exists a situation scheme S in E that can
be substituted with a particularized SGT-Episode
of S.

Definition 6 (Compatible events) Given a SGT
T , E and E′ are compatible events iff:

– Each situation scheme in E is a situation
scheme in E′.

– For each pair (Si, Sj ) in E where Si proceed
Sj , there is the same pair in E′.

Representation

The common representation of SGTs is given
in Fig. 1. Situation schemes are represented as
rectangles and situation graphs as set of rectan-
gles with rounded corners. Start situations (end
situations) are depicted with small rectangles
in the upper left (right) corner of the situation
schemes. Prediction edges are thin arrows that
decide the current situation and the possible next
situation. Thick arrows represent particulariza-
tion edges.

Situation Graph Trees,
Fig. 1 Example of SGT
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Get_Off_Car

Person_Appears_near(Person,Car_1)

Parking_Car

Standing_on Parking Spot(Car_1)
Person_Appears_near(Person,Car_2)

Parked_On_Spot
On_Spot(Car_1,Position)
Has_speed(Car_1,speed)

Entering_Spot

Close_to_Spot_(Car_1,Position)
Has_direction(Car_1,path)

Not_near_Spot(Car_1,Position)
Has _speed(Car_1,speed)

Drive_To_Parking_Spot

Look_For_Parking_Spot

Change_Car

Is_true(Car_1,Car_2,Person)

Close_to_Spot(Car_1,Position)

Walk_To_Car

Person_Disappears_near(Person,Car_2)

Get_In_Car

Situation Graph Trees, Fig. 2 Example of SGT for an event of interest in a parking lot monitoring context

Application

A common application of SGTs is the represen-
tation of behaviors in video-surveillance context.
In such a field, contrary to anomaly detection
algorithm, expected behaviors or behaviors of
interest can be defined for all the actors/agents
operating inside the monitored environment. To
represent such behaviors, SGT can be powerfully
exploited. As example in a parking lot, the mon-
itoring application may be interested in detecting
and recognizing a person driving into a parking
spot, leaving the parked car, and driving away
on board of a second car. Such an event can be
described by the SGT depicted in Fig. 2 that can
be further particularized in the situation schemes
of the first child node.
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Synonyms

Sparse representation

Definition

Sparse coding is the act of expressing a given
input signal (e.g., image or image patch) as a
linear superposition of a small set of basis signals
chosen from a prespecified dictionary.

Background

At a high level, the problem of sparse coding
is one of representing a given input signal as
efficiently as possible:

Given an input signal y ∈ R
m (say an image or

image patch) and a dictionary of basis signals
a1 . . . an ∈ R

m, find a good approximation

y ≈ x1a1 + x2a2 + · · · + xnan

in which most of the coefficients xi are zero.

That is, we try to represent y as a linear
combination of basis elements in which only a
few of the coefficients are nonzero (i.e., the vector
x = (x1 . . . xn) is sparse). This deceptively sim-
ple problem arises repeatedly in signal process-
ing, modern statistics, and machine learning. The
most readily apparent application is in data com-
pression, where we can consider the sparse coeffi-
cients x as a compressed representation of the sig-
nal y. However, numerous additional applications
arise in signal and image acquisition, denoising,
and inpainting. Sparse coding techniques have
also received significant attention in the statistics
literature, where sparsity is recognized as a means
of regularizing high-dimensional inference – in
particular, for regularizing linear regression when
the number of predictors is larger than the number
of observations.

These interactions make sparse coding a very
vibrant area of research, with contributions from
statistics, signal processing, optimization, applied
mathematics, and cognitive neuroscience. Indeed,
the term “sparse coding” originally comes from
the neuroscience literature, where it has been
observed that seeking a sparse codes for natural
image patches yields Gabor-like basis functions
that resemble the receptive fields in the human
visual system [1]. In applied mathematics and
statistics, a deep literature has developed around
the question of when it is possible to solve sparse
coding problems efficiently.

While the tools and problems encountered in
sparse coding have precedents dating back almost
a century, much of the development has been
relatively recent. In computer vision, techniques
from sparse coding (and related areas of sparse
error correction and compressed sensing) have
been employed for recognizing faces and objects,
performing image upsampling, denoising, and
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superresolution. At the time of writing this arti-
cle, sparse coding techniques are the subject of
intense exploration in the vision community [2].

Theory

The model problem in sparse coding is one of
searching for the sparsest representation of a
given input signal y as a linear combination of
dictionary elements:

minimize ‖x‖0 subject to Ax = y. (1)

Above, the �0-pseudonorm

‖x‖0 = # {i|xi �= 0}

simply counts the number of elements in x that
are not zero. Although conceptually desirable, the
problem (1) is computationally intractable (hard
to approximate in the worst case), and so it is
common practice to replace the �0 norm with a
more tractable surrogate. One way to do this is to
instead minimize the �1-norm

‖x‖1 =
∑

i

| xi | .

This gives a convex optimization problem

minimize ‖x‖1 subject to Ax = y. (2)

This relaxation is well motivated, in the sense
that the �1 norm can be shown to be the tightest
convex underestimator of the �0 norm over the
set of all vectors x with maxi |xi| ≤ 1. Moreover,
whereas the nonconvex cardinality minimization
problem (1) does not admit an efficient algorithm,
the convex problem (2) can be cast as a linear pro-
gram and solved efficiently. For more details on
available techniques for solving the optimization
problem (2), the interested reader can refer to the
survey paper [3].

In certain situations, the link between (2) and
(1) can be made quite a bit tighter. When the
dictionary A satisfies technical conditions that
essentially assert that its columns are not too

collinear, it can be shown that these two problems
are formally equivalent: the tractable optimiza-
tion (2) exactly recovers the sparse solution to
(1)! For example, suppose that the columns ai of
A have unit �2 norm, and let

μ (A)
.= max

i �=j

∣∣〈ai , aj

〉∣∣ . (3)

Then, whenever y = Ax0 for some x0 satisfy-
ing

‖x0‖0 <
1

2
(1+ 1/μ (A)) , (4)

we have that x0 is the unique optimal solution to
the �1 minimization (2). That is to say, whenever
there exists a sufficiently sparse solution to the
system of equations y = Ax, this solution will
be recovered by �1 norm minimization. Variants
of this result have been obtained by a number
of authors; the version described above is due to
Donoho and Elad [4]. There is a vast literature
on guarantees for �1-minimization – in particular,
a family of beautiful results on �1-minimization
with random matrices A has inspired the recent
development of compressed sensing, an approach
to more efficiently acquire signals that are sparse
in some known basis. For readers who are inter-
ested in learning more, one starting point is the
survey paper [5].

In practice, the observation y may contain
noise, and so it is desirable to relax the constraint
Ax = y. This leads to a new convex program

minimize ‖x‖1 subject to ‖Ax − y‖2 ≤ ε, (5)

which is known in the signal processing literature
as basis pursuit denoising [6]. Its Lagrangian
reformulation,

minimize ‖x‖1 + λ‖Ax − y‖2
2/2, (6)

is known as the Lasso in statistics [7]. The
optimization problems (5) and (6) are equivalent
under an appropriate calibration ε ↔ λ, although
no explicit expressions for the corresponding
parameters are known.
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The theoretical results alluded to above make
�1-minimization a very attractive approach to
sparse coding. However, it is by no means
the only available algorithm. Researchers have
explored a number of nonconvex objective
functions which may more closely approximate
the �0 norm in (1), at the expense of being hard to
solve in general. Examples include the �p norms
‖x‖p =

(∑
ix

p
i

)1/p
(0 < p < 1) (0 < p < 1) and

entropy-like functions such as
∑

i log (1 + |xi|2).
Greedy algorithms comprise another popular

alternative to �1-minimization. These algorithms
construct a solution x via an iterative procedure
that repeatedly selects a “best” dictionary ele-
ment ai to add to the representation. One pro-
totypical example is the Orthogonal Matching
Pursuit (OMP) algorithm [8] (which has been
rediscovered in a number of different settings).
OMP maintains an active set of indices J and a
residual r. Initially, J is empty, and r = y. At
each step, the index j ∈ {1 . . . n} that maximizes
|〈aj, r〉| is added to the active set J. The sparse
coefficients x are estimated via

minimize ‖y −Ax‖2
2 subject to x

(
J c
) = 0.

(7)

The residual r is updated as r = y – Ax.
This procedure is repeated until a sufficiently
accurate approximation to y is obtained. OMP
is attractive for its simplicity and also comes
with performance guarantees in some situations;
the interested reader can refer to [5] and the
references therein for a start.

All of the algorithms described above assume
that the given observation y indeed has a sparse
approximation in terms of a known dictionary A.
In some situations, this can be guaranteed from
prior understanding of the physical structure of
the problem. For example, in face recognition,
the dictionary A can be constructed from images
of training faces chosen in order to guarantee
a good approximation of the test image y [9].
In other situations, it may be possible to design
optimal representations for classes of signals –
as witnessed by the development of signal rep-
resentations in signal processing and harmonic
analysis over the past few decades.

However, if the signal model is not known
ahead of time, or if the specific class of sig-
nals is believed to have some additional struc-
ture, an attractive alternative is to attempt to
learn the dictionary A itself from sample data.
This leads to a problem known as dictionary
learning, in which we observe multiple examples
Y = y1 . . . yp ∈ R

m. The goal is to find a dictio-
nary A ∈ R

m × n of basis functions and sparse
coefficient vectors X = x1 . . . xp ∈ R

n such that
Y ≈ AX:

minimizeA,X‖X‖0 subject to ‖Y −AX‖F ≤ ε.

(8)

Notice that here the minimization is with
respect to both A and X, and so even if we relax
the �0 norm, the resulting optimization problem,

minimizeA,X‖X‖1 + λ‖Y −AX‖2
F /2, (9)

is not convex, and guaranteeing a global optimum
is difficult. The key observation is that if either
A or X is fixed, the optimization (9) becomes
convex in the remaining variable. This naturally
suggests an alternating directions approach:

Xk+1 = arg min
X
‖X‖1 + λ‖Y −AkX‖2

F /2

(10)

Ak+1= arg min
A
‖Xk+1‖1 + λ‖Y −AXk+1‖2

F /2.

(11)

Each of these subproblems can be solved effi-
ciently. It is not difficult to show that this proce-
dure converges to some pair (A�, X�). However,
unlike the problem of sparse coding in a known
dictionary A (as discussed above), for dictionary
learning there is currently no theory to explain
when the algorithm will succeed. This is partially
a consequence of the fact that the unknowns A
and X enter into the equation Y = AX in a
bilinear fashion – the dictionary learning problem
is difficult to analyze for the same reason that it is
difficult to solve.

Nevertheless, empirical evidence suggests that
there are situations in which this approach learns
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very effective data representations, and many
researchers have used dictionary learning tech-
niques to solve problems in image processing and
vision. In fact, much of the initial excitement
about sparsity in vision came from the classical
paper of Olshausen and Field [1], which observed
that the dictionary elements ai learned from nat-
ural images patches are similar to the receptive
fields in the human visual system.

Many variants of the basic alternating direc-
tions approach have been investigated in the liter-
ature. For a more thorough history and additional
references, we refer the interested reader to the
survey paper [10].

Application

As alluded to above, at the time of this writing,
numerous applications of sparse coding are being
explored in the computer vision community. Due
to their sheer number, most of these works lie
beyond the scope of this article. In this section
we briefly outline two examples of how the algo-
rithms for sparse coding can be useful for solving
problems in imaging and vision. The interested
reader is invited to see [2] for a more thorough
review.

Our first example comes from automatic face
recognition [9]. In this application, the “dictio-
nary elements” ai are training images of subjects
in the database. Several images of each subject
are taken under varying illumination, stacked as
vectors in R

m (here m = W × H is the number
of image pixels), concatenated together to form a
large matrix A ∈R

m × n. Given a new test image y
taken under new illumination, and possibly sub-
ject to some additional corruption or occlusion,
one can solve a sparse coding problem:

minimize ‖x‖1 + ‖e‖1 subject to y = Ax + e.

(12)

Here, the sparse “error” term e allows some
robustness to occlusion, while the sparse coef-
ficients x naturally select images of the same
subject to participate in the representation of y.
This sparse code can be used for identifying the

subject pictured in y or rejecting impostors not
present in the database; see [9] for details.

Another representative example comes in
image inpainting and superresolution [11, 12].
Suppose that patches y of a given input image
are known to have good sparse approximations
in some dictionary A, learned from a large
collection of natural image patches. Suppose
that some of the image pixels missing, so that
rather than observing y ∈ R

m, we observe only
a subset y(�), where � ⊂ {1 . . . m}. Then, one
very natural approach to recovering the missing
pixels is to solve a sparse coding problem (In
[11], greedy algorithms are used, rather than
�1-minimization.)

minimize ‖x‖1 subject to

‖y (�)− P �Ax‖2
2 ≤ ε2,

(13)

where P� ∈ R
�� � × m is a projection matrix onto

the coordinates indexed by �. Once the solution
x̂ is recovered, one can estimate the missing
elements via ŷ = Ax̂. For more examples of
how sparse coding algorithms can be used in
inpainting and related problems, see [11].

Open Problems

At the time of writing this article, there are
numerous open problems in sparse coding, many
of which are currently under vigorous attack. One
question that has received significant recent atten-
tion is how to incorporate additional structure
or prior knowledge into the algorithm to allow
more accurate recovery of the sparse coefficients
x. This leads to notions such as “group sparse
coding,” in which certain subsets of coefficients
are known to all be either active or inactive,
simultaneously [13].

For some vision applications, explaining the
good performance of sparse coding techniques
and understanding their limitations remain open
problems. At the same time, with so much recent
development, we arguably have yet to fully real-
ize the full power of sparsity for vision prob-
lems.
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Interface reflection; Mirrorlike reflection;
Specular highlight
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Definition

Specular reflection occurs when light is
incident on a boundary interface between two
different media and immediately reflects back
to the medium where it comes from. Specular
reflectance is the ratio of the reflected light
by a boundary interface to the incident light.
The visual appearance of specular reflections is
known as specularity or specular highlight. To
find the regions of surfaces that exhibit specular
reflections is generally known as specularity
detection.
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Background

Reflection of light from an object is principally
caused by the surface and body of the object.
The former is known as specular or interface
reflection and the latter is body or diffuse
reflection. The specular reflection is the shiny
mirrorlike reflection, which is commonly present
in both man-made and natural objects. Mirrors,
glass, ceramics, gold, silver, many fruits’ skins,
some leaves, etc. emit specular reflections. The-
oretically, by considering the definition, almost
all objects emit specular reflections, although
the amount of the reflections varies depending
on the object’s optical properties, such as the
surface roughness and the Fresnel reflection
coefficient.

There are two main reasons why specular
reflection is important in computer vision:
(1) Many algorithms in computer vision
assume perfect diffuse reflections and deem
specular reflections to be outliers. However,
in the real world, the presence of specular
reflections is inevitable. Hence, incorporating
the knowledge of specular reflections is essential
to make the algorithms more robust. (2) Many
computer vision algorithms may benefit from the
information conveyed by specular reflection. This
information includes the photometric and the
geometric information, where the photometric
information may be important for material
recognition and the geometric information may
be useful for shape recognition.

Theory

Fresnel equations describe the reflection and
transmission of light or electromagnetic waves
at an interface between two media of differing
refractive indices. According to the equations,
when unpolarizing light impinges on a point
of a flat and smooth surface, the reflection
coefficient is R = 0.5(R⊥ + R‖), where R⊥
and R‖ are the reflections of the electric field
when it is perpendicular and parallel to the
surface, respectively. The reflection coefficient
is dependent on the angle of incoming light with

respect to the surface normal and the refractive
indices of the two media.

When a surface is perfectly flat and smooth
(i.e., a perfect mirror), the direction of specular
reflection will follow the law of reflection, which
states the angle of incoming light θi and the angle
of outgoing reflected light θr are the same (θi =
θr ). This implies that the specularly reflected light
cannot be seen by an observer if the observer’s
position is not at the same direction as θr , which
is true for the case of perfect mirrors. However,
in many objects which are not perfect mirrors, a
certain degree of specularity is still observable,
even though the observer’s position is slightly
apart from the direction of θr . In other words,
specular reflections do not only form a sharp
line (spike) distribution of reflection but also
form a lobe distribution. Therefore, there are two
components of specular reflections: (1) specular
spike and (2) specular lobe.

The Torrance-Sparrow reflection model [1]
provides a good approximation of the specular
lobe component, which is expressed as:

ρ = FG

cos θr

exp

(
− α2

2σ 2

)
(1)

where F is the Fresnel reflection coefficient, G is
the geometrical attenuation factor, θr is the angle
between the viewing direction and the surface
normal, α is the angle between the surface normal
and the bisector of the viewing direction and
the light source direction, and σ represents the
surface roughness.

The Torrance-Sparrow reflection model uses
geometric optics to describe the mechanism
of specular reflection, which is only valid
when the wavelength of light is much smaller
than the roughness of the surface. According to
[2], the model uses a slope distribution model to
represent the profile of a surface. The surface is
assumed to be a collection of planar microfacets,
where their dimension is much larger than the
wavelength of incident light. Each microfacet
is perfectly smooth, and the orientation of each
facet deviates from the mean orientation of the
surface by an angle α. The model considers
the masking and shadowing of microfacets by
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adjacent facets, where they can block light
going into a facet or light reflected by it. The
geometrical attenuation factor, G, is introduced
to compensate the masking and shadowing effect.
The surface roughness, σ , represents the spatial
distribution of the lobe. The larger the value of
σ , the larger the lobe distribution (implying less
shiny surfaces), and vice versa. In this reflection
model, the distribution of the specular reflections
follows the Gaussian distribution, with mean
α and standard deviation σ . Later, Cook and
Torrance [3] replaced the Gaussian distribution
with the Beckmann distribution function.

While the Torrance-Sparrow reflection model
is able to approximately generate a mirrorlike dis-
tribution, namely, when σ is considerably small,
its main drawback is that it cannot generate both
the specular spike and specular lobe at the same
time. To overcome this drawback, Nayar et al. [2]
introduced a model unifying Torrance-Sparrow’s
specular lobe and a spike specular model, and the
latter is modeled as:

Kssδ(θi − θr)δ(φr) (2)

where Kss is the strength of the specular
spike and (θr , φr ) is the direction of the reflected.
Nayar et al. base their analysis on the Beckmann-
Spizzichino reflection model [4], which predicts
the presence of both the specular lobe and
spike. Unlike the Torrance-Sparrow reflection,
the Beckmann-Spizzichino reflection model is
based on physical optics analysis derived from
Maxwell’s equations.

In comparison with diffuse reflections, in prin-
ciple, specular reflections have three different
properties [5]:

1. The diffuse and specular reflections have
different degrees of polarization (DOP). The
DOP represents the ratio of the light being
polarized. For unpolarized incident light, the
DOP of specular reflection is larger than
that of diffuse reflection for most angles
of incidence light, meaning that specular
reflection is generally more polarized than
diffuse reflection [6–8].

2. While recently a number of researchers (e.g.,
[9]) have introduced more complex models,
the intensity distribution of diffuse reflections
approximately follows Lambert’s law [10]. In
contrast, the intensity distribution of specu-
lar reflections generally follows the Torrance-
Sparrow reflection model [1].

3. For optically inhomogeneous objects, the
spectral power distribution (SPD) of specular
reflection is determined by the object’s
interface spectral reflectance, which is mostly
constant throughout the wavelength of visible
spectrum, causing the SPD of specular
reflections to be the same as the illumination’s
SPD [11]. In contrast, the SPD of diffuse
reflection is determined by the object’s body
spectral reflectance. This spectral power
distribution (color) independence of diffuse
and specular reflections was described in the
dichromatic reflection model proposed by
Shafer [12].

Note that the condition that the SPD of specular
reflections is the same as the illumination’s SPD
is called neutral interface reflection or NIR [11].
This mostly occurs for the surfaces of optically
inhomogeneous objects (such as ceramics, plas-
tics, paints); however, it does not always occur
for the surfaces of optically homogeneous objects
(such as gold, bronze, copper) [13].

Application

Many existing algorithms in computer vision
assume perfect diffuse surfaces and deem
specular reflections to be outliers. However, in the
real world, the presence of specular reflections
is inevitable since there are many objects that
exhibit both diffuse and specular reflections. To
properly acquire the diffuse-only reflections, a
method to separate the two components robustly
and accurately is required (e.g., [5]; see Fig. 1
for an example of the separation). Once this
separation has been accomplished, the specular
reflection component can be advantageous since
it conveys useful information of the object
photometric properties (e.g., [6, 14]). Moreover,
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Specularity, Specular Reflectance, Fig. 1 (a) A
dichromatic object exhibiting both diffuse and specular
reflection. (b) The separated diffuse reflection component.

(c) The separated specular reflection component. The
results were computed using [5]

specular highlights are useful for estimating
illumination colors or color constancy (e.g.,
[15]). Aside from the photometric properties,
specular reflections can be employed to estimate
the geometric properties (e.g., [16–18]).

Open Problems

Without knowing the polarizing states and only
analyzing image intensities, specularity detection
from a single image is still an open problem.
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Synonyms

Piecewise polynomial

Related Concepts

�Algebraic Curve
� Parametric Curve

Definition

In mathematics, splines are piecewise continu-
ous functions, such as polynomials, defined in
successive subintervals. They are often used to
represent one- or multidimensional data set (e.g.,
a curve or a surface) in the applications requir-
ing interpolation, smoothing or nonrigid trans-
formation [1]. For example, a spline curve is a
piecewise collection of curve segments defined
in polynomials that are connected end to end to
form a single continuous curve. A curve in L-
dimensional space can be simply defined by the
following form:

S : [a, b] → R
L, (1)

where function S takes variables from an interval
[a, b] and maps them to an L-dimensional real
number. If the interval [a, b] is divided into k
ordered disjoint subintervals ti, ti+1 with

a = t0 ≤ t1 ≤ · · · ≤ tk = b, i = 0, . . . , k − 1,

(2)

then in each subinterval [ti, ti+1] there is a poly-
nomial defined as

Pi : [ti , ti+1] → R
L. (3)

Therefore,

S(t) = Pi(t), ti ≤ t < ti+1, (4)

where ti is called a knot and vector t = (t0, . . . ,
tk)T is called a knot vector.

Many types of splines have been developed
through that P(t) is defined in different types
of functions. Some examples of representative
splines are Bézier spline, B-spline, Nonuniform
rational B-spline and Thin-plate spline which are
briefly introduced in the following sections.

Bézier Spline
The polynomial for Bézier spline of degree n is

P(t) =
n∑

i=0

Bn
i (t)pi , (5)

where pi (∈RL) are called the control points of a
Bézier spline, and Bn

i (t) are the basis functions
determined by Bernstein polynomials of degree n
as

Bn
i (t) = n!

i! (n− i)! t
i (1− t)n−i . (6)

Several Bézier spline curves can be concate-
nated by sharing the first and last control points.
While a Bézier spline has C1 continuity to its
defined interval, at the shared control points it
gets C0 continuity. C1 continuity can be achieved
by sharing two control points at the end of two
curves. An improvement that adds an adjustable
weight to each basis can make it easier to con-
trol and more closely approximated to arbitrary
shapes.

B-Spline
Similar to Bézier spline, the polynomial for B-
spline is defined as

P(t) =
n∑

i=0

Ni,k(t)pi , (7)
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where pi (∈RL) are called the control points of
a B-spline curve and the basis functions Ni, k(t)
of degree k can be derived by the recurrence
equations as

Ni,1(t) =
{

1 (ti ≤ t < ti+1)

0 (otherwise)
(8)

Ni,k(t) = t−ti
ti+k−1−ti

Ni,k−1(t)

+ ti+k−t
ti+k−ti+1

Ni+1,k−1(t)
(9)

The knots ti for B-spline are generally with
uniform, open uniform or nonuniform intervals.

Compared to Bézier splines, B-splines can
have C2 continuity at the joint control points.
B-splines is more flexible and pleasing to work
with, and thus it is popular in various graphics
development environment.

Nonuniform Rational B-Splines (NURBS)
Since B-spline can be viewed as weighted sum
of its control points and the weights Ni, k usually
have the property:

∑n
i=0Ni,k(t) = 1. As weights

Ni, k(t) of B-spline depend only on the knot vec-
tor, it is useful to add to every control point one
more weight wi which can be set independently
as

P(t) =
∑n

i=0 wiNi,k(t)pi∑n
i=0 wiNi,k(t)

. (10)

Then increasing a weight wi makes the point
more influential and attracts the curve to it.
NURBS is often employed in computer-aided
design systems.

Spline Surface
Not only for curve representation, spline is easy
to be extended for representing a surface seg-
ment. Appropriately parameterized 2D variables
are required for defining the 2D region subinter-
val to control a surface. For example, through
a parameterized u-v plane, Bézier spline can be
used to represent a surface with the following
form:

P (u, v) =
m∑

i=0

n∑
j=0

Bm
i (u)Bn

j (v)pij , (11)

where pij (∈R3) are the control points of Bézier
spline surface.

Thin-Plate Spline (TPS)
Different to Bézier spline or B-spline in paramet-
ric form, Thin-plate spline (TPS) explicitly takes
the point x on a curve or a surface as the variable
and maps it to a new value f(x). A TPS func-
tion is often composed of a summation of radial
basis functions and a low-order polynomial, e.g.,
defined in the following form:

f (x) =
N∑

i=0

wiφ (‖x − ci‖)+ vT

[
1
x

]
, (12)

where ci are the control points of TPS; wi are
the mapping coefficients through weighting the
basis functions φ(·); v is the coefficient vector of
the polynomial of degree 1; basis function φ(·) is
defined as

φ(r) =
{

rk with k = 1, 3, 5, . . . ,

rk ln(r) with k = 2, 4, 6, . . . .
(13)

where k is equal to the dimension of dataset.
TPS has been widely applied for building a

smooth nonrigid transformation model, by min-
imizing the integral bending energy [4]. It is
also useful for data interpolation, since it can
explicitly represent the arbitrarily spaced tabu-
lated data set, e.g., (xi, yi, f(xi, yi)) in 2D case.
The interpolation is smooth with derivatives of
any order.

Background

The idea of presenting a curve using the connec-
tion with splines comes from the ship building
industry, where they construct templates for ships
by passing thin strips of wood (called “splines”).
In some subfields of computer science, wide class
of spline functions are applied to the applications
where the discrete data requires interpolation
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and/or smoothing. Because splines are superior
in terms of the following qualities: the simplicity
of their construction, the ease and accuracy of
control, their capacity to approximate complex
shapes and the ability to design curves interac-
tively.

Application and Theory

In addition to the usages of interpreting or
smoothing for image representation, such as the
work in [9], splines also play an important role in
some specific computer vision applications. For
example, in the Snake-based image segmentation
designed by Kass et al. [5] and modified by
Brigger et al. [3], splines are used to model
the image contours by minimizing the energy
under the guidance of external and internal
forces; For image motion estimation, Szeliski
and Coughlan [8] proposed to represent the
local motion flow field using multi-resolution
splines; A classical linear method for estimating
the TPS coefficients for image warps is proposed
by Bookstein [2]; And Free Form Deformation
(FFD) proposed by Sederberg [7] represents the
nonrigid deformation of object using grid B-
splines, which has a successful application in
medical image registration [6].
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Synonyms

CIE standard illuminant

Related Concepts

�Chromaticity

Definition

A standard illuminant, as defined by the Inter-
national Commission on Illumination (Commis-
sion International de L’Eclairage, abbreviated as
the CIE), denotes a specific relative distribution
of energy (“spectral power distribution”) for an
illuminant, over the range 300–830 nm [3].

Background

The motivation for a definition of standard illumi-
nants arises from the need for accurate measure-
ment of the colors of objects. It is well understood
that for a Lambertian surface with a spectral
reflectance function given by r(λ), and under an
illuminant given by i(λ), the three-vector of CIE
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XYZ tristimulus values is given by [8]:

X = k

∫
λ

x̄(λ)i(λ)r(λ)dλ

Y = k

∫
λ

ȳ(λ)i(λ)r(λ)dλ

Z = k

∫
λ

z̄(λ)i(λ)r(λ)dλ, (1)

where x̄, ȳ, z̄ denote the three CIE XYZ
color-matching functions (based on a standard
observer) and k is a constant. Working in the
XYZ color space – natively three-dimensional
in nature – when a color changes it is difficult
to attribute the change to a specific function
of wavelength, because of the above 3-D
projection: the observer color-matching functions
{x̄, ȳ, z̄}, the illuminant i(λ), or the object’s
reflectance r(λ). When the primary objective
of a measurement is to quantify the object’s
reflectance properties, it is therefore helpful to
use a standard observer and a standard illuminant.
The standardization of the observer is well
documented in various CIE standards since the
early 1900s, most recently in CIE 15-2004 [1].

Theory

In CIE-1998c (and in CIE 15-2004), the CIE
defines the following standard illuminants, along
with their relative spectral power distribution, in
the spectral range 300–830 nm [1, 3]:

– Standard Illuminant A
– Standard Illuminant C
– Standard Illuminant D50
– Standard Illuminant D55
– Standard Illuminant D65
– Standard Illuminant D75

The spectral range 300–830 nm, wider than the
range of visual perception, which is approxi-
mately 360–830 nm [8, p.122], is used specifi-
cally to enable the evaluation of luminescent sam-
ples where the ultraviolet range becomes impor-
tant. For colorimetric measurements, however,
typically 380–780 nm is used.

Standard Illuminant A represents a black-body
radiator with a temperature of approximately
2,856 K. Standard Illuminant C, although not
used often, represents average daylight with

Standard Illuminants,
Fig. 1 Standard
illuminants as specified by
the CIE, normalized to a
peak of 100 at 560 nm
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Standard Illuminants,
Fig. 2 CIE x, y

chromaticity diagram
showing illuminants D55,
D65, D75, A, and E (‘+’,
equi-energy illuminant)
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Standard Illuminants,
Fig. 3 Component vectors
(S0, S1, S2 defined by the
CIE), also considered as
the mean and two
additional eigenvectors of
the space of daylight
illuminants
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correlated color temperature of about 6,800 K.
Standard Illuminant D65 is used to represent
a phase of daylight with a correlated color
temperature of approximately 6,500 K and is by
far the most commonly used standard illuminant
in colorimetry. Other D-illuminants are standard

daylight illuminants annotated with the first two
digits of their correlated color temperature; e.g.,
D55 denotes a standard daylight illuminant with a
correlated color temperature of 5,500 K. Figure 1
shows the relative spectral power distributions of
the above standard illuminants.
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Standard Illuminants,
Fig. 4 Daylight
illuminants of different
correlated color
temperatures as computed
from the component
vectors (S0, S1, S2 defined
by the CIE)
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Standard Illuminants,
Fig. 5 Comparison of a
standard illuminant (D65)
and a standard source (FL
3.15) normalized to 100 at
560 nm
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It is to be noted that although the plots in Fig. 1
show the spectra in the extended range from
300 to 780 nm (as is given in the CIE standard),
data from 300–330 nm to 780–830 nm is extrap-
olated, but considered sufficiently accurate for
colorimetric purposes. Further, the standard pro-
vides data to 5 nm increments, and should finer

increments be needed the standard recommends
performing linear interpolation on the spectra.

The correlated color temperature (T ) of a day-
light illuminant, for the purposes of interpolating
standard daylights, is related to its chromaticity
coordinates in the x, y chromaticity diagram by
the following equations [6, p. 111]:
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yD = −3.0000x2
D + 2.870xD − 0.275 (2)

xD =

⎧⎪⎨
⎪⎩
−4.6070× 109

T 3 + 2.9678× 106

T 2 + 0.09911× 103

T
+ 0.244063, 4,000 K ≤ T ≤ 7,000 K

−2.0064× 109

T 3
+ 1.9018× 106

T 2
+ 0.24748× 103

T
+ 0.237040, 7,000 K ≤ T ≤ 25,000 K.

(3)

Note that several other suggestions for a best
CCT have been posited [4, 7].

Figure 2 shows the locus of chromaticities
of standardized daylight illuminants, specifically
denoting the locations D55, D65, and also, for
reference, the location of illuminant A and the
equi-energy point, E (x = y = 0.33) (all for the
CIE 1931 2◦ observer).

The CIE also specifies equations to compute
the relative spectral power distribution of other D-
illuminants as a function of their x,y chromaticity
coordinates.

S(λ) = S0(λ)+M1S1(λ)+M2S2(λ), (4)

where S0(λ), S1(λ), and S2(λ) are specified in
the CIE standard [1] and plotted in Fig. 3. These
may be considered as the mean and the following
two eigenvectors of the space of daylight illumi-
nants [5].

M1 and M2 are scale factors defined as a func-
tion of the chromaticity coordinate of illuminant,
given by:

M1 = −1.3515− 1.7703xD + 5.9114yD

0.0241+ 0.2562xD − 0.7341yD
(5)

M1 = 0.03− 31.4424xD + 30.0717yD

0.0241+ 0.2562xD − 0.7341yD
. (6)

These equations provides the relative spectral
power distribution of the various D-illuminants,
which are shown in Fig. 4. Customarily, S(λ) is
scaled such that its value at wavelength λ =
560 nm is 100.

It is perhaps most important to note that
standard illuminants are not the same as standard
sources – which are the real-world equivalents of
standard illuminants. In other words, a standard
illuminant – defined by its relative spectral

power – may not necessarily be realizable by
a physical emitter of radiation (see Fig. 5 for an
example of a D65 source made by a flourescent
lamp and the D65 illuminant). The details
of the challenges between the “theoretical”
illuminant that is useful for computations and
the “real” source may be found in a different CIE
standard [2], and also in the book by Wyszecki
and Stiles [8].
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Related Concepts

� Principal Component Analysis (PCA)

Definition

Statistical independence is a concept in proba-
bility theory. Two events A and B are statistical
independent if and only if their joint probability
can be factorized into their marginal probabili-
ties, i.e., P(A ∩ B) = P(A)P(B). If two events A
and B are statistical independent, then the condi-
tional probability equals the marginal probability:
P(A|B) = P(A) and P(B|A) = P(B). The concept
can be generalized to more than two events. The
events A1, . . . , An are independent if and only if
P
(∩n

i=1A1
) =∏n

i=1P (Ai).

Theory

Two random variables X and Y are independent
if and only if the events {X ≤ x} and {Y ≤ y}
are independent for all x and y, that is, F(x, y) =
FX(x)FY(y), where F(x, y) is the joint cumula-
tive distribution function and FX and FY are the
marginal cumulative distribution functions of X
and Y, respectively. If X and Y are continuous
random variables, then X and Y are independent
if f(x, y) = fX(x)fY(y), where f(x, y) is the joint
probability density function and fX and fY are the
marginal probability density functions of X and
Y, respectively. Similar results hold when both X
and Y are discrete, or one is discrete and the other
is continuous.

If two random variables X and Y are indepen-
dent, then their covariance Cov(X, Y) = E(XY) −
E(X)E(Y) = 0, that is, they are uncorrelated.
However, the reverse may not be true. Two

uncorrelated random variables are not necessarily
independent of each other. For example, if X ∼
Uniform[−1, 1] and Y = X2, then Cov(X, Y) = 0,
but clearly they are not independent.

The concept of independence can be gener-
alized to more than two random variables. In
probability theory, the law of large number, the
central limit theorem, and concentration inequal-
ities are usually obtained for independent random
variables, although these results can be general-
ized to dependent random variables. In statistical
learning theory, it is usually assumed that the
training and testing examples are independent
and identically distributed.

Application

Statistical independence is a key assumption
in independent component analysis (ICA)
[1], where the observed multivariate signal is
assumed to be linear mixing of independent
sources. A useful extension is independence is
conditional independence. Two events A and B
are independent given event C if P(A ∩ B|C) =
P(A|C) P(B|C). If X, Y, and Z are discrete random
variables, then X and Y are independent given Z
if P(X = x, Y = y|Z = z) = P(X = x|Z = z)P(Y =
y|Z = z) for all x, y, z. If X, Y, and Z are
continuous, then X and Y are independent given
Z if fX, Y|Z(x, y|z) = fX|Z(x|z)fY|Z(y|z), where fX, Y|Z
is the conditional probability density function of
(X, Y) given Z and fX|Z and fY|Z are the conditional
probability density functions of X given Z and Y
given Z, respectively.

Conditional independence is a key assumption
in Markov chains, Markov random fields, and
more generally graphical models [2].
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Synonyms

Form analysis; Morphology

Related Concepts

�Action Recognition in Real-World Videos
�Appearance-Based Human Detection

Definition

What is shape? Although the use of words shape
or shape analysis is very common in computer
vision, its definition is seldom made precise in
a mathematical sense. According to the Oxford
English Dictionary, it means “the external form or
appearance of someone or something as produced
by their outline.” Kendall [1] described shape
as a mathematical characteristic of an object
that remains unchanged under certain transfor-
mations such as rotation, translation, and global
scaling. Shape analysis seeks to represent shapes
as mathematical quantities, such as vectors or
functions, that can be manipulated using appro-
priate rules and metrics. Statistical shape analysis
is concerned with quantifying shape as a ran-
dom quantity and developing tools for generating
shape comparisons, averages, probability models,
hypothesis tests, Bayesian estimates, and other
statistical procedures on shape spaces.

Background

Shape is an important physical property of
objects that characterizes their appearances and
can play an important role in their detection,

tracking, and recognition in images and videos.
One usually restricts to the boundaries of objects,
rather than the whole objects, for shape analysis
and that leads to a shape analysis of curves
(for 2D images) and surfaces (for 3D images).
Figure 1 suggests that shapes of boundaries can
help characterize objects present in images. A
boundary contains only some partial information
about the object since the color (texture)
information inside and outside the boundary is
lost. With the help of this limited information,
it is often possible to broadly classify an object
using shape analysis.

To understand the issues and challenges in
shape analysis, one has to look at the imaging
process since that is a major source of shape
data. A picture can be taken from an arbitrary
pose (arbitrary distance and orientation of the
camera relative to the imaged object), and this
introduces a random rotation, translation, and
scaling of boundaries in the image plane. There-
fore, any proper metric for shape analysis should
be independent of the pose and scale of the
boundaries. A visual inspection also confirms that
any rotation, translation, or scaling of a boundary,
while changing its coordinates, does not change
its shape. Figure 2 shows an example of 16 curves
that differ in orientations, scales, and locations
but still represent the same shape.

In case of parameterized curves and surfaces,
an additional challenge arises when it comes to
invariance. Let β : [0, 1] → R

2 represent a
parameterized curve and let γ : [0, 1] → [0, 1]
be a smooth, invertible function such that γ (0) =
0 and γ (1) = 1. Then, the composition β̃(t) ≡
(β ◦ γ )(t) represents a curve with coordinate
functions that are different from those of β(t) but
have the same shape. β̃ is called a reparameter-
ization of β. Figure 3 illustrates this issue with
a simple example. It shows that the coordinate
functions of the reparameterized curve, β̃x(t) and
β̃y(t), as functions of t , are different from the
original coordinate functions βx(t) and βy(t).
But when β̃x(t) is plotted versus β̃y(t), it traces
out the same curve as that traced by βx(t) versus
βy(t). This results in an additional invariance
requirement in shape analysis of parameterized
curves (and similarly for surfaces). That is, the
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Statistical Shape Analysis, Fig. 1 Shapes of boundary curves are useful in object characterizations

Statistical Shape
Analysis, Fig. 2 Sixteen
curves with different
orientations, scale, and
locations, but with
identical shapes

shape metrics should be invariant to how the
curves are parameterized.

In statistical shape analysis, one treats shapes
as random quantities and tries to answer ques-
tions of the type:

– What is the difference between shapes of any
two given objects? How can such shape dif-
ferences be quantified while maintaining the
desired invariances?

– What shape best represents the shapes of a
given collection of objects? Another way to
ask the same questions is: What is the statis-
tical average of a given collection of shapes?

– What are the principal modes of variations in
a given set of shapes?

– How can one capture the main shape variabil-
ity in a population using probability models?

Can random shapes be generated from such
models?

– How can one use such probability models for
shape classification and object recognition?

To answer such questions, one needs precise
mathematical representations of shapes and tools
from algebra and geometry for analyzing them.
In the literature there are numerous mathematical
representations of objects that have been used
for this purpose. These representations include
(unordered) point sets, (ordered) landmarks, level
sets, deformable templates, medial representa-
tions, and parameterized curves and surfaces. An
important aspect, common to most representa-
tions, is the nonlinear geometry of a shape space.
It is easy to recognize that shape is not a quantity
that can be added, averaged, or grouped easily
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Statistical Shape Analysis, Fig. 3 Reparameterized
curve has different coordinate functions but same shape
as the original curve. (a) Curves (t, βx(t), βy(t)) and

(t, β̃x(t), β̃y(t)); (b) βx(t) and β̃x(t); (c) βy(t) and β̃y(t);
(d) curves (βx(t), βy(t)) and (β̃x(t), β̃y(t)); and, (e) γ (t)

using Euclidean calculus. The desired invariance
of shape to certain transformations (rigid motion,
global scaling, and reparameterization) implies
that certain nontraditional tools are needed.

Among the different methods used in
shape analysis, the earlier methods typically
represented objects by finite sets of points,
such as point sets or landmarks, but more recent
methods are beginning to handle parameterized
curves and surfaces directly as functions.
Two of the earlier ideas based on point set
representations are summarized next.

Active Shape Models (ASM) The active shape
models approach to shape analysis was intro-
duced by Cootes and Taylor in [2]. The simplest
idea in shape analysis is to sample the boundaries
at a number of points and form polygonal shapes
by connecting those points with straight lines.
Of course, the number and locations of these
points on the objects can drastically change the
resulting polygonal shapes, but this issue will be
disregarded for the moment. One can organize

the coordinates of these points in a form of a
vector of coordinates and perform standard vector
calculus. Let x ∈ R

n×2 represent n ordered
points selected from the boundary of an object.
It is often convenient to identify points in R

2

with elements of C, i.e., xi ≡ zi = (xi,1 +
jxi,2), where j = √−1. Thus, in this complex
representation, a configuration of n points x is
now z ∈ C

n. Before analyzing the shape of z, it is
“standardized” by moving its center to the origin
(of the coordinate system):

zi �→ (zi − 1

n

n∑
i=1

zi ).

To remove the scale variability, z is rescaled to
have norm one, i.e., z �→ z/‖z‖. Then, one
uses tools from standard multivariate statistics to
analyze and model them. So far, the translation
and the scale variability of a configuration are
removed, but the rotation still remains a part of
the representation. That is, two configurations,
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Statistical Shape
Analysis, Fig. 4
Registration of points
across two curves using the
uniform and a convenient
nonuniform sampling.
Non-uniform sampling
allows a better matching of
features between β1 and β2

b1(uniform sampling) b2(uniform sampling) b2(non-uniform sampling)

z and a rotation of z, will have a nonzero dis-
tance between them even when they have the
same shape. This problem is solved by using
an additional step of rotational alignment when
comparing shapes, as follows:

φ∗ = argmin
φ∈S1

‖z1 − ejφz2‖2

= argmin
φ∈S1

(‖z1‖2 + ‖ejφz2‖2

− 2 (〈z1, e
jφz2〉))

= argmax
φ∈S1

( (e−jφ 〈z1, z2〉)) = θ,

where 〈z1, z2〉 = rejθ , (1)

and 〈·, ·〉 is the standard Hermitian inner
product. The distance between the two
rotationally aligned configurations is then
‖z1 − ejφ∗z2‖ = √

2(1− r). The cor-
responding optimal deformation from one
shape to another is simply a straight line
between z1 and ejφ∗z2, i.e., αasm(τ)=(1−τ)z1+
τejφ∗z2 for τ ∈ [0, 1].

One remaining issue in this analysis is that on
a closed curve which point should be selected as
z1, the first point or the seed. If there are n points
sampled on a curve, then there are n candidates
for the seed. The solution is to select the best seed
during a pairwise comparison of configurations.
That is, select any point on the first configuration
as the seed for the first shape, and try all n points
in the second configuration as candidate seeds
for the second shape. Of those, select the one
that results in the smallest distance from the first
configuration. Figure 5 shows several examples
of these deformations: one between a pair of
human silhouettes, one between a pair of hands,

and so on. These geodesics have been computed
using n = 200 points on each configuration
so that the resulting polygons look like smooth
curves.

One can define the mean shape of several
configurations z1, z2, . . . , zk as the configuration
that minimizes the sum of squares of distances:

μasm = argmin
z∈Cn

k∑
i=1

‖z− ejφ∗i zi‖,

φ∗i = cos−1( (〈z, zi〉)).

Figure 6 shows several illustrations of the mean
computations

Although this technique is relatively simple
and fast, it has some important limitations. One
limitation is that it does not preserve the scale
constraints imposed on the shape representations.
For instance, the intermediate shapes along the
optimal deformations between any two unit-
length configurations do not have unit length.
Similarly, the mean shape of {zi} is generally not
of unit length. This is because no effort is made to
restrict to the set of unit-length configurations, a
limitation that is addressed in the next approach.

Kendall’s Shape Analysis (KSA) This
approach, first laid out by Kendall [1] and
advanced by several others [3], preserves
desired constraints by restricting to appropriate
manifolds. Once again a configuration of n

points, taken from the boundary of an object,
is treated as a complex vector. As earlier, the
translations are removed by restricting to those
elements of C

n whose average is zero and the
scale variability by rescaling the complex vector
to have norm one. This results in a set:
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Statistical Shape Analysis, Fig. 5 Examples of geodesic paths between same shapes using ASM, KSA, and ESA.

D = {z ∈ C
n|1

n

n∑
i=1

zi = 0, ‖z‖ = 1}.

D is not a vector space because a1z1 + a2z2 for
a1, a2 ∈ R and z1, z2 ∈ D is typically not in
D, due to the unit norm constraint. However, D
is a unit sphere and one can utilize the geometry
of a sphere to analyze points on it. Under the
Euclidean (Riemannian) metric, the shortest path
between any two elements z1, z2 ∈ D, also
called a geodesic, is given by the great circle:
αksa : [0, 1] → D, where

αksa(τ ) = 1

sin(θ)
[sin(θ(1− τ))z1 + sin(τθ)z2] ,

and

θ = cos−1( (〈z1, z2〉)). (2)

In order to compare the shapes represented by z1

and z2, they need to be aligned rotationally, as

was done earlier, but the shape space is defined
more formally this time. Let [z] be the set of all
rotations of a configuration z according to:

[z] = {ejφz|φ ∈ S
1}.

One defines an equivalence relation on D by
setting all elements of this set as equivalent, i.e.,
z1 ∼ z2 if there exists an angle φ such that z1 =
ejφz2. The set of all such equivalence classes
is the quotient space D/U(1), where U(1) =
SO(2) = S

1 is the set of all rotations in R
2. This

space is called the complex projective space and
is denoted by CP

n−1. A geodesic between two
elements z1, z2 ∈ CP

n−1 is given by computing
αksa between z1 and ejφ∗z2, where φ∗ is the
optimal rotational alignment of z2 to z1. The
length of the geodesic is given by θ , and that
quantifies the difference in shapes of the bound-
aries represented by z1 and z2. Figure 5 shows
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Sample Shapes

1

2

3

4

5

6

ASM KSA ESA ASM KSA ESA ASM KSA ESA

Statistical Shape Analysis, Fig. 6 Examples of mean shapes under three different methods

several examples of geodesic paths between the
same shapes as for the ASM examples.

Issue of Landmark Selection Although
Kendall’s approach succeeds in preserving
the unit-length constraints on the landmark
configurations, it does not address a very
important practical issue: How to systematically
select points on objects, say curves, to form
representative point sets? This process is difficult
to standardize, and different selections can lead
to drastically differing solutions. This issue is
present in any point-based approach, including
the ASM method discussed above. Some may
suggest to sample a curve uniformly along
its length, i.e., parameterize a curve β using

arclength and sample {β(ti)|i = 0, 1, 2, . . . , n}
where ti = i/n. Although this provides a
standardized way of sampling curves, the results
are not always good since this forces a particular
registration of points, i.e., the point β1(ti) on
the first curve is matched to the point β2(ti)

on the second curve, irrespective of the shapes
involved. Figure 4 illustrates this point using
an example. Shown in the left two panels are
two curves: β1 and β2, sampled uniformly along
their lengths. For ti = i/4, i = 1, 2, 3, 4, the
corresponding four points on each curve {β1(ti)}
and {β2(ti)} are shown in the same color. While
two of the four pairs seem to match well, the pairs
shown in red and green fall on different parts of
the body, resulting in a mismatch of features.
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This example shows the pitfall of using uniform
sampling of curves. In fact, any predetermined
sampling and preregistration of points will, in
general, be problematic. A more natural solution
is to treat the boundaries of objects as continuous
curves, rather than discretizing them into point
sets at the outset, and find an optimal (perhaps
non-uniform) sampling, such as the one shown in
the rightmost panel, that better matches features
across curves. This way one can develop a more
comprehensive solution, including theory and
algorithms, assuming continuous objects and will
discretize them only at the implementation stage.

Theory

The elastic shape analysis (ESA) framework, for
analyzing shapes represented by simple, closed,
planar curves is described here. (These ideas
are also applicable, with some modifications,
to curves in higher dimensions but that is not
discussed here.) The most natural way to study
shapes of curves seems to be by treating them
as parameterized curves. As mentioned earlier,
an important aspect of this framework is that
shape distances, geodesics, and statistics should
be invariant to how the curves are parameterized.

Basic Challenge To understand the basic chal-
lenge in analyzing shapes of parametrized curves,
let ‖ · ‖ denote the L

2 norm of a vector-valued
function, i.e., ‖β‖ = ∫

S1 ‖β(t)‖2dt , where the
norm inside the integral is the vector 2-norm. Let
β1, β2 : S1 → R

2 be two parameterized closed
curves and γ be a reparameterization function of
the type used in Fig. 3. (It is more natural for
the domain of parameterization to be S

1 instead
of [0, 1] for closed curves.) The basic challenge
in using the L

2 norm ‖β1 − β2‖ for comparing
shapes of these two curves, even after a proper
translation and scaling for standardization, is that
‖β1 − β2‖ �= ‖β1 ◦ γ − β2 ◦ γ ‖ in general. That
is, the distance between any two curves changes
even if they are reparameterized in the same
way. This implies that the shape distance will
depend on parameterizations, and this violates the
requirement of invariance to parameterization.

This problem necessitates a new representation
and/or a new metric for analyzing shapes of
curves.

Mathematical Representation Let a parame-
terized closed curve be denoted as β : S1 → R

2.
In order to analyze its shape, one represents
β by its square-root velocity function (SRVF):

q(t) = β̇(t)√
‖β̇(t)‖ ∈ R

2. The SRVF q includes

both the instantaneous speed (‖q(t)‖2 = ‖β̇(t)‖)

and the direction ( q(t)
‖q(t)‖ = β̇(t)

‖β̇(t)‖ ) of the curve

β at time t . The use of the time derivative
makes the SRVF invariant to any translation
of curve β. Conversely, one can reconstruct the
curve β from q up to a translation. In order
for the shape analysis to be invariant to scale,
one rescales each curve to length one. With
a slight abuse of notation, let us denote the
rescaled curves by β. Since

∫
S1 ‖β̇(t)‖dt = 1:∫

S1 ‖q(t)‖2dt = ∫
S1 ‖β̇(t)‖dt = 1. In other

words, the L
2 norm of the SRVF q is one.

Additionally, if the curve β is closed, then its
SRVF satisfies

∫
S1 q(t)‖q(t)‖dt = 0. Restricting

to the curves of interest, represented by their
SRVFs, the following set is obtained:

C = {q : S1 → R
2|
∫
S1

q(t)‖q(t)‖dt = 0,

∫
S1
‖q(t)‖2dt = 1}.

C is called the preshape space and is the set
of SRVFs of all unit length, closed curves in
R

2. Four shape-preserving transformations were
mentioned earlier: translation, scale, rotation, and
reparameterization. Of these, the first two have
already been eliminated from the representations,
but the other two remain. Curves that are within
a rotation and/or a reparameterization of each
other result in different elements of C despite
having the same shape. The unification of such
curves is performed algebraically as follows. Let
SO(2) be the group of 2×2 rotation matrices and
Γ be the group of all reparameterizations (they
are actually positive diffeomorphisms of the unit
circle S

1). For a curve β, a rotation O ∈ SO(2)

and a reparameterization γ ∈ Γ , the transformed
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curve is given by O(β ◦ γ ). The SRVF of the
transformed curve is given by O(q ◦ γ )

√
γ̇ . In

order to unify all elements in C that denote the
same shape, one can define equivalence classes
of the type:

[q] = {O(q ◦ γ )
√

γ̇ |O ∈ SO(2), γ ∈ Γ }.

Each such equivalence class [q] is associated
with a shape uniquely and vice versa. The set of
all these equivalence classes is called the shape
space S; mathematically, it is a quotient space
of the preshape space: S = C/(SO(2) × Γ ).
The preshape space C is a nonlinear manifold
because it is a subset of a unit sphere. One cannot
perform calculus on this space as if it is a vector
space. Operations such as addition, subtraction,
and multiplication are not available on nonlinear
spaces. This means that standard techniques in
functional analysis for inferences on C and S
cannot be used.

It should be noted that the mathematical rep-
resentation used here, i.e., the SRVF, is not the
only such representation. Younes et al. [4, 5] use
a slightly different expression for an SRVF, based
on an identification of R

2 with C and taking
complex square roots of the coordinates. The
advantage of the SRVF form used in the current
article is that it applies to curves in R

m for any m,
while the complex analysis in [4, 5] is applicable
only to curves in R

2.

Elastic Riemannian Metric Now that a
mathematical representation of the shape of a
curve, namely, [q], has been defined how should
one compare the shapes of two curves? In other
words, for any two curves β1 and β2, represented
by their shape classes [q1] and [q2], respectively,
what should be the shape metric ds([q1], [q2])
that quantifies their shape differences? First,
consider the role of a metric more closely. When
one curve is deformed into another a continuous
sequence of curves, or a path in the curve space, is
generated, and a natural question is how long that
path is. The length of this path also quantifies
the amount of deformation in going from one
curve to the other. The question changes to: What
should be the metric to measure this path length?

A metric called the elastic metric will be used
for this purpose. An elastic metric is a metric that
measures the amount of bending and stretching
between successive curves along the path and
adds them up for the full path. Mio et al. [6]
defined a family of elastic metrics depending
upon how much relative weights are attached to
bending and stretching. Later on it was shown
that (Joshi et al. [7], Srivastava et al. [8])
under the SRVF representation, the complicated
elastic metric turns into (using a change of
variables) the standard L

2 metric. That is, one
can alternatively compute the path lengths, or
the sizes of deformations between curves, using
the cumulative norms of the differences between
successive curves along the paths in the SRVF
space. This turns out to be much simpler and a
very effective strategy for comparing shapes of
curves, by finding the paths with least amounts of
deformations between them, where the amount
of deformation is measured by an elastic metric.
Another distinct advantage of using SRVFs
is that for any q1, q2 ∈ C, O ∈ SO(2) and
γ ∈ Γ :

‖q1 − q2‖ = ‖O(q1 ◦ γ )
√

γ̇ −O(q2 ◦ γ )
√

γ̇ ‖.

This means that the distance between any two
curves remains same if they are rotated and repa-
rameterized in the same way! This property, when
combined with an optimization step (Eq. 3 later),
allows one to make shape metrics invariant to
parameterizations.

Shape Comparison and Geodesics Once a
Riemannian metric on a manifold has been
defined, one can compute distances between
points in that manifold. For any two points, the
distance between them is given by the length of
the shortest path, called a geodesic, connecting
them in that manifold. An interesting feature
of this framework is that it not only provides
a distance between shapes of two curves but
also a geodesic path between them in S. This
path has the interpretation that it provides the
optimal deformation of one shape into another.
The geodesics are actually computed using the
differential geometry of the underlying space S.
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Consider two curves β1 and β2, represented by
their SRVFs q1 and q2. Let α : [0, 1] → C be
a differentiable path connecting them in C. The
length of this path is given by:

L[α] =
∫ 1

0
〈α̇(τ ), α̇(τ )〉1/2 dτ,

where the inner product inside the integral
is given by the elastic Riemannian metric. A
geodesic is a path whose length cannot be mini-
mized by locally perturbing it. It is often obtained
by minimizing the cost function of the type:

α̂ = argmin
{α:[0,1]→C|α(0)=q1, α(1)=q2}

(∫ 1

0
〈α̇(τ ), α̇(τ )〉 dt

)
.

This cost function differs from the expression for
L[α] in that the square root inside the integral is
missing. It can be shown that a local minimizer
of this cost function is also a local minimizer of
L[α] and, hence, is a geodesic.

