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The landscape of computer vision has undergone dramatic changes mainly
due to the introduction of machine learning (ML) techniques, including deep
learning, since the publication of the first edition 6 years ago. ML techniques
have made inroads into almost every corner of computer vision, provided
significant impacts, and established high-performance modules. The impact
has been so great that certain researchers call, for a joke, the post-introduction
period of ML as AD-CV era and the pre-introduction period as BC-CV era. It
was natural to cover these ML techniques in the AD-CV era, and the primal
purpose of this revision was, thus, to collect AD-CV topics.

On the other hand, the classic BC-CV methods are not well shared by the
younger generations. Especially, the development speed has been so rapid
and most of the presentations have been made in conference papers with page
limits. As a result, older BC-CV methods have often been neglected and for-
gotten in spite of their fundamental importance. The Master said, 2z ZX#7.”
Bernard de Chartres also said, “nani gigantum umeris insidentes.” The wis-
dom of mankind can only progress on the basis of what has been accumulated
so far. Otherwise, it will become a tower on sand, developing the same
methods over and over again, without any progress. To avoid this, I decided to
retain those old BC-CV techniques under the title “Traditional Approaches.”

I hope this book will contribute toward a prosperous development of the
computer vision community.

Redmond, WA, USA Katsushi Ikeuchi, Editor in Chief
Suita, Japan Yasuyuki Matsushita, Associate Editor in Chief
Tokyo, Japan Rei Kawakami, Assistant Editor in Chief

August 2021



Computer vision is a field of computer science and engineering; its goal
is to make a computer that can see its outer world and understand what
is happening. As David Marr defined, computer vision is “an information
processing task that constructs efficient symbolic descriptions of the world
from images.” Computer vision aims to create an alternative for human visual
systems on computers.

Takeo Kanade says, “computer vision looks easy, but is difficult. But, it is
fun.” Computer vision looks easy because each human uses vision in daily
life without any effort. Even a new-born baby uses its vision capability to
recognize the mother. It is computationally difficult, however, because the
original outer world is made up of three dimensional objects, while those
projected on the retina or an image plane, are of only two dimensional images.
This dimensional reduction from 3D to 2D occurs along the projection from
the outer world to images. “Common sense” needs to be used to augment the
descriptions of the original 3D world from the 2D images. Computer vision is
fun, because we have to discover this common sense. This search for common
sense attracts the interest of vision researchers.

The origin of computer vision can be traced back to Lawrence Roberts’
research, “Machine Perception of Three-Dimensional Solids.” Later, this
line of research has been extended through Project MAC of MIT. Professor
Marvin Minski, the then director of Project MAC, initially believed that
computer vision could be solved as a summer project of an MIT graduate
student. His original estimation was wrong, and for more than 40 years we
have been investigating various aspects of computer vision.

This 40-year effort proved that computer vision is one of the fundamental
sciences, and the field is rich enough for researchers to devote their entire
research lives to it. This period also reveals that the field contains a wide
variety of topics from low-level optics to high-level recognition problems.
This richness and diversity were an important motivation for us to decide to
compile a reference book on computer vision.

Lawrence Roberts’ research contains all of the essential components of
the computer vision paradigm, which modern computer vision still follows:
homogeneous coordinate system to define the coordinates, cross operator for
edge detection, and object models represented as a combination of edges.
David Marr defines his paradigm of computer vision: shape-from-x low-level
vision, interpolation and fusion of such fragmental representations, 2-1/2D
viewer-centered representation as the result of interpolation and fusion,
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and 3D object-centered representation. Roughly, this reference guide follows
these paradigms, and defines the sections accordingly.

The online version of the reference guide is intended to be developed
continuously, both by the updates of existing entries and by the addition
of new entries. In this way, it will provide the resources to help both
vision researchers and newcomers to the field be on the same page with the
continuing and exciting developments in computer vision.

This reference guide has been completed through a team effort. We are
most grateful for all the contributors and section editors who have made this
project possible. Our special thanks go to Ms. Neha Thapa and other Springer
colleagues for their assistance in the development and editing of this reference
guide.

March 2014 Katsushi Ikeuchi, Editor in Chief
Yasuyuki Matsushita, Associate Editor in Chief
Rei Kawakami, Assistant Editor in Chief

Preface to the First Edition
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Dr. Ikeuchi and his students developed a technique to automatically
generate a virtual reality model by observing actual objects along the line of
the physics-based vision paradigm [Sato Y, Wheeler MD, Ikeuchi K (1977)
Object shape and reflectance modeling from observation. In: Computer
graphics proceedings, SIGGRAPH97, Los Angeles, pp 379-387]. This early
work is considered one of the starting points of the area later referred to as
“image-based modeling.” After returning to Japan, he and his team began to
apply the image-based modeling technique to model various cultural heritage
sites that were in danger of being lost due to natural and man-made disasters.
This project is now known as the e-Heritage Project. He and his team
succeeded in modeling all three big Buddha statues in Japan as well as the
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to the introduction of robot technologies to production lines is the so-called
bin-picking problem: how to pick up one part from a stack of the same parts.
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system that could pick up a mechanical part from a stack [Horn BKP, Ikeuchi
K (1984) The mechanical manipulation of randomly oriented parts. Sci Am
251(2):100-111].

It was evident that the next obstacle was the cost of programming after
completing the bin-picking system. In the early 1990s, he began a project
to make a robot program that learns robot motions from observing human
operators’ performances [Ikeuchi K, Suehiro T (1994) Toward an assembly
plan from observation, part 1: task recognition with polyhedral objects.
IEEE Trans Robot Autom 10(3):368-385]. He and his team demonstrated
that this method, programming-by-demonstration, can be applied to handle
not only assembling block-world objects, but also machine parts as well
as flexible objects such as rope knotting tasks [Takamatsu J et al (2006)
Representation for knot-tying tasks. IEEE Trans Robot 22(1):65-78]. Along
with his students, he further extended the method in the domain of whole
body motions by a humanoid robot [Nakaoka S et al (2007) Learning from
observation paradigm: leg task models for enabling a biped humanoid robot
to imitate human dance. Int J Robot Res 26(8):829-844]. They succeeded
in making a dancing robot, which can learn Japanese folk dance from
observation, and mimic such dance. He received several best paper awards
from this line of work, including IEEE KS Fu Memorial Best Transaction
Paper Award and three RSJ Best Transaction Paper awards.
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Synonyms

Detection and localization; Event recognition

Definition

The goal of human action recognition is to tem-
porally or spatially localize the human action of
interest in video sequences. Temporal localiza-
tion (i.e., indicating the start and end frames of
the action in a video) is referred to as frame-level
detection. Spatial localization, which is more
challenging, means to identify the pixels within
each action frame that correspond to the action.
This setting is usually referred to as pixel-level
detection. In this chapter, we are using action,
activity, and event interchangeably.
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Background

Three main ingredients of action research are
visual features, machine learning methodology,
and datasets. Recent years have witnessed a
tremendous increase in research and development
in all these areas of research. Several new
visual features have been proposed which range
from handcrafted local and global features
and deeply learned visual features for action
recognition and detection. Almost all the machine
learning techniques have been applied to achieve
robust action classification. Most of the action
classifications methods gear around supervised
approach [1-3]. Since obtaining labels of videos
for the supervised approach is quite a time-
consuming and costly, several weakly supervised
[4-8] and unsupervised approaches [9-11] have
been proposed.

The availability of diverse and real-world
representative datasets plays a crucial role in
research and development in any field. Several
large scales, diverse, real-world representative
datasets have been introduced in recent years.
These datasets include videos from sports,
movies, daily lives, and person-environment
interaction videos [12-20].

In what follows, we provide a brief review
of some of the very important visual features
techniques, machine learning approaches to learn
action classifiers, and some of the recent action
datasets.

Visual Features for Action
Recognition

To recognize and localize human action in
videos, several recent visual features have been
proposed. Good visual features are invariant to
scale, rotation, affine transformation, brightness
changes, occlusion and camera motion, and
position. Overall, there are two types of features,
i.e., handcrafted features and features, learned
through deep networks. In handcrafted features,
there are further two categories. Local features
are extracted by the dense sampling of the videos
or finding interest points in frames, whereas

Action Recognition in Real-World Videos

holistic features gather features that extract global
shape, structure, and contextual information of
the human body and make a 3D volume of
space-time. These features contain the human
pose information at a different time and spatial
location of the person in video frames. Deeply
learned features capture both local and global
information in the same framework.

Hand-Crafted Visual Features

Holistic = Features Holistic  representations
extract features from global regions (whole frame
or whole human body) which are invariant to the
cluttered background and appearance changes.
Yilmaz et al. [21] purpose space-time volume
(STV) to take space-time information of action.
SVT is generated by stacking the 2D object
contour in the image plane with respect to
time to make a space-time volume. Differential
geometric properties from STV are shown to be
the invariant viewpoint. Another technique of
getting motion information is through algorithm
optical flow which computes the direction of
motion on two consecutive frames. The shape
model presented in [22] learned a prototype tree
for action recognition.

Local Features In local representation,
spatiotemporal keypoints (corners, edges, etc.)
are detected in the video and descriptors made
over these key points are used to capture the
local motion information. Laptev et al. [23]
(called STIP) extended Harris corner detector
in space-time domain. They used a normalized
spatiotemporal Laplacian operator to detected
events over temporal and spatial scales. Local
representation overcomes the problems in holistic
representation.

Spatiotemporal interest points capture infor-
mation for a short duration of time and hence
cannot capture long-term duration information.
Wang et al. [24] extract dense trajectory features
for capturing long-duration information. Feature
points are densely extracted on gird of pixels, and
these points are tracked in consecutive frames
to make dense trajectory. HOG (histograms of
oriented gradients), HOF (histograms of optical
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flow), and MBH (motion boundary histogram)
are computed along the trajectory to extract static
appearance information, local motion informa-
tion, and encode relative motion information,
respectively. This method is shown to perform
much better than STIP because trajectory cap-
tures the motion and dynamic information.

Deep Network-Based Features

With the resurgence of deep learning, several new
features are introduced for action recognition.
Below, we briefly explain some of the most used
deep features.

Two-Stream Convolutional Networks Simon-
yan et al. [25] proposed two-stream deep
networks for action recognition that have two
separate input streams (spatial, temporal). The
spatial stream uses information from still video
frames, while the temporal stream uses the dense
optical flow. Both streamed are fused to produce
the final output. Their model is inspired by the
two-streams hypothesis in which the human
visual cortex contains two paths: the ventral
stream (which performs object recognition) and
the dorsal stream (which recognizes motion).

3D ConvNets (C3D) Tran et al. [26] purpose
deep three-dimensional convolutional networks
(3D ConvNets) for learning of spatiotemporal
features and a simple linear classifier. They
showed good performance on different video
analysis tasks with these learner features.
Network architecture is as follow: it has eight
convolution layers, five pooling layers, followed
by two fully connected layers, and a softmax
output layer. Convolution kernels are of size 3 x
3x 3, whereas the pooing kernels are of size 2 x
2x 2 except for first pooling layer which has
1 x 2x 2. Finally, each fully connected layer has
4096 output units.

Inception-3D Carreira et al. [27] purpose a new
two-stream inflated 3D ConvNet called I3D in
which 2D ConvNet trained for image classifi-
cation is expanded to 3D ConvNet that extract
spatiotemporal feature from a video. They con-
vert 2D ConvNets that accurately work with 2D-

image classification models into a 3D model
by adding one additional dimension to 2D filter
and kernel. Resulted kernel and filters have an
additional temporal dimension where 2D — N x
N filters converted into 3D — N x N x N. As
mentioned before, inspired by two-stream net-
works [25] for videos classification, Carreira et
al. [27] use two 3D-Streams; one for RGB and
other for optical flow. Both networks are trained
separately, and the results are averaged.

Multi-fiber Networks Chen et al. [28] pur-
posed multi-fiber networks architecture that com-
posed of separately connected multiple fibers
or lightweight 3D convolutional networks which
are independent of each other. In this way, a
complicated neural network is divided into a
group of different small networks. They increase
the model efficiency by reducing the number of
connections in the network. The number of con-
nections is reduced by slicing the conventional
complex residual unit into fixed separate parallel
paths (called fibers). They solve the information
blockage problem across the paths using fully
convolution layer at the beginning and end of
each unit and use a multiplexer that redirects
and amplifies features from all fibers. The paper
shows state-of-the-art action recognition accu-
racy with less computational time.

Action Datasets

In this section, we briefly review some of the
recent action detection datasets.

THUMOS-14

THOMOS-14 [20] contains videos of a large
number of human action classes. The dataset
contains a variety of actions including normal
daily life activity (brushing teeth) and sports
actions (golf swing). It contains a total of 18,394
video sequences. They have used the entire
UCF101 data for training, and testing is done
on 1579 videos that contain one or more action
instances in it.
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UCF-Crime

Sultani et al. [19] proposed a new anomaly
detection dataset named as UCF-Crime. The
UCF-Crime dataset contains untrimmed real-
world surveillance videos. It contains 13 real-
world anomalies, including abuse, arrest, arson,
assault, road accident, burglary, explosion,
fighting, robbery, shooting, stealing, shoplifting,
and vandalism. This dataset contains a total of
1900 video clips. The total duration of 1900 clips
is 128 h at 30 fps with 240 x 320 resolutions.
They use 800 normal and 810 anomalous videos
for training, and the remaining 150 normal and
140 anomalous videos are used for testing (Fig 1).

ActivityNet

ActivityNet [18] is a large-scale action dataset
that contains 203 activity classes like eating,
drinking, sport, exercise, and relaxing. This
dataset contains a total of 1900 video clips. The
total duration of 19,994 clips is 849h at 30 fps
with 1280 x 720 resolutions. They have used
50% videos for training, 25% videos for testing,
and the remaining 25% videos for validation.

EPIC-Kitchens

The EPIC-Kitchens dataset [17] contains videos
of different kitchen actions. In these videos, the
camera is mounted on the face of the person.

ActivityNet

Mopping

EPIC-Kitchens

THOMAS 14

Swing Typing Yoyo

Videos are taken from 32 different kitchens. The
dataset contains 819 different actions like a wash,
adjust heat, pour oil, and put the bottle. The total
duration of video clips is 55 h having 45 million
frames at 60 fps and 1920 x 1080 resolutions.
They split the dataset in which 80% videos are
used for training and the remaining 20% are used
for testing.

UT Egocentric

UT Egocentric dataset [16] contains four videos
of different action captured by a camera mounted
on the head of a person. The duration of these
videos are about 3-5h long and are captured
in a natural and uncontrolled environment.
The actions include driving, eating, shopping,
cooking, and attending lectures. The total
duration of 4 clips is 17 h at 15 fps with 320 x 480
resolutions. In this dataset three videos are used
for training, and one video is used for testing.

Moments in Time

Moments in Time dataset [15] is generated by
MIT-IBM Watson Al Lab to help the vision
system to understand and recognize the action in
the videos. The dataset contains videos of people,
animals, objects, or natural phenomena. It con-
tains 339 action classes and one million labeled
3-s videos at 5fps. They generate a training set
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Action Recognition in Real-World Videos, Fig. 1 Typical frames from some of the most popular action datasets



Action Recognition in Real-World Videos

of 802,264 videos having 500 to 5000 videos per
class. The test set of 67,800 videos has 200 videos
per class.

YouTube M8

YouTube M8 [14] was generated by Google
in 2016 which contains 6.1 million video ID
taken from YouTube and duration of video clips
are 350,000h at 1fps. There are approximately
3862 classes in this dataset, and class labels
are machine-generated. In this dataset, a single
video has multiple labels, and average labels per
video are around three. The dataset contains pre-
computed audio and visual features from video
frames that are easily used to train machine learn-
ing models. Both feature and video-level labels
are available for download. They split videos into
three partitions, train 70%, validate 20%, and
test 10%. They want to make their dataset as
a baseline to evaluate the various classification
models using popular evaluation metrics.

Charades

Charades [13] is a very large temporal video
action dataset that is presented in ECCV 2016.
To make their dataset more realistic, they record
different indoor action videos by 267 unique
users according to predefined sentences. These
sentences are made from fixed vocabulary which
includes objects and actions of different kinds.
The dataset contains a total of 9848 annotated
videos of 157 different actions having a length
of 30s. The annotation contains both descriptions
of the video and temporal intervals of different
performing actions.

AVA Actions Dataset

Atomic visual actions (AVA) [12] is a densely
labeled video action dataset of untrimmed videos.
In this dataset, actions are labeled with respect
to both temporal and spatial locality and have 80
different atomic visual actions. Multiple labels on
single humans are annotated, resulting in 1.62M
of total dens labels. It contains 430 different video
clips having a duration of 15 min. Every person
is labeled with a bounding box and type of action
from its atomic visual action vocabulary.

Action Recognition Approaches

In what follows, we briefly review some of the
recent fully supervised, weakly supervised, and
unsupervised action recognition approaches.

Supervised Action Recognition

Supervised action recognition assumes the
availability of complete labels of all the classes
to be learned. Although, getting videos annotated
is quite a time-consuming and costly task, the
supervised action recognition methods have
much higher detection accuracy as compared to
unsupervised or weakly supervised approaches.

Jain et al. [1] presented that object encoding
improves the performance of action localization
and classification. They have obtained responses
of 15,000 object detectors for each frame of
video and averaged those responses to video
representation. They demonstrated that these
object-based representations provide good action
recognition and detection accuracy. They also
demonstrated that object-action relations are
generic and it can be used for transfer learning
between different datasets.

Choutas et al. [2] proposed an interesting
approach for robust human recognition using
a new representation called potion. The potion
is obtained by temporally aggregating the
probability maps of the human pose estimator.
They assigned different colors to human poses
depending on their relative temporal location in
the videos.

Recently, Hu et al. [3] proposed an encoder-
decoder framework using 3D separable convolu-
tion for the pyramid pooling of efficient human
action recognition and segmentation. Their pro-
posed approach is efficient and provide very good
segmentation and action detection as compared to
several competitive baselines.

Weakly Supervised Action Detection

Weakly supervised action detection falls
between supervised learning (labeled data) and
unsupervised learning (no labels). In weakly
supervised learning, the complete annotations of
the concepts to be learned are not available during
training. For example, for spatiotemporal action



detection, instead of spatiotemporal bounding
boxes, only the video-level labels are available
during training. However, on testing, the classifier
needs to provide spatiotemporal bounding boxes
of actions. Weakly supervised approaches help in
reducing the time, effort, and cost of annotations.

Nguyen et al. [7] proposed a sparse pooling
network to temporally localize human action in
the videos. They introduced a method to generate
temporal class activation mapping in the two-
stream framework and demonstrated improved
detection results.

Wang et al. [6] introduced a new end to
end architecture, called UntrimmedNet. It gen-
erates short clips proposal from videos by uni-
formly sampling. After extracting the network
from a pre-trained network, action labels are
predicted for each temporal segment. Further-
more, the selection module is proposed to rank
important action proposals. Finally, the output of
the classification and selection module are fused
to produce a final classification.

Singh et al. [5] used a different and new
approach to that problem called Hide and Seek.
Instead of changing the algorithm, they change
the input video. During training, they randomly
remove the frames and hence force the network to
learn all the discriminative frames which produce
good classification results. These automatically
discovered frames are then used for action
classification.

Chang et al. [4] purposed Discriminative Dif-
ferentiable Dynamic Time Warping (DTW) that
uses weak supervision to segments and aligns the
video frames. At training time, only the ordered
list of action is provided. The main contribution
of their work is to make an alignment loss to be
differentiable.

Weakly supervised anomaly detection algo-
rithms in [29] developed multiple instance rank-
ing loss for criminal activity detection in surveil-
lance videos. Training labels of being normal and
abnormal are assigned at video level, and a model
is a train to temporally detect abnormal activists
in videos.

Unsupervised Action Recognition
Due to the availability of free humongous visual
data, several researchers have worked on design-
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ing unsupervised approaches for action recogni-
tion. The key advantage of unsupervised action
recognition is that it does not need any kind of
manual annotations. The design of such unsuper-
vised methods can save time and cost and evade
manual annotations biases.

Generally, in unsupervised action recognition,
the first step is clustering. The visual features
are extracted from the videos, and based on fea-
ture similarities, videos are grouped into separate
clusters. After that, the classifier is learned on
these clusters. This is followed by the iterative
process in which both classifiers and clusters
are improved. As compared to fully supervised
action recognition, less research work has been
done in unsupervised action recognition. Below,
we describe some of the recent works for unsu-
pervised action recognition.

Jones et al. [11] proposed feature grouped
spectral multigraph (FGSM) approach for unsu-
pervised action recognition. Firstly, feature clus-
tering generates the number of action classes
or feature space. Secondly, for each feature, a
separate graph is generated. Multigraph Spectral
Embedding is found on each graph, and these
embeddings are combined into a single represen-
tation.

Yu et al. [10] introduced a technique in which
video frames are categories by a collection of
spatiotemporal interest points (STIPs). They use
the histogram of gradient (HOG) and histogram
of flow (HOF) as a descriptor of STIP. A random
forest is built to model the distribution of high-
dimensional feature space. After that, from this
random forest, each STIP is matched to the
query class and provides a voting score for each
action type.

Recently, Soomro et al. [9] proposed a novel
unsupervised approach for action detection. They
clustered action videos using a dominant set clus-
tering algorithm. After that discriminative clus-
tering is applied which is followed by the variant
of knapsack optimization. They have demon-
strated competitive results compared to several
baselines. Finally, Sultani et al. [30] proposed
an unsupervised way to rank the action proposal
in the videos. They demonstrated that better re-
ranking of action proposals leads to better action
detection accuracy (Fig.2).



Action Recognition in Real-World Videos

1. Video Action Clusters
2. Action Annotations
3. Action Localizations

+ Multiple Video Action Classes
+ NoVideo Labels
+ NoAnnotations

Unsupervised

Positive bag

_ Anomaly video

KI_;I"'IIII

32 temporal segments

32 temporal segments

| Y [ N O i i

Ié;'d:‘ 2
4 dda

Normal video

Negative bag

Bag instance (video segment)

w
i
z
E
g
=

t=T

Vlsual
l'uul.u res

mn _Tl’ii

A1 Pmbabili:y ]

<f v

(2D/3D esumated poses |

\

[t=0 t=1 =T [|t=0 t=1 k-T
e e
Y t
Appearence : Pose
: recognjtjon : . recognition

Aggregallun |
Action: Basehﬁll pitch”

Supervised

Instance scores in positive bag

MIL Ranking Loss with sparsity
and smoothness constraints

Instance scores in negative bag

Weakly Supervised

Action Recognition in Real-World Videos, Fig. 2 Examples of recently proposed unsupervised [9], weakly
supervised [29], and supervised [31] action classification approaches

Action Segmentation

The desired output of the action segmentation is
to generate a segmentation mask on the regions
of video where the action is being performed
including start time, end time, and action class
label. Many papers use different techniques for
action segmentation. Jhuang et al. [32] describe
the importance of action segmentation in video
data. They show that different types of anno-
tations on the same dataset change the perfor-
mance of the algorithm. They described that 2D
puppet model of humans (made from 10 body
parts connected by 13 joints) show significant
improvement in classification rather than using
bounding boxes, class level label, or temporal
localization of action in the video. Lu et al.
[33] found a single and hierarchical MRF model
which showed significantly improved results in

action segmentation. They also found that bound-
ing box and action segmentation mask improve
results over the video-level label, and specifically
segmentation mask gets better results than bound-
ing box. Ghosh et al. [34] introduced stacked spa-
tiotemporal graph CN for action segmentation.
Graph-based CNN uses a combination of spatial
and temporal dynamics for better segmentation.
Their method is an extension of the spatiotem-
poral graph CN that was developed for skeleton-
based action recognition.

Trimmed Video Action Classification

Trimmed action videos contain single action from
start to end of the video. These types of videos are
usually shorter in length around 10-15s. Sultani
et al. [35] introduced a novel approach in which



they used web images to achieve spatial action
localization in trimmed action videos. Soomro
et al. [36] used supervoxels for capturing the rela-
tion between spatiotemporal segmentation in the
video. Initially, they started with random super-
voxels during training and then found matching
supervoxels and used those to localize action
at testing time. Carreira et al. [27] purpose a
two-stream Inflated 3D ConvNet called I3D that
extracts spatialtemporal feature form video. The
idea behind I3D is to expand 2D ConvNet trained
for image classification into 3D ConvNet for
video action classification. They convert 2D Con-
vNets that accurately work with 2D-image clas-
sification models into a 3D model by adding one
additional dimension to the 2D filter and kernel.

Untrimmed Video Classification

Untrimmed videos are comparatively longer in
time and contain multiple actions and/or single
action which is repeated several times in the
same video. They are more close to real-world
settings. These types of videos are usually around
5 to 15min long. Singh et al. [37] introduced
a method in which they performed the tasks
of action classification by combining video-level
global feature and frame-level features and gener-
ated temporal action proposals by using dynamic
programming. Montes et al. [38] introduced a
simple method in which they used the features
from 3D Convolutional Neural Network (C3D)
and employ recurrent neural networks (RNN) to
perform action classification.

Temporal Action Detection

Temporal action detection algorithms seek to
identify the frames of the video where the action
is being performed. Recently, several approaches
are being presented for the temporal action
detection including [37-39]. Zhao et al. [39]
purposed a novel approach called a structured
segment network (SSN) in which the temporal
structure of action is represented with a structured
temporal pyramid.

Spatiotemporal Action Detection
Spatiotemporal action classification is a much
harder problem where we want to do temporal
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localization (starting and ending frame of the
action) as well as spatial localization.Several of
the above mentioned papers accomplished spa-
tiotemporal action classification [35,40]. Singh
et al. [40] introduced a new efficient action tube
generation algorithm employing optical flow for
action localization and classification.

Action Recognition Challenges

Action Recognition Challenges aim to mature
the computer vision algorithm across dif-
ferent domains such as surveillance videos,
indoor/outdoor activities, wildlife observation,
and action anticipation Generally, the organizing
committees of these challenges release some new
large-scale datasets, and participants across all
over the world compete with each other on these
datasets. Below are some of the famous computer
vision competitions.

THUMOS Challenge

THUMOS workshop and challenge (http:/
www.thumos.info/home.html) contributes a lot
in defining new challenges and approaches in
automatic action recognition and localization.
The challenge is performed on the THUMOS
2015 dataset which is a very large action
recognition dataset of untrimmed videos
recorded in realistic scenes taken from YouTube.
THUMOS 2015 is an extension of THUMOS14,
but it has 430h of videos that are 70% larger
than THUMOSI14. The participants trained
their models and checked their performance on
both action classification and temporal action
localization.

AVA Challenge

AVA Action challenge (https://research.google.
com/ava/challenge.html) aims at exploring new
approaches for action recognition in both space
and time on the AVA dataset. In this challenge,
participants have to identify 80 video classes of
actions. Performance is evaluated on the local-
ization of action in both time and space. AVA
dataset is quite challenging as multiple people
are doing multiple actions in the video. In 2019
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Facebook Al Research (FAIR) won this challenge
with 34.24% mAP at 0.5 IOU.

EPIC-Kitchens Action Recognition

Challenge

EPIC-Kitchens Action Recognition Challenge
(https://epic-kitchens.github.io/2020) aims to
classify trimmed videos of seen and unseen
kitchens action in EPIC-Kitchens dataset. Videos
are recorded by a camera mounted on the face of
people in 32 different kitchens. The task in this
challenge is to classify the action segments from
a trimmed video. Noun and verb classes jointly
define the action class for a segment. Participants
have to provide confidence scores for each noun
and verb class for their submission. The highest
top-1 accuracy of this challenge in 2019 on the
action recognition task is 41.37% with 25.13%
precision and recall 26.39%.

Charades Activity Challenge

Charades Activity Challenge (http://vuchallenge.
org/charades.html) aims to explore challenges
and methods on automatic action recognition
tasks on indoor daily life activities of people, by
providing realistic videos from Charades dataset.
Charades is a very large dataset of diverse videos
from daily life activities including sitting on a
chair, opening doors, working on computers, and
drinking water. The aim is to boost the action
recognition accuracy in real daily life tasks. There
are two separate tracks in this challenge: classi-
fication track and localization track. The classi-
fication track is to classify all activities/actions
of the given video. The localization track is to
localize the intervals of a specific action. The top
accuracy of the winning team in this challenge is
34% mAP.

Open Problems

Although tremendous research work has been
done in different areas of action recognition
problems, there are still several areas that are
less explored. CCTV surveillance cameras are
ubiquitous nowadays and recording humongous
about of data 24/7. Most of these videos are of

low quality. There is not much research work for
the detection of actions in CCTV cameras. Stat
of the art action recognition methods performed
quite poorly on CCTV videos. Action detection
under different weather conditions (rain, snow,
shadow) is not much explored. Action detection
in the videos capturing night scenes is still an
unexplored area. Only a little research work
has been done for action recognition from far
cameras (cameras mounted to the top of the
building). Furthermore, a lot of work needs to
be done for action detection and localization in
crowded environments.
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Synonyms

Linear shape and appearance models

Definition

An active appearance model (AAM) is a sta-
tistical generative model of deformable objects,
which simultaneously models shape and appear-
ance variation. The term AAM often refers to
not only a model but also a fitting algorithm
associated with the model.

Background

When a deformable object changes its shape,
the deformation affects both the 2D shape and
appearance (texture) on the captured images of
the object. Modeling such shape and appear-
ance variation enables us not only to synthe-
size photo-realistic images but also to interpret
images (interpretation by synthesis). That is, once
a parametric generative model is fit to an object
in an image, the model parameters “explain” the
object in terms of its position, orientation, scale,
shape, and appearance. Therefore, a variety of
parametric shape and appearance models were
extensively studied in the late 1980s to the early
1990s to realize efficient and stable deformable
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object detection and fitting algorithms. In particu-
lar, statistical linear models have been considered
as promising models for shape [5, 6] and appear-
ance [19] variation because they are trainable and
therefore more suitable for describing the actual
distribution in the real world.

A statistical linear model of shape variation is
referred to as a point distribution model (PDM)
[5], where a shape is described by a vector (a
list of landmark points), and its statistical dis-
tribution is trained from examples. The active
shape model (ASM) [6] is a typical method in
which 2D PDMs are applied. Similar to active
contour models (snakes) [14], the ASM algorithm
iteratively moves each point of a shape toward
local features (e.g., edges) to find the pose and
shape of a deformable object in an image. Here,
PDMs globally constrain shape variation, i.e.,
deformation is only allowed in the range learned
from a given training set. This is in contrast
to active contour models, which impose local
smoothness constraint through the internal spline
energy.

In the late 1990s, several methods were pro-
posed to combine appearance models with PDMs
[7,12,13,18]. Active blobs describe the appear-
ance information of a deformable object with
patches, where pixel values are interpolated along
with shape warp [18]. 3D morphable models
(BDMM5) utilize a linear model to deal with tex-
ture variation while using a 3D shape model (3D
PDM) for shape deformation [2, 13,20]. AAMs
also employ linear models to describe 2D shape
deformation and appearance variation [7, 12].
There are several variants of AAMs. The original
AAM [6] uses “combined” parameters to model
the correlation between shape and appearance,
while certain other variants of AAMs [3, 15]
model shape and appearance separately. Further-
more, several fitting algorithms have been stud-
ied with associated models [3, 15], as will be
explained later.

Theory
Model

Suppose that N labeled landmark points,
{(xi,yi)}lN:l, describe a 2D shape of a single



12

deformable object. Assume that all points
are aligned in a common coordinate frame
of the object (which will be referred to as
the object coordinate frame), and let x =
(xl,yl,...,xN,yN)T be a shape vector.
In AAMs, shape variation is modeled by
a linear combination of orthogonal modes
Ps.1s--.»Psn € RPV:

n
X=X+ st,ips,i =X+ Psbss

i=1

ey

where X is the mean shape vector, the columns
of Py = [Ps.1r....Psn] € RZVX" are the
orthogonal modes of shape variation, and by =
bs.15 -+, bs,n)T are shape parameters, each of
which corresponds to each shape mode.

Given a set of shape examples (shape vec-
tors) in the object coordinate frame as a training
set, the orthogonal modes, Py, can be obtained
through principal component analysis (PCA) by
considering n eigenvectors corresponding to the
largest n eigenvalues of the covariance matrix of
shape examples. A model of Eq. (1) trained from
shape examples is referred to as a PDM [5],
as explained in the Background. Once a PDM
is trained, a variety of deformed shapes can be
generated by changing its shape parameters.

Appearance is typically defined within the
mesh with the mean shape, X, where an image
defined over the pixels inside the region of mesh
x is referred to as a shape-normalized image. Let
g € RM be an appearance (texture) vector con-
structed by sampling intensity information of the
shape-normalized image, where M is the number
of sampling points. We here assume gray-scale
images for simplicity, while the model can be eas-
ily extended to color images. In AAMs, appear-
ance variation is described by a linear combina-
tion of the orthogonal modes pg 1,...,Pgn €
RM similar to shape variation:

m
g=8+ ) beiPei =8+ Pby. ()

i=1

where g is the mean appearance vector, the
columns of P, = [pg1,...,Pgm] € RMxm
are orthogonal modes of appearance variation,
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and b, =
parameters.

Each example image is warped to obtain a
shape-normalized image to train the model.
Assume that each example image in a training
dataset is annotated with N labeled landmark
points, X = (X1, Y1, ..., XN, YN)T. By warping
the intensity information within the mesh with
vertices X to the mesh with X, we obtain
a shape-normalized image. Here, piece-wise
affine warp of triangle patches is typically used
considering mesh correspondence between X
and Xx. The total appearance information inside
the shape-normalized image is then sampled
and vectorized to obtain a training example of
appearance vector g, where the intensity values
are standardized appropriately. Through the
warping step, the pixel correspondence among
training examples is achieved, which is a key to
successful appearance variation modeling based
on Eq.(2). Once all training images are aligned
as the shape-normalized images, PCA can be
employed to compute P, from the training data
(a set of appearance vectors obtained from image
dataset), similar to shape modeling. The obtained
modes, i.e., the columns of P,, are considered as
shape-normalized eigenimages.

In the original AAM [8], the correlation of
shape and appearance variations is further mod-
eled as follows. Consider a concatenated vector
of shape and appearance parameters

(bg,1s---, bg,m)T are appearance
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where Wy is a diagonal weight matrix that
balances the scale between shape and appearance
parameters. The concatenated vector is again
described by a linear model

_ _(Os
b=0Qec= (Qg>“’

where ¢ is a vector of shared parameters and
Qs € R™! and O, € R™*! are the subma-
trices of Q.. The columns of Q. € R"+mx!
are [ eigenvectors corresponding to the largest /
eigenvalues of the covariance matrix of b, where
the training examples of b are given by Eq. (3)

“
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with the pairs of by and b, obtained through the
computation of Py and Py, respectively.

Equations (1) to (4) can be summarized as
follows [4]:

X:)_(—FPSWS_] Qxc:i—i_ Qsca
. Q)
g=§+PgQgC=f_;+ Qgc.

In this model, the change of shared parame-
ter vector ¢ generates correlated shape x and
appearance g learned from training examples.
This enables us to simultaneously fit shape and
appearance models to a given image using opti-
mization with respect to c¢. If Q. is the iden-
tity matrix, the two models, i.e., Egs.(1) and
(2), become independent of each other (this is
referred to as an independent AAM in [15]).

Fitting Algorithm
Given a target image, I, and an AAM expressed
by Eq.(5), a fitting algorithm searches several
parameters, including ¢, to optimally fit the model
to the image /. Let X = S(x; t) be a transformed
point set on the target image frame from a point
set (shape) x in the object frame using similarity
transformation S with parameter t, where t =
(sx,sy,tx,ty)T. Here, (sx,sy) = (scosf — 1,
ssin@) describes scaling s and rotation 6, and
(t¢, ty) describes translation. Note that t = 0
yields the identical transformation (i.e., X =
S(x;0)) and S(x;t + 6t) ~ S(S(x;6t); t). Let
g:(1,X) € RM denote the sampled intensity val-
ues of the shape-normalized image warped from
target image [/ using the mesh correspondence
between X and X. Intensity values should also be
normalized appropriately by searching for addi-
tional normalization parameters [9]; however,
these parameters are omitted here for simplicity.
Let r(p) be the fitting error between target
and generated intensity values in the shape-
normalized images, with respect to parameter
p= (CT, tT)T:

r(p) = gs(1, S(x(¢); 1)) — g(o), (6)

where x and g are given by Eq. (5). The fitting
algorithm finds parameter p by solving
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min E(p) = llr(p)|I*. @)

An iterative algorithm can be utilized to minimize
E(p) [3]. The first-order Taylor expansion of 7 (p)
gives
ar
r(p+4ép) =r(p) + @511, 3
where ?’—; is the Jacobian whose (i, j) element is

4= By solving argming, [Ir(p+8p)| 1%, we obtain

an update rule p < p + k&p with

—1
arT or ar '
Sp=—| — — — , 9
p <3p ap) P r(p) 9

where k = 1 for the initial step size and k
is adjusted (using, e.g., k = 0.5,0.25) during
iteration steps so that E(p) decreases. As the
computation cost of g—; is high, it is assumed to
be approximately fixed and pre-computed using
numerical differentiation before the search. In
practice, several techniques, e.g., a multireso-
lution (hierarchical) approach with a Gaussian
image pyramid, are used improve efficiency and
robustness (e.g., to prevent falling into a local
minimum) [9].

When shape and appearance are separately
modeled by Egs. (1) and (2) (i.e., in the case of
independent AAMs), other efficient fitting meth-
ods are available including the inverse composi-
tional image alignment algorithm [15].

Applications

AAMs have been used for a variety of applica-
tions of deformable object fitting (e.g., detection
and tracking) and image synthesis. In particular,
registration on facial images [12] and medical
images [4] are well-known examples.

The relationship between AAMs (to be pre-
cise, independent AAMs) and 3DMMs, which
utilize 2D and 3D shape models, respectively, has
been discussed in detail in [16]. The work has
shown that the parameter size of AAMs becomes
larger compared to 3DMMs in modeling similar
3D deformation and that the 2D shape models
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in AAMs have too much representational power
(i.e., they are able to generate physically unre-
alizable shapes). Therefore, the combination of
AAMs and 3D shape models have also been pro-
posed to impose 3D shape constraint for robust
real-time fitting applications [16,22].

Open Problems

A drawback of the original AAM for object
tracking is its sensitivity to appearance changes
(e.g., change in lighting conditions) because it
models the holistic appearance of a deformable
object. Instead of modeling the total appearance
within an object, recent fitting approaches exploit
constrained local models (CLMs) [10, 11]. Note
that while the term CLM was originally used for
a particular AAM variant in which texture was
sampled only around landmark points [11], it
has often referred to more general models that
incorporate local feature detectors [10] (ASMs
are considered as CLMs in this context [17]).

CLMs combine the local information of land-
mark points, e.g., response maps computed by
a feature detector, with the global shape con-
straint imposed by PDMs. In many cases, CLMs
show better fitting performance compared to the
original AAM. Since the late 2000s, many facial
tracking methods have therefore utilized CLMs
with various extensions of fitting objective func-
tions and optimization strategies for achieving
accuracy, stability, and computational efficiency
[17,21]. 3D shape models, similar to 3DMMs,
have also been used in [1, 17] for facial landmark
tracking in uncontrolled environments.
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Synonyms

Active computer vision; Active object recogni-
tion; Active perception

Related Concepts

Active Sensor (Eye) Movement Control
Animat Vision

Definition

Active Recognition is the task of processing
visual information in order to determine the
presence and identity of a particular element
in a scene by employing an agent that knows why
it wishes to achieve that recognition, chooses
what to sense toward that goal, and determines
how, when, and where to execute the sensing and
recognition actions. Some methods have been
termed active if they emit or project signals
whose reflections back to the sensor play a
role in the processing of visual information.
Others emphasize that processing requires image
sequences rather than a static image, in a way
such that dynamic control of imaging geometry
is not explicitly considered. These methods are
not part of Active Recognition as described here,
and the discussion will focus only on visible light
camera Sensors.

Background

Active Recognition is a necessary methodology
for intelligent agents that need to function in
the real world. This was recognized early with
the 1969 presentation of the SHAKEY robot, the
first general-purpose mobile robot that could rea-
son about its actions [1]. Employing cameras,
rangefinders, and bumpers as sensors, it could be
given a task and then planned how to deploy its
resources, specifically in our context its sensing
resources, to complete that task. From within
this team, emerged perhaps the earliest Doctoral
Dissertation on active perception by Tenenbaum
in 1970 [2], where he described methods to con-
trol camera parameters by computer. For Tenen-
baum, sensor accommodation is automatic and
improves the reliability and efficiency of machine
perception by matching the information provided
by the sensor with that required by specific per-
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ceptual functions. The advantages of accommo-
dation are demonstrated in the context of five
key functions in computer vision: acquisition,
contour following, verifying the presence of an
expected edge, range-finding, and color recogni-
tion. Shortly after, Barrow and Popplestone [3]
pointed out that object recognition is a naturally
active process because a recognition agent can
interact with its environment by shifting its view-
point, walk around an object, or even manipulate
or handle it in order to gain more information and
resolve ambiguities. They presented a broader
perspective by noting that such activities involve
planning, inductive generalization, and indeed,
most of the capacities required by an intelligent
machine. Even so, the idea of active perception
seemed to lay relatively dormant for some time
until Bajcsy [4] wrote: Active sensing is the prob-
lem of intelligent control strategies applied to the
data acquisition process which will depend on
the current state of data interpretation including
recognition. Her paper was titled “Active Percep-
tion” because she correctly noted that not only
vision but all the sensing modalities can benefit
from active methodologies. Active Recognition,
the focus of the current article, is but one of many
visual functionalities within this broader view of
perception. Aloimonos, Weiss, and Bandyopad-
hyay [5] added further structure to the concept
by putting more emphasis on the observer and its
purpose. They suggested that active observation
is driven by an agent’s purpose and the agent’s
activity is intended to manipulate the constraints
underlying the observed phenomena in order to
improve the quality of the perceptual results.
Bajcsy et al. [6] define the broad category
of active perception as follows: The processing
of visual information is active if its agent knows
why it wishes to sense, and then chooses what to
perceive, and determines how, when and where
to achieve that perception. In other words, an
actively perceiving agent is one which dynam-
ically determines the why of its behavior and
then controls the what, how, where, and when
for each behavior. Active Recognition limits the
perceptual component of this definition to the
aspects that directly impact visual recognition,
which for this purpose will be taken to mean
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the detection, identification and localization of a
particular element of a visual scene (e.g., a car,
my cup, etc.). The explicit connection of sensing
to behavior was nicely described by Ballard [7] in
his animate vision concept, writing: An animate
vision system with the ability to control its gaze
can make the execution of behaviors involving
vision much simpler. In addition, resource con-
straints play an important role not only because
of computer power and memory capacity but
also because in practice, the number of sensors
(and other physical components of an agent) is
limited as well. Any agent at any point during
the execution of its task, will necessarily consider
several options or hypotheses about what its next
action should be. Thus, choices must be made
and in part, this is the role of attentive processes.
As Tsotsos [8] wrote: Since several simultaneous
[interpretation] hypotheses can co-exist, a focus
of attention mechanism is necessary in order to
limit the number of hypotheses under consider-
ation. Matching an agent’s capabilities (physical
behaviors, sensors, computational power, timing
constraints, etc.) to its current task requirements
(environment, timing and accuracy of required
response) is an attentive tuning process [9] and
is critical for any real-world agent.

With respect to Active Recognition specif-
ically, the first system to embody all of the
elements of the active vision definition was
that of Wilkes and Tsotsos in 1992 [10]. The
motivation for their approach stemmed from the
fact that single-view object recognition is subject
to many difficulties, mainly due to viewpoint-
related ambiguities, occlusions, and coincidences
[11]. In this work, low-level image data was
used to drive the sensor to a special viewpoint
with respect to the object to be identified.
From such a viewpoint, the three-dimensional
object recognition problem is reduced to a
two-dimensional pattern recognition problem.
Solutions for tasks such as robust tracking of
image primitives from one sensor position to
the next, a simple behavior-based viewpoint
control driven primarily by the current image data
(three behaviors perform image-line-centering,
image-line-following, and camera-distance-
correcting), probabilistic algorithms for efficient
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storage and retrieval of sets of feature vectors,
and a method for selecting additional special
views in the case that there remains uncertainty in
the identity of the object of interest are presented.