One technique for finding geodesics is called
path straightening. It is an iterative technique that
initializes an arbitrary path and then iteratively
“straightens” it by updating it along the nega-
tive gradient of the cost function. Klassen and
Srivastava [9] provide a nice analytical expres-
sion for the gradient of this cost function that
results in a convenient gradient iteration. One
applies these iterative updates, or straightening,
until the gradient becomes negligible and the
resulting path is the desired geodesic α̂. The
length of this curve is denoted by dc(q1, q2) =
L[α̂]. This gives a geodesic and a geodesic dis-
tance between SRVFs in C, but the goal is to
compute geodesic paths in S. In other words,
geodesic paths between the equivalence classes
[q1] and [q2] are needed and not just q1 and q2.
It turns out that the desired geodesic is obtained
by finding the shortest geodesic among all pairs
(q̃1, q̃2) ∈ ([q1] × [q2]). This search is further
simplified by fixing an arbitrary element of [q1],
say q1 and searching over all rotations and repa-
rameterizations of q2 to minimize the geodesic
length:

(O∗, γ ∗) = argmin
O∈SO(2),γ∈Γ

dc(q1,O(q2 ◦ γ )
√

γ̇ ).

(3)
The minimization over SO(2) is similar to
the ASM and KSA alignments earlier, but the
optimization over Γ is new. This is accomplished
using the dynamic programming algorithm or
a gradient-type approach [8]. The resulting
geodesic between q1 and O∗(q2 ◦ γ ∗)

√
γ̇ ∗

in C is actually representation of the geodesic
between [q1] and [q2] in the shape space S; its
length ds([q1], [q2]) = dc(q1,O

∗(q2 ◦ γ ∗)
√

γ̇ ∗)
provides the geodesic distance in S. Several
examples of geodesic paths in the shape space S
are shown in Fig. 5; these geodesics are compared
with the deformations/geodesics obtained by
two previously described methods: ASM and
KSA, for the same shapes. It is easy to see
that the geodesics resulting from ESA provide
more natural deformations as they are better in
matching features across shapes.

The role of geodesics is preeminent in this
framework because (1) its length ds is a quan-
titative measure of difference between shapes of
curves represented by q1 and q2; (2) this measure
is invariant to rigid motion, scaling, and repa-
rameterization of any of the curves; (3) it also
provides a full deformation (along the geodesic
path) for taking one shape into another in an
optimal way; and (4) the availability of geodesics
leads to a further development of tools for build-
ing statistical summaries of shape classes, as
described next.

Mean Shape The first important task in
statistical shape analysis is to define and compute
the mean shape for a set of curves. Compared
to the sample means of real-valued random
variables, this task is not straightforward since
the shape space S is not a vector space. One
cannot simply take the SRVFs of the given
curves and average them point-by-point to get
a mean shape. The notion of a mean on a
nonlinear manifold is typically established using
the Karcher mean [10] or Fréchét mean. For a
given set of curves β1, β2, . . . , βn, represented by
tfiguresheir SRVFs q1, q2, . . . , qn, their Karcher
mean is defined as the quantity that satisfies:



1206 Statistical Shape Analysis

[μ] = argmin
[q]∈S

n∑
i=1

ds([q], [qi])2.

There is a gradient-based iterative algorithm for
finding the minimizer of this cost function that
can be found in [10–12]. Since this algorithm is
based on a local search, the solution obtained is
usually local and depends on the initial condition.
Shown in Fig. 6 are some examples of mean
shapes. The top six rows show a set of given
curves, and bottom rows display their means
computed using the three methods discusses here:
ASM, KSA, and ESA.

Shape Covariance and Principal Modes of
Variation Now that the first moment, i.e., the
mean, of a set of curves has been defined, one
can look for the higher moments. The role of
the second centralized moment, the covariance,
is especially important as (1) one can define
a Gaussian distribution using just the mean
and the covariance, and (2) the singular value
decomposition (SVD) of the covariance matrix
can be used for a principal component analysis
(PCA) of shape data. These two ideas are briefly
summarized next, starting with the PCA.

For computing and analyzing the second and
higher moments of a shape sample, the tangent
space to the shape manifold S at the point μ is
used. This space, denoted by Tμ(S), is conve-
nient because it is a vector space and one can
apply more traditional methods here. First, for
each given curve qi , the vector vi ∈ Tμ(S) is
computed such that a geodesic that goes from
μ to qi in unit time has the initial velocity vi .
The function vi : S

1 → R
2 is also called

the shooting vector from μ to qi . Let K̂ be
the sample covariance matrix of all the shooting
vectors from μ to the SRVFs qis. For capturing
the essential variability in a shape set, one can
use principal component analysis (PCA) of the
shooting vectors. The basic idea is to compute the
SVD K̂ = UΣUT , where U is an orthogonal
matrix and Σ is the diagonal matrix of singu-
lar values. Assuming that the entries along the
diagonal in Σ are organized in a nonincreasing
order, U1, U2, etc. represent the dominant direc-

tions of variability in the data. If a singular
vector Uj is used to form vectors t

√
ΣjjUj ,

then they represent shooting variability in the
direction Uj . One can map these directions back
on the shape space S using an exponential map
at μ. The details of this exponential map are
omitted here, but it is basically the point reached
on S by constructing a geodesic in the shooting
direction so that the length of the geodesic is
the same as the length of the shooting vector.
The resulting geodesics are also called the prin-
cipal geodesic paths. Figure 7 shows the prin-
cipal geodesic paths along U1 and U2, respec-
tively, for t = −1.5 to t = 1.5. Of course,
the middle points in each row are the mean
shape μ.

Probabilistic Shape Models One important use
of means and covariances of shape families is in
devising “Gaussian”-type probability densities on
the shape space S. In the case of ASM, this idea
is straightforward since the shape representations
are simple vectors and one can define multi-
variate normal densities on these vector spaces.
However, for KSA and ESA, the shape spaces
are nonlinear manifolds, and such probability
densities are not easy to define. One common idea
to tackle the nonlinearity of the shape space is
to impose a Gaussian distribution on the tangent
space Tμ(S) since that is a vector space. In case
of ESA, this space is infinite-dimensional, so the
Gaussian model is actually imposed on a finite-
dimensional subspace, e.g., a principal subspace,
of Tμ(S). Let {Uj }, j = 1, 2, . . . , k denote the
singular vectors of the sample covariance matrix
as earlier. Then, one can define a random vector
v ≡ ∑k

j=1 fjUj where fj ∼ N(0,Σjj ) and
define q = expμ(v), the exponential map of v

from Tμ(S) to the shape space S. The procedure
defines a generative random model on the shape
space and is easy to sample from. Shown in
Fig. 8 are examples of random samples from S
using means and covariances estimated from the
given data in Examples 1–3 from Fig. 6. For com-
parison, this figure also shows random samples
from similar Gaussian models but using ASM
and KSA. It is easy to observe the superiority
of the results obtained using ESA; the modelling
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Statistical Shape Analysis, Fig. 7 Two principal directions of variability in shapes given in Examples 1–3 in Fig. 6

Method “Gaussian” Random Samples

ASM

KSA

ESA

Statistical Shape Analysis, Fig. 8 Random samples from the “Gaussian”-type distributions under the three methods:
ASM, KSA, and ESA, for parameters estimated from the given shapes shown in Examples 1–3 of Fig. 6

results from ASM are typically the worst of the
three methods.

Elastic Shape Analysis of Surfaces

The task of comparing shapes of 3D objects is of
great interest in many important applications. For

instance, the shapes of anatomical parts can con-
tribute in medical diagnoses, including monitor-
ing the progression of diseases [13–15]. Shapes
of 3D objects can also be used in other computer
vision tasks, such as object recognition, classifi-
cation, and retrieval [16–20]. Although learning
techniques have proved successful in these appli-
cations, a main challenge in shape analysis comes
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from the fact that image data are often collected
from different coordinate systems and data reg-
istration becomes a critical part of the analysis.
In the following discussion, we will focus on
surfaces that are embeddings of a unit sphere S

2

in R
3. In other words, the surfaces of interest can

be parameterized using the sphere according to a
mapping f : S2 → R

3. For any s ∈ S
2, the vector

f (s) ∈ R
3 denotes the Euclidean coordinates

of that point on the surface. The L
2 metric is

given by 〈f1, f2〉 = ∫
S2 〈f1(s), f2(s)〉m(ds),

with m(ds) denoting the Lebesgue measure on
S

2, and the resulting norm is ‖f1 − f2‖ =∫
S2 |f1(s) − f2(s)|2m(ds). Let (u, v) denote the

local coordinates of a point s ∈ S
2. Then, the vec-

tors ∂f
∂u (s) and ∂f

∂v
(s) span the two-dimensional

space tangent to the surface at point f (s) and

n(s) = ∂f

∂u
(s) × ∂f

∂v
(s)

is a vector normal to the surface at f (s). Its mag-
nitude |n(s)| = √〈n(s), n(s)〉 denotes infinites-
imal area of the current parameterization at that
point, and the ratio n(s)/|n(s)| gives the unit
normal vector. The mathematical representation
of surfaces, suitable for elastic shape analysis,
given by the square-root normal field (SRNF)
defined as [21, 22]:

q : S2 → R
3, q(s) = n(s)√|n(s)| .

The reparameterization group here is the set of all
positive diffeomorphisms of S2. If q is the SRNF
of a surface f , then the SRNF of the reparam-
eterized surface f ◦ γ is given by (q ◦ γ )

√
Jγ ,

where Jγ is the determinant of the Jacobian
matrix of the mapping γ : S2 → S

2. We will
denote this by (q ∗ γ ). Similar to the identities
presented for previous two cases, this represen-
tation also follows the isometry conditions: for
all surfaces f , f1, and f2, and the corresponding
SRNFs q, q1, and q2, and all γ ∈ Γ , we have:
‖q‖ = ‖(q ∗ γ )‖ and ‖q1 − q2‖ = ‖(q1 ∗ γ ) −
(q2 ∗ γ )‖.

Once again, from the perspective of shape
analysis, a reparameterization and a rotation of

a surface do not alter its shape. The shape of f

is exactly same as the shape of O(f ◦ γ ), for
any γ ∈ Γ and O ∈ SO(3). This motivates
the formulation of equivalence classes, or orbits,
of representations that all correspond to the same
shape. Let [f ] denote all possible rotations and
reparameterizations of a surface f . The corre-
sponding set in SRNF representation is given by
[q] = {O(q ∗γ )|O ∈ SO(3), γ ∈ Γ }. Each such
class represents a shape uniquely, and shapes are
compared by computing a distance between the
corresponding orbits. Similar to curves, the joint
registration and shape comparison of surfaces is
performed according to:

inf
γ∈Γ,O∈SO(3)

‖q1 −O(q2 ∗ γ )‖

= inf
γ∈Γ,O∈SO(3)

‖O(q1 ∗ γ )− q2‖. (4)

While the optimization over SO(3) is relatively
straightforward, the optimization over Γ is much
more difficult here than the curve case. We have
developed a gradient-based approach that uses
the geometry of the tangent space Tγid

(Γ ). It uses
a set of vector fields that incrementally deform
the current grid on f2, so as to minimize the cost
function given in Eq. (4).

Similar to the case of constrained curves, the
task of computing geodesics between any two
registered surfaces is not trivial and requires a
path straightening-algorithm (see [23]). More
recently, [24] have developed an approxima-
tion that first computes a straight-line geodesic
between any two registered surfaces in the SRNF
representation space and then inverts each point
along this geodesic to obtain a geodesic in the
surface space. For more details, we refer the
reader to these papers.

In Fig. 9, we show some examples of
geodesics between objects including human
hands and animals. In Fig. 10, we compare the
geodesics between surfaces to the linear interpo-
lation of surfaces. From the results, we can see
that the tail part of the cat is distorted and inflated
on the linearly interpolated path, but the tail part
is better persevered along the geodesic path.



Statistical Shape Analysis 1209

S

Statistical Shape
Analysis, Fig. 9 Each row
shows an example of
geodesic between a pair of
objects (the starting and
ending shapes)

Using geodesics we can define and compute
the mean shape using a standard algorithm for
computing Karcher mean. Furthermore, we can
define and compute Karcher covariance and per-
form PCA on the tangent space at the mean
shape. Figure 11 displays the observations and
the k-th principal directions (PD) by construct-
ing principal geodesics expμ(tsk · PCk), where
PCk ∈ Tμ(F) is the kth principal component
and sk denotes the corresponding standard devi-
ation. The PDs are displayed using the triples
{expμ(−sk · PCk), μ, expμ(sk · PCk)}. This anal-
ysis can be used to define a multivariate nor-
mal distribution on the principal coefficients and
thus a random tangent vector from this Gaussian
model. Assume that v is a random deformation
of the mean surface, i.e., v ∈ Tμ(F) according to
the normal model. Then, we can use the shooting
method to get a random sample of surfaces such
that f = expμ(v). Several randomly sampled
chess pieces are shown in Figure 11 bottom row.

Open Problems

Although there has been a significant progress
in shape analysis of curves, especially the planar
curves, several important problems remain open.
Firstly, the choice of Gaussian-type models for
capturing shape variability of curves and surfaces
is more for convenience than data driven. It is
important to explore and develop statistical mod-
els on shape manifolds that are both efficient, e.g.,
parametric models are more efficient, and provide
a better representation of the observed variability.
The second set of open problems relates to com-
bining the strengths of deep learning and geo-
metric shape analysis. In current data-driven era,
one can learn complex distributions from large
data sets using GANs and related architectures. It
will be interesting to exploit these strengths and
combine them with the invariances of geometric
shape analysis to result in more realistic shape
models.
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Statistical Shape
Analysis, Fig. 10
Comparing geodesic to
linear interpolation

Observations

1st PD 2nd PD 3rd PD

Random Samples

Statistical Shape Analysis, Fig. 11 Computing means
shape, PC analysis, and random samples under a Gaussian
model. The first row shows some observations of chess

piece. The second row shows the three main principal
components. And the last row shows several randomly
sampled chess pieces using a Gaussian model
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Synonyms

SPDE; Stochastic differential equations in infi-
nite dimensions

Related Concepts

�Numerical Partial Differential Equations
�Viscosity Solution

Definition

A stochastic partial differential equation (SPDE)
is a partial differential equation (PDE) with an
extra stochastic term, e.g., an Itô integral. Some-
times partial differential equations where the dif-
ferential operator is disturbed are also called
SPDEs, but the more common term is random
PDEs.

Background

First results on SPDEs and infinite-dimensional
stochastic differential equations (SDEs) appeared
in the mid-1960s. Ample publications and results
are due to the end of the 1970s and the early
1980s. Here the work by Walsh [23] and Par-
doux [19] should be mentioned. In the early
1990s, Da Prato and Zabczyk published their
book with an infinite-dimensional approach to
SPDEs driven by Wiener processes [4]. In the
last years, a number of books on SPDEs were
published, in particular an extension of [4] by
Peszat and Zabczyk [20]. Other publications to
be mentioned are Chow [3], Prévôt and Röck-
ner [21], Holden et al. [9], and Gawarecki

and Mandreka [8] and more recently Liu and
Röckner [15] and Lototsky and Rozovsky [15].

The motivation to study SPDEs was driven
on the one hand from the internal development
of analysis and theory of stochastic processes
and on the other side from applications. Random
phenomena studied in natural sciences needed to
be described. Especially applications in physics,
chemistry, biology, control theory, nonlinear fil-
tering, engineering, and finance pushed the devel-
opment of the theory of SPDEs and are still
pushing it. The field has attained even more atten-
tion since Martin Hairer was awarded the Fields
Medal in 2014 for his work on SPDEs and regu-
larity structures. In recent years the applications
also inspire the design of numerical methods to
“create numbers,” i.e., to simulate the equations.

Theory

Let (Ω,F, (Ft )t≥0,P) be a filtered probabil-
ity space. The filtration is supposed to be right
continuous, and F0 contains all P-zero sets. A
stochastic differential equation is given by

dX(t) = a(t, X(t)) dt + b(t, X(t)) dM(t) (1)

with initial condition X(0) = X0 and X :
R+ ×Ω → R

d . The initial condition might be a
random variable. This notation is the abbreviation
for the integral equation

X(t) = X0 +
∫ t

0
a(s,X(s)) ds

+
∫ t

0
b(s,X(s)) dM(s).

In this notation M is a stochastic process adapted
to (Ft ) which is, e.g., a local martingale. In many
applications the stochastic process is a Brownian
motion also called Wiener process and abbrevi-
ated by B or W . Especially in recent years, other
typical stochastic processes are Lévy processes.
The expression

∫ t

0
b(s,X(s)) dM(s)
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is a stochastic integral of Itô type (cf. [6,10,17,18,
22]). In order to ensure the existence of a solution
to Equation (1), the functions a : R+×R

d → R
d ,

b : R+×R
d → R

d and the stochastic process M

have to satisfy certain conditions. One possibility
is that a and b are of linear growth and Lipschitz
type.

One approach to derive an SPDE is to extend
Equation (1) to maps X : R+ ×Ω → R

d where
d tends to infinity. Another approach to derive
SPDEs is to start with a PDE. Therefore let A

be a differential operator on a bounded domain of
D ⊂ R

d . Then

∂

∂t
u(t, x) = Au(t, x)

+ f (u(t, x))+ g(u(t, x))η̇(t, x)

with initial condition u(0, x) = u0(x) for x ∈
D denotes an SPDE where η̇ is white noise. As,
in general, stochastic processes are almost surely
not differentiable with respect to the time t , this
notation is used seldom. Instead of that SPDEs
are integral equations, i.e.,

u(t, x) = u0(x)+
∫ t

0
(Au(s, x)+ f (u(s))) ds

+
∫ t

0
g(u(s, x)) dM(s, x).

One approach to solve equations of that type
was introduced by Da Prato and Zabczyk in
1992 [4]. There a more general framework is
used. Let H and U be separable Hilbert spaces,
e.g., L2(D),Rd , or Sobolev spaces Hα(D); then
the previous equation can be rewritten as

u(t) = u0 +
∫ t

0
(Au(s)+ F(u(s))) ds

+
∫ t

0
G(u(s)) dM(s)

where F : D(F) ⊂ H ×Ω → H , G : D(G) ⊂
H → L(U,H) and M is a U -valued stochastic
process, e.g., a square integrable martingale like a
Wiener or Lévy process. Here D(F) denotes the
domain of F and L(U,H) is the space of linear

operators from U into H . The stochastic process
u is a mapping from R+ × Ω into the Hilbert
space H . The abbreviated form of the previous
equation is

du(t) = (Au(t)+ F(u(t))) dt +G(u(t)) dM(t)

(2)

with u(0) = u0. So instead of solving an SPDE,
here Hilbert space-valued SDEs are solved.
Existence and uniqueness of solutions might
be shown using, e.g., semigroup theory and
classical SDE theory. In the theory of SPDEs,
there exist three main concepts of solutions which
are similar to those known from PDE theory:

1. Strong solutions [4]: A predictable H -valued
stochastic process u = (u(t), t ∈ [0,+∞)) is
a strong solution to Equation (2), if
– for all t ≥ 0 u(t) takes values in D(A) ∩

D(F) ∩D(G) P-a.s.,
– for all t ≥ 0 it holds P-a.s.

u(t) = u0 +
∫ t

0
(Au(s)+ F(u(s))) ds

+
∫ t

0
G(u(s)) dM(s).

2. Weak solutions [20]: A predictable H -valued
process u is a weak solution to Equation (2),
if
– sup

t∈[0,T ]
E(‖u(t)‖2

H ) < +∞ for all T ∈
[0,+∞),

– for all a ∈ D(A∗), t ≥ 0, it holds P-a.s.

〈a, u(t)〉H = 〈a, u0〉H

+
∫ t

0

(〈A∗a, u(s)〉H

+〈a, F (u(s))〉H ) ds

+
∫ t

0
〈G∗(u(s))a, dM(s)〉H.

Here A∗ denotes the adjoint operator and
H is the reproducing kernel Hilbert space
generated by M .
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3. Mild solutions [20]: Let A be the generator
of a strongly continuous semigroup (S(t), t ≥
0); then the stochastic process u is a mild
solution to Equation (2), if
– sup

t∈[0,T ]
E(‖u(t)‖2

H ) < +∞ for all T ∈
[0,+∞),

– for all t ≥ 0 it holds P-a.s.

u(t) = S(t)u0 +
∫ t

0
S(t − s)F (u(s)) ds

+
∫ t

0
S(t − s)G(u(s)) dM(s).

Furthermore there are viscosity solutions [14].
One could also consider solutions that are weak in
the sense of probability theory, i.e., in probability,
in distribution, or in expectation and many other
concepts.

If A is the generator of a strongly continuous
semigroup, similar to SDE theory, solutions exist
under linear growth and Lipschitz conditions,
but many extensions are possible. The reader is
referred to the literature for explicit conditions for
existence and uniqueness results. In this context
an overview can be found in [20], but the subject
is still evolving such that recent research papers
will give more general results.

For applications, a suitable type of solution
has to be chosen. This leads to the next sec-
tion where some possible applications are dis-
cussed as well as the problem that solutions for
most SPDEs are not known. Therefore numerical
methods for SPDEs have become more and more
important within the last year.

Application

SPDEs are relevant in many different applica-
tions. In engineering such as image analysis,
surface analysis, and filtering, they result from
addition of noise to PDEs. In finance, systems
of SDEs are common that extend to infinite-
dimensional problems and therefore to SPDEs.
Furthermore first applications to life and bio
sciences are done.

All these applications are interested in solu-
tions of SPDEs, but these are not known explic-
itly in most cases. Therefore numerics of SPDEs
have become important within the last years.
Methods combine SDE methods with PDE meth-
ods. Simulation methods for SDEs are espe-
cially Euler–Maruyama, Milstein, and higher-
order schemes, where a good survey is given
in [12], as well as Monte Carlo methods [7].
From PDE theory Galerkin methods, especially
finite elements, are relevant, where the reader is
referred, e.g., to [5] and [2]. For an introduction
to numerical methods for SPDEs, the reader is
referred to the textbook by Lord, Powell, and
Shardlow [16].

Open Problems

As the topic is still fairly young, there are still
many open questions. People are working on
existence and uniqueness theory and extending
known results especially under non-Lipschitz
conditions. Especially the simulation of SPDEs,
i.e., the numerical analysis, evolves a lot in recent
years. Of special interest are efficient methods,
weak convergence analysis, superlinear growth,
and connections to geometry. Furthermore
research questions on how to solve SPDEs
with deep learning methods and how to explain
the performance of deep neural networks with
SPDEs become more popular.

Experimental Results

To illustrate what an SPDE is and where to use
it for, two figures are included. Figure 1 shows
two simulated paths, i.e., ω ∈ Ω was chosen and
a finite element method in space and a Euler–
Maruyama scheme in time were used. On the left-
hand side, the heat equation with additive noise
and Dirichlet boundary conditions, i.e.,

du(t) = Δu(t) dt + dW(t)

on the space and time interval [0, 1] with ini-
tial condition u(0, x) = sin(πx) is displayed,
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(b)
Stochastic Partial Differential Equations, Fig. 1 Simulation of one path of an SPDE with additive noise on an
interval. (a) Parabolic equation. (b) Hyperbolic equation
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Stochastic Partial Differential Equations, Fig. 2 Segmentation using an SPDE and stochastic active contours. (a)
Initial condition. (b) Intermediate step. (c) Segmentation result

where W is a Wiener process with space cor-
relation given by the kernel function q(x, y) =
exp(−2|x − y|). On the right-hand side, a hyper-
bolic equation with additive noise is presented. It
is given by

du(t) = ∇u(t) dt + dW(t)

with initial condition u(0, x) = sin(2πx) and
inflow boundary condition u(t, 0) = − sin(2πt).
The other parameters are the same as for the heat
equation. In both figures, time evolves from left to
right. This and more simulation and convergence
results can be found in [1].

One example for an application of SPDEs in
computer vision is segmentation. This approach
was suggested by Juan et al. [11]. Using level
set methods and variational calculus, one possible
SPDE to be simulated is

du(t, x)=∇ ∇u(t, x)

|∇u(t, x)| dt + |∇u(t, x)| dW(t, x)

where the initial condition is, e.g., a weighted
distance function as in Fig. 2a. The red circles
are the zero level sets. Different types of noise
than the coupling with the size of the gradient
can be found in [11] and [13]. An example of
the segmentation of a zebra from [13] is shown
in Fig. 2.
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Synonyms

Superresolution

Related Concepts

�Corner Detection
� Superresolution

Definition

Subpixel estimation is the process of estimat-
ing the value of a geometric quantity to better
than pixel resolution even though the data was
originally sampled on an integer quantized pixel
space. A closely related topic is superresolution,
which is discussed in another chapter.

Background

It is naively assumed that information at a scale
smaller than the pixel level is lost when continu-
ous data is sampled or quantized into pixels from,
e.g., time-varying signals, images, data volumes,
and space-time volumes. However, in fact, it is
generally possible to estimate geometric quanti-
ties to better than the original pixel accuracy. The
underlying foundations of this estimation are the
following:

– Models of expected spatial variation: Discrete
structures, such as edges or lines, produce
characteristic patterns of data when measured,
allowing fitting of a model to the data to
estimate the parameters of the structure.



1218 Subpixel Estimation

– Spatial integration during sampling: Sensors
typically integrate a continuous signal over
a finite domain (space or time), leading to
measurements whose values depend on the
relative position of the sampling window and
the original structure.

– Point-spread function: Knowledge of the PSF
could be used, e.g., by deconvolution of a
blurred signal, to estimate the position of the
signal.

Applications commonly benefiting from sub-
pixel estimation are (1) camera calibration and
triangulation (e.g., in stereo and structured light
depth estimation) and (2) image motion estima-
tion for improved image stabilization and com-
pression.

One of the earliest instances of subpixel edge
detection in computer vision research was by
MacVicar-Whelan and Binford [1] in 1981.

The accuracy of subpixel estimation depends
on a number of factors, such as the image point-
spread function, noise levels, and spatial fre-
quency of the image data. A commonly quoted
rule of thumb is 0.1 pixel, but lower is achievable,
e.g., about 0.02 pixel is shown for stripe position
detection in [2].

Theory

There are four common theory-based approaches
to estimating subpixel positions and now also
a data-driven approach using deep neural net-
works:

1. Interpolation: An example is in subpixel edge
position estimation, which is demonstrated
here in one dimension in ideal form in Fig. 1.
One can see that measured intensity f (x) is a
function of the edge’s actual position within a
pixel and the values at adjacent pixels. Here
we assume that the pixel “position” refers to
the center of the pixel. Let δ be the offset of the
true edge position away from the pixel center.
Then, one can model the value f (x) at x in
terms of the values at the neighbors, assuming

MEASURED
VALUES

TRUE
SIGNAL

x x+1x−1

PIXEL BOUNDARIES

PIXEL

f(x+1)f(x)f(x−1)

δ

Subpixel Estimation, Fig. 1 The values of f (x) created
by integrating the continuous signal over the whole pixel

a step function:

f (x) =
(

1

2
+δ

)
∗f (x−1)+

(
1

2
−δ

)
∗f (x+1)

from which we can solve for the subpixel edge
position x + δ by:

δ = 2f (x)− f (x − 1)− f (x + 1)

2(f (x − 1)− f (x + 1))

Another approach is to interpolate a continu-
ous curve (or surface) and then find the opti-
mal position on the reconstructed curve (e.g.,
by using correlation for curve registration). As
well as interpolating raw image data, interpo-
lation can also be applied to a cost function,
e.g., disparity estimates as computed by a deep
neural network stereo matching algorithm [3].

2. Integration: An example is the estimation of
the center point of a circular dot, such as
required for control point localization in a
camera calibration scheme. The assumption is
that the minor deviations from many boundary
pixels can be accumulated to give a more
robust estimate. Suppose that g(x, y) are the
gray levels of a light circular dot on a dark
background, where (x, y) are in a neighbor-
hood N closely centered on the circle. Assume
also that the mean dark background level has



Subpixel Estimation 1219

S

been subtracted from all values. Then, the
center of the dot is estimated by its gray-level
center of mass:

x̂ =
∑

(x,y)∈N xg(x, y)∑
(x,y)∈N g(x, y)

and similarly for ŷ.
3. Taylor series approximation: An example is

the subpixel feature point position estimation
in the SIFT [4] operator. Given the difference
of Gaussian function D(x), where x repre-
sents the two spatial and one scale dimensions,
the Taylor series expansion is:

D(x+δ) = D(x)+ ∂D(x)

∂x

�
δ+ 1

2
δ� ∂2D(x)

∂x2 δ

Differentiating with respect to δ and setting to
0 gives the subpixel (and subscale) estimate:

δ = −∂2D(x)

∂x2

−1
∂D(x)

∂x

There are a number of different methods
for estimating the first and second derivatives.
Although the standard limit-based definition
is clear, most image-based sampling is on an
integer grid, so the typical formulas using
“lim h → 0” end up with h = 1. There
are several methods for estimating the deriva-
tives using either local samples [5] or fit-
ting an algebraic curve or surface to local
data and then differentiating the continuous
function [6].

4. Phase correlation: The key principle behind
phase correlation is the assumption that the
pattern of data across a whole window is more
distinctive than the individual pixel values.
The technique is also independent of inten-
sity, so it can be used for multispectral or
illumination-varying registration. Assume that
we have two image windows fa and fb and
their discrete Fourier transforms Fa = F(fa)

and Fb = F(fb). Compute the cross-power
spectrum as FaF

∗
b (by elementwise multipli-

cation) where ∗ is the complex conjugate, nor-
malize elementwise by | FaF

∗
a |, and finally

apply the inverse Fourier transform:

T = F−1
(

FaF
∗
b

| FaF ∗a |
)

The peak position in T is the desired offset.
For subpixel alignment, the above method can
be used to remove the integer component of
the registration. Thereafter, one can estimate
the subpixel peak position of the original reg-
istration or repeat the process on an upsampled
version of the image windows once the integer
portion of the offset has been removed.

5. Deep Neural Networks: As with many other
computer vision applications, deep network
methods are now being used in subpixel appli-
cations. The general scheme of these networks
uses input images of a given size and outputs
result images of a larger size (e.g., 2 or 4 times
larger). Example applications include stereo
matching [3, 7] and superresolution [8]. The
above applications estimate numerical quan-
tities, but one can also do semantic labeling
at subpixel resolution. An example of this is
the unmixing into different land class labels of
pixels observed from a remote sensor [9, 10].

Application

Subpixel methods have been developed to ana-
lyze the following:

– Shape parameters: circle and other “blob”
shape parameters [11], ellipse parameters
for improved camera calibration [12],
photometric stereo [13], superresolution [14],
and decomposition of mixed pixels formed by
imaging two or more source types [15]

– Feature positions: point-like signals [16],
“interest” points [4], “edge” transitions [17],
“line” transitions [18]

– Shape matching and registration: image regis-
tration using phase analysis [19, 20] or spa-
tial domain matching [21], motion estima-
tion prior to image compression [22], stereo
matching [23] and disparity estimation [3,24],
feature tracking [25], optical flow [26], and
image and video stabilization [27].
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Synonyms

Multiple similarity method

Related Concepts

�Dimensionality Reduction
� Principal Component Analysis (PCA)

Definition

Subspace analysis in computer vision is a generic
name to describe a general framework for com-
parison and classification of subspaces. A typical
approach in subspace analysis is the subspace
method (SM) that classifies an input pattern vec-
tor into several classes based on the minimum
distance or angle between the input pattern vector
and each class subspace, where a class sub-
space corresponds to the distribution of pattern
vectors of the class in high-dimensional vector
space.

Background

Comparison and classification of subspaces have
been one of the central problems in computer
vision, where an image set of an object to be
classified is compactly represented by a subspace
in high-dimensional vector space.

The subspace method is one of the most
effective classification method in subspace
analysis, which was developed by two Japanese
researchers, Watanabe and Iijima around 1970,
independently [1,2]. Watanabe and Iijima named
their methods the CLAFIC [3] and the multiple
similarity method [4], respectively. The concept

of the subspace method is derived from the
observation that patterns belonging to a class
form a compact cluster in high-dimensional
vector space, where, for example, a w×h pixels
image pattern is usually represented as a vector
in w×h-dimensional vector space. The compact
cluster can be represented by a subspace,
which is generated by using Karhunen-Loève
(KL) expansion, also known as the principal
component analysis (PCA). Note that a subspace
is generated for each class, unlike the Eigenface
Method [5] in which only one subspace (called
eigenspace) is generated.

The SM has been known as one of the most
useful methods in pattern recognition field since
its algorithm is very simple and it can han-
dle classification of multiple classes. However,
its classification performance was not sufficient
for many applications in practice, because class
subspaces are generated independently of each
other [1]. There is no reason to assume a priori
that each class subspace is the optimal linear class
subspace in terms of classification performance.

To deal with this problem, the SM has been
extended. Two typical extensions are the orthog-
onal subspace method and the learning subspace
methods. The orthogonal subspace method [6]
executes the SM to a set of class subspaces
that are orthogonalized based on the framework
proposed by [7] in learning phase. The orthogo-
nalization is known as a useful operation to boost
the performance of angle-based method, such as
SM, since class subspaces are usually close to
each other in many classification problems.

The learning subspace methods [1, 8, 9] exe-
cute the SM to a set of class subspaces, the
boundaries between which are adjusted to sup-
press classification errors for the learning pattern
vectors. This adjustment is performed based on
the following procedure. First, a learning vector
x is classified by using the SM. Then, if x is
wrongly classified into an incorrect class sub-
space Lr , which is not corresponding to the class
of x, subspace Lr is slightly rotated into the
direction away from x, and in contrast the correct
class subspace Lc of x is slightly rotated to the
direction close to x. This adjustment is repeated
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several times for a set of learning vectors until a
minimum classification error is achieved.

Moreover, to deal with the nonlinear distri-
bution of pattern vectors, the SM had also been
extended to the kernel nonlinear SM [10, 11] by
introducing a nonlinear transformation defined by
kernel functions.

These extensions aim mainly to improve the
classification ability. In addition to such exten-
sions, the generalization of the SM to classifica-
tion of sets of patterns is also important for many
computer vision problems. In order to handle a
set of multiple pattern vectors as an input, the
SM has been extended to the mutual subspace
method (MSM) [12]. The MSM classifies a set
of input pattern vectors into several classes based
on multiple canonical (principal) angles [13, 14]
between the input subspace and class subspaces,
where the input subspace is generated from a
set of input patterns as class subspaces. The
concept of the MSM is closely related to that of
the canonical correlation analysis (CCA) [13].
Actually, the cosine of the i-th smallest canonical
angle corresponds to the i-th largest canonical
correlation.

The MSM has achieved high performance
in recognition of complicated 3D object such
as face, using a set of images from image
sequence or multi-view images. This success
can be mainly explained by the fact that the
MSM implicitly utilizes 3D shape information
of objects in classification. This is because
the similarity between two distributions of
various view images of objects reflects the
3D shape similarity between the two objects.
To boost the performance of the MSM, it
has been further extended to the constrained
mutual subspace method (CMSM) [15, 16]
and the whitening (or orthogonal) mutual

subspace method (WMSM) [17], where the
relationship among class subspaces is modified
to approach orthogonalization in the learning
phase. In CMSM, the orthogonalization is
performed by projecting the class subspaces
onto a generalized difference subspace [16],
which represents difference components among
the class subspaces. In WMSM, it is performed
by whitening all the class subspaces. These
extensions have boosted the classification ability
of the MSM. The MSM and its extensions
have been further extended to kernel nonlinear
methods [18–21] by kernel trick.

Theory

Subspace Method
Assume an input vector p and k class subspaces
in f -dimensional vector space. The similarity S

of the pattern vector p to the i-th class is defined
based on either of the length of the projected
input vector p̂ on the i-th reference subspace [3]
or the minimum angle [4] between the input
vector p and the i-th class subspace as shown
in Fig. 1a. The length of an input vector p is
often normalized to 1.0. In this case, these two
criteria coincide. In the following explanation,
therefore, the angle-based similarity S defined by
the following equation will be used:

S = cos2θ =
dq∑
i=1

(p · φφφi)
2

||p||2 , (1)

where dq is the dimension of the class subspace
and φφφi is the i-th f -dimensional orthogonal nor-
mal basis vector of the class subspace, which are
obtained from applying the principal component
analysis (PCA) to a set of patterns of the class.

SubspaceMethods,
Fig. 1 Conceptual
illustrations of SM and
MSM. (a) Subspace
method (SM). (b) Mutual
subspace method (MSM)

Input vector

a b
Subspace Subspace

..... ..........
u1

v1

Subspace
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Concretely, these orthonormal basis vectors can
be obtained as the eigenvectors of the correlation
matrix

∑l
i=1 xix�i calculated from the l learning

patterns {x} of the class.

Process Flow of the SM
The whole process of the SM consists of a learn-
ing phase and a recognition phase.

In the Learning Phase All k class dq -
dimensional subspaces are generated from
a set of pattern vectors of each class by using
PCA.

In the Recognition Phase The similarities S of
an input vector p to all the k class subspaces
are calculated by using Eq. (1). Then, the input
vector is classified into the class of the class
subspace with highest similarity. If the highest
similarity is lower than a threshold value fixed
in advance, the input vector is classified into a
reject class.

Mutual Subspace Method
Assume an input subspace and class subspaces
in f -dimensional vector space. The similarity of
the input subspace to the i-th class subspace is
defined based on a minimum canonical angle θ1

[13, 14] between the input subspace and the class
subspace, as shown in Fig. 1b.

Given a dp-dimensional subspace P and a
dq -dimensional subspace Q (for convenience,
dp ≤ dq ) in the f -dimensional vector space, the
canonical angles {0 ≤ θ1, . . . , θdp ≤ π

2 } between
P and Q are uniquely defined as [14]

cos2θi

= max
ui⊥uj (i �=j, i, j = 1∼dp)

vi⊥vj (i �=j, i, j = 1∼dp)

(ui · vi )
2

||ui ||2||vi ||2
,

(2)

where ui ∈ P, vi ∈ Q, ‖ui‖ �= 0,‖vi‖ �= 0, (·)
and ‖ ‖ represent an inner product and a norm,
respectively.

Let �i and �i denote the i-th f -dimensional
orthonormal basis vectors of the subspaces P
and Q, respectively. A practical method of

finding the canonical angles is by computing
the matrix X=A�B, where A = [�1, . . . ,�dp ]
and B = [�1, . . . ,�dq ]. Let {κ1, . . . , κdp }
(κ1≥, . . . ,≥ κdp ) be the singular values of
the matrix X. The cosines of canonical angles
{θ1, . . . , θdp } can be obtained as {κ1, . . . , κdp }.
The original MSM uses only a minimum
canonical angle θ1 to define the similarity.
However, since the remaining canonical angles
also have information for classification, the value,
S̃ = 1

t

∑t
i=1 cos2 θi , defined from the smallest

t canonical angles is often used as the similarity
in many computer vision problems. The value
S̃ reflects the structural similarity between two
subspaces. The whole process of the MSM is the
same as that of the SM except that an input vector
is replaced by an input subspace.

Constrained Mutual Subspace Method
The essence of constrained mutual subspace
method (CMSM) [15, 16] is to conduct MSM
on a generalized difference subspace (GDS),
where the GDS is generated from the sum of
the orthogonal projection matrices of all the
class subspaces [16]. This can be performed by
applying MSM to a set of an input subspace and
class subspaces, which are projected onto the
GDS. For the projection, there are two ways that
give equivalent results. One is to project the basis
vectors of each class subspace onto GDS and then
normalize the projected basis, which is further
followed by Gram-Schmidt orthogonalization
after the orthonormality is lost by the projection.
The alternative is to first project the images for
each class subspace and then generate a class
subspace from the projected images.

Application

The subspace methods and their extensions have
been applied to various problems [1, 10, 11] of
computer vision due to their high general versatil-
ity and low computational cost. In particular, the
extended SMs have produced remarkable results
in optical character recognition (OCR), such as
handwriting Chinese character recognition [2,4],
in Japanese industry.
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The mutual subspace method has also
been demonstrated to be extremely effective
for 3D object recognition. In particular, the
MSM has been known to be suitable for face
recognition [15, 17, 22] because the subspace
(called “illumination subspace”), which includes
any face image patterns under all possible
illumination conditions, can be generated from
face images under more than three different
illumination conditions [23]. The nonlinear
extensions of the MSM, CMSM, and WMSM
have been shown to be further effective for
3D object recognition using image sequences
and multi-view images [18–21, 24, 25]. These
methods work well together with CNN features,
which are extracted through a pre-trained
Convolution neural network [26].
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Synonyms

Micro scale structure; Surface corrugations; Sur-
face undulations

Related Concepts

�Bidirectional Texture Function and 3D Texture

Definition

Surface roughness is structure on the microscale
of object surfaces. The illumination of such rough
surfaces causes shading, shadowing, interreflec-
tions, and occlusion effects on the microscale,
resulting in 3D texture, which depends strongly
on the viewing direction and on the illumination
conditions.

Background

Most natural surfaces are rough on the
microscale. This microscale structure can be
described mathematically with exact geometrical
models, with statistical surface height or attitude
(slope) distributions.

Surface roughness causes 3D texture in
images, which varies over objects as a function
of the local viewing angle and illumination
conditions. They can be described by the
bidirectional texture function or BTF [3]. Thus,
textures of rough objects cannot be texture-
mapped, in contradistinction to flat, wallpaper-
type textures. They need to be synthesized
using surface models or photographed BTFs
[6]. Even unresolved 3D texture in an image
affects material appearance, through effects on
the bidirectional reflectance distribution function
(BRDF [7]).

Theory

Since the optical effects due to surface rough-
ness are quite complicated, it is hard to for-
mally derive models for 3D textures. Physics-
based optical models can be of a geometrical
optical or a statistical nature. Physically exact
geometrical models are scarce, because for most
surface roughness structures the shadowing and
interreflections calculations are intractable. As a
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summary description of surface roughness, one
may use such measures as the probability den-
sity of heights, the autocorrelation function of
heights, and the probability density of orienta-
tions of local microfacets. For example, “bump
mapping” techniques [4] in computer graphics
regard only the distribution of orientations and
ignore differences in height. Indeed much of the
image structure generated by 3D texture is due
to the fact that surface microfacets differ in ori-
entation and thus receive different illuminances
according to Lambert’s law [5]. The bidirectional
texture contrast function (BTCF [9]) provides
robust guesstimates of the attitude distribution.
However, the height distribution is also impor-
tant because it causes such important effects
as vignetting, shadowing and occlusion on the
microscale.

The field of surface metrology is concerned
with surface roughness measurements and
descriptions. Using profilometers, surface
profiles of real surfaces can be measured, from
which roughness parameters can be derived.
Roughness parameters usually are statistical
measures over lines or areas of the height profile.
Many different parameters are in use and can
easily be found in engineering literature and via
the Internet [11]. Photometric surface metrology
from single images suffers from the bas-relief
ambiguity [1] and is in computer vision usually
referred to as texture analysis [6].

Open Problems

3D texture provides information which is
additional to shading; shading is often primarily
dependent on the normal component of the
illumination, while 3D texture is primarily
dependent on the tangential component of the
illumination. The spatial structure of 3D texture
gradients, e.g., the “illuminance flow,” allows
inferences about shape and illumination. Formal
solutions to the question how exactly shading and
3D texture combine and interact might further the
field of shape from shading.

Experimental Results

Several databases of images of rough surfaces can
be found on the Internet [2, 8, 10].
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Synonyms

Cluster sampling

Related Concepts

� Swendsen-Wang Cut Algorithm

Definition

The Swendsen-Wang (SW) algorithm [1] is an
efficient Markov chain Monte Carlo algorithm for
sampling from the Ising/Potts model:

πPotts(X) = 1

Z
exp{

∑
<i,j>∈E

βij δXi=Xj
} (1)

where δA is a Boolean function, equal to 1 if con-
dition A is true, and 0 otherwise. The Ising/Potts
model is defined for a graph G =< V,E > and
a labeling X : V → {1, . . . , L}. The obtained

model is called Ising model [2] when L = 2 and
Potts model [3] when L ≥ 3.

Most computer vision applications use βij =
β > 0, also named the ferromagnetic model,
preferring similar colors for neighboring vertices.
The Potts models and its extensions are used as
prior probabilities in some Bayesian inference
tasks.

Background

The SW algorithm was developed in [1] to over-
come some of the limitations of the Gibbs sam-
pler [4] in obtaining samples from the Ising/Potts
model (1). If one sets βij = 1/kT where T is a
parameter called temperature and k is a constant,
the Gibbs sampler was observed to slow down,
obtaining highly correlated consecutive samples,
around a certain temperature named the critical
temperature.

In contrast, consecutive samples obtained by
the SW algorithm exhibit much smaller correla-
tion at the critical temperature.

Theory

As opposed to the Gibbs sampler [4] that relabels
one node at a time, the SW algorithm changes the
label of a cluster of nodes in a single move.

The SW algorithm is illustrated in Fig. 1. At
each step, the SW method constructs a new set
F ⊂ E of graph edges, also called the active or
“on” edges. This is done by initializing F = ∅
and adding to F any edge < i, j >∈ E such that
Xi = Xj with probability 1− e−βij . A connected
component of the new graph G′ = (V , F ) is
selected at random, a new label l is chosen at
random among the possible labels {1, . . . , L},
and all nodes in C are relabeled to l. For more
details, see Algorithm 1 below.

Alternatively, the labels of all connected com-
ponents C of the graph G′ =< V,F > can be
flipped independently.

The SW algorithm is run for many iterations,
and after a burn-in period that depends on the
number of nodes and the coefficients βij , the
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Swendsen-Wang Algorithm, Fig. 1 The Swendsen-
Wang method. Left: In the current labeling state X (left),
the graph edges (shown with thin lines) between same
label nodes are turned “on” with probability pij = 1 −

e−βij . Middle: A connected component C of the graph of
“on” edges is randomly selected, a new label l is randomly
chosen. Right: All nodes in C are relabeled with label l,
obtaining the new labeling state X′

Algorithm 1 The Swendsen-Wang Algorithm
Given: Graph G =< V,E >, V = (V1, . . . , Vn) and
the Ising/Potts model from Eq. (1).
Input: Current labeling state X = (X1, . . . , Xn).
Output: New labeling state X′.
Set F = ∅
for all edges e =< i, j >∈ E with Xi = Xj do

Sample uij ∼ Bernoulli(pij ) with pij = 1− e−βij

if uij = 1 then
F ← F ∪ {< i, j >}

end if
end for
Pick a connected component C of G′ = (V , F ) at
random.
Sample l ∼ Unif {1, . . . , L}
Set X′

i = l,∀i ∈ C, X′
i = Xi,∀i �∈ C

labeling states X will follow the posterior prob-
ability (1).

In a modified version by Wolff [5], one may
choose a vertex v ∈ V and grow a connected
component C starting at C = {v} and following
Bernoulli trials on edges adjacent to C that have
not been visited yet. This saves some computa-
tion in the clustering step, and bigger components
have a higher chance to be selected.

The SW method described above is different
from what was presented in the original paper
[1]. This description follows the interpretation
of Edward and Sokal [6], where the variables
uij |<i,j>∈E are collected into the vector U , and
the set of active edges is F(U) = {< i, j >∈
E, uij = 1}. The SW algorithm is explained as

an auxiliary variable method that samples from
the joint model:

pES(X,U) ∝
∏

<i,j>∈E

[(1− pij )δuij=0

+ pij δuij=1 · δxi=xj
]

∝ (1− pij )
|E\F(U)| · p|F(U)|

ij ·
∏

<i,j>∈F(U)

δxi=xj
.

(2)

The SW algorithm samples from the above joint
model pES(X,U) by alternatively sampling
pES(U |X) and pES(X|U). Note that the
sampling of pES(U |X) is exactly the part of the
SW algorithm that constructs the random edges
F , while the sampling of pES(X|U) is the part
that flips the labels of one or all the connected
components C of the graph G′ =< V,F >.
By sampling (X,U) from the joint model
pES(X,U), the labelings X will follow the
marginal pES(X) which is exactly the Pots model
pPotts(X). On the other hand, the random edges
U follow the marginal pES(U) which is the
random cluster model.

Another explanation of the SW algorithm is
due to Higdon [7] through the perspective of
slice sampling and decoupling. He also intro-
duces partial decoupling, which gives a data-
driven clustering step.
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The SW algorithm was generalized to arbi-
trary probabilities in [8], by interpreting it as a
Metropolis-Hastings [9,10] step. This generaliza-
tion is named the Swendsen-Wang Cut algorithm.

An exact sampling method for the Potts model
using the SW algorithm was developed by Huber
[11], based on coupling from the past [12].
This method eliminates the need for the burn-in
period for obtaining samples; however, it is quite
conservative and can only be used in practice for
small graphs.

Application

Due to being restricted to the Ising/Potts model,
there are only a few applications of the SW
algorithm to computer vision.

Higdon [7] introduced partial decoupling
and presented an application of SW to
image reconstruction from positron emission
tomography (PET) data. The SW algorithm with
partial decoupling was also used in [13] for
texture segmentation using a model with Potts
prior and a data term. The SW algorithm was
compared with the Gibbs sampler and SW with
partial decoupling in [14].

Morris [15] introduced a higher-order prior
model named the “chien” model that is not based
on pairwise interactions but on 3× 3 cliques. He
used the SW algorithm with partial decoupling
for obtaining samples from this model.

The SW Cut algorithm, a SW generalization
to arbitrary probabilities and edge weights, has
seen many applications to image, motion, and
object segmentation as well as stereo matching
and curve grouping, to name only a few. For more
details, see the SW Cut entry of the encyclopedia.
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Related Concepts

� Swendsen-Wang Algorithm
� Simulated Annealing

Definition

The Swendsen-Wang cut algorithm is an efficient
Markov chain Monte Carlo (MCMC) algorithm
for sampling arbitrary distributions p(X) defined
on partitions X of a graph G =< V,E >. It uses
a set of weights on the graph edges to form data-
driven clusters and change the label of an entire
cluster in one move.

Background

Many computer vision problems can be formu-
lated as the optimization of an energy or proba-
bility function defined over the space of partitions
or labelings of a graph. Efficient algorithms such
as graph cuts [1], belief propagation [2], or dual
decomposition [3] can be used for certain types
of energy functions.

However, for general forms of the energy or
probability functions, many times one has to
resort to stochastic relaxation (Gibbs sampler)
[4] methods that relabel one node at a time.
Such algorithms can be very slow in practice,
especially when strong regularization is imposed
on the partitions.

For Ising/Potts models [5, 6], the Swendsen-
Wang (SW) algorithm[7,8] was designed to over-
come some of the limitations of the stochastic
relaxation. The SW algorithm achieves speedup
by relabeling a cluster of adjacent nodes of the
graph in a single move.

Theory

The Swendsen-Wang cuts algorithm is a gen-
eralization of the Swendsen-Wang algorithm to
arbitrary distributions by adding an acceptance
step for the proposed MCMC cluster relabeling

move. The acceptance probability can be com-
puted efficiently using Eq. (3).

Let G =< V,E > be a graph, qe ∈
[0, 1],∀e ∈ E a set of weights on the graph
edges and p(X) a probability defined for any
partition or labeling X = (X1, . . . , Xn) of the
graph nodes V = (V1, . . . , Vn). The probability
p(X) can be defined up to a constant. Assume
also given a probability mass function q(l|C,X)

defined over the set possible labels l, given a
labeling state X and a set of nodes C ⊂ V .
The function q(l|C,X) could be as simple as
a uniform distribution or can be driven by the
image data.

For any labeling X of the graph nodes and any
label l, define Vl(X) to be the set of nodes with
label l:

Vl(X) = {i ∈ V,Xi = l} (1)

For any two subsets C,D ⊂ V , define the cut
from C to D as the set of edges:

C(C,D) = {e =< i, j >∈ E, i ∈ C, j ∈ D}.
(2)

With these notations, one move of the SW Cut
algorithm proceeds as follows, also illustrated in
Fig. 1.

The acceptance probability α(X → X′) has a
factor defined in terms of the cuts C(C, Vl(X)\C)

and C(C, Vl′(X) \C) that contain the edges from
C toward the nodes with the old label l and the
proposed new label l′, respectively. These cuts are
shown with dotted lines in Fig. 1.

The algorithm was observed to be hundreds
of times faster than the Gibbs sampler when the
edge weights qe were chosen appropriately. The
edge weights should approximate the probability
that the two adjacent nodes belong to the same
label. This can be achieved using the image infor-
mation available at the graph nodes and could
be learned in a discriminative way, for example,
using Boosting or regression.

The SW cut algorithm can be used for maxi-
mum a posteriori (MAP) estimation using a simu-
lated annealing schedule, in which the probability
p(X) is raised to increasingly larger powers,
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Swendsen-Wang Cut Algorithm, Fig. 1 Illustration of
the SW Cut algorithm. Left: A graph G =< V,E >

with a labeling X. Middle: At each step, a new graph
G′ =< V,F > is formed by going through all edges
between same label nodes and keeping an edge e with

probability given by its weight qe. Right: Then a con-
nected component C of G′ is selected at random, a new
label l′ is chosen for C, and if the move is accepted, the
new labeling state has XC = l′

Algorithm 1 The Swendsen-Wang Cut Algo-
rithm

Given: Weighted graph G =< V,E >, V =
(V1, . . . , Vn) and a probability p(X).
Input: Current labeling state X = (X1, . . . , Xn).
Output: New labeling state X′.
Set F = ∅
for all edges e =< i, j >∈ E with Xi = Xj do

Sample u ∼ Bernoulli(qe)

if u = 1 then
F ← F ∪ {< i, j >}

end if
end for
Pick a connected component C of G′ = (V , F ) at
random, with some label XC = l.
Sample a new label l′ ∼ q(l′|C,X)

Sample u ∼ Bernoulli(α(X → X′)) where X′
i =

l′,∀i ∈ C, X′
i = Xi,∀i �∈ C and

α(X → X′) = min(1,

∏
e∈C(C,Vl′ (X)\C)

(1− qe)

∏
e∈C(C,Vl (X)\C)

(1− qe)
·

q(l|C,X′)
q(l′|C,X)

· p(X′)
p(X)

). (3)

if u = 0 then
Reject the move i.e., make X′ = X.

end if

forcing the sampling to focus on the labelings X

of highest probability.
A Wolff [9] version of the SW cut algorithm

has also been proposed [10, 11], which grows a
connected component from a seed node. This ver-
sion reduces the amount of computation required

for the clustering step, and larger connected com-
ponents have a higher chance to be selected.

Application

The SWC algorithm has many applications in
computer vision. One application was image seg-
mentation [10, 12], where the graph had image
superpixels as nodes and edges based on the
superpixel adjacency. The edge weights qe were
based on the similarity between the intensity
histograms of the corresponding superpixels. The
probability p(X) was a Bayesian model with a
prior based on connected components and was
maximized by SW cut with simulated annealing.
Experiments showed that the SW cut algorithm
was two orders or magnitude faster in total CPU
time when compared to the Gibbs sampler tuned
to obtain the same optimal result.

Other applications of the SW cut algorithm
include curve grouping [12], dense stereo match-
ing [10, 13], motion segmentation [11, 14] and
estimation [15], object segmentation [16], and
task allocation [17] in robotics. Furthermore,
the SW cut algorithm was used for discovering
composite features for object detection [18] and
for graph matching [19].

Open Problems

In problems, higher-level objects can sometimes
be detected only when at least three components
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are considered simultaneously. For such cases, it
is an open question how to generalize the SW cut
algorithm to use higher order cliques instead of
graph edges to construct the clusters.

For example, finding lines in point clouds can
be seen as the problem of labeling the points
that belong to each line and the remaining points
as background. But since nontrivial collinearity
exists only between at least three points, it is
difficult to define edge weights directly between
the points. A generalization of the SW Cut algo-
rithm could use triplets of collinear points instead
of graph edges to form point clusters that are
likely to be on the same line. It is not known
how exactly to form the clusters from such higher
order cliques and what is the acceptance probabil-
ity for relabeling such a cluster.
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Synonyms

Texture recognition

Related Concepts

�Bidirectional Texture Function and 3D Texture

Definition

Texture classification deals with classification of
images or regions based on the computational
representations of their underlying texture.

Background

As an important visual cue, texture is a
fundamental characteristic of many types of
images ranging from multispectral satellite
images to microscopic images of tissue samples
(see Fig. 1). For instance, texture appears to be a
stronger cue to object identity than global shape
information. It is easy to recognize and hard
to define. Although it lacks a generally agreed
definition, texture has the following important
characteristics. (1) The unique property of
repetition: similar visual patterns (texture
primitives or textons) with some degree of
variability in their appearances and relative
positions appear repeatedly. (2) A regional
property with stationarity: unlike color, it is a
phenomenon of a region and cannot be defined on
a single pixel. The probability density functions
that characterize the distribution and variation of
the repeating structure are consistent. (3) Scale
dependent: whether an effect is referred to as
texture or not relies on the scale at which it is
viewed. Different types of texture are visible at
different scales.

Analysis of visual patterns and texture plays
a central role in mining knowledge from visual
data. Feature representations of image patterns
and texture enable us to abstract, store, classify,
search, and generate in order to understand the
physical world. As a longstanding, fundamental,
and challenging problem in the fields of computer
vision and pattern recognition, texture analysis
has been a topic of intensive research since

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
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Texture Classification, Fig. 1 Texture is an important
characteristic of many types of images. (a) gold coins,
(b) zebra, (c) purple orchids, (d) image by Van Gogh, (e)

facial texture, (g) an aerial image, (h) a synthetic aperture
radar image of sea ice, (i) prostate cancer tissue, and (j)
honeycombing fibrosis in lung CT

Texture Classification, Fig. 2 The goal of texture repre-
sentation is to transform the input image or region into a
feature vector that describes the properties of the texture,
facilitating subsequent classification task. Usually a tex-

ture image is firstly probed with local texture operators to
obtain a pool of local features, which are then aggregated
into a global representation for an entire image or region

the 1960s [1] due to its significance both
in understanding how the texture perception
process works in human vision and in the
important role it plays in a wide variety of
applications. Texture analysis embraces several
problems including classification, segmentation,
synthesis, retrieval, and physics from texture
[2, 3]. Texture representation (see Fig. 2), i.e.,
the extraction of computational features that
measure texture information, is at the core of
these texture analysis problems. In addition,
texture representations are found to be useful
in a wide variety of recognition problems in
computer vision, such as recognizing objects,
scenes, faces, etc. The enormous growth in

image and video data due to surveillance,
mobile devices, medical imaging, robotics, etc.
requires sophisticated computational texture
representations [2, 3].

The goal of texture classification is to design
algorithms for declaring an unknown region or
image as belonging to one of a set of known
texture categories of which training samples have
been provided. As a classical pattern recogni-
tion problem, texture classification primarily con-
sists of two critical subproblems: texture rep-
resentation and classifier design. It is generally
agreed that the extraction of powerful texture
representations plays a relatively more important
role and thus is the focus of attention. A recent



Texture Classification 1235

T

comprehensive survey on texture representation
and classification can be found in [2], where a
taxonomy of texture representation methods is
presented.

Theory

The goal of texture representation in texture clas-
sification is to transform an image or region into
a feature vector that encodes texture information,
facilitating the subsequent classification task.
When deriving texture representations, the three
aforementioned texture characteristics should be
taken into consideration, especially the unique
property of repetition. The standard texture
representation process is illustrated in Fig. 2.
Since texture is a spatial phenomenon, texture
representation cannot be based on a single pixel
and generally requires the analysis of patterns
over local pixel neighborhoods. Usually an image
or region is firstly probed with local texture
operators to obtain a pool of local features.
Since local patterns repeat, a summarization or
aggregation is necessary to obtain an efficient
global representation for the whole region. The
global representation should characterize the
distribution of and the variation of the repeating

structure. This type of representation is often
referred to as an “orderless” texture model.

As with image representations for objects and
scenes, in addition to distinctiveness, texture rep-
resentations should have robustness against intr-
aclass variations caused by illumination change,
geometric transformation, nonrigid deformation,
degradation in image quality, etc. in order to
support recognition in real-world environments.
For many applications such as resource-limited
platforms like embedded and handheld devices,
computational efficiency for computing represen-
tations is very critical. The desired requirements
for texture representations are task related. The
inherent difficulty in obtaining powerful texture
representations lies in balancing two competing
goals: high-quality representation (distinctive and
robust) and high computational efficiency.

A large number of different approaches for
texture representation have been proposed, and
a recent comprehensive survey can be found in
[2]. Milestones in texture representation over the
past decades are summarized in Fig. 3. In the
past two decades, remarkable progress has been
witnessed in texture representation and learning,
which mainly consist of two important devel-
opment stages. In the first stage from 1995 to
2012 (i.e., the predeep learning era), the field
was dominated by milestone handcrafted texture

Texture Classification, Fig. 3 A tour of algorithm evolution in texture representation over the past decades. Relevant
references in this figure can be found in [2]
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descriptors such as SIFT [4], HOG [5], LBP
[6, 7], Bag of Visual Words (BoW) [8, 9], Fisher
Vector [10], etc. The second stage, i.e., the deep
learning era, starts from 2012 when a team led by
Hinton won the prestigious ImageNet Challenge
using deep learning techniques [11]. In the past
several years, the field of computer vision has
been able to take great leaps in recent years
due to advances in deep learning. In texture
classification, research focus has also begun to
transfer to deep learning-based methods [12],
especially Deep Convolutional Neural Networks
(DCNNs). However, researchers still face the
fundamental problem of finding the best com-
putational texture representation for a given task
[7, 13]. Liu et al. [2] divided modern texture
representation methods since 2000 into three cat-
egories, Bag of visual Words (BoW) based, Deep
Convolutional Neural Network (DCNN) based,
and texture attribute based, with the first two
categories being extensively studied.

BoW-based Texture Representation The BoW
pipeline is sketched in Fig. 4, consisting of the
following basic steps. (1) Local Patch Extrac-
tion. For a given image, a pool of local image
patches is extracted over a sparse set of points
of interest, over a fixed grid, or densely at each
pixel position. (2) Local Patch Representation.
For each extracted image patch, local texture
descriptors are applied. High-quality local tex-
ture descriptors play a critical role in the BoW
model. Representative local texture descriptors
include MR8, SIFT, LBP, HOG, and pretrained
DCNN. (3) Codebook Generation. The objective
of this step is to generate a codebook (i.e., a
texton dictionary) based on training data. The
key here is how to generate a compact and dis-
criminative codebook so as to enable accurate
and efficient classification. (4) Feature Encoding.
Given the generated codebook and the extracted
local texture features from an image, feature
encoding represents each local feature with the
codebook, usually by mapping each local fea-
ture to one or a few codewords, resulting a fea-
ture coding vector. Of all the steps in the BoW
pipeline, feature encoding is a core component
which links local representation and feature pool-

ing, greatly influencing texture classification in
terms of both accuracy and speed. Commonly
used feature encoding methods include BoW,
VLAD, Fisher Vector, etc. (5) Feature Pooling.
A global feature representation is produced by
using a feature pooling strategy to aggregate the
coded feature vectors. Classical pooling methods
include average pooling, max pooling, and Spa-
tial Pyramid Pooling (SPM). (6) Feature Classi-
fication. The global feature is used as the basis
for classification, for which many approaches are
possible, e.g., Nearest Neighbor Classifier (NNC)
and SVMs.

DCNN-based Texture Representation A key
to the great success of DCNNs is their ability
to leverage large labeled datasets to learn pow-
erful feature representations with multiple levels
of abstraction, which have demonstrated good
generalization ability. DCNNs pretrained on very
large datasets were found to transfer well to many
other problems, such as texture classification
[14] and object detection [15], with a relatively
modest adaptation effort. In general, the current
literature on texture classification includes exam-
ples of both employing pretrained generic DCNN
models or performing fine-tuning for specific
texture classification tasks. In the recent survey
[2], DCNN-based texture classification methods
can be classified into three categories: using pre-
trained generic DCNN models [14], using fine-
tuned DCNN models [16], and using handcrafted
deep convolutional networks [17].

Among various texture representation meth-
ods, LBP [6] which adopts a predefined codebook
is well known for its computational efficiency
and good texture classification performance. A
taxonomy of LBP features and benchmark of the
most promising variants was presented in [18]. It
presents an extensive experimental evaluation of
LBP variants and deep learning-based features.
The experiments were designed to measure fea-
tures’ robustness against different classification
challenges, including changes in rotation, scale,
illumination, viewpoint, number of classes, dif-
ferent types of image degradation, and computa-
tional complexity. The best overall performance
was obtained for the Median Robust Extended
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Local Binary Pattern (MRELBP) operator [19].
With the advance in DCNN architectures, texture
representations based on DCNNs (e.g., VGGNet
[20] and ResNet [21]) have quickly demonstrated
their strengths in texture classification [14], espe-
cially for recognizing textures with very large
appearance variations. The sensitivity to image
degradations and computational complexity are
among the key problems for most of existing
methods [18].

Application

Typical applications of texture recognition
methodology include medical image analysis
(e.g., quantitative dermatology), industrial
quality inspection, image search, analysis
of satellite or aerial imagery, face analysis,
biometrics, object recognition, texture synthesis
for computer graphics and image compression
in e-commerce applications, and road analysis
for automated driving. Internal imaging using
CT and MRI has been advanced significantly
in recent years. The use of texture recognition
for various biomedical applications using
different types of images has increased rapidly
in recent years. Texture analysis can support
detection of small changes, anomalies, and other
perturbations in medical images. For example,
a small texture change in a medical imagery
may mean the early start of a disease. On the
contrary, a small texture change may mean the
early response to a treatment.

Open Problems

Despite significant progress in recent years, most
texture descriptors, irrespective of whether hand-
crafted or learned, have not been capable of
performing at a level sufficient for real-world
applications. Researchers still face the fundamen-
tal problem of finding the best computational
texture representations for a given task. Recently,
many approaches have used DCNNs to build
texture representations. Nevertheless, it is still
unclear how these models represent texture and

invariances. The goal of the community is to
develop texture representations that can accu-
rately and robustly discriminate massive image
texture categories in all possible scenes, at a
level comparable to the human visual system.
In practical applications, factors such as signifi-
cant changes in illumination, rotation, viewpoint
and scale, nonrigid transformations, and image
degradations such as occlusions, image blur, and
random noise call for more discriminative and
robust texture representations. Another challeng-
ing issue is the computational burden concerning
many existing methods, since many real-world
applications either require real-time processing
(e.g., mobile applications) or have to deal with
huge amounts of data. Therefore, compact and
efficient texture representations are required.
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Synonyms

Texture generation

Related Concepts
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�Deep Generative Models
� Planckian Locus

Definition

Texture synthesis is the process of producing an
image of a certain texture pattern from either
a model governing the variation of the texture
patterns or a small number of samples of the
texture pattern, as illustrated in Fig. 1. The model
could be either learned from training samples or
composed of a set of placing rules or procedural
steps.

Background

Texture is an important characteristic of the
appearance of objects or things in natural scenes.
A texture image has two unique properties:
stationarity and locality. Stationarity implies
that different regions of a texture image often
appear to be similar, and locality indicates that
each pixel can largely be predicted from a small
set of neighboring pixels without the need of
considering the rest of the image. Following
[1], in two extremes, texture could either be
deterministic (Fig. 2a) or stochastic (Fig. 2b).
The former often consists of a set of deterministic
primitives (i.e., textons) with certain placement
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Texture Synthesis, Fig. 1
Given the left sample,
texture synthesis is to
generate a new texture
image which follows the
same underlying process
governing the texture
pattern

rules, while the appearance of the latter is random
in nature (i.e., no explicitly visible textons in the
image space), governed by a stochastic process.
As the world is never too extreme, most real-word
textures (Fig. 2c) are a mixture of deterministic
and stochastic patterns with different mixture
ratios.

Texture synthesis has been an active research
topic in computer vision and graphics for
decades, and a lot of methods have been proposed
with different objectives and assumptions. They
can be roughly classified into two categories:
procedure-based [2–4] and sample-based
[1,5,6]. Nevertheless, in computer vision, texture
synthesis often refers to the latter one.

Many classical procedure-based methods were
proposed from the graphics research community.
They often use preset physical or biological
procedures and parameters to simulate their
underlying formation process. For example,
reaction-diffusion equations [2] were adopted to
generate the textures on animal skin. Desbenoit
et al. [3] adopted an open diffusion-limited
model for lichen. And a clonal mosaic model
is proposed for the synthesis of mammalian coat
patterns in [4]. Procedure methods can be very
fast and memory efficient because they can render
the textures on the fly. However, they are often
limited to very specific textures and need careful
parameter tweaking.

Sample-based methods can handle more gen-
eral textures, which can be broadly categorized as
model-based method [5, 7, 8] and direct method
[6, 9–12]. Model-based methods explicitly con-
struct a statistical model of the texture patterns
(texture modeling step) and then adopt some
sampling strategies to obtain the final texture
(sampling step), while direct methods sample

pixels or small texture patches from the provided
examples with certain local density functions or
matching criteria and then grow or stitch them
together to form a bigger texture image.

Theory and Application

In computer vision, the theoretic foundation of
many model-based methods for texture synthesis
is provided by the Julesz ensemble [13], which
is the maximum set of images sharing the same
feature statistics (i.e., the values of the first to the
kth order statistics of some filter responses are the
same). Much of later work adopted the principle
of the Julesz ensemble but differed in what spe-
cific image features and set of statistics are used
in modeling the texture. For example, Heeger and
Bergen [1] matched the filter response histograms
at different spatial scales using an image pyra-
mid. First- and second-order statistics of joint
wavelet coefficients are explored in [7]. A texture
feature extraction technique involving autocorre-
lation function measurement of a texture field,
combined with a histogram representation of a
statistically decorrelated version of the texture
field, was introduced by Faugeras and Pratt [8].

Along the statistical modeling side, Zhu et al.
[5] proposed the FRAME model, a seminal work
that combines filtering theory and Markov ran-
dom field modeling together through the maxi-
mum entropy principle. The FRAME model pro-
vides a unified view and interpretation of many
previous concepts and methods in texture mod-
eling. The texture modeling part consists of two
steps: (1) the feature extraction step to compute
the features of the textures with a filter bank and
(2) the feature fusion step to derive an estimated
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Texture Synthesis, Fig. 2 Textures could be (a) deterministic, (b) stochastic, or (c) a mixture of both

distribution which has the same marginal distri-
butions on the features extracted in step (1). Once
the FRAME model is built, Gibbs sampling is
adopted to synthesize new texture images. Wu
et al. [14] proved the equivalence of the Julesz
ensemble and the Gibbs texture ensemble. One
drawback of texture synthesis using Gibbs sam-
pling over the FRAME model is that computation-
ally it is rather slow.

The success of deep learning brings new
means of modeling textures with nonlinear
filters. Gatys et al. [15] presented one of the
first convolution neural network (CNN)-based
texture synthesis methods. Instead of using linear
filter banks, Gatys et al. [15] leveraged the deep
learning features from the intermediate layers of a
pre-trained neural network (on image recognition
tasks) and characterized the textures with
the correlation matrix (Gram-matrix) between
feature responses in each layer. To generate a
new texture image, a randomly initialized noise
image is refined with gradient descent to produce
the target image that matches the Gram-matrix
representation of the given sample texture image.
Inspired by Gatys et al. [15], Chen et al. [16]
proposed StyleBank, which defines textons on
the nonlinear filtered maps from an encoder
network and successfully demonstrated how
rendering textons of different styles through a
decoder network can produce different stylized
images. Li et al. [17] learn FRAME models
using convolutional neural network (CNN) filters,
which is able to leverage the highly expressive

CNN features to generate rich object and texture
patterns in natural scenes.

Alternatively, without explicitly establishing a
model of the target texture, direct methods focus
on growing a new texture image from an initial
seed and regard the given texture example as a
source pool to constantly sample similar pixels
or patches. Efros and Leung [6] synthesized
textures through a nonparametric sampling from
a local density function, which was shown to
work well for a wide variety of textures ranging
from deterministic to stochastic. Though much
faster than [5], this method is still too slow since
it produces textures by sampling at the pixel level.
Wei and Levoy [11] significantly accelerated
Efros and Leung’s algorithm [6] using a tree-
structured vector quantization. However, it is still
not real-time.

Due to the greedy nature, one limitation of [6]
and [11] is that the algorithms may be trapped
in suboptimal local minimum in the search space
and hence start growing undesired texture pat-
tern or verbatim copying the seed image. By
using a patch-based sampling algorithm, Liang
et al. [10] proposed a real-time texture synthesis
algorithm, which was orders of magnitude faster
than previous methods and avoided the quality
problem in [6, 11]. However, one notable issue
of patch-based texture synthesis is the presence
of broken features at the boundary of adjacent
textures when neighborhood search cannot find
satisfactory candidates in the sample texture due
to inaccurate similarity measure. To alleviate this
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problem, a new local curvilinear feature matching
and texture warping method is further proposed
in [12].

Another dimension of texture synthesis is
along the temporal dimension or synthesizing
textures in motion. Such kind of dynamic textures
can be found in videos of water waves, fire,
smoke, wavy trees, or grasses. To synthesize
dynamic textures, the modeling or sampling
needs to be defined over space and time. One
way of establishing such generative models
is using a linear dynamic system such as an
ARMA model [18]. Since an open-loop linear
dynamic system is prone to be unstable and
hence makes the synthesized dynamic texture
diverge, Lu et al. [19] borrowed knowledge
from control systems and adopted a closed-loop
linear dynamic system to model dynamic textures
for stable synthesis. Similar to the findings in
[15], it was revealed that for many (but not all)
dynamic textures, the temporal statistics can
also be captured by second-order dependencies
between spatial features from a pre-trained CNN
for visual recognition.

Texture synthesis has a lot of applications. The
most obvious one is to render texture maps for
3D environments, which are widely used in video
games and movies. Other applications include
material recognition and segmentation, texture
transfer [9], style transfer [16], image and video
editing/completion, and image compression, to
list a few.

Open Problems

Texture synthesis has been extensively studied
with well-established theory and application sys-
tems. Recent advances in deep learning have
facilitated better solutions to a lot of computer
vision problems including texture synthesis. The
family of deep generative models, represented
by generative adversarial networks (GANs) and
variational auto-encoder (VAE), has produced
remarkable results in synthesizing objects and
things in natural scenes. This brings new insights
for texture modeling, such as the benefit of the
rich nonlinear features extracted from the CNNs

in facilitating better matching of texture statistics.
Yet we are still striving for building a better theo-
retic framework for texture modeling with CNNs.
The deep FRAME model made a nice stab, but
more work along this line may be needed to push
the frontiers for texture modeling and synthesis.
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Synonyms

3D descriptor; 3D feature; Embedding

Related Concepts

�Object Recognition

Definition

A 3D shape descriptor is a compressed represen-
tation of the geometry of a surface. The estima-
tion of a descriptor can be applied to a single
point, considering only the points belonging to its
neighborhood, or to the entire object involving all
points of the surface.

Background

The estimation of similarities between surfaces
represents the cornerstone of most 3D computer
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vision applications. A typical way of solving
surface matching is to establish point-to-point,
or shape-to-shape, correspondences obtained by
matching local or global descriptors. Several met-
rics can be used to compare them, the most
common arguably being the Euclidean distance
in the descriptor space. Designing an effective
descriptor is far from being an easy task. Their
fundamental role has, over the years, fuelled
intense activity in this field. According to [1]
two essential traits of 3D shape descriptor are
descriptiveness and robustness. Descriptiveness
refers to the capacity to embed predominant char-
acteristics of the set of points being described.
The more distinctive the information incorpo-
rated within it, the easier it will be to distinguish
it from the same descriptor related to different
shapes or different neighborhoods on the same
shape. As far as robustness is concerned, it can
be defined as the ability to be not sensitive to a
large set of nuisances, like rotation, point den-
sity variations, sensor noise, viewpoint changes,
occlusions, and clutter. The information encoded
within a descriptor should be as independent as
possible from the noise affecting the data.

According to the region of the surface
involved, descriptors can be grouped in global
or local. Global methods encode the entire 3D
model in the descriptor, while local focus on a
small part of the surface (i.e., a neighborhood
around a keypoint), with the latter usually being
preferred to the first, thanks to their higher
robustness to partial occlusions of the surface
and to the presence of clutter.

An important characteristic of a descriptor is
the ability to be invariant to certain recurring
nuisances in the data, such as specific 3D trans-
formations, noise, and topology changes. Most
3D descriptors aim to be invariant to 3D rotations,
either by using a local reference frame (LRF)
prior to the computation of the descriptor [2, 18,
19] or, in case of certain learned approaches, by
employing specific training procedures [9, 10].

In the following section, we will focus more
on local descriptors. We will refer to p as the
point for which we are computing the descriptor,
np as the normal at p, and support as the region
surrounding p.

Theory

Scholars have studied different ways to create
feature descriptors for 3D surfaces. The first
attempts were handcrafted, meaning that
geometric or topological measurements were
collected into histograms. Recently, advances in
deep learning have given rise to several data-
driven methods, which will be referred to as
learned. According to [2], local approaches
can be subdivided into two main categories
defined as histograms and signatures (see
Fig. 1 for a graphical explanation). Based on
this classification, a histogram-based descriptor
accumulates local geometrical or topological
measurements (e.g., point counts, mesh triangle
areas, etc.) into histograms according to a specific
discretized domain (e.g., point coordinates,
curvatures, etc.). Differently, a signature-based
descriptor encodes one or more geometric
measurements computed individually on each
point within the support. This encoding has to
be ordered in an invariant manner with respect
to the point coordinates. To achieve this, usually
an LRF is computed over a spherical support
centered on the point, and then each measurement
is encoded by means of an order expressed via
the point coordinates of the LRF itself.

One of the first examples of histogram-based
descriptor is spin images(SI) [11], under which
the surface representation for p is created using
a 2D array, the image, constructed by spinning
a 2D plane around the normal at the feature
point, np (hence the name spin images). First
each point inside the support is projected to a
2D cylindrical coordinate system centered on the
feature point, then this space is discretized into
a 2D array, and the number of points falling
in each bin is counted to build the final rep-
resentation. To achieve rotation invariance, the
cylinder is aligned using np. 3D Shape Con-
text(3DSC) [12] captures the geometry around
a keypoint using the distribution of the points
in a spherical grid support. Similar to SI, np

serves as reference axis(RA), to align the north
pole of the grid, while the degree of freedom
on the azimuth direction is addressed by com-
puting multiple descriptors, each of them with a
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According to [2], most local descriptors can be divided
between signatures and histograms. The former class
encodes one or more geometric traits computed on each
point of the support according to local coordinates, and

the latter accumulates the number of points or the triangle
area according to a specific quantized domain. Signatures
always require an LRF to define the coordinates within the
support, while histograms only if their domain is based on
coordinates

randomly chosen vector on the tangent plane at
np. An improved version of 3DSC is proposed
in Unique Shape Context(USC) [18], where the
ambiguity on the azimuth direction is removed
by leveraging a definition of a repeatable and
unambiguous local reference frame [2]. Richer
information can be extracted from point density
by computing statistics on it, as has been done
in Rotational Projection Statistics(RoPS) [19],
which combines plane projection and statistics on
the point distribution to design a local 3D descrip-
tor that operates on meshes. RoPS starts by defin-
ing a novel LRF. Then, the points within the
support are rotated around the x axis by a given
angle and projected onto three planes xy, yz,
and xz. For each projection a distribution matrix
is built, and five statistics, including the central
moments and Shannon entropy, are computed.
The same procedure is repeated considering the
y and z axes. The final histogram is obtained by
concatenating the statistics of all rotations.

Most of the signature-based methods rely on
surface normals to build their own descriptions.
Point Feature Histogram(PFH) [16] constructs a
graph with all the possible pairs among the points
inside the support region of p. For each couple,
three angular features expressing the relationship

between the normals are then encoded. Due to
the construction of the dense graph between the
points, PFH is computationally expensive. There-
fore, a simplified version which constructs the
graph for each of the points in the support consid-
ering only a subset of neighbors has been intro-
duced in Fast Point Feature Histogram(FPFH)
[17]. Another relevant example in this category
is Unique Signatures of Histograms for Local
Surface Description(SHOT) [2]. SHOT computes
a set of local histograms over the 3D volumes
defined by a 3D spherical grid superimposed on
the support. The grid is aligned with the axes
given by the estimated LRF, and each local his-
togram counts the number of points falling into
each bin according to the cosine of the angle
between the normal at each point and the z axis of
the estimated LRF. In [27] a method that creates a
global model description using an oriented point
pair feature(PPF) is proposed.

As far as learned descriptors are concerned,
the application of artificial neural networks to 3D
data, such as point cloud, is a very challenging
topic due to the unstructured nature. Researchers
over time have experimented with different
methodologies to arrange a set of Euclidean
coordinates into a regular grid structure [20–22].
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One of the first methods aimed at learning a
3D local feature descriptor by means of deep
learning is 3DMatch [3]. Similar to what has
been done to learn embeddings for the images, a
standard 3D ConvNet is trained minimizing the
contrastive loss [24] between descriptor triplets.
Local 3D patches, representing the support of
p, are encoded using a voxel grid based on
the Truncated Signed Distance Function(TSDF)
[25]. On the same wavelength, 3DSmoothNet
[8] employs a voxelized smoothed density
value representation oriented according to a
local reference frame. The descriptiveness of
the learned descriptor is increased through
the use of the hardest-in-batch method [26].
Other state-of-the-art approaches learn how to
robustly compress specific existing handcrafted
3D descriptors, instead of learning a new
one. In Compact Geometric Features(CGF),
the feature point is represented by a high-
dimensional input parameterization similar to
[18], and a fully connected network acts as
dimensionality reduction upon it to reduce the
input dimensionality without discarding the most
important information. In PPF-FoldNet [5] the
network is trained in an unsupervised way to
encode and decode the point pair features [27]
computed on the support region of a feature
point. Analogously, 3D Point Capsule Networks
[7] learn to compress the four-dimensional point
pair features with a 3D Capsule-Encoder; the
latent capsule codeword then serves as learned
descriptor. A great challenge in learning feature
descriptors is how to achieve invariance to
rotation; all the proposals just discussed so far
rely on a reference axis or a local reference
frame. In [9] an equivariant [28] descriptor
is learned from unoriented input data, and an
LRF is required only at test time to obtain
an invariant descriptor. In Fully Convolutional
Geometric Features(FCGF) [10], the use of a
fully convolutional network together with an
extensive data augmentation in training allows to
obtain an invariant feature descriptor in a single
forward pass for all points belonging to a point
cloud.

Deep learning has been recently used also to
learn global descriptors for 3D surfaces, espe-

cially on point clouds. A general framework to
learn features directly from raw point clouds data
(e.g., point coordinates) is proposed in Point-
Net [14]. PointNet is designed in a permutation
invariant manner, a group of shared multilayer
perceptron treat each point individually, and a
symmetric function, max pooling, is applied to
achieve invariance to permutation. The proposed
architecture is suitable for 3D object classifica-
tion and 3D semantic segmentation. Taking point
clouds as input, the network produces either the
class labels for the entire cloud or per point
part label, learning a mapping from 3D data to
latent feature which can be viewed as a global
descriptor. An attempt to use PointNet as a local
descriptor was made in [6].

One of the key aspects behind the success
of Convolution Neural Network (CNN) is their
ability to capture features on an increasing scale
through multi-resolution hierarchy. Lower-level
filters have a smaller receptive field that is
enlarged as the depth of the network increases.
This hierarchical structure allows for a better
generalizability to unseen cases. However,
PointNet treats each point individually without
leveraging the local geometric structure. To cope
with this issue, an improved version is presented
in PointNet++ [29], which mimics standard
CNNs behavior introducing a hierarchical
structure. Other learned global descriptors
recently proposed are [32–34].

Application

Multiple applications require the analysis of
similarities between 3D surfaces. Five well-
established applications inherent to disciplines
such as computer vision, computer graphics, and
robotics are the following:

• 3D object recognition verifies the presence
of a set of objects within a scene. Typically
the models to be recognized are taken from
a model gallery, and there may be objects in
the scene that are not included in the gallery.
Once an object has been identified, its 6D pose
is estimated.
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• 3D surface reconstruction, given a set of par-
tially overlapping views of the same object,
estimates the set of 6D transformations that
bring all views within the same coordinate
system, so as to reconstruct the object shape
and appearance.

• 3D object retrieval determines the most sim-
ilar 3D models from a large database given a
3D shape as query (or a textual description of
the object).

• 3D object classification aims at identifying
the correct category of an object. The main
challenges are related to handling the intra-
class variations related to object categories
and the robustness with respect to viewpoint
changes.

• 3D semantic segmentation, given an object or
a scene, aims at subdividing it into its different
semantic parts/components.

Figure 2 shows some examples related to
these applications. As previously mentioned,
local methods are particularly suited to deal
with clutter and partial occlusions; hence they
are a general tool employed within 3D object
recognition scenarios. In such an application, the
general approach relies on determining point-to-
point correspondences between each model of the
database and the current scene based on matching
3D feature descriptors (see Fig. 2b). The 6D
model pose can then be estimated by selecting
a subset of correspondences based on consensus
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Three-Dimensional Shape Descriptor, Fig. 2
Exemplars of 3D shape descriptors applications. (a)
The Princeton ModelNet Benchmark dataset [35],
commonly used for benchmarking 3D shape retrieval
and shape classification algorithms. (b) Example of
3D object recognition in clutter and occlusion using
local descriptors; left, current scene; right, recognized

model; red and green lines, correspondences yielded
among keypoints by matching local descriptors. (c) 3D
surface registration of two partial views performed via
point-to-point correspondences obtained by matching
local descriptors. (d) 3D object part segmentation on the
ShapeNet part dataset [30]. Each point in the point cloud
is colored by the corresponding ground-truth label
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and/or geometrical constraints. Within the object
recognition scenario, global methods generally
need, instead, to be paired with a segmentation
algorithm by computing a descriptor on each
segment. Local descriptors are also commonly
employed for 3D reconstruction from partial
views, since they are suited to handle the presence
of nonoverlapping parts of two surfaces that need
to be registered together (see Fig. 2c). Finally,
3D semantic segmentation (Fig. 2d) is performed
feeding an artificial neural network and obtaining
a class label for each of the point in the point
cloud.

Open problems

Although it is a mature field of research, many
problems concerning 3D shape descriptors still
remain open. The use of deep learning algo-
rithms has boosted the performance of local 3D
descriptors, but, analogously to what happens
with images, they suffer from the domain shift
problem since they are trained and tested under
different working conditions and data domains.
Algorithms have to be flexible enough to handle
different nuisances such as viewpoint variations,
clutter, and occlusions. In particular handling
point density variation in data acquired with dif-
ferent sensors will be a key aspect to evaluate
the performance of learned approaches. With the
high diffusion of low-cost mobile devices, appli-
cations based on augmented reality are becoming
increasingly important; for this reason the com-
putational load associated with computing and
matching shape descriptors is also an important
issue. Finally, state-of-the-art methods are inject-
ing supervision during the train process which
requires a large amount of labeled data, and
collecting this information is often a very time-
consuming and costly effort. Novel unsupervised
methods are currently being investigated which
could offer a meaningful solution with respect to
this problem.
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Synonyms

Geometric fusion; Surface reconstruction

Definition

View integration consists of integrating several
3D views (images) in a non-redundant model, one
that describes each part of the surface of an object
or a scene with a single geometric primitive.

Background

The availability of accurate 3D cameras in the
early 1980s has opened a new field of investiga-
tion in computer vision, namely, the acquisition
and processing of 3D images [3]. The develop-
ment of this field has been spectacular in the
last three decades, and the use of 3D sensors,
and the images they provide, is now common
practice in a wide spectrum of human activities
such as assembly, inspection, Computer-Aided
Design (CAD), reverse engineering, medicine,
and entertainment to name just a few.

In comparison with standard cameras which
provide images of the appearance – either black
and white or color – of the surface of objects, 3D
cameras provide images containing information
on the geometry of the surface of these objects.
Some modern 3D sensors now even capture both
appearance and geometric images of objects at
the same time.

For the sake of brevity, in the following, the
word “object” will be used to designate indiffer-
ently single objects or scenes made of more than
one object. The problem of 3D view integration is
concerned with the task of building the model of
an object using three-dimensional data captured
from several vantage points. The model should
represent, in one form or another, the surface of
the object from all directions of observation.

Equation 1 shows the steps usually adopted
by 3D computer vision applications: acquisition,
registration, integration, reconstruction, and visu-
alization. A modeling step (shown in gray shade
in the figure) is often executed before the registra-
tion step since registration and integration often
use local models (e.g., triangulations) instead of
raw data. In the case of interactive modeling
applications, one can loop dynamically through
these steps since the model of the object is pro-
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View Registration

View Integration
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Three-Dimensional View Integration, Fig. 1
Processing steps of 3-D vision applications

gressively built as new data is acquired with the
3D sensor. Except maybe for visualization, all
steps have a direct or indirect outcome on view
integration.

In the following, the steps shown in Fig. 1 are
discussed in the context of view integration.

Theory and Application

3D Data Acquisition and View Integration
As mentioned above, 3D cameras acquire image
data that conveys information on the surface
geometry of objects. Figure 2 shows an object
with a complex shape located in reference
frame Xw−Yw−Zw called the “World” reference
frame. A 3D sensor, with its own reference frame
Xc−Yc−Zc, observes this object from location
(xcam, ycam, zcam) in the “World” reference frame.
For a given point P at the surface of the object,
the 3D camera measures the coordinates (x?,
y?, z?) of the point (some cameras compute the

distance “d” between P and the origin of frame
Xc−Yc−Zc). The reason for using “?” in the
measured coordinates of P is that some cameras
provide these coordinates in frame Xc−Yc−Zc

while others provide these coordinates in frame
Xw−Yw−Zw or some other frame in the “World”
reference frame used for calibrating the camera.
Several types of 3D cameras exist and use
different approaches (active or passive) for
measuring 3D coordinates of surface points and
provide different types of raw data. Figure 3
shows some of these techniques (see [3] for a
good coverage of range sensing technologies).
On one hand, active techniques use some sort
of light source, often a laser, for projecting
a point or pattern (light stripe, grid) on the
surface of the object. The pattern reflected by
the surface is observed by a camera and, knowing
(or calibrating) the baseline b (i.e., the distance
between the source and the camera) and the
orientation θ of the source, the coordinates of
point P in the reference frame of the camera can
be obtained by triangulation. Dense 3D images
can be obtained by sweeping the pattern on the
surface and capturing a large number of points.
Another popular active approach computes the
time of flight between the emission of a light
pulse and its detection by a light sensitive sensor
(an ultrasound pulse and microphone are also
used in cheap 3D cameras). The distance between
the sensor and point P can be obtained from
d= 2t × c, where c is the speed of light. A similar
approach, which uses a continuous wave (sine
for example) instead of a pulse, computes the
distance between the source and the sensor from
the phase shift between the emitted and received
signal. On the other hand, passive techniques do
not use any external light source for measuring
surface geometry. The most well-known passive
approach is stereovision which computes the
coordinates of point P by triangulating the rays
produced by its images captured by 2 (or more)
cameras. A variant of stereovision uses only
one camera that moves in front of the object and
captures two (or more) images of it from different
locations. Although it is not absolutely required
that the scale of the object be known [7], the
stereo pair of cameras is usually calibrated before
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Three-Dimensional View Integration, Fig. 3 Different types of range finders

image acquisition in order to provide accurate 3D
coordinates at real scale.

Depending on the approach used, 3D cam-
eras provide different types of raw data such
as point clouds, scans, or rasters. As shown in
Fig. 4, point clouds, also called “unorganized
sets of points,” do not show any specific spatial
organization and the connectivity between points
is not available directly. Such images are often

provided by techniques such as stereo vision.
A second type of 2D image is shown in the
middle diagram of Fig. 4 and consists of points
organized as lines (the lines or scans need not
be parallel). This type of image often results
from the use of a light stripe scanned over the
object during data acquisition by an active 3D
camera (for instance, a handheld 3D scanner).
The connectivity between neighboring points on
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Three-Dimensional View
Integration, Fig. 4
Different types of range
images

Points cloud Scans Raster

a scan is generally available (in smooth areas of
the surface), but the connectivity of points on
different scans may not be available explicitly.
Finally, a third type of 3D image, known as a
“raster” and which generally provides dense 3D
data, results from the acquisition of dense 3D
images on a parametric grid for which the con-
nectivity (4-neighbor or 8-neighbor) is directly
available in the image. The availability or not of
connectivity information as well as the density
and accuracy of the 3D points in the images has a
significant impact on view registration and view
integration as discussed later.

View Registration in the Context of View
Integration
All 3D cameras, no matter what the approach
used for measuring the 3D points, have a finite
field of view, and, as shown in Fig. 5 for a
2D case, several images are thus required for
gathering information on all parts of the surface
of an object. The use of several views implies
that (i) some parts of the surface of the object
are observed in more than one view (segment S3

between c and d in Fig. 5 is visible in views V2,
V3, and V4); (ii) parts of the surface are observed
at a grazing angle in some views (segment S5

between e and f in V3), meaning that the 3D
data in this part of the view is sometimes not
accurate; and (iii) concavities on the surface (such
as segment S10 between k and j) are present
and may require a large number of views if
the entire surface is to be sampled. Acquiring
multiple views implies that either the camera or
the object must be moved during the acquisition
process. In earlier days of 3D vision (and in
many current applications), sensors were mostly
static and objects were installed on a turntable
while 3D images of the surface were captured.

The advent of handheld 3D sensors [8] or sensors
mounted at the end of a robotic arm now allows
the object to remain static while the camera is
moving during data acquisition. As mentioned
above, the 3D information in each view is often
expressed in a reference frame Xc-Yc-Zc attached
to the camera. This means that the data acquired
by the camera at each position (on its path around
the object) is local to this position. Once the
entire surface of the object has been covered,
the data acquired in each local camera refer-
ence frame (Vi, I = 1 . . . 6 in Fig. 5) must
be transformed in a common reference frame
which can be the “World” reference frame, the
reference frame of one of the views, for instance,
V1, or any other frame that is relevant for the
application. The task of finding the rigid trans-
formation (translation and rotation) required to
express the data in local reference frames in a
common global reference frame is called “view
registration.” View registration is a very complex
problem that has received a lot of attention in
the 3D vision research community, and several
approaches for finding the rigid transformation
between views have been proposed in the liter-
ature, the most well-known being the Iterative
Closest Point (ICP) algorithm for pose refinement
[2]. These approaches will not be discussed here
but it suffices to say that all approaches that
use the data alone (in opposition to methods
that make use of an external positioning device)
for computing the registration are based on the
overlap between views (i.e., the data common to
two or more views) to estimate the parameters
of the rigid transformation between views by
minimizing the distance between the overlapping
regions. The computational complexity of the
registration step, which needs to find the nearest
neighbors of points on overlapping views in its
distance minimization cost function, becomes a
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major hurdle when the amount of 3D data is large,
although some solutions have been proposed for
achieving real-time performance on common-
off-the-shelf computers for man-made objects of
reasonable size [16]. The accuracy with which

view registration can be achieved (meaning that
the error in the estimation of the parameters of
the rigid transformation is small) has a direct
impact on the view integration step since the
quality and conformity of the integrated data is
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Three-Dimensional View Integration, Fig. 7 Illustration of the acquisition error on range points. The error is usually
larger when the camera observes the surface at a grazing angle

closely related to registration errors. Three main
approaches exist for view registration, two of
which are illustrated in Fig. 6. Pair-wise reg-
istration estimates the rigid transformation two
views at a time (for instance, 1–2 are registered
first and yield 1/2, view 3 is then registered
with 1/2 leading to 1/2/3 that is finally registered
with view 4 leading to the final registered set
of views 1/2/3/4). The main advantage of this
approach is that it is both conceptually and com-
putationally simple. Its main drawback is that
registration errors accumulate in the sequential
process, and the final result may often be far
from the exact shape of the object as shown
in the figure. A better approach, which is more
computationally demanding, consists of register-
ing all views simultaneously. This means that
the parameters of all rigid transformations are
estimated at once by minimizing the global reg-
istration error. This imposes that all available
data be processed simultaneously, which may
lead to important memory requirements and long
processing times when a large number of views
containing huge amounts of 3D points need to
be considered. The reward for the extra mem-
ory and computational cost is that registration
accuracy is much better than for the pair-wise
process because of global optimization. A last
approach that is not illustrated in the figure and
which is a compromise between the two other
approaches, consists of registering a view with a

computer model built from previously registered
(and potentially integrated) views.

The need for registering several views in order
to capture the geometry of the whole object raises
the problem of choosing the next-best views that
will bring the most relevant data and help in
reducing the number of images required for sur-
face coverage [1].

The accuracy of the 3D data has a significant
impact on the view registration. As illustrated in
Fig. 7, 3D measurements are obtained with dif-
ferent accuracy over different parts of a surface.
For areas where the surface normal makes a large
angle with respect to the direction of observation
of the camera (point P2 with normal n2), measure-
ments are less accurate than for the parts where
the surface normal and direction of observation
are mostly parallel (point P1 with normal n1).
For active systems using a laser, for instance,
a smaller light energy reaches the sensor which
causes measurement to be less accurate at P2. The
measurement error is often modeled as a Gaus-
sian distribution with its main axis aligned with
the direction of measurement as shown on the
right hand side of the figure. The Gaussian model
is far from being ideal since it fails to describe
the “impulsive” nature of the acquisition noise in
areas such as P2, but it is a convenient approach
for taking measurement errors into account in the
registration process. Some measurements which
cannot be modeled by a Gaussian error model
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are completely unreliable and are labeled as “out-
liers.” Such outliers have a dramatic effect on
the minimization process in view registration and
must be eliminated (RANSAC-based approaches
can help in the elimination process [6]). Outliers
also occur at step discontinuities (parts of the
surface where there is a large variation of range
over a small patch of the surface).

3D View Integration
With the above material on 3D data acquisition
and registration, the problem of 3D view inte-
gration can now be approached as such. In the
following, it is assumed that 3D data has been
acquired in enough views to cover the whole
surface of an object and that view registration has
been performed with enough accuracy to allow
reliable integration. For the sake of simplicity, the
focus will be put on the integration of 3D raster
images acquired by active range finders. Raster
images will be called “range views” or “range
images.” Integration of color information often
acquired simultaneously with range information
will not be addressed since it is a research prob-
lem of its own.

Ideally, a view integration approach should
meet the following requirements [4] (see
Fig. 8):

1. Be able to deal with multi-part objects with
holes and concavities such as the teapot shown
in the figure. For instance, parts of an object
may occlude another part in a given view cre-
ating step discontinuities in the range image
(the handle of the teapot occludes the body in
view 1).

2. Be independent of the number of views and be
able to cope with the large number of views
(and 3-D points) needed to capture the full
geometry of an object.

3. Be able to perform incremental reconstruction
meaning that new views can be added to an
existing model.

4. Be “order independent” meaning that the
resulting integrated model should not depend
on the order with which the views were
integrated.

5. Be able to take data accuracy into considera-
tion in the integration process and be robust to
outliers.
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6. Be able to take into consideration the connec-
tivity of the data when it is available as well as
the redundancy of the data (i.e., data acquired
on the same area of the object’s surface in
different views).

7. Be able to fill gaps in the integrated model
caused by lack of 3D data on small parts of
the surface.

8. Be computationally efficient with respect to
CPU and memory requirements. Although
real-time view integration performance is not
always requested, processing a large number
of views must be executed in a reasonable
amount of time on COTS computers. Ideally,
complexity should be linear with respect to the
number of points (and triangles when a local
triangulation model is used for describing
each view) as well as the number of views.

At this point, it is important to mention that
the process of view integration is also called
“surface reconstruction” or “geometric fusion” in
the relevant literature. All terms will be used in
the following.

Before going further, let us define more for-
mally what is meant by the term “range image.”
This definition is proposed in [14]. A range image
is a function which associates domain points to
image points. Domain points pp are sampled on
a reference surface SP while image points ps are
located on the surface of 3D objects in a scene.
The range image function results from the pro-
jection of domain points pp onto object surfaces.
The projection can be directed along curved lines
called projectors as shown in Fig. 9a. Objects are
assumed to be solids of finite volume bounded
by a manifold, orientable, and closed surface.
Imposing that the surface be closed implies that
view integration must be able to fill holes result-
ing from an imperfect integration process, a fea-
ture that is in line with requirement section “Open
Problems” above.

There are basically two main approaches
to view integration: surface based and volume
based. Both approaches share the property that
they can generally generate an integrated surface
model at several resolutions. The generated
model is usually a linear approximation of the

integrated surface. This means that the integrated
model approximates the surface locally by small
planar patches such as triangles organized in a
connected mesh, and each area of the surface
is described by one and only one model. More
sophisticated representations such as bicubic
splines, superellipsoids, or generalized cylinders
can also be used as a model of the integrated
surface.

Both approaches also make the assumption
that the resolution of the range images used in the
integration process is high enough to deal with
objects showing large curvature in some areas
of their surface otherwise, too small a resolution
would cause curved areas to appear as step dis-
continuities.

Surface-based approaches are addressed first
followed by volume-based approaches.

Surface-Based View Integration
The definition of a range image given above is
operational and quite general since no specific
shape is specified either for the reference sur-
face or the projectors. In practice, the reference
surface can be a plane, a cylinder, or a sphere,
and the projectors are straight lines as shown
in Fig. 9b. Although cylindrical and spherical
reference surfaces can prove useful in some situ-
ations, they also have significant drawbacks. For
instance, the elements of a spherical grid do not
have the same area. In addition, projectors may
intersect for both the cylindrical and spherical
grids. For a planar reference surface, the elements
of the grid can be made square, and the projectors
are parallel with each other and perpendicular to
the reference surface. Planar reference surfaces
are thus preferred over cylindrical or spherical
grids for obvious reasons. The advantage of using
a reference surface is that connectivity informa-
tion between image data is directly available from
the connectivity between grid elements except at
step discontinuities.

The first step in view registration consists of
eliminating outlier data from the range image.
Outliers frequently appear near step disconti-
nuities or occlusion contours when laser scan-
ners attempt to acquire samples where the laser
impinges the object surface at grazing angles.
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Outliers appear as if they were “floating” in
space and are often very far from other points.
A simple thresholding operation applied on the
range image is generally all that is needed to
eliminate outliers.

A second processing operation that is fre-
quently performed on range images is the detec-
tion of step discontinuities in the different views.
An example of such a step discontinuity is shown
in Fig. 10a. The scene shows a surface orientation
discontinuity in View 1 but this discontinuity is
seen as a step discontinuity in View 2. Many
approaches can be used for detecting step dis-
continuities, the simplest one being to implement
a thresholding operation on the 3D data corre-
sponding to horizontal and vertical neighbors on
the grid of the reference surface. Although it is a
simple operation from the conceptual standpoint,
it is not so easy to implement a robust step discon-
tinuity algorithm since range data is sometimes

noisy near the steps, and false alarms and non-
detections can occur and may cause problems for
some integration algorithms [14].

The view integration task begins as such once
the three pre-processing steps described above
have been performed for all views. The first goal
is to detect the redundant information in the
views, i.e., the parts of the scene that are observed
in more than one view. Redundant information
is a key element for view registration but once
registration is performed, redundancy in the data
must be eliminated in order to produce the model.

Set theory has been proposed as a framework
for addressing the view integration problem [14].
If a view is seen as a set of points as in Fig. 10c,
then, finding redundant information reduces to
finding subsets of the Venn diagram which are
the intersection between sets, in this case V1
∩ V2. Figure 10b shows the parts in the scene
which are visible in V1 (green), V2 (red), both



1258 Three-Dimensional View Integration

Step discontinuity

View 1 View 2 View 1 View 2

V1 V2

V2V1

V1 V2

1

1

2

2
V1 V2

V3

V3V1
V2V1

V3V2

V2V1 V3
Level 3

Level 2

Level 1

1

2

3

Average grid

a b

c d

e

Three-Dimensional View Integration, Fig. 10 Step
discontinuity in a view (view 2) (a). Crossing a step
discontinuity in a view (b). Membership discontinuity in

the Venn diagram (c). Hierarchy of redundant subsets of
the Venn diagram (d). Average reference surface (grid) for
the integration of views (d)

V1 and V2 (green and red), or not visible in any
view (black) for the simple scene in Fig. 10a. It
is important to note that there is a link between
the presence of a step discontinuity in a range
image and a membership discontinuity in the
Venn diagram. In the figure, when one crosses
the step discontinuity in View 1 reported in the
reference frame of View 2 (marked as “1” on the
figure), one crosses the frontier between subset
V1 ∩ V2 and subset V1 ∩ V2. The same situation
occurs when one crosses the step discontinuity in
View 2 (marked 2 on the figure) since one crosses
the frontier between subset V1∪V2 and V1∩V2.

By processing pairs of views in turn, one ends up
building the Venn diagram of N views and thus
finding the redundant information corresponding
to subsets of the Venn diagram. The information
contained in only one view can thus be modeled
while the information contained in more than one
view can be merged and then reconstructed as a
single model. This procedure is described next.

Finding the information common to a pair
of range views consists of taking each 3D point
in one view and finding whether or not, when
transferred in the reference frame of the other
view using the frame transformation obtained
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from view registration, it is close to a triangle
in the mesh of the first view. This first operation
is called a “neighborhood test.” When the 3D
point is indeed close to a triangle in the second
view, a second test is run to check whether or not
this point is “visible” from the planar parametric
grid of the second view. This “visibility test”
is required since a point may be close to the
surface of a view but may not be visible from
this view. This happens for instance near the rim
of a cup where points in one view may have
been sampled on the interior of the cup, while
points in the other view have been sampled
on the exterior of the cup. Such points are
close in space, but they do not belong to the
same part of the object. The “visibility test”
checks if the scalar product between the normal
to the surface at the point being processed
and the direction of the optical axis of the
camera is positive (i.e., the angle between the
two directions is smaller than 90◦). If it is so
and the point is close to the surface, then this
point is labeled as being common to the two
views.

The two tests described above yield poor
results near step discontinuities because it
is (i) difficult to define a surface patch
near a discontinuity which causes the spatial
neighborhood test to fail and it is (ii) also difficult
to estimate the normal to the surface near a
discontinuity, causing the surface visibility test to
fail.

This is where step discontinuities come into
play. Steps discontinuities detected in one view
are reported in the second view (again using the
frame transformation obtained from the view reg-
istration process). The points labeled as common
to two views and forming a connected component
on the parametric grid of this view are used as
seed regions for a region-growing process which
expands the regions until they reach a contour of
step discontinuity. Knowing that a step discon-
tinuity marks a membership discontinuity in the
subsets of the Venn diagram, when the expanded
region makes contact with a step discontinuity,
the region growing stops, and the points which
were merged to the regions are labeled as being
common to both views.

The above procedure described how data
common to two views can be detected. However,
complex objects require much more views if their
geometry is to be captured with details. Consider
the hierarchy of subsets of the Venn diagram
shown in Fig. 10d. These subsets are called
redundant subsets. The integration procedure
begins at the top of the hierarchy and finds a
description of the surface for points belonging
to V1 ∩ V2 ∩ V3. The strategy consists of
defining a new parametric grid whose orientation
is the average of the orientation of the grids
of the views participating in the subset as
shown in Fig. 10c. Each range view is modeled
by a step discontinuity constrained Delaunay
triangulation. A Delaunay triangulation ensures
that triangles in the model are as equiangular
as possible. Stopping the triangulation at step
discontinuities ensures that triangles do not
overlap a discontinuity and do not model two
parts of the surface separated by a large step [14,
17]. The triangulation of each participating view
is projected on the new parametric grid and is re-
sampled on this grid. This reparameterization
can be seen as acquiring a new image from
the vantage point of the average parametric
grid. Now, since several views participate in a
subset, each view can contribute a range value
to the “synthesized” image of this grid. This
means that these range values can be merged
in order to take advantage of the redundancy
brought by the multiple views. The resulting
range value of the average grid is a weighted
average of the range value in each view. The
weight for each contributing range value is
obtained from the square of the cosine between
the direction of the sensor and the surface normal
at that point. This ensures that a range value
acquired at normal incidence in a view will
contribute more to the synthesized view than
one obtained at a grazing angle in another view.
Finally, once the synthesized image has been
generated, a Delaunay triangulation is built
to describe the subset at a given level of the
hierarchy.

Then, levels lower in the hierarchy are
processed similarly. Processing at all levels
of the hierarchy means that several Delaunay
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triangulations exist for the same part of the
surface and redundancy must be eliminated.
This redundancy is useful though because it
helps in eliminating errors near membership
discontinuities at the higher level of the hierarchy
(remember that it is difficult to build a model
near these discontinuities). Redundancy between
triangulations is eliminated by finding the overlap
between them starting from the top of the
hierarchy to the bottom.

Once the overlap has been eliminated, each
canonical subset of the Venn diagram is modeled
by a single triangulation. The next step consists
in stitching the triangulations in order to fill small
gaps between them.

In the procedure described above, data fusion
between range values coming from different
views and elimination of the overlap between
redundant models of the same part of the surface
are operations that are performed before stitching
the resulting triangulations. Due to errors in view
registration, the stitching may cause small ridges
to appear in the integrated model. An improve-
ment of the procedure consists of eliminating
the overlap and stitching triangulations first and
then to improve the final geometry by finding a
consensus position of the triangle vertices based
on the contributions of all participating views
(again, a weighted average is used). Since it is
better to avoid lateral movement of the vertices
in the triangulation, the consensus position is
computed for the direction along the average
surface normal at each vertex [17] or by re-
tessellating the mesh using redundant data [13].

Volume-Based View Integration

Signed Distance Fields
Volume-based view integration approaches make
use of the fact that objects occupy a volume in 3D
space. Since range images provide samples of the
frontier between the “outside” and the “inside” of
the object, combining registered volume informa-
tion implicitly contained in range images is a way
of integrating the different views.

The world of robotics has made use of volume-
based representations of surfaces through the

concept of probabilistic “occupancy grids” [5].
An occupancy grid is one that encodes the
probability of the presence of an object in each
cell of the grid. The evidence of the presence
or absence of an object is derived from the
probabilistic model of the range sensor, the
range measurements provided by the sensor,
and Bayesian updating of the cell’s occupancy
probability based on repeated measurements.
Occupancy grids have been used mostly for path
planning and collision avoidance in robotics
but have not generally been used for surface
reconstruction because of the difficulty of
transforming the probabilistic model stored in
the grid into an accurate surface description.

The most general volumetric approaches for
view integration make use of a continuous objec-
tive function to combine range data [4, 11]. The
range data points in the images are considered as
samples of this objective function. A very popular
objective function that is used by volume-based
view integration approaches is the signed dis-
tance function D(z). Function D(z) is an implicit
representation of the surface, and, as discussed
in the following, a triangular mesh built from
the zero-crossings of this function is the explicit
representation of the surface.

Let us assume that the volume in which
the object is located is represented as a grid
of cubic voxels as shown in Fig. 11a. When a
range image is acquired, it is first modeled as
a triangular mesh. The mesh must not overlap
step discontinuities for the same reasons as those
mentioned above for surface-based approaches.
Each vertex in the mesh is assigned a weight
according to a weighing function that takes into
account the accuracy of the measurement. Several
approaches have been proposed for modeling this
accuracy [9]. The signed distance between the
weighted mesh and each voxel center in the
direction of the ray between the sensor and the
surface is computed and stored in the voxel grid
structure. When a second view is acquired, the
signed distance function is computed once again
as shown in Fig. 11b, and the two views are
integrated by computing the weighted distance
resulting from the previous view and the current
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Three-Dimensional View Integration, Fig. 11
Illustration of the signed distance between a surface and
the centers of the cells of a volumetric grid (a). Merging

of the distance field for two views (b). Re-sampling of the
range images for speeding up the integration process (c)

view. More formally, the surface is located at the
zero-crossing of the weighted objective function
D(z) at the voxel. This approach is obviously
order independent and is also independent of
the number of views. It takes data accuracy into
account since the signed distance function and the
weighing function can be computed separately as
images are acquired and the zero-crossing of the
cumulative weighted signed distance function
can be computed last. When pushed forward, the
approach also allows “hole filling” to be imple-
mented in a straightforward manner. As a matter
of fact, when casting a ray between the sensor
and the surface, the ray can be cast back toward
the sensor, and voxels crossed by the ray are
assigned the label “empty” (with D(z) =Dmin and
weight zero). Voxels on the surface are labeled as
“near” the surface, and the remaining voxels are
assigned the “unseen” label (with D(z) = Dmax

and weight zero). “Hole filling” is performed
implicitly by finding the zero-crossing of the
resulting distance function [4]. Final surface
extraction of the integrated model is obtained
with the well-known “Marching Cubes” algo-
rithm [10] adapted to the above procedure [12].

Despite the conceptual simplicity of using dis-
tance fields, practical implementations face some
challenges. The first challenge is of course the
computer memory requirements for storing the
signed distance field. A coarse resolution helps
in reducing memory space and processing time

but the resulting model is not faithful to the
object surface geometry. A fine resolution for
the volumetric grid yields a high-quality surface
model, but computational costs explode. Encod-
ing the volumetric grids in clever data structures
(run-length encoding [4], kd-trees [11]) has been
proposed to reduce both memory space and com-
puter time requirements.

A second issue that must be considered is the
distance to which the weighing function should
extend on both sides of the surface. Ideally, the
function could extend indefinitely, but, as it is
the case for surface-based approaches, this would
cause integration to fail for thin parts of the
object’s surface such as the rim of a cup since
functions on the sides of both surfaces would
interfere when computing the resulting weighted
distance function for a voxel. Choosing the exten-
sion of the weighing function to be half the
maximum uncertainty interval of the range mea-
surements is usually a good rule of thumb since
the generated model cannot be more accurate
than the measurements themselves. Other error
models can also be considered as well [9, 13].

Another important algorithmic issue is the
updating of the content of the volume with a new
range image since it rarely happens that both are
aligned (as a matter of fact, the orientation of
the volume in 3D space can be chosen arbitrarily
as far as it circumscribes the volume of the
object). Ray casting between the sensor and a
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voxel for finding the intersection is very costly in
terms of computing time and is tractable only for
volumes with coarse resolution. Consequently,
range images can be re-sampled along the vol-
umetric grid prior to volume updating. This re-
sampling can be compared with the computation
of a reparameterized surface grid mentioned for
the surface-based approaches described above.
Range image re-sampling is shown in Fig. 11c.