Ikeuchi and Hebert [12] considered the task
component of visual recognition and described
two vision systems (a rock sampling system for
planetary rovers and a bin-picking system for
industrial use). They argued for a task-oriented
vision approach to the design of vision systems.
The task-oriented vision approach proposes to
change the architecture of a vision system in a
systematic fashion which depends on each task
specification. They specifically considered the
localization and grasping of 3-D objects. Their
general methodology involved analyzing the task
specification to derive the constraints on its solu-
tion as well as any constraints or requirements on
the vision components. This analysis started with
the type of representation, derived from the type
of grasping selected, and continued down to the
type of sensor.

Dickinson et al. connect attention to Active
Recognition [13]. The attention mechanism con-
sists of a probabilistic search through a hierarchy
of predicted feature observations, taking objects
into a set of regions classified according to the
shapes of their bounding contours, and choos-
ing which predictions to further explore. The
probabilistic feature hierarchy encodes viewpoint
changes possible in order to achieve a particular
view and thus can be used to guide the camera
to a new viewpoint from where the object can
be disambiguated. Further integration of attention
with active recognition is presented by Rasouli
and Tsotsos [14] where saliency measures are
included as a means of non-combinatorial look-
ahead for next view determination.

There are other examples of early work that
used multiple viewpoints but, mostly, these were
pre-determined, such as placing an object on
a turntable and via its rotation acquiring sev-
eral viewpoints that were integrated (e.g., [15]).
These approaches do not satisfy several of the
elements of our definition. Recently, interest has
resurfaced in the deep learning community with
several examples of learned systems that purport
to accomplish active recognition. But again, those
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do not fit our definition. They focus on learning
an environment fully or learning the appearance
of objects from many viewpoints and then per-
forming a classification (e.g.,[16]).

In addition to the already cited sources, the
interested reader can examine the following
collections and reviews [17-27]. Good sources
for active vision as a human capability include
[28,29].

Theory

A Passive Recognition strategy (recognition from
a single image) might suffice for many visual
scenes. However there have always been the tacit
assumption that the image is well-formed, that is,
that the subject of interest in represented roughly
in the center of the image (to avoid boundary
issues), that the subject is sufficiently well lit
(the light is bright enough but not too bright,
the location of the light source relative to subject
and camera does not cause interfering highlights
and shadows), that the pose of the subject in 3D
is one from which recognition can be expected
to be reasonable, that the subject is not overly
occluded, and so on. Whenever any of these
assumptions are violated, an active approach is
the proper remedy. These assumptions are gen-
erally invalid for recognition systems embodied
in a mobile agent operating in the natural world.
These scenarios provide the starting points for
any theoretical or practical development toward
Active Recognition. Below is a table that lists a
few such scenarios plus the kinds of actions a
sensing system might use as part of an Active
Recognition method.

For particular applications, it is sometimes
possible to reduce or eliminate the need for
some of these by engineering the environment
appropriately (e.g., ensure sensors always see
the items of interest with sufficient resolution
and lighting, or, objects of interest are always
within a known sub-image). However, for a
general-purpose agent operating in a dynamic 3D
world, this is usually not feasible. How exactly
each of these or other sensing system actions
are deployed, how the situations for each are
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detected (e.g., [11]), how these contribute to the
successful completion of some task in a given
domain (e.g., [12]), how is an overall recognition
system orchestrated to include multiple behaviors
(e.g., [10, 13, 14]) are all important questions for
any theory of Active Recognition.

Yet another dimension of theoretical analysis
is related to the real world in the sense that any
actual system must live with resource constraints.
A key resource is that of the amount of compu-
tation possible within the physical resources and
time constraints of the agent. The relative com-
putational complexity of active vision when com-
pared to passive vision was laid out [30]. Active
vision includes sampling a scene over time; in
the trivial case with a fixed camera this is simply
processing image sequences. The non-trivial case
of active vision includes any hypothesize-and-test
strategy where the choice of next image sample
is determined by the state of the interpretation
hypothesis space. Typically, there are many pos-
sible interpretations for what is being observed
and the agent must manage this large set of
hypotheses. The solution was formulated using
a strategy that generates many hypotheses for a
potential solution at first, but then with more data,
gradually tightens acceptability constraints and
thus eliminates falsified hypotheses until the best
one remains. The additional data comes naturally
with each image sample in time. Using such a
technique, Tsotsos [30] showed the conditions
under which active sensing approaches actually
provide lower complexity solutions than passive
techniques.

Theoretical analysis also can play the impor-
tant role as a guide to the kind of solution that
is possible. Careful examination of the compu-
tational nature of a problem points the way to
appropriate solutions. For example, for the sen-
sor planning problem — how one determines the
best sequence of sensing actions for an object
search task in an unknown 3D space — Ye and
Tsotsos [31] proved that this problem was NP-
hard. This means that no single solution that is
optimal for all problem instances is possible. As
aresult, they developed a robust heuristic solution
[32]. In general, understanding the computational
nature of a problem at the computational level as
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Marr [33] noted, and at the complexity level as
Tsotsos [34] argues, provides a solid foundation
for developing solutions.

Active Recognition necessarily must interact
with any inference processes within a real-world
agent. Considering the big picture of robotics
research and development, it can be argued that
among the main open questions are the follow-
ing: How can robots figure things out? How
can they reason about their circumstances and
tasks? How can they exploit attention and con-
text, which seem to be key elements for figuring
things out? The current state of the art includes
major advancements largely facilitated by major
developments in computing power and in data-
driven learning methodologies. There is no ques-
tion that data sets and benchmarking have played
major roles. However, they also have drawbacks:
they are static and mostly of unspecified prove-
nance, i.e., all aspects of imaging/scene geom-
etry, illumination, etc., are decided separately,
often unknown to the interpretation system. In
other words, the image acquisition process is
decoupled from the image interpretation process.
Such a decoupled process simply records what-
ever appears within a field of view, independently
of how any parameters are set or the purpose
served by sensing. No matter how much data is
collected or its statistical value, a passive strategy
gives up control over the specific characteristics
of what is sensed, at what time and for which
purpose.

Intelligent agents need to be maximally sensi-
tive to the task-relevant while remaining vigilant
about the task-irrelevant, and thus some con-
nection between perception, their mission, and
task/world knowledge must exist. One such con-
nection could be an effective use of inductive rea-
soning. Inductive reasoning takes specific infor-
mation (premises) and makes a broader general-
ization (conclusion) that is considered probable.
The only way to know is to test the conclusion;
a passive sensing strategy could only do this by
accident. Passive sensing thus impedes the use of
any form of inductive reasoning. It is certainly
possible to restrict an application domain so that
passive sensing suffices (point a sensor in the
right direction in advance, frame the object of
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interest manually, ensure figure-ground segrega-
tion is easy, etc.), but this cannot satisfy the goal
of real-world functionality.

Active inductive inference seems to require a
world model from which to draw inferences and
direct their testing. Figure 1 shows the kinds of
recognition pipelines that depict the differences
just described in terms of the main elements of
recognition paradigms. Figure la portrays the
recognition pipeline found in classic computer
vision, adapted from [26]. Figure 1b shows the
typical pipeline used in systems based on CNN’s
or Deep Learning. Note the major difference with
this and part a; in the classic version, object

classes are represented separately and accessed
as needed, whereas in the learned system, knowl-
edge about object is embedded within the net-
work weights and parameters. Finally, Fig. lc
lays out the recognition pipeline that uses an
active observer. The visual hierarchy and inter-
pretation stages may be either of the classical or
modern type; however they must be able to accept
and use feedback from the prediction stage to
guide processing. Figure lc portrays the active
recognition strategy with the key components of
prediction and closed loop processing including
sensor control. The key point here is that the
prediction stage, based on the current state of
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Active Recognition, Fig. 1 Recognition Pipelines. (a)
This is the recognition pipeline found in classic com-
puter vision. (Adapted from [26]). (b) This is a typi-
cal pipeline used in systems based on CNN’s or Deep
Learning. Note the major difference with this and part
(a); in the classic version object classes are represented
separately and accessed as needed, whereas in the learned

o)

system knowledge about object is embedded within the
network weights and parameters. (c¢) This is a recognition
pipeline with an active observer. The visual hierarchy
and interpretation stages may be either of the classical
or modern type; however they must be able to accept
and use feedback from the prediction stage to guide
processing
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Active Recognition, Table 1 Linkage between scene characteristics and sensing actions that might ameliorate the

difficulties a single image exhibit

Visual scene includes

Scene objects are in motion

Scene objects extend beyond the camera image boundary
Scene objects are occluded making recognition difficult

Scene too large to be captured by a single image

If sensor is foveated, the scene is not uniformly sampled

Resolution of image is insufficient to enable recognition

Scene object not sufficiently well focused

Illumination of scene is too high or too low to permit good

recognition

Degenerate views (such as accidental alignments) cause

recognition ambiguities

decisions for the task of the moment, provides
three kinds of control for processing: it directs the
choice of imaging geometry and sensor parame-
ters to apply for the next scene sample to acquire;
it tunes the visual hierarchy, where possible, to
be most receptive to the kinds of visual informa-
tion needed for the task at that moment; and it
biases the interpretation process for the categor-
ical classes expected from the current sampling
action. The task/decision stage also provides a
bias to the interpretation stage so that regardless
of moment-to-moment bias provided by the pre-
diction stage, the main objective of the current
task will remain active.

Application

Recognition is obviously a function necessary
for any intelligent agent (robot) operating in the
real world. There are many examples of active
agents mostly in the robotics domain. For exam-
ple, consider robots for household tasks such as
help with laundry, load and unload dishwashers,
do preparatory work for cooking meals (e.g.,
chopping vegetables), pick up objects (e.g., toys,
newspaper, clothes, sneakers) from the floor and
move them to the right location, unload groceries

Sensing actions to assist
Move fixation to track motion (pursuit motion)
Move to a different fixation spatial point (saccade)

Change camera viewpoint to reduce or eliminate
occlusion

Move viewpoint to explore the scene

Change fixation location to increase resolution of
portions of interest

Lens zoom
Move camera viewpoint closer
Change aperture (depth of field)

For binocular cameras, change stereo vergence to
appropriate depth plane

Adjust focal length
Adjust shutter speed

Adjust camera viewpoint

Adjust lighting levels

from the car parked in garage, assemble furni-
ture, or help with moving heavy objects. In each
case, if the agent is to engage with the objects
mentioned (e.g., grasping as in [12]), the object
needs to be recognized and localized. If it is
currently within the robot’s camera view, and
the assumptions listed earlier are valid, passive
recognition might suffice. If one of the scenarios
of Table 1 are present however, active methods
are needed. The term visual search refers to the
process of examining different images within a
scene until a target object is found, and this
is a very common function in everyday visual
behavior. Examples of such visual search tasks
have been presented [35-38]. The 2012-2015
DARPA Robotics Challenge included a different
class of applications, all which can benefit from
Active Recognition methods. These were more
clearly industrial tasks, such as driving a vehi-
cle; traverse a rough-terrain course covered with
tripping hazards; clear lumber and pipes that are
blocking an entryway; open doors of any type
(push door, a pull door, door with a self-closing
hinge); climb a ladder; open and close valves; and
more. A nice survey of active search applications
can be found in [37].



Active Recognition

Open Problems

Perhaps the most pressing need is for the cre-
ation of appropriate test environments that permit
active observation. Computer vision researchers
have become accustomed to the use of datasets
and benchmarks in their work. It is a good prac-
tical way to measure how much progress one
is making. But for an active observer, the next
image sample depends on context and the state of
current interpretation; it thus can only be found
in a live environment or in an environment that
is generated in real time given dynamically set
imaging geometry parameters. Protocols to fairly
evaluate performance with such data need to be
agreed on as do methods for creating test data
sets. An example of an early such test environ-
ment is that of the Animat framework [39], while
more recent ones include [40], Gibson [41] and
the Polyhedral Scene Generator [42].

Another open issue is how much control over
camera and imaging geometry is actually neces-
sary for a given application environment? In the
early days of active vision, a great deal of effort
was put into the design and testing of binocular
camera systems (see [6,22] for reviews). Such
developments are still ongoing, but with seem-
ingly lesser intensity (e.g., [43]) and replace-
ments such as the several good RGB-D sensors
(e.g., Microsoft’s Kinect) seem to dominate due
to their ease of use and strong performance in
many environments. Nevertheless, these do not
support several of the why’s of active vision
(specifically, functionality that requires control of
imaging properties such as binocular vergence,
zoom, cyclotorsion, aperture, focal length, volt-
age gain, shutter speed, white balance). Is it
really the case that these are not necessary? Since
each has shown value in the past (for point-
ers see [6]), and most are also part of bio-
logical vision, this question is important. What
capabilities exactly are lost by the adoption of
RGB-D sensors? In general, the impact of vari-
ation in sensing parameters and configuration
has not be adequately considered. Andreopou-
los and Tsotsos [44] show the large impact on
performance of such variations for a large class
of computer vision algorithms. The need for
new sensing hardware that lends itself to active
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control of a broad set of imaging parameters is
strong.

The great majority of active vision approaches
consider one dimension of active functionality at
a time (viewpoint only for example). As should
be clear there are many variables that define
an overall imaging and interpretation scenario
and more emphasis should be placed on how
the control of many variables can be accom-
plished in concert rather than separately (e.g.,
[13,14]).

A final important research direction concerns
the role of machine learning. One example
of a computational learning theory of active
object recognition appears in Andreopoulos and
Tsotsos [45]. Brynjolfsson and Mitchell [46]
looked more deeply into the kinds of domains
where ML can be effective. They concluded
that the key characteristics of such domains
include learning a function that maps well-
defined inputs to well-defined outputs; large data
sets exist or can be created containing input-
output pairs; the task provides clear feedback
with clearly definable goals and metrics; no
long chains of logic or reasoning that depend
on diverse background knowledge or common
sense; no need for detailed explanation of how
the decision was made; a tolerance for error
and no need for provably correct or optimal
solutions; the phenomenon or function being
learned should not change rapidly over time; no
specialized dexterity, physical skills, or mobility
required. As should be clear, the characteristics
of active vision depart significantly from most
of these. In fact, it has been asserted that active
perception breaks deep learning methods. Yet, the
need for systems that learn is undeniable. Most
current examples of learned active recognition
focus on learning how objects appear with
different viewpoints. This seems an important
distinction. It seems that a major direction for
the future will be into developing new learning
paradigms that can deal with actively observing
agents; perhaps Fig. ¢ points to the possibilities.
Specifically, the strategy of learning the views
needs to mature into a strategy of learning how
to select views (including imaging geometry
properties).
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Conclusions

Everyday behavior for humans or computational
agents relies on sequences of perceptual,
decision-making, and physical actions selected
from a large set of elemental capabilities. The
problem of selecting a sequence of actions
to satisfy a goal under resource constraints
is known to be NP-hard [31]. Nevertheless,
humans are remarkably capable. However, the
theoretical results tell us that an end-to-end
solution that covers the full scope of the problem
is unlikely. Perhaps our human capability is due
the fact that we are active observers and actors
within the world. Active vision has the goal
of providing the computational embodiment of
these characteristics and will be a fundamental
methodology for future intelligent agents that can
deal with the enormous breadth of visual settings
and behaviors in a reliable, safe, and predictable
manner.
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Synonyms

Gaze control

Related Concepts

Active Recognition
Evolution of Robotic Heads
Visual Servoing

Definition

Active sensors are those whose generalized view-
point (such as sensor aperture, position, and ori-
entation) is under computer control. Control is
done so as to improve information gathering and
processing.

Background

The generalized viewpoint [1] of a sensor is
the vector of values of the parameters that are
under the control of the observer and which
affect the imaging process. Most often, these
parameters will be the position and orientation
of the image sensor, but may also include such
parameters as the focal length, aperture width,
and the nodal point to image plane distance, of the
camera. The definition of generalized viewpoint
can be extended to include illuminant degrees of
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freedom, such as the illuminant position, wave-
length, intensity, spatial distribution (for struc-
tured light applications), and angular distribution
(e.g., collimation) [2].

Changes in observer viewpoint are used in
active vision systems for a number of purposes.
Some of the more important uses include tracking
moving objects, searching for objects, and
increasing the dynamic range of the sensor,
through adjustment of parameters such as sensor
sensitivity, aperture, and focus.

To carry out these changes in the sensor’s
generalized viewpoint requires computer control
of the sensor’s actuators based on processing
done on the camera video signal. As such, design
of active sensing systems needs the integration of
computer vision and motor control processes.

Theory

Low-Level Camera Motion Control

Systems

Most robotic active vision control systems act
mainly to produce either smooth pursuit motions
or rapid saccadic motions. Pursuit motions cause
the camera to move so as to smoothly track
a moving object, maintaining the image of the
target object within a small region (usually in the
center) of the image frame. Saccadic motions are
rapid, usually large, jumps in the position of the
camera, which center the camera field of view on
different parts of the scene being imaged. This
type of motion is used when scanning a scene,
searching for objects or information, but can also
be used to recover from a loss of tracking of an
object during visual pursuit.

Much has been learned about the design of
pursuit and saccadic motion control systems from
the study of primate oculomotor systems. These
systems have a rather complicated architecture
distributed among many brain areas, the details
of which are still subject to vigorous debate [3].
The high-level structure, however, is generally
accepted to be that of a feedback system. A
very influential model of the human oculomotor
control system is that of Robinson [4], and many
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robotic vision control systems employ aspects of
the Robinson model.

The control of an active camera system is both
simple and difficult at the same time. Simplicity
arises from the relatively unchanging character-
istics of the load or “plant” being controlled. For
most systems the moment of inertia of the camera
changes only minimally over the range of motion,
with slight variations arising when zoom lenses
are used. The mass of the camera and associated
linkages does not change. Inertial effects become
more important for control of the “neck” degrees
of freedom due to the changing orientation and
position of the camera bodies relative to the
neck. The specifications on the required veloci-
ties and control bandwidth for the neck motions
are typically much less stringent than those for
the camera motions, so that the inertial effects
for the neck are usually neglected. The relatively
simple nature of the oculomotor plant means
that straightforward proportional-derivative (PD)
or proportional-integral-derivative (PID) control
systems are often sufficient for implementing
tracking or pursuit motion. Some systems have
employed more complex optimal control systems
(e.g., [5]) which provide improved disturbance
rejection and trajectory following accuracy com-
pared to the simpler approaches.

There is a serious difficulty in controlling cam-
era motion systems, however, caused by delays
in the control loops. Such delays include the
measurement delay due to the time needed to
acquire and digitize the camera image and sub-
sequent computations, such as feature extraction
and target localization. There is also a delay or
latency arising from the time needed to compute
the controller output signal [6]. If these delays are
not dealt with, a simple PD or PID controller can
become unstable, leading to excessive vibration
or shaking and loss of target tracking.

There are a number of approaches to dealing
with delay. PID or PD systems can be made
robust to delays simply by increasing system
damping by reducing the proportional feedback
gain to a sufficiently low value [7]. This results
in a system that responds to changes in target
position very slowly, however, and is unaccept-
able for most applications. For control of saccadic
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motion, a sample/hold can be used, where the
position error is sampled at the time a saccade
is triggered, and held in a first-order hold (inte-
grator) [8]. In this way, the position error seen by
the controller is held constant until the saccadic
motion is completed. The controller is insensitive
to any changes in the actual target position until
the end of this refractory period. This stabilizes
the controller, but has the drawback that if the
target moves during the refractory period, the
position error at the end of the refractory period
can be large. In this case, another, corrective or
secondary, saccadic motion may need to be trig-
gered. For stabilization of pursuit control systems
in the presence of delay, an internal positive feed-
back loop can be employed [4, 8]. This positive
feedback compensates for delays in the negative
feedback servo loop created by the time taken to
acquire an image and compute the target velocity
error. The positive feedback loop sends a delayed
efference copy of the current commanded cam-
era velocity (which is the output of the pursuit
controller) back to the velocity error comparator
where it is added to the measured velocity error.
The positive feedback delay is set so that it arrives
at the velocity error comparator at the same time
as the measurement of the effect of the current
control command, effectively canceling out the
negative feedback and producing a new target
velocity for the controller. Another delay han-
dling technique is to use predictive control, such
as the Smith Predictor, where the camera position
and controller states are predicted for a time T
in the future, where T is the controller delay,
and control signals appropriate for those states
are computed and applied immediately [6, 7].
Predictive methods make strong assumptions on
changes in the external environment (e.g., that all
objects in the scene are static or traversing known
smooth trajectories). Such methods can perform
poorly when these assumptions are violated.

The Next-Look Problem and Motion

Planning

The control of pursuit and saccadic motions is
usually handled by different controllers. While
pursuit or tracking behavior can be implemented
using frequent small saccade-like motions, this
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can produce jumpy images which may degrade
subsequent processing operations. With multi-
ple controllers, there needs to be a way for the
possibly conflicting commands from the con-
trollers to be integrated and arbitrated. The sim-
plest approach uses the output of the pursuit con-
trol system by default, with a switchover to the
output of the saccade control system whenever
the position error is greater than some thresh-
old and switching back to pursuit control when
the position error drops below another (lower)
threshold.

Pursuit or tracking of visual targets is just one
type of motor activity. Activities such as visual
search may require large shifts of camera position
to be executed based on a complex analysis of
the visual input. The process of determining the
active vision system controller set point is often
referred to as sensor planning [1] or the next-
look problem [9]. The next-look problem can be
interpreted as determining sensor positions which
increase or maximize the information content
of subsequent measurements. In a visual search
task, for example, the next-look may be specified
to be a location which is expected to maximally
discriminate between target and distractor. One
principle that has been successfully employed in
next-look processes is that of entropy minimiza-
tion over viewpoints. In an object recognition or
visual search task, this approach takes as the next
viewpoint that which is maximally informative
relative to the most probable hypotheses [10].
A common approach to the next-view problem
in robotic systems is to employ an atfention
mechanism to provide the location of the next
view. Based on models of mammalian vision
systems, attention mechanisms determine salient
regions in visual input, which compete or interact
in winner-takes-all fashion to select a single loca-
tion as the target for the subsequent motion [8].