Vector Fields
Another powerful representation has been pro-
posed for describing surfaces and for performing
surface reconstruction from a set of range images:
the “vector field” [16]. The “vector field” repre-
sentation also uses a volume for integrating range
views and for extracting a unique surface recon-
struction from the marching cubes algorithm.
However, the entry in each voxel is the distance
between the voxel center and the closest point on
the surface (the definition of “closest point” will
be given below) as well as the direction of the
vector toward the closest point (see Fig. 12a for
a 2D cut of the volume). For each surface, the
field is computed only for voxels located inside a
region of space called the “volumetric envelope”
which is defined by the iso-surfaces located at a
positive distance ε on both sides of the surface.
The volumetric envelope plays the same role as
the limited extent for the weighing function of the
approach using the distance function. It allows

the vector field approach to cope with registration
errors between views and to limit the computa-
tional cost of computing the field. Several con-
straints guide the choice of the value for ε: size of
the voxel, error of the registration between views,
as well as other geometric considerations [15].
Although vector fields can be computed for point
clouds, scans, and range images, only the case of
range images will be covered in the following.

More formally, assuming a set A = {ai ∈
R3, i = 1, . . . N} of N 3D points in a range
image, the “vector field” representation of set A
is the field F:VCR3 → R3 such that F(v) =
arg min

a∈A
d (a, v) − v. Where V = {Vi, j, k} is a set

of NxNyNz voxel centers Vi, j, k and d(a, v) is some
distance measure between a and v. The choice
of the distance measure is key to the concept of
vector field.

Figure 12b shows a 2D view of how the
vector field is computed for a range image for
which a triangular mesh has been constructed
beforehand. First, the normal to the surface of
each triangle in the mesh is computed and the
normal at a vertex is computed as the average
vector of the normals of all triangles containing
this vertex. The direction of the normals should
be consistent with the position of the sensor (i.e.,
reside on the same side of the surface). Then, the
normal to each point on the triangle is obtained
by interpolating average normals at the vertices,
each normal being weighted by the barycentric
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Three-Dimensional View Integration, Fig. 12 Basic
principle of the vector field representation (a). Clos-
est point along the interpolated normals (b). Difference

between the Euclidean distance and the distance along the
interpolated normal (c)
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coordinates of the point on the triangle. For a
lattice point of the volumetric grid, the distance
stored in the corresponding voxel is dn, the dis-
tance along the interpolated normal (see Fig. 12d)
instead of the classical Euclidean distance de. In
addition, the direction of the interpolated normal
is also stored in the voxel.

Integrating N range views simply consists of
computing the normalized vector field resulting
from the combination of all contributing images.
The normalized vector field is one for which
each vector is divided by its norm. This can be
expressed by the following equations:

Fint(p) =
[∑N

i=1
Fi(p)wi (p)

]/∑N

i=1
ωi(p)

and

dint(p) =
[∑N

i=1
di(p)wi (p)

] /∑N

i=1
ωi(p).

The weight ω represents the confidence in
the data and is given by the cosine of the angle
between the direction of the sensor and the sur-
face normal. The weights ωi are also interpo-
lated using the barycentric coordinates. The final
surface model (i.e., the reconstructed surface) is
obtained by the marching cubes algorithm.

Clearly, the surface reconstruction approach
using vector fields is independent of the number
of views. It makes use of connectivity informa-
tion in a view since the computation of normals
at vertices uses this connectivity. It is order inde-
pendent since the field for each view is computed
separately and fields of all views are combined.
The approach is also incremental in that it allows
a view to be integrated with an existing field.
Sensor noise is taken into account in the inte-
gration process as it is the case for all view inte-
gration approaches presented so far. However, the
vector field requires more storage space than the
classical signed distance field described above so
what is the gain of storing direction information
in the volumetric model in addition to distance
information? Could the vector field be obtained
from the signed distance field? In a volumetric
lattice of infinite resolution (i.e., voxel size = 0),

the vector field could be obtained by computing
the gradient of the distance field which provides
the direction of the surface normal everywhere
in the lattice. However, this does not hold for
a finite resolution lattice since the gradient of
the signed distance field must be estimated by
finite differences, an approach that is not accu-
rate enough to yield useful direction information.
Another gain offered by vector fields over signed
distance fields is when the final surface model
is obtained by the marching cubes algorithm
[15].

But the major gain of using the vector field
over signed distance fields is that this representa-
tion can be used for all steps of the surface recon-
struction process (registration, integration, recon-
struction, and visualization) with linear complex-
ity with respect to the number of points mak-
ing real-time surface reconstruction possible. The
reason for this is that storing distance to and
direction toward the surface in the field results in
solving the nearest neighbor problem implicitly,
something that is not the case with the signed
distance field (with the same resolution). Using
the same representation – the vector field – for all
steps of the surface reconstruction process avoids
conversion between representations, an operation
that is sometimes computationally expensive and
numerically inaccurate.

Open Problems

The surface reconstruction approaches presented
above, both surface based and volume based,
allow a significant number of range images to be
integrated in a non-redundant surface representa-
tion. The main issue common to all approaches is
still the ability to cope with huge amounts of data
(i.e., several millions of points) in a reasonable
amount of time and with limited memory space.
The increasing power of modern computers and
the low cost of memory help in allowing more
and more views to be integrated in a single
surface representation. More research is required
on approaches for compressing the representa-
tions without too much increase in computational
complexity while still minimizing the error in
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Three-Dimensional View Integration, Fig. 13 Surface
reconstruction with surface-based and volume-based
approaches. Final polygonal mesh of a soldier figurine
produced by the surface-based approach exploiting the
Venn diagram formalism. (Taken from [14]) (a). Final
polygonal mesh of a dinosaur figurine using the “zippered
polygon” meshes surface-based approach. (Taken from

[17]) (b). Final polygonal mesh obtained by the volume-
based approach based on the signed distance field formal-
ism. (Taken from [14]) (c). Final polygonal mesh of a duck
generated from the volume-based approach exploiting the
vector field formalism. View registration is also achieved
with the same vector field model. (Taken from [15]) (d)

the compressed model. Compression approaches
suitable for transmission over the Internet would
be a significant asset.

Another important problem to be addressed
that is closely related to view integration is
the accuracy with which view registration can
be achieved. All view integration approaches
described above make the assumption that view
registration is accurate. However, although

accurate view registration approaches are
available for finding the rigid transformation
between views before integration, most of these
approaches are pose refinement techniques,
meaning that they can estimate the parameters of
the rigid transformation between views that are
already close to each other. Initial pose estimation
(i.e., estimation of the rigid transformation
between views when they are far apart) is a much
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more complex problem, and further research is
needed on this topic.

One of the goals of view registration is
to produce reliable and accurate geometric
models of complex objects. Including appearance
information (i.e., color) in the models is an
interesting problem which has received attention,
but research still needs to be conducted in this
direction. For instance, one may ask the following
question: Can the data structures used for surface-
based or volume-based view integration be
extended to include color information? Can
these enhanced data structures be compressed
efficiently?

Experimental Results

Figure 13 shows the results obtained with four
view integration approaches. Figure 13b shows
eight 256 × 256 range images of a toy soldier
(left) with two views of the resulting model made
of 70,842 triangles provided by the surface-based
approach in [14]. Figure 13b presents the polygon
mesh of a plastic dinosaur model [17]. The mesh
contains 360,000 polygons.

Figure 13c shows the model of a dragon built
from the volume-based approach using a signed
distance field [4]. This model, made of 1.7 mil-
lion triangles, was produced from the integration
of 61 scans totalizing 15 million triangles.

Finally, Fig. 13d presents the model of a duck
built from 12 range images and using the vector
field representation [15]. The lattice is made of
128 × 128 × 128 voxels with a volumetric
envelope of 3 voxels. The left image shows a
superimposition of the original range images.
The center image shows a superimposition of
the same range images after registration using the
vector field approach. The right image shows the
reconstructed surface built from the integration of
the vector fields built with the original images.

References

1. Arbel T, Ferrie FP (2001) Entropy-based gaze plan-
ning. Image Vis Comput 19(11):779–786

2. Besl P, McKay N (1992) A method for registration
of 3-D shapes. IEEE Trans Pattern Anal Mach Intell
14(2):239–256

3. Blais F (2004) Review of 20 years of range
sensor development. J Electron Imaging 13(1):
231–224

4. Curless B, Levoy M (1996) A volumetric method
for building complex models from range images. In:
SIGGRAPH 96: proceedings of the 23rd annual con-
ference on computer graphics and interactive tech-
niques, New Orleans, pp 303–312

5. Elfes A (1989) Using occupancy grids for mobile
robot perception and navigation. Computer 22(6):
46–57

6. Fischler MA, Bolles RC (1981) Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun ACM 24:381–395

7. Hartley R, Zisserman A (2000) Multiple view geom-
etry in computer vision. Cambridge University Press.
ISBN 0521623049

8. Hébert P (2001) A self-referenced hand-held range
sensor. In: Proceedings of the IEEE international
conference on recent advances in 3-D digital imaging
and modeling, Québec, pp 5–12

9. Hébert P, Laurendeau D, Poussart D (1994) Scene
reconstruction and description: geometric primitive
extraction from multiple view scattered data. In: IEEE
conference on computer vision pattern recognition
(CVPR 93), New York, pp 286–292

10. Lorensen WE, Kline HE (1987) Marching cubes: a
high-resolution 3D surface construction algorithm.
In: Proceedings of the SIGGRAPH’87, Anaheim, pp
163–169

11. Masuda T (2003) Registration and integration of
multiple range images by matching signed distance
fields for object shape modeling. Comput Vis Image
Underst 87:51–65

12. Montani C, Scateni R, Scopigno R (1994) A modified
look-up table for implicit disambiguation of marching
cubes. Vis Comput 10(6):353–355

13. Rutishauser M, Stricker M, Trobina M (1994) Merg-
ing range images of arbitrarily shaped objects. In:
Proceedings of the IEEE conference on computer
vision pattern recognition (CVPR 94), Seattle, pp
573–580

14. Soucy M, Laurendeau D (1995) A general surface
approach to the integration of a set of range views.
IEEE Trans PAMI 17(4):344–358

15. Tubic D (2006) On surface representation in 3D
modelling: a framework for interactive 3D real-time
modeling. PhD thesis, Laval University, p 178

16. Tubic D, Hébert P, Laurendeau D (2002) A volumet-
ric approach for the registration and integration of
range images: towards interactive modeling systems.
In: Proceedings of the ICPR 2002, Quebec, pp 283–
286

17. Turk G, Levoy M (1994) Zippered polygon meshes
from range images. In: Proceedings of the SIG-
GRAPH 94, Orlando, pp 311–318



1266 Total Variation

Total Variation

Bastian Goldluecke
Department of Computer Science, Technische
Universität, München, München, Germany

Definition

The total variation (TV) is a nonnegative, con-
vex, and lower semicontinuous functional on the
space of integrable functions. For a function u ∈
L1

loc (Ω) on a domain Ω ⊂ R
n, it is defined as

J (u) : = sup

{
−

∫
Ω

u · div (ξ) dx : ξ

∈ C∞
c

(
Ω,Rn

)
, ‖ξ‖∞ ≤ 1

}
.

(1)

For differentiable functions u ∈ C1 (Ω), this
definition can be reduced to the familiar expres-
sion

J (u) =
∫

Ω

|∇u|2 dx (2)

with the help of Gauss’ integral theorem. A func-
tion with J(u) < ∞ is called of bounded variation;
the space of all functions on Ω with bounded
variation is denoted by BV (Ω).

Background

The total variation is a favorite prior term and
regularizer in variational models for image pro-
cessing. Since it is a convex functional, it allows
to formulate convex variational models which
can be efficiently globally minimized. Further-
more, while it favors smoother functions, abrupt
discontinuities are not penalized stronger than
slow transitions, and discontinuous solutions are
possible. For this reason, the total variation can
be viewed as an edge-preserving regularizer.

Since the length of the boundary of a set can
be expressed as the total variation of its char-
acteristic function, total variation can also suc-
cessfully be employed to formulate variational

segmentation problems. In particular, it can be
used to express weighted minimal surface prob-
lems, which leads to further applications in, for
example, 3D reconstruction.

Theory

Total variation and convex analysis In
computer vision applications, J is usually
employed as a regularizer for a variational model
of the form

argmin
u∈V

J (u) + F(u), (3)

where F is a data fidelity term which measures
how well u fits the given data, while V is chosen
as a subspace of the Hilbert space L2 (Ω).
The Hilbert space setting is necessary to apply
optimization methods from convex analysis and
certainly general enough for most practical
applications. Any minimizer is necessarily of
bounded variation. On L2 (Ω), the total variation
can be rewritten as the support functional of a
convex set K,

J (u) = sup
v∈K

(u, v) with K =
{

div (ξ) : ξ ∈ C∞
c

(
Ω,Rn

)
, ‖ξ‖∞ ≤ 1

}
⊂ L2 (Ω) ,

(4)

as one can see immediately from definition (1).
From the fact that J is a support functional, one
can deduce that J is convex, one homogenous,
and lower semicontinuous on L2 (Ω). Further-
more, the convex conjugate of J is given by the
indicator function of the closure of K,

J ∗(v) =
{

0 if v ∈ cl(K),

∞ otherwise.
(5)

It also follows that if, in addition, the data
fidelity term F is convex, lower semicontinuous,
and coercive, the model (3) has a minimizer,
which is unique if F is strictly convex [2].

The perimeter of a set Perhaps the most
remarkable fact about the total variation is its
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geometric properties, which become apparent
when one computes the total variation of a
characteristic function 1U of a subset U ⊂ Ω .
If U is a “sufficiently nice” set, it can easily be
shown with Gauss’ integral theorem that J(1U)
is equal to the (n − 1)-dimensional Haussdorf
measure H n−1 (∂U) of the boundary of U. For
n = 2, this corresponds to the length of the
boundary of U, for n = 3, to the surface area.
This observation motivates the definition of the
perimeter of an arbitrary set U in Ω as

Per (U,Ω) := J (1U) . (6)

Sets of finite perimeter are known as Cac-
ciopolli sets, by definition 1U ∈ BV (Ω) if and
only if U is a Cacciopolli set. The geometric
insight that Per(U, Ω) measures boundary surface
area is leveraged to reformulate weighted mini-
mal surface problems in terms of minimization
problems over binary functions of bounded vari-
ation.

Co-area The co-area formula in its geometric
form says that the total variation of a function
equals the integral over the (n − 1)-dimensional
area of the boundaries of all its lower level sets,
see Fig. 1. More precisely [8],

J (u) =
∫ ∞

−∞
J

(
1{u≤t}

)
dt

=
∫ ∞

−∞
Per ({u ≤ t} ,Ω) dt.

(7)

It is an important tool to analyze convex relax-
ation techniques in labeling problems [15], where
it can sometimes be employed to show global
optimality of a method.

Variants Interesting variants of the total vari-
ation used in image processing include nonlo-
cal TV [9] which replaces the gradient operator
with interactions across the whole image domain
as well as total generalized variation [4] which
incorporates higher-order derivatives of the test
functions. Total variation can also be defined for
vector-valued functions [1, 2] and used as a regu-
larizer for color image processing problems [7] or
geometric penalizer in multi-label problems [12].

Application

There are several important problems in image
processing and computer vision which make use
of the total variation. One application is to use
J as a prior term in inverse problems; others
leverage the geometrical properties of J to formu-
late segmentation problems. Weighted minimal
surfaces can be viewed as a special class of
segmentation problems and are heavily used in
3D reconstruction. Total variation can also be
formulated for scalar fields on manifolds, which
makes it possible to solve image processing prob-
lems on curved surfaces.

TV as a prior Assume one observes an image
f ∈ L2 (Ω), which is related to an unknown

Total Variation, Fig. 1 Co-area formula: The total variation of a function can be computed by integrating the boundary
length of all lower level sets; (red lines)
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variable u ∈ L2 (Ω)) by a linear operator A and
the ideal model f = Au. Typically, the problem
is ill-posed and the observation f is noisy, so a
regularization is required. Instead of trying to
solve the linear model directly, one minimizes

argmin
u∈L2(Ω)

{
J (u) + 1

2σ 2
‖Au − f ‖2

2

}
(8)

This can also be interpreted as the maximum a
posteriori estimate [18] for the unknown u under
the assumption that f is contaminated with point-
wise independent Gaussian noise with standard
deviation σ . In this probabilistic interpretation,
the total variation has taken the place of the
negative log probability for the unknown u. Since
this prior probability distribution is rarely known
in practice, an objective prior like TV has to
be used. Equation (8) describes a typical inverse
problem in image processing formulated as a
variational model and has been intensively stud-
ied. A recent overview of minimization methods
is given, for example, in [5]. In the case that A is
the identity, problem (8) is known as the Rudin-
Osher-Fatemi (ROF) model for image denoising,
named after the authors of [17], in which total
variation made its first appearance as a regularizer
in image processing. If A is instead a convolution
with a blur kernel, one arrives at total variation
deblurring models [6]. Similar models are also
used for super-resolution [13].

TV in segmentation problems The archetyp-
ical binary segmentation problem can be formu-
lated as an optimization problem over the space
of binary functions of bounded variation

argmin
u∈BV (Ω,{0,1})

{
J (u) +

∫
Ω

c · u dx

}
. (9)

If u(x) = 1, the point x belongs to region 1 and
vice versa. The real-valued function c denotes
the assignment cost given by the model, where
a negative cost c(x) < 0 indicates a preference
of x to be assigned to region 1. For example,
if probabilities p1, p2 are given for each point
to belong to region 1 or 2, respectively, then a
typical choice is c = log(p2/p1). The use of the

total variation of u as a regularizer corresponds
to a penalization of the length of the interface
between the regions, as discussed for Eq. (6).

The simple binary model above can be viewed
as the piecewise constant two-region case of the
famous Mumford-Shah functional [14], which is
very hard to minimize. In contrast, the model
(9) can be minimized globally by relaxation to a
convex model and subsequent thresholding [15].
The proof relies on the co-area formula (7), which
allows to write the energy as an integral over the
energies of all level sets of u. A global solution is
also available for the generalization from binary
labeling to a continuous interval of labels with
linear penalizer [16].

TV in 3D reconstruction. In variational
approaches to 3D reconstruction, one looks for
a surface which minimizes the local photo-
consistency error ρ, given as a nonnegative
function on a domain Ω ⊂ R

3. This is modeled
as a weighted minimal surface problem, where
the desired surface minimizes the surface integral
over ρ. Finding a weighted minimal surface is a
special case of binary segmentation in the sense
the space Ω is partitioned into a region inside and
outside the surface, respectively. A more general
form of the co-area which includes a positive
weight function ρ states that the weighted total
variation of a characteristic function 1U equals
the weighted surface area of ∂U. Formally [8],

∫
Ω

ρ|∇1U |2 dx =
∫

∂U

ρdH n−1.

One noteworthy application of this relation-
ship is to formulate 3D reconstruction with a
convex functional, such that globally optimal
solutions can be obtained [11].

Total variation and related image processing
problems can also be defined and solved on
manifolds [3].

In the context of 3D reconstruction, a total
variation super-resolution model on the surface
can be employed to reconstruct high-resolution
texture maps from multiple views [10].
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Definition

Transfer learning is a methodology in machine
learning that exploits the representation and/or
features previously learned from some other tasks
to better learn a target task. Generally, transfer
learning makes learning target task faster, and
when the target task lacks training data, transfer
learning improves performance. Formally, a
domain D = (X, P (X)) consists of both the
input space X and a probability distribution
P(X) where X ∈ X. Given a domain D, a task
T = (Y, f (·)) includes both the label space Y
and an objective predictive function f (·). In this
entry, we consider transfer learning in the form
of transferring from a source domain and task
(DS, TS) to a target domain and task (DT , TT ).
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With the aforementioned notations, transfer
learning aims at improving the learning of the
target predictive function fT (·) over domain
DT given the knowledge gained while learning
(DS, TS), where DS 
= DT or TS 
= TT .

Background

Transfer learning is common when human learns
novel ideas. For example, children can learn to
generalize the concept of giraffe from a book.
Similarly, people may find chess much easier to
learn if they know how to play checkers. Unlike
traditional machine learning, where the proba-
bilistic distributions P(X) and P(Y |X) are often
assumed to be stationary, in transfer learning
they are nonstationary. Researchers have focused
on two types of transfer learning: (1) inductive
transfer learning where TS 
= TT and (2) trans-
ductive transfer learning where TS = TT but
DS 
= DT . Specifically, TS 
= TT implies that
either YS 
= YT or fS(·) 
= fT (·). Similarly,
DS 
= DT implies that either XS 
= XT or
P(XS) 
= P(XT ).

In inductive transfer learning, there exist
scarce labelled data in the target domain, and
there are more labelled data in the source domain.
The goal of inductive transfer learning is to
leverage the scarce labelled data in the target
domain to induce target predictive function.
On the other hand, in transductive transfer
learning, there exist some unlabelled data in
the target domain. Domain adaptation often
involves transductive transfer learning. For a
comprehensive survey in transfer learning, we
refer the readers to [1].

Theory

Inductive Transfer Learning
There are several ways to achieve inductive
transfer learning including instance-based [2]
and parameter-based methods [3]. Specifically,
instance-based methods assume that although
the two domains and tasks are different, samples
from one domain might be beneficial for the other

domain. The goal for instance-based methods is
to identify samples that are helpful for the target
task from the source domain. Focusing on the
scenario where YS = YT , TrAdaBoost [2]
iteratively re-weights the contribution of a sample
from DS to the process of training target predic-
tive function fT (·). In each iteration, it trains the
predictor with the weighted source domain data
and then evaluates the mistakes made by the pre-
dictor with samples in the target domain. The re-
weighting strategy for data in the target domain
is identical to that of AdaBoost. In addition, data
in the source domain are also re-weighted such
that the samples that are wrongly classified will
have less impact to training in the next iteration.
The intuition behind such a strategy is that the
misclassified source domain samples may likely
conflict with the data in target domain.

Parameter-based methods assume that related
tasks share model parameters or prior distribu-
tion. The goal for parameter-based methods is
to identify which parameters should be adapted
to the new task and by how much. Yosinski
et al [3] empirically studied the effect of parame-
ter sharing between tasks across different layers
in deep neural networks. They found that the
effectiveness of parameter sharing depends on
(1) the specialization of the shared parameters
to tasks and (2) optimization difficulties related
to splitting networks between coadapted parame-
ters. Since the parameters of deeper layers tend
to be more task-specific, sharing parameters in
the deeper layers (and all the layers earlier) leads
to performance degradation. However, using the
parameters obtained by training on (DS, TS) as a
prior to further conduct fine-tuning on (DT , TT )
produces better performance for TT .

To deal with cases where label space
YS 
= YT , selective joint fine-tuning [4] was
proposed as an approach that is both parameter-
based and instance-based. It first uses k nearest
neighbors based on image descriptors to search
data from the source domain that are similar to
the ones in the target domain. For instance, given
an image in the target domain, a certain number
of images with similar low-level characteristics
from the source domain are found. Here the low-
level characteristics of an image are determined
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by the histogram of the response of filters (e.g.,
convolutional filters in the first or second layer
of a convolutional neural network). Afterward,
the searched data together with the target domain
data are used to jointly fine-tune a deep neural
network using two branches of task-specific
linear classifiers, each representing the loss in
its respective domain.

Transductive Transfer Learning
As mentioned in Background, transductive
transfer learning assumes DS 
= DT and
TS = TT , which implies that one can adapt
the predictive function learned in the source
domain for use in the target domain. Most
literature in transductive transfer learning study
the setting where P(XS) 
= P(XT ). Multiple
transductive transfer learning schemes exist in
the literature, including instance-based [5, 6] and
representation-based [7, 8].

Instance-based methods are motivated by
importance sampling. To see the connection
between the two, let PS = P(XS, YS) be the
distribution that governs the source data and
label; similarly PT = P(XT , YT ) denotes the
distribution for target data and label. The end
goal of learning a predictive function in the target
domain is formally stated as follows:

θ∗ = argmin
θ

E(x,y)∼PT
L(f (x|θ), y), (1)

where θ is the parameter for the target predictive
function f (·) and (x, y) is a training example
sampled from the target data distribution. Since
there is no labelled data available on the tar-
get domain, (1) cannot be optimized directly.
Instead, we use importance sampling by probing
the source data distribution DS :

θ∗ = argmin
θ

E(x,y)∼PS

pT (x, y)

pS(x, y)
L(f (x|θ), y) (2)

= argmin
θ

E(x,y)∼PS

pT (y|x)pT (x)

pS(y|x)pS(x)
L(f (x|θ), y)

(3)

= argmin
θ

E(x,y)∼PS

pT (x)

pS(x)
L(f (x|θ), y) (4)

≈ argmin
θ

1

nS

∑
(x,y)∼PS

pT (x)

pS(x)
L(f (x|θ), y), (5)

where pS and pT denote the probability density
function for the source and target domain, respec-
tively. And nS denotes the number of samples
in the training set of the source domain. The
simplification step from (3) to (4) stems from the
assumption of transductive transfer learning, i.e.,
TS = TT , which implies pS(y|x) = pT (y|x)

and fS(·) = fT (·). The approximation from (4)
to (5) uses empirical distribution to approximate
the true distribution, which is also known as
empirical risk minimization.

From (5), we can observe that if one can
estimate pT (x)

pS(x)
, one solves the transductive trans-

fer learning problem. Zadrozny [5] proposed to
estimate pT (x) and pS(x) by learning simple
classifiers. Huang et al. [6] proposed to estimate
βi = pT (xi )

pS(xi )
without density estimation for pT

and pS . Specifically, they proposed kernel mean
matching (KMM) that re-weights the source data
points such that the means of the source and
target data points in a reproducing kernel Hilbert
space (RKHS) are close. Empirical KMM opti-
mization is achieved by solving the following QP
problem:

β∗ = argmin
β

1

2
βT Kβ − κT β (6)

s.t. βi ∈ [0, B] and |
nS∑
i=1

βi − nS | ≤ nSε, (7)

where Kij := k(xi, xj ) with k being a kernel
function. κi := nS

nT

∑nT

j=1 k(xi, xTj ), where xi ∈
XS ∪XT and xTj ∈ XT . B states the upper bound
of the weights, and the second constraint states
that βi , i = 1, . . . , nS should form a probability
distribution.

Representation-based methods [7, 8] aim at
finding a representation that has no discrepancy
between the two domains, and learning the
target predictive function upon the resultant
representation. Pan et al. [7] proposed maximum
mean discrepancy embedding (MMDE) to
minimize the maximum mean discrepancy
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between the source and target domain in a
low-dimensional RKHS space. Such a low-
dimensional embedding is obtained via solving a
semidefinite program (SDP). Later Pan et al. [8]
proposed transfer component analysis (TCA) to
reduce the computation complexity of MMDE.
Long et al. [9] proposed deep adaptation network
architecture (DAN) that adds multiple kernel
variant maximum mean discrepancy (MK-
MMD) losses to the last few layers of a deep
neural network to conduct domain adaptation
in the deep learning context. Sun et al. [10]
proposed correlation alignment (CORAL), a
frustratingly easy domain adaptation method
that works effectively. In essence, CORAL
first whitens the data from the source domain
and then recolors it with the covariance of the
data from the target domain. Such a simple
method work effectively and can be applied with
deep features (i.e., the output of a deep layer
in deep neural networks.) Sankaranarayanan
et al. [11] proposed domain alignment using
generative adversarial networks (GAN). The
key assumption underpinning this method is
that a well-aligned feature representation should
contain enough information to generate source-
like images such that a trained classifier cannot
distinguish between the images generated by
source domain and target domain. Based on
this idea, they developed a training procedure
using auxiliary classifier generative adversarial
networks (ACGAN) and achieved state-of-the-art
domain adaptation results.

Application

Transfer learning is applicable to a wide variety
of applications. For instance, Blitzer et al. [12]
used transfer learning for sentiment classification
to reduce the cost of labelling the large corpora
every time a new domain is considered. Zheng
et al. [13] adopted transfer learning to adapt
models from time to time targeting Wi-Fi local-
ization. Adaptation from synthesized image to

real-world images is another key application in
transfer learning. For example, Mayer et al. [14]
demonstrated that with transfer learning, predic-
tive model can obtain better performance with
the help of synthesized data targeting disparity,
optical flow, and scene flow estimation. Kornblith
et al. [15] showed that ImageNet-pre-trained
deep neural networks can transfer positively to
various image classification tasks including scene
classification, fine-grained image classification,
and texture classification.

Open Problems

While most transfer learning literature targets at
classification tasks, recent work [16] reveals
that transferring from synthetic data to real-
world data is challenging for object detection
and semantic segmentation tasks. Furthermore,
transfer learning in video understanding, human
pose estimation, action recognition, and 3D
scene understanding are still under-explored.
Another research direction is open-set transfer
learning [17], as most prior arts considered
transfer learning in a closed-set setting. In open-
set transfer learning, the target domain contains
images of additional unknown categories that
were not present in the source domain, which is
still very challenging.
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Definition

Transparency is the property of some materi-
als that allows light to be partially transmit-
ted through. The proportion of light a material
transmits through determines its transmittance, α.
The term translucency is generally used in cases
where light is transmitted through diffusely.

Background

When a surface is viewed through a partially-
transmissive material, the optical contributions of
the two layers in a given viewing direction are
collapsed onto a single intensity in the projected
image. If a computer vision system is to recover
the scene correctly, it must be able to decompose
or scission the image intensity into the sepa-
rate contributions of the two material layers (see
Fig. 1a).

The inverse problem of recovering layered
surface structure is generally divided into two
sub-problems: (1) the qualitative problem of
inferring the presence of an interposed partially
transmissive layer in parts of the image and (2)
the quantitative problem of assigning surface
properties – e.g., reflectance and transmittance –
to the separate layers.
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Theory

Physical Models
Metelli [18] used Talbot’s equation for color
mixing to model transparency: the “color” of the
partially transmissive surface or filter (r) and that
of the underlying opaque surface (a) are mixed
linearly, with the mixing proportions determined
by the transmittance α of the transparent layer:

p = (1 − α)r + αa (1)

Metelli noted that this equation is consistent with
a simple physical model of transparency involv-
ing an episcotister – a rapidly rotating disk with
an open sector – placed in front of a background
surface (see Fig. 1b, c). The same equation is also
consistent with an opaque surface with a large
number of holes that are too small to be resolved
individually (e.g., a mesh). In the latter case, the
“color mixing” takes place spatially, rather than
over time. (Metelli himself considered only the
achromatic case, so the colors he refers to are
“achromatic colors,” but his model has also been
extended to the chromatic domain, e.g., [8, 10].)

Physically more accurate models of trans-
parency incorporate the pattern of light reflection
and transmission between a transparent filter
and the underlying opaque surface (see Fig. 2a)
[6, 7, 10, 12, 20, 25], leading to the following
equation:

p = f + α2a

1 − f a
(2)

In this equation, reflectance f plays the same
role as the product (1 − α)r in Metelli’s model.
Moreover, f and α can be further expressed
in terms of intrinsic physical parameters of the
partially transmissive filter (see Fig. 2b) – its
reflectivity β (at the air filter interface) and inner
transmittance θ (ratio of radiant flux that reaches
the back surface of the transparent filter to the
flux that enters the filter at its front surface), e.g.,
[10, 20, 25]. For models of sub-surface scatter-
ing within volumetric translucent materials, see,
e.g., [15]. In such cases, background structure is
often not visible through the translucent material,
e.g., marble or cheese. In other cases, the back-
ground surface is visible but is greatly distorted
due to variations in refractive index [11, 16].

It has been argued that, despite its simplicity,
Metelli’s linear equation provides a reasonable
approximation to the more complete filter model
[12], as well as to other more complex cases such
as fog and haze [13]. Computer vision algorithms
aimed at undoing the effects of fog and haze
similarly employ a linear generative model, con-
taining a multiplicative – i.e., attenuative – com-
ponent due to absorption and scattering (a nega-
tive exponential of the fog extinction coefficient,
generally taken to be a constant), plus an additive
contribution of the airlight [9, 14, 19, 21, 24].

The Inverse Problem
Given a single equation such as (1) above, it is
clearly impossible to determine transmittance α

and reflectance r from knowledge of p and a

Transparency and Translucency, Fig. 1 (a) Illustration
of the problem of transparency: In each visual direction,
the contributions of two distinct layers are collapsed
onto a single pixel intensity. These contributions must

be disentangled if the scene structure is to be recovered.
(b) Metelli’s model of transparency based on a linear
combination of the two contributions
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Transparency and Translucency, Fig. 2 (a) Model of
a transparent filter that takes into account the pattern
of transmission and reflection between the filter and the

underlying opaque surface. (b) The overall transmittance
and reflectance of the filter are functions of two intrinsic
parameters: reflectivity β, and inner transmittance θ

alone. However, if the background surface con-
tains two distinct “colors” a and b – both partly
visible through the same transparent filter – the
two equations:

p = (1 − α)r + αa and q = (1 − α)r + αb

(3)

can be uniquely solved for α and r:

α = p − q

a − b
; r = aq − bp

a + q − b − p
(4)

(Note that, more generally, with multiple colored
patches visible through the transparent layer, a
common solution may not exist and least squares
methods may be required; see, e.g., [8].)

Transparent overlap of surfaces generically
leads to X-junctions in the image (see Fig. 3).
However X-junctions differ greatly in the degree
of local support they provide for interpretations
of transparency. Compare, for instance, the inter-
pretations of perceived transparency elicited by
the three displays in Fig. 3. In addition to mak-
ing quantitative predictions for transmittance and
reflectance, the above solutions also yield qual-
itative predictions for possible interpretations of
transparent overlap and depth layering [6, 7, 18].
In order to have valid transparency, α must be
non-negative with magnitude no larger than 1.
Hence, based on the expression for α above, it
follows that:

1. sign(p − q) = sign(a − b). The contrast
polarity must be the same inside and outside
a putative transparency boundary.

2. |p − q| ≤ |a − b|. The magnitude of the
luminance difference must be no greater inside
the transparency boundary than outside it.

Based on the polarity constraint above,
researchers have classified X-junctions into
three qualitative kinds [1, 2]. In a non-reversing
junction, contrast polarity is preserved across
both edges of the “X”; hence either edge could
be the boundary of a transparent layer (Fig. 3a).
In a single-reversing junction, contrast polarity
is preserved across one edge only; hence there
is only one possible interpretation of transparent
overlap (Fig. 3b). Finally, in a double-reversing
junction, neither edge preserves contrast polarity,
so this junction type does not support an
interpretation of transparency (Fig. 3c).

The above analysis provides local constraints
for the interpretation of transparency. Local sup-
port is strongly influenced by configural factors,
however [17], and may be even be overruled
by global context. Mechanisms are needed to
integrate local evidence across the image. In
the achromatic domain, an integration algorithm
was proposed by Singh and Huang [23], which
propagates local junction information by search-
ing for chains of polarity-preserving X-junctions
with consistent sidedness (i.e., side with lower
contrast) and then propagating the transparency
labeling to interior regions. Despite its simple,
deterministic nature, the algorithm performs well
on synthetic images and simple real images with
well-defined X-junctions.

In the chromatic domain, D’Zmura et al.
[8] developed an algorithm for separating trans-
parent overlays that (i) searches for chains of
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(A) (B) (C)

Transparency and Translucency, Fig. 3 Classification of X-junctions based on their support for the interpretation of
transparent overlap. (a) Non-reversing junctions. (b) Single-reversing junctions. (c) Double-reversing junctions.

X-junctions and (ii) tests for a consistent chro-
matic convergence across this chain. This algo-
rithm is based on the finding that a conver-
gence (possibly accompanied by a translation) in
color space across a boundary tends to generate
the percept of an overlying color filter, whereas
other transformations such as shears and rotations
do not. (This result is largely consistent with
Metelli’s model extended to the color domain
– although some transformations that cannot be
achieved with Metelli’s equations, such as equi-
luminous translations in color space, can also
generate a percept of transparency [8].)

Going beyond junctions The schemes reviewed
above rely on the accurate extraction of
junctions in images. A reliance on junctions
may ultimately be too restricting, however,
especially in images of natural scenes. For
example, partially transmissive media with
varying opacity, such as fog and haze, generate
gradual changes in contrast along an edge in
the background, without creating well-defined
junctions. In order to deal with such cases,
Anderson [3] proposed the transmittance-
anchoring principle which states that, as long
as contrast polarity is preserved across a contour,
the visual system anchors the highest-contrast
regions to full transmittance (i.e., surfaces seen
in plain view), whereas lower-contrast regions are
perceived as containing an overlying transparent
layer with varying degrees of transmittance.
Perceptual experiments suggest that human

observers do anchor transmittance in this
way [4, 5].

Application

Work in computer vision has often focused on
undoing the effects of fog and haze in images and
recovering versions of these images that are free
of atmospheric disturbance. One class of methods
relies on having multiple images of a scene,
taken either under different levels of atmospheric
disturbance [19] or with different degrees of
polarization [21]. Another approach uses image
sequences to separate out an interposed reflective
or occluding layer, such as a window or a fence
[26]. Other methods, relying on a single image,
have adopted a number of strategies, including
maximizing local contrast in the restored image
[24], the assumption that transmission and sur-
face shading are uncorrelated [9], and the “dark-
channel prior” – the assumption that in images of
outdoor scenes taken under clear viewing condi-
tions, most local patches tend to contain pixels
with very low intensity in at least one of the color
channels [14].

As noted above, another class of algorithms
designed to separate transparent overlays from
the background relies on the explicit extraction of
X-junctions [8, 23]. These algorithms work well
in simple images with well-defined junctions; it
remains to be seen how well this approach scales
up to complex natural images.
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Physical versus perceptual models One issue
that computer-vision systems must consider is
whether they are aimed at recovering physically
accurate estimates of the transmittance of a
transparent material or obtaining estimates that
are aligned with the way human observers
perceive transmittance. One can readily imagine
applications in which either may be more appro-
priate. Perceptual experiments have shown that
the human perception of surface transmittance
is not well-predicted by Metelli’s equations
and can deviate significantly from physical
predictions. Specifically, these studies have
shown that the visual estimate of transmittance
is based on the perceived contrast within the
region of transparency (suitably normalized by
the perceived contrast in surrounding regions);
and perceived contrast is not well predicted
by the luminance differences (or luminance
range) that appear in Metelli’s solution for
transmittance α; see, e.g., [4, 20, 22]. Consistent
with a perceived contrast model, a dark-colored
surface can visually appear to be significantly
more transmissive than a light-colored surface,
despite the two having identical physical
transmittance.
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Synonyms

Transparency

Related Concepts

� Polarized Light in Computer Vision
�Transparency and Translucency

Definition

In computer vision, the term transparent layers
refers to physical objects located at different
depths from an imaging device, in such a con-
figuration that irradiance coming from all these
objects contributes to non-negligible portions of
the final intensities of the same pixels, giving the
perception of transparency.

Solving a transparent layer problem entails
estimating a subset of the following values: inten-
sity/color of each layer, depth of each layer,
geometric parameters related to the camera pose
and scene structure, and optical properties of the
transparent layers.

Background

Phenomena of transparent layers can appear
in many imaging processes. The most typical
transparent layers occur due to transparency. For
instance, objects seen through a textured and
transparent material, for example, a tinted glass
window or a thin curtain, where the layers include
a front layer of transparent object and a rear layer
of the background objects. Figure 1 illustrates
this case.

Some transparent layers are caused by reflec-
tion, see Fig. 2. Specular surfaces, such as a

picture frame, reflect scene structures at a dis-
tance. A reflected image from a surface appears
to be at a different depth from the reflecting
surface itself. In the above example, the picture
frame forms the closer layer and the reflected
scene forms the more distant layer. The apparent
depth of the reflected layer depends on multiple
factors, including shape of the reflector and scene
geometry.

Transparent layers can also appear because of
point spread. Cameras have finite-sized imaging
elements. In addition, due to imperfection in
optical focusing, an observed image is usually a
kernel-smoothed version of the scene radiance.
The convolution kernel, known as the point
spread function (PSF), is due to a combination of
camera optics and the finite size of an imaging
device. As a result of PSF blurring, pixels
corresponding to boundaries of opaque objects at
different depths contain contributions from both
layers, giving the perception of transparency.
Figure 3 illustrates two of such examples.

Penetrating electromagnetic radiation, such as
X-ray or visible light, produces the perception
of transparent layer. X-ray images are among the
most sophisticated transparent effects, composed
of many layers of objects that undergo non-
rigid complex motions. Another prime example
of this case is optical microscopy, where layers
of cells at different depths are superposed into a
final visible spectral image. Figure 4 shows such
examples.

When the relative speed between a camera and
an imaged scene is not negligible compared to the
shutter speed, motion blur can cause blending of
foreground and background scenes and give the
impression of transparency. Blurring at a pixel is
caused by integrating radiance contributions from
scene points from different depths or different
parts of an object. See Fig. 5 for an example.

Irradiance, i.e., light coming into a camera,
travels through a transmitting medium, for exam-
ple, air, water, and glass. Sometimes, the effects
of the media in between are nontrivial, for exam-
ple, due to excessively heated air, fog, milky
water, or thick tinted glasses. The medium causes
color shifts and distortion of the images, and
sometimes, it is interesting to study the medium
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Transparent Layers, Fig. 1 Transparent layers caused
by transparency. Left, a photograph of a lake containing
transparent layers: a layer composed of the water surface
that is textured by ripples and a farther layer of pebbles on

the lake bottom. (Photograph courtesy of Amanda Y. Fu).
Right, a photograph of a transparent silk screen in front of
a couple of dolls

Transparent Layers, Fig. 2 Transparent layers due to reflection. Left, a textured pitcher surface reflects objects in the
scene. Right, photograph in a picture frame reflects a dodecahedron and a tea box

and background in the context of transparent
layers. See Fig. 6 for two such examples.

People study transparent layers for many dif-
ferent reasons, for instance, to more accurately
estimate motion or depth of a scene by separating
the layers, thus removing non-Lambertian effects
due to layer blending [3–9], to render images
containing transparent layers from novel viewing
angles [10, 11], for inexpensive content creation
and manipulation in applications such as gaming
and movies, and to enhance visualization of one
or all component layers, such as in medical imag-
ing [12, 13].

Theory

A linear superposition model of two layers can be
summarized as

I (x) = T1(θ1)◦I1(x)+π (T2 (θ2) ◦I2(x), α(x)),

(1)

where:

– I(x) is the observed image that is a superposi-
tion of different layers.
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Transparent Layers, Fig. 3 Sub-pixel blending due to
point spread. Left: sub-pixel blending occurring at bound-
aries of surfaces at different depths. The insets show
boundary image regions. (Image courtesy of Scharstein
and Szeliski [1]). Right: sub-pixel blending due to hairy

foreground objects. The inset shows the α-map of the
foreground object, where the intensity of the map is
proportional to the opacity of a foreground pixel. (Image
courtesy of Levin et al. [2])

Transparent Layers, Fig. 4 Penetrating electromagnetic
radiation produces transparent layers. Left, the image
shows an X-ray image (angiogram) of a human chest.
Visible in the image are dye contrast-enhanced coronary
arteries of the heart, ribs, spine bones, and soft tissues
appearing at different distance to the X-ray machine.

Right, image shows transparent mouse embryo cells over-
lay on top of each other. (Image courtesy of Bill Warger
and Judy Newmark and the Mouse embryos DIC image
set is available from the Broad Bioimage Benchmark
Collection (www.broad.mit.edu/bbbc))

– Il, l = 1, 2 represents radiance toward the
viewing camera in the absence of the other
layer. I2 can itself be a superposition of layers,
which generalizes (Eq. 1) to more than two
layers in a recursive fashion.

– α(x) is a vector of blending parameter of the
first layer, affected by properties such as con-

stituent material types, distribution of material
types, or thickness of the layer. In general,
α(x) can be spatially varying.

– Tl (θl) ◦, l = 1, 2 represents the function
that warps a layer (I1 or I2) to the current
camera view from a reference camera view.
The warping function is parameterized by

http://www.broad.mit.edu/bbbc
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Transparent Layers, Fig. 5 Transparent layers due to
motion blur. Left: when the train is static. Right: when the
train is moving very fast compared to the camera shutter
speed, the train appears to be transparent due to the long

temporal integration process. The contribution of a point
on a background object to the intensity/color of a pixel is
proportional to the amount of time the point is visible

Transparent Layers, Fig. 6 Translucent Media can con-
tribute nontrivial transparent layers. The above images
show photographs of foggy days, when the transparent

layer due to the medium, i.e., air mixed with water
droplets, becomes nontrivial

geometric parameters θ l, l = 1, 2, for
example, point depths or affine motion model
parameters. The warping function Tl◦ can be
parametric motions [8], nonparametric, pixel-
wise motion such as in a stereo setting [9]
or smooth, nonrigid motion such as in X-ray
images.

– The function π (·) describes the physical pro-
cess of composing a second layer given blend-
ing parameters of the first layer.

Note that the linear superposition model, i.e.,
by adding up (weighted) contributions from all
layers, is a good approximation to many com-
puter vision problems. For X-ray images, due

to the exponential decaying nature of radiation
rays, the raw X-ray image Ix is not a linear
superposition of layers. However, log Ix can be
fairly accurately modeled by (Eq. 1).

In general, estimating all parameters of all lay-
ers is a severely ill-posed problem. For instance,
for each pixel x in a single observed image,
there is one set of observations I(x) but many
unknowns, i.e., geometric parameters θ l, blend-
ing parameters α, and the colors of the constituent
layers I1 and I2. Fortunately, it is not always
necessary to estimate all parameters at once. We
are not confined to use a single image to solve
a transparent layer problem either. In fact, in
the majority of studies, researchers use multiple
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images of the underlying scene. In specific prob-
lem settings, we can define well-posed problems.

There is a rich literature that studies trans-
parent layers in computer vision. These methods
utilize characteristics of transparent layers, such
as physical model, statistical priors, or motion,
to analyze transparent layers. The approaches
range from explicitly separating the transparent
layers to eliminating layers of no interest by
means of integration or difference. The following
is a summary of these approaches and how they
constrain the problems to be well-posed:

Using defocusing and polarization cues. The
first set of approaches utilizes physical properties
of the image formation process to define well-
posed layer separation problems. In these mod-
els, it is usually assumed that both layers can
be approximated by fronto-parallel planes, and
multiple images are taken from a static camera.
As a result, scene points within the same layer
share a single depth value, θ l(x) = dl, l = 1,
2. The static configuration makes the warping
functions Tl trivial, i.e., identity transformations.
Schechner et al. [14] showed that the depth values
dl can be estimated using defocusing cues. They
utilized a set of photographs taken with different
focuses. Using a “focus measure,” the two focal
lengths that correspond to the sharpest focuses
in both transparent layers are estimated. Know-
ing camera calibration a priori, the layer depths
and PSF’s for each layer can be computed from
the estimated focal lengths. The observed pair
of images that correspond to the most sharply
focused images can be written as

{
I (1) = I1 + I2 ⊗ ha

I (2) = I1 ⊗ hb + I2
, (2)

where ⊗ means convolution; I(k), k = 1, 2 is
the observed composite image when Ik is in
focus. The above problem is still ill posed in
that we can add a constant (or even a low fre-
quency) component C to the solution of one layer
and subtract the same from the other, and the
resulting layer images, I(1) + C and I(2) − C,
are still valid solutions to (Eq. 2). However, if
we fix the DC components of one layer, the
problem can be solved by least squares. In the

same spirit, using a rotating polarizer in front
of the camera lens, Schechner et al. [15] show
that the observed image is a linear combina-
tion of the layers, where the linear combination
coefficients are functions of inclination angles.
The inclination angles can be estimated by min-
imizing the correlation between component lay-
ers. The key insights for formulating a well-
constrained problem in both methods are using
static cameras and geometric regularity of scenes
to reduce the dimension of θ to 2, trivializing
the warping functionsT , and estimating blending
coefficients (PSF kernels or inclination angles)
independent of layer radiances.

Utilizing an atmospherical scattering model.
Unfavorable weather conditions can cause
lowered visibility, due to floating particles in
the air, including aerosols, water droplets, rain,
or snow. In these conditions, atmospherical
effects can no longer be ignored, and the
atmosphere itself can be considered as a
transparent layer: it alters and adds to the color
of the scene radiance. Narasimhan and Nayar
[16] conducted a thorough study of transparent
layers due to atmospheric scattering. They
showed that through reasonable assumptions
and simplification of an atmospherical model, the
transparent layer problem can be well constrained
and solved: the depth from a scene point can
be estimated up to a constant scale and the
scene color can be estimated. For example, in
its simplest form, images taken at night can be
modeled as a simplified version of (Eq. 1)

I = π (I2, α) = ge−βdI2, (3)

where g is a geometric constant; β being a
constant attenuation coefficient, and d the scene
depth. Eq. 3 implies that in the absence of
sunlight or skylight that adds to the air light,
i.e., color of the fog, the observed image, I is
an attenuated version of the scene radiance I2.
Given two images of the scene under different
atmospherical conditions (clear nights, light fog,
or dense fog), corresponding to different β, log
ratio of the two observed images reveals that
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ln

(
I (1)

I (2)

)
= −

(
β(1) − β(2)

)
d. (4)

As a result, we can estimate the scene depth
up to unknown constant scale factor. In the pres-
ence of sunlight and skylight, the air light can
no longer be ignored and the transmission layer
composes the first layer, i.e., fog color is I1. In
this case, an additional dichromatic model can be
used to constrain the problem [16], resulting in
well-posed problems. By utilizing a dark chan-
nel prior, He et al. [17] introduced a method
that reconstructs the transparent layers and scene
depth using a single image.

Statistical Approaches. Another effective way
of transforming (Eq. 1) into a well-posed problem
is by using statistical properties of I1 and I2.
Farid and Adelson [18] studied the case where
an observed image is a linear mixture of two-
component layers. By rotating a polarizer in
front of the camera, they were able to capture
images with different mixing parameters for
different polarization angles. A simplified version
of (Eq. 1) now has the form

{
I (1)(x) = a · I1(x) + b · I2(x)

I (2)(x) = c · I1(x) + d · I2(x)
. (5)

The key assumption for their approach is that
I1(x) and I2(x) are independent. As a result, the
mixing coefficients should be sought such that
after the inversion

(
I1(x)

I2(x)

)
=

[
a b

c d

]−1 (
I (1)(x)

I (2)(x)

)
. (6)

I1(x) and I2(x) are maximally decorrelated (an
approximation to the independence assumption).
This is done by rotating and stretching the joint
intensity distribution such that the resulting distri-
bution is as separable as possible (the most decor-
related distribution). The parameters for rotation
and stretching can be computed in close form if
the observed joint distribution (I(1)(x), I(2)(x)) is
approximated by a principal component analysis
model. Schechner et al. [19] proposed a sim-
ilar approach, where the mixture is caused by

focusing at one layer at a time. The point spread
function of the defocused layer is estimated by
minimizing mutual information between the two
layers. Instead of using the original intensity,
Bronstein et al. [20] convolve the input image
pairs with high pass filters. The filtered images
have mostly zero values and present sparse dis-
tributions. They show that sparse ICA can better
separate the component layers. Levin et al. [21]
demonstrate that for simple images the compo-
nent layers can be recovered from just one image.
From natural images, they learn the exponential
density functions of several filter responses. The
best separation of the input image is the one that
maximizes the learned density function. How-
ever, their algorithm fails in more complicated
images where texture is abundant.

Motion Analysis. Under certain conditions,
by using images taken at multiple viewpoints
(due to relative motion between the camera and
the scene), we can transform (Eq. 1) into well-
posed problems. In Szeliski et al. [8], the com-
ponent layers are assumed to undergo paramet-
ric motions, for example, the motion observed
between two frames can be parameterized by a
2D affine motion model. Furthermore, by assum-
ing constant linear blending coefficients between
the two layers, the linear superposition model
(Eq. 1) can be simplified

I (i)(x) = T (i)
1 (θ1) ◦ I1 + T (i)

2 (θ12) ◦ I2(x)

= I1

(
T

(
x, θ

(i)
1

))
+ I2

(
T

(
x, θ

(i)
2

))
,

(7)

where T(x, θ ) is the parametric transformation
that maps a point in the ith observed frame
to the reference frame. Given F frames from
the motion sequence, assuming dimensionality
(length) of θ being d and that there are N pixels
in a frame, we have 2N + 2d(F − 1) unknowns
and approximately F · N constraints (excluding
boundary effects). Because N � d, the number
of constraints grows much faster than the number
of unknowns as more frames are observed. As a
result, given a few frames, the problem can be
well constrained.
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However, solution to this well-constrained
problem is not trivial. Szeliski et al. [8]
took an iterative approach. An initial set of
transformations θi

l was estimated using image
alignment methods, assuming that one of the
layers has dominant texture patterns. The images
are warped back to the reference view, and by
observing that image intensities are nonnegative,
they used a min-composite algorithm to initialize
intensity. Once an initialization is obtained, the
algorithm then iteratively refines the motion and
intensities of each layer.

Tsin et al. [9] studied the case for stereo
matching when linear superposition of layers
occurs. The unknowns in this case are per-pixel
color and depth, i.e., 4N unknowns, 2N for inten-
sities, and 2N for layer depths. In a first step,
depths are estimated using a nested plane sweep
for computing matching costs associated with a
depth hypothesis pair, one depth for each layer.
An optimization algorithm, i.e., graph-cut opti-
mization, was used to find a strong minimum.
The key observation in this step is that a cost
associated with a depth hypothesis pair can be
derived without knowing the layer intensities.
After the depths are estimated, layer intensities
can be solved using least squares in a second step.

There is a plethora of other work using motion
sequences for layer separation. One of the earliest
work on layer extraction is that of Wang and
Adelson [22]. They compute per-pixel flow, per-
form K-means clustering in affine motion space,
and assign each pixel to one of the sets of clus-
tered affine parameters. Darrell and Pentland [23]
improved on the formulation by having a direct
connection between layers and robust estimation.
Shizawa and Mase [3] provide a theoretically
elegant solution to extract multiple flow from an
image sequence. They formulate the constraint
for double optical flow in space-time frequency
domain and use it as the energy minimization
function. In a follow-up work [24], the princi-
ple of superposition is applied to the multiple
optical flow problem. Ju et al. [6] used a lay-
ered piecewise affine motion model to simultane-
ously estimate multiple motions in both occlusive
and transparent motion sequences. Swaminathan
et al. [25] handled the problem of highlight detec-

tion and removal by epipolar plane image (EPI)
analysis, explicitly detecting the saturated high-
lights in a local EPI stripe. Bergen et al. [4]
introduced a differencing technique to deal with
transparency. In contrast to differencing tech-
niques, the integration technique of Irani et al. [5]
stabilizes one motion region and blurs all other
regions by integration or averaging.

In summary, the transparent layer problems
are in general ill-posed and hard to solve.
However, we can define and solve well-posed
transparent layer problems by adding additional
information, for example, using multiple images,
known calibration of the camera (PSF or camera
pose), simplified scene geometry, and polarized
observations or statistical priors. A reader is
encouraged to study closely related topics,
especially matting [2, 7] and motion deblurring
[26], for dealing with transparent layers at opaque
object boundaries.

Open Problems

Open problems for transparent layers are listed
below.

1. Solving transparent layer problems in general
settings robustly. The existing solutions dealt
with specific cases of transparent layer prob-
lems, but a solution that works in general real-
world applications is still elusive.

2. Robustly separating transparent layers from
a single image. The difficulty comes from
the fact that the problem is severely under-
constrained. To solve the problem, unbiased,
proper priors need to be added to the problem.
Very insightful algorithms have been devel-
oped in the literature using priors derived from
natural image statistics [21]. But to be able
to robustly recover component layers to the
degree of human capability, these priors are
still insufficient.

3. Robustly separating more than two layers
or unknown number of layers. The ability
to recover transparent layers in these cases
critically depends on the robustness of the
algorithm in dealing with distractions from
un-modeled layers and the ability to handle
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potentially very low signal-to-noise ratio
of layers in the background, due to signal
attenuation.

4. Robustly separating transparent layers when
the blending factor is unknown and spatially
varying.

5. Motion-based separation of transparent layers
undergoing unknown and nonrigid motion.
The difficulties of layer separation and non-
rigid motion estimation are coupled in this
case.

A good example of open problems is estimat-
ing motion and component layers in X-ray image
sequences. The problem is complicated by the
following factors: (1) unknown number of layers,
depending on where an X-ray image is taken,
it may contain images of many organs/bones
superposed with each other; (2) Nonrigid motions
of the layers, such as those caused by respiratory
or cardiac motion. On the other hand, solving the
problem has clinically important applications, for
example, visualization enhancement and digital
subtraction angiography [27].
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Definition

Triangulation is a measurement method that esti-
mates the position of an unknown 3D point.

When the positions of two vertices of a triangle
are known, the position of the remaining vertex
can be computed if the interior angles at these two
vertices are known.

In computer vision, stereo reconstruction and
active 3D measurement are achieved by using the
triangulation.

Background

The origin of triangulation dates back to the
ancient Egyptian era of 3000 BC and is said to
have been invented to re-measure land divisions
after the frequent occurrences of the overflow of
the Nile. Since then, triangulation has been used
for measuring land, buildings, distances to stars,
etc.

Theory

The triangulation measures unknown distances
without measuring the distances directly.

Suppose we have a triangle ABC as shown in
Fig. 1, and the positions of vertex B and vertex
C are known while the position of vertex A is
unknown. If the interior angle θB at vertex B and
the interior angle θC at vertex C are obtained,
line LB and line LC can be drawn from vertex
B and vertex C, and the position of vertex A

can be determined as an intersection of these two
straight lines. The line that goes through vertex
B and vertex C is called a baseline, and the

Triangulation, Fig. 1 Triangulation

http://spie.org/x33859.xml
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Triangulation, Fig. 2
Stereo camera

length between vertex B and vertex C is called
a baseline length.