Application

The earliest robotic eye movement control system
was found in Stanford’s Shakey robot [I11].
There was a resurgence in research on robotic
vision systems in the late 1980s and early 1990s.
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However, at that time commercial camera motion
platforms lacked the performance needed by
robotics researchers and manufacturers. This
led many universities to construct their own
platforms and develop control systems for them.
These were generally binocular camera systems
with pan and tilt degrees of freedom for each
camera. Often, to simplify the design, a common
tilt action was employed for both cameras, and
the pan actions were sometimes linked together
to provided vergence and/or version motions
only. Examples include the UPenn head [12],
the Harvard head [13, 14], the KTH head [15],
the TRISH head from the University of Toronto
[16], the Rochester head [17], the SAGEM-GEC-
Inria-Oxford head [18], the Surrey head [19], the
LIFIA head [20], the LIA/AUC head [21], and
the Technion head [5]. These early robotic heads
generally used PD servo loops, some with delay
compensation mechanisms as described above,
and were capable of speeds up to 180 degrees
per second. The pan axis maximum rotational
velocities were usually higher than those of the
tilt and vergence speeds. The axes were most
often driven either by DC motors or by stepper
motors.

A more recent example of a research system
is the head of the iCub humanoid robot [22].
Unlike the early robotic heads, which were one-
off systems limited to use in a single laboratory,
this robot was developed by a consortium of
European institutions and is used in many dif-
ferent research laboratories. It has independent
pan and common tilt for two cameras as well as
three neck degrees of freedom. The maximum
pan speed is 180 degrees per second, and the
maximum tilt speed is 160 degrees per second.

Currently, most robotic active vision systems
are based on commercially available monocular
pan-tilt platforms. The great majority of com-
mercial platforms are designed for surveillance
applications and are relatively slow. There are a
few systems with specifications that are suitable
for robotic active vision systems. Perhaps the
most commonly used of these fast platforms are
made by FLIR Motion Control Systems, Inc. (for-
merly Directed Perception). These are capable
of speeds up to 120 degrees per second and can
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handle loads of up to 90 Ibs. Commercial systems
generally lack torsional motion and hence are not
suitable for precise stereo vision applications.

The fastest current commercial pan/tilt units,
as well as the early research platforms, only
reach maximum speeds of around 200 degrees
per second. This is sufficient to match the speeds
of human pursuit eye movements, which top
out around 100 degrees per second. However, if
these speeds are compared to the maximum speed
of 800 degrees per second for human saccadic
motions, it can be seen that the performance of
robotic active vision motion platforms still has
room for improvement.
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Definition

Active stereo vision utilizes multiple cameras for
3D reconstruction, gaze control, measurement,
tracking, and surveillance. Active stereo vision is
to be contrasted with passive or dynamic stereo
vision in that passive systems treat stereo imagery
as a series of independent static images while
active and dynamic systems employ temporal
constraints to integrate stereo measurements over
time. Active systems utilize feedback from the
image streams to manipulate camera parameters,
illuminants, or robotic motion controllers in real
time.

Background

Stereo vision uses two or more cameras with
overlapping fields of view to estimate 3D scene
structure from 2D projections. Binocular stereo
vision — the most common implementation — uses
exactly two cameras, yet one can utilize more
than two at the expense of computational speed
within the same algorithmic framework.

The “passive” stereo vision problem can be
described in terms of a system of at least two
cameras attached rigidly to one another with
constant intrinsic camera calibration parameters.
Stereo pairs captured from this geometry are
considered to be temporally independent. Thus
no assumptions are made, nor propagated,
about camera motion within the algorithmic
framework. Passive vision systems are limited to
the extraction of metric information from a single
set of images taken from different locations in
space (or at different times) and treat individual
frames in stereo video sequences independently.
Dynamic stereo vision systems are characterized
by the extraction of metric information from
sequences of imagery (i.e., video) and employ
temporal constraints or consistency on the
sequence (e.g., optical flow constraints). Thus,
dynamic stereo systems place assumptions on
the camera motion such as its smoothness
(and small motion) between subsequent frames
and proper temporal synchronization between
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Active Stereo Vision, Fig. 1 Different types of stereo
systems. (a) shows a traditional passive stereo system.
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the cameras that make up the system. Active
stereo vision systems subsume both passive
and dynamic stereo vision systems and are
characterized by the use of robotic camera
systems (e.g., stereo heads) or specially designed
illuminant systems (e.g., structured light) coupled
with a feedback system (see Fig.1) for motor
control. Although systems can be designed
with more modest goals — object tracking, for
example — the common computational goal is
the construction of large-scale 3D models of
extended environments.
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(c) shows an active stereo system in which image cap-
ture geometry is controlled based on previously captured
imagery. (d) shows various degrees of freedom that can be
controlled in an active stereo system

Theory

Fundamentally, active stereo systems (see [2])
must solve three rather complex problems: (1)
spatial correspondence, (2) temporal correspon-
dence, and (3) motor/camera/illuminant control.
Spatial correspondence is required in order to
infer 3D depth information from the information
available in camera images captured at one
time instant, while temporal correspondence is
necessary to integrate visual information over
time. The spatial and temporal correspondence



Active Stereo Vision

29

Active Stereo Vision, Fig. 2 Point cloud datasets obtained by the active stereo system described in [1]

problems can either be treated as problems
in isolation or integrated within a common
framework. For example, stereo correspondence
estimation can be seeded using an ongoing 3D
representation using temporal coherence (e.g.,
[3,4]) or considered in isolation using standard
disparity estimation algorithms (see [5]).

Motor or camera control systems are neces-
sary to move (rotate and translate) the cameras
so they look in the appropriate direction (i.e.,
within a tracking or surveillance application),
change their intrinsic camera parameters (e.g.,
focal length or zoom), or to tune the image
processing algorithm to achieving higher accu-
racy for a specific purpose. Solving these three
problems in an active stereo system enables one
to develop algorithms that infer ego-motion [6],
autonomously control vehicles throughout the
world [7], and/or reconstruct 3D models of the
environment [1, 8]. Examples of the output of
such a system is shown in Fig. 2, and [9] provides
an example of an active system that interleaves
the vergence and focus control of the cameras
with surface estimation. In [10] an active stereo
head with pan-tilt-servo mechanisms and an auto-
matic calibration algorithm is developed. The
algorithm uses feature matching and geometric
constraints to automatically determine the rela-
tionships between the cameras which is main-
tained with high accuracy motor encoders.

Although vision is a powerful sensing modal-
ity, it can fail. This is a critical issue for active

stereo vision where data is integrated over time.
The use of complementary sensors — traditionally
Inertial Measurement Units (see [11]) — augments
the camera hardware system with the capabil-
ity to estimate the system dynamics using real-
world constraints. Accelerometers, gyroscopes,
and compasses can provide timely and accurate
information either to assist in temporal corre-
spondences and ego-motion estimation or as a
replacement when visual information is unreli-
able or absent (i.e., dead reckoning). See [12] for
an example of this type of integrated approach.

Relation to Robotics and Mapping

A wide range of different active and dynamic
stereo systems have been built (e.g., [1, 8, 13,
14]). Active systems are often built on top of
mobile systems (e.g., [1]) blurring the distinction
between active and dynamic systems. In robotics,
active stereo vision has been used for vehicle
control in order to create 2D and 3D maps of
the environment. Commonly the vision system
is complemented by other sensors. For instance,
in [15], active stereo vision is combined with
sonar sensors to create 2D and 3D models of the
environment. Murray and Little [16] use a trinoc-
ular stereo system to create occupancy maps of
the environment for in-the-loop path planning
and robot navigation. Diebel et al. [17] employ
active stereo vision for simultaneous estimation
of the robot location and 3D map construction,
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and [1] describes a vision system used for in-
the-loop mapping and navigational control for an
aquatic robot. Davison, in [7], was one of the
first to effectively demonstrate the use of active
stereo vision technology as part of the navigation
loop. The system used a stereo head to selectively
fixate scene features that improve the quality of
the estimated map and trajectory.

Autocalibration

A fundamental issue with active stereo vision
is the need to establish and maintain calibration
parameters online. Intrinsics and extrinsics are
necessary to the 3D estimation process as they
define the epipolar constraints which enable
efficient disparity estimation algorithms [18, 19].
Each time the camera parameters are modified
(e.g., vergence of the cameras, change of focus),
the epipolar geometry must be re-estimated.
Although kinematic modeling of motor systems
provides good initial estimates of changes in
camera pose, this is generally insufficiently
accurate to be used by itself to update camera
calibration. Thus, autocalibration becomes an
important task within active stereo vision.
Approaches to autocalibration are outlined in
[18,20]. In [18], the autocalibration algorithm
operates on pairs of stereo images taken in
sequence. A projective reconstruction for motion
and structure of the scene is constructed. This
is performed for each pair of stereo images
individually for the same set of features (thus
they must be matched in the stereo pairs as well
as tracked temporally). The projective solutions
can be upgraded to an affine solution (ambiguous
up to a rigid rotation/translation/scale) by noting
these features should match in 3D space as
well as in 2D space. A transformation can be
linearly estimated that constrains the projective
solution to an affine reconstruction. Once the
plane at infinity is known, the affine solution
may be upgraded to a metric solution. In order
to achieve the desired accuracy in the intrinsics,
a nonlinear minimization scheme is employed to
improve the solution. If one trusts the accuracy
of the camera motion control system, the
extrinsics can be seeded with this information in
a nonlinear optimization scheme that minimizes
the reprojection error of the image matching
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points and their 3D triangulated counterparts.
This nonlinear optimization is known as bundle
adjustment [21] and is used in a variety of
forms in the structure-from-motion literature
(see [18, 19]). These concepts are applied to
an active-stereo head in [10] to estimate both
the lens properties and rigid transformations
between the servo-controlled camera motors
automatically.

Relation to Other Types of Stereo Systems
Since active stereo systems are characterized by
the use of visual feedback to inform motor control
systems (or higher-level vehicular navigational
systems), they are related to a wide range of
research areas and hardware systems. Mounting
a stereo system to a robotic vehicle is common
in the robotics literature to inform the navigation
system about the presence of obstacles [22] and
to provide input to mapping algorithms [23]. The
use of such active systems is applicable directly
to autonomous systems as they provide a high
amount of controllable accuracy and dense mea-
surements at relatively low computational cost.
One significant example is the use of active stereo
in the Mars Rover autonomous vehicles [14].
Estimating 3D information from stereo views
is problematic due to the lack of unambiguous
texture in many man-made environments. This
can be alleviated with the use of active illumina-
tion [24]. Projecting a known or even stochastic
pattern, rather than uniform lighting, into the
scene enables the estimation of a more dense
disparity field using standard stereo disparity esti-
mation algorithms due to the added texture in
textureless regions (see [25]). The illumination
may be controlled actively depending on per-
ceived scene texture, the desired range, or the
ambient light intensity of the environment. The
illumination may be within the visible light spec-
trum or in the infrared spectrum as most camera
sensors are sensitive to IR light. This has the
added advantage that humans in the environment
are not affected by the additional illumination.
In [26], an approach is developed that uses
a mirror-galvanometer-controlled laser beam to
project light into the scene and alleviate the stereo
matching problem. However, factors such as cam-
era exposure, material light absorption properties,
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and laser power output limit the speed at which
the laser can travel throughout the scene and
ultimately reduce performance

Machine Learning

In recent years traditional computer vision
techniques suitable for active stereo vision have
been augmented with data-driven and machine
learning approaches. For example, [27] describes
a neural net auto-encoder to perform point
cloud matching. In [28] a neural network is
employed to learn the nonlinear function that
converts matched features in stereo pairs into
3D locations, thus demonstrating the ability
to learn complex functions that include lens
distortions and affine transformations. In [29]
a neural network training algorithm is employed
to estimate the matching score between stereo
image pairs resulting in a dense stereo result.
Also, [30] describes a Convolutional Neural
Network trained with RGB + Stereo Depth
estimates to track a person as input to a robot
navigation control scheme.

Application

Active stereo vision is characterized by the use
of visual feedback in multi-camera systems
to control the intrinsics and extrinsics of the
cameras and any underlying vehicular platform.
Active stereo vision systems find a wide range of
application in autonomous vehicle navigation,
gaze tracking, and surveillance. Commonly,
active stereo systems are used to estimate
visual odometry of a robotic platform such as
in [31-33] and can be coupled with inertial
measurement units such as in [34]. A host of
hardware systems exist and commonly utilize
two cameras for binocular stereo and motors
to control the gaze/orientation of the system.
Visual attentive processes (e.g., [35, 36]) may
be used to determine the next viewpoint for
a particular task, and dense stereo algorithms
can be used for estimating 3D structure of the
scene. Fundamental computational issues include
autocalibration of the sensor with changes in
its configuration and the development of active
stereo control and reconstruction algorithms.
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Definition

Activity recognition refers to the process of iden-
tifying the types of movement performed by
humans over a certain period of time. It is also
known as action recognition when the period of
time is relatively short.

Background

The classic study on visual analysis of biological
motion using moving light display (MLD) [1] has
inspired tremendous interests among the com-
puter vision researchers in the problem of recog-
nizing human motion through visual information.

The commonly used devices to capture
human movement include human motion capture
(MOCAP) with or without markers, multiple
video camera systems, and single video camera
systems. A MOCAP device usually works under
controlled environment to capture the three-
dimensional (3D) joint locations or angles of
human bodies; multiple camera systems provide a
way to reconstruct 3D body models from multiple
viewpoint images. Both MOCAP and multiple
camera systems have physical limitations on
their use, and single camera systems are probably
more practical for many applications. The latter,
however, captures least visual information and,
hence, is the most challenging setting for activity
recognition. In the past decade, research in
activity recognition has mainly focused on single
camera systems. The development of commodity
depth cameras, such as Microsoft Kinect sensor,
provides another feasible and economic way
to capture simultaneously two-dimensional
color information and depth information of
the human movement. In addition, techniques
for locating two-dimensional (2D) or three-
dimensional (3D) joints of human bodies
directly from video frames and depth maps
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offer practical alternatives to traditional MOCAP
devices.

Regardless of which capturing device or which
modality, RGB (Red-Green-Blue) video, depth,
or skeleton, is used, a useful activity recognition
system has to be independent of anthropometric
differences among the individuals who perform
the activities, independent of the speed at which
the activities are performed, robust against
varying acquisition settings and environmental
conditions (for instance, different viewpoints and
illuminations), scalable to a large number of
activities, and capable of recognizing activities
in a continuous manner. Since a human body
is usually viewed as an articulated system
of the rigid links or segments connected
by joints, human motion can be considered
as a continuous evolution of the spatial
configuration of the segments or body posture,
and effective representation of the body
configuration and its dynamics over time has
been central to the research of human activity
recognition.

Theory

Let O = {o1,02,---,0,} be a sequence of
observations of the movement of a person over
a period of time. The observations can be a
sequence of joint angles, a sequence of color
images or silhouettes, a sequence of depth
maps, or a combination of them. The task of
activity recognition is to label O into one of
the L classes C = {c,c2, -, cr}. Therefore,
solutions to the problem of activity recognition
are often based on pattern recognition and
machine leaning approaches, and an activity
recognition system usually involves extracting
features from the observation sequence O,
learning a classifier from training samples and
classifying O using the trained classifier. The
spatial and temporal complexity of human
activities has led researchers to cast the problem
from different perspectives. Early work is mainly
based on handcrafted features for recognition,
and recent work has been driven greatly by deep
learning.
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Handcrafted-feature-based methods The
existing techniques based on handcrafted features
can be broadly divided into two categories
according to whether the dynamics of the activ-
ities is implicitly or explicitly modelled. In the
first category, the problem of activity recognition
is cast from a temporal classification problem to a
static classification one by representing activities
using descriptors. A descriptor is extracted from
the observation sequence O, which intends to
capture both spatial and temporal information of
the activity and, hence, to model the dynamics
of the activity implicitly. Activity recognition
is achieved by a conventional classifier such
as support vector machines (SVM) or K-
nearest neighborhood (KNN). There are three
commonly used approaches to extract activity
descriptors. The first approach builds upon
motion energy images (MEI) [2], a binary
image representing the presence of motion in
regions, and motion history images (MHI) [2],
a static image representing motion location and
progressing path, and their variants. The second
approach considers a sequence of silhouettes as a
spatiotemporal volume, and an activity descriptor
is computed from the volume. Typical examples
are differential geometric surface properties [3],
space-time saliency, action dynamics, and shape
structure and orientation [4]. The third approach
describes an activity using a set of spatiotemporal
interest points (STIPs). The general concept is
first to detect STIPs [5] from the observations
O which is usually a video sequence. Features
are then extracted from a local volume around
each STIP, and a descriptor can be formed by
simply putting them together to become a bag-
of-features or by classifying the STIPs into a
set of vocabulary (i.e., a bag of visual words) and
calculating the histogram of the occurrence of the
vocabulary within the observation sequence O.
In addition to SVM and KNN, latent topic models
such as the probabilistic latent semantic analysis
(pLSA) model and latent Dirichlet allocation
(LDA) were used in [6].

In the second category, the proposed methods
usually follow the concept that an activity is a
temporal evolution of the spatial configuration
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of the body parts and, hence, emphasize more
on the dynamics of the activities than the
methods in the first category. They usually
extract a sequence of feature vectors, each feature
vector being extracted from a frame, or a small
neighborhood, of the observation sequence O.
The two commonly used approaches are temporal
templates and graphical models. The temporal-
template-based approach, typically, directly
represents the dynamics through exemplar
sequences and adopts dynamic time warping
(DTW) to compare an input sequence with the
exemplar sequences, for instance, the work in [7].
The graphical-model-based approach includes
both generative and discriminative models.
The most prominent generative model is the
hidden Markov model (HMM), where sequences
of observed features are grouped into similar
configuration, i.e., states, and both the probability
distribution of the observations at each state and
the temporal transitional functions between these
states are learned from training samples [8].
A more general generative graphical model,
referred to as an action graph, was established
in [9], in which an activity is encoded by one
or multiple paths in the action graph. Due to
the sharing mechanism, the action graph can
be trained and also easily expanded to new
actions with a small number of training samples.
The generative graphical models often rely on
an assumption of statistical independence of
observations to compute the joint probability of
the states and the observations. This makes it hard
to model the long-term contextual dependencies
which is important to the recognition of activities
over a long period of time. The discriminative
models, such as conditional random fields
(CRF) [10], offer an effective way to model long-
term dependency and compute the conditional
probability that maps the observations to the
motion class labels.

Deep-learning-based methods There are four
commonly used approaches to leveraging the
capability of deep neural networks for action
recognition from RGB video or depth sequences
[11]. The first approach is to employ convolu-
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tional neural networks (CNNs) to extract fea-
tures from single frames or a stack of frames
sampled from a video sequence representing an
instance of actions. The widely used two stream
architecture [12] is a typical example. The sec-
ond approach is to apply three-dimensional (3D)
convolution to a segment of frames and then
temporal pooling to form video-based features,
such as C3D [13], or to simply apply 3D convo-
lution to an entire action instance [14]. The third
approach is to first extract frame-based features
using a CNN and then model temporal dynamics
using a recurrent neural network (RNN), such
as ConvLSTM [15]. Typically, video-based fea-
tures are obtained from the last time-step of the
RNN. The fourth approach is to generate dynamic
images [16] through rank pooling and to apply
a CNN to extract features from the dynamic
images. Each approach has its own strength and
weakness. For instance, the first approach tends
to focus on short-term rather than long-term tem-
poral information. The second approach, if it
is implemented using temporal pooling, is also
weak at capturing long-term temporal informa-
tion. Such weakness can be mitigated to some
extent by applying 3D convolution to the entire
action instance. In the third approach, extraction
of spatial information (e.g., using a CNN) is
separated from temporal modeling (e.g., using
a RNN). It tends to model long-term dynam-
ics more effectively than short-term dynamics.
The dynamic image approach depends on how
effectively both spatial and temporal information
can be encoded into one or multiple images.
The commonly used ranking pooling method
to generate the dynamic images tends to sup-
press small motion. Similar approaches have been
developed to extract deep features from skeleton
sequences [11]. For instance, Yan et al. [17]
proposed Spatial-Temporal Graph Convolutional
Networks (ST-GCN). In [18], spatial and tempo-
ral information in a skeleton sequence is encoded
into multiple texture images, and CNNs are used
to extract features. In [19], a skeleton sequence
is fed into an RNN directly, and features are
extracted from the last-time step of the RNN.
Compared with traditional RNN, the recently
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proposed independently recurrent neural network
(IndRNN) [20] is promising and achieves the
state-of-the-art results.

In many realistic applications, an activity may
occupy only a small portion of the entire space-
time volume of a video sequence. In such sit-
uations, it does not make sense to classify the
entire video. Instead, one needs to locate the
activity in space and time. This is commonly
known as an activity detection or action detection
problem. In addition, continuous recognition of
activities under realistic conditions, such as with
viewpoint invariance and large number of activ-
ities, remains challenging though the extensive
effort, and progress have been made in activity
recognition research in the past decade.

Application

Activity recognition has many potential applica-
tions. It is one of the key enabling technologies
in security and surveillance for automatic moni-
toring of human activities in a public space and
of activities of daily living of elderly people at
home. It is also essential for autonomous retail
shops and autonomous driving. Robust under-
standing and interpretation of human activities
also allows a natural way for humans to interact
with machines. A proper modeling of the spatial
configuration and dynamics of human motion
would enable realistic synthesis of human motion
for gaming and movie industry and help train
humanoid robots in a flexible and economic way.
In sports, activity recognition technology has
also been used in training and in sports video
retrieval.
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Synonyms

Adaptive boosting; Discrete AdaBoost

Related Concepts

Deep CNN-Based Face Recognition
Feature Selection
Machine Recognition of Objects

Definition

The AdaBoost algorithm learns a classifier from
data by combining additively a number of weak
classifiers. The weak classifiers are incorporated
sequentially, one at a time, in order to reduce
the empirical exponential classification risk of the
combined classifier.
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Background

Boosting [1, 2], introduced by Robert Schapire
in [3], is a general technique for combining
the response of several predictors with limited
accuracy into a single, more accurate predic-
tion. AdaBoost is a popular implementation of
boosting for binary classification [4]. Soon after
its introduction, AdaBoost became one of the
most popular learning algorithms; for example,
Breiman [1] described AdaBoost with trees as the
“best off-the-shelf classifier in the world.”