In computer vision, triangulation is used for
recovering 3D points from stereo cameras [1–3],
measuring 3D depth from a camera and projector
pair [4–6], and visualizing 3D depth from multi-
ple projectors [7]. In these methods, triangulation
is considered on a specific plane called the epipo-
lar plane, which goes through two viewpoints, C1

and C2, and a 3D point X to be measured, as
shown in Fig. 2.

3D reconstruction from camera images based
on triangulation has been considered under
various situations, such as triangulation from
uncalibrated cameras [8, 9], triangulation from
unsynchronized cameras [10], triangulation from
rolling shutter cameras [11], and triangulation
from a huge amount of cameras [3].

Two representative computational methods of
triangulation are the linear method, which obtains
3D points analytically by solving a system of lin-
ear equations, and the non-linear method, which
provides the theoretically most accurate solution
by minimizing geometric errors [1].

Triangulation from Linear Estimation
Suppose a 3D point X is observed by two cam-
eras. Assuming that the camera projection can be
represented by a pinhole camera and there is no
nonlinear distortion of the second order or higher,
the projection from a 3D point X to a pair of
image points xi (i = 1, 2) can be described by
using 3 × 4 matrices Pi (i = 1, 2) of these two
cameras as follows:

x1 = P1X (1)

x2 = P2X (2)

where x1, x2, and X are represented in the homo-
geneous coordinate system. Then, we consider
the triangulation and reconstruct a 3D point X
from a pair of image points x1 and x2 given the
camera matrices P1 and P2.

By considering the vector product of Eqs. (1)
and (2) with xj (i = 1, 2), we have:

[x1]× P1X = 0 (3)

[x2]× P2X = 0 (4)

where [x]× denotes a 3 × 3 matrix that represents
a vector product in matrix form and consists of
the components of x = [x1, x2, x3]� as follows:

[x]× =
⎡
⎣ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎤
⎦ (5)

Then, Eqs. (3) and (4) can be combined into:

MX = 0 M =
[

[x1]× P1

[x2]× P2

]
(6)

If there is no image noise, the rank of matrix
M is 3, and if there is image noise, the rank is
4. The 3D point X can be obtained as a solution
of the linear equation, Eq. (6). It is obtained as
an eigenvector that corresponds to the minimum
eigenvalue of a 4 × 4 matrix M�M.
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Triangulation from Geometric Error
Minimization
Although the linear method described above is a
fast and stable method that analytically yields 3D
points, it does not always provide the most accu-
rate reconstruction results. To obtain the most
accurate results, we next consider the minimiza-
tion of geometric errors.

Let us consider a 3D point X̂ recovered from a
pair of camera images. Then, by projecting X̂ to
the images again, we obtain reprojection points,
x̂1 and x̂2, in the pair of images as:

x̂1 = P1X̂ (7)

x̂2 = P2X̂ (8)

Then, we consider a Euclidean distance
between the reprojection point x̂ and the observed
point x as follows:

d(x, x̂) =
√

(x − x̂)�(x − x̂) (9)

where the homogeneous coordinates are normal-
ized so that their third component is equal to 1.

The distance d is called a reprojection error.
By estimating the 3D point X so that it minimizes
the reprojection error in a pair of images, we can
obtain the maximum likelihood estimate (MLE)
of X. This is achieved by solving the following
minimization problem:

X̂ = arg min
X

d(x1, x̂1)
2 + d(x2, x̂2)

2 (10)

The solution can be obtained by using numerical
minimization methods such as the Levenberg-
Marquardt method [12, 13].

This method provides us theoretically the most
accurate results. However, the method has a risk
of falling into local minima, and reconstruction
tends to be unstable. Thus, it is necessary to
estimate from a good initial value. As initial
values, the results of the linear method are often
used.
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Definition

Trichromatic theory is the conceptual framework
by which human vision matches the color of
any test light to that of an additive mixture of
the spectra of three primary lights in appropriate
proportions. For highly chromatic colors, such a
match might require one of the primary lights to
mix with the test light instead of with the other
primaries; the algebra of adding the light spectra
would represent this condition as subtraction.

Background

The basic correctness of trichromatic theory
(acknowledged at least since Thomas Young in
1802) underlies the success of such technologies
as color photography and television, both of
which need only three primaries to produce
acceptable color rendition. The amounts of three
primary lights needed to match a test light are
called the tristimulus values of that test light,
and are used to specify color quantitatively.
Two lights with different spectra and the same
tristimulus values are called metamers (or
metameric matches). One powerful consequence
of trichromatic theory is that, if two lights are
a metameric match, they can never be made to
mismatch by any functional processing of the
visual signal. Since illumination changes (or
putting on sunglasses) may make certain objects
match in color that did not match before (i.e.,
make the lights reflected from two objects a
metameric match), that means that no visual
processing is completely effective in returning the
viewed world to what it would have looked like
before the light changed or the sunglasses were
put on. Even so, the visual system approximates
this feat of restoration much of the time. The
feat is called color constancy, and is described in
another entry.

The biological basis of trichromatic theory
is a set of three kinds of light sensors in the
retina, called cones, each kind having a different
type of light-sensitive molecule (photopigment).
Whereas trichromatic theory was confirmed func-

tionally by color-matching experiments in the
nineteenth century, the physiological and anatom-
ical confirmation did not occur until the mid-
twentieth century.

Theory and Application

Underlying trichromatic theory is a set of rules
known as Grassmann’s laws, disclosed in 1855
by Hermann Grassmann. The laws are assertions
about color matches that are more or less true
empirically. In the statement of these rules below,
“=” denotes a color match; k denotes a scalar
multiplier; A, B, C, D are the spectra of lights
that participate in a match; and “+” denotes
superposition (addition) of the spectral power dis-
tributions of the lights. All of color technology,
including color television and color photography,
depends on these rules [1]:

Symmetry: If A = B, then B = A.
Transitivity: If A = B and B = C, then A = C.
Proportionality: If A = B, then kA = kB.
Additivity: If A = B and C = D, then

A + C = B + D. If A = B and
A + C = B + D, then C = D.

Grassmann’s laws are tested by what is called
a symmetric-matching experiment: An observer
compares two lights that are presented on identi-
cal backgrounds and with a visual system adapted
the same for both sides of the match.

For such technologies as color television and
photography, it is important to understand how
to create the same color on an image as was in
an original scene. Because of trichromatic theory
and Grassmann’s laws, it can be found out what
spectra will match each other through a set of
three functions of wavelength called the color-
matching functions. Color-matching functions
are specified by the Commission Internationale
de l’Eclairage (CIE) based on a set of symmetric
color-matching experiments performed in 1931
by several human observers whose data were
combined to produce a Standard Observer. The
functions so derived are called x (λ), y (λ), and
z (λ), where λ is visible wavelength (from 380
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to 780 nm). Two spectral power distributions,
S1(λ) and S2(λ), are said to match and produce
tristimulus values X, Y, and Z when

X =
∫

x (λ) S1 (λ) dλ =
∫

x (λ) S2 (λ) dλ

Y =
∫

y (λ) S1 (λ) dλ =
∫

y (λ) S2 (λ) dλ

Z =
∫

z (λ) S1 (λ) dλ =
∫

z (λ) S2 (λ) dλ.

Of course, if two lights match according to
this definition, they will match using any lin-
early independent linear combinations of x (λ),
y (λ), and z (λ). Also, when one adds two spec-
tral power distributions, one adds their vectors
(X, Y, Z).

For illustration, Fig. 1 below shows the CIE
1931 color-matching functions x (λ) [in red],
y (λ) [in green], and z (λ) [in blue].

Deriving the color-matching functions for
a human observer requires doing a symmetric
color-matching experiment. In practice there are
two experimental methods.

The more common way, called the maximum-
saturation method, arranges three narrowband
primary lights and a variable-wavelength test
light to form a match. The test light (assumed
monochromatic) is presented with unit power,
and the primary lights are adjusted in intensity
so, for each wavelength of the test light, two of
the primaries superposed will match the other
primary superposed with the test light. The name
“maximum saturation” derives from the fact that
the chromaticity of the light on either side of
the match is always on one of the sides of the
triangle defined by the primaries. Color-matching
functions derive from the maximum-saturation
experiment in a straightforward way: The powers
of the primaries required to make the match
(including a negative sign for the primary on
the same side of the match as the test light)
are the color-matching functions at the test-light
wavelength. Linearly transformed according to
the mandates of the CIE [2], they become the x,
y, and z color-matching functions above. (There
are effects of field size, etc. in the experiment,

but those go beyond the scope of this brief
tutorial.)

The other, less common kind of color match-
ing, the Maxwell method, uses a chosen white
light (always the same) on one side of the match
and variable powers of the test light and two
out of three monochromatic primaries on the
other side of the match. Color-matching func-
tions derive from the Maxwell color match by a
somewhat involved process (see [5]), and should
(if Grassmann’s laws were true) be the same
functions as given by the maximum-saturation
experiment.

Open Problems

Grassmann’s laws are known not to be exactly
true in human color matching [5, 6]. Besides
the three cone types that herald the trichromacy
of vision at high (photopic) light intensities,
a fourth photoreceptor type (rods) contributes
to vision at low (mesopic and scotopic) light
intensities and away from the center of vision
(fovea). At very high light intensities, unbleached
photopigments deplete and, in aggregate, change
their action spectrum. At still higher light
intensities, a photopigment molecule can absorb
multiple photons but respond as if it absorbed
only one photon. These effects compromise
Grassmann’s laws, but the successful application
of the laws, e.g., in photography and television,
is evidence that the compromises are not
serious.

Nonetheless, changing the way the matching
experiment is done can alter the experimental
results significantly. For example, as defined
above, Maxwell and maximum-saturation color
matches have long been known to be inconsistent
even at high luminance levels and statistically
reinforced by match replication [1]. A practical
consequence of the failure of additivity could
be problems observed in cross-media color
matching, although cross-media studies also
have other well-known sources of imprecision
because in that case the color matching is
asymmetric.



Two Dimensional Conditional Random Fields 1291

T

Trichromatic Theory,
Fig. 1 CIE 1931
color-matching functions

800750700650600550
Wavelength-nm

500450400350
0

0.2

0.4

0.6

0.8

1

1.2

va
lu

e

1.4

1.6

1.8

References

1. Wyszecki G, Stiles WS (1982) Color science: con-
cepts and methods, quantitative data and formulae,
2nd edn. Wiley, New York, pp 117–248, 278–485

2. Fairman HS, Brill MH, Hemmendinger H (1997)
How the CIE 1931 color-matching functions were
derived from Wright-Guild data. Color Res Appl
22(1):11–23

3. Brill MH (2000) Understanding color matches: what
are we taking for granted? In: Davis S (ed) Color
perception: philosophical, psychological, artistic, and
computational perspectives. Oxford University Press,
New York, pp 141–151

4. Fairchild MD (2005) Color appearance models, 2nd
edn. Wiley, Chichester, pp 53–82

5. Brill MH, Robertson AR (2007) Open problems on
the validity of Grassmann’s laws. In: Schanda J
(ed) CIE colorimetry: understanding the CIE system.
Wiley, Hoboken, pp 243–257

6. Commission Internationale de l’Eclairage (CIE)
(2009) Reappraisal of colour matching and Grass-
mann’s laws. Technical Report CIE 185:2009, CIE,
Vienna

7. Koenderink JJ (2010) Color for the sciences, Chapter
4. MIT Press, Cambridge

8. Berns RS (2000) Billmeyer and Saltzman’s
principles of color technology, 3rd edn. Wiley,
New York

9. Hunt RWG (1998) The measurement of colour,
3rd edn. Fountain Press, Kingston-Upon-
Thames

10. Hunt RWG (2004) The reproduction of colour, 6th
edn. Wiley, Chichester

11. Wandell BA (1995) Foundations of vision. Sinauer,
Sunderland

Two Dimensional Conditional
Random Fields

�Discriminative Random Fields



U

Uncalibrated Camera

Jun Sato
Department of Computer Science and
Engineering, Nagoya Institute of Technology,
Nagoya, Japan

Synonyms

Unknown Camera

Related Concepts

�Camera Calibration
�Camera Model
�Camera Parameters (Intrinsic, Extrinsic)
� Projective Reconstruction
�Triangulation
�Weak Calibration

Definition

The camera has intrinsic parameters that repre-
sent the internal characteristics of the camera
and extrinsic parameters that represent the posi-
tion and orientation of the camera. When all
of these intrinsic and extrinsic parameters have
been determined, the camera is called a calibrated
camera, and when these parameters are unknown,
the camera is called an uncalibrated camera.

Theory

Assuming that the projection on the camera can
be represented by a pinhole camera and there is
no nonlinear distortion of the second order or
higher, the projection from a 3D point X to a 2D
image point x can be described by using a 3 × 4
matrix P:

x = PX (1)

where an image point [x, y]� is represented by
homogeneous coordinates x = [x1, x2, x3]�,
which are related to the image coordinates as
[x, y, 1]� = λ[x1, x2, x3]� with a scalar λ.
Also, a 3D point is represented by homogeneous
coordinates X = [X1, X2, X3, X4]�, which
are related to the 3D point coordinates as
[X, Y,Z, 1]� = λ[X1, X2, X3, X4]�.

P is called a camera matrix and is described by
a 3 × 3 camera intrinsic parameter matrix A and
extrinsic parameters, rotationR and translationT,
as:

P = A
[
R T

]
(2)

When all the parameters in P are unknown, the
camera is said to be uncalibrated, and is called an
uncalibrated camera. In contrast, when all these
parameters are known and the camera matrix P is
fixed, the camera is said to be calibrated, and is
called a calibrated camera.

Also, when there are multiple cameras and
their camera matrices are determined up to

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
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a single 3D projective transformation, i.e.,
the ambiguity of multiple camera matrices is
represented by a single projective transformation,
they are said to be weakly calibrated. See the
section on “�Weak Calibration.”

Although we do not know any of the param-
eters of the cameras when they are uncalibrated,
we can still use them in a variety of applications.
In the following, it will be described that even
such uncalibrated cameras can perform 3D recon-
struction [1, 2] and viewpoint change [3].

3D Reconstruction from Uncalibrated
Cameras
Suppose we have N points Xi (i = 1, · · · , N)

in the 3D space and these points are observed as
N pairs of image points, {xi , x′

i} (i = 1, · · · , N),
by a pair of cameras having different viewpoints.
Then, the image observation can be described as:

xi = PXi (3)

x′
i = P′Xi (4)

If these cameras are uncalibrated and their
intrinsic and extrinsic parameters are unknown,
their camera matrices, P and P′, are also
unknown. However, if we have enough number
of corresponding points in their images, we can
from the images reconstruct 3D points with some
ambiguities.

Suppose we have enough number of corre-
sponding points in a pair of images. Then, we
can obtain a 3 × 3 fundamental matrix F, which
describes the geometric relationship between two
cameras from these corresponding points [4–7].
This is called weak calibration. See the section on
“�Weak Calibration” for the computation of the
fundamental matrix.

Once the fundamental matrix F is obtained,
the camera matrices Q and Q′ of these two
cameras can be computed as [8]:

Q = [I, 0] (5)

Q′ = [[e′]×F, e′] (6)

where e′ is an epipole of the second camera and
[v]× denotes a skew-symmetric matrix consisting
of a three-vector v.

The camera matricesQ andQ′ obtained in this
manner have the ambiguity of a single projective
transformation with respect to the true camera
matrices P and P′. Thus, by using the camera
matrices Q and Q′, 3D points Yi can be recon-
structed from the triangulation of two cameras
whose projection equations are as follows:

xi = QYi (7)

x′
i = Q′Yi (8)

See the section on “�Triangulation” for the 3D
reconstruction. The 3D points Yi recovered from
Eq. (7) and Eq. (8) have the ambiguity of a pro-
jective transformation with respect to the original
3D points Xi , and this reconstruction is called a
projective reconstruction [8].

3D reconstruction with uncalibrated cameras
can be achieved in various ways besides the
epipolar geometry-based method described
above. If we have many uncalibrated views on
many corresponding points, factorization is an
efficient way to recover 3D geometry under affine
cameras [9] and projective cameras [10, 11].
It is also possible to combine uncalibrated
cameras with uncalibrated projectors [12] for
3D reconstruction.

View Transfer from Uncalibrated Cameras
We consider view transfer for generating images
of different viewpoints from images observed by
uncalibrated cameras at certain viewpoints.

Let us consider a set of corresponding points,
x, x′, and x′′, in images observed at three dif-
ferent viewpoints, C, C′ and C′′. Then, these
three image points have the following trilinear
relationship [13]:

3∑

i=1

3∑

j=1

3∑

k=1

3∑

p=1

3∑

q=1

xix′j x′′kεjprεkqsT pq
i = 0rs

(9)
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where xi denotes the ith component of an image
point x = [x1, x2, x3]� and εjpr denotes a
rank 3 tensor, which takes 1 if the permutation
from {j, p, r} to {1, 2, 3} is an even permutation,
takes −1 if it is an odd , and takes 0 for other
cases. T pr

i is a rank 3 tensor called trifocal ten-
sor, which represents the geometric relationship
among three viewpoints.

The trifocal tensor T pr
i has 27 components

but only 18 DOF, since the 3 cameras are con-
strained by existing in a single projective space.
The trifocal tensor can be computed linearly from
seven sets of corresponding points and nonlin-
early from six sets of corresponding point in
images [14,15]. This is called weak calibration of
three cameras. See the section on “�Weak Cali-
bration” for the computation of trifocal tensor.

Since the trifocal tensor represents the geo-
metric relationship among three views, it enables
us to transfer two views to another view. Suppose
we have a trifocal tensor T pr

i . Then, given image
points x and x′ at two viewpoints, we can obtain
nine linear equations on the image point x′′ at
the third viewpoint from the trilinear relationship
in Eq. (9). Then, the image point x′′ at the third
viewpoint can be computed by solving the linear
equations.

In this way, we can transfer views from one to
another, even if the cameras are uncalibrated.
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Definition

Both scattering and absorption processes are
dominant effects that determine the propagation
of light in water and limit the ability to see or
form images. These are characterized by inherent
optical properties (IOPs) of the medium, which
can be related to imaging theoretical parameters
such and modulation transfer function (MTF)
and point spread function (PSF). Underwater
vision is affected by differences in the radiance
distribution, which is an apparent optical property
(AOP). Specially developed sensor systems are
required to extend range over which visual
information can be obtained.

Background

Observation and exploration of the underwater
realm has been of interest since ancient times and
has forged the development of many technologi-
cal advances, for example:

• Conventional imaging methods that utilize
high-sensitivity, dynamic range cameras and
advanced light sources

• Extended range imaging techniques that uti-
lize time gating or angular field restriction to
reduce unwanted image noise resulting from
optical scatter in the transmissive medium

• Laser line scan methods using “push broom”
configurations to produce 2-D or 3-D imagery

• Holographic or other techniques that exploit
spatial coherency over relatively short dis-
tances for high depth-of-field particle imaging

• Optical methods using frequency conversion
(fluorescence, Raman, etc.) to develop higher-
dimensional image data

• Multiple-perspective methods that achieve
range depth or 3-dimensional (3-D) image
formation and display (including mosaics)

• Image intensity algorithms based on image
processing techniques that exploit effects such
as shading, filtering, or motion

• Electromagnetic (EM) methods that utilize
transparent regions of the spectrum (near

infrared, ultraviolet, visible, and very low
frequency (VLF))

• Acoustic imaging techniques that include 3-D
reconstruction and mosaicking

• Temporally discriminant or signal-coded
methods that support multidimensional image
representations

Detailed descriptions of many of these preced-
ing methods have been published elsewhere [1–3]
where an emphasis is placed on extended range
imaging.

Historically, advancements in underwater
imaging have been slow to evolve and have
taken decades to reach the present state of the
art. This has been due, in part, to limitations
stemming from incomplete understanding of
radiative transfer in seawater, limitations in
image sensor electronic and optical hardware,
and computational restrictions in real-time
data transfer, recording, and signal processing.
Underwater vision in the optical spectrum is
limited by absorption and scattering processes
that are governed not only by the properties
of water but also by dissolved and suspended
substances. These result in limited visibility
over very short distances in harbor and coastal
regions. Imaging with conventional cameras
beyond several optical attenuation lengths
(cz) is generally not practical due to so-
called “veiling luminance” stemming from
scattering centers in the medium that produce
photon flux well in excess of that arriving
from the scene or object plane. Therefore,
the image content is not retrievable even
with image stretching unless extremely high
dynamic range sensors are employed. More
advanced imaging systems using pulsed laser
illuminators, gated detectors, narrow FOV syn-
chronous scanners, etc. have been demonstrated,
resulting in dramatic increases in the image
resolution and standoff distances achievable
over conventional cameras and illumination
systems [1]. Hardware advances in lasers, video
technology, electronic ballasting of HMI lighting,
detectors, mechanical scanners, and processing
algorithms have benefitted both optical and
acoustic sensors systems [4]. Although these
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advances are often associated with imaging
hardware and methodology, credit must also
be given to developments in computer vision
and pattern recognition that allow extraction
or interpretation of useful information from
raw imagery or data. This focus has been
noted in a recent publication written for the
computer vision community that underscores
the difficulties and challenges of underwater
imaging [5].

Theory

Inherent Optical Properties (IOPs)
Basic physical processes affecting underwater
light propagation are absorption [1] and both
elastic [2] and inelastic [3] scattering. These
processes are partially characterized in terms of
the inherent optical properties [6, 7], which are
dependent only on the material properties of
the medium or more accurately are invariant
under changes of the light field radiance distri-
bution. The primary IOPs, absorption coefficient
a, scattering coefficient b, and beam attenua-
tion coefficient c at optical wavelength λ are
related by

c(λ) = a(λ) + b(λ)

a(λ) = awater(λ) + anap(λ)

+ aphy(λ) + aCDOM(λ)

(1)

The absorption coefficient may be decom-
posed into several additive components due to
inherent absorption of water, suspended non-
algal (minerogenic) particles, phytoplankton,
and dissolved organic material (CDOM). The
measured absorption spectrum of water from
various publications is shown in Fig. 1. A
transparency window is clearly observed in the
blue-green spectral range.

A collimated light beam or plane wave of
small cross-section A relative to c−1 and intensity
I is therefore attenuated according to

I (z + �z, λ) = I0 (z, λ) exp [−c (λ)�z)] (2)

where c�z<<1. The scattering coefficient b is
defined by

b (λ) = 2π
∫ π

0
β (θ, λ) sin (θ) dθ (3)

where the volume scattering function is defined
by

β (θ, λ) ≡ |� J (θ, λ) |/I0 (λ)A�z (4)

and it is assumed that the irradiance �J is scat-
tered in direction θ . The volume scattering func-
tion β normalized to b is called the scattering
phase function p(θ , λ). Measurements of phase
functions for various ocean waters have been
measured extensively [9].

Phase functions for open-ocean, coastal, and
harbor waters are remarkably similar in shape,
leading to the development of an average parti-
cle phase function derived by subtraction of the
volume scattering function for clear water [10,
11]. Although analytic forms such as Henyey-
Greenstein [12] with g ∼ 0.95 have been used,
higher accuracy forms are preferred [13, 14].

The relationship of β or p to the modulation
transfer function (MTF) has been described [15],
and point spread function measurements have
been conducted at small angles [16–20].

The parameters a, b, and c are measured by
modern optical instruments and have been synop-
tically characterized for many natural waters [21–
23].

The MTF and PSF are related by the Hankel
transform pair

MT F (�, z, λ)

= 2π
∫

J0 (2πθ�) PSF (θ, z, λ) θdθ

PSF (θ, z, λ)

= 2π
∫

J0 (2πθ�) MT F (�, z, λ) �d�

(5)

The relationship to the IOPs has been derived
[24] and for a non-stratified medium is given by
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Underwater Effects, Fig. 1 Measured absorption spectra of pure freshwater (various authors) [8]

MT F (�, z, λ)

= exp
[

−
∫ R

0
c(z)dz +

∫ R

0
b P (�, λ)

]

P (�, λ) ≡ 2π
∫

J0 (2πθ�) p (θ, λ) θ dθ

(6)

where p(θ , λ) is the single scattering phase func-
tion and no z dependence of b or c is presumed,
yielding

MT F (�,R, λ)

= exp

[
−cR + b

∫ R

0
P

(
�r

R
, λ

)
dr

] (7)

Equations 5–7 link the MTF, PSF, and IOP
parameters. The single scattering phase function
p may be approximated analytically, and it is
found that at multiple scattering lengths (bR > 2),
the PSF is relatively insensitive to its functional
form [25].

Apparent Optical Properties (AOPs)
Understanding of the radiative transfer process
is paramount in designing sensors for deriva-
tion of information such as quantity, distribution,

and types of suspended materials; presence and
identification of manmade objects; as well as the
behavior of optical imaging and communications
systems. Much of this information is obtained
through the radiance distribution L, which is an
apparent optical property and is described by the
radiative transfer equation (RTE):

[
cos θ

d

dz
+ c(z)

]
L (z, θ, φ)

= b(z)
∫


′
p

(
z; θ; θ ′, φ′)L

(
z, θ ′, φ′) d
′

(8)

Perhaps the simplest solution of the RTE is
known as Gershun’s law [37], and relates the
absorption coefficient to the derivative of the
difference of the downwelling Ed and upwelling
Eu irradiance when no embedded light sources
are present:

d

dz
[Ed (z, λ) − Eu (z, λ)] = −a (z, λ) E0 (z, λ)

(9)

Solving the general integrodifferential
equation for radiance given IOPs and boundary
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conditions is difficult, but analytic solutions
do exist for special cases, such as for non-
scattering waters. Sophisticated numerical
methods therefore must be employed to solve
the RTE for realistic oceanic conditions.

This definition assumes that L is a scalar
function of position z, polar angle θ , and azimuth
angle φ and neglects polarizing properties of
the medium. Inclusion of polarizing properties
of the medium requires matrix formalism using
a Stokes vector notation for the RTE [26]. In
the presence of Raman or fluorescent inelastic
scattering, wavelength dependence must also be
included.

Estimation of the radiance distribution can be
accomplished using a Monte Carlo approach, but
the computational burden associated with most
environments requires parallel processing and
large memory resources for solution of practical
problems. Consequently, analytical models have
been advanced to predict radiance performance
for different IOPs and geometric configurations
[27, 35, 36] for both imaging and remote sensing
applications. Recently developed time-dependent
solutions of the RTE for pulsed sources [27]
are practical for communications and LIDAR
or other pulsed imaging systems. Pulsed imag-
ing systems can discriminate against scattered
light by gating the detector (LIDAR) or by syn-
chronously scanning a small divergence source
and narrow field-of-view detector (so-called laser
line scan systems). In addition, an understanding
of the impulse response of the medium and its
variability is necessary in developing and opti-
mizing any digital or analog communications
system.

Remote Sensing

Inversion of the radiance distribution is the
basis for remote sensing of water constituents
as the IOPs are determined in part by spectral
absorption characteristics of various absorbing
species of phytoplankton and dissolved materials.
Solid objects may also be detected. Passive
remote sensing involves observation light
emanating from the ocean surface due to solar

illumination consisting of surface-reflected light
and upwelling light scattered toward the surface
from particles in water column and from bottom
reflection. Examples of passive remote sensing
systems [28] are aircraft- or satellite-borne color
sensors which exploit the wavelength properties
of the absorption coefficient associated with
various dissolved or suspended substances, such
as of chlorophyll, CDOM, or mineral particles
under solar illumination. The ocean also can
contain light sources such as bioluminescent
organisms, which may be observed at night using
high-sensitivity detectors. Phytoplankton types
and physiological state may be estimated as well
as the bottom depth and type in very shallow
waters.

Active remote sensing system using lasers,
such as LIDAR, uses pulsed illumination to esti-
mate coastal depths or discernable layers of sus-
pended substances. Since laser light is reflected
from the sea surface and subsequently from the
subsurface layer, the layer depth is easily cal-
culated if the pulse is physically much shorter
than the depth to be measured. The depth is given
approximately by

d = (c/n) �trt /2 (10)

where �trt is the time difference between surface
return and the seafloor return, c is the speed of
light, and n is the index of refraction for water
(approximately 1.33).

Another active remote sensing method, laser-
induced fluorosensing uses pulsed ultraviolet or
short wavelength blue laser sources to detect and
estimate the concentration of layered chlorophyll
containing constituents and pollutants. Thermal
sensing vertically through the water column
is also possible using comparisons of relative
Raman Stokes and anti-Stokes emission
spectrally adjacent to the excitation wavelength
[34].

A large number of remote sensor systems
have been deployed. Well known in the USA
and Canada are the coastal zone color scanner
launched in 1978 [29], the sea-viewing wide
field-of-view sensor (SeaWiFS) launched in
1997 [30], the moderate resolution imaging



1300 Underwater Effects

spectroradiometer (MODIS) launched 1999 and
2002 [31], and the compact airborne hyperspec-
tral imager (CASI) [32, 33]. Geographic fidelity
of remote sensor systems is typically limited
by spatial resolution (meters typical for satellite
and sub-meter for airborne) as well as the time
required for collecting data over a large area.

Open Problems: Remote Sensing

Many remote sensing platforms exist, and
great strides have been made in ocean color
remote sensing. However, remote sensing
problems generally require inverting the radiance
distribution to obtain constituents affecting IOPs.
This class of inverse problems can be based
on either explicit or implicit solutions of the
RTE using either active or passive illumination.
Explicit solutions rely on functional dependence
between the radiance distribution L(z, θ , φ, λ)
and the set of IOPs. Determining the absorption
coefficient a(λ) from a series of measured
irradiances, as in Eq. (9), is one example of
an explicit solution for an IOP given irradiance
measurements. Implicit solutions are obtained by
solving a sequence of direct or forward problems
for different sets of IOPs. The set providing the
best fit radiance distribution is then chosen as
representing the inverse solution.

Since radiation measurements are not exact
and because of overlapping spectra, time-
dependent illumination during measurement,
inadequate spatial, or wavelength sampling, the
inversion process can be plagued with various
inaccuracies. These include model sensitivity
to slight changes in the radiance distribution,
model uniqueness errors, radiometer calibration
error, and other noise effects. Forward models
may be simple based on observed radiance
distributions in a geographic location, and these
dependencies may not be universally unique.
Inversions are usually based on an assumed
model that relates known quantities to a desired
output. The inversion takes place using the known
quantities as inputs to the model, whose output
is an estimate of the desired quantities. Due to
costs and geographic scales involved in making

measurements to establish a model, constraints
are imposed to limit the range of solutions
possible from a given set of data. Constraints
can be internal to the RTE or external, typically
as additional required measurements (such as a
measurement of the water leaving radiance or
bottom depth at one point in an image). Implicit
constraints may also be imposed, such as a
limitation of retrieved values to the range of
values found in the data set used to pre-determine
certain parameters in the inverse model.

Open Problems: Polarization

New trends in underwater imaging have also
involved understanding the complex behavior
of polarized light fields and remote sensing
of optical properties for object detection,
biological monitoring, and pollution identi-
fication/tracking. The RTE as posed in Eq.
(8) neglects polarization. However, scattering
within the water column, refraction, reflection
and transmission by the air-water surface,
and reflection by submerged objects induces
polarization even if the incident beam is not
polarized. Objects exhibit a complex reflection
distribution – the so-called bidirectional
reflectance distribution or BRDF (http://en.
wikipedia.org/wiki/Bidirectional_reflectance_dis
tribution_function) rather than a single-valued
parameter. Thus, accurate estimation of the
underwater radiance in a particular direction
will depend on polarization and BRDF from the
bottom or submerged objects. Understanding
the complexity of these effects on the vector
radiance through the vector form of the RTE
is still an open problem. Multiple scattering
events, particle size distributions larger than the
wavelength of light, and spatial averaging tend
to negate the effects of polarization. Numerous
studies have been made of individual particles of
different type, shape, and refractive index with
characterization of scattering and its effect on
polarization. Understanding the relationship of
these on the radiation distribution and the inverse
problem also remains a difficult problem.

http://en.wikipedia.org/wiki/Bidirectional_reflectance_distribution_function
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Experimental Results in Imaging

Recent experimentation in underwater imaging
has been focused on obtaining images at greater
optical distance (in terms of attenuation lengths
cz) with either natural [38] or artificial [39]
illumination. The former uses polarization
characteristics of the light field for enhancement,
while the latter has relied on various methods
such as pulsed illumination with restricted FOV
using quasi-monostatic scanners. Continued
improvements are being made in image quality
as shown in Fig. 2 [40]. Image formation at
over 20 receiver-to-target attenuation lengths
has been demonstrated with bistatic imagers
with the source-to-target distance being the

Underwater Effects, Fig. 2 Demonstrated image
improvement with pulsed-gated laser line scan imager
(PLLS) versus continuous-wave laser line scan systems
(LLS) at multiple attenuation lengths (cz) [40]

limiting factor due to point spread of the source
illumination, and new experimental systems are
being developed.
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Related Concepts

�Deep Generative Models
�Transfer Learning

Definition

Domain adaptation refers to the class of tech-
niques aimed to learn representations from a low-
resource dataset by transferring knowledge from
a related, yet shifted, resource-rich dataset. Shifts
between datasets can exist in the form of changes
in illumination, lighting, texture patterns, or any
such biases inherent to the dataset. To transfer
knowledge across domain-shifted data distribu-
tions, a domain-invariant feature representation
is sought that effectively phases out biases con-
tributing to the domain shift.

Background

Deep learning systems frequently encounter
novel test distributions, a consequence of the
diverse world we operate in. Unfortunately,
the performance of deep learning models
significantly degrades as the shift between
training (also called source domain) and test
(target domain) distributions increases, also
called domain shift. This is illustrated in Fig. 1
– a classification model trained on source
data performs well in the source distribution.
However, at test time, when target distribution
shifts, performance degrades. The promise of
domain adaptation is to learn a domain-invariant
representation to effectively transfer knowledge
across domain-shifted datasets.

Depending on the availability of training
data in the target domain, domain adaptation
approaches can be broadly grouped into two
categories: (1) unsupervised domain adaptation,
where no labels exist in the target domain,
and (2) semi-supervised domain adaptation,
where access to few labeled target samples is
assumed. In both these settings, source domain
has abundant labeled training data. In the rest of

the article, we focus mainly on the unsupervised
setting.

One popular approach for unsupervised
domain adaptation is to enforce domain
invariance in the feature space by minimizing
a distance between source and target feature
distributions. Using a neural network to estimate
the distance, adaption is formulated as an
adversarial game between a discriminator and
the feature network in [1]. Measuring distance
using maximum mean discrepancy and its several
variants has been proposed in [2–5]. Other
discriminative approaches include the use of
maximum classifier discrepancy [6], virtual
adversarial training [7], etc.

Another class of approaches that have
become prominent is the use of generative
models for adaptation, Generative Adversarial
Networks (GANs) in particular. The last few
years have witnessed tremendous success in
generation abilities of GANs enabling photo-
realistic synthesis of natural images [8, 9]
and videos [10, 11]. The framework of GAN
consists of a generator network that synthesizes
samples from a distribution and a discriminator
that acts as a critic on the generated samples.
Training happens in a two-player game where
the discriminator discriminates the generated
distribution from the real data distribution,
whereas the generator attempts to fool the
discriminator.

For domain adaptation problems, a conditional
GAN is often used where the generator network
is conditioned either on the source data sam-
ples or on the source feature distribution. Under
this framework, GAN attempts to perform cross-
domain image generation to synthesize a target
sample stylized as a source. The stylized target
dataset is then used to train a classifier.

Theory

Let Ds = {(xS
i , yS

i )} denote the labeled source
distribution and Dt = {(xT

i )} denote the target
data distribution, respectively. Here, x denotes the
input samples, and y refers to the label. Note that
we consider unsupervised domain adaptation set-
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Unsupervised Visual Domain Adaptation Using Gen-
erative Adversarial Networks, Fig. 1 Illustration of
domain shift. Models trained on source distribution

(shown in left) generalizes poorly when tested on a
domain-shifted target distribution (shown in right)

ting; hence no target labels are available. We are
interested in learning a transformation function
G : xS → xT that transforms source samples
to look like target. The transformation function
needs to satisfy the following properties:

– Content preservation: Semantic content of
images must be preserved under transfor-
mation i.e., the source and the transformed
images should share the same semantic
content.

– Style transfer: The transformed images should
be stylized like samples from the target distri-
bution.

The two properties listed above ensure that
the generator networks learn to transform source
images as target while preserving the semantics.
Hence, a classifier trained on the transformed
samples using the corresponding source labels
should perform well on target domain. Next,
we highlight the commonly used loss terms for
realizing the above properties.

Learning the Generator Network

Content loss: A common technique for match-
ing semantic content is to enforce source and
transformed samples to produce the same task
prediction. For instance, in classification tasks,
if the source and transformed images produce
the same prediction under a trained classifier,
then both images would likely belong to the

same class, thus sharing semantic content. Hence,
semantic content preservation is implemented by
minimizing task loss on the transformed images
using source labels [12, 13]:

min
G,C

Lcont := Ltask(C(G(xT )), yS)

where C is the task network. While the above
loss matches global semantics, it lacks pixel-
wise content preservation which is crucial for
tasks like semantic segmentation. To enforce
this, cycle consistency loss is used in [13],
where synthesized target images are transformed
back to source using a second generator, and L1

loss between the back-transformed image and
the original source image is minimized, similar
to [14].

Style transfer: To make the transformed samples
stylized as target, an adversarial loss between the
generated distribution and the real target distribu-
tion is used [12, 13, 15]:

max
G

min
D

Ladv := ExS log(D(xS))

+ ExT log(1 − D(G(xT )))

Here, the discriminator discriminates real target
distribution from the generated one, while the
generator attempts to fool the discriminator. This
adversarial game between real target distribution
and the generated distribution converges when
both distributions are aligned, i.e., when gener-
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Unsupervised Visual Domain Adaptation Using Gen-
erative Adversarial Networks, Fig. 2 Illustration of
GAN-based framework for unsupervised domain adap-
tation. Source images are transformed to target using a
GANmodel implementing an adversarial loss. To preserve

the content of transformed images, content preserving
loss and semantic losses are used. A final task network
is trained on the transformed target images using the
corresponding source labels

ated images look like target. As shown in Fig. 2,
a well-trained GAN network successfully stylizes
source samples as target.

Learning the Task Network
In the previous section, we discussed how the
generative model can be used to stylize source
distribution as target. The objective of domain
adaptation, however, is not stylization, but rather
to produce a predictive model that performs well
on the target. To improve the target performance,
a task network can be trained on the transformed
samples using the original source labels:

min
C
Lcont := Ltask(C(G(xT )), yS)

Learning the task network using the above loss
function utilizes GANs as a data augmentation
step. Alternatively, the feature network can be
updated so that target features are stylized as
source as seen by a GAN [15, 16]. In this case,
GANs are used for guiding domain alignment
in the feature distribution. Once the features are
aligned, a task network trained on source images
are used for making predictions at test time.

Application

The use of GANs for domain adaptation is a
successful paradigm that has been used in several
applications, some of which are listed below:

– Learning with limited supervision: Data col-
lection and annotation is an expensive pro-
cess, and annotating every possible variation
of input data is practically infeasible. Domain
adaptation comes to rescue, enabling knowl-
edge transfer from a resource-rich domain
to a poor-resource domain, thereby circum-
venting the need for annotating data. Strong
domain transfer performance in unsupervised
setting on several computer vision tasks such
as object recognition [12, 15], semantic seg-
mentation [13, 16], and object detection [17]
tested under several dataset variations includ-
ing changes in weather patterns [17], back-
ground [15], texture patterns [13], etc. is a
testament to the success of domain adaptation.

– Learning from synthetic data: One promising
solution for minimizing data annotation that
has become increasingly popular recently is
the utility of synthetic data for training neu-
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ral nets. With the design of a realistic sim-
ulator, obtaining annotated data comes free
of cost. However, domain shift between syn-
thetic data and real data distribution results
in large performance gap, motivating the need
for domain adaptation. Some recent successes
of this application include the use in gaze esti-
mation [18], robotic grasping [19], semantic
segmentation [16], etc.

– Medical imaging: Medical imaging is
one domain where collecting data can be
prohibitively expensive or in some cases
impossible due to privacy constraints. The
use of synthetic data and domain transfer
has been utilized for problems such as depth
estimation from endoscopy [20] and X-ray
image segmentation [21].

Open Problems

Adaptation on other vision tasks: Over
the recent years, several domain adaptation
approaches have been developed for classifi-
cation tasks. There is a growing interest for
extending these approaches for other vision tasks
including object detection, segmentation, single-
view 3D reconstruction, etc.

Continual domain adaptation: Current domain
adaptation approaches, including the ones dis-
cussed in this article, focus on the static set-
ting where the source and target datasets are
available beforehand. In many real-world appli-
cations, however, prior knowledge of target dis-
tribution might be unknown. Additionally, the
target distributions might itself change over time.
For instance, a robot trained in the United States
might be deployed in unknown environments
from other countries. Or the perception system
of a self-driving car might witness changes in
lighting conditions and weather patterns, which
vary continually with time. Current adaptation
algorithms cannot be used this setup as prior
information about target domain is unknown.
Models should rather estimate the target domain

statistics and update on the fly. Hence, to develop
practical adaptation algorithms, it is very impor-
tant to address distributional shifts in nonstation-
ary continual setting.

Reinforcement learning applications Reinforce-
ment learning (RL) applications present a natural
test bed for nonstationary distributional shifts.
RL algorithms are typically trained on simulated
environments since either they are either sample-
inefficient [22], or it is sometimes fatal to make
mistakes in real environments (e.g., self-driving
cars). Deploying models trained from synthetic
environments to real environments might result in
poor performance due to domain shift. Domain
adaptation is one approach for handling such
distribution mismatch. Despite the success of
domain adaptation techniques for supervised
tasks, they are rarely used in reinforcement
learning problems. An exciting open research
problem is to study the effectiveness of
adaptation algorithms in RL problems involving
domain shift in both stationary and nonstationary
environments.
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Synonyms

Calculus of variations

Related Concepts

�Total Variation
�Variational Method

Definition

In mathematics, the term variational analysis
usually denotes the combination and extension of

methods from convex optimization and the classi-
cal calculus of variations to a more general theory
[5]. However, in computer vision literature, the
term is frequently encountered as just a synonym
for calculus of variations. This branch of math-
ematics deals with the minimization of function-
als, which are real-valued functions on infinite-
dimensional spaces, most frequently spaces of
functions.

Background

In the continuous world view, images are mod-
eled as functions on a domain � ⊂R

n. Geometric
entities like curves and surfaces are manifolds,
which can be described as level sets of func-
tions or by the characteristic functions of their
interior region. Consequently, computer vision
problems can often successfully be formulated as
minimization problems on infinite-dimensional
spaces, where the solution is given as the min-
imizer of an energy functional V → R on
the space V of admissible functions. The min-
imization of such a functional thus requires a
calculus on infinite-dimensional spaces, which is
provided by the classical branch of mathematics
called calculus of variations [3, 4]. It provides
necessary conditions which have to be satisfied
by the minimizing function, probably most well
known is the Euler-Lagrange equation, a partial
differential equation for the unknown. However,
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the methods of the calculus of variations usually
provide only conditions for local minima, while it
is of course desirable to formulate models where
one has some guarantees about the optimality of
the solution.

Recently, there has therefore been much
effort to formulate computer vision in a way
that the final minimization problem is a convex
functional. The main advantage is that there
are no local minima in the sense that each
local minimizer is automatically a global
optimum. Furthermore, for optimization, it
is possible to enhance the techniques from
the calculus of variations with methods from
convex optimization, thus obtaining very efficient
minimization algorithms [1, 4, 5].

The formulation of variational models as con-
vex problems requires convex regularizers. A
particularly powerful regularizer was found to be
the total variation of a function [2]. Besides con-
vexity, it has certain interesting geometric prop-
erties which make it possible to obtain convex
formulation of segmentation and minimal surface
problems. See the entry on � “Total Variation” for
more details.

Theory

See the entry on the � “Variational Method”.
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Related Concepts

�Total Variation
�Variational Analysis

Definition

The variational method is a way to solve prob-
lems given in the form of a variational model, i.e.,
as an energy minimization problem on an infinite-
dimensional space which is typically a function
space. It employs tools from the mathematical
framework of variational analysis.

Background

Ikeuchi and Horn’s shape-from-shading paper
and Horn and Schunck’s optical flow paper,
which appeared in AIJ simultaneously, are
the earliest representative works to introduce
a variational method to computer vision [8].
Inspired by the extraordinary success of the
idea, variational methods have been extensively
studied in computer vision and become a very
popular tool for a wide variety of problems.
They are particularly successful in mathematical
image processing, where they are used to
describe fundamental low-level problems, like
image segmentation [9, 11], denoising [15], and
deblurring [3], but have also been employed for
high-level tasks like 3D reconstruction [4, 10].

In a variational model, the solution to a
problem is obtained as the minimizer of an energy
defined on a typically infinite-dimensional space,
for example, a function space. The underlying
world view is a continuous one similar to
classical physics, where images are regarded
as functions on R

n, while curves and surfaces,

https://doi.org/Total Variation
https://doi.org/Variational Method
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encountered, for instance, in image segmentation
and 3D reconstruction, are regarded as manifolds.

In view of this, it is not surprising that the
mathematical framework of variational analysis
used to deal with these problems was devel-
oped in close conjunction with new insights in
physics in the early twentieth century [5]. It is
a calculus for functionals on infinite-dimensional
spaces, which together with tools from differ-
ential geometry and measure theory yields the
Euler-Lagrange equations of such a functional
as a necessary condition for a minimum. Com-
monly, solutions to the Euler-Lagrange equations
are obtained either by directly solving a dis-
cretization or via a gradient descent technique.

Usually, only a local minimum is obtained
this way. Recently, however, much effort has
been devoted to formulate variational problems
with convex energies, either directly or using
relaxation techniques. In the case of a convex
energy, the solution to the Euler-Lagrange
equation yields a global optimum. Furthermore,
the methods from variational analysis can be
enhanced with methods from convex analysis
and convex optimization, yielding powerful and
efficient optimization methods.

Theory

There are two classical types of variational
problems, which require a slightly different
mathematical apparatus. The first class is
concerned with the minimizer of a functional
which is defined on a (usually infinite-
dimensional) vector space V , for example, a
function space. It typically arises when the goal
is to recover images, as in the problems of image
denoising and deblurring.

The second type is more complex and deals
with weighted minimal surfaces, i.e., minimizers
of a class of functionals defined for surfaces. This
type of problem arises when one tries to recover
manifolds, like curves in image segmentation or
surfaces in 3D reconstruction. It can be related
to the first case by introducing a variation of a
surface and employing methods from differential
geometry.

Functionals on vector spaces The foundation
for the variational method for functionals on
vector spaces is the variational principle, which
states that a minimum of a functional is a station-
ary point [2, 5]. Let E : V → R be a functional
on the Banach spaceV and then a point u ∈ V is
called stationary if the Gâteaux derivatives δE(u;
h) in all directions h vanish, i.e.,

0 = δE (u;h) := lim
α→0

1

α
(E (u + αh) − E(u)) .

(1)

Typically, the functional E is given as an
integral over a domain Ω . In order to apply the
variational principle in this case, one writes the
Gâteaux differential in the form

δE (u;h) =
∫

�

φu · h dx, (2)

where φu is a function on Ω which depends on u.
The du Bois-Reymond Lemma then implies

that if δE(u; h) = 0 for all h, then in fact φu = 0
on Ω . This is a partial differential equation for
the unknown u and a necessary condition which
has to be satisfied by a minimizer. It is called the
Euler-Lagrange equation of the functional E.

A frequent form for the energy E is the formu-
lation

E(u) =
∫

�

L (u(x),∇u(x), x) dx, (3)

with a Lagrangian function L. In this case, an
explicit formula for the Euler-Lagrange equation
can be derived using the chain rule and theorem
of Gauss for integration by parts. It reads

∂L
∂u

− div

(
∂L

∂ (∇u)

)
= 0, (4)

with either Neumann boundary conditions on
u or Dirichlet boundary conditions on possible
directions h.

Minimal surfaces. A minimal surface∑ ⊂ R
n is a local minimizer of the surface

area integral
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A
(∑)

:=
∫

∑ � d A, (5)

with a real-valued weight function Φ ≥ 0 and dA
denoting the surface area element. The dimension
of the surface is one less than the embedding
space. Problems of this form can be handled
by introducing a variation of the surface as a
differentiable map

X :
∑

× (−ε, ε) → R
n, (6)

where X(Σ , 0) = Σ and a one-parameter fam-
ily Στ = X(Σ , τ ) of regular surfaces is given
depending on τ ∈ R. The variational principle
then implies that a minimal surface satisfies

d

dτ

∣∣∣∣
τ=0

A
(∑

τ

)
= 0 (7)

for all possible variations. In [6], the Euler-
Lagrange equation was derived in arbitrary
dimension using methods from Cartan geometry
[16], for the general case that � depends on the
location s on the surface and the local normal
n. For a more elementary deduction for two-
dimensional surfaces, see, for example, [4, 14],
where [14] also deals with other classes of
minimal surfaces which minimize weighted mean
or Gaussian curvature.

The main result of [6] is that a minimal surface
necessarily satisfies

(�s,n) − Tr (S) � + div∑ (�n) = 0, (8)

where Tr(S) is the trace of the shape operator
of the surface, also known as the Weingarten
map or second fundamental tensor. Using either
explicit surface evolution methods or the level set
method [13], a local minimum can be obtained
via gradient descent as a stationary solution of a
corresponding evolution equation.

In a more modern framework, the weighted
surface area is replaced with the weighted total
variation [1, 2] of the characteristic function
of the surface interior. Optimization then takes
place over the set of binary functions of bounded
variation, which means that the difficult minimal

surface problem has been reduced to the more
simple first case discussed above. Using convex
relaxation techniques, this allows to solve certain
classes of weighted minimal surface problems,
which, for instance, arise in segmentation [12]
and 3D reconstruction [10], in a globally optimal
manner. The entry on � “Total Variation” pro-
vides more details on this topic.
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Related Concepts

�Active Sensor (Eye) Movement Control

Definition

The term vergence in the context of biological
vision refers to a type of eye movement seen
in creatures which possess binocular vision. Ver-
gence is the simultaneous movement of both eyes
in opposite directions that is required to main-
tain single binocular vision. When the eyes are

looking at a nearby object or fixates on a nearby
object, the eyes must rotate toward each other.
This is referred to as convergence. Similarly,
when the eyes look at an object farther away, they
rotate away from each other which is referred to
as divergence.

Other Properties

Vergence causes the direction or viewing angle
of the two eyes to change such that the image
projects to the center of the retina in both eyes.
As can be seen in Fig. 1, the angle of conver-
gence is larger when the eye is fixated on nearby
objects. In humans, this convergence is caused
by the contraction of the medial rectus muscles
which pulls the eye toward the nose where the
contraction of the lateral rectus muscles pulls
the eye away from the nose. The kinesthetic
sensations of the contracting and relaxing of these
muscles are sensed by the visual cortex where
it provides an additional binocular cue for depth
perception.

Dysfunction in eye vergence can cause a sub-
ject to suffer from symptoms such as double
vision, blurry vision, or other forms of visual
discomfort. The ocular and neurological condi-
tions resulting from dysfunction are discussed
in more depth by Busettini et al. [1] and Ciuf-
freda [2]. When focusing on objects at different
distances, the induced vergence change happens
quite slowly (takes about a second for human
eyes) unlike saccade movements which are very
quick.

Accommodation
The term accommodation refers to the ability of
the eye to change the optical power of the lens
to enable the eye to focus on objects at different
distances. When the eye focuses on a nearer
object, the curvature of lens and its refractive
(focusing) power increases due to the action of
ciliary muscles. The kinesthetic sensations of the
contracting and relaxing of these muscles are sent
to the visual cortex where it provides a monocular
depth perception cue.



1314 Vergence

Eye focused on object far away Eye focused on nearby object

Vergence, Fig. 1 Vergence: When the two eyes are fix-
ated on a far away object, the vergence angle is smaller as
shown on the left. However, when the object being fixated

on is nearby, the eyes rotate toward each other producing
a larger angle

Eye focused far away Eye focused nearby

Vergence, Fig. 2 Accommodation: When the eye
changes focus from a far away object to another object
which is relatively closer, the lens undergoes deformation

which increases its curvature, and this allows the eye to
focus on the nearby object

Thus, accommodation is the oculomotor
response to object distance and is analogous
to the focusing that occurs in a camera, and the
phenomenon is essential to see the object clearly.
This is illustrated in Fig. 2. Both accommodation
and vergence occur simultaneously in many
creatures possessing binocular vision and provide
complementary depth perception cues. More
details on depth perception in the human visual
system are discussed by Howard et al. [3].

Vergence and Accommodation in the
Context of 3D Displays
Normally, when the eyes change focus to fixate
on an object at a different distance, this is
accompanied by simultaneous changes in both
vergence and accommodation in both eyes. This
is called the accommodation-convergence reflex.
Thus accommodation and vergence are in sync.
However this is not true in 3D displays and
specifically in virtual reality (VR) displays.
In most VR headsets, the display or screen is

designed to be at a fixed distance from the user’s
eyes. In VR head-mounted displays (HMDs), the
screen may be quite close to the eye but using
special optics gives the user the sensation that
the screen is a few feet away. Nevertheless the
distance of this virtual screen is fixed. Due to
this the eye remains focused on the screen or at
a fixed distance all the time. However, the virtual
objects in the scene appear at different distances
at various times. Thus, the induced vergence
frequently changes, and depending on the virtual
object location, the vergence may be inconsistent
with the induced accommodation which is
always fixed. This is referred to as the vergence-
accommodation conflict (VAC). It causes visual
discomfort when using HMDs [5, 6]. Addressing
the VAC issue and reducing eye fatigue in VR is
currently an active research area [4].

Vergence and 3D Eye Rotations
The study of how the eye rotates in 3D has been a
topic of intense investigation for centuries among
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physiologists and useful for eye tracking and 3D
gaze estimation. When eyes undergo 3D rotations
and its axes of rotation, their behavior is said to
satisfy Listing’s law. This law states that for a
fixed head position and a specific orientation of
the eye referred to as the initial position, the eye
can only rotate to a specific set of orientations
that can be reached by a 3D rotation about an
axis that lies in a plane orthogonal to the line
of sight with the eye in the initial position. This
plane is called Listing’s plane. However, Listing’s
law is only true when the eye is looking at distant
objects, i.e., focused at infinity. In that position,
the eye has zero vergence. When the eyes con-
verge on a near object, the eyes undergo torsion
which is a rotation about each eye’s line of sight.
Under these circumstances, the eye movement
can be explained using the binocular extension of
Listing’s law or L2. For a fixed vergence angle,
the second law states that there is one and only
one torsion angle that the eyes adopt for a spe-
cific gaze direction. When the gaze direction or
vergence changes, the torsion must also change.
Readers can find more details on the topic in [7].

References

1. Busettini C, Davison RC, Gamlin PDR (2009) Ver-
gence eye movements

2. Ciuffreda KJ (2014) Eye movements; vergence
3. Howard IP, Rogers BJ et al (1995) Binocular vision

and stereopsis. Oxford University Press, New York
4. Laffont P-Y, Hasnain A, Guillemet P-Y, Wirajaya S,

Khoo J, Teng D, Bazin J-C (2018) Verifocal: a
platform for vision correction and accommodation in
head-mounted displays. In: ACM SIGGRAPH 2018
emerging technologies, pp 1–2

5. Lambooij M, Fortuin M, Heynderickx I, IJsselsteijn
W (2009) Visual discomfort and visual fatigue of
stereoscopic displays: a review. J Imaging Sci Technol
53(3):302011–302014

6. Reichelt S, Häussler R, Fütterer G, Leister N (2010)
Depth cues in human visual perception and their real-
ization in 3D displays. In: 3D imaging, visualiza-
tion, and display 2010 and display technologies and
applications for defense, security, and avionics IV,
vol 7690, p 76900B. International Society for Optics
and Photonics

7. Wong AMF (2004) Listing’s law: clinical significance
and implications for neural control. Surv Ophthalmol
49(6):563–575

Video Alignment and Stitching

�Video Mosaicing

Video Anomaly Detection for
Smart Surveillance

Sijie Zhu1, Chen Chen1, and Waqas Sultani2
1University of North Carolina at Charlotte,
Charlotte, NC, USA
2Information Technology University, Lahore,
Pakistan

Definition

Anomalies in videos are broadly defined as events
or activities that are unusual and signify irreg-
ular behavior. The goal of anomaly detection is
to temporally or spatially localize the anomaly
events in video sequences. Temporal localiza-
tion (i.e., indicating the start and end frames of
the anomaly event in a video) is referred to as
frame-level detection. Spatial localization, which
is more challenging, means to identify the pixels
within each anomaly frame that correspond to the
anomaly event. This setting is usually referred to
as pixel-level detection.