Much of the popularity of AdaBoost was due
to its performance, which was comparable to
the one of support vector machines [5], and its
algorithmic simplicity. In the computer vision
community, AdaBoost became very popular due
to the work of Viola and Jones in face detec-
tion [6], which used it to demonstrate accurate
face detection in real time; key to their method
is a classifier obtained by boosting (combin-
ing) weak classifiers, each incorporating a single
Haar wavelet [6,7]. Haar wavelets can be com-
puted very efficiently using integral images. Fur-
thermore, the weak classifiers can be computed
sequentially, in a cascade, and the computation
terminated as soon as sufficient evidence to reject
a hypothesis is accumulated.

The additive boosting framework is fairly gen-
eral, and several variants have been proposed,
among which are AdaBoost [4]; Real AdaBoost,
LogitBoost, and GentleBoost [1]; Regularized
AdaBoost [8]; or extensions to multiple classes
such as AdaBoost.MH [9].

Theory

This section describes the AdaBoost algorithm
as originally given by Freund and Schapire [4].
The particular variant below, also known as dis-
crete AdaBoost [1], is summarized in Algo-
rithm 1.

The purpose of AdaBoost is to learn a binary
classifier that is a function H (x) = y which maps
data x € X (e.g., a scrap of text, an image, or
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Algorithm 1 Discrete AdaBoost

1: Initialize Fp(x) = O for all x € X.

2: Initializew; = 1 foralli =1,2,...,n.

3: fort =1tomdo

4 Find the weak hypothesis 1, € HH that minimizes

n

e(he; wy o< Y wilhy (%) # yil.

i=1

5:  Let the weak hypothesis coefficient be:

) 1 —€e(hs; w)
a < —log————=;
T e w)
6:  Update the weights

w; <« Wl.e*)'i%hr(xi);

~

Update the function F; = Fy_1 + o hy.
end for
9: Return the classifier H (x) = sign F, (X).

®

a sound wave) to its class label y € {—1, +1}.
The classifier H is obtained as the sign of an
additive combination of simple classifiers &
X — {—1, +1}, called weak hypotheses. Given
coefficients oy € R, the classifier can then be
written as:

H(x) = sign (Z a,ht(x>>, (0

t=1

The input to AdaBoost is a set H of
weak hypotheses and n data-label pairs
(X1, y1), ---» Xy, ¥n); the output is a combi-
nation H of m weak hypotheses in H and
their coefficients «q, ..., ;. The algorithm is
designed so that the combined classifier closely
fits the training data, i.e., H(x;) = y; for most
i=1,...,n.

Let us denote with H,, the classifier H with
m weak hypotheses shown in Eq. (1). AdaBoost
operates sequentially by adding to H,,_; one
new weak hypothesis (A, o). While any weak
hypothesis with performance better than chance
can be used, it is more common to select the weak
hypothesis h,, in the set 7 that minimizes the



38

weighted empirical error

Yo wi by # h(x)]

eth,w) = ST
i=1"

where w = (wp, ..., w,) are non-negative data
weights, as given below. Here the term [y; #
h(x;)]is equal to 1 if y; # h(x;) and O otherwise.
Hence, the empirical error € (h; w) is the average
number of incorrect classifications of the weak
hypothesis / on the weighted training data.

The selected weak hypothesis £, can be writ-
ten as € (h; w), i.e., hy, = argminy, .4 €(h; w) and
is added to the current combination H,,_; with
coefficient

1 1 —e(hy; w)
Ay = = log———.

2 €(hm; W) @)
While AdaBoost minimizes the empirical error
of the weak hypothesis %,, at each iteration, the
weights w are chosen so that the empirical error
of H,, is reduced as well. AdaBoost starts with
uniform weights w = (1,...,1) and updates
them according to the rule

i (i .
mhn () =1,

3

wi < wie Vi

One intuitive interpretation of this rule is that
it gives more importance to examples that are
incorrectly classified. A formal justification is
given in the next paragraph.

AdaBoost as Stagewise Minimization Denote
by Fn(x) = > /., a;hy(x) the additive combi-
nation of the first m weak hypotheses, so that
the classifier H,,(x) can be written as sign Fj, (x).
AdaBoost performs a stagewise minimization of

the cost
1 n
_ Z e_)’iFm (Xi)_
n -
i=1

This cost is known as the empirical exponential
loss and is a convex upper bound to the empirical
classification error of H,,, in the sense that:

AdaBoost

n

. 1 1 n o »
€ (Hp)=— Z[yi#Hm(Xi)]fg 21: i Fn(x)
i=

i=1

To understand the effect of the AdaBoost update
on the empirical exponential loss, let Fy,(x) =
Fn_1(x) + ayh;,(x) be the updated additive
combination at iteration m. As the parameters of
F,,_1 are fixed, the empirical exponential loss is
a function E of «,, and h,,:

- o .
E(amy hm) = ;;W,’e )Iamhm(xl),
1=

where w; = e Yifn-105),

“

By taking the derivative of E with respect to
o, and by setting it to zero, one obtains the
optimality condition

n
D wiyihp (xi)e D g

i=1
) >
iryi=hm(X;)

iy #hm (X;)

o
|

wie —Qm

Wi e%m —

which results in the optimal coefficient given in
Eq. (2):

_ L Y wilyi = hw(xi)]
) = o S Lt # ()]

1 1 —e(hy; w)
= —log _.
€(hpm; W)

2

By substituting this expression back in the
cost (4), one obtains

E(am (hm), hm)

= 2/€(m; W)(1 = € (s W) Y wi

i=1

which achieves its smallest value when the empir-
ical classification error €(h,,; w) approaches
either 0, its minimum, or 1, its maximum.
Notice that if the error €(h,,; w) > 1/2, then



AdaBoost

the corresponding weight «, is negative. In other
words, when the weak hypothesis 4, makes more
mistakes than correct classifications, AdaBoost
automatically swaps the sign of the output label
so that e(—h;,; w) < 1/2. Finally, the weight
update Eq. (3) follows from

w; < e Yifm&i) — o=y En1 (%) = Yittmhm (Xi)

= w; efyiamhm (xi)

Applications

One of the main uses of AdaBoost is for the
recognition of patterns in data. Recognition can
be formulated as a binary classification problem:
Find whether data points match the pattern of
interest or not. In computer vision, AdaBoost was
popularized by its application to object detection,
where the task is not only to recognize but also
to localize within an image an object of interest
(e.g., a face). Most of the ideas summarized in
this section were first proposed by Viola and
Jones [6].

A common technique for object detection is
the sliding window detector. This method reduces
the object detection problem to the task of clas-
sifying all possible image windows (i.e., patches)
to find which ones are centered around the object
of interest. In practice, windows may be sampled
not only at all spatial locations but also at all
scales and rotations. This results in a very large
number of evaluations of the classifier function
for each input image. Therefore, the computa-
tional efficiency of the classifier is of paramount
importance.

Classifiers computed with AdaBoost can be
made very computationally efficient by using
weak hypotheses that are fast to compute and by
letting AdaBoost select a small set of hypotheses
most useful to the given problem. For example, in
the Viola-Jones face detector, a weak hypothesis
is computed by thresholding the output of a linear
filter that computes averages over rectangular
areas of the image. These filters are known as
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Haar wavelets and, because of their special struc-
ture, can be computed in constant time by using
the integral image [6].

In order to further improve the speed of a
sliding window detector, AdaBoost classifiers are
often combined in a cascade [6]. A cascade
exploits the fact that the vast majority of image
windows are not centered around the object of
interest and that, furthermore, most of these neg-
ative windows are easy to recognize as such.
A cascade is built by appending one AdaBoost
classifier after another. Classifiers are evaluated
sequentially, and an image window is rejected as
soon as the response of a classifier is negative.
All the classifiers are tuned to almost never reject
a window that matches the object of interest
(i.e., high recall). However, the first classifiers in
the cascade are allowed to return several false
positives (i.e., low precision) in exchange for a
significantly reduced evaluation cost, obtained,
for instance, by limiting the number of weak
hypotheses in them. By using this scheme, the
computationally costly and highly accurate clas-
sifiers are evaluated only on the most challenging
cases: windows that resemble the object of inter-
est and that therefore contain either the object
(i.e., a positive sample) or a visual structure
that can be easily confused with it (i.e., a hard
negative sample).

Finally, since each weak hypothesis is usually
associated with an elementary feature, AdaBoost
is also often used for feature selection. In
some cases, feature selection improves the
interpretability of the classifier. For instance, in
the Viola-Jones face detector, the first few Haar
wavelets selected by AdaBoost usually capture
semantically meaningful anatomical structures
such as the eyes and the nose.
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Synonyms

Affine projection

Related Concepts

Affine Projection
Perspective Camera
Perspective Transformation
Weak Perspective Projection

Definition

An affine camera is a linear mathematical model
to approximate the perspective projection fol-
lowed by an ideal pinhole camera.

Background

Perspective projections give accurate models for
a wide range of existing cameras, especially after
calibration for a limited volume of workspace.
However, the relationship from a 3D point
to its 2D image point is nonlinear due to
a scalar factor dependent of each individual
point (see entry » “Perspective Camera” for
details). Affine cameras are introduced to make
the projection model more mathematically
tractable. An affine camera model is a first-order
approximation obtained from Taylor expansion of
the perspective camera model around a reference
point. The reference point can be any point, but
it may be set to the centroid of the 3D points,
which results in a more accurate approximation.
There are three important instances of an affine
camera when the camera’s intrinsic parameters
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are known: orthographic, weak perspective,
and paraperspective projections. The reader is
referred to entry » “Weak Perspective Projection”
for a detailed description of the affine camera
model and its three instances.

Affine Invariants

Michael Werman
The Institute of Computer Science, The Hebrew
University of Jerusalem, Jerusalem, Israel

Definition

Affine invariants are properties that are invariant
under an affine map.

Different images of the same object can be
different and undergo various transformations
depending on changes in the camera and its
settings, the lighting, and the object itself. One
of the ways to handle some of these changes, for
tracking, search, and understanding images, is to
use a description of the object that is oblivious
to some of the abovementioned transformations.
Affine invariants, due to their expressiveness-
simplicity trade-off, are commonly used for this
purpose.

Background

There is a vast literature relating to affine invari-
ants, and only a small selection will be mentioned
[4,5,11,13,16].

Affine Transformation

x=Lx+1t

is an affine transformation of x, where x € R" is
avector, L € R™*" a matrix, and r € R" a vector.
L is a linear transformation, and ¢ is a translation

(2].
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Affine transformations are used to describe
different changes that images can undergo, such
as an affine transformation of the (r, g, b) color
values of an object under different lighting con-
ditions or the transformation the shape of the
image of an object undergoes when the camera
and object are in different relative positions. The
affine transformation in these cases does not nec-
essarily model the exact physical distortion that
is seen but often is a good approximation.

Affine Invariant

In order to have a property of an object that
is invariant to an affine transformation, affine
invariants can be used.

Let f be a function such that f(a,b,...) =
f(T(a), T(D),...) for any affine transformation
T anda,b, ... € R", f is an affine invariant.

A d-dimensional affine transformation has
d*+d parameters, so in order to have a nontrivial
affine invariant, one needs a function with at more
than that many arguments, where the result can
be computed using algebraic elimination [9]. For
example, two simplices in R have at least d + 2
different points which are d? + 2d arguments.

In a certain sense, the number of independent
invariants is the #(of parameters of a configura-
tion) —(d? + d).

Noise

Even though the group of affine transformation
may be only a subgroup of the possible trans-
formations, for example, projective transforma-
tions for an image of planar scene, being affinely
invariant may be an overkill as most of the radical
transformations never really happen. Thus, noise
can be explained by affine transformations mak-
ing too many things close to each other.

Examples

First example Let p,q,r be real numbers;
then an affine transformation is
of the form x = ax + B; it
is easy to check that for any
three numbers p, ¢, r and affine
transformation parameters ¢, S,



42

P—4q _ (ap+B) — (ag + B)
p—r (ap+pB)—(ar+B)

[15,17]

Second example  We can generalize the first
example to any dimension, d.
The ratio of the volume of two
d + 1 sets of vectors in R”
is an affine invariant (constant
Jacobian, |L|) where the volume
isthe d + 1 x d + 1 determinant:

pq...r
11...1

Algebraic curves Not only points can be
used to define affine invariance;
other common examples are the
parameters of curves, such as
the equations of lines, conics,
or other algebraic
For degree two curves in the
plane, all ellipses are affinely
equivalent.

Affine differential geometry  There are affine
invariant analogues of arc length
and curvature. In general it is
possible to find affine invariants

curves.

involving points and their
derivatives [3,10,12, 14].
Other parameters of the object Fourier

coefficients and moments.

There are other properties that are affine
invariant, such as incidence, parallelism,
centroids, barycentric coordinates, convexity,
tangency, bi-tangency, Euler number, and
connectivity.

If an object’s area is A, then integrating by
the area element divided by A is affine invariant,
for example, %fomectg(l(x, y))dxdy is affine
invariant, g being any function of the pixel’s
color.

Moments have been used to make affine
invariants [21], and CNNs have been used to
learn affine independence [19,20].

Affine Invariants

Applications

Affine Invariant Feature Detection

There are a number of affine invariant feature
detectors that find affine invariant local features
in an image [7, 16]. One of the successes in
recent practice of computer vision was the SIFT,
a similarity invariant feature, and its extension to
an affine invariant feature, ASIFT [6, 8].

Normalization

There are normalizations that can be done to an
object that remove all/some of the possible affine
variation.

The center of gravity is a linear invariant,
so it is possible to translate the object so that
the object’s center is at a fixed coordinate, thus
removing the translation term, changing the prob-
lem from one of finding an affine invariant to a
linear invariant.

The whitening transform canonically trans-
forms a set of points using an affine transforma-
tion so that the average is 0 and the covariance
matrix is the identity, /.

Grassmannians

The set of labeled points modulo affine transfor-
mations are isomorphic to Grassmannians; using
this one can define a geometry of affine invariant
point sets and, for example, measure the distance
between affine invariant point sets [1, 18].

Correspondence

Another thing to notice is that usually there needs
to be some correspondence of the objects in
order to use these invariants, namely, the order
of the arguments of the function f needs to be
known, and the way to overcome this problem
is summing over all permutations making this
function invariant both to permutations. Another
possibility is using permutation invariant fea-
tures, for example, moments, which are built
from summing over all the points.
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Synonyms

Affine camera

Related Concepts

Affine Camera

Perspective Camera
Perspective Transformation
Weak Perspective Projection

Definition

An dffine projection is a linear mathematical
model to describe the projection performed by an
affine camera. See entry » “Affine Camera” for
details.
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Affine Registration

Kevin Koser
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Synonyms

Affine alignment

Related Concepts

Affine Camera
Image Alignment
Rigid Registration

Definition

The goal of affine registration is to find the affine
transformation that best maps one data set (e.g.,
image, set of points) onto another.

Background

In many situations data is acquired at different
times, in different coordinate systems, or from
different sensors. Such data can include sparse
sets of points and images both in 2D and 3D,
but the concepts generalize also to higher dimen-
sions and other primitives. Registration means
to bring these data sets into alignment, i.e., to
find the “best” transformation that maps one
set of data onto another, here using an affine
transformation. For the sake of brevity, in this
entry only the registration of two data sets is
discussed, although approaches exist for finding
consistent transformations that align more than
two sets at once (e.g., [1]). While intuitively in 1D
affine transformations compensate for scale and
offset, in any dimension they can represent the
first-order Taylor approximation (local lineariza-
tion) for nonlinear functions.

Affine Registration

For more complicated transformations, often a
first affine registration is used as an initial solu-
tion that roughly aligns the data sets, followed
by some (potentially local or nonlinear) search
for more complicated parameters. In contrast to
rigid registration, which allows only an offset
and a rotation between the data sets, the affine
model allows also for the full set of linear shape
changes, including (nonisotopic) scale and shear.
In particular, locally this approximates perspec-
tive effects or other nonlinear warps. On the
other hand, affine registration uses still a single
global transformation with a set of a few global
parameters, which makes it mathematically easier
to handle but also less powerful as compared
to general nonrigid registration of deformable or
articulated objects.

Theory

Two important cases can be distinguished for reg-
istration, the purely geometrical case, where two
(finite) sets of points have to be registered, or the
continuous/functional case, where the similarity
of two functions must be maximized by an affine
transformation of the functions’ domain.

The Purely Geometrical Case

Let X and Y be two sets of points from R™ and
R”, respectively, and without loss of generality,
it is assumed that m > n. For now it is assumed
that the sets are of the same size and that there
exists an (unknown) affine transformation, such
that each element in X is mapped to an element in
Y. Then, the goal of affine registration is to find
this transformation, i.e., the matrix A € R"*"
and the offset ¢t € R”, such as to minimize an
energy:

E;= Z mindg (Ax + 1, y) 1)
xeX yey

Here d, (a, b) encodes the distance between a and
b. Usually the points in X or Y are not available
directly but only their noisy observations (e.g.,
when y are observed 2D projections of known
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3D points and the parameters of the affine camera
[2] are sought). In that case affine registration
is based on these observations, and d, should
be chosen according to the noise distribution. If
the sets are not of the same size or not each
point in X corresponds to a point in Y, or in
case there are gross errors in the data, still Ey
can be minimized, e.g., with a robust cost func-
tion dg to obtain some alignment between the
sets [3]. Intuitively, in all these cases, A and
t are sought which minimize the average dis-
tance for a transformed point of X to the closest
pointin Y.

In case bounds on A and ¢ are known, a simple
way to find an approximate solution is to sample
the (continuous) space of all possible matrices A
and offsets ¢, but this is usually computationally
intractable. If it is known which points in X
correspond to which others in Y, i.e., there is a
set of pairs (x;, y;), the energy can be rewritten
as

Ec= ) dg(Axi +1, ) )

x;eX

In case d, (a, b) = ||(a — b)| |§, this can be solved
explicitly. A contains mn unknowns, t contains
n unknowns, and from each correspondence n
observations can be obtained, so from counting
it is clear that at least m + 1 correspondences
are required to uniquely determine a solution
(assuming they are in a general configuration
and not, e.g., only on a line). In case the cor-
respondences contain gross errors (mismatches,
outliers), then the solution can be obtained using
robust estimation techniques such as least median
of squares [4] or RANSAC [5].

In case correspondences are not known but
the data sets are already approximately aligned,
it can be assumed that the closest neighbors are
in correspondence. In this case the problem can
be solved by using the iterative closest points
(ICP) method [6-8]. Locally, for each point the
offset to the closest point in the other data set is
computed, and by collecting all the local offsets,
a global affine transformation is estimated that
aligns these sets (in a least squares sense accord-
ing to Eq.2). This transformation is applied to
recalculate the nearest neighbor correspondences,
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and the estimation step is repeated with these.
In [9] efficient implementations and practical
aspects of ICP have been studied. However, since
ICP relies on local neighborhoods, it cannot cope
well with situations where initially close points
must be moved far away.

A technique proposed for this is based on
normalization (as suggested, e.g., by [10]): Here,
the means of the data sets are computed individ-
ually and ¢ is defined as the difference of the
means. Then, for each data set, the (unbiased)
covariance is computed, and the matrices Ay,Ay
are searched that bring the respective point dis-
tributions to a unit covariance matrix (whitening
of covariance). The two data sets now only differ
by an orthogonal matrix that may be obtained by
sampling or finding other characteristics in the
data (cf. also [11]). However, this normalization
approach assumes that the data sets overlap fully.

In general, similar concepts can be applied
as for rigid registration, however, with a slightly
different set of parameters.

The Continuous/Functional Case

Let I and J be functions (images) from R" to
R¢, assigning some color value to each position,
typically in the plane or in space. The function
value will be referred to as the color hereafter,
regardless of its physical meaning. In this case
the affine registration can be stated as the mini-
mization of an energy:

E= /dC(I(Ax +1), J(x)dx  (3)

Here, d. is a distance between two colors that
should be chosen according to the expected mea-
surement uncertainty of the colors. Very similar
to the discrete case, a naive strategy to minimize
this energy would be sampling; however, this
is again computationally expensive and requires
bounds on the parameters.

A possible solution is to compute local image
features, such as corners, blobs, and so on (cf. to
[12]), and — if possible — find correspondences
among these features. There has been a huge
body of work to particularly define features that
can be detected reliably with affine changes of
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image coordinates. A comparison can be found
in [13]. Given those the discrete methods of the
previous section can be used to find an align-
ment A, ¢.

Afterward, or in case A and ¢ were approxi-
mately known from the beginning and if / and J
are smooth, then the alignment can be performed
by local linearization as proposed by Lucas and
Kanade [14]. The assumption is that locally
the image can be represented by its first-order
Taylor approximation, i.e., the local color and the
gradient:

al
I (x) ~ I(xo) + I (xo — x) “
X ——
Ax

Consequently, given two almost aligned images,
at position xg

al
J (xo) — I'(x0) ~ Ax &)
——————

ax o
Al

Stacking r of these equations on top of each other,
an equation system is obtained:

al
Al ax lxo
I
AL ~ ax |y, Ax ©
AlL_; 1,

This can be solved in a least squares sense to
obtain Ax.

Similar to the local image gradient with
respect to position, also the partial derivatives
with respect to affine transformation parameters
can be computed [14]. In this case, Ax (and
also dx) contains n(n + 1) parameters (n? for
the linear shape change and n for the offset).
At least n(n + 1) equations are required to
uniquely solve this. Often, to increase the basin
of convergence, coarse-to-fine registration is
applied. This can be implemented using image
pyramids in case the uncertainty lies mostly in the
offset parameters or by propagation of the affine
parameter uncertainty to position uncertainty in

Affine Registration

the image and appropriate smoothing [15]. After
having applied the estimated update Ax on the
parameters, the steps can be applied repeatedly
to register the two images. In [16] Baker and
Matthews compare different formulations of
such iterative, gradient-based image alignment,
particularly the question of how to compose and
parameterize the warps across multiple iterations.