Background

In modern intelligent video surveillance systems,
automatic anomaly detection through computer
vision analytics plays a pivotal role which
not only significantly increases monitoring
efficiency but also reduces the burden on live
monitoring. Video anomaly detection has been
studied for a long time, while this problem is
far from being solved (as witnessed by the low
accuracy on UCF-Crime [1] dataset) due to the
difficulty of modeling anomaly events and the
scarcity of anomaly data. Identifying anomaly
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events requires understanding of complex visual
patterns, and some patterns can only be detected
when long-term temporal relationship and causal
reasoning are learned in the model, e.g., arson,
burglary, shoplifting, etc.

Early works mainly follow the setting of
general anomaly detection which may be better
referred to as novelty detection, where all novel
events are considered as anomaly [2]. This
problem is typically formulated as unsupervised
learning, where the models are trained with only
normal video frames and validated with both
normal and anomaly frames. A popular idea is
to find a set of basis to represent normal frames
and identify frames with high reconstruction loss
or error as anomaly for inference, e.g., sparse
coding [3, 4] and autoencoder [5]. However,
due to the limitation of data and computation,
these approaches [2–4, 6, 7] are conducted
on small-scale datasets with relatively simple
scenarios, which are not satisfactory for real-
world surveillance applications.

While it is theoretically pleasing to consider
all the novel events as anomaly, this setting has
drawbacks for practical surveillance applications.
Taking the campus scenario [2, 8] as an exam-
ple, riding a bike is novel (i.e., considered as
an anomaly) since the model only sees people
walking [2]. However, it should not be considered
as an anomaly in general for security purpose.
As some anomaly activities in real world appli-
cations may have clear definitions, e.g., different
criminal events which follow specific patterns,
recent works [1, 9] start to leverage supervision
for real-world anomaly detection. UCF-Crime
[1] is currently the largest anomaly detection
dataset with realistic anomalies, which contains
thousands of anomaly and normal videos. The
training set contains both anomaly and normal
videos with video-level annotation as a weak
supervision, and the frame-level annotation is
provided for validation set. The detection per-
formance has been significantly improved with
weakly supervised methods [1, 9].

There is also a line of research focuses on
specific anomaly detection tasks where only
one type of anomaly is considered, e.g., traffic

accident on highway. Since the camera poses,
foreground patterns, and backgrounds are highly
similar and stable, the geometric prior knowledge
and physics principles can be employed for
manually designed detection pipelines. Several
representative works [10, 11] rely on object
detection to identify anomaly events.

Representative Approaches

Based on the experimental setting on the training
data, video anomaly detection methods can
be generally classified into three categories,
i.e., unsupervised, weakly supervised, and
supervised. We provide a brief overview of recent
approaches for each category.

Unsupervised Methods
Since real-world anomaly events happen with
low probability, it is hard to capture all types
of anomaly. However, normal videos are easy
to access from social media and public surveil-
lance, unsupervised methods are thus motivated
to detect anomaly events with only normal videos
in the training set. Although the unsupervised
methods are not able to achieve satisfactory per-
formance on complex real-world scenarios, they
are believed to have better generalization ability
on unseen anomaly patterns.

Classic Machine Learning Early unsupervised
methods mainly adopt classic machine learning
techniques with hand-crafted features as well
as probability models. Kim et al. [6] propose
to first extract optical flow features and find
typical patterns with a mixture of probabilistic
PCA (Principal Component Analysis). A space-
time MRF (Markov Random Field) is then
constructed to model the relationship between
spatio-temporal local regions of a video for
Bayesian inference. Inspired by studies of crowd
behavior like social force model, Mehran et al.
[12] estimate the interaction forces in crowd to
better model the normal crowd behavior. Then
normal and anomaly frames are classified with
BoW (Bag of Words) and LDA (Latent Dirichlet
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Allocation). Li et al. [2] introduce a mixture
of DT-based (Dynamic Textures) model for
temporal normalcy. And a discriminant saliency
detection is utilized for measurement of spatial
normalcy. Ullah et al. [7] first extract the corner
features and refine them with interaction flow. A
random forest is then trained to classify normal
and anomaly frames. Cong et al. introduce sparse
coding for anomaly detection, and Lu et al. [4]
further propose an efficient sparse combination
learning framework to achieve a speed of 150
frames per second (fps).

Deep Learning Thanks to deep learning tech-
niques, recent works are able to take advantage
of large-scale dataset and powerful computation
resource. Following the setting of unsupervised
anomaly detection, a number of works [5, 13–
15] are proposed based on deep AE (autoen-
coder). Hasan et al. [5] propose to learn both
motion feature and discriminative regular pat-
terns with a FCN (Fully Convolutional Network)
based AE. The regularity score is computed based
on the reconstruction error of AE model. To
better model the temporal relationship within a
video, [13] combines FCN and LSTM (long
short term memory) as a ConvLSTM-AE, which
further improve the performance of AE frame-
work. [14] explores the combination of sparse
coding and RNN (Recurrent Neural Network).
A temporally coherent sparse coding framework
is proposed to introduce temporal information of
video in the background of sparse coding. [15]
proposes a memory-augmented AE to memorize
prototypical normal patterns for anomaly detec-
tion. An attention-based sparse addressing is then
designed to access the memory and reconstruct
future frames. For all mentioned AE-based meth-
ods, the anomaly events are determined based on
the reconstruction error. On the other hand, [16]
proposes to formulate the problem as a multi-
class classification by applying k-means clus-
tering and one-versus-all SVM (Support Vector
Machine).

Instead of directly computing the reconstruc-
tion error of future frames with a set of basis
or AE, another popular direction is to predict

the future frames based on the past frames, and
assign high anomaly score when the real future
frame is highly different from the predicted one.
To achieve future prediction, the idea of GANs
(Generative Adversarial Networks) [25] is intro-
duced, where a generator and a discriminator are
trained alternatively to achieve opposite goals.
The generator is trying to produce frames that are
similar to real frames, while the discriminator is
trained to distinguish the generated fake frames
from the real frames. With abundant training
data and proper training techniques, the gener-
ator would be able to produce highly realistic
fake frames which are indistinguishable from the
real ones for the discriminator. Recent works
[8, 17] usually employ a FCN based framework
as the generator to predict future frames. Liu
et al. [8] propose to add constraint on intensity,
gradient and motion for future frame generation.
The intensity constraint provides the consistency
between generated frames and real ones on RGB
space, and the gradient constraint can sharpen the
generated images. The motion constraint aims to
generate predicted frames with similar motions
to the real ones by minimizing their optical flow
difference. Ye et al. [17] further introduce a
predictive coding module and an error refinement
module based on the GAN-based framework.

Weakly Supervised Methods
With the increasing video data on social media
platforms such as YouTube, (https://www.
youtube.com/) it is possible to access and
annotate a large amount of anomaly videos
[1]. For certain application scenarios where
the anomaly activities are well defined, the
performance can be significantly improved by
introducing supervision information. Recent
works [1,9] follow the weakly supervised setting
where only video-level annotation is available for
training. That is the training videos are labeled
with normal or anomalous; however, the temporal
location of the anomaly event in each anomaly
video is unknown (i.e., weak supervision).

Sultani et al. [1] and He et al. [18] for-
mulate the weakly supervised problem as MIL
(multiple instance learning). Every frame of a

https://www.youtube.com/
https://www.youtube.com/
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normal video should be normal, and there is
at least one anomaly frame in an anomalous
video. [18] proposes a graph-based MIL frame-
work with anchor dictionary learning, and all
experiments are conducted on UCSD [2] dataset
with a weakly supervised setting. [1] proposes a
deep learning based method along with a large-
scale dataset with realistic crime-related anoma-
lies and surveillance videos, namely, UCF-Crime
[1]. A C3D framework is used to extract spatio-
temporal features and generate anomaly score.
To distinguish normal and anomaly frames with
this weak supervision, the loss function forces
the highest score of a negative video to be higher
than the highest score of a normal video. With
the parameters of C3D model frozen, [1] outper-
forms previous works by a large margin on the
UCF-Crime dataset.

Instead of improving the MIL technique,
Zhong et al. [9] consider the weakly supervised
learning as a noisy label learning problem,
where the annotation of some frames in anomaly
videos are wrong. They train a GCN (Graph
Convolutional Network)-based cleaner to refine
the noisy labels so that the classification network
can be trained end-to-end with frame-level labels.

Supervised Methods
For certain scenarios where the backgrounds and
objects are well defined, e.g., the roads and cars
for highway traffic accidents detection, recent
works [11, 19] are usually based on the frame-
level annotated training videos (i.e., the temporal

annotations of the anomalies in the training
videos are available – supervised setting). A
popular solution is to leverage the geometric prior
knowledge and object detection with additional
supervision from other public datasets.

Shah et al. [10] first applies Faster-RCNN
to detect vehicles, and then an attention-based
LSTM module is applied to learn the accident
score. For recent works [11, 19] on AI city
challenge, (https://www.aicitychallenge.org/) the
frame-level annotation of accident is given on
training set. Apart from applying object detec-
tion, [11] models the background and space
using semantic segmentation, and the geomet-
ric prior is leveraged by perspective detection.
The vehicle dynamics are then represented by a
spatial-temporal matrix. The anomaly events are
identified based on the IOU (Intersection Over
Union) of different objects while applying the
NMS (Non-Maximum Suppression) procedure.
[19] utilizes YOLOv3 (You Only Look Once)
as the object detector and specifically improves
the framework for small object scenarios. Then
a multi-object tracking is introduced to generate
the trajectories of anomaly vehicles. The accident
starting time is estimated based on a curve fitting
algorithm.

Datasets

In this section, we briefly review the popular
datasets for video anomaly detection. An

Video Anomaly
Detection for
Smart Surveil-
lance, Table 1 An
overview of datasets for
video anomaly detection

Dataset # of videos Average frames Example anomalies

UCSD Ped1 [2] 70 201 Bikers, small carts

UCSD Ped2 [2] 28 163 Bikers, small carts

Subway Entrance [20] 1 121,749 Wrong direction, no payment

Subway Exit [20] 1 64,901 Wrong direction, no payment

Avenue [4] 37 839 Run, throw, new object

UMN [21] 5 1,290 Run

DAD [22] 1,730 100 Traffic accidents

CADP [10] 1,416 366 Traffic accidents

Iowa DOT [23] 200 27,000 Traffic accidents

ShanghaiTech [8] 437 726 Bikers, cars

UCF Crime [1] 1,900 7,247 Arson, accident, burglary, fighting

Street Scene [24] 81 2509 Jaywalking, car illegally parked

https://www.aicitychallenge.org/
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overview of all listed datasets is provided in
Table 1.

UCSD The UCSD dataset contains two subsets,
denoted as Ped1 and Ped2. They are captured
with different camera poses at two spots in UCSD
campus where most pedestrians walk. The train-
ing set (34 clips for Ped1 and 16 clips for Ped2)
only contains normal frames, and the test set (36
clips for Ped1 and 12 clips for Ped2) consists
of both normal and anomaly frames. Frame-level
annotation is provided for all test clips, and ten
of them have pixel-level ground-truth. UCSD
dataset considers pedestrians walking as the nor-
mal pattern, so non-pedestrian entities like bikers
and skaters are defined as anomaly instances.
Dataset link: http://www.svcl.ucsd.edu/projects/
anomaly/dataset.html

Subway Subway [20] dataset contains two sub-
sets, i.e., Subway Entrance and Subway Exit.
They contain only one long surveillance video
each in subway station. They are first proposed
specifically for real-time detection of unusual
events detection in crowded subway scenes, e.g.,
moving in the wrong direction, or no payment.
Dataset link: http://vision.eecs.yorku.ca/research/
anomalous-behaviour-data/

Avenue The Avenue [4] dataset contains 15
videos, and each video is about 2 min long. The
total frame number is 35,240. 8,478 frames from
4 videos are used as training set. Typical unusual
events include running and throwing objects.
Dataset link: http://www.cse.cuhk.edu.hk/leojia/
projects/detectabnormal/dataset.html

UMN The UMN [21] (University of Minnesota)
dataset consists of five videos captured from
different angles. The normal pattern is defined
as walking and the main anomaly activity is
running. Dataset link: http://mha.cs.umn.edu/

DAD DAD [22] (Dashcam Accident Dataset) is
proposed specifically for accident detection. The
normal pattern is vehicles moving around, and
anomaly events include different traffic accidents,
e.g., car hits car, or motorbike hits motorbike.

DAD dataset consists of 678 videos from 6 cities.
58 videos are used for training. For the rest 620
videos, 620 clips with accidents are sampled as
positive clips, and 1130 normal clips are sampled
as negative clips. They are then randomly split
into two subsets, i.e., 455 positive and 829 nega-
tive clips for training and 165 positive and 301
negative clips for testing. Dataset link: https://
aliensunmin.github.io/project/dashcam/

CADP CADP [10] (Car Accident Detection
and Prediction) focuses on car accident on
CCTV (Closed-Circuit Television) cameras.
All the 1416 videos of CADP contain traffic
accidents, and 205 of them have temporal as well
as spatial annotations. CADP contains videos
captured under various camera types, qualities,
weather conditions, and the anomaly events are
realistic for real-world applications. Dataset link:
https://ankitshah009.github.io/accident_forecast
ing_traffic_camera

Iowa DOT Traffic Iowa DOT (Department of
Transportation) Traffic dataset [23] consists of
200 videos, each approximately 15 min in length,
recorded at 30 fps and 800 × 410 resolution.
Training and testing set each contains 100 videos.
As the official dataset for the 2018 AI City
challenge [23] Track 3, it does not provide
annotation for the testing set. Main anomaly
patterns are car crashes and stalled vehicles.
Dataset link: https://www.aicitychallenge.org/
2018-ai-city-challenge/

ShanghaiTech ShanghaiTech [8] dataset is
collected in ShanghaiTech University under 13
scenes with complex light conditions and camera
viewpoints. It consists of 437 videos with 726
average frames each. The training set consists
of 330 normal videos and testing set contains
107 videos with 130 anomalies. Anomaly events
include unusual patterns in campus such as bikers
or cars. Dataset link: https://svip-lab.github.io/
dataset/campus_dataset.html

UCF Crime UCF Crime [1] consists of
1900 untrimmed videos covering 13 real-world
anomaly events, including Abuse, Arrest, Arson,

http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://www.svcl.ucsd.edu/projects/anomaly/dataset.html
http://vision.eecs.yorku.ca/research/anomalous-behaviour-data/
http://vision.eecs.yorku.ca/research/anomalous-behaviour-data/
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://www.cse.cuhk.edu.hk/leojia/projects/detectabnormal/dataset.html
http://mha.cs.umn.edu/
https://aliensunmin.github.io/project/dashcam/
https://aliensunmin.github.io/project/dashcam/
https://ankitshah009.github.io/accident_forecasting_traffic_camera
https://www.aicitychallenge.org/2018-ai-city-challenge/
https://www.aicitychallenge.org/2018-ai-city-challenge/
https://svip-lab.github.io/dataset/campus_dataset.html
https://svip-lab.github.io/dataset/campus_dataset.html
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Video Anomaly
Detection for
Smart Surveil-
lance, Table 2
Frame-level anomaly
detection evaluation. AUC
(%) of existing works on
UCSD, UMN, Avenue, and
Shanghai Tech with
unsupervised setting

Method UMN UCSD Ped2 Avenue Shanghai Tech

Mehran et al. [12] 96.0 − − −
Cong et al. [3] 97.8 − − −
Li [2, 14] 99.5 69.3 − −
Hasan et al. [5] − 90.0 70.2 −
Luo et al. [14] − 92.21 81.71 68.0

Gong et al. [15] − 94.1 83.3 71.2

Liu et al. [8] − 95.4 85.1 72.8

Ye et al. [17] − 96.8 86.2 73.6

Ionescu et al. [16] 99.6 97.8 90.4 84.9

Assault, Road Accident, Burglary, Explosion,
Fighting, Robbery, Shooting, Stealing, Shoplift-
ing, and Vandalism. 950 of them are normal
videos and the rest videos contain at least one
anomaly event for each. The training set contains
800 normal and 810 anomalous videos. The
remaining 150 normal and 140 anomalous videos
are temporally annotated for validation. Both
training and testing sets cover all the 13 anomaly
events. Some of the videos may contain multiple
anomaly categories, e.g., robbery along with
fighting, burglary with vandalism, and arrest with
shooting. All the videos are realistic for real-
world surveillance applications. Furthermore,
UCF Crime covers different light conditions,
image resolutions, and camera poses in complex
scenarios, thus is very challenging. Dataset link:
https://www.crcv.ucf.edu/projects/real-world/

Street Scene Street Scene [24] dataset is
focused on single scene anomaly detection. It
consists of 46 training videos and 35 testing
videos taken from a static USB camera looking
down on a scene of a two-lane street with bike
lanes and pedestrian sidewalks. There are a
total of 203,257 color video frames (56,847 for
training and 146,410 for testing) with 1280 ×
720 resolution. The frames were extracted from
the original videos at 15 frames per second. 17
types of anomaly events/activities are presented
in the dataset such as jaywalking, loitering, car
illegally parked, etc. Dataset link: https://www.
merl.com/demos/video-anomaly-detection

Benchmarks

In this section, we introduce popular evaluation
metrics and show existing results on five popular
benchmark datasets, i.e. UCSD Ped2 [2], Avenue
[4], UMN [21], Shanghai Tech [8], UCF [1], and
Iowa DOT Traffic [23].

The frame-level evaluation criterion uses the
frame-level ground truth annotations to deter-
mine which detected frames are true positives
(i.e., true anomaly frames) and which are false
positives, yielding frame-level true-positive and
false-positive rates. In pixel-level evaluation, it
requires the algorithm to take into account the
spatial locations of anomaly objects in frames. A
detection is considered to be correct if it covers at
least 40% of anomaly pixels in the ground-truth
[2]. The pixel-level evaluation can be conducted
only if the pixel-level annotations are available
for the testing videos.

As shown in Tables 2 and 3, the frame-level
AUC (Area Under the Curve) of ROC (Receiver
Operating Characteristic) curve is widely used as
the evaluation metric for temporal localization of
anomaly events. Since the anomaly detection can
be considered as a binary classification for each
frame, the ROC curve is generated by applying
different thresholds for the anomaly score of each
frame and calculating the TPR (True-Positive
Rate) and FPR (False-Positive Rate).

For traffic accident detection with supervised
setting, the F1 score, RMSE (Root Mean Square
Error) of anomaly start time, and S3 score are

https://www.crcv.ucf.edu/projects/real-world/
https://www.merl.com/demos/video-anomaly-detection
https://www.merl.com/demos/video-anomaly-detection
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Video Anomaly Detection for Smart Surveil-
lance, Table 3 AUC (%) of existing works on UCSD,
Shanghai Tech, UCF Crime with weakly supervised
setting

Method UCSD Shanghai Tech UCF Crime

He et al. [18] 90.1 – –

Sultani et al. [1] – – 75.41

Zhong et al. [9] 93.2 84.44 82.12

Video Anomaly Detection for Smart Surveil-
lance, Table 4 F1 score, RMSE, and S3 score of
two top-performing methods on Iowa DOT Traffic dataset
with supervised setting

Method F1 score RMSE S3 score

UWIPL [19] 0.9577 6.7461 0.9362

Traffic Brain [11] 0.9706 5.3058 0.9534

used as evaluation metrics. The F1 score is
defined as:

F1 = 2T P

2T P + FP + FN
, (1)

where TP, FP, and FN denote true-positive, false-
positive, and false-negative numbers. The S3
score is computed as:

S3 = F1(1 − NRMSE), (2)

where the NRMSE denotes the normalized root
mean square error [23]. We show the perfor-
mance of two state-of-the-art methods on Iowa
DOT Traffic dataset in Table 4.

Video Anomaly Detection Conference
Workshop

The NVIDIA AI City Challenge (https://www.
aicitychallenge.org/) was launched in 2017
and has been held as a full-day workshop of
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) since 2018. Traffic
anomaly detection in surveillance videos is one
track of the challenge.

Open Problems

Although there has been significant progress
toward building efficient video anomaly detection
algorithms in recent years, in particular the deep
learning-based approaches, we highlight a few
possible open problems that are worth exploring
in the future.

• Although different learning frameworks have
been adopted, the learned representations
are still not satisfactory for distinguish-
ing complex anomaly activities. Possible
better representations include better 3D
feature extractor, attention mechanism, and
causal reasoning (identifying the cause
of an anomaly event, e.g., too fast −→
accidents).

• Early works mainly focus on the unsupervised
setting, and recent works have shown
potential on improving performance by
leveraging some supervision information for
certain scenarios. It would be promising
to explore better setting for practical
applications, e.g., better trade-off between
the generalization ability (unsupervised
setting) and performance (weakly supervised
setting).

• It may be acceptable for anomaly detection
systems operating in public spaces where
there is no expectation of privacy. However,
what if the technology needs to be applied to
non-public spaces where there is a stronger
expectation of privacy? It is worth exploring
effective ways to de-identify the training
videos and train anomaly models with de-
identified data.

• The current anomaly detection approaches
or systems act as an alerting mechanism.
How do we explain the AI decisions and
convey these effectively to stakeholders,
e.g., law enforcement, attorneys, media,
local residents, and broader community.
We expect techniques to close the gap
between performance and interpretable AI
models.

https://www.aicitychallenge.org/
https://www.aicitychallenge.org/
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Synonyms

Panoramic image generation; Video alignment
and stitching; Video mosaicking

Related Concepts

� Image Registration

Definition

Image mosaicing is the process of generating
a composite image (mosaic) from a video
sequence, or in general from a set of overlapping
images of a scene or an object, usually resulting
in a mosaic image with a larger field of view,
a higher dynamic range, or a better image
resolution than any of the original images.

Background

When collecting video of a scene or object, each
individual image in the video may be limited
compared to the desired final product, including
limitations in the field of view, dynamic range,
or image resolution. This is the case not only
with personal video capture [1–3] but also with
image-based rendering [4–6], aerial videography
[7–11], and document digitization [12]. Gener-
ating mosaics with larger fields of view [2, 3, 5,
10, 12, 13], higher dynamic ranges [14], and/or
higher image resolutions [15] facilitates video
viewing, video understanding, video transmis-
sion, and archiving. When the major objective of
video mosaicing is to generate a complete (e.g.,
360◦) view of an object (or a scene) by aligning

and blending a set of overlapping images, the
resulting image is also called a video panorama
[2, 5, 6].

Theory and Application

Video mosaicing takes in a video sequence
and generates one or more mosaiced images
with either a larger field of view, a higher
dynamic range, a higher image resolution, or
a combination of them. This entry will mainly
discuss the principles in generating large field
of view mosaics (panoramas), but the general
principles can also be applied to mosaics for other
objectives (high dynamic range imaging and
super-resolution imaging). Here, video mosaicing
implies that the images in the sequence are taken
by a video camera, usually at 30 frames per
second, but images taken by a digital camera
such that there is a certain amount of spatial
overlap between two consecutive frames can also
be viewed as a video sequence.

There are three key components in a typi-
cal video mosaicing algorithm: motion model-
ing, image alignment, and image composition.
Depending on the type of camera motion and
the structure of the objects or scenes, the motion
model can be a 2D rigid motion model (with
rotation, translation, scaling), an affine model, a
perspective model (i.e., homography), or a full
3D motion model.

Many popular video mosaicing methods [16],
for example, in [6, 14], assume a pure rotation
model of the camera in which the camera rotates
around its center of projection (i.e., the optical
center, sometimes called nodal point). In this
case, the motion between two consecutive frames
can be modeled by a homography, which is a 3×3
matrix. Then, depending on the fields of view
(FOVs) of the mosaic, the projection model of
the mosaic can be a perspective projection (when
FOV is less than 180◦), a cylindrical projection
(when FOV is 360◦ in one direction), or a spher-
ical projection (when the FOV is full 360◦ in
both directions). Figure 1 illustrates the relations
between the original images, and the three types
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VideoMosaicing, Fig. 1
Mapping a set of
overlapping images into a
mosaic: planar, cylindrical,
or spherical

of mapping surfaces each image can be projected
onto planar, cylindrical, and spherical.

However, the applications of video mosaics
from a pure rotation camera are limited to
mostly consumer applications such as personal
photography, entertainment, and online maps.
For more specialized applications such as
surveillance, remote sensing, robot navigation,
and land planning, to name a few, the motion of
the camera cannot be limited to a pure rotation.
Translational motion usually cannot be avoided,
causing the motion parallax problem to arise.
In computer vision, motion parallax refers to
the different changes in positions of images
of objects at different distances caused by the
translational movement of the viewer (i.e., the
camera). There are three kinds of treatments for
the motion parallax problem. First, when the
translational components are relatively small,
the motion models can be approximated by
a pure rotation. In this case, the generated
mosaics lack geometric accuracy, but with some

treatments for the small motion parallax and
moving targets, such as de-ghosting [6], the
mosaics generally look very good. Second, if the
scene can be regarded as planar, for example,
because the distance between the camera and
the scene is much larger than the depth range
of the scene, the perspective motion model
(homography) or, in some applications, a 2D
rigid motion model or an affine model can be
used [8, 11, 13]. In these cases, the problems are
much simpler due to the 2D scene assumption.
Finally, a 3D camera motion model is applied
when the translational components of the camera
motion are large and the scene is truly 3D. In
this case, motion parallax cannot be ignored or
eliminated. Examples include a camera mounted
on an airplane or a ground vehicle translating a
large distance [3, 4, 7, 10], or a camera’s optical
center moving on a circular path [2, 5]. Here,
multi-perspective projection models are used to
generate the mosaics, enabling stereo mosaics
or stereo panoramas to be created that preserve



Video Mosaicing 1325

V

the 3D information in the scene, allowing the
structure to be reconstructed and viewed in 3D.
In this case, the accuracy of geometric modeling
and image alignment is crucial for achieving the
accuracy of 3D reconstruction and viewing.

Image alignment (or image registration) is
the process of finding the alignment parame-
ters (e.g., the homography in the rotational case)
between two consecutive images. Image align-
ment is a critical step in mosaic generation, for
both seamless mosaicing and for accurate geo-
metric representation. There are two approaches
to image registration: direct methods and feature-
based methods. In a direct method, a correlation
approach is used to find the motion parameters.
Here, the images are divided into small blocks,
and each block in the first image is searched
for over a predefined spatial range in the second
image. The best match is determined by finding
the maximal correlation value. Other approaches
such as using optical flow or using an iterative
optimization framework also belong to the direct
methods, in which no explicit feature points are
extracted. But direct methods, especially those
based on optical flow, can only be used when
the inter-frame motion is relatively small. In a
feature-based method, a feature detection oper-
ator such as the Harris corner or SIFT (scale
invariant feature transform) detector is used first,
and then the detected features are matched over
the two frames to build up matches [16]. Either
way, a parameter model is fitted using all the
matches, usually using a robust parameter esti-
mation method to eliminate erroneous feature
matches. For more accurate or consistent results,
a global optimization can be applied among more
than two frames. For example, global alignment
may be applied to all the frames in a full 360◦
circle in order to avoid gaps between the first and
the last frame [6].

Image composition is the step of combining
aligned images together to form the viewable
mosaic. There are three important issues in this
step: compositing surface determination, coor-
dinate transformation and image sampling, and
pixel selection and blending. Mosaicing with the
rotational camera model is a good starting point
to discuss these issues (Fig. 1); mosaic composit-

ing under other motion models are discussed
afterward.

If the video sequence only has a few images,
then one of the images can be selected as the
reference image, and all the other images are
warped and aligned with this reference image.
In this case, the reference image with a perspec-
tive projection is the compositing surface, and
therefore the final mosaic is a larger perspective
image, which is an extension of the field of view
of the reference image. However, this approach
only works when the view angles of the images
span less than 90◦. If the camera rotates more
than 90◦, a cylindrical or a spherical surface
should be selected as the compositing surface. A
cylindrical surface is a good representation when
a full 360 panoramic mosaic is to be generated, in
one direction. And a spherical surface is suitable
if 360◦ × 360◦ mosaics are to be created.

After a compositing surface is selected, the
next issue is coordinate transformation and sam-
pling. This is also called image warping. Given
the motion parameters obtained in the image reg-
istration step, the mapping between each frame to
the final compositing surface can be calculated:
For any pixel in an original image frame, its
pixel location in the compositing surface can
be calculated. For generating dense pixels, an
interpolation schema is needed, such as nearest
neighbor, bilinear, or cubic interpolation meth-
ods. Usually a backward mapping relation is
utilized such that in the mapping area on the
compositing surface, each pixel obtains a value
from an original image frame (or a blending of
multiple values from multiple original frames,
see below), line by line, and column by column.
Therefore, for each integer pixel location in the
mosaic, a decimal pixel location can be found in
the original image; then an interpolation method
is used in the original image to generate the value
of the pixel in the mosaic.

The third important issue in image compo-
sition is pixel selection and blending. Naturally
in generating mosaics, there are overlaps among
consecutive frames, resulting in two key ques-
tions: First, where do we place the seam (i.e.,
the stitching line) (the pixel selection problem)?
Second, how do we select the values of pix-
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els in the overlapping areas (the pixel blending
problem)? For the second problem, the simplest
methods are to average all the pixels in the same
location in the overlapping area, or to use their
median value. The former might create a so-
called ghost effect due to moving objects, small
motion parallax, or illumination changes, while
the latter approach may generate a slightly better
view effect. More sophisticated blending meth-
ods include Laplacian pyramid blending [17] and
gradient domain blending [1]. The pixel selection
problem is important when moving objects or
motion parallax exists in the scene. In these cases,
to avoid a person being cut in half or appearing
twice in the mosaic, or to avoid cutting a 3D
object that exhibits obvious motion parallax and
hence could produce obvious misalignment in the
mosaic, an optimal seam line can be selected at
pixel locations where there are minimum mis-
alignments between two frames [14].

Other benefits having multiple values from
multiple images for each mosaiced pixel include
high dynamic range imaging [14] and improved
image resolution mosaicing [15]. For the former,
a composite mosaic represents larger dynamic
ranges than individual frames using varying shut-
ter speeds and exposures, while the latter uses
the camera motion to generate higher spatial
resolution in the mosaiced image than that of the
original images.

So far the discussions on image composition
have focused primarily on 2D mosaics, assum-
ing either the camera motion is (almost) a pure
rotation or the scene is flat or very far from the
camera, in order to avoid or reduce the motion
parallax problem. When motion parallax can-
not be avoided, 3D mosaics have to be con-
sidered. Methods have been proposed to gen-
erate mosaics, for example, for curved docu-
ments based on 3D reconstruction [12], when
the camera motion has translational components.
Needless to say, with 3D reconstruction, a com-
posite image with a new perspective view, or a
new projection representation (such as orthog-
onal projection), can be synthesized from the
original images. However, the drawback of this
approach is a full 3D reconstruction is needed,
which is both computationally expensive and

prone to noise. A more practical yet still funda-
mental approach without 3D reconstruction is to
generate multi-perspective mosaics from a video
sequence, under various names, such as mosaics
on an adaptive manifold [8], creating stitched
images of scenes with parallax [7] and cre-
ating multiple-center-of-projection images [4].
When the dominant motion of the camera is
translation, the projection model of the mosaic
can be a parallel-perspective projection, in that
the projection in the direction of the motion
is parallel, whereas the projection perpendicular
to the motion remains perspective. This kind
of mosaic is also called push broom mosaic
[18] since the projection model of the mosaic
in principle is the same as push broom imaging
in remote sensing. A more interesting case is
that by selecting different parts of individual
frames, a pair of stereo mosaics can be generated
that exhibit motion parallax, while each of them
represent a particular viewing angle of parallel
projection [10]. To generate stereo mosaics, the
motion model is 3D, and therefore, a bundle
adjustment for 3D camera orientation is needed.
The projection model is parallel perspective, and
therefore, the composting surface is a plane that
holds the parallel-perspective image. To generate
a true parallel-perspective view in each mosaic
for accurate 3D reconstruction, pixel selection is
carried out for that particular viewing angle, and a
coordinate transformation is performed based on
matches between at least two original images for
each pixel. A similar principle can be applied to
concentric mosaics with circular projection [2,5].

In some applications such as surveillance and
mapping, geo-referencing mosaicing is also an
important topic. This is usually done when geo-
location metadata is available, for example, from
GPS and IMU measurements [9, 11] taken with
the video/images. Geo-referenced mosaics assign
a geo-location to each pixel either by directly
using the metadata from the video frames used
to generate the mosaic or, when metadata is not
available, by aligning the video frames to a geo-
referenced reference image such as a satellite
image.

Video mosaicing techniques are also used
for dynamic scenes, such as to generate
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VideoMosaicing, Fig. 2 A 360◦ panoramic mosaic generated on a cylindrical surface

VideoMosaicing, Fig. 3 A pair of concentric mosaics of the City College of New York campus

VideoMosaicing, Fig. 4 A pair of push broom mosaics of the Amazon rain forest

dynamic push broom mosaics for moving
target detection [18] and to create animated
panoramic video textures in which different
portions of a panoramic scene are animated with
independently moving video loops [19, 20].

Open Problems

Some open problems can be found in a good
survey paper on image alignment and stitch-
ing [16]. These include robust alignments for
stereo mosaics (or mosaics with motion parallax),
mosaics for high dynamic range imaging and for
super-resolution imaging, and dynamic mosaics.

Experimental Results

Figure 2 shows a 360◦ panoramic mosaic rep-
resented on a cylindrical surface, which is gen-
erated from a video sequence taken by a video
camera that roughly rotates around its optical
center. Figures 3 and 4 show two stereo mosaics
that can be viewed with a pair of 3D glasses,
red for the right eye and the cyan for the left
eye. High-resolution mosaics can be viewed by
clicking the images in the figures in the online
edition. The concentric stereo mosaic in Fig. 3
is generated from a video sequence taken by a

handheld video camera that undertakes an off-
center rotation with 360 degrees of field of view
coverage. Figure 4 is a pair of push broom stereo
mosaics created from a video sequence taken by
a camera looking down from an airplane flying
over the Amazon rain forest.
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Synonyms

Multimedia retrieval; Video search

Definition

Video retrieval is the process of searching in
video based on an analysis of its visual content.

Background

The cause for the general video retrieval problem
is the semantic gap: the lack of correspondence
between the low-level features that machines
extract from the visual signal and the high-level
conceptual interpretations a human gives [1]. In
order to bridge the gap, many retrieval solutions
have been proposed in the past, e.g., by using
text, speech, tags, or example images [2, 3]. But
the most authentic and cognitive hardest is to
type a concept from visual information and to
retrieve the images carrying that concept [4].

Theory

The video retrieval method of choice in the field
is rendered in Fig. 1. The first step is to extract
from an image locally measured features, lots
of them, ranging from 40 to 100,000. The fea-
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Video Retrieval, Fig. 1 General scheme for detecting
visual concepts in images, with three typical concepts
highlighted. First, researchers project extracted image
features into visual words. Then they train concept

models from both the visual words and the concept
labels using machine learning. Finally, during testing,
researchers assign concept probabilities to previously
unlabeled images

tures are invariant descriptors which cancel out
accidental circumstances of the recording caused
by differences in lighting, viewpoint, or scale.
In order to capture the complexity of the world,
many texture, shape, and color descriptors need
to be extracted.

The second step is to project the descriptors
per pixel onto one of 4,000 words. They are not
real words but rather summarizations of one local
patch of the image describing one detail: a corner,
a texture, or a point. Researchers initially only
summarized the image at the most salient points,
but it now appears that full-density descriptions
are superior.

In the third step, a machine-learning algorithm
converts the visual words into one of the semantic
concepts. In fact, it assigns a probability to all

of the concepts simultaneously, which are used
for ranking images in terms of concept presence.
Researchers train the algorithm with the help of
manually labeled examples. Because there are
far more negative examples than positive ones,
they intensively compute the optimal machine-
learning parameters using grids and GPUs.

Detecting an object such as the American flag
is relatively simple if one has an answer to the
variance in sensory conditions like illumination
and shading, as the flag always shows the same
colors and color transitions. Note that a geomet-
rical model of a flag would fail almost always
as it rarely appears like a straight square. To
detect a walking person from one image requires
a richness of poses learned from a labeled set,
and snow is even harder to detect as it is white, is
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texture-free, and may assume all sorts of shapes.
Remarkably, although none of the features in
current detection methods is specific to any of
the concepts, the technique can still detect any of
them with sufficient success.

Application

Crucial drivers for progress in video retrieval are
international search engine benchmarks such
as ImageCLEF (Cross-Language Evaluation
Forum), Pascal VOC (Visual Object Classes),
PETS (Performance Evaluation of Tracking
and Surveillance), and VACE (Video Analysis
and Content Extraction). However, thus far the
National Institute of Standards and Technology
TRECVID (TREC Video Retrieval) bench-
mark [5] has played the most significant role.

The aim of the TRECVID benchmark is to
promote progress in video retrieval by providing
a large video collection, uniform evaluation pro-

cedures, and a forum for researchers interested in
comparing their results. NIST performs an inde-
pendent examination of results using standard
information retrieval evaluation measures, like
average precision. With participation from more
than 100 teams, including University of Oxford,
Tsinghua University, and Columbia University,
TRECVID has become the de facto standard for
evaluating video retrieval research.

TRECVID has been an important driver for
the community in sharing resources for validity
of video retrieval experiments, most notably the
manual annotations provided by the Large Scale
Concept Ontology for Multimedia [6]. Due to the
open character of benchmarks, effective concept
detection approaches are quickly handed over
from one group to another implementing fast
convergence on successful methods. It was shown
recently that in just 3 years, performance has
doubled [7]. For learned concepts, detection rates
degenerate when applied to data of a different
origin. However, in this setting also, performance
has doubled in just 3 years; see Fig. 2.

Video Retrieval, Fig. 2
Video retrieval progress as
evaluated on 36 concept
detectors (•) derived from
broadcast video data using
state-of-the-art search
engines from 2006 and
2009. The figure highlights
performance for three
typical concepts. The top
of the skewed bar indicates
the maximum average
performance by training on
similar examples, and the
bottom indicates the
minimum performance
when training on a data set
of completely different
origin [7]. Progress in
video retrieval is
substantial and quickly
maturing in robustness for
real-world usage of any
concept

Snow

Snow
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Open Problems

Despite good progress many problems in video
retrieval remain to be solved. Apart from the need
to further improve the robustness and efficiency
of concept detectors, there is also a need to
expand the number of detectors and to facili-
tate retrieval mechanisms that cater for on-the-
fly search [8]. For both scenarios, the widely
available socially tagged image examples on the
web seem suited. Another open problem consid-
ers complex search requests by the combination
of detectors at query time into events or short
stories. Even though individual detectors may be
reasonable, their combination often yields noth-
ing but noise. Finally, the problem of explaining
to a user what visual information in the video was
the characteristic evidence in making a meaning-
ful retrieval decision is unsolved.
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Related Concepts

� Face Detection
� Face Recognition

Definition

Video-based face recognition is a type of face
recognition where the test data are videos rather
than still images. Similar to traditional face
recognition, approaches for video-based face
recognition attempt to identify a person in a
video (identification) or decide whether two
subjects in two different videos have same
identity (verification).

Background

In computer vision and biometrics, video-based
face recognition has received significant amount
of attention in recent years. It has a wide range
of applications including visual surveillance,
access control, video content analysis, etc. Large
amounts of video data are becoming available
everyday since millions of cameras have been
installed in buildings, streets, and airports around
the world and people are using billions of hand-
held devices that are capable of capturing videos.
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Video-Based Face Recognition, Fig. 1 An example of
video-based face identification problem consisting of a
pre-enrolled gallery of three subjects and two frames from
the test video

An example of video-based face identifica-
tion from the IARPA Janus Surveillance Video
Benchmark (IJB-S) dataset [1] is shown in Fig. 1.
In this example, gallery consists of pre-enrolled
still images, and a test video is captured from
a surveillance camera. Every face in the video
should be detected and matched to a subject in
the gallery or to an unseen class for the open-set
scenario. Notice that the low-quality faces in the
video frames make this problem very challeng-
ing.

A video-based face recognition pipeline
usually consists of components including face
detection, face alignment, feature extraction,
face association, and set/sequence-based face
matching. The first three frame-wise components
are almost identical to still image-based face
recognition. Their differences are mainly in the
last two components: (1) Since a video contains
lots of frames with much more information than a
single image, faces are usually associated before
matching, where faces with the same identity
across different video frames are associated
into sets/sequences. (2) Face matching is also
performed in set/sequence, instead of using just a
single image.

The overall algorithm includes the following
steps:

1. Given a video, faces are first detected from
video frames and aligned using the estimated
fiducial points.

2. Face features are extracted from the detected
faces using feature extractors for face recogni-
tion.

3. Face sets/sequences with unique identities
(ideally) are constructed by face track-
ing/association approaches.

4. Face sets/sequences are matched under a cer-
tain similarity metric based on the face fea-
tures in sets/sequences.

Figure 2 illustrates an example of video-
based face recognition system proposed in [2]. It
exactly consists of four steps: (1) face detection
from input videos and alignment by a face
detector, (2) face feature extraction by a face
classifier, (3) face association across video frames
by single/multiple-shot association techniques,
and (4) feature sets modeling and matching by
subspace learning and subspace-based similarity
metrics.

Theory

In this section, we introduce the details of each
component in a video-based face recognition sys-
tem.

Face Detection and Alignment
The first step of a face recognition system is
to detect the faces. Face detection is a special
type of object detection and usually follows sim-
ilar designs, including single-stage and two-stage
architectures, as general object detection.

Najibi et al. [3] proposed a very fast single-
stage fully convolutional network. Chen et al. [4]
proposed a multi-task face detector based on the
single-stage SSD detector with extra branches.
The multi-scale face detector, Deep Pyramid Sin-
gle Shot Face Detector (DPSSD), is proposed in
[5]. It is fast and capable of detecting tiny faces,
which is very suitable for face detection in videos.

To reduce the pose variation of faces captured
under unconstrained conditions, the detected
faces are further aligned using their facial
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Video-Based Face Recognition, Fig. 2 A video-based face recognition system [2]

landmarks (fiducials) which are estimated by
a specific fiducial estimator.

HyperFace [6] is the first multi-task network
that can simultaneously detect faces, extract
fiducials, estimate pose, and recognize gender.
In [7], Ranjan et al. built on [6] and used
multi-task learning to simultaneously obtain
face-related information like face bounding
boxes, fiducials, facial pose, gender, and identity.
Kumar et al. [8] proposed a Pose Conditioned
Dendritic Convolution Neural Network for
fiducial estimation.

After fiducial estimation, face alignment is
usually performed by a similarity transform esti-
mated from five/seven fiducial points on the face.

Feature Extraction
After aligned faces are prepared, feature extrac-
tion is the next step that generates discriminative
descriptors for each face. It is the most important
step for both still and video-based face recogni-
tion system. Many Deep Convolutional Neural
Network (DCNN)-based approaches have been
proposed for still image-based face recognition,
which can be directly used as feature extractors
for video-based face recognition.

Taigman et al. [9] learned a DCNN model
on the frontalized faces generated from 3D shape
models built from face dataset. Sun et al. [10,11]
achieved results surpassing human performance
for face verification on the LFW dataset [12].
Schroff et al. [13] adopted the GoogLeNet for
face recognition. Parkhi et al. [14] achieved
impressive results using VGGNet for face veri-

fication. Chen et al. [15, 16] reported very good
performance on IJB-A [17], JANUS CS2, LFW,
and YouTubeFaces [18] datasets. Ranjan et al.
[5] proposed the crystal loss to train the network
on very-large-scale training data and achieved
good performance on IJB-C[19]. Deng et al. [20]
presented a recent face recognizer with state-of-
the-art performance.

Face Association
For video-based face recognition, subjects are
expected to appear in multiple frames in a video.
To improve face recognition performance, faces
from the same identity in a video are collected
together using the face association step before
matching. The association is usually based on the
appearance and spatiotemporal locations of faces.

For single-shot videos, in which the bounding
boxes of a certain identity are probably contigu-
ous, face tracking methods are more reliable.
Zhou et al. [21] incorporated appearance-based
models in a particle filter to realize robust visual
tracking. Roth et al. [22] proposed a multi-pose
face tracking approach in two stages using multi-
ple cues. Comaschi et al. [23] proposed an online
multi-face tracker using detector confidence and a
structured SVM. An efficient tracker, SORT [24],
achieves comparable results to other state-of-the-
art methods with 20 times faster speed.

For multi-shot videos, it is challenging to con-
tinue tracking across different scenes. Face asso-
ciation based on the appearance is more robust
to scene changes in these videos. Du et al.
[25] proposed a conditional random field (CRF)
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framework for face association. Chen et al. [26]
introduced a face association approach based on
one-shot SVMs.

Set/Sequence-Based Face Matching
Given a set/sequence of faces from the same sub-
ject, the final step is to model it into a unified rep-
resentation, match it with other faces, and gener-
ate similarity scores. Several methods have been
introduced to represent set/sequences including
(weighted) average pooling, subspace/manifold-
based modeling, sparse representation, and recur-
rent neural networks.

For set-based face matching, Wang et al. [27,
28] proposed a Manifold-to-Manifold Distance
(MMD) that models sets of faces as manifolds
or subspaces. Wang et al. [29] modeled the
image set with its second-order statistic for image
set classification. Zheng et al. [2] proposed a
quality-aware principal angle-based subspace-to-
subspace similarity, where subspaces are learned
using quality-aware principal component analy-
sis. Chen et al. [30, 31] proposed a set-based
algorithm using sparse representation and dic-
tionary learning. Some adaptive pooling meth-
ods [32–34] are also proposed, which flatten
face sets by performing adaptive weighted aver-
age pooling on face features. Based on [2],
Zheng et al. further introduced a graphical model-
based approach which leverages the contextual
information in the videos by identity information
propagation to improve face recognition perfor-
mance.

For sequence-based face matching, Gong et al.
[35] proposed a recurrent network for sequence
feature aggregation. Zheng et al. [36] proposed a
hybrid dictionary learning approach which mod-
els the temporal correlation in the sequences of
video faces by dynamical dictionaries.

Open Problems

Compared to still image-based face recognition,
unconstrained video-based face recognition is

still an unsolved problem. It is much more
challenging due to the following reasons:

• Large scale: For video-based face recognition,
test data are videos where each video con-
tains tens of thousands of frames and each
frame may have several faces. This makes the
scalability of video-based face recognition a
challenging problem. To design an efficient
face recognition system, each component of
the system should be fast, especially face
detection, which is often the bottleneck in the
face recognition pipeline.

• Large variation: Since faces are mostly from
unconstrained videos, they have more signifi-
cant variations in pose, expression, illumina-
tion, blur, occlusion, and video quality than
still faces. The representations for video faces
should be robust to these large variations.

• Lack of labeled data: Most off-the-shelf fea-
ture extractors for face recognition are trained
on still images which have less variations than
unconstrained videos. To fill the performance
gap between face recognition in still images
and unconstrained videos, we need to train
a video-specific model with large amount of
labeled training data.

• Noisy association: Frequent occlusions, pose
variations, and scene changes make face asso-
ciation in unconstrained videos very difficult.
Face recognition performance will suffer if
the associated face sets contain more than one
identity.

• Varying size: Each video contains different
number of faces for each identity. After face
association, each face set/sequence will also
vary in size. During face matching, it is chal-
lenging to efficiently encode a varying-length
set/sequence of samples into a fixed-size uni-
fied representation.

• Temporal information: In the era of deep
learning, there are just a few methods that
consider the temporal correlation in face
sequences for video-based face recognition.
Recognition performance can be improved by
leveraging the temporal information.
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�Gesture Recognition

Definition

View- and rate-invariant human action recogni-
tion is the recognition of actions independent of
the camera viewpoint, action speed, and frame
rate of capture of the video.

Background

At its essence, human action is the movement of
the body through a sequence of poses. The visual
appearance of a given action in a video sequence
depends upon several classes of variables: (1) the
geometry of the person performing the action,
(2) the style of the action being performed, (3)
the clothing worn by the person, (4) the camera
viewpoint, and (5) the time taken, not only for
the entire action but also for each individual pose

transition to complete. A generally applicable
human action recognition system needs the abil-
ity to classify an action from its visual appearance
regardless of the values of the above classes of
variables. In other words, the system needs to be
subject invariant, style invariant, clothing invari-
ant, view invariant, and rate invariant. Subject
invariance, style invariance, and clothing invari-
ance have seen relatively little progress so far.
While progress has been made on view invari-
ance and rate invariance, the collective body of
work has not yet matured. Therefore, this entry
summarizes the main approaches that have been
proposed so far, highlighting their motivations,
theoretical foundations, and limitations.

Theory

Human action recognition is dependent upon
modules isolating different humans in the scene.
Therefore, in the following, it is assumed
that human detection has been performed and
image regions corresponding to a single human
performing an action have been identified and
are provided as an input to the view- and rate-
invariant human action recognition system.

View Invariance

The objective of view invariance arises mainly
in the case of monocular video. Multiple cam-
eras allow the possibility of acquiring the depths
of image points, which makes the view invari-
ance problem much easier. Therefore, this section
focuses only on monocular video.

Detecting an action requires a model, either
explicit or implicit. An explicit model for human
action can be based on the temporal sequences of
body joint angles. Recovery of joint angles from
image sequences is difficult due to joints being
physically hidden behind the skin and clothing
and due to the unknown viewpoint. Although
it may be possible to theoretically establish
viewpoint invariance using explicit models, such
approaches are limited by the difficulties involved
in recovering joint angles.
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Alternatively, actions can be modeled implic-
itly, based on quantities derived directly from the
observed images. However, such models main-
tain at best a tenuous link to the hidden joint
angles, making it difficult to theoretically estab-
lish view invariance. From early days of research
into view-invariant human action recognition, 3D
motion capture and its 2D projections to images
remains a very useful source for creating the
substrates of human action and their composition
to form human actions.

Given difficulties with both types of
approaches, it is not surprising to note that no
theoretically sound and practically applicable
algorithm has been designed so far that can
recognize human actions invariant to viewpoint
changes. Nevertheless, two classes of approach
have emerged based on explicit and implicit
models for human action that are described in
more detail below.

Geometry-Inspired Approaches

Geometry-inspired approaches draw upon results
from geometric invariance and apply them to
points on the body as it moves. Geometry-driven
approaches depend upon body parts having been
detected, tracked, and labeled across frames.
Extremities of the body such as the head, hands,
and feet have a better chance of being detected,
whereas internal joints such as the shoulders,
elbows, and knees are harder to detect and need
to be inferred. Methods to infer the full 2D body
pose from silhouettes have been proposed [1–3],
but a system integrating such methods with a
full body-based view-invariant action recognition
method has not been demonstrated yet. An exam-
ple of an extremity-based approach is [4]. Exam-
ples of full-body approaches are [5, 6] and [7].

Image-Based Approaches

An implicit model of an action can be based upon
a manifold of appearances arising from the same
action as seen from different viewpoints. Given
an unknown action from an unknown viewpoint,

appearance descriptors are extracted and
matched with learned appearance descriptors.
Recent approaches use deep neural networks
to map different views of the same action to a
canonical view [8]. Matching error is calculated
based either on pixel-wise dissimilarity of the
silhouettes [9, 10] or in a derived space such as
Hu moment space, Fourier shape space [11], or
spaces over dense motion trajectories [8, 12].

An implicit model for an action can also be
based upon exploiting self-similarity. The obser-
vation used in such a method is that although
a given pose may appear different from differ-
ent views, repeating instances of the same pose
across time will be self-similar in a given view,
provided that the viewing angle between the sub-
ject and the camera for the pose is the same.
Constructing a pair-wise self-similarity matrix
across time will produce structures that appear
similar. Such an approach assumes the existence
of repeated poses in the action and works best
when there are many repeating instances within
one action cycle. Examples of such approaches
include [13] and [14].

Rate Invariance

A robust action recognition system has to be
invariant to the rate at which the action is per-
formed. This will enable the results of the action
recognition system to be invariant to the frame
rate of the camera and the rate at which the
actor is performing these actions. While a linear
rate invariance is sufficient to handle frame-rate
variations, it is necessary to model and be able to
handle nonlinear rate variations in order to handle
the rate changes that are due to actors, speed
of performance. This is because the actors may
perform different sub-actions at varying relative
rates, thereby leading to a nonlinear rate change
across the entire action.

Motivation

Consider the INRIA iXmas activity recognition
dataset [15]. Shown in Fig. 1(L) is the distribu-
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tion of the number of frames in different exe-
cutions of the same activity for four distinct
activities. Figure 1(L) clearly shows that for the
same activity, the rate of execution and conse-
quently the number of frames during the execu-
tion vary significantly. Moreover, in most realistic
scenarios, this temporal warping might also be
inherently nonlinear making simple resampling
methods ineffective. This implies that for uncon-
trolled scenarios, the variations due to tempo-
ral warpings could be even more significant.
Ignoring this temporal warping might lead to
structural inconsistencies apart from providing
poor recognition performance. The sequence of
images shown in the first two rows of Fig. 1(R)
corresponds to two different instances of the same
individual performing the same activity. There is
an obvious temporal warping between the two
sequences. If this temporal warping is ignored,
the distance between these two sequences will be
large, leading to incorrect matching. Moreover,
if some statistical description of the activity, like
an average sequence, is required, then ignor-
ing the temporal warping could lead to struc-
tural inconsistencies like the presence of four
arms and two heads in the average sequence,
shown in the third row of Fig. 1(R). If temporal
warping is accounted for, then such inconsisten-
cies are avoided and the distance between the
two sequences is rightly small. The fourth row
shows a typical average sequence obtained after
accounting for time warping.

Rate Invariance in Gait Recognition

Results on gait-based person identification shown
in [17] indicate that it is very important to
take into account the temporal variations in the
person’s gait. In [18], preliminary work indicat-
ing that accounting for execution rate enhances
recognition performance for action recognition
was presented. Typical approaches for accounting
for variations in execution rate are directly based
on either the dynamic time-warping (DTW) algo-
rithm [19] or some variation of this algorithm
[18]. A method for computing an average shape
for a set of dynamic shapes in spite of the exis-

tence of varying rates of execution is provided in
[20]. A method to learn the best class of time-
warping transformations for a given classification
problem is proposed in [21].

Decoupling Feature Variability from
Rate Variability

The most common way to handle rate variations
in the execution of an action is to decouple
the variations in features from the variations in
dynamics due to rate changes. This is done by
modeling an action sequence as a composition
of these two sources of variability – variability
on the feature space and variability due to exe-
cution rate. Keeping the model on the feature
space completely independent of the model on
the space of execution rates allows for the ability
to exploit any of the abovementioned viewpoint-
invariant features. Therefore, as more sophisti-
cated features become available, such models will
be able to exploit the characteristics of those
features while retaining the ability to deal with
variations in execution rate. If the chosen features
are viewpoint and anthropometry invariant, then
the resulting algorithm becomes invariant to all
the three significant modes of variations – view-
point, anthropometry, and execution rate.

Dynamic TimeWarping

Dynamic time warping (DTW) [19] is the most
common algorithm that is used for accounting for
the nonlinear execution rate variations. The DTW
algorithm which is based on dynamic program-
ming computes the best nonlinear time normal-
ization of the test sequence in order to match the
template sequence by searching over the space of
all time warpings. The advantage of using DTW
is that by cleverly using dynamic programming,
the complexity of the search space is consid-
erably reduced. The usual temporal consistency
constraints used in order to reduce the space of
time warpings are as follows:

End-point constraints: the start and the end of the
activity trajectories must match exactly.
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(L) Histogram of number of frames
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Average
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Average
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(R) Two sequences with differing rates of executions
and their normal and warped average sequences.

View- and Rate-Invariant Human Action Recogni-
tion, Fig. 1 Figure courtesy [16] (L). Histogram of the
number of frames in different executions of the same
action in the INRIA iXmas dataset. The histograms for
four different activities are shown. (a) Cross arms. (b) Sit

down. (c) Get up. (d) Wave hands. (R) Row 1, Row 2: two
instances of the same activity. Row 3: a simple average
sequence. Row 4: average sequence after accounting for
time warps
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Monotonicity: the warping function should be
monotonically increasing, i.e., the sequence of
action units must be unchanged.
Continuity: the warping function must be continu-
ous.

The DTW algorithm thus computes the best
time warping between a test sequence and a
template sequence. Once the best time warping
is computed, then the test sequence is then
unwarped according to the computed warp.
The unwarped action sequences are now time-
synchronized since all temporal rate variations
have been accounted for. From each frame of
the unwarped sequence, features (typically view-
invariant features) are extracted and then matched
in order to result in an algorithm that is both view
and rate invariant.

Open Problems

Approaches that are theoretically view invariant
are based on inherent parameters of an action
such as joint angles or positions. Unless these
methods are coupled with methods that infer the
inherent joint parameters, they will be of little
practical value. On the other hand, image-based
approaches are more practical but not generally
and probably view invariant. An open problem
in view-invariant action recognition is to find
a method that is theoretically sound and yet
practical.
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View-Invariant Action Classification

�View-Invariant Action Recognition

View-Invariant Action
Recognition

Yogesh Singh Rawat and Shruti Vyas
Center for Research in Computer Vision,
University of Central Florida, Orlando, FL, USA

Synonyms

Cross-view action recognition; View-invariant
action classification; View-invariant activity
recognition

Related Concepts

�Action Recognition

Definition

Recognizing human actions from previously seen
viewpoints is relatively easy when compared with
unseen viewpoints. View-invariant action recog-
nition aims at recognizing human actions from
unseen viewpoints.