On top of transformations on the domain of
the images, often the two images differ in target
(e.g., the colors of corresponding positions are
related by some brightness offset), in which case
also parameters for the change of color need to
be estimated. In case the corresponding image
colors are only statistically related but no explicit
transformation model between colors is known,
the concept of mutual information [17] might
be used, where the entropy of the joint color
histogram is minimized. An overview of image-
based alignment can be found in [18, 19].

Application

Affine cameras [2] approximate a real camera
by an affine mapping of 3D points to 2D image
coordinates. For tracking local regions through
videos, it has been shown [20] that keeping
track of the affine deformations of local regions
can help detecting tracking failures. Such affine
warps, or those implied by correspondences
of affine features between different images,
represent the local linearization of a potentially
nonlinear image warp (e.g., of perspective
effects). If the structure of this nonlinear warp is
known, the affine registration can allow inferring
the global warp directly [21] or provide more
constraints than just using the position of a region
correspondence. In general, affine registrations
often provide a reasonable solution to align mean,
linear shape, and orientation of data without
making the transformation too problem specific,
or the affine solution can serve as a basis for
further more advanced alignment. Furthermore,
multiple independent or coupled local affine
registrations can help in registering articulated
or deformable models.
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Synonyms

Implicit polynomial curve

Related Concepts

Algebraic Surface

Definition

An algebraic curve is a curve determined by a
2-D implicit polynomial (IP) of degree n:

Jo(X) =

0<i,j;i+j<n

= (1 X... y")(aoo ap.. .aon)T =0,
I
mT a

ey

where x = (x, y)T is the coordinate of a point
on a curve. That is, the curve is always rep-
resented by f,,’s zero level set: {x|f,,(x) = 0}.
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The polynomial function is usually denoted by
an inner product between two vectors: monomial
vector m and coefficient vector a. For the entries
in these vectors, indices {i, j} can be arranged
in different orders, such as lexicographical order
or inverse lexicographical order. In addition, the
homogeneous binary polynomial of degree r in x
andy, Y it j=ra;x' ¥, is called the r-th degree
form of the IP. The form of degree n is called
the leading form. The degree of an algebraic
curve is the degree of the polynomial (e.g., n).
An algebraic curve of degree 2 is called a conic,
degree 3 a cubic, degree 4 a quartic, and so on.

Background

In computer vision, representing 2-D data sets
with algebraic curves has been studied exten-
sively for the past three decades. It is attractive
for vision applications due to its applicability to
object recognition, pose estimation, and regis-
tration. In contrast to the curves represented by
other functions such as splines, Fourier, rational
Gaussian, and radial basis function, algebraic

Algebraic Curve

curve is superior in such areas as fast fitting,
few parameters, algebraic/geometric invariants,
and robustness against noise and occlusion. Alge-
braic curve is also capable of modeling non-star
shapes, open curves, curves that contain gaps,
and unordered curve data. However, algebraic
curve representation still suffers from some major
issues such as the lack of local accuracy and
global stability when representing a complex 2-D
shape (see [7]). Figure 1 shows some example
algebraic curves successfully used to represent
closed 2-D curves.

Application and Theory

Algebraic curve representation is mainly attrac-
tive for vision applications such as fast shape
registration or pose estimation [3, 6, 8, 9, 12]
and recognition [2, 4-6, 9-11]. To achieve these
purposes, many efforts have been made in three
topics: curve fitting, algebraic/geometric invari-
ants, and curve registration. The first is about
solving the problem of accurately and stably
fitting an algebraic curve to a complex shape, the

Algebraic Curve, Fig. 1 Examples of algebraic curves. Top row: original data sets; bottom row: represented algebraic

curves
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second is on extracting algebraic or geometric
invariants from the algebraic curve representing
a shape, and the third concerns estimating the
Euclidean transformation(s) between two or more
algebraic curves representing different instances
of the same shape.

Curve Fitting. There have been great improve-
ments concerning algebraic curve fitting with its
increased use during the late 1980s and early
1990s [8]. Recently, new robust and consistent
fitting methods like 3L fitting [1], gradient-one
fitting with Rigid regression [7], and degree-
adaptive fitting [13] that are suitable for vision
applications have been introduced.

Algebraic/Geometric Invariants. The main
advantage of the use of algebraic curves
for recognition is the existence of alge-
braic/geometric invariants, which are functions
of the polynomial coefficients that do not change
after a coordinate transformation. To some major
contributions, the global Euclidean invariants
are found by Taubin and Cooper [9], Teral
and Cooper [6], and Keren [2], which can
be expressed as simple explicit functions of
the IP coefficients. Wolovich et al. [11] also
introduced a set of invariants from covariant
conic decompositions of implicit polynomials.

Curve Registration. In prior literatures [6, 9],
global shape registration is performed through
a single (non-iterative) computation using the
central and oriented information extracted from
the polynomial coefficients of two algebraic
curves. Recently, an iterative method for aligning
partially matched curves that uses the distance
measurement of the polynomial gradient field
together with a fast polynomial transformation
has been introduced [12].
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Related Concepts

Algebraic Curve

Definition

Similar to an algebraic curve, an algebraic sur-
face is determined by a 3-D implicit polynomial
(IP) of degree n:

fo (X) = > ajjrxtyl
0<i,j,k;i+j+k=<n
T
= (1x yz...2")(ao00 @100 4010 @001 - - - A00n)

a

ey

where x = (x,y,z) is a 3-D point on a surface,
that is, the surface is always represented by f;,’s
zero level set: {x|f,(x) = 0}. The polynomial
function can be denoted by an inner product of
two vectors: monomial vector m and coefficient
vector a. For the entries in these vectors, indices
{i, j, k} can be arranged in different orders, such
as lexicographical order or inverse lexicograph-
ical order. In addition, the homogeneous binary
polynomial of degree rinx, y,and z, Y i 4 j 4 k=
ajjk X'yl ZK, is called the r-th degree form of the
IP. The n-th form is also called leading form.
The degree of algebraic surface is the degree of
polynomial: n. An algebraic surface of degree 2 is
called a quadric surface, degree 3 a cubic surface,
degree 4a quartic surface, and so on.

Background

In computer vision, representing 3-D surface
data sets with algebraic surfaces has been
also well studied. It is attractive for vision
applications such as 3-D object recognition, pose
estimation, and registration. In contrast to other
surfaces represented by the functions such as
Splines, Fourier, Rational Gaussian, and radial
basis function, algebraic surface is superior in

Algebraic Surface

such areas as fitting efficiency, few parameters,
convenience for calculating algebraic/geometric
invariants, and robustness against noise and
occlusion. Algebraic surface is also capable of
modeling nonstar shapes, open curves, curves
that contain gaps, and unordered curve data.
However, algebraic surface representation still
suffers from some major issues such as the
lack of accuracy and stability when representing
a complex 3-D shape. Figure 1 shows some
examples of algebraic surfaces representing for
3-D surface data sets.

Application and Theory

Algebraic surface representation is mainly attrac-
tive for vision applications such as 3-D object
registration or pose estimation [2, 4, 8, 10, 11,
13] and recognition [3, 6, 8, 11]. To achieve
those purposes, many efforts have been made in
three topics: surface fitting, algebraic/geometric
invariants, and 3-D object registration. The first
topic faces the problem of how to fit an algebraic
surface to a complex 3-D shape accurately and
stably; the second topic focuses on the problem of
how to extract algebraic or geometric invariants
from a 3-D shape-representing polynomial; and
the third topic concentrates on the task of how
to estimate the rigid transformation relationship
between two algebraic surfaces representing the
same object in different positions.

Surface Fitting

There have been great improvements concern-
ing algebraic surface fitting with its increased
use during the late 1980s and early 1990s [10].
Recently, new robust and consistent fitting meth-
ods such as 3L fitting [1], gradient-one fitting
with Rigid regression [5, 9], and degree-adaptive
fitting [14] have been proposed to make the
algebraic surface representation more feasible for
vision applications.

Algebraic/Geometric Invariants
The main advantage of algebraic surfaces
for recognition is the existence of algebraic/



Algebraic Surface

Algebraic Surface, Fig. 1 Examples of algebraic surfaces. Top row: original 3-D data sets of torus, simple shape with
noise, and bunny; bottom row: resulting algebraic surface fits of degree 4, 4, and 8, respectively

geometric invariants, which are functions
of the polynomial coefficients that do not
change after a coordinate transformation. The
algebraic/geometric invariants that are found by
Taubin and Cooper [11], Teral and Cooper [8],
and Keren [3] are global invariants and are
expressed as simple explicit functions of the
coefficients. Another set of invariants that have
been mentioned by Wolovich et al. is derived
from the covariant conic decompositions of
implicit polynomials [12].

3-D Object Registration

In prior literatures such as [7, 11], the global
shape registration is performed through single
(non-iterative) computation after obtaining the
central and oriented information extracted from
polynomial coefficients. An iterative method in
[13] is proposed by using the distance metric
generated from polynomial gradient field and fast
polynomial coefficient transformation.
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Synonyms

Active vision; Purposive vision

Definition

Animat vision is the computational study of the
visual systems used by animals, with special

Analytic Reflectance Functions

attention to the binocular systems used by
humans. For human vision, the goal is to show
how the characteristics of the human eye move-
ment system can be used to make the computation
of needed information more efficient.

Background

The field of computer vision was given an
enormous impetus by the publication of
Rosenfeld’s seminal book Picture Processing
by Computer [28] in 1969, but in the 1970s
the research focus shifted to human vision with
the exciting new formulations of early vision
that recognized that the human visual system
devoted enormous resources to extracting cues
such as binocular disparity, color, and motion
from their composite representation in the initial
image. Two groups were especially influential:
the group at MIT headed by David Marr and
Tomas Poggio [21] and the group at SRI headed
by Harry Barrow and Martin Tanenbaum [8].
David Matrr in particular had an enormous effect
on the field and his book, Vision, is a classic [20].

While the early vision paradigm had a won-
derful impact of defining computation in vision,
by the early 1980s it was apparent that the com-
putations defined on static images were mathe-
matically delicate and could only be tamed with
exceptional ingenuity. Thus the idea evolved that
perhaps a moving camera, with known move-
ment parameters, would help. An early effort was
undertaken at MIT, but the first complete working
system was built at the University of Pennsyl-
vania by Ruzena Bajcsy who coined the term
active perception to describe it [5]. That system
was unveiled at a computer vision conference in
northern Michigan run by Avi Kak and had an
instantaneous acceptance among the researchers
present.

Very shortly afterwards, Christopher Brown
and the author built a similar system that had a
significant advantage. Brown was tracking video
processing pipeline computers and realized that
this evolving computer architecture, when com-
bined with a servo-driven binocular camera sys-
tem, would allow the new computations to be
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Animat Vision, Fig. 1
The University of
Rochester real-time
servo-driven robotic
“head” mounted on its
large PUMA “body.”
Similar systems were built
at KTH in Stockholm,
Carnegie Mellon
University, MIT, the
University of
Pennsylvania, as well as
many other places

realized in real time. The complete system is
shown in Fig. 1. Subsequently the appearance of
video-rate graphics cards capable of doing real-
time image operations served to spur progress.
Originally driven by the needs of the computer
games industry, researchers quickly realized that
now a large amount of the expensive visual cal-
culations could be done in real time. The net
result is that animat/active vision moved to lower-
cost mobile robotic platforms with the result
that robots using a moving cameras on mobile
platforms are now commonplace.

Along the mainstream path of robotic ani-
mats, Rodney Brooks at MIT, perhaps inspired
by Shimon Ullman’s concept of visual routines,
realized that the jobs that vision had to do now
became preeminent and built MIT’s humanoid
robot Cog to focus on task-based vision. The
particular architecture advocated may not have
caught on, but the point was made and the system
has been enormously influential. Two diverse
communities — robotics and psychology — have
been working on cognitive architectures for man-
aging complex tasks that take a more integrated
approach to vision and action, and both have
recognized that the ultimate model architecture
will have a hierarchical structure, e.g., [3, 11,

12, 16, 23]. Robotics researchers have gravitated
to a three-tiered structure that models strategic,
tactical, and detailed levels in complex behavior
[10].

Theory

Animat vision, like its larger cousin active vision,
is a paradigm with a huge number of important
papers outstanding, with the consequence that it
is only possible to provide the barest of outlines
here. The interested reader is referred to some of
the early papers [2, 6, 32]. Here we will demon-
strate the impact on the calculation of early vision
and introduce some more recent developments.

Consequences for Early Vision

Consider the problem of computing just one of
the useful early vision representations, that of
optic flow. Three-dimensional motion due to a
moving observer induces the projection of two-
dimensional motion on the retina. If the time-
varying image function f{x, y, f) represents only
this effect, then the differential equations that
represent the relationship between optic flows
(u(x, y, 1), v(x, y, 1)) can be related to changes
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in photometric intensities % % % with the
equation, captured at the sensor to the image
intensity M by
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The conundrum of early vision can be easily
apparent: At each point in the image x, y at time
t, there is a single equation in two unknowns u,
v. Poggio famously characterized this as an “ill-
posed problem.” A plethora of solution methods
were tried, but they almost all involved integrat-
ing information across the optic array, a very
delicate process. In contrast, moving the camera
view point immediately solves this problem. If
the motion is under the control of the human
observer, then, say for the case of horizontal
motion, to a first approximation one can assume
areliable estimate for u, and of course the system
reduces to a well-behaved two equations in two
unknowns. This kind of simplification surfaces
again and again in early vision, and many novel
instances of this kind of constraint still remain to
be discovered.

The Importance of Eye Fixations

Yarbus’s original work in gaze recordings [37]
in the 1950s and 1960s revealed the enormous
importance of gaze in revealing the underlying
structure of human cognition. From this perspec-
tive, it is somewhat surprising that the first sig-
nificant computational theory of vision [20] post-
poned the study of gaze as well as any influence
of cognition of the extraction of information from
the retinal array. In his “principle of least com-
mitment,” Marr argued the case for the role of
the cortex in building elaborate goal-independent
descriptions of the physical world. Perhaps as
a consequence, when researchers took on the
task of defining the mechanisms for directing
gaze deployment, these turned out to be predom-
inantly image based [18, 19, 36]. These theories
have been compelling, but have many drawbacks.
They usually cannot predict the exact landing
points and typically leave more than 30% of the
fixations unaccounted for.

Animat Vision

Recent experiments show that fixations are
extracting very specific information needed by
the human subject’s ongoing task [14, 34]. The
task context introduces enormous economies into
this process that are very obvious: If a subject
needs to pick up a red object, the search for
that object can be limited to just red portions of
the image; vast amounts of extraneous detail can
be neglected. The visual information-gathering
specificity of almost every portion of every task
will introduce similar economies. Knowledge of
task also has the promise of interpreting a sub-
stantial literature devoted to “change blindness.”
Subjects fail to notice large changes between
successive images or movie frames. While the
exact reason for this has been the subject of con-
troversy [22], the problem may be resolvable if
one has access to the viewer’s cognitive agenda.
On agenda changes are noticed and off agenda
changes are not.

Theoretical Breakthroughs in Task

Modeling

What experiments testing the information
extracted during a fixation have lacked is a
theory that accounts for the role of the cognitive
processes that are controlling the subject’s
behaviors. What form should such a theory take?
There have been several enormous theoretical
advances, mostly from the fast emerging field
of machine learning, that promise to have an
enormous impact on quantitatively testable
theories of cognition. The requirements of animat
vision suggest that such a cognitive theory will
have three important elements: (1) probabilistic
representations, (2) the use of reward in learning,
and (3) embodied cognitive architectures.

1. Probabilistic methods. There 1is rapidly
increasing recognition that the brain is a
probabilistic device and maintains a variety
of mechanisms for calculating the statistical
model of the world around it and its actions
upon that world. To handle this a major
new representational formalism has been
developed that goes under the name graphical
models. Originally developed by Pearl [26],
such models have seen refinement as a general
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way to factor complex statistical interdepen-
dencies into to locally calculable quantities.
The result is that the maintenance of elaborate
statistical dependencies has become practical.
Furthermore, Bayesian models of these
interdependencies have proven their worth
in characterizing many different observations
in visual perceptions [35, 38].

2. Reinforcement Learning. A second break-
through has been the development of model-
making algorithms that are programmed by
reward. It has long been appreciated that the
brain must have mechanisms to learn complex
behaviors and that these mechanisms must be
steered by some scalar affinity signal. For
the dominant effects the neurotransmitter
dopamine has been implicated as the major
signaling mechanism. Schultz, Glimcher,
and others have made the connection
between dopamine and reinforcement learning
algorithms [17, 27, 33], the latter which
by themselves have seen rapid development
[1, 9]. Reinforcement learning algorithms are
in their infancy but hold the promise of being
and integral part of a comprehensive theory of
animat vision learning.

3. Embodied Cognition. As emphasized by a
number of researchers, the brain cannot be
understood in isolation as so much of its
structure is dictated by the body it finds
itself in and the world that the body has to
survive in [7, 13, 24, 25, 29]. This has special
important implications, particularly for the
cognitive architectures, because the brain can
be dramatically simpler that it could ever be
without these encasing milieus. The reason is
that the brain does not have to replicate the
natural structure of the world or the special
ways of interacting with it taken by the body
but instead can have an internal structure
that implicitly and explicitly anticipates these
commitments. The brain just has to have an
interface that allows successful interactions
with the world, but does not have to explicitly
model all the detailed consequences of the
actions taken. This realization opens up a way
to address the challenge of making the leap
from the apparent simplicity of the observed
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behaviors to the complexity of the brain-
body-world system that produces them and
that is to see the behaving body itself as
a laboratory instrument. From this vantage
point, the momentary disposition of the eyes,
head, and hands during the course of behavior
reveals essential details about the underlying
cognitive program that is making those
choices.

Open Problems

Although the importance of body in cognition has
been stressed at least since Merleau-Ponty, until
the middle of 1980s, it was only practical to study
very controlled circumstances such as those made
by an experimental subject seated in front of a
small display.

The research program at Rochester pioneered
the study of embodied, visually driven behav-
iors by the development of innovative labora-
tory equipment and techniques. With Pelz at
the Rochester Institute of Technology [4], they
were the first laboratory that were able to track
the eyes inside a head-mounted display. This
capability allowed the exploitation of another
recent development: Virtual Reality(VR). It is
now straightforward to render scenes in real time
from a moving observer’s vantage point that are
extraordinarily close to the real thing. Thus a
person can have the compelling illusion of being
in a fictional world that at the same time is
under experimental control. This capability, in
turn, has allowed researchers to address many
new experimental questions for the first time. For
example, one can study a person’s disposition of
visual resources in these virtual worlds by using
the eye trackers inside the head-mounted display
to manipulate the information that is available at
each fixation [14, 30, 34].

Now flexible portable instrumentation can
be attached to the body during the course
of extended natural behaviors. Eye tracking
capability that started out requiring subjects
to be restrained in a bite bar has evolved to
the point where portable trackers can be worn
during a squash match. Head, hand, and body
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movements, even those of the facial muscles
during expressions, can be reliably captured at
high data rates during tea making, athletics, and
everyday conversation. The new instrumentation
opens up the possibility of acquiring large
amounts of such data at millisecond time scales
during these natural behaviors and thus provides
access to the essential choices made in directing
behavior under natural circumstances.

Obtaining such data from behavior and mod-
eling it has led to another new question: How
does one become confident that the models one
builds are accurate? Answering this question has
led to another new development and that is sim-
ulated human modeling. It is now possible to
create models of humans that have the degrees
of freedom of the skeletal system and also the
capabilities of the binocular vision system [15,
31]. Thus one can build a human avatar that
acts out the cognitive models obtained by fitting
human data. A bonus is that one can test the
models in completely new situations that were
not part of the original human data gathering and
observe their performance. This in turn can lead
to an iterative refinement of the models and new
experiments. However the most important aspect
of this animat vision research avenue is the test-
ing of the embodied cognition hypothesis with a
suitably rich model. Our everyday experience and
introspection as to the nature of the execution of
everyday tasks has proven very misleading as to
the brain’s underlying representations owing to
the artfulness of conscious experience.
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Synonyms

Appearance-based pedestrian detection

Related Concepts

Object detection

Definition

Human detection may be seen as a classi-
fication problem with two classes: human
and nonhumans, in which the latter class is
composed of background samples containing
anything but humans. When the appearance-
based human detection is employed, a large
number of examples of human and nonhumans
are considered to capture different poses,
backgrounds, and occlusion situations through
the extraction of feature descriptors so that a
machine learning method can be used to classify
samples as belonging to either one of the classes.

Background

Due to the large number of applications that
require information regarding people’s location,
such as autonomous vehicles, surveillance, and
robotics, finding people in images or videos
presents large interest of the community. Even
though widely studied in recent years [l], the
human detection problem is still a challenge
due to the wide variety of poses, clothing,
background, and partial occlusions, which
generate a large number of person’s appearances.
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Appearance-Based Human Detection

Two main approaches have been explored in
the human detection literature. The first class
of methods consists of a generative process
that combines detected parts of the human
body according to a model. The second class
considers statistical analysis through the use
of machine learning techniques to classify a
feature vector composed of low-level feature
descriptors extracted from a detection window.
This approach, also referred to as appearance-
based, captures the appearance information and
focuses on the discrimination between human
and nonhuman samples.

Theory

Appearance-based human detection presents two
important aspects: feature extraction and classifi-
cation. Once both aspects have been considered,
the training and test (detection) steps can be
performed.

Appearance-Based
Human Detection, Fig. 1
Example of the human
detection process. Image
sample extracted from the
INRIA Person dataset [3]

Detection Results

Input Image

The feature extraction is responsible for
capturing the visual information from the
scene, such as the presence of strong vertical
edges, homogeneous textured clothing, or color
constancy in the face. Such characteristics, useful
for human detection, will be extracted using
low-level feature descriptors. It has been shown
that the combination of these characteristics
improves detection results [2]. Among the most
used feature descriptors are the histograms
of oriented gradients (HOG) [3], local binary
patterns (LBP) [4], and Haar wavelet-based
features [5].

The second relevant aspect is the choice of
a machine learning method capable of classify-
ing between humans and non-humans by giving
higher importance to those descriptors that best
distinguish between the two classes. Among the
most employed methods are the linear discrimi-
nant analysis (LDA), neural networks (NN), sup-
port vector machines (SVM), and partial least
squares (PLS).

Detection Windows

Feature Extraction

Classification
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The training step is responsible for learn-
ing parameters of the machine learning meth-
ods such that the differences between the two
classes can be properly captured. For that, fea-
tures are extracted from multiple samples from
both classes, and the descriptors are stored in
feature vectors. It is important to emphasize that a
good training set is important to assure that vari-
ations of the human appearances are captured.
Each classification method presents a different
way of learning the differences. For example,
while SVM finds support vectors that maximize
the margins between both classes, PLS will give
more weight to those dimensions of the feature
vector that best discriminate between the classes.
In addition, it is important to note that a good
training set is also important to assure that vari-
ations of the human appearances are captured.

Once the training has been performed, a slid-
ing window is passed in the image at multiple
scales to locate humans at different locations and
scales. For each location, features are extracted
and stored in a feature vector, which is then pre-
sented to the classifier. The output for each detec-
tion window is a value that reflects the probability
or confidence in which a human is located inside
the detection window. Figure 1 illustrates the
detection process of a typical appearance-based
human detection method.

Application

In general, the human detection is of interest
in any application that falls inside the Looking
at People [6] (domain which focuses primar-
ily in analyzing images and videos containing
humans). For example, a human detector can
be used to provide the location of each agent
in a scene so that tasks such as tracking, re-
identification, action, and activity recognition can
be executed by a surveillance system. In addition,
a human detector can be executed in the domain
on autonomous navigation, where the location of
the pedestrians will be used as information for
path planning. Furthermore, the use of human
detection systems embedded in vehicles may be
very useful to assure pedestrian safety [7].
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Synonyms

Human appearance modeling and tracking;
Human body tracking

Related Concepts

Human Pose Estimation

Definition

Appearance-based human tracking is the task of
tracking the areas that belong to a person over a
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set of consecutive frames in a video, where the
measurements are made based on the appearance
of the human body such as color, intensity, edge,
gradient, texture, shape, and their combination.

Background

Various human tracking algorithms have been
proposed so far, but the focus of each algorithm
is different. Appearance-based human tracking
is an algorithm to track human based on the
similarity between the current appearance model
and the observation from an input image; the
control and search algorithms in tracking are
arbitrary. Several different features have been
employed including color, edge, gradient, tex-
ture, shape, etc., and multiple features are often
integrated together for more robust observations.
The appearance of human based on the fea-
tures is represented by density function, his-
togram, template, and feature descriptors. For
the representation of human body, the spatial
layout of the features is typically considered to
model the appearance of human. The appear-
ance models can be constructed for the entire
human body, a few subregions of the human body,
or the individual articulated human body parts,
depending on the target state spaces and tracking
algorithms.

Generic tracking algorithms can be employed
to track a blob-based human with a simple
appearance model in a low-dimensional state
space. However, in case of articulated human
body tracking, the dimensionality of target
state space is typically very high, and the
inference procedure of the complex human
body configuration is generally complex; more
efficient and specialized tracking algorithms are
required.

Theory

Methodologies of Appearance Models

Two aspects—integrated features and mathemat-
ical representation techniques—are considered to
characterize the appearance-based human track-
ing.

Features Integrated

The appearance for human tracking is modeled
with color [6,9, 11], silhouette [3, 13], shape [5,
7,14], edge [3,10, 12], or texture.

Representation Methods

Some appearance modeling techniques assume
that the appearance of human body is consistent
horizontally. With the assumption, the human
body is represented with multiple histograms [9]
or density functions [6] based on a cylinder
model as in the left subfigure in Fig. 1. Another
method is a path-length model [15], where the
spatial variations are modeled by the distance
from the head along the shape of the person as
shown in the right subfigure in Fig. 1 and feature-
spatial distribution is constructed for appearance
modeling [4]. Template is also frequently used
[2,8,12], and probabilistic template is integrated
in [1].

With the assumption, the human body is rep-
resented with multiple histograms [9] or density
functions [6] based on a cylinder model as in the
left subfigure in Fig. 1.

Acquisition and Maintenance of

Appearance Models

The appearances may be fixed throughout the
sequence or adaptive to the variations of human
body appearance. The initialization of the appear-
ance can be performed based on (manual or auto-
matic) human detection. In [8,12], the appearance
of each body part of human is learned in an online
manner based on simple features obtained in off-
line process.

Tracking Control and Search

Human tracking can be classified into two types
based on the description method of human body;
one is blob-based tracking, and the other is
articulated human body tracking. In case of blob-
based tracking, tracking algorithm is simple,
and the state space of the target is typically low
dimensional. The algorithms in this type have no
big difference from generic tracking algorithms
for other objects; a major difference is that human
tracking algorithms often divide target into a few
subregions based on appearance consistency to
improve measurement accuracy. However, the
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Appearance-Based Human Tracking: Traditional
Approaches, Fig. 1 Some examples to model spatial
layout of a person in human appearance modeling. (Left)
The appearance model is developed for each height slice

articulated human body tracking involves very
high-dimensional state space (typically more than
20 dimensions) and complicated probabilistic
inference procedures; efficient tracking control
and search algorithms are required to handle the
challenges such as annealing [1, 3], message
passing [8], and covariance sampling [13] in
particle filter framework.

Application

Appearance-based human tracking has a lot of
potential applications such as in activity recogni-
tion, event detection, video understanding, visual
surveillance, autonomous driving, and vision-
based user interface in computer games.
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Synonyms

Visual potential graph

Related Concepts

Aspect Graph

Appearance-Based Pedestrian Detection

Definition

An aspect is defined as a set of topologically
equivalent views of a three-dimensional object.
An aspect graph of an object is a graph that
contains all aspects of the object as nodes with
edges connecting to adjacent aspects. It describes
transitions, referred to as visual events, between
aspects of the object in a three-dimensional
viewer’s space.

Theory

An aspect graph denotes segmentation of the
possible view space into regions based on the
topology of views of the object. Koenderink and
van Doorn originally proposed the concept of
aspects [11,12]. A similar idea can be found in
the work of J. J. Gibson [5] and M. Minsky [14].
The work of Chakravarty and Freeman employs
a similar concept, referred to as characteristic
views [3].

For the sake of a simple explanation, let’s
consider the two-dimensional case of view-space
segmentation of a triangle (a convex polygon),
which consists of three edges (2-dimensional
faces), A, B, and C as shown in Fig. 1. A two-
dimensional observer in the view-space can only
move on the same two-dimensional plane of the
triangle and cannot depart from the plane. This
infinite 2D plane of the view-space is divided into
seven regions. One region is the original triangle,
with six additional regions defined by extending
the lines of the three edges as shown in Fig. 1.

Each region is characterized by the edges
(two-dimensional faces) visible from that region.
For example, from any point inside region A, the
observer can only see the edge A, while from any
point inside of region AB, the observer can see
both edge A and edge B. Each region corresponds
to one aspect of the triangle, defined as a view-
space sharing topologically equivalent views. A
graph that connects the nodes corresponding to
those aspects is referred to as the aspect graph of
the triangle. Each edge of the graph corresponds
to a visual event, defined as a transition between
two different regions [1].
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Aspect Graph, Fig. 1 Two-dimensional view-space segmentation and 2-dimensional aspect graph
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Aspect Graph, Fig. 2 A tetrahedron and its three-dimensional aspect graph

We can extend this idea into the three-
dimensional view-space of a convex polyhedron.
In the three-dimensional view-space, each view
region is divided by the infinite planes of the
extensions of three-dimensional polyhedral faces.
Figure 2 shows the aspect graph of a tetrahedron
with face A, B, C, and D.

Researchers’ investigations have found a way
to estimate the number of aspects of an object
by counting the number of view-space regions.

Again, for the sake of a simple explanation,
let’s start with a two-dimensional convex polygon
with n edges. As in the previous discussion,
the possible viewpoints are located on the same
infinite plane as the polygon. The n edges of the
polygon generate F(n) regions on this plane by
extending those n edges. Let us modify the n-
polygon into (n + 1)-polygon by adding a new
edge in this n-polygon. This new edge forms a
new infinite straight line, which intersects the
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Aspect Graph, Fig. 3 View-space segmentation with a
n + 1 polygon A newline intersects previous n lines with
n intersection points and adds n + 1 new regions.

previous n lines with n points. See Fig.3. As a
result, the infinite line is divided into (n + 1)
segments. Each segment divides one previous
region into two new regions. Thus, F(n + 1) =
F(n) + (n + 1). Apparently, F(3) = 7 regions,
including the original polygon as one region.
Thus, F(n) = 5% 41 ~ 0(n?).

Let us suppose that we have a n-polyhedron
in the view-space which is divided into G(n)
three-dimensional regions with the extended
planes formed by n faces. When we add a
new infinite plane as the extension of a new
face of the n+1 polyhedron, this new plane
intersects the original n planes with n intersection
lines on the plane. On this plane, F(n) two-
dimensional regions exist between n intersection
lines. One two-dimensional region divides one
previous three-dimensional region into two
new three-dimensional regions at each two-
dimensional region on the plane. As a result,
it generates F(n) two-dimensional regions.
Thus, G(n + 1) = G(n) + F(n). Thus,
G(n) = "5 4| ~ 0(d).

The aspect graph of a non-convex polyhedron
requires introducing two view classes: general
and accidental views. A general view is defined
as a viewing point where any infinitesimal move-
ment around that viewing position preserves the
topology of views; the view is locally stable
within the neighborhood. An accidental view is
defined as a singular viewing point where even
infinitesimal movement changes the topology of
the view; the view only exists within an infinitely
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small region. For example, in Fig. 4b one viewing
point’s vertex is aligned on the edge, making
this is an accidental view. In contrast, Fig.4a,
4c shows viewing points with vertexes that do
not project to that edge, making them correspond
to general views. While accidental viewing posi-
tions of a convex polyhedron exist on an infinite
plane dividing the view space, the view itself is
included in one of the two views along the plane.
Plantinga’s work shows non-convex objects have
O (n®) regions under orthographic projection and
O (n°) regions under perspective projection [17].

Algorithms for automatically computing the
aspect graph of a non-convex polyhedron typi-
cally start by extracting accidental viewpoints [6,
17,20]. This step corresponds to the drawing of
infinite planes in the view space when handling
a convex polyhedron. The difference between the
convex and non-convex case is the latter requires
more operations to compute the regions. Then,
all the visual events across the accidental view-
points are enumerated by examining the regions.
Finally, the aspect graph is obtained by traversing
the partitions between the regions in the view-
point space.

We can also define the aspect graph of a
curved-surface object [2,13,16,18,19]. The main
flow of a graph generation process follows the
same steps as polyhedral objects: accidental view
extraction and segmentation of the viewing space
into regions based on the accidental views and
then generating the graph by traversing the region
partitions. However, contour generator(s) on a
curved-surface object move(s) over the object
surface along the transition in the viewing direc-
tion. Thus, the first and second steps require
more complicated analysis than is required for a
polyhedral object.

In practical applications such as robotic object
manipulation or navigation, it often occurs that it
is not necessary to consider unstable accidental
views. First, they rarely occur. Secondly, even if
they occur, we can avoid them by adding small
active motions to the robot’s behavior during
observation and using only stable non-accidental
views. For such applications, several researchers
propose dividing the viewing directions into a
certain number of sampling directions based on
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Aspect Graph, Fig. 5 View-direction sampling and aspect generation by the approximation method [8]

a higher degree of a semi-regular geodesic dome
and then generating appearances of an object at
the center of each mesh by using a CAD model of
the object [7,8]. See Fig. 5. Once views from all
sampling directions are obtained, the algorithm
groups those views into clusters based on given
visible features and handles those clusters as a set
of aspects.

This approximation method can be extended
to include views from a particular sensor by
applying a model of the sensor to the view gen-
eration process [10]. In this case, even using the
same viewing directions, views are different from
each other due to the physical characteristics of
the sensor. Views from a Lidar sensor are differ-

ent from those captured by a common RGB or IR
camera and thusly, they extract different features.
As a result, aspect graphs generated using Lidar
view data are different from those generated by
RGB or IR camera views [10]. The approxima-
tion method can handle such cases by generating
views that consider the sensor model used from
each sampling direction and enumerating those
views into clusters.

Open Problems

Some researchers consider aspect graphs to be
non-practical [4]. Their arguments are based
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on their experiences and efforts to obtain com-
plete aspect graphs from the analysis of line-
drawings of an object. It is well-known that it
is extremely difficult to extract complete line-
drawings from images. As a result, generating
aspect graphs based on complete line-drawings
becomes impractical. However, this problem may
be overcome by relaxing the definition of aspects
to include views that share a common set of
features observable by a particular sensor. For
example, matching visible face color combina-
tions or numbers of visible regions detected by a
particular sensor could be included in the relaxed
definition of an aspect. Further, the approxima-
tion method can be used to help achieve practi-
cality with relaxed aspect definitions. Going for-
ward in this direction, it is necessary to consider
which visible features are effective for the object
recognition task at hand in order to enumerate and
classify the views.

The concept of the aspect graph indicates
that object recognition consists of two different
kinds of operations, aspect determination and
linear shape-change determination [9]. Aspect
determination conducts a labeling operation to
choose one particular aspect among all possible
aspects based on feature-matching within the set
of visible features. Linear shape-change determi-
nation conducts localization of the viewer’s posi-
tion and orientation by distorting the appearance
of model features to match the current sensed
appearance. In a human brain, it is believed that
the labeling operation is performed in the inferior
temporal cortex along the ventral system from
the parvocellular layer through V2 and V4 to
areas of the inferior temporal lobe [15]. The
localization operation is done along the dorsal
system from the primary visual cortex (V1) into
the parietal lobe. In parallel to this discussion, it
is of interest to analyze how recent convolutional
neural networks (CNN) handle aspect determi-
nation and linear shape-change determination in
their network structures.
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Industrial Design Engineering, Delft University
of Technology, Delft, The Netherlands

Synonyms

Surface scattering; Velvety reflectance

Related Concepts

Retroreflection
Lambertian Reflectance
Surface Roughness

Definition

The “asperities” can be of various nature, hair-
tips, dust, “fluff’, local high curvature spots or
ridges (the term derives from scattering by pow-
dered materials where the “asperities” are sharp
edges like on broken glass).

Background

The reflectance of natural, opaque, and rough
surfaces [1, 2] can be described by the Bidirec-
tional Reflectance Distribution Function (BRDF)
[6]. BRDFs that are common and well-known
are those of Lambertian, perfectly diffusely scat-
tering surfaces and of specular surfaces. Such
surfaces scatter light in all directions (diffuse
scattering) or primarily in the mirror direction
(specular reflection). However, natural surfaces
can scatter light in many other ways. Asperity
scattering adds a ‘“‘surface lobe” to the usual
diffuse, backscatter, and specular lobes of rough
surfaces. It is an important effect in many mate-
rials that are covered with a thin layer of sparse
scatterers such as dust or hairs. In the common
case that single scattering predominates, asperity
scattering adds important contributions to the
structure of the occluding contour and the edge
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of the body shadow. This is the case because the
BRDF is inversely proportional to the cosines
of both illumination and viewing angles. The
BRDF is generally low (and typically negligible),
except when either the illuminating rays or visual
directions graze the surface.

Because asperity scattering selectively influ-
ences the edges in the image of an object, it
has a disproportionally (as judged by photomet-
ric magnitudes) large effect on (human) visual
appreciation. It is a neglected but often decisive
visual cue in the rendering of human skin. Its
effect is to make smooth cheeks to look “vel-
vety” or “peachy” (the appearances of both velvet
and “peachy” skin are dominated by asperity
scattering), that is to say, soft. This is a most
important aesthetic and emotional factor that is
lacking from Lambertian (looks merely dullish,
paperlike), “skin type” BRDF (looks like glossy
plastic), or even translucent (looks “hard”, vitre-
ous) types of rendering.

Theory

Asperity scattering is due to scattering by a sparse
“cloud cover” of the surface with essentially point
scatterers. In sparse distributions of scatterers,
one may assume that single scattering predomi-
nates. Then parameters of interest are the geom-
etry of the cloud and the nature of the single
scatterers. For this case, a physical, geometrical
optical model was derived [3] and experimental
data gathered [5].

It is also possible to fit asperity scattering
characteristics in a convenient, simplified for-
mula (note that basic physical constraints should
hold, e.g., non-negativity, energy conservation,
and Helmholtz reciprocity) [4]. For instance, for
a surface element with unit (outward) normal n,
irradiated from the direction (unit vector) i and
viewed from the direction (unit vector) j, the
following BRDF model

.. 1 a
R T M

describes a “surface lobe” such as one observes in
black velvet cloth or peach skin. The parameter
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a determines the width of the lobe. (A similar
behavior results if one substitutes (i - n) + (j - n)
for (i - n)(j - m).) The albedo is found to be

2a

) a
(i-n)? (l'n+alogm)’
()

Ay (i,mn,a) =

which has a lowest value

a
2a<1+log<lam> )%2a+210g aa*+ -
3)

at normal incidence and rises monotonically to
unity at grazing incidence. (For black velvet
a <& 1.) Other possibilities for simplified
formulations may be found in graphics as so-
called velvet shaders. However, care should be
taken that many of these rendering applications
do not fulfill the above mentioned basic physical
constraints.

Open Problems

BRDFs of natural surfaces can probably be cat-
egorized into about a dozen different modes.
Currently, only the forward, backward, diffuse,
and surface scattering modes have been described
by formal optical models.

Reflectance estimation from images suffers
from image ambiguities. Prior knowledge on the
reflectance statistics of natural materials plus for-
mal descriptive models for the common modes of
natural BRDFs can constrain this problem.
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Synonyms

Encoder-decoder architectures

Related Concepts

Deep Generative Models
Dimensionality Reduction

Generative Adversarial Network (GAN)
Manifold Learning

Principal Component Analysis (PCA)
Recurrent Neural Network

Definition

An autoencoder is a deep neural architecture
comprising two parts, namely, (1) an encoder
network that maps each input data point to a point
in a different (latent) space and (2) a decoder
network that maps the points in the latent space
back to the data space. The two components are
trained jointly in an unsupervised way, so that
their composition approximately preserves points
from a given training dataset.


http://www.cs.columbia.edu/CAVE/curet

Autoencoder

Background

Autoencoders are a very popular deep architec-
ture for unsupervised learning going back to at
least 1980s [1,2]. Similar to other unsupervised
learning methods such as principal component
analysis [3], the objective of autoencoder
learning is to find some latent representation
of the points in a training dataset that preserves
the information contained in the data points,
while simplifying the data in a certain way.
In the case of autoencoder, the mapping from
the data points to their latent representations is
parameterized by a deep feedforward network
(an encoder). The learning also aims to recover
an approximate inverse mapping of the encoder
that is also parameterized as a deep network
(a decoder). Training the encoder and the
decoder in parallel ensures that the discovered
latent representation of the data preserves
most of the information contained in the data.
To uncover the latent (hidden) structure of
the dataset (or the underlying distribution),
certain constraints are usually imposed on the
architecture of the encoder and/or the decoder.
Once the autoencoder is trained, its components
or the discovered latent representations can be
used in various ways. In particular, the latent
representations of data points can often be used
as features for different machine learning tasks.

Theory

Autoencoders are deep architectures trained in
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in a certain data space X. In a probabilistic
setting, we may think of the dataset as a sample
from some underlying distribution px defined on
X. Alternatively, we may think of the training
dataset as a set of samples from some manifold
(the data manifold M) that lies within the data
space and forms the support of the distribution
px. Autoencoder learning can then be seen as a
way to find a suitable parameterization of the data
manifold and is thus related to manifold learning
methods.

An autoencoder (Fig. 1) includes an encoder
ey with learnable parameters ¢ that maps each
example x to its latent representation z = ey (x)
from a certain latent space Z. The structure of
X and Z may be arbitrary, e.g., X may contain
images of a certain size, and Z may correspond
to a Euclidean space of a certain dimensionality.

The second part of the autoencoder, the
decoder dy with learnable parameters 6 operates
in the reverse direction to the encoder. The
decoder thus maps points z € Z to the data
space X. The full autoencoder network then
corresponds to the composition of the encoder
and the decoder:

ey

Ay o = d9 0 €y

The exact structure of the encoder and the
decoder can also be arbitrary. In modern com-
puter vision, it is common to use convolutional
architectures [4] with multiple layers for both
networks.

An autoencoder is trained by approximating

an unsupervised way for a dataset x, xp,...,xy the identity mapping on the dataset X. The
\ I 4 data
data latept ] A reconstructions
manifald encoder [ cplesentations decoder
data space latent space data space

Autoencoder, Fig. 1 The autoencoder architecture com-
prises the encoder that maps data to latent space and the
decoder that is trained in parallel with the encoder to
approximately invert it on the data points. The goal of the

learning is to obtain a latent representation of the data that
is in a certain way simpler or more amenable for further
processing than the original data representation
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training loss is therefore defined as:

1 N
L@, 0) =52 Ak ap000) (@)

i=1

where the function A measures the dissimilarity
between its arguments. In the simplest case,
one may use the squared Euclidean distance
Alx,y) = |lx — y||%, though more sophisticated
variants, such as perceptual dissimilarity [5],
are often used in recent works. The choice of A
plays an important role, since the autoencoders
are usually designed in a way that the training
loss cannot be minimized to zero, leaving some
mismatch between the training data points x;
and their reconstructions. The choice of the
dissimilarity measure A thus determines which
kind of dissimilarities between data points and
reconstructions are penalized more and which are
penalized less.

The training process of an autoencoder cor-
responds to the minimization of the loss (2)
using some variant of stochastic gradient descent.
As with many other unsupervised learning tech-
niques, the goal of the training is to learn some
latent representation of data that uncovers some
latent (hidden) structure in the data. This means
that the dataset z1, 22, .. ., 2y, Where z; = eg(x;)
(and the underlying distribution pz = egs(px)),
should have a form that is simpler in some sense
than the original dataset and the original distribu-
tion.