Background

Human action recognition is an important
problem in computer vision. It has a wide
range of applications in surveillance, human-
computer interaction, augmented reality, video
indexing, and retrieval. The varying pattern of
spatiotemporal appearance generated by human
action is key for identifying the performed
action. We have seen a lot of research exploring
this dynamics of spatiotemporal appearance
for learning a visual representation of human
actions. However, most of the research in
action recognition is focused on some common
viewpoints [1], and these approaches do not
perform well when there is a change in viewpoint.
Human actions are performed in a three-
dimensional environment and are projected to a
two-dimensional space when captured as a video
from a given viewpoint. Therefore, an action
will have a different spatiotemporal appearance
from different viewpoints. As shown in Fig. 1,
observation o1 is different from observation
o2 and so on. The research in view-invariant
action recognition addresses this problem and
focuses on recognizing human actions from
unseen viewpoints.

There are different data modalities which
can be used for view-invariant representation
learning and perform action recognition. These
include RGB videos, skeleton sequences,

View-Invariant Action Recognition, Fig. 1 An action
captured from different viewpoints (v1, v2, and v3) pro-
viding different observations (o1, o2, and o3) [2]

http://www.amazon.com/Fundamentals-Speech-Recognition-Lawrence-Rabiner/?dp/?0130151572
www.ima.umn.edu/preprints/may2003/1924.pdf
www.ima.umn.edu/preprints/may2003/1924.pdf
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depth information, and optical flow. The
skeleton sequences and depth information
require additional sensors and are comparatively
more difficult to capture when compared with
RGB videos. Similarly, the optical flow is
computationally expensive and requires extra
processing on RGB videos. These modalities can
be used independently as well as in combination
to solve the problem of view-invariant action
recognition. Figure 2 shows a sample instances
activities performed by an actor which is captured
from three different viewpoints in three different
modalities.

Human action recognition from video
sequences involves the extraction of visual fea-
tures and encoding the performed action in some
meaningful representation which can be used for
interpretation. The view-invariant encoding of
actions involves a lot of challenges, and there
are different ways to address them. One possible
solution is to track the motion as it evolves with
the performed action. The track in itself will be
invariant to any change in the viewpoint and can
be used to extract a view-invariant representation
of actions. Another approach is to analyze the
spatiotemporal volume, which is covered by
a human while performing any action. It is
interesting to observe that such spatiotemporal
volumes will have some similarities for same
actions, and they can be useful to address
change in viewpoints. The tracking of a human
body can be useful to some extent, but human
joints can move independently while performing
most of the activities. Therefore, tracking of
skeleton joints independently is very important
for understanding human actions. The availability
of large-scale training data has also enabled
us to learn view-invariant representations using
deep learning. We will cover the details of these
approaches in the following sections.

View-Invariance in Human Actions

The dynamics of body parts and the change in
appearance play an important role in understand-
ing human actions. These two properties can be
effectively used to determine human actions in a

video stream if there is no change in viewpoint.
However, it becomes challenging when there is
a change in the viewpoint, as the dynamics, as
well as the appearance, will change with it sig-
nificantly. Therefore, it is important to represent
human actions in such a way that the representa-
tion is invariant to any change in viewpoint. The
idea is to encode the human action with a rep-
resentation which does not change with change
in viewpoint. We can observe in Fig. 2 how the
appearance of the activity changes when seen
from different viewpoints. It does not matter how
the action is captured; this variation is present in
all the modalities, including RGB, skeleton, and
depth.

Motion Trajectories
An action sequence performed by any person
will have a motion trajectory, which will be
different for different actions. These motion tra-
jectories can be useful in extracting rich view-
invariant representation for action classification.
The actions are performed in a 3D environment,
and therefore, the corresponding motion trajec-
tories are in 3D space. The change in speed and
direction of the trajectory plays an important role
in inferring the performed action. The continu-
ities and discontinuities in position, velocity, and
acceleration in a 3D trajectory are preserved in
2D trajectories under a continuous projection [4].
Therefore, we can use the 2D spatiotemporal
curvature of these 3D motion trajectories to rep-
resent actions which will capture the change in
speed as well as direction.

A spatiotemporal curvature can be represented
using instants which segment the motion trajec-
tory into intervals. Instances indicate a signif-
icant change in the speed and direction in the
motion trajectory and define motion boundaries
[4]. A special class of motion boundary, which
is independent of starts and stops, is the dynamic
instant that happens while performing an action.
A dynamic instant represents a significant change
in the motion characteristics and occurs only
for one frame. It provides motion boundaries,
called intervals, which represent the time period
between two dynamic instants when the motion
characteristics are not changing. In Fig. 3a, we
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View-Invariant Action Recognition, Fig. 2 Video frames showing action in different modalities as seen from three
different viewpoints [3], Row-1: RGB, Row-2: skeleton, and Row-3: depth

can observe a sample video frame for activity
“opening a cabinet.” If we track the hand motion
of the person while performing this action, we
will get a spatiotemporal curvature shown in
Fig. 3b. It shows the instants as well as corre-
sponding intervals in the motion trajectory. Fig-
ure 3c shows the spatiotemporal curvature values
along with the detected dynamic instants in the
motion trajectory.

View-Invariance The discontinuities in 3D
motion trajectory, which we perceive as
instants, are always projected as discontinuities
when projected in 2D curvatures [4]. These
instants which are maxima in spatiotemporal
curvature will be view-invariant for most
scenarios. Therefore, the number of instants
in a spatiotemporal curvature is an important
characteristic which will be view-invariant. The
only exception will be the cases when there is a
perfect alignment of the viewing direction with
the plane where the action is being performed.
In these cases, the position of the trajectory
in consecutive frames will be projected to the
same location in the frame resulting in a 2D

trajectory, which is essentially a single point.
Another important characteristic of instants
in spatiotemporal curvature is the change in
direction. This is known as sign characteristic,
and it defines the direction of turns in action. It
is very useful in distinguishing different actions
captured from varying viewpoints. A clockwise
turn is represented by a “+” sign and counter
clockwise turn by “−” sign.

These two characteristics of instants, number
of instants and sign of instants, in a spatiotem-
poral curvature provide a view-invariant repre-
sentation of actions. This representation can be
used to determine whether two spatiotemporal
curvatures belong to the same action class. The
first requisite is a match between the number of
instants and the sign sequence. Thereafter, we
can compute a view-invariant similarity measure
between the two trajectories. This can be per-
formed using affine epipolar geometry, which
will ensure viewpoint invariance in the similarity
measure [4]. However, there are some limitations
with this approach. It requires an exact match
between corresponding instants in the spatiotem-
poral curvature, which can be difficult as there
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View-Invariant Action Recognition, Fig. 3 (a) A sam-
ple video frame showing “opening a cabinet” action. A
hand trajectory in white is superimposed on the image, (b)

a representation of the trajectory in terms of instants and
intervals, and (c) corresponding spatiotemporal curvature
values and detected maximums (dynamic instants) [4]

can be false or missed instant detection. Also,
this approach does not take into account the
temporal information between the instants. These
issues can be addressed using a view-invariant
dynamic time warping to measure the similarity
between two spatiotemporal curvatures [5]. The
view-invariant time-warping not only suppress
the instant outliers, it also compensates for the
variation in the execution-style [6]. It can shrink
the slow-motion trajectories, which are longer
in temporal axis, and expand the fast motion
trajectories which are relatively shorter.

Limitations The idea of spatiotemporal curva-
ture is simple yet effective in extracting view-
invariant representation for actions. However,
there are certain limitations in this approach. The
assumption that an action can be represented by a
trajectory of single point in a video frame will not

hold true for actions where full-body is involved.
The skeleton joints in a human body will have a
different motion for the same performed action.
Therefore, this approach is limited to actions
where the action can be approximated to a
trajectory of single point at any time frame during
the motion.

Tracking Joints
A single point-based motion tracking of human
actions cannot be generalized for actions where
multiple body joints are involved. It only carries
motion information ignoring any shape or relative
spatial information. Therefore, it is important to
consider multiple human joints involved in the
action while tracking the motion. The movement
of different joints while performing an action is
not independent of each other. The human body
has certain anthropometric proportion, and there
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exist some geometric constraints between mul-
tiple anatomical landmarks such as body joints.
This allows us to analyze human actions per-
formed by different people using the semantic
correspondence between human bodies.

The pose X̂ of an actor while performing an
action can be represented as a set of points in
any given frame of a video. Here the pose is
defined as X̂ = {X1, X2 . . . Xn}, where Xi =
(xi, yi, zi , Λ)T are homogenous coordinates and
there are n such landmarks. Each point represents
the spatial coordinate of an anatomical landmark
on the human body, as shown in Fig. 4. The body
size and proportion vary greatly between differ-
ent people and age groups. However, even though
the human dimensional variability is substantial,
it is not arbitrary [7]. Therefore, geometric con-
straints can be used between the pose of two
different actors performing the same action. The
proportion between two sets of points describing
the pose of two different actors can be captured
by a projective transformation. Suppose we have
a set of points X̂ and Ŷ describing actors A1

and A2. Then the relationship between these two
sets can be described by a matrix M such that
Xi = MYi , where i = 1, 2 . . . n and M is a 4x4
non-singular matrix. The transformation simulta-
neously captures the different pose of each actor
as well as the difference in size/proportions of
the two actors. There are two types of constraints
which are useful for action recognition, postural
constraints and action constraint [7]. The pos-
tures of two actors performing the same action
at any time instant should be the same. This
constraint allows us to recognize the action at
each time instant by measuring the similarity
between the postures. Along with this frame-wise
constraint, another global constraint can be used
on the point sets describing two actors if they are
performing the same action.

The anthropometric constraints in a human
body allow the transformation of pose between
two actors. Moreover, utilizing the postural and
action constraints can help in recognizing action
by measuring the similarity between two sets of
points. The transformation and geometric con-
straints will address the issue of view-invariance
in actions. However, this approach assumes the

temporal alignment of poses for each frame in the
video. This can be problematic as different actors
will have a unique style of executing an action.
Therefore, a temporal alignment is also required,
which is invariant to temporal transformations.
This can be done using dynamic time warping,
which is particularly suited to action recognition
as it is expected that different actors may perform
portions of actions at a varying rate [7].

The frame-wise representation of action
decouples pose from its motion along the
temporal domain. This approach can be effective
to some level, but it ignores the temporal
information focusing only on the order of poses,
which limits its potential. We can model an action
as a spatiotemporal construct since it is a function
of time as well. It can be represented as a set
of points, Â = {X1, X2 . . . Xp}, where Xi =
(xi, yi, zi , ti )T are spatiotemporal coordinates,
p = mn, where we have m landmarks and there
are n recorded postures for that action [8]. A
sample action “walking” is shown in Fig. 5 in
both xyz and xyt space at different time steps.

The variability associated with the execution
of an action can be closely approximated by
a linear combination of action basis in joint
spatiotemporal space. An instance of an action
can be defined as a linear combination of a
set of action basis A1, A2 . . . Ak . Therefore,
any instance of an action can be expressed as
A′ = Σk

i=1aiAi , where ai ∈ R is the coefficient
associated with the action basis Ai ∈ R

4xp.
The space of an action, A is the span of all its
action basis. The variance captured by action
basis can include different execution rates of
the same action, different individual styles of
performances, as well as the anthropometric
transformations of different actions. These action
basis can be used to project a 4D pose point to its
image (xyt) using a space-time projection matrix
[8]. These projections are useful in forming an
action representation which can further be used
for recognition of new instances.

All the joints in the pose and all the time
steps in a trajectory may not be required to
identify the action category. We can select the
joints dynamically based on the action and also
choose fewer poses along the temporal domain



1346 View-Invariant Action Recognition

View-Invariant Action
Recognition, Fig. 4 A
sample video frame
showing a pose and
corresponding point-based
pose representation [7]
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View-Invariant Action Recognition, Fig. 5 Representation of an action in xyzt 4D space. (a) Action in xyz space,
(b) action in xyt space [8]

known as canonical poses [9]. These empirically
selected joints and canonical poses provide view-
invariant trajectories which we call invariance
space trajectories (IST). These trajectories are
also invariant representations of human actions
and useful for action recognition.

Spatiotemporal Volume
The tracking of joints in the motion trajectories
can be effective for action representation.
However, as we discussed earlier, not all joints
may be useful in recognizing the performed
action. Another alternative to joints is the contour
of the actor, which also captures the complete

shape information. Tracking of actor contours
will consider both shape and motion of the actor
performing the action. When an actor performs
some action in a 3D environment, the points on
the outer boundary of the actor are projected as
2D (x,y) contour in the image plane. A sequence
of 2D contours from frames with respect to time
generates a spatiotemporal volume (STV) in
(x, y, t), which is a 3D object in the (x, y,
t) space [10]. The object contours in two
consecutive frames can be tracked by finding
a point correspondence between them. This can
be done using a graph-theoretical approach by
maximizing the match of a weighted bipartite
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graph. In Fig. 6, we can observe some samples
of generated spatiotemporal volumes for various
actions.

An STV can be considered as a manifold,
and it will be nearly flat for small scales defined
by a small neighborhood around a point. There-
fore, it can be represented as a continuous action
volume B by computing plane equations in the
neighborhood around a point. We define it using
a 2D parametric representation by considering
the arc length of the contour (s), which encodes
the object shape, and time (t) which encodes the
motion. The action volume is defined as B =
f (s, t) = [x(s, t), y(s, t), t]. The parameters s

and t can be used to generate trajectories and con-
tours for any point in the object boundary. This
representation is important for computing action
descriptors corresponding to changes in direc-
tion, speed, and shape of parts of contours [10].
This can be done by analyzing the surface type
of a point in STV using Gaussian curvature and
mean curvature. These surface types are impor-
tant action descriptors, and for any given action,
they are called action sketch. In Fig. 6, several
of these action descriptors are superimposed on
the STVs for various actions. The underlying
curves of the contour and point trajectory for each
action descriptor in the action sketch will have a
maxima or a minima. It can be proved that the
maxima/minima of the contour and the trajectory
will not change by changing the viewpoint of
the camera. Therefore, this representation is also
invariant to any change in viewpoint.

The 3D volume of STV, along with the action
descriptor derived from this volume, can be used
for action recognition. The relation between two
STVs is defined as xFx′ = 0, where x and x′
are points on two different action sketches and
F is a 3x3 fundamental matrix defining this rela-
tion. This relation estimates whether two different
action sketches belong to the same action class
and is a useful property for action recognition.
This 3D volume can further be utilized to build
a 4D action feature model(4D-AFM) [11]. This
model elegantly encodes the shape and motion of
actors observed from multiple views. A sample
example for this model is shown in Fig. 7. This
model enhances the view-invariant robustness of

this approach, as features from multiple views are
mapped to a unified model. Action recognition
can be performed with this model based on the
scores of matching action features from the action
videos to the model points by exploiting pairwise
interactions of features.

Learning-Based Methods
The classical approaches focused on finding
good features and utilize simple matching-based
techniques for action recognition. In learning-
based methods, both feature extraction and
action recognition are performed jointly. The
availability of multi-view activity datasets, such
as IXMAS [12], UWA3D Multiview Activity
II [13], Northwestern-UCLA [14], and NTU-
RGBD [3], has enabled the development of
learning-based robust methods for view-invariant
feature learning. These features can be learned
from different types of modalities, such as RGB
[2,15], skeleton [3,16], depth [2,17], and optical
flow [17].

We have seen earlier how motion trajectory
is effective for extracting view-invariant descrip-
tions. Apart from point-based and joint based
trajectories, we can also extract dense trajecto-
ries from any action sequence. These trajecto-
ries provide dense points from each frame and
track them using displacement information from
a dense optical flow field. Given a dense tra-
jectory of length L, a sequence S is formed
to represent the displacement vectors ΔPt =
(Pt+1 − Pt) = (xt+1 − xt , yt+1 − yt ). The
sequence is defined as a series of displacement
vectors (ΔPt , . . . , ΔPt+L−1) which is normal-
ized by

∑t+L−1
i=t ||ΔPi ||. Any action sequence

can be represented using this dense motion tra-
jectory description.

These representations can be used to learn
action basis if we have a limited amount of
samples. We discussed earlier how these action
bases can be useful for view-invariant action
recognition. However, if we have a large amount
of samples, computing action basis will be com-
putationally expensive. An alternative is to per-
form clustering of these action descriptions and
use the cluster centers as action representatives
[16]. These cluster centers can further be used
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View-Invariant Action Recognition, Fig. 6 Generated
spatiotemporal volumes (STVs) for some sample actions.
The color-coded action descriptors are also shown corre-

sponding to ridges (yellow), saddle ridges (white), peak
(red), valley (pink), and saddle valleys (green) [10]. (a)
Falling (b) Tennis stroke (c) Walking (d) Dancing

View-Invariant Action
Recognition, Fig. 7
Illustration of constructing
4D-AFM. The first row
shows videos from four
different views. The second
row shows the STVs
extracted from the videos
and the locations of the
spatiotemporal action
features on the surface of
STVs. These action
features are mapped to the
4D action shape as shown
in the third row [11]

for describing new action trajectories using bag-
of-word approach. If we have a sufficient num-
ber of samples from multiple views to compute
these cluster centers, then we can train a fully
connected neural network to perform nonlinear
transformation and learn view-invariant feature
representation. These learned view-invariant fea-
tures can then be used to perform robust action
classification on novel and unseen views.

Multitask learning The dense trajectories can
be very effective for learning view-invariant
representations for action recognition. However,
they require an additional computation time,
which is not suitable for systems with low
latency. Convolutional neural network provides
an efficient way to learn meaningful represen-

tations directly using the input video. These
networks can be very effective in performing
action classification on videos with previously
seen views. However, they fail to generalize well
for unseen views which are not present in the
training data. This is caused due to the absence
of view-invariance in the learned representation.
This can be addressed by a multitasking approach
where the representation is also utilized for some
other task which enforces the network to learn a
view-invariant representation. This task could
be a prediction of optical flow from unseen
view [17] or cross-view video synthesis [2].
Both these approaches enable the network to
learn view-invariant feature representations and
perform well on action recognition for unseen
views.
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Datasets and Experimental Results

The availability of public datasets for multi-view
action recognition enables the research commu-
nity to benchmark the research progress. There
are four main public datasets which are widely
used and provide action sequences captured from
multiple viewpoints.

IXMAS The Inria Xmas Motion Acquisition
Sequences (IXMAS) dataset [12] have videos for
11 action classes with actions performed 3 times
by 10 actors. All actions have been captured
using five camera views.

UWA3D Multiview Activity II This dataset
[13] contains RGB videos of 30 human activities
performed by 10 subjects with different scales.
Each subject performed all the actions 4 times.
Depth and Skeleton data captured using Kinect is
also available with this dataset.

Northwestern-UCLA Northwestern-UCLA
Multiview 3D event dataset [14] contains RGB,
depth, and human skeleton data captured simul-
taneously by three Kinect cameras. This dataset
has ten action categories, and each action is
performed by ten actors. There are a total of 1493
action sequences. There are two main data splits:
cross-subject (CS) and cross-view (CV) as sug-
gested by [14]. View-invariant action recognition
is examined with CV split where videos from the
first two views are used for training, and the third
view is for testing.

NTU RGB-D This is the largest dataset for
view-invariant human action recognition [3].
Along with RGB videos, depth and skeleton
data is also available. It contains more than 56K
videos and 4 million frames with 60 different
action classes. There are a total of 40 different
actors, who perform actions captured from 80
different viewpoints.

Northwestern-UCLA and NTU RGB-D
datasets provide multiple modalities, such
as RGB, depth, and skeleton, along with
multiple views to perform view-invariant action
recognition. The performance of a method is

View-Invariant Action Recognition, Table 1 A
comparison of cross-subject (CS) and cross-view (CV)
action recognition on N-UCLA Multiview Action3D
dataset

Method Modality CS CV

Vyas et al. [2] RGB 87.5 73.2

MST-AOG [14] Depth – 53.6

HOPC [13] Depth – 71.9

CNN-BiLSTM [17] Depth – 62.5

R-NKTM [16] Skeleton – 78.1

MST-AOG [14] RGB-S 81.6 73.3

View-Invariant Action Recognition, Table 2 A com-
parison of cross-subject (CS) and cross-view (CV) action
recognition on NTU-RGB+D dataset

Method Modality CS CV

CNN-BiLSTM [17] RGB 55.5 49.3

Vyas et al. [2] RGB 88.9 86.3

CNN-BiLSTM [17] Depth 68.1 63.9

Vyas et al. [2] Depth 79.4 78.7

Shahroudy et al. [3] Skeleton 62.9 70.3

CNN-BiLSTM [17] Flow 80.9 83.4

DSSCA-SSLM [18] RGB-DS 74.9 –

evaluated by computing an accuracy score based
on whether it predicts the correct action class
or not. In Tables 1 and 2, we can observe
the performance of different methods using
different modalities on Northwestern-UCLA and
NTU RGB-D datasets. The cross-subject (CS)
evaluation measures the performance on unseen
subjects, and the cross-view (CV) evaluation
measures the performance on unseen views. The
cross-subject performance is better than cross-
view performance for most of the methods. This
is mainly due to high variation in actions when
seen from different viewpoints as compared with
an unseen person where the appearance will have
more variation. Therefore, the methods which
focus on the motion will perform better than
those which focus more on the appearance of the
actor.
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Conclusion and Open Problems

Action recognition for unknown and unseen
views is a challenging problem. The tracking of
motion trajectories have found to be successful
so far, but they are computationally expensive
to extract and therefore not scalable for large-
scale scenarios. The availability of large-scale
multi-view datasets has enabled us to develop
networks which are effective in recognition
performance and can be trained end-to-end.
However, their performance is limited by the
variation of viewpoints in the available datasets.
These datasets are lab curated, and actions are
performed in a controlled environment. Apart
from this, they are also limited in terms of
variation in the number of available viewpoints.
Therefore, it will be challenging to generalize the
methods trained on these datasets to real-world
scenarios.
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Definition

Vignetting is a reduction of an image’s brightness
at the periphery compared to the center of the
image. It describes the effective falloff in irradi-
ance for off-axis points for imaging systems.

Background

In real imaging systems, the image brightness
is often reduced at the periphery compared to
the center of the image. This effect is known
as vignetting and is undesirable for computer
vision algorithms that rely on measured pixel
intensities. Vignetting can be caused by several
mechanisms. The image irradiance varies across
the field of view according to the fourth power of
the cosine of the field angle. This off-axis illumi-
nation falloff is one of the prominent reasons for
vignetting and is also referred to as cosine-fourth
falloff [1].

Vignetting can also be caused by optical and
mechanical effects. Light rays arriving at oblique
angles to the optical axis may be obstructed by
the aperture stop, lens rim, or improper lens
hood. This could lead to spatially varying atten-
uation over the entire image. A large aperture
causes more vignetting, and using a small aper-
ture (increasing the F-number) can reduce it. Real
lenses often have multiple lens elements to cor-
rect for spherical and chromatic aberrations. Rear

lens elements may be partially occluded by front
lens elements, reducing off-axis illumination.

For digital cameras, pixel vignetting is another
vignetting effect caused by the variation in angu-
lar sensitivity of digital sensors to the incoming
light. A micro-lens array on top of the sensor
helps to collect off-axis light and can reduce pixel
vignetting.

Pupil aberration [2] is another cause of irra-
diance falloff at the periphery. This is attributed
to nonlinear refraction of rays resulting in a
nonuniform light distribution across the aperture.

Theory

It is important to remove vignetting effects for
computer vision applications. A simple way to
remove vignetting is to capture a reference photo
of a uniformly illuminated white background.
This reference photo can be used to cancel the
vignetting effect on subsequent images captured
by the camera. However, such a reference photo is
valid only for the images captured under the same
camera settings (zoom, aperture) and the same
illumination conditions. This approach cannot be
used on photos captured under settings other than
those used for the reference photo or on pho-
tos captured by unknown cameras. Techniques
that model the vignetting effects to recover a
vignetting-free image [3–8] are useful in such
scenarios (Fig. 1).

Let x = [u, v] denote a pixel x with coordi-
nates u and v. The observed image intensities I(x)

Vignetting, Fig. 1 An example of vignetting
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can be modeled as

I (x) = CRF (kL (x) V (x)) , (1)

where L(x) is the true irradiance, V(x) denotes the
attenuation due to vignetting, k is the exposure
value, and CRF(.) is the camera response func-
tion. Several models for the vignetting function
V(x) exist [3, 5, 6]. The polynomial vignetting
model is given by

V (x) = 1 +
D∑

n=1

βnr(x)2n, (2)

where r(x) is the distance of pixel x from the
image center. Similar model based on hyperbolic
cosine functions is described in [7].

In [9], Kang and Weiss proposed a model
to correct for vignetting effects using a single
photo of a flat, textureless surface. Their model
describes the overall image attenuation in terms
of an off-axis illumination factor A(x), a camera
tilt factor T(x), and a geometric factor G(x):

V (x) = A (x) G (x) T (x) , (3)

where

A (x) = 1(
1 + r2 (x) /f 2

)2
, (4)

G(x) = 1 − αr (x) , (5)

T (x) = cos τ

(
1+ tan τ

f
(u sin ψ−v cos ψ)

)3

,

(6)

f denotes the effective focal length and α is a con-
stant describing the geometric factor G(x). The
camera tilt factor T(x) is described using a tilt axis
in a plane parallel to the image plane at an angle
ψ with respect to the x-axis, and the tilt angle
is denoted by τ . T(x) is used to account for the
foreshortening of the imaged surface with respect

to the camera. An extended version of Kang-
Weiss model is described in [3]. These models
can be used to correct the vignetting effects.

Application

Vignetting is usually an undesirable effect caused
by real imaging systems. Due to vignetting, the
observed image intensities deviate from those
predicted by standard models of image forma-
tion. Thus, computer vision algorithms may not
perform well in presence of vignetting. On the
other hand, photographers sometimes introduce
intentional vignetting for artistic effects, such as
to draw attention to the center of the frame.
Vignetting can also be used for camera calibra-
tion under certain conditions [9, 10].

Vignetting models can be used to recover a
vignetting-free image. Examples of vignetting
removal are presented in [3–5]. Vignetting cor-
rection is also used in stitching multiple photos
to compensate for the varying intensity of scene
points across different images [5, 6].
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Definition

Viscosity solution is a notion of weak solution
for a class of partial differential equations of
Hamilton-Jacobi type.

Background

A first-order partial differential equation of the
type

H (x, u(x),Du(x)) = 0 (1)

is called a Hamilton-Jacobi equation. A function
u is said to be a classical solution of (Eq. 1) over
a domain if u is continuous and differentiable
over the entire domain and x, u(x), and Du(x) (the
gradient of u at x) satisfy the above equation at
every point of the domain. Consider the boundary
value problem

∣∣u′(x)
∣∣ − 1 = 0 for x ∈ (−1, 1) , u (±1) = 0.

(2)

By Rolle’s theorem, it is easily seen that clas-
sical solutions of the previous problem do not
exist, whereas there exist infinite many weak
solutions, that is, continuous functions which
satisfy the equation at almost every point (the
saw-tooth solutions, see Fig. 1a).

At first, this situation can seem rather atypical,
but in fact, it is nothing of the sort. For example, it
concerns the distance functions which are widely
used in computer vision. In particular, it is easy
to see that the distance function of a closed curve
in a plan, which typically has strong edges (see
Fig. 1), is almost everywhere a solution of the
Eikonal equation

|Du(x)| − F(x) = 0 (3)

with F(x) = 1 and u(x) = 0 on the curve. Also, in
general, as in the case of (Eq. 2), this last equa-
tion has no classical solution. Another typical
example concerns the shape-from-shading prob-
lem which naturally yields a Hamilton-Jacobi
equations having the same behavior. In particular,
by modeling the problem with an orthographic
camera, a directional front lighting, and a Lam-
bertian surface, the problem consists then in solv-
ing an Eikonal equation in which the function F
depends on the considered image.

It is therefore very important to have a theory
which allows merely continuous functions to be
solutions of Hamilton-Jacobi equations and to
provide at the same time a way to select the
relevant solution among the weak solutions of the
problem.
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Viscosity Solution, Fig. 1
Distance functions in 1D
and 2D:(a) three examples
of weak solutions of
(Eq. 2) The red curve
corresponds to the
viscosity solution. (b)
Example of a closed curve
in the plan. (c) Distance
function (represented as a
color map) to the curve
displayed in (b). To
improve the visibility, the
distance function is only
displayed inside the curve.
As usually, one can
distinguish strong edges
we have partly highlighted
by green curves. This gives
the skeleton of the shape.
(d) 3D representation of
the function distance (c).
The distance function is the
viscosity solution of the
Eikonal Equation (Eq. 3),
with F(x) = 1 and u(x) = 0
on the curve
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Theory

The notion of viscosity solution was introduced
at the beginning of the 1980s by M. G. Crandall
and P. L. Lions [1], and it is related to Kruzkov’s
theory of entropy solutions for scalar conserva-
tion laws.

The basic idea is to replace the differential
Du(x) at a point x where it does not exist (e.g.,
because of a kink in u) with the differential
Dφ(x) of a smooth function φ touching the graph
of u, from above for the subsolution condition
and from below for the supersolution one, at the
point x.

Definition 1
(i) A continuous function u is said to be a

viscosity subsolution of (Eq. 1) if for any x and
for any smooth function φ such that u − φ has a
maximum point at x, then

H (x, u(x),Dφ(x)) ≤ 0.

(ii) A continuous function u is said to be a
viscosity supersolution of (Eq. 1) if for any x and
for any smooth function φ such that u − φ has a
minimum point at x, then

H (x, u(x),Dφ(x)) ≥ 0.

(iii) A continuous function u is said to be a vis-
cosity solution of the Hamilton-Jacobi equation if
it is a viscosity subsolution and supersolution.

There is also an equivalent definition for vis-
cosity solution which involves the notion of sub-
and super-differentials (see [2]).

It is straightforward to observe that solutions
in the classical sense are viscosity solutions.
Inversely, if a viscosity solution u is differentiable
at x, then it solves the equation at this point in
the classical sense. Hence, the notion of viscosity
solution includes the one of classical solution.

By looking closely at the definition, one can
understand rather intuitively how it allows a spe-
cific weak solution to be selected among the other
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ones and which of them is selected. In fact, this
definition eliminates a certain type of edges. In
particular for Hamilton-Jacobi (Eq. 2), the def-
inition allows upward edges, but not downward
edges. Thus, in Fig. 1, all the weak solutions
of (Eq. 2) which have downward edges are then
excluded. Also, only the maximal weak solution
(represented in red) is a viscosity solution.

In addition, the definition of viscosity solu-
tions selects among the almost everywhere solu-
tions the one which is consistent with the regu-
larized problem. In fact, the name “viscosity” is
motivated by the consistency of the notion with
the method of “vanishing viscosity”: the viscosity
solution of (Eq. 2) can be obtained as the limit for
∈ → 0 of the classical solutions of

− εu′′(x) + ∣∣u′(x)
∣∣ − 1 = 0 for x ∈ (−1, 1) ,

u (±1) = 0
(4)

(the term ∈ has the physical meaning of a viscos-
ity coefficient).

The main characteristics of the notion of vis-
cosity solution are:

(i) A very efficient and flexible way to prove
uniqueness theorems and comparison prin-
ciples

(ii) General existence results obtained via the
adaptation of the classical Perron’s method,
by approximation arguments (such as the
vanishing viscosity method in (Eq. 3)),
by means of representation formulas (via
dynamic programming methods in optimal
control theory), etc.

(iii) The stability of the notion of viscosity solu-
tion with respect to the uniform conver-
gence, and its generalizations, which allows
to prove, for example, the convergence of
numerical schemes

(iv) The correct formulation of various boundary
conditions, including the classical Dirichlet,
Neumann, and oblique derivative conditions

For good accounts of the viscosity solution
theory, we refer to [2–5]. Finally, let us note

that the notion and the theory of viscosity solu-
tions have been extended to a large class of
partial differential equations. In particular, a num-
ber of results allow us to deal with second-
order equations [6], degenerate equations [7], and
integro-differential equations [8, 9]. The applica-
tion to convergence of numerical schemes is also
very important; see, for example, [10] and the
appendix by Falcone in [2].

Application

The range of applications of the notion of viscos-
ity solution is enormous, including common class
of partial differential equations such as evolutive
problems and problems with boundary condi-
tions, equations arising in optimal control theory
(the Hamilton-Jacobi-Bellman equation), differ-
ential games (the Isaacs’ equation), second-order
equations arising in stochastic optimal control
and stochastic differential games, and geometric
equations (mean curvature and Monge-Ampere
equations).

In computer vision, it has various applica-
tions. In particular, the distance functions and the
Eikonal equations are widely used. Nowadays,
thanks to the links between the viscosity solutions
and the optimal control theory [2], one can eas-
ily prove that the distance functions correspond
to the viscosity solutions of the Eikonal equa-
tions, which, moreover, provide various conve-
nient tools for computing them. Also, all these
notions have played an important role in shape
representation [11, 12], in morphology [13, 14],
in tractography [15–17], and in general, in image
processing [17–19]. Furthermore, they are inten-
sively used in the level set framework where
the curves and the surfaces are represented by
their signed distance functions [19, 20]. The latter
framework is used extensively, for example, in
segmentation and 3D reconstruction.

Another main application of the notion of
viscosity solution is to shape-from-shading prob-
lems, which give rise to first-order differential
and integro-differential equations of Hamilton-
Jacobi type; see [21, 22], and the entry Shape
from Shading. A natural question in this context



1356 Viscosity Solution

is why the viscosity solutions provide suitable
solutions to this specific problem. In other words,
why would the viscosity solutions have more
sense than any other weak solution? In fact,
here, the values of the viscosity solutions mainly
come from its amazing stability combined with
its consistency with the classical solution. To
be more clear, let us consider the shape-from-
shading problem with a continuous image I of a
real scene. In such a case, to be physically plau-
sible, the real surface u* behind this image must
be smooth (C1); otherwise, any infinitesimal dis-
placement of the light direction would break this
continuity property. Let I* be the virtual image
generated by the considered image formation
model with surface u*. I* is necessary close to I,
if not this would mean that the considered model
is not appropriate. Then, thanks to the stability
properties, the unique (To be well posed the prob-
lem in the viscosity sense, we can assume that we
have adequate boundary constraints, for example,
only Soner constraints on the boundary of the
image if we consider the model of [23].) viscosity
solution u to the shape-from-shading Hamilton-
Jacobi equation associated with the real image I
is close to u*, because u* is the viscosity solution
to the same equation in which we replace I by I*
(since it is also a solution in the classical sense).
In other words, among all the weak solutions
of the considered shape-from-shading equation
(which has no solution in the classical sense
with the real image I because of the modeling
errors and the noise), the viscosity solution is
necessarily close to the real surface which has
been photographed.
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Synonyms

Visual inference

Related Concepts

�Cognitive Vision

Definition

Visual cognition is the branch of psychology that
is concerned with combining visual data with
prior knowledge to construct high-level repre-
sentations and make unconscious decisions about
scene content [1].

Background

Although the terms visual cognition and
cognitive vision are strikingly similar, they are
not equivalent. Cognitive vision refers to goal-
oriented computer vision systems that exhibit
adaptive and anticipatory behavior. In contrast,
visual cognition is concerned with how the
human visual system makes inferences about
the large-scale composition of a visual scene
using partial information [1–3].

Theory

Visual cognition, often associated with high-level
vision and top-down visual processing, constructs
visual entities by collecting perceived parts into
coherent wholes, determining which parts belong
together. Since the sensory data on which the pro-
cesses of visual cognition operate are typically
incomplete and insufficient to specify the percept
of which we are aware, there are many possible
solutions or interpretations. Consequently, addi-
tional extraretinal information, often referred to
as object information, is used by visual cognition
to infer what the percept is.

The entities that are constructed by visual
cognition include both static structures, such as
perceived surfaces and objects, and dynamic enti-
ties that emerge over time, such as patterns of
biological motion. The dynamics of these visual
entities can be used to infer a causal relationship
between events or to attribute some sense of
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intentionality to the entity. Thus, the unconscious
inferences of visual cognition also impact on
the construction of a theory of mind for other
cognitive agents, i.e., the inference of the goals
of other agents [4].

A key role of the representations of visual
cognition is their use to communicate with other
centers of the brain. Thus, visual cognition pro-
vides a bridge to general high-level cognitive
function while still making its own independent
cognitive inferences. In essence, visual cognition
constructs a representation of the visual world
which is constantly updated on the basis of new
visual data and which encapsulates knowledge
about the world in a high-level descriptive man-
ner that can be exchanged with the rest of the
brain.

Visual cognition addresses several distinct
areas such as visual attention (including spatial
attention, selective attention, visual search,
change detection, and the control of eye
movements) [5–8], short-term and long-term
visual memory [9], and object, face, and scene
recognition [10, 11].

The processes of visual cognition are held to
be principally unconscious, operating rapidly on
the flux of visual data sensed by the retina in order
to choose the conscious percept of which we
become aware. Consequently, visual cognition
embraces both the selectivity of visual attention
and unconscious inferential decision-making.

Although the primary concern of visual cog-
nition is human visual perception and not com-
puter vision, the two fields share some common
ground. For example, many of the theories of
visual cognition have their roots in cognitivist
psychology which asserts that cognition is intrin-
sically computational [12, 13]. This has led to
several computational models of visual cogni-
tion, combining relevant aspects of computer and
human vision.

Open Problems

There is some debate in the psychology commu-
nity as to where one should draw the line between

vision and cognition and how sharply one should
draw it; for comprehensive discussion, see the
paper by Pylyshyn [14], the many commentaries
on it (e.g., [15]), and his response [16]. The issue
revolves around the cognitive impenetrability of
visual perception: whether or not any cognitive
functionality such as inference or rationality is
involved in visual perception, especially early
vision. Cavanagh’s recent review [1] suggests
that the visual system does have its own inde-
pendent cognitive processes, quite apart from the
more general cognition that occurs in other parts
of the brain and with which the processes of
visual cognition interact.
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Visual Cortex Models for Object
Recognition
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Department of Brain and Cognitive Sciences,
McGovern Institute, Massachusetts Institute of
Technology, Cambridge, MA, USA

Definition

Visual cortex model-based methods aim
to develop algorithms for object detection,
representation and recognition that attempt to
mimic human visual systems.

Background

Object recognition is difficult Like other nat-
ural tasks that our brain performs effortlessly,
visual recognition has turned out to be difficult
to reproduce in artificial systems. In its general
form, it is a highly challenging computational
problem which is likely to play a significant role
in eventually making intelligent machines. Not
surprisingly, it is also an open and key problem
for neuroscience.

Within object recognition, it is common to
distinguish two main tasks: identification, for
instance, recognizing a specific face among other
faces, and categorization, for example, recogniz-
ing a car among other object classes. We will

discuss both of these tasks below, and use “recog-
nition” to include both.

Models of the visual cortex Over the last
two decades, some of the best performing recog-
nition systems have come from research at the
intersection of computational neuroscience and
computer vision. Recent models of visual cortex
based directly on known functional anatomy [20,
21] and building on earlier attempts (e.g., [1, 6,
15, 19, 22–24]) were able to account for and
predict a number of physiological data from areas
of the ventral stream from V1 and V2 to V4
and IT. This family of models was able to mimic
human performance in rapid categorization tasks
[20]. Surprisingly, some of these models of visual
cortex were among the best computer vision
systems at the time [16–18, 21].

Computer Vision and the Visual
Cortex: Fundamental Differences

The recent past has shown convergence of
computational schemes and brain modeling.
There still are, however, major differences
between models and the cortex, as well as large
differences in performance between models and
the brain. We will discuss below two examples
of prominent features of cortical structure which
have only a minor role in current computational
models.

Why Hierarchies
The organization of visual cortex is hierarchi-
cal, with features of increasing complexity repre-
sented at successive layers. Models of the visual
cortex have naturally adopted hierarchical struc-
tures. In contrast, in computer vision, the large
majority of current schemes are nonhierarchical,
with no clear difference in performance between
hierarchical and nonhierarchical models. Some
computational schemes, however, may be implic-
itly hierarchical and possibly derive some of their
power from their hierarchical organization. For
instance, SIFT [13] can be regarded as a three-
layer network with the output roughly corre-
sponding to intermediate units in a hierarchical



1360 Visual Cortex Models for Object Recognition

cortical model [19]. What is the possible advan-
tage of hierarchical visual representations, and
can artificial systems benefit from adopting such
representations?

Scale and position invariance One possible
role of feature hierarchies is the need to achieve
a useful trade-off between selectivity to complex
patterns and sufficient tolerance for changes in
position and scale, as seen in the response of
IT neurons [10–12]. While scale and position
invariance can be achieved quite readily in com-
puter vision systems by sequentially scanning the
image at different positions and scales, such a
strategy appears unlikely to be realized in neural
hardware. When properly measured, scale and
position tolerance for new objects is less than
originally claimed [2], but still substantial [8,
12]: for at least some of the cells in AIT, posi-
tion tolerance is on the order of 2–4 degrees in
the fovea and scale invariance is on the order
of a factor of 2–4, which is remarkable large.
It is still not entirely clear how such gener-
alization can be achieved without training for
different positions and sizes for each object. It
appears possible that hierarchical representations
make it possible to transfer invariant recogni-
tion from previously trained objects to novel
objects by the reuse of shared parts at multiple
levels.

A second possible advantage of hierarchical
representations has to do with efficiency –
computational speed and use of computational
resources. For instance, hierarchy may increase
the efficiency of dealing with multiple classes in
parallel, by allowing the use of shared features
at multiple levels. An increase in efficiency may
also be related to the issue of sample complexity.
Hierarchical architectures in which each layer
is adapted through learning to properties of the
visual world may reduce the complexity of the
learning task and thus the overall number of
labeled examples required for training. Finally,
hierarchies also offer an advantage in not only
obtaining recognition of the object as a whole but
also recognizing and localizing parts and subparts
at multiple levels, such as a face together with the
eyes, nose, mouth, eyebrow, nostril, upper lip,
and the like (see [5]).

Feed Forward vs. Back Projections
A feed-forward architecture from V1 to
prefrontal cortex, in the spirit of the Hubel
and Wiesel simple-complex hierarchy, seems to
account for several properties of visual cells.
In particular, recent “readout” experiments
measuring information that could be read out
from populations of IT cells [8] confirm previous
estimates that, after about ∼100 ms from onset
of the stimulus, performance of the classifier was
essentially at its asymptotic performance during
passive viewing.

In addition, feed-forward models also appear
to account for recognition performance of human
subjects for images flashed briefly and followed
by a mask [20–22].

The evidence suggests, therefore, that a feed-
forward process is sufficient for a fast initial
recognition phase, during which primates can
already complete difficult recognition tasks
involving “what” is in the image. What, then,
is the role of the extensive anatomical back
projections in the primate visual system?

Their role may be restricted to learning, but
we believe it is broader. Even when the feed-
forward projections by themselves may be capa-
ble of answering the “what” question of vision,
the back projections may play a role in answering
the detailed question of “what is where” [14].
This proposal is similar to previous ideas sug-
gesting that visual cortex follows a hypothesis-
and-verification strategy [3, 7] or a Bayesian
inference procedure in which top-down priors
are used to compute a set of mutually consistent
conditional probabilities at various stages of the
visual pathway [9]. A recent model [5] along
these lines demonstrated the use of initial clas-
sification using a bottom-up sweep, followed by
precise localization of the object and its parts and
subparts by a top-down pass.

Top-down pathways in the visual cortex
also include the dorsal stream and connections
between the dorsal and the ventral stream
that are likely to be involved in attentional
effects. A Bayesian model [4], which takes
into account these bottom-up and top-down
signals, performs well in recognition tasks and
predicts some of the main psychophysical and
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physiological properties of attention. For natural
images, the top-down signal improves object
recognition performance and predicts human eye
fixations well. The top-down flow of information
combined with a hierarchical representation
allows the system to answer not only the what
question, that is, to perform object identification
and categorization, but also the what is where
question, that is, identification and localization at
multiple levels. This is a useful addition, but
at the same time we do not believe that the
process of vision can be fully characterized in
terms of answering “what is where” [14]. For
example, humans can recognize subtle aspects of
actions, goals, and social interactions at a level
which is far beyond the capabilities of our present
algorithms. They also can answer essentially any
reasonable question, beyond what and where, on
any given image – in a kind of Turing test for
vision. The top-down pathway is likely to play
an important role for this broader range of visual
tasks.

Discussion: Future

We briefly consider two problem domains for
future studies. The first focuses on how to close
the gap between computer and human vision in
the tasks considered above – object categoriza-
tion and identification. The second part considers
broader aspects of vision and its roots in evolu-
tion.

Closing the Performance Gap

One general question regarding possible
improvements in visual recognition is whether
recognition is obtained by multiple specialized
mechanisms or by a uniform scheme applied
to different recognition tasks. For example,
suggestions have been made that general
categorization and individual recognition may be
subserved by different mechanisms or that face
recognition may depend on special mechanisms,
not used for other object categories. It appears
to us that the underlying computational problems

in different recognition tasks are similar and can
therefore be approached by the same general
scheme, applied to different training sets (and
possibly implemented by more than a single
neuronal mechanism). It is also possible that
certain cortical regions could specialize in
specific categories (such as faces or locations)
not because they implement different recognition
strategies, but to facilitate selective readout by
other cortical regions. The basic recognition
scheme could be augmented, however, by
specialized mechanisms, dealing with special
cases and exceptions. The full system could
then be a combination of a scheme that may
be characterized as rule based, which can capture
the main properties of a category and generalize
broadly to novel examples, and a memory-
based recognition scheme, which can deal with
atypical cases and exceptions to the rule-based
scheme.

We next consider future directions which we
think could play a useful role in bringing the per-
formance of artificial recognition models closer
to the performance level of human vision. These
are not the only possible routes for closing the
performance gap, but they provide examples of
promising general directions motivated by human
perception that could usefully be incorporated
into artificial systems.

Continuous learning of rich models In cur-
rent computational schemes, a model for the
object or category of interest is constructed dur-
ing a learning stage and then used for recogni-
tion. In contrast, the primate visual system shows
continuous plasticity and can continue to learn
when confronted with new examples. The disad-
vantage of a fixed limited training stage is that the
resulting object model may remain too simple. A
visual category often contains a core of typical
examples but also a large number of possible vari-
ations, atypical members, and counterexamples.
An object can be recognized by its overall shape,
but also by small distinguishing parts, and both
aspects need to be included in its representation.
To achieve human-level performance, it appears
therefore that it will be necessary to construct rich
object models, learned continuously from a large
number of examples.
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Such use of continuous learning raises inter-
esting computational challenges: new methods
will be required to learn from errors, and to
continuously modify an existing representation
based on new incoming information, possibly
combining rule-based and memory-based mech-
anisms mentioned above.

Integrating segmentation and recognition
Recognition and segmentation are related tasks
in the perception of objects: we can usually rec-
ognize the object and at the same time identify
in the image the precise region containing the
object of interest. Historically, segmentation and
recognition were treated in computer vision as
sequential processes: figure-ground segmentation
first identifies in the image a region likely to cor-
respond to a single object; recognition processes
are subsequently applied to the selected region
to identify the segmented object. More recently,
computational models started to treat the two
tasks together, performing object segmentation
not only in a bottom-up manner based on image
properties, but also in a top-down manner based
on object representations stored in memory. This
led to substantial progress in object segmentation;
however, most current recognition systems do not
include segmentation as an integral part of the
recognition process. It seems to us that recogni-
tion and segmentation are closely linked tasks,
and their solutions constrain each other. This
integration appears to be supported by consider-
able physiological and psychophysical evidence
[25, 26]. A closer integration of recognition and
segmentation at both the object and part levels
is likely therefore to improve the recognition of
objects and their parts.

A Greater Challenge: Vision
and Evolution

The brain uses vision, together with other senses,
to obtain knowledge about the world and act upon
it. This knowledge goes beyond object recog-
nition and categorization: vision is also used,
for example, to recognize actions performed by

agents in the surrounding environment as well as
their goals and social interactions.

It seems to us that these broader aspects of
visual recognition cannot be efficiently handled
by simple extension of existing recognition meth-
ods. It is likely that in addition to the general
learning mechanisms currently used in object
recognition models, the brain also uses special-
ized mechanisms, which have evolved to focus
on and extract information required for making
judgments about actions, goals, social interac-
tions, and the like. Innate structures and circuits
in the brain by themselves do not incorporate
full solutions to these challenging problems, but
are more likely to provide useful constraints and
initial biases which later lead, guided by learning
from the environment, to powerful specific mech-
anisms.

A general broad question for future studies
is therefore the nature of the innate machinery
used by the visual system, its genetic encoding,
and how the combination of innate machinery
and learning from the environment leads to our
understanding of the visual world.
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Synonyms

Shape from Silhouette

Definition

The visual hull of a three-dimensional object is
a bounding volume of the object which is com-
puted from the object’s silhouettes in the images
of multiple calibrated cameras by intersecting the
object’s viewing cones.

Background

The concept of visual hull is based on two intu-
itions: Firstly, the shape of a three-dimensional
object is bounded by the silhouette of its pro-
jection in an image. Secondly, if several pro-
jections from multiple viewpoints are available,
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these constraints can be combined to obtain an
approximation of the object’s shape. The practi-
cal relevance of visual hull algorithms lies in the
fact that they can compute an approximate 3D
shape using only silhouettes and calibration data.
These are often easier and faster to obtain than
image-to-image correspondences, especially for
camera configurations with few cameras and/or
wide baselines. Visual hull computation is the
prototypical example of a shape-from-silhouette
method.

The term “visual hull” was coined by Lau-
rentini [1, 2] who studied the properties of hulls
obtained from an infinite number of cameras.
However, the underlying concepts – the intersec-
tion of viewing cones – can be tracked back to
the early 1970s (e.g., [3]). Sometimes, the term
“visual hull” is restricted to the theoretical case
of infinite camera count; hulls computed from a
finite number of cameras are then regarded as
approximations.

Theory

Definition
The visual hull of an object can be defined either
as a surface or as a volume. The following defini-
tion is volumetric. Assume that the object can be
represented as a surface S in three-dimensional
space. Further assume that there are n cameras
viewing the object. The viewing cone Ci of Swith
respect to camera i ∈ 1 . . . n is a generalized cone
defined as the union of all rays that originate from
the camera’s optical center ci and pass through
any point p on S (Fig. 1, right):

Ci = ∪
p∈S,λ≥0

λp + (1 − λ) ci

The visual hull H of S is the intersection of
all viewing cones (Fig. 1, left):

H = ∩
i=1...n

Ci

Seen as a surface, the visual hull is the bound-
ary of this volume.

Properties
The visual hull bounds the shape it is constructed
from, that is, the volumetric intersection of the
hull and the original shape is the shape itself.
How closely an object’s true 3D shape can be
approximated by its visual hull depends on two
factors:

(1) The geometry of the object. The visual hull
can represent some but not all concavities
of an object. Intuitively, a concavity can be
represented if (and as far as) there exists a
line through the concavity which does not
intersect the object. Or, equivalently, it can
be represented if and as far as there exists
a location and orientation for a camera such
that the concavity in the object is repre-
sented as a concavity in the silhouette of the
object in the camera image. A straightfor-
ward example of a representable concavity
is the handle of a tea cup. The inside of
the cup, on the other hand, is not repre-
sentable (unless a camera is placed inside
the cup).

(2) The number and placement of the cameras
used for computing the hull. A high count
and a regular distribution of cameras are
beneficial. With a finite number of cameras,
the visual hull typically has a “piecewise
extruded” look Fig. 2 shows an example of
representable on non-representable geometry
in a visual hull reconstruction.

Algorithms
The above definition of the viewing cone only
refers to whether a ray intersects the surface
and not where. Therefore, the viewing cones
can be computed without knowledge of the
shape S as long as the set of intersecting rays
can be computed. Whether a ray of a specific
view intersects the surface can be determined
from the view’s camera matrix and a foreground-
background mask, or silhouette, which classifies
each pixel as showing a part of S or the
background. Therefore, the visual hull is a
shape approximation which can be computed
solely from calibrated cameras and a foreground-
background segmentation.
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Visual Hull, Fig. 1 Left: The visual hull (yellow) of the object (A) is the intersection of the four viewing cones (green).
Right: The viewing cone of a 3D object and its relation to the object’s silhouette (mask) in an image

Visual Hull, Fig. 2 Renderings of the visual hull of a toy
house (top row). The hull was computed from the masks
(middle row) of 216 turntable images of the object (bottom
row). Note that fine structures, like the beams, are well

represented in the hull as long as they are individuated in
the masks. Surface details, on the other hand, cannot be
reproduced by the hull

In contrast to the above definition, it is easier
to project voxels from the volume into the images
than to shoot rays into the volume. The most
simple visual hull algorithm is the following:
First, all voxels of the volume are marked as
“occupied.” Then the voxels are traversed and
the center of each voxel is projected into all
available segmentation masks. A voxel is marked
as “unoccupied” if its center projects to a back-
ground pixel in any of the masks.

For high volume resolutions, traversing all
voxels is inefficient with respect to memory usage
and computation time. Therefore, many algo-
rithms represent the volume using a hierarchic
spatial data structure such as an octree, for exam-
ple, [4, 5]. When octree cells are projected into
the segmentation masks, their spatial extent must
be accounted for: An octree cell must be subdi-
vided if any of its projections spans foreground
as well as background pixels.
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While the volumetric approach makes hull
computation relatively simple, it may complicate
the further use of the visual hull itself. For many
applications, such as rendering on graphics hard-
ware or CAD, a polyhedral surface representation
is required. Computing a surface from volume
data is a nontrivial task which is often approached
with the marching cubes algorithm. The resulting
surfaces, however, may require further processing
to reduce their high polygon count. This has led
to the development of algorithms which directly
compute a polyhedral representation of the visual
hull, for example [6, 7].

Application

The visual hull is often used as an initialization
and/or as a constraint for 3D reconstruction
algorithms. Since the visual hull bounds the
true shape, the true shape can be found
by removing voxels from the hull. Hull
computation, on the other hand, ignores con-
sistency of appearance between multiple views
(“photoconsistency”). Therefore, volumetric
3D reconstruction algorithms often aim at
minimizing a photoconsistency-based error by
removing voxels from the hull. Early examples
are space carving [8] or the multi-hypothesis
algorithm of [9]. Visual hulls are also used
to initialize non-volumetric algorithms such as
patch-based stereo [10].

The visual hull is sometimes used directly
as shape approximation (“proxy”) for image-
based rendering and visualization. This approach
is particularly successfull for objects where the
hull is a good approximation of the actual shape,
for example the human body. Hull-based free-
viewpoint rendering systems for scenes with
humans are described, for example, by [12]. For
this type of application, real-time capable hull
algorithms have been developed. In [11], for
example, new viewpoints are rendered without
explicitly representing the geometry of the visual
hull.

Obtaining a good segmentation is often a chal-
lenge when using visual hull in practice. How-
ever, the hull is more sensitive to some types of
errors in the masks than others: A voxel is only
falsely marked as occupied if the corresponding
pixel is falsely classified as foreground in all
masks. Conversely, a voxel is falsely marked
as unoccupied if a pixel is falsely marked as
background in a single mask.
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Synonyms

Vision-based control; Visual feedback

Definition

Visual servoing refers to the use of visual data
as input of real-time closed-loop control schemes
for controlling the motion of a dynamic system,
a robot typically. It can be defined as sensor-
based control from a vision sensor and relies
on techniques from image processing, computer
vision, and control theory.

Related concepts

�Active Sensor (Eye) Movement Control
�Camera Pose
�Hand-Eye Calibration

Background

Basically, visual servoing consists in using the
data provided by one or several cameras so that
a dynamic system achieves a task specified by a
set of visual constraints [3,12]. Such systems are
usually robot arms or mobile robots, but can also
be virtual robots, or even a virtual camera. A large
variety of positioning tasks, or target tracking
tasks, can be considered by controlling from
one to all the degrees of freedom (DoF) of the
system. Whatever the sensor configuration, which
can vary from one on-board camera located on
the robot end-effector to several free-standing
cameras, a set of visual features has to be selected
at best from the available image measurements,
allowing to control the desired DoF. A control
law has then to be designed so that these visual
features reach a desired value, defining a correct
achievement of the task. A desired planned tra-
jectory can also be tracked. The control principle
is to regulate the error between the current and
desired values of the visual features to zero, or,
in other terms, to minimize an objective function
from which Lyapunov-based stability analysis
can be performed. With a vision sensor providing
2D measurements, potential visual features are
numerous, since 2D data (coordinates of par-
ticular points in the image, parameters related
to geometrical shapes, intensity levels of set of
pixels, etc.) as well as 3D data provided by a
localization algorithm exploiting the extracted
2D measurements can be considered.

Typically, an iteration of the control scheme
consists of the following successive steps:

– acquire an image;
– extract some useful image measurements;
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– compute the current value of the visual
features used as inputs of the control
scheme;

– compute the error between the current
and the desired values of the visual
features;

– update the control outputs, which are usually
the robot velocity, to regulate that error to
zero, i.e., to minimize its norm.

For instance, for the first example depicted on
Fig. 1, the image processing part consists in
extracting and tracking the center of gravity of the
moving people, the visual features are composed
of the two Cartesian coordinates of this center
of gravity, and the control scheme computes the
camera pan and tilt velocities so that the center of
gravity is as near as possible of the image center
despite the unknown motion of the people. In the
second example where a camera is mounted on
a six DoF robot arm, the image measurements
are the four segments that form the contour of a
rectangular object. These segments are tracked
in the image sequence acquired during the robot
motion. The visual features are selected from
the corresponding straight lines (depicted in
red). The control scheme now computes the
six components of the robot velocity so that
these four straight lines reach particular positions
(depicted in green).

Theory

Most if not all visual servoing tasks can be
expressed as the regulation to zero of an error e(t)
defined by

e(t) = s(m(r(t)), a) − s∗(t). (1)

The parameters in (1) are defined as follows
[3]: the vector m(r(t)) is a set of image measure-
ments (e.g., the image coordinates of points, or
the area, the center of gravity and other geometric
characteristics of an object, etc.). These image
measurements depend on the pose r(t) between
the camera and the environment, this pose vary-
ing with time t . They are used to compute a vector
s(m(r(t)), a) of visual features, in which a is a set
of parameters that represent potential additional
knowledge about the system (e.g., coarse camera
intrinsic parameters or 3D model of objects). The
vector s∗(t) contains the desired value of the
features, which can be either constant in the case
of a fixed goal or varying if the task consists in
following a specified trajectory.

Visual servoing schemes mainly differ in the
way that the visual features are designed. As
represented in Fig. 2, the two most classical
approaches are named image-based visual
servoing (IBVS), in which s consists of a set

Visual Servoing, Fig. 1 Two examples of visual servo-
ing tasks: on the top, pedestrian tracking using a pan-
tilt camera; on the bottom, controlling the 6 degrees

of freedom of an eye-in-hand system so that an object
appears at a particular position in the image
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Visual Servoing, Fig. 2 If the goal is to move the
camera from frame Rc to the desired frame Rc∗ , two
main approaches are possible: IBVS on the left, where the

features s and s∗ are expressed in the image, and PBVS
on the right, where the features s and s∗ are related to the
pose between the camera and the observed object

Visual Servoing, Fig. 3
In visual servoing, the
vision sensor can be either
mounted near the robot
end-effector (eye-in-hand
configuration) or outside
and observing the
end-effector (eye-to-hand
configuration). For the
same robot motion, the
motion produced in the
image will be opposite
from one configuration to
the other

of 2D parameters that are directly expressed
in the image [10, 19], and pose-based visual
servoing (PBVS), in which s consists of a set
of 3D parameters related to the pose between
the camera and the target [19, 20]. In that
case, the 3D parameters have to be estimated
from the image measurements either through a
pose estimation process using the knowledge of
the 3D target model or through a triangulation
process if a stereovision system is considered.
Inside IBVS and PBVS approaches, many
possibilities exist depending on the choice
of the features. Each choice will induce a
particular behavior of the system. There also
exist hybrid approaches, named 2-1/2D visual
servoing, which combine 2D and 3D parameters
in s in order to benefit from the advantages of

IBVS and PBVS while avoiding their respective
drawbacks [13].

The Features Jacobian
The design of the control scheme is based on the
link between the time variation ṡ of the features
and the robot control inputs, which are usually
the velocity q̇ of the robot joints. This relation is
given by

ṡ = Js q̇ + ∂s
∂t

(2)

where Js is the features Jacobian matrix, defined
from the equation above similarly as the classical
robot Jacobian. For an eye-in-hand system (see
the left part of Fig. 3), the term ∂s

∂t
represents

the time variation of s due to a potential object
motion, while for an eye-to-hand system (see
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the right part of Fig. 3), it represents the time
variation of s due to a potential sensor motion.

As for the features Jacobian, in the eye-in-
hand configuration, it can be decomposed as [3]

Js = Ls
cVe J(q) (3)

where

– Ls is the interaction matrix of s defined such
that

ṡ = Lsv (4)

where v ∈ se3 is the relative velocity between
the camera and the environment expressed in
the camera frame. More details on how to
determine this matrix are given below.

– cVe is the spatial motion transform matrix
from the vision sensor to the end-effector. It
is given by

cVe =
[

cRe [cte]× cRe

0 cRe

]
(5)

where cRe and cte are, respectively, the
rotation matrix and the translation vector
between the sensor frame and the end-
effector frame and where [cte]× is the skew
symmetric matrix associated with cte. Matrix
cVe is constant when the vision sensor is
rigidly attached to the end-effector, which is
usually the case. Thanks to the robustness of
closed-loop control schemes with respect to
calibration errors, a coarse approximation of
cRe and cte is generally sufficient in practice
to serve as a satisfactory estimation of cVe

to be injected in the control law. If needed,
an accurate estimation is possible through
classical hand-eye calibration methods.

– J(q) is the robot Jacobian such that ve =
J(q)q̇ where ve is the robot end-effector
velocity.

In the eye-to-hand configuration, the features
Jacobian Js is composed of [3]

Js = −Ls
cVf

fVe J(q) (6)

where

– fVe is the spatial motion transform matrix
from the robot reference frame to the end-
effector frame. It is known from the robot
kinematics model.

– cVf is the spatial motion transform matrix
from the camera frame to the reference frame.
It is constant as long as the camera does not
move. In that case, similarly as for the eye-in-
hand configuration, a coarse approximation of
cRf and ctf is usually sufficient.

The Interaction Matrix
A lot of works have concerned the modeling of
various visual features s and the determination of
the analytical form of their interaction matrix Ls.
To give just an example, in the case of an image
point with normalized Cartesian coordinates x =
(x, y) and whose 3D corresponding point has
depth Z in the camera frame, the interaction
matrix Lx of x is given by [10]

Lx =
[−1/Z 0 x/Z xy −(1 + x2) y

0 −1/Z y/Z 1 + y2 −xy −x

]

(7)

where the three first columns contain the ele-
ments related to the three components of the
translational velocity and where the three last
columns contain the elements related to the three
components of the rotational velocity.

By just changing the parameters represent-
ing the same image point, that is, by using the
cylindrical coordinates defined by γ = (ρ, θ)

with ρ = √
x2 + y2 and θ = Arctan(y/x),

the interaction matrix of these parameters has a
completely different form [3]:

Lγ =
[ − cos θ/Z − sin θ/Z ρ/Z (1 + ρ2) sin θ −(1 + ρ2) cos θ 0

sin θ/(ρZ) − cos θ/(ρZ) 0 cos θ/ρ sin θ/ρ −1

]
(8)
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This implies that using the Cartesian coordinates
or the cylindrical coordinates as visual features
will induce a different behavior, that is, a different
trajectory of the point in the image and, con-
sequently, a different robot trajectory. The main
objective in designing a visual servoing control
scheme is thus to select the best set of visual
features in terms of stability, global behavior
(adequate trajectories both in the image plane
and 3D space), and robustness to noise and to
modeling and calibration errors from the task to
be achieved, the environment observed, and the
available image measurements. All these aspects
can be studied from the interaction matrix of the
potential visual features.

Currently, the analytical form of the inter-
action matrix is available for most basic fea-
tures resulting from the perspective projection
of simple geometrical primitives such as circles,
spheres, and cylinders [10]. It is also available
for image moments related to planar and almost-
planar objects of any shape [2], as well as for
features selected from the epipolar geometry
[18] and, of course, also for coordinates of 3D
points, parameters of 3D geometrical primitives,
and pose parameters, assuming these features are
perfectly estimated.

In the recent years, following the seminal
works of [16], a new trend has concerned the
use of direct image content as input of the con-
trol scheme [4]. The main objective of these
works is to avoid the extraction, tracking, and
matching of geometrical measurements, such as
points of interest or edges, so that the system
is extremely accurate and robust with respect to
image processing errors. The basic idea is to
consider the intensity of a set of pixels as visual
features (s = I). From the classical assumption in
computer vision stating that the intensity level of
a moving point does not change (i.e., I (x, t) =
I (x + dx, t + dt)), it is possible to determine the
interaction matrix corresponding to the intensity
level of a pixel:

LI = −[∂I

∂x

∂I

∂y
] Lx (9)

where [ ∂I
∂x

∂I
∂y

] is the spatial gradient of the inten-
sity along the x and y directions. Proceeding so

leads to control a highly nonlinear system, with
the drawback of a relatively small convergence
domain, and, in general, not expected robot tra-
jectory, plus the potential issue of robustness with
respect to lighting variations. That is why the idea
of direct photometric visual servoing has been
expended by either considering other objective
functions than ‖I− I∗‖, such as the mutual infor-
mation between the current and desired images
[7], or other global image representations [9], or
by designing photo-geometric visual features [1].

All the works mentioned above have con-
sidered a classical vision sensor modeled by a
perspective projection. It is possible to gener-
alize the approach to any sort of sensors, such
as omnidirectional cameras, RGB-D sensors, the
coupling between a camera and structured light,
and even 2D echographic probes. A large variety
of visual features is thus available for many vision
sensors.

Finally, methods also exist to estimate off-line
or online a numerical value of the interaction
matrix, by using neural networks, for instance, or
the Broyden update [3]. These methods are useful
when the analytical form of the interaction matrix
cannot be determined, but any a priori analysis
of the properties of the system is unfortunately
impossible.

Control
Once the modeling step has been performed, the
design of the control scheme can be quite simple
for holonomic robots. The most basic control
scheme has the following form [3]:

q̇ = −λ Ĵs
+ e + Ĵs

+ ∂s∗

∂t
− Ĵs

+ ∂̂s
∂t

(10)

where, in the first feedback term, e = s − s∗
as defined in Eq. (1), λ is a positive (possibly
varying) gain tuning the time-to-convergence
of the system, and Ĵs

+
is the Moore-Penrose

pseudoinverse of an approximation or an
estimation of the features Jacobian. The exact
value of all its elements is indeed generally
unknown since it depends on the intrinsic and
extrinsic camera parameters, as well as of some
3D parameters such as the depth of the point in
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Eqs. (7) and (8). Methods for estimating these
3D parameters exist, either using the knowledge
of the robot motion [8] or the knowledge of the
3D object model when it is available, or, up to a
scalar factor, from partial pose estimation using
the properties of the epipolar geometry between
the current and the desired images [13].

The second term of the control scheme antici-
pates for the variation of s∗ in the case of a vary-
ing desired value. The third term compensates as
much as possible a possible target motion in the
eye-in-hand case and a possible camera motion
in the eye-to-hand case. They are both null in
the case of a fixed desired value and a motion-
less target or camera. They serve as feedforward
terms for removing the tracking error in the other
cases [5].

Following the Lyapunov theory, the stability of
the system can be studied [3]. Generally, visual
servoing schemes can be demonstrated to be
locally asymptotically stable (i.e., the robot will
converge if it starts from a local neighborhood
of the desired pose) if the errors introduced in
Ĵs are not too strong. Some particular visual
servoing schemes can be demonstrated to be
globally asymptotically stable (i.e., the robot will
converge whatever its initial pose) under similar
conditions. This is, for instance, the case for
the pan-tilt camera control depicted in Fig. 1, for
PBVS assuming the 3D parameters involved are
perfectly estimated, and for well-designed IBVS
schemes.

Finally, when the visual features do not con-
strain all the DoF, it is possible to combine the
visual task with supplementary tasks such as joint
limits avoidance or the visibility constraint (to
be sure that the target considered will always
remain in the camera field of view). In that case,
the redundancy framework can be applied and
the new error to be regulated to zero has the
following form:

en = Ĵs
+ e + (I − Ĵs

+Ĵs) e2 (11)

where (I − Ĵs
+Ĵs) is a projection operator on

the null space of the visual task e so that the
supplementary task e2 will be achieved at best
under the constraint that it does not perturb the

visual task. A similar control scheme to (10) is
now given by

q̇ = −λ en − ∂̂en

∂t
(12)

This scheme has for instance been applied
for the navigation task depicted in Fig. 4 where
the rotational motion of the mobile robot is con-
trolled by vision while its translational motion is
controlled by the odometry to move at a constant
velocity.

Any other more advanced control strategy can
be applied such as optimal control [17], cou-
pling path planning and visual servoing [15],
model predictive control, or quadratic program-
ming when visual tasks and visual constraints
have to be simultaneously handled with other
tasks and constraints. Particular care has to be
considered for underactuated and nonholonomic
systems for which adequate control laws have to
be designed [11, 14].

Application

Potential applications of visual servoing are
numerous. It can be used as soon as a vision
sensor is available and a task is assigned to
a dynamic system. A non-exhaustive list of
examples is:

– the control of a pan-tilt-zoom camera, as illus-
trated in Fig. 1 for the pan-tilt case;

– grasping using a robot arm;
– locomotion and dexterous manipulation with

a humanoid robot;
– micro- or nano-manipulation of MEMS or

biological cells;
– pipe inspection by an underwater autonomous

vehicle;
– autonomous navigation of a mobile robot in

indoor or outdoor environment;
– aircraft landing;
– autonomous satellite rendezvous;
– biopsy using ultrasound probes or heart

motion compensation in medical robotics.
– virtual cinematography in animation.
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Visual Servoing, Fig. 4 Navigation of a mobile robot to
follow a wall using an omnidirectional vision sensor. The
3D straight line at the bottom of the wall projects as a

circle in the image (depicted in green). This circle does
not move if the robot follows the wall, while it moves if
the robot is not correctly oriented

Open Problems

Visual servoing is a mature area. It is basically
a nonlinear control problem for which numerous
modeling works have been achieved to design
visual features so that the control problem is
transformed as much as possible to a linear
control problem. On one hand, improvements on
this topic are still expected for instantiating this
general approach to particular applications. On
the other hand, designing new control strategies
is another direction for improvements, especially
when supplementary data coming from other
sensors (force, tactile, proximity sensors) are
available. Finally, the current expansion of deep
learning may rejuvenate the field especially for
the dense direct methods that use the same input
and end-to-end approach.
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�Exploration: Simultaneous Localization and
Mapping (SLAM)

Visualized Locus Method

�Ego-Motion and EPI Analysis

Volumetric Texture

�Bidirectional Texture Function and 3D Texture

von Kries Hypothesis
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Synonyms

Adaptive gains; Coefficient rule; Color adapta-
tion; Ives transform; von Kries-Ives adaptation

Related Concepts

�White Balance

Definition

The von Kries hypothesis as applied to chromatic
adaptation is an approach that is the basis of
most modern color adaptation models. It was first
hypothesized by Johannes von Kries in 1902 [3].
The approach requires one to apply a gain to each
of the cone responses, independently, so as to
keep the adapted appearance of a reference white
constant.

Theory

In general terms, let us denote the three cone
responses in the human retina as L, M , S, and let
the spectral sensitivities of the cones be denoted
by l(λ), m(λ), and s(λ). Then for any given
stimulus ir (λ) that is incident on the retina, the
cone responses are assumed to be given by:

L = k
∫
λ
l̄(λ)ir (λ)dλ

M = k
∫
λ
m̄(λ)ir (λ)dλ

S = k
∫
λ
s̄(λ)ir (λ)dλ

(1)

with k a normalizing constant, and l̄(λ), m̄(λ),

s̄(λ) are the spectral sensitivity functions of the
three types of color receptors in the eye. In the
above equations, ir (λ) is given by:

ir (λ) = i(λ)r(λ) (2)

where i(λ) denotes the illuminant and r(λ)

denotes the spectral reflectivity of a given surface.
The von Kries model is used to predict the

response of the cones under changes in the view-
ing conditions. Specifically, an important change
in the viewing conditions is a change in the
illuminant. Let us assume that the illuminant i(λ)

is replaced by a different illuminant, ia(λ). In



von Kries-Ives Adaptation 1375

such a case, let us denote the cone responses by
La,Ma , and Sa . Then von Kries hypothesis may
be expressed as:

⎡
⎣La

Ma

Sa

⎤
⎦ =

⎡
⎣kL 0 0

0 kM 0
0 0 kS

⎤
⎦

⎡
⎣L

M

S

⎤
⎦ (3)

where kL, kM , and kS denote scale factors that
are applied independently to the three cone
responses. It is perhaps most common to see this
above equation represented with kL = 1/Lmax,
kM = 1/Mmax, and kS = 1/Smax where the max
subscript denotes the maximal responses for the
LMS cone functions under a normative white
stimulus.

In terms of representing the adaptation
between the original and new illuminants, in the
von Kries model the adapted stimuli are assumed
to be given by:

⎡
⎣La

Ma

Sa

⎤
⎦ =

⎡
⎢⎣

Lmaxa
Lmax

0 0

0 Mmaxa
Mmax

0

0 0 Smaxa
Smax

⎤
⎥⎦

⎡
⎣L

M

S

⎤
⎦ . (4)

The von Kries approach, although described in
the space of LMS cone functions, can be easily
extended to be used in the space of XYZ tris-
timulus values, defined in terms of colorimetry,
rather than in the psychophysically motivated
LMS space. And indeed this is typically done,
by using a simple 3 × 3 transformation between
the LMS cone fundamentals and XYZ color-
matching functions:

⎡
⎣L

M

S

⎤
⎦ = M

⎡
⎣X

Y

Z

⎤
⎦ . (5)

The exact values used for matrix M depend on
the specific cone fundamentals and XYZ color-
matching functions chosen [1, 4].

Open Problems

This approach, although not truly accurate with
regard to experimental findings in color adapta-
tion, is surprisingly general in its application [2].
Many researchers have been exploring the limi-
tations of this hypothesis and adapting it for use
in modern color adaptation models. In Chap. 9
of his book Fairchild provides a comprehensive
comparison of the von Kries model to several
other color adaptation models developed in the
past century [1].
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Synonyms

Projective calibration

Related Concepts

�Camera Calibration
� Fundamental Matrix
� Projective Reconstruction
�Triangulation
�Uncalibrated Camera

Definition

When we have multiple cameras and their cam-
era matrices are not fully known but have been
obtained up to an ambiguity represented by a sin-
gle projective transformation, these cameras are
said to be weakly calibrated, and the ambiguity
is called a projective ambiguity. Also, obtaining
camera matrices up to the projective ambiguity is
called weak calibration.

Theory

Let us consider N 3D points Xi (i = 1, · · · , N),
which are projected to M cameras as xj i (i =
1, · · · , N; j = 1, · · · ,M). If there is no nonlin-
ear distortion of the second order or higher in this
projection, the projection can be represented by
M 3× 4 matrices Pj (j = 1, · · · ,M) as follows:

xj i = PjXi (1)

where xj i and Xi are represented in homoge-
neous coordinates.

Now, if we insert a projective transformation
H and its inverse H−1 between the camera matri-
ces Pj and the 3D pointsXi , the projection can be
described by using new camera matrices P′

j and
3D points X′

i , as:

xj i = PjXi (2)

= PjHH−1Xi (3)

= P′
jX

′
i (4)

Then, newly obtained M camera matrices P′
j

and N 3D points X′
i have projective distortion

represented by a single projective transformation
H with respect to the original camera matrices Pj

and 3D points Xi . Thus, these camera matrices
and 3D points {P′

j ,X
′
i} are identical to the

original camera matrices and 3D points {Pj ,Xi}
up to a projective transformation. When we
have M cameras whose camera matrices are not
known but are fixed up to a single projective

© Springer Nature Switzerland AG 2021
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https://doi.org/10.1007/978-3-030-63416-2

https://doi.org/10.1007/978-3-030-63416-2


1378 Weak Calibration

transformation, these cameras are said to be
weakly calibrated, and obtaining such camera
matrices is called weak calibration.

A 3 × 4 camera matrix has 12 components,
but it has only 11 DOFs since there exists a scale
ambiguity in the camera matrix. Thus, M cam-
eras have a total of 11M independent parameters.
However, since the weak calibration computes
camera parameters up to a projective ambiguity,
15 parameters that correspond to a projective
transformation may remain indeterminate. Thus,
the number of parameters to be computed in the
weak calibration is 11M − 15. For example, if
we have two cameras, seven parameters should
be computed, and if we have three cameras,
18 parameters should be computed in order to
weakly calibrate these cameras.

Weak Calibration of Two Cameras
When we have two cameras, weakly calibrating
them is the same as the computation of a fun-
damental matrix F, which has seven DOFs and
represents the epipolar geometry between the two
cameras. This is because the camera matrices P′

1
and P′

2 of these two cameras can be obtained
from the fundamental matrix F up to a projective
transformation, as follows [1]:

P′
1 = [I, 0] (5)

P′
2 = [[e21]×F, e21] (6)

where e21 denotes an epipole in the second image
and can be computed from matrix F by using the
linear relationship F�e21 = 0.

Although the true camera matrices, P1 and P2,
of these two cameras are unknown, P′

1 and P′
2

obtained from the fundamental matrix F are iden-
tical to the true camera matrices, P1 and P2, up to
a projective transformation. Thus, the 3D points
reconstructed using P′

1 and P
′
2 are identical to the

real 3D points up to a projective transformation.
Therefore, weak calibration of two cameras has
been studied as the computation of a fundamental
matrix.

The fundamental matrix F can be computed
with a minimum of eight pairs of corresponding
points linearly [2,3], or a minimum of seven pairs

of corresponding points nonlinearly [4, 5], by
estimating a matrix F that best fits the following
epipolar equation:

x�
2iFx1i = 0 (i = 1, · · · , N) (7)

where xj i denotes the ith image point in the j th
camera image.

The most accurate weak calibration method
is the maximum likelihood estimation of the
fundamental matrix and 3D points, which is
called bundle-adjustment [6]. This method
estimates the 7-DOF fundamental matrix F and
N 3D points Xi (i = 1, · · · , N) simultaneously
so that they minimize the reprojection errors,
d(xi , x̂i ), between observed points xi and
reprojected points x̂i obtained by projecting the
estimated 3D points X̂i by using the camera
matrices P̂′

1 and P̂′
2 computed from the estimated

fundamental matrix F̂. Thus, the method solves
the following minimization problem:

{F̂, X̂1, · · · , X̂N } = argmin{F,X1,··· ,XN }

N∑

i=1

d(x1i , x̂1i )2

+ d(x2i , x̂2i )2 (8)

The solution of Eq. (8) can be obtained by
using numerical methods such as the Levenberg-
Marquardt method [7, 8].

This method estimates the 7-DOF fundamen-
tal matrix F and N 3D points Xi (i = 1, · · · , N)

from N pairs of 2D points in images. Thus, F
and Xi can be estimated when the following
inequality holds:

4N ≥ 7 + 3N (9)

Therefore, the maximum likelihood estimate of
weak calibration can be obtained, if N ≥ 7.

Weak Calibration of Three Cameras
If there are three cameras, their geometric rela-
tionship can be described by using a trifocal
tensor T pq

i [9]. The trifocal tensor T pq
i is a

3 × 3 × 3 tensor with 18 DOFs. It has 18 DOFs,
since three cameras have 3 × 11 = 33 DOFs
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but they are constrained by existing in a single
projective space whose DOF is 15.

The weak calibration of three cameras is
equivalent to estimating the trifocal tensor T pq

i .
This is because the camera matrices of three
cameras, P1, P2, and P3, can be obtained up to a
projective transformation from the trifocal tensor
T pq

i as follows [1]:

P1 = [I, 0] (10)

P2 = [[T1,T2,T3]e31, e21] (11)

P3 = [(e31e�
31 − I)[T�

1 ,T�
2 ,T�

3 ]e21, e31] (12)

where Ti denotes the ith layer of the trifocal
tensor T pq

i = [T1,T2,T3]. e21 and e31 denote
epipoles of the 1st camera in the 2nd and, 3rd
cameras respectively, and they can be computed
from trifocal tensor T pq

i .
The trifocal tensor T pq

i can be computed with
a minimum of seven corresponding points lin-
early [10], or a minimum of six corresponding
points nonlinearly [11], by estimating the T pq

i

that best fits the following trilinear relationship:

3∑

i=1

3∑

j=1

3∑

k=1

3∑

p=1

3∑

q=1

xix′j x′′kεjprεkqsT pq
i = 0rs

(13)

where xi denotes the ith component of an image
point x = [x1, x2, x3]� and εijk denotes a rank 3
tensor, which takes 1 if the permutation from
{i, j, k} to {1, 2, 3} is an even permutation,
takes −1 if it is an odd permutation, and takes
0 for other cases. The linear estimation requires
seven corresponding points, since the trifocal
tensor T pq

i has 26 components except a scale
ambiguity, and each set of corresponding points
provides us 4 linearly independent equations
in the estimation of the 26 components. The
nonlinear estimation requires six corresponding
points as explained below.

The most accurate way to estimate the trifocal
tensor is to estimate the trifocal tensor T and N

3D points Xi (i = 1, · · · , N) simultaneously by
minimizing the reprojection error d, as

{T̂, X̂1, · · · , X̂N } = argmin
{T,X1,··· ,XN }

N∑

i=1

3∑

j=1

d(xj i , x̂j i)
2

(14)

This method estimates the 18-DOF trifocal
tensor T and N 3D points Xi (i = 1, · · · , N)

from N sets of 2D points in three views. Thus,
T and Xi can be estimated when the following
inequality holds:

6N ≥ 18 + 3N (15)

Therefore, the maximum likelihood estimate of
the weak calibration of three cameras can be
obtained, if N ≥ 6.

Weak Calibration of M Cameras
Consider the case where there are M cameras and
we want to calibrate them weakly by using N sets
of corresponding points in their images.

The weak calibration of these M cameras can
be achieved by estimating a set of M camera
matrices P and a set of N 3D points X simul-
taneously by minimizing the reprojection error d

as follows:

{P̂, X̂} = min
{P,X}

N∑

i=1

M∑

j=1

d(xj i , x̂j i)
2 (16)

This is a bundle-adjustment [6] of an arbitrary
number of cameras, and it provides us the maxi-
mum likelihood estimate of camera matrices and
3D points. Again, the solution of Eq. (16) can be
obtained by using numerical methods such as the
Levenberg-Marquardt method [7, 8].

The number of parameters to be estimated in
the bundle-adjustment is 11M − 15 for camera
matrices and 3N for 3D points, while we have
2MN constraints from the image points in M

views. Thus, these M cameras can be weakly
calibrated, if the following inequality holds:

2MN ≥ 11M + 3N − 15 (17)

However, in this maximum likelihood
estimation method, stable estimation cannot
be performed unless good initial values for the
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camera parameters and 3D points are given.
Thus, in general, these initial values are obtained
in advance by sequentially applying the weak
calibration of two or three cameras, and then the
weak calibration of M cameras is performed with
high accuracy by using a maximum likelihood
estimation method that simultaneously estimates
M cameras and N 3D points.

Weak calibration of multiple cameras can also
be achieved by using factorization in the case of
affine cameras [12] and iterative factorization in
the case of projective cameras [13].
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Weak Perspective Projection
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Related Concepts

�Affine Camera
�Calibration of Projective Cameras
�Camera Calibration
�Camera Parameters (Intrinsic, Extrinsic)
�Depth Distortion
� Perspective Camera
� Perspective Transformation

Definition

Weak perspective projection is a linear approx-
imation of the (full) perspective projection.
In this entry, we also describe other forms of
linear approximation: orthographic projection
and paraperspective projection. Finally, the
affine camera is presented as the most general
form of linear approximation of the perspective
projection.

Background

As can be seen in the entry � “Perspective
Camera”, the perspective projection is a nonlinear
mapping. This makes many vision problems
difficult to solve, and more importantly, they
can become ill-conditioned when the perspective
effects are small. Sometimes, if certain conditions
are satisfied, for example, when the camera
field of view is small and the object size is
small enough with respect to the distance from
the viewer to the object, the projection can be
approximated by a linear mapping [1]. This
simplification also leads to great reduction
of complexity in computation of the epipolar
geometry from images [2].
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Theory

Orthographic Projection The simplest approx-
imation is the so-called orthographic projection
(Fig. 1a). It ignores completely the depth dimen-
sion. There is some evidence that rays near the
fovea are projected orthographically (see, for
example, [2]). Because of this, orthographic pro-
jection has been used in human vision research
[4]. But the orthographic projection can lead to
two identical objects having the same image, even
if one is much further away from the camera
than the other (distance effect) or if one is much
more distant from the optical axis than the other
(position effect) (see Fig. 1b). Therefore, methods
that use orthographic projection are only valid in
a limited domain where the distance and position
effects can be ignored.

Weak Perspective Projections A much more
reasonable approximation is the so-called weak
perspective projection. When the object size is
small enough with respect to the distance from
the camera to the object, the depth, or Z, can
be replaced by a common depth, Zc. Then the
projection equations become linear:

x = X

Zc

y = Y

Zc

(1)

Here, we assume that the focal length f is
normalized to 1.

Suppose the common depth is the depth of
the centroid of the object. Then this approxima-
tion can be understood as a two-step projection
(Fig. 2). The first one is a parallel projection of
all the object surface points onto a plane which
goes through Zc, the depth of the object cen-
troid, and is parallel to the image plane or focal
plane. The second step is a perspective projection
of that plane onto the image plane, which is
actually a uniform scaling of that plane. Some-
times, this projection is also called the scaled
orthographic projection. When Zc is unity, the
projection becomes the orthographic one.

Let

Pwp =
⎡

⎣
1 0 0 0
0 1 0 0
0 0 0 Zc

⎤

⎦ . (2)

Equation (1) can then be written in matrix
form, similar to the perspective projection matrix,
as

s

⎡

⎣
x

y

1

⎤

⎦ = Pwp

⎡

⎢⎢⎣

X

Y

Z

1

⎤

⎥⎥⎦ .

Taking into account the intrinsic and extrinsic
parameters of the camera yields

sm̃ = APwpDM̃, (3)

where A is the intrinsic matrix and D is the rigid
transformation. Expand it and eliminate the scale
factor s, and we have

m = TwpM + twp, (4)

where

Twp = 1

Zc

[
αu

(
rT
1 + cot θrT

2

)

αvrT
2 / sin θ

]

twp = 1

Zc

[
αu (t1 + t2 cot θ)

αvt2/ sin θ

]
+

[
u0
v0

]
.

Here ri denotes the ith row vector of the
rotation matrix R, and ti is the ith element of the
translation vector t. It is clear that the relation
between 3D coordinates and image coordinates
is linear.

Let us examine the approximation error intro-
duced by the weak perspective projection. For
simplicity, we consider a normalized camera with
the camera and world coordinate systems aligned.
For a point M with depth Z = Zc + �Z, its per-
spective projection can be developed as a Taylor
series about Zc:
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C

X

Y

a

b

I x

y

c Z

m =
X

Y M =

⎡
⎣ X
Y
Z

⎤
⎦

X

Y

C

Z

I

O1 O2

O3

Weak Perspective Projection, Fig. 1 (a) Orthographic
projection. (b) Three identical objects in different posi-
tions give the same image under orthographic projection:

Object O2 is much further away from the camera, and
objectO3 is much distant from the optical axis, than object
O1

mp = 1

Zc + �Z

[
X

Y

]

= 1

Zc

(
1 − �Z

Zc

+
(

�Z

Zc

)2

− · · ·
)[

X

Y

]
.

When |�Z| � Zc, only the zero-order term
remains, giving Eq. (1). Weak perspective is
thus the zero-order approximation of the full
perspective projection. The absolute error in

image position is then

merror = mp − mwp = − 1

Z

�Z

Zc

[
X

Y

]
,

which shows that a small field of view (X/Z and
Y/Z) and small depth variation (�Z/Zc) contribute
to the validity of the model [5]. The error is
clearly not uniform across the image. A useful
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Weak Perspective Projection, Fig. 2 The weak perspective model. The average depth plane is drawn in front for
clarity

I

Z

G

average depth planeimage plane

X

Y

C

WeakPerspective Projection, Fig. 3 Paraperspective projection. The average depth plane is drawn in front for clarity

rule of thumb requires Zc to exceed |�Z| by an
order of magnitude [6], i.e., Zc ≥ 10|�Z|.

Paraperspective Projection Under weak per-
spective projection, a world point is first pro-
jected onto the average depth plane using the
rays parallel to the optical axis. This causes a
significant approximation error when an object
is distant to the optical axis (large X/Z and Y/Z).
The paraperspective projection generalizes this
by projecting points using the rays parallel to the
central projecting ray CG, whereG is the centroid
of the object [1]. As with weak perspective, the

perspective projection is also approximated with
a two-step process, but the projection in the first
step is no more realized along rays parallel to the
optical axis (see Fig. 3).

Let the coordinates of the centroid of
the object G be [Xc, Yc, Zc]T. A world
point M = [X, Y, Z]T is first projected,
parallel to CG, to the average depth plane at[
X − Xc

Zc
Z + Xc, Y − Yc

Zc
Z + Yc, Zc

]T

. Finally,

this point is projected perspectively onto the
image plane as
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x = 1
Zc

(
X − Xc

Zc
Z + Xc

)

y = 1
Zc

(
Y − Yc

Zc
Z + Yc

)
.

(5)

They can be written in matrix form as

s

⎡

⎣
x

y

1

⎤

⎦ = Ppp

⎡

⎢⎢⎣

X

Y

Z

1

⎤

⎥⎥⎦ ,

with

Ppp =
⎡

⎣
1 0 −Xc/Zc Xc

0 1 −Yc/Zc Yc

0 0 0 Zc

⎤

⎦ . (6)

Taking into account the intrinsic and extrinsic
parameters of the camera yields

sm̃ = APppDM̃. (7)

Here, of course, Xc, Yc, and Zc in Ppp must be
still measured in the camera coordinate system. In
terms of image and world coordinates, we have

m = TppM + tpp, (8)

where

Tpp = 1

Zc

⎡

⎣αu

(
rT
1 − Xc

Zc
rT
3

)
+ αu cot θ

(
rT
2 − Yc

Zc
rT
3

)

αv

(
rT
2 − Yc

Zc
rT
3

)
/ sin θ

⎤

⎦

tpp = 1

Zc

⎡

⎣αu

(
t1 − Xc

Zc
t3 + Xc

)
+ αu cot θ

(
t2 − Yc

Zc
t3 + Yc

)

αv

(
t2 − Yc

Zc
t3 + Yc

)
/ sin θ

⎤

⎦ +
[
u0
v0

]
.

It is clear that the relation between 3D coor-
dinates and image coordinates is linear under
paraperspective projection.

Let us examine the approximation error
introduced by the weak perspective projection.
For simplicity, we consider a normalized camera
with the camera and world coordinate systems
aligned. For a point M with coordinates [X, Y,
Z]T = [Xc + �X, Yc + �Y, Zc + �Z]T, its
perspective projection can be developed as a
Taylor series about Zc:

mp = 1
Zc+�Z

[
Xc + �X

Yc + �Y

]

= 1
Zc

(
1 − �Z

Zc
+

(
�Z
Zc

)2 − O3
)[

Xc + �X

Yc + �Y

]
,

where O3 is used to denote terms of order higher

than 2, i.e.,O3 = O
(

�Z
Zc

)3
. The projection under

paraperspective, mpp, is given by Eq. (5). The
absolute error in image plane, after some algebra,
is given by

merror = mp − mpp

=
⎡

⎢⎣
−�X�Z

Z2
c

+ X
Zc

(
�Z
Zc

)2 − O3

− �Y�Z
Z2

c
+ Y

Zc

(
�Z
Zc

)2 − O3

⎤

⎥⎦ .

As can be seen, the approximation error is
of second order under paraperspective projection,
and we say that it is the first-order approxima-
tion of the full perspective projection. The weak
perspective projection, as was seen in the last
subsection, is only the zero-order approximation.
Figure 4 illustrates well the difference between
all these projection models. Similar analysis is
presented in [7] for pose determination.

An even better approximation is called orthop-
erspective. The difference from the paraperspec-
tive projection consists in replacing the average
depth plane, which is parallel to the image plane,
by another plane that is perpendicular to the
central projecting ray (which connects the optical
center C of the camera and the centroid G of the
object (see Fig. 5 for a pictorial description). It
can be understood as the result of the following
sequence of operations [1]:
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xorth

xp

xwp
xpp
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M

image plane average depth plane

Z

X

C 1 Zc

Weak Perspective Projection, Fig. 4 Comparison of
different perspective approximations. Comparison of dif-
ferent perspective approximations. Cross-sectional view
sliced by a plane that includes the central projecting ray
and is perpendicular to the Y-Z plane. The image plane is
the line Z= 1. For xp (full perspective), projection is along
the ray connecting the world point M to the optical center
C. For xorth (orthographic), projection is perpendicular

to the image. For xwp (weak perspective), M is first
orthographically projected onto the average depth plane
and then projected perspectively onto the image plane.
For xpp (paraperspective), M is first projected, parallel to
the central projecting ray, onto the average depth plane
and then projected perspectively onto the image plane.
(Adapted from [5])

– A virtual rotation of the camera around C to
make the central projecting ray CG coincide
with the optical axis

– A weak perspective projection of the object
– An inverse camera rotation to bring the camera

back to its original position

The orthoperspective projection involves more
complicated formula and will not be discussed
anymore in this book.

Affine Cameras

If we examine the camera projection matrices for
orthographic, weak perspective, and paraperspec-
tive projections (see Eq. (2) and (6)), we find that
they all have the same form:

PA =
⎡

⎣
P11 P12 P13 P14

P21 P22 P23 P24

0 0 0 P34

⎤

⎦ . (9)

Depending on different projection models,
some constraints exist on the elements of matrix
PA except P31, P32, and P33, which are equal to
0. If we ignore the constraints on the matrix
elements, PA becomes the so-called affine
camera, introduced by Mundy and Zisserman
[8]. Unlike the general perspective projection
matrix (see entry “Camera Parameters”), an affine
camera, which is also defined up to a scale factor,
has only eight degrees of freedom. It can be
determined from four points in general position.

In terms of image and world coordinates, the
affine camera is written as

m = TAM + tA, (10)

where TA is a 2 × 3 matrix with elements
Tij = Pij/P34 and tA is a 2D vector [P14/P34,
P24/P34]T.

A key property of the affine camera is that it
preserves parallelism [5]: lines that are parallel
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Z

X
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G

M

M

image plane

auxiliary
plane

Weak Perspective Projection, Fig. 5 Orthoperspective projection. A cross-sectional view sliced by a plane that
includes the central projecting ray and is perpendicular to the Y-Z plane

in the world remain parallel in the image, which
is not the case with the perspective camera. The
proof is simple. Consider two parametric parallel
lines M1(λ) = Ma + λu and M2(μ) = Mb + μu,
where u is the 3D direction vector. They project
onto the image as lines

m1 (λ) = (TAMa + tA) + λTAu,

m2 (μ) = (TAMb + tA) + μTAu.

They are clearly parallel to the 2D direction
vector TAu.

Another attractive property of the affine cam-
era is that the centroid of a set of 3D points
and that of their image points correspond to each
other. This is not the case for full perspective
projections. Let Mi (i= 1, . . . , n) be the set of 3D
points and mi, their corresponding image points.
From Eq. (10), the centroid of the image points is
given by

m = 1

n

n∑

i=1

mi = 1

n

n∑

i=1

(TAMi + tA)

= TAM + tA,

where M is the centroid of the 3D points. Thus,
the 3D point centroid is projected by an affine
camera to the image point centroid. It follows that
if 3D points are expressed with respect to their
centroid, i.e. M̂i = Mi − M, and if 2D points are
also expressed with respect to their centroid, i.e.
m̂i = mi − m, then we have

m̂i = TAM̂i .

Therefore, an affine camera has only six
degrees of freedom (the six parameters of TA).

While the exact projection performed by an
affine camera is not very clear, it is clearly the
generalization of the orthographic, weak perspec-
tive, or paraperspective models, as can be seen
from Eq. (9) or (10). The generalization can be
understood in two ways:

– Some nonrigid deformation of the object is
permitted. Actually, if we multiply PA from
the right by any 3D affine transformation of
the object
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D =
[
M t
0T
3 1

]
,

where M is a general 3 × 3 matrix and t is a
3-vector, the new projection matrix still has the
form Eq. (9) of an affine camera.

– Camera calibration is unnecessary. Multiply
PA from the left by any 2D affine transforma-
tion of the image

A =
[
C c
0T
2 1

]
,

where C is a general 2 × 2 matrix and c is a
2-vector; the new projection matrix still has the
form Eq. (9) of an affine camera.

Without camera calibration, various affine
measurements, such as parallelism and ratios of
lengths in parallel directions, can be extracted.
For certain vision tasks, such properties may be
sufficient. Affine cameras are extensively studies
in particular by the University of Oxford group
[5, 9, 10].
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Synonyms

Automatic white balance (AWB); Color balance

Related Concepts

�Chromaticity
�Color Constancy
� von Kries Hypothesis

Definition

White balance is the term given to the process
of removing the color cast in a captured image
that is induced by the color of the illuminant.
This is typically done by changing the overall
proportion of colors in an image to provide an
overall balance by keeping neutral colors neutral
in their reproduction.

Background

The human visual system has the capability
of mapping “white” colors to the sensation of
“white” even when lighting conditions change in
color. This is easily illustrated by looking at a
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white sheet of paper under indoor incandescent
lighting and outdoor sunlight. In both cases
the paper would appear white to our visual
system, but appear yellowish and bluish in color,
respectively, to a digital color camera. This
psychophysical phenomenon is referred to as
color constancy.

Similarly, a yellowish-white light (such as an
incandescent bulb) reflected from a white sheet
of paper would be perceived as white to our
visual system while daylight reflected from a
yellowish-white flower appears yellowish, even
though the spectral information received by our
eyes is identical. This is a significant challenge to
a camera – digital or film-based – as the camera
does not “know” the color of an object: this
typically results in a color cast in the captured
image, with the overall color appearing wrong to
a human observer. Stated differently, neutral col-
ored objects appear neutral to the human visual
system and a camera is expected to be aware of
this color constancy. Under flash photography,
however, the situation is somewhat simpler as we
know the illuminant in part.

The process of removing such a color cast so
that “white remains white” under the capture and
viewing illuminants is termed white balancing.
Ideally, of course, consumers expect this to be
performed automatically by their cameras.

Theory

The primary cause of the need for white balance
comes from the fact that the camera is unable to
accurately mimic the human visual system. For
the sake of simplicity let us consider a digital
still camera with three color sensors and compare
how the data flows in a camera, compared to (an
abstraction of) how it might flow in the human
visual system. A particular camera’s spectral sen-
sitivities are shown in Fig. 1b while those of the
cones in the human retina are shown in Fig. 1a
[7]. When a reflectance spectrum of, say, a white
color patch is captured by these sensors, under
a D65 white illuminant (shown in Fig. 1c), the
initial values captured by the eye and the camera

are clearly different. But more importantly, the
processing that takes place on these two signals
is radically different, resulting in a completely
different sensation of white in the two “systems.”
A generic overview of the structure of a digital
still camera’s image processing pipeline may be
found in a paper by Ramanath et al. [6].

The challenge for the camera’s system is to
mimic the performance of the human visual sys-
tem with little or no knowledge of the illuminant
under which the image was captured.

One means of performing white balance is to
assume that a white patch must induce maximal
response in one or more of the camera’s sensor
in the three (or more) channels. If R, G, and B

denote the red, green, and blue channels of the
captured image, the white-balanced image has
signals given by R/Rmax, G/Gmax, and B/Bmax.
This type of white balance may be represented as:

⎡

⎣
Rout

Gout

Bout

⎤

⎦ =
⎡

⎣
1/Rmax 0 0
0 1/Gmax 0
0 0 1/Bmax

⎤

⎦

⎡

⎣
Rin

Gin

Bin

⎤

⎦

(1)

where the subscript “in” denotes the input pixels
and subscript “out” denotes the output white-
balanced pixel values. However, a simplistic
maximum in the three channels (“max RGB”
approach) is typically a poor estimate of the
illuminant as it tends to take the maximum of
each color from different pixels and the scaling
typically results in contrast enhancement or
a dynamic range expansion. A slightly more
intelligent approach takes the maximum of the
color that has the largest magnitude in the RGB

color space (“brightest pixel” approach). This
is also potentially error prone in images with
no captured whites (or neutral colors). See
Fig. 2 for examples of approaches that attempt
to mimic the image captured under a daylight
illuminant using these simple white balance
approaches.

The next level of complication as an approach
to color constancy (although an admittedly
naïve one) is the “gray world” assumption,
which assumes that all colors in an image
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White Balance, Fig. 1
The human visual system
and a camera’s capture
system compared: (a) LMS
cone functions of a human
observer; (b) spectral
sensitivities of filters used
in a particular digital color
camera; (c) spectral
reflectance function of a
white patch, r1(λ), and the
spectral emission, r2(λ),
for the standard D65
daylight illuminant
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will average out to gray, R = G = B. In other
words, the channels are scaled based upon the
deviation of the average image color from gray.
In this approach, the white-balanced image
has signals given by krR, G, and kbB, where

kr = Gmean/Rmean and kb = Gmean/Bmean,
the premise being that all off-balance neutral
colors will get mapped to balanced neu-
trals. This type of white balance may be
represented as:
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White Balance, Fig. 2 (a)
Image captured under a
daylight illuminant; (b)
image captured in
fluorescent lighting (which
has a relatively bluish cast);
(c) fluorescent lighting
image after white balance
using the “max RGB”
approach; (d) fluorescent
lighting image after white
balance using the
“brightest pixel” approach

White Balance, Fig. 3 (a, d) Image captured with incorrect white balance; (b, e) the same images after performing
white balance using the gray-world assumption; (c, f) images rendered with white balances preferred by the authors

⎡

⎣
Rout

Gout

Bout

⎤

⎦ =
⎡

⎣
kr 0 0
0 1 0
0 0 kb

⎤

⎦

⎡

⎣
Rin

Gin

Bin

⎤

⎦ (2)

This technique fails when most of the image
is highly chromatic, e.g., a closeup image of
a brightly colored flower. See Fig. 3 for an

example. Clearly, there are cases where each
of these approaches fail. The search for a generic
white balance algorithm has led to heuristic
approaches that perform the scaling only for
less-chromatic colors. In [5], Kehtarnavaz et al.
present a technique called “scoring” to perform
automatic white balance.
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The above approaches that deal with pixel val-
ues in the RGB color space have been augmented
and significantly improved by being performed
in transformed color spaces. A general represen-
tation of such approaches may be given by the
following equation:

⎡

⎣
Rout

Gout

Bout

⎤

⎦ = f −1
(
B f

(
Rin,Gin, Bin

))
(3)

where the subscript “in” denotes the input pixels
and subscript “out” denotes the output white-
balanced pixel values, f and f −1 denote a
potentially nonlinear transformation function and
its inverse, respectively, and B denotes a generic
matrix operator on the transformed RGB input
values. The choice of the transformation is highly
dependent on the preference of the designer.
Fairchild’s book documents the most commonly
used color spaces and equations necessary to
transform the input color into the appropriate
color spaces [2].

In [1], Barnard et al. present white balance
techniques in a historical perspective and illus-
trate the performance of the algorithms on syn-
thetic data. It is not always the case that white
balance must be done automatically. Some cam-
eras, particularly the more expensive ones, put
more emphasis on “preprogrammed white bal-
ance” or “manual white balance” than their auto-
matic counterparts.

Open Problems

More sophisticated techniques for estimating the
color of the illuminant (e.g., [3]) are being used
in the industry, but their application in white
balance continues to be an area of active research
with (spatially aware) chromatic adaptation trans-
forms [2, 4] being increasingly used to com-
pensate for capture-related white balance issues.
Some of these adaptation transforms are highly
nonlinear in their formulation and require rather
sophisticated hardware and software to be appro-
priately applied. It is important to understand that
once the image is captured by the digital camera –

without absolute knowledge of the illuminant –
it is practically impossible to perform a perfect
white balance and every rendition will be consid-
ered a “preferred” image rendition.
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Definition

Wide baseline matching is the process of finding
correspondences between two images of the same
scene taken from widely separated views.

Background

Finding correspondences between images is a
first and crucial step in many image processing
applications, such as image registration, 3D
reconstruction, object recognition, or robot
navigation. As long as the images are taken
from more or less the same viewpoint, this
task is relatively easy. Indeed, under these
conditions (usually referred to as small baseline),
the corresponding image patch will look very
similar, and also its location in the image will
have changed only slightly, so a local search
for the most similar image patch suffices to find
correspondences.

However, when the baseline between the cam-
eras (i.e., the distance between the camera projec-
tion centers) increases, finding correspondences
becomes a significantly harder problem. First,
the correspondence can appear anywhere in the
second image. As a result, one has to search over
the whole image to find it. This also means there
are typically many more distractors to cope with.
Second, also the local appearance of the image
patch can change drastically. When the viewpoint
of the camera changes relative to the object or
scene, this causes geometric deformations in the
image, such as rotation, rescaling, as well as fore-
shortening, skew, and perspective deformations.
Moreover, when the geometric setup changes,
also the photometric changes are usually more
severe. The deformations depend on the 3D struc-
ture of the scene, the illumination conditions, as
well as the internal and external camera parame-
ters. Since these are typically not known before-
hand, efficient and effective algorithms to cope
with them have been developed, mostly based on
the concept of local invariant features and robust
descriptors.

Theory

To cope with wide baseline conditions, one first
needs to understand the deformations caused by
the change in viewpoint. If one can assume that
the object is locally planar (or can be approxi-
mated well by a plane, which is usually the case
on a local scale), the geometric deformations can
be modeled, in general, by a projective transfor-
mation or homography:

ω

⎛

⎝
x2
y2
1

⎞

⎠ =
⎛

⎝
h11 h12 h13
h21 h22 h23
h31 h32 h33

⎞

⎠

⎛

⎝
x1
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1

⎞

⎠

with (x1, y1) and (x2, y2) the coordinates in the
first and second image, respectively, and with ω a
scale factor. Since on a local scale the perspective
effects can be ignored, this reduces to an affine
transformation:

⎛
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0 0 1
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⎞

⎠

Photometric changes are usually modeled by a
linear model, with a scale factor s and offset t :

I2(x2, y2) = sI1(x1, y1) + t

with I∗(x∗, y∗) the image intensity of both
images.

Additionally, it is important to realize that for
some locations in the image, it is easier to find
correspondences than for others. Indeed, pixels
that lie on a uniform part of the image can-
not be distinguished from each other. Therefore,
it is impossible to tell which one corresponds
to which. Local features or interest points are
found at locations in the image that stand out
locally and can be localized accurately. They
often correspond to corners or blobs. Since they
have a good repeatability, one does not have to
search the second image exhaustively for a cor-
respondence, but only among the interest points
extracted in that image. Therefore, in a wide
baseline matching context, one focusses on the
matching of such interest points only. Once they
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Wide Baseline Matching, Fig. 1 Two images of the same scene, taken with a wide baseline, with correspondences

have been matched, extra constraints such as
epipolar geometry can be derived, and these can
help in finding additional correspondences (e.g.,
aiming for dense matching).

When dealing with wide baseline conditions,
simple interest points such as Harris corners [6]
no longer suffice, as these are not robust to the
geometric deformations described above. Instead,
affine invariant local feature detectors have been
proposed, e.g., [8,9,18]. These detectors do select
not only a location in the image but also the size
and shape of the image patch to be considered for
matching. Usually the image patches are ellipses,
but parallelograms have been used as well. The
detectors are called affine invariant because they
have been devised so as to select corresponding
ellipses/parallelograms in spite of affine defor-
mations of the image. Based on its shape and
size, the image can then be locally normalized by
applying an additional affine transformation map-
ping the ellipse onto a circle of fixed size. This
way, the effect of the geometric deformations is
compensated for. The normalized image patch
is then described by a robust descriptor such as
SIFT [7], resulting in a high-dimensional feature
vector describing the intensity pattern around
the interest point. This descriptor is also made
robust to the photometric deformations. Finding
correspondences then boils down to finding the
most similar feature vectors.

Since on a local scale features are usually
not very discriminative, false matches (i.e.,
wrong correspondences) are unavoidable at first.

Therefore, a geometric consistency check is vital
to select the inliers (correct matches) and reject
the outliers (false matches). This can be done,
e.g., by applying a random sampling approach
such as RANSAC [5] to compute the epipolar
geometry. For planar scenes, RANSAC combined
with a homography is often used.

The pipeline described above is the most stan-
dard way of solving the wide baseline matching
problem. Alternative schemes have been pro-
posed as well, e.g., matching lines instead of
interest points [2] or applying affine transforma-
tions to the image as a whole instead of making
the feature detection invariant [13]. Also, it has
been shown that in many cases, scale-invariant
interest points combined with robust descriptors
can already deal with viewpoint changes up to
30◦ and beyond [3, 7].

With the advent of deep learning, learned
detectors and descriptors have been proposed
to replace the handcrafted features described
above. For descriptors, a siamese neural
network applied on local patches can be
trained [1, 16, 17]. Learning good detectors
from data is somewhat harder, yet has been
demonstrated as well [15, 19], as are joint
schemes solving the detection and description
tasks simultaneously [4, 11, 14]. These learned
detectors and descriptors outperform the
handcrafted ones especially under difficult
imaging conditions, e.g. when the goal is to
find correspondences between pictures taken
during the day and at night. They are, however,
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sensitive to the data used for training and how
representative that data is for the actual test
conditions.

Experimental Results

Figure 1 shows an example of two images of the
same scene taken from different viewpoints, with
the found correspondences superimposed. Fur-
ther, we refer to the literature where various eval-
uations and comparisons of wide baseline match-
ing methods have been proposed, e.g., [10, 12].
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Synonyms

Attribute-based classification

Definition

The goal of zero-shot learning is to construct
a classifier that can identify object classes for
which no training examples are available. When
training data for some of the object classes is
available but not for others, the name generalized
zero-shot learning is commonly used.

In a wider sense, the phrase zero-shot is also
used to describe other machine learning-based
approaches that require no training data from
the problem of interest, such as zero-shot action
recognition or zero-shot machine translation.

Background

Object recognition systems are typically created
by training a supervised machine learning model,
such as a convolutional network. For this, a train-
ing set is required that consists of annotated

images of all object classes of interest. When
no annotated images of the target classes are
available, the supervised approach is not appli-
cable. Instead, classifiers must be constructed
purely based on contextual information, such as
semantic descriptions of the target classes or the
class names. This setting is commonly called
zero-shot learning, where the name is a play-on-
words: it takes the name of the previously existing
one-shot learning setting, in which exactly one
training example per class is available, and liter-
ally replaces the number one by zero.

Theory

The fundamental principle that underlies most
successful zero-shot learning methods is to use
contextual information to construct a way of
comparing individual images to abstract class
labels. To classify a new image, one compares it
to all target class labels and predicts the one of
highest similarity.

There are two dominant frameworks for this
task: one either constructs a common represen-
tation space to which individual images as well
as class labels can be mapped or one uses dif-
ferent representation for images and class labels
and learns a similarity function between these.
Individual zero-shot learning methods differ in
which form of contextual information they use,
which representation space or spaces they rely on,
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K. Ikeuchi (ed.), Computer Vision,
https://doi.org/10.1007/978-3-030-63416-2

https://doi.org/10.1007/978-3-030-63416-2


1396 Zero-Shot Learning

and how the representation or similarity function
is learned.

Zero-Shot Learning Based On Semantic
Representations
The first zero-shot learning methods relied on
manually specified contextual information in the
form of boolean vectors. Each entry indicates if
a class fulfills some specific semantic property,
often called an attribute, or not. For example, a
class zebra could be characterized by having the
attributes black and white and has stripes, but not
red or eats fish.

Attribute-based classification [1, 2] uses the
resulting vectors directly as a binary-valued
feature representation for the classes. Images
are mapped to the same representation space by
learning predictors for each individual attribute
in a supervised way using a dataset of images
from other, potentially unrelated, object classes
and their attribute descriptions. For example, a
classifier for the attribute has stripes could be
learned from images of tigers and bumblebees
as positive examples, as well as lions and horses
as negative examples. The representations in
attribute space are then compared geometrically
or probabilistically. Parallel work [3] described
multi-class classification with generic semantic
output spaces and coined the term zero-shot
learning for this setting.

Zero-Shot Learning Based on Similarity
Learning
Similarity-based techniques are able to leverage
also other more readily available sources of con-
text, such as natural language descriptions [4]
or the class name itself [5]. A large number
of recent zero-shot learning methods follow the
same blueprint: one uses an existing technique
to extract a feature vector from an image, e.g., a
pre-trained convolutional network, and a different
existing method to represent the available class
information, e.g., a word vector embedding of
the class name. Then, one uses a dataset of
images with potentially unrelated class labels to
learn a linear or nonlinear similarity function
between both representation spaces. Examples of
this framework include [5–10]. They differ in

the parameterization and learning objective that
is used to determine a similarity function. A
detailed survey and an experimental comparison
of these techniques can be found in [11].

Open Problems

So far, the accuracy of zero-shot learning for
multi-class object detection is still lower than
what supervised techniques are able to achieve,
even if those have access only to a small number
of training examples per class. Therefore, zero-
shot learning mostly finds application for special-
ized tasks with many classes where it is hard to
obtain training examples for all classes, such as
ecology. Related approaches to learning without
training data have found more widespread use,
such as machine learning translation for rare lan-
guages [12], or personalized recommendations
for users without historic data [13].
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