From the manifold viewpoint, learning
autoencoder essentially amounts to finding
the parametrization of the data manifold. One
indicator of success here (which is often used
by researchers to evaluate the quality of an
autoencoder) is the plausibility of interpolation
in the latent space. Thus, given two data samples
x1 and x, and their latent representation z; and
22, the latent points lying on the line segment that
connects z; and 7z, in the latent space should be
mapped by the decoder onto the data manifold,
e, VA € [0;1] dg(Az1 + (1 — M)z2) € M.
When data are images of a certain kind, e.g., face
images, this condition can be verified by looking
at the reconstructions dg(Az; + (1 — A)z2) and
checking whether they look like face images.

Autoencoder

Note that a line segment connecting x; and x;
in the original data space would typically not lie
on the data manifold M, as most data manifolds
have highly non-convex shape in the embedding
space.

Types of Autoencoders

Given enough capacity of the networks e and d
as well as large enough space Z, the autoencoder
is likely to learn to copy the data points into
the latent space (potentially with some trivial
injective transformation 7') and then to copy it
back to the original space (while reverting the
transformation 7'). This is because such solution
achieves lowest possible (zero) loss. In this case,
the latent representation will not be in any ways
simpler than the original data representation, and
the data manifold will not be properly parameter-
ized. Below, we discuss several ways how autoen-
coders can be encouraged to learn simplified data
representation.

Autoencoders as architectures for nonlinear
dimensionality reduction. In this approach, the
dimensionality of Z is taken to be substantially
smaller than the dimensionality of X. In this
situation, learning an autoencoder effectively
amounts to dimensionality reduction, as the
learning process seeks to identify the most
important factors of variation in the data in order
to preserve them within the latent representations.

Regularized autoencoders Alternatively, or in
addition to having Z of small dimensionality,
it is common to impose certain regularization
on the learning process. For example, one may
penalize a certain norm of the latent vectors z; [6]
and/or penalize a certain norm of the network
parameters ¢ and 6 [7]. Adding such regular-
ization effectively prevents the autoencoder from
learning the identity function and forces it to learn
a simplified latent representation of data.

Denoising autoencoders Alternatively, or in
addition to the above approaches, one can
regularize the training process by injecting
(adding) noise or performing some structured
corruption process on the training points, so that
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the autoencoder receives the corrupted versions
X; of the data points x; during training. In this
scenario, the autoencoder needs to combine
reconstruction with restoration, as the loss
function still computes the difference between
the reconstruction obtained from the corrupted
data and the original data points:

1 N
L(#,0) = D Alxi, a50G))  O)

i=1

Once again, denoising autoencoder cannot attain
low training loss by simply copying the data
from the input to the output via the latent space,
since such copying will not remove the corruption
effect. Instead, the autoencoder has to learn to
project the corrupted examples onto the manifold
containing the original distribution [8] and there-
fore has to uncover the latent representation of
data, from which the original data points can be
reconstructed.

Variational autoencoders Variational autoen-
coders (VAEs) [9, 10] combine several of the
above ideas and do so in a probabilistic setting.
In a variational autoencoder, the encoder and the
decoder are thought as stochastic functions. The
encoder maps each data point to a distribution
in the latent space (which is usually taken to
be Gaussian with diagonal covariance matrix,
so that both the mean vector and the covariance
parameters are predicted by the encoder). The
decoder is also designed to map points in the
latent space to the (usually Gaussian) distribution
in the data space (though the covariance matrix
is often fixed and only the mean vector is
predicted). The autoencoding process inside VAE
corresponds to mapping a training data sample to
the distribution in the latent space, sampling from
the resulting distribution and mapping the sample
back to the data space. The minus log-likelihood
of the input data sample w.r.t. the resulting
distribution is then minimized. The learning is
regularized by penalizing the Kulback-Leibler
divergence between the encoding of each data
sample and the unit zero-mean Gaussian. When
the regularization coefficient equals one, the
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total learning objective can be interpreted as
the maximization of the so-called evidence
lower bound on the log-likelihood of the data
points.

Related Models

Autoencoders have deep connections to a number
of models and tasks. Some of these connections
are discussed below.

Principal component analysis (PCA) PCA [3]
can be regarded as a particular type of an autoen-
coder with the encoder and the decoder having
the fully connected single-layer architecture
under additional constraints on the matrices
and biases of the layers and more efficient
training algorithms (namely, singular value and
eigenvalue decompositions). The usage patterns
discussed below are thus common to autoen-
coders and PCA, though autoencoders with
multiple convolutional layers in most circum-
stances attain much better performance for image
datasets.

Data compression When the dimensionality of
the latent space is lower than the original space or
if the latent representation of the dataset is more
amenable for compression algorithms, training an
autoencoder can be used for lossy data compres-
sion [11].

Generative adversarial networks (GANSs)
GANs [12] are another kind of latent
models learned to approximate the data

manifold/distribution. In their original form,
GANSs allow to map points from latent space to
data space (as do decoders within autoencoders),
but not vice versa. Multiple hybrid models
that combine autoencoders with GANs exist
[13,14].

Generative latent optimization (GLO) The
recently proposed GLO model [15] is another
deep latent model learned to parameterize the
data manifold. GLO can be regarded as a
simplification of the autoencoder model, where
only the decoder network is trained and reused
after training.
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Applications

Autoencoders have a number of applications, and
below we provide examples of the most common
patterns of usage.

Feature extraction Once an autoencoder is
trained, its encoder part ey can be used as a
feature extractor for various machine learning
tasks including supervised learning. In the semi-
supervised training scenario, a large amount
of unlabeled data {xlf } can be used to train an
autoencoder, and a small amount of labeled data
{xi, yi} (where y; is a label of x;) can then be
used to train a predictor (e.g., a classifier) ¢y, with
learnable parameters v in the latent space, so that
Vi & ¢y (ep(x;)). Assuming that the training of
the autoencoder is successful, and the distribution
in the latent space has a simpler form than in the
data space, training such predictor in the latent
space Z will lead to better generalization than
training a predictor in the original data space X.
Note that the decoder dy is effectively discarded
in such a scenario.

Pretraining generator networks It is common
to use the decoder part of a pretrained
autoencoder for conditional sampling/synthesis.
In more detail, consider a scenario when a limited
amount of aligned data {(x;, y;)} C X ® Y (e.g.,
images from the image space X and their text
descriptions from the description space Y) and
a large amount of unaligned samples {x}} cX
(e.g., images without descriptions) are given. In
order to learn image synthesis conditioned on text
description, one may first learn an autoencoder
on unaligned data {x}} with latent space Z and
then learn a mapping f; from Y to the latent
space Z with learnable parameters 7, such that
its composition with the pretrained decoder dy
maps x; close to y; (i.e., x; = do(f;(y;))). The
composition of the mapping f; and the decoder
will thus provide a mapping from Y to X (text-
to-image in our example) that is trained both
on aligned and unaligned data. Such mapping is
likely to generalize to unseen data better than the
mapping learned solely on aligned data.

Autoencoder

Disentangling of factors Under certain
circumstances, the latent distribution learned
by an autoencoder has some factor disentangling
properties so that a certain factor of variation
affects all or almost all dimensions in the original
space X but only a small subset of dimensions
in the latent space Z. For example, when
autoencoder is trained for face images, certain
latent dimensions may correspond to person
identity, while being invariant to expression (and
vice versa). Such disentagling is most common to
observe in a variational autoencoder (VAE) due
to the diagonal covariance structure imposed on
the latent distributions within VAE.

Data manipulation in latent space Even if fac-
tors of variation are not disentangled in the latent
space, it often happens that high-level (semantic)
editing is easier in the latent space than in the
data space. For example, given a dataset of face
images, it often happens that a change of a certain
attribute (e.g., changing neutral face expression
to smiling expression) can be easily modeled in
the latent space. Sometimes, such transformation
that is very complex in the data space can be well
approximated by a simple translation by a certain
vector in the latent space. The parameters of the
transformation in the latent space can be learned
from a small amount of extra annotation (e.g., in
the example above, the translation vector can be
learned as a difference between the mean of the
latent representations of several smiling faces and
the mean of the latent representations of several
neutral faces).

Unsupervised restoration and anomaly detec-
tion The ability of autoencoders to project data
on the data manifold can be used to restore cor-
rupted data as well as to identify outlier samples
that do not belong to the data manifold [16, 17].
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Synonyms

Generalized bas-relief (GBR) transformation

Related Concepts

IIlumination Estimation, Illuminant Estimation
Lambertian Reflectance

Photometric Stereo

Shape from Shadows

Definition

Members of the equivalence class of convex
Lambertian surfaces that produce the same
set of orthographic images under arbitrary
combinations of distant point light sources
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are related by elements of a three-parameter
subgroup of G L(3), called generalized bas-relief
(GBR) transformations. This inherent ambiguity
in determining the three-dimensional shape of an
object from shading and shadow information is
called the bas-relief ambiguity.

Background

For a surface f(x, y), the GBR-transformed sur-
face is given by fix,y) = ux + vy + Afix,y),
where 1, v € R and A € Ry . The orthographic
image of an object with Lambertian reflectance,
illuminated by an arbitrary set of distant point
light sources, remains unchanged when the object
shape is transformed by a GBR, with an inverse
transformation applied on the set of light sources
and a corresponding pointwise transformation on
the albedos. Further, any continuous transforma-
tion that preserves the shading and shadowing
configuration for a convex surface must belong
to the GBR group [1].

Thus, for a Lambertian surface, any recon-
struction or recognition algorithm based on shad-
ing and shadow information alone can at best
enunciate the shape, albedo, or lighting up to a
“bas-relief ambiguity.” The ambiguity derives its
name from the corresponding low-relief sculpture
technique (Italian: basso rilievo), which can be
understood as a special case of the GBR, where
A<l


https://doi.org/10.1007/978-3-030-63416-2

76

Theory

Under orthographic projection, each point on a
surface may be represented as [x, y, fix, y)],
where (x,y) € R? is a point on the image plane
and f'is a piecewise differentiable function. The
unit surface normal is given by

[fo-£ 1]
IR+

A GBR transformation that maps a surface
fe, y)to f (x,y) = ux + vy 4+ Af (x, y) and the
corresponding inverse GBR transformation may
be represented as 3 x 3 linear transformations:

ﬁ:

ey

100 [ » 00

G=|010|.G'== 0 x»0
A

[TV —u—vl

@

Under the matrix product operation, the set
of GBR transformations forms a subgroup of
G L(3), the group of 3 x 3 invertible linear
transformations. The unit surface normals of the
GBR-transformed surface f are ”g:—il':”

Shadows and Shading
The image formation equation at a point p = [x,
y, fix, y)]T on a Lambertian surface is given by
I(x,y)=n's (3)
where 1 is the intensity, n is the product of albedo
a and unit surface normal 1, while s is the light
source direction, scaled by its strength. The point
p lies in an attached shadow if s'h < 0, while
it lies on a cast shadow boundary if there exists a
point p’ on the surface, with unit normal i/, such
that

s'H =0,p—p =ks, forsomek € Ry,. (4)
A point p = [x, y, fix, )] lies in an attached

shadow or on a cast shadow boundary in an image
produced by the light source s if and only if the

Bas-Relief Ambiguity

point p = Gp does so in an image produced
by the light source s = Gs, where G is a
GBR transformation given by Eq. (2). Further,
the image of a surface f(x, y) with albedo a(x, y),
when illuminated by a light source s, is equivalent
to the image under the light source S = Gs of
the GBR-transformed surface 7, with a pointwise
albedo transformation given by

a =

1
aOfc+w*+ 0y +u)+1)° )
A 2+ 241 ’

It follows that the set of images of a Lamber-
tian surface-albedo pair {f, a}, under all possible
combinations of distant light sources, is identical
to that of any GBR-transformed surface-albedo
pair { f, @} [1] (see Fig. 1). Thus, the illumination
cones of surfaces related by a GBR transforma-
tion are identical [2].

Existence and Uniqueness
It is shown in [1] that any two convex, smooth
surfaces with visible occluding contours that pro-
duce the same set of attached shadow boundaries
must be related by a GBR transformation. Thus,
the GBR transformation is the only one that
preserves the set of all images of an object.
While the existence result for the bas-relief
ambiguity does not explicitly require convexity
of the surface, in practice, the image forma-
tion model for concave regions must account for
interreflections. It has been shown that modeling
diffuse interreflections uniquely determines the
shape and lighting [3].

Integrability

In traditional photometric stereo, given images
of a point p under three or more known light
sources, one may recover its surface normal
n using Eq. (3). However, in uncalibrated
photometric stereo where the light sources are
unknown, the surface normal and the light
sources can be recovered only up to an arbitrary,
invertible 3 x 3 linear transformation, since
n, =AT nands- = A~! s satisfy Eq. (3) for any
A e GL@3).
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Bas-Relief Ambiguity,
Fig. 1 The left column
shows various GBR
transformations applied to
a surface, with the
corresponding inverse
transformation applied to
the light source direction.
The top row is the true
shape. The right column
shows that the shading and
shadows produced in an
orthographic image of the
surface are identical for
any GBR transformation.
(Figure reproduced in part
from [1], courtesy of the
authors)

For the recovered normal field to correspond
to a surface, it must satisfy the integrability
constraint [4]:

o (n*¥ o (n}
sl o
y \n3 dx \n3

It is shown in [1] that requiring the recovered
normal field to be integrable restricts A to lie in
the group of GBR transformations.

Generalizations

Under perspective projection, the shadows pro-
duced by an object under distant or proximal
point light sources are the same as those produced
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by a surface transformed by a generalized per-
spective bas-relief (GPBR) transformation, with
an inverse transformation applied on the light
sources [5]. The GPBR is a three-dimensional
elation [6] and, in the limiting case of ortho-
graphic projection, reduces to the definition of
GBR in Eq. (2).

Under orthographic projection from an
unknown viewpoint, there exists an ambiguity
that corresponds to the group of three-
dimensional affine transformations, called the
Klein generalized bas-relief (KGBR) ambiguity,
such that the set of images of an object
is preserved under the action of a KGBR
transformation on the shape, lighting, albedos,
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and viewpoint [7]. In the limiting case of a fixed
viewpoint, the KGBR ambiguity reduces to the
bas-relief ambiguity.

Application

The bas-relief ambiguity in computer vision
explains psychophysical observations of similar
unresolved ambiguities in human visual
perception [8]. An important consequence of
the existence of the bas-relief ambiguity is that
any image-based computer vision algorithm,
relying on inference based solely on shading and
shadow information, can only describe the object
up to an arbitrary GBR transformation. Further,
it has been established that for any infinitesimal
motion of a surface f, there exists a motion for
the GBR-transformed surface f that produces
the same motion field [1]. Thus, an infinitesimal
motion does not provide additional cues for
disambiguation.

Surface reconstruction up to a GBR
transformation can be performed by imposing
integrability in uncalibrated photometric stereo
[9]. The bas-relief ambiguity may be resolved in
practice by incorporating additional information,
for instance, priors on albedo distribution
[10, 11]. Alternatively, the presence of non-
Lambertian effects — such as specular highlights
[12], a Torrance-Sparrow reflectance [13],
or a spatially unvarying, isotropic, additive
non-Lambertian reflectance component [14] —
eliminates the GBR ambiguity.
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Synonyms

Mesostructure; Microgeometry; Relief texture;
Solid texture; Surface roughness; Volumetric tex-
ture

Related Concepts

Bidirectional Texture Function and 3D Texture
Light Field
Texture Recognition

Definition

In the context of computer vision, texture often
refers to a variation of image intensity or color,
where the variation exhibits some type of rep-
etition. The terms 2D texture and 3D texture
provide a more precise definition of texture. A
2D texture may be a color or shade variation such
as a paisley print or zebra stripes. A textured
surface can also exhibit geometric variations on
the surface such as gravel, grass, or any rough
surface. This type of texture is termed 3D tex-
ture [1, 2]. Algorithms developed for 2D texture
are generally not useful for 3D texture because
appearance varies as a function of viewing and
illumination direction.

The difference between 2D and 3D texture is
readily apparent when considering photometric
effects due to illumination direction and geo-
metric effects due to viewing direction. Consider
Fig. 1 with four images of the same surface under
different surface tilt angles. The surface geometry
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does not change, but the illumination and viewing
direction is different in each of the images. With
a 2D texture model, these changes could be
misinterpreted as changes in the texture class. As
shown in Fig. 2, the appearance of the texture
also changes significantly over the surface of a
3D object. The photometry of 3D texture causes
shading and shadowing that vary with illumina-
tion direction. The geometry of 3D texture causes
a variation in foreshortening and occlusions along
the imaged surface. Consider Fig. 3 which illus-
trates oblique viewing of a 3D-textured surface
patch. A similar oblique view of a 2D-textured
surface patch gives a uniformly compressed or
downsampled version of the frontal view. How-
ever, for an obliquely viewed 3D-textured sur-
face patch, there is a non uniform resampling
of the frontal view. Consequently, some texture
features are compressed in the oblique view,
while others expand. Computer graphics algo-
rithms for texture mapping traditionally charac-
terize the texture with a single image. To synthe-
size oblique views, these texture-mapping algo-
rithms apply a uniform resampling which clearly
cannot account for the spatially varying fore-
shortening and occlusions.

Background

Measurement of 3D texture with a bidirectional
texture function (BTF) was introduced in [1,
2]. This work created a database of 3D texture
called the CUReT database (Columbia-Utrecht
Reflectance and Texture database). This publicly
available collection of measurements from real-
world surfaces served as a starting point for
subsequent work in 3D texture.

Theory

Histogram Models for 3D Texture

Numerous texture models for 2D texture
have been developed since the early 1970s
and are used in areas like texture mapping,
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Bidirectional Texture Function and 3D Texture, Fig. 1 Four images of the same 3D-textured surface. As the surface
tilt and illumination direction varies, surface appearance changes

Bidirectional Texture Function and 3D Texture, Fig. 2
The local appearance of a 3D-textured object. Notice that
local foreshortening, shadowing, and occlusions change
across the texture because of the differences in global
surface orientation and illumination direction

texture synthesis, shape-from-texture, and
texture classification and segmentation. These
representations include co-occurrence matrices,
histograms, power spectra, Gabor filter outputs,
textons, wavelets, and Markov random fields. In
the late 1990s, the emphasis of texture research
expanded to include 3D textures. Analytical
models of intensity histograms of 3D-textured

Rellectance from a region

[ Local Surface Geomelry
Gilobal Object Geornelry

Bidirectional Texture Function and 3D Texture, Fig. 3
Geometry of 3D texture. For oblique views of a 3D-
textured surface, the sampling rate of the surface depends
on the local geometry

surface are developed in [3] and [4]. Intensity
histograms are a very basic tool to represent
texture but are too simple for most computer
vision tasks. A standard framework for texture
representations consists of a primitive and
a statistical distribution (histogram) of this
primitive over space. Intensity is the simplest
primitive; however, image features are better
primitives to characterize the spatial relationship
of pixels. In order to account for changes
with imaging parameters (view/illumination
direction), either the primitive or the statistical
distribution should be a function of the imaging
parameters. Two methods to represent 3D texture
are the bidirectional feature histogram (BFH) [5]
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and the 3D texton method [6]. In the 3D texton
method, the primitive is a function of imaging
parameters, while in the BFH method, the
histogram is a function of imaging parameters.
The advantage of the BFH approach is that there
is no need for aligning images obtained under
different imaging parameters.

Appearance-Based Representations

In computer vision, the precise surface geometry
that comprises a 3D texture is often unknown.
Instead, images of the 3D texture, i.e., appear-
ance, are used to represent the textured surface.
The term bidirectional texture function (BTF) is
the appearance of texture as a function of viewing
and illumination direction. BTF is typically cap-
tured by imaging the surface at a set of possible
viewing and illumination directions. Therefore,
measurements of BTF are collections of images.
The term BTF was first introduced in [2, 7], and
similar terms have since been introduced includ-
ing BSSRDF [8] and SBRDF (spatial BRDF) [9].
SBRDF has a very similar definition to BTF, i.e.,
BTF is also a spatially varying BRDF.

BTF measurements can be very large because
the measurements typically consist of a high-
resolution image for every possible viewing
and illumination direction. Dense sampling of
the illumination and viewing space results in
extremely large datasets to represent the surface.
For example, if a 3 Mb image is captured for
each of the 100 sampled viewing directions
and 100 illumination directions, the resulting
dataset is 30 Gb. Compact representations of the
BTF are clearly important for efficient storage,
rendering, and recognition. Methods for compact
representations and compression of the BTF are
presented in [10-13].

Geometry-Based Representations

from Computer Graphics

In computer vision, image-based representations
are standard because the surface geometry is typ-
ically unknown. However, in computer graphics,
the precise geometry of the 3D-textured surface
may be known. Rendering 3D textures using a
volumetric representation of surface geometry
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is a common approach. Many of the rendering
packages such as OpenGL and Blender use the
term 3D texture to refer to volumetric texture.
In this definition, the 3D texture is defined by
opacity in a volume, instead of the definition
here which refers to a surface height variation.
In recent work [14], a volumetric representation
is used for texture rendering, where the volume is
a stack of semitransparent layers obtained using
measured BTF data. Historically, volumetric tex-
ture methods are also referred to as solid texturing
[15-18].

Application

The main applications for 3D texture represen-
tations are in recognition, synthesis, and render-
ing. While many applications use image-based
representations, or assume a known geometric
model, other applications need to capture the
local geometry of 3D texture. Digital archiving
of art is an example of such an application where
fine-scale surface detail can enhance geometric
models. Often the 3D texture is not easily cap-
tured with standard laser scanning devices. For
example, in capturing the geometry of sculp-
tures, researchers devised ways to capture high-
resolution 3D texture such as tool marks [19—
21]. An additional method for capturing high-
resolution 3D texture geometry uses a specialized
texture camera based on the optical properties
of curved mirrors [22]. For texture recognition,
3D texture methods have been used in mate-
rial recognition [6, 23-25]. One of the popular
recognition tasks is the recognition of materials
from the CUReT database. Another real-world
recognition task is the measurement and recogni-
tion of skin texture [26—28]. For texture synthesis
and rendering, the main problem is to synthesize
the appearance of 3D texture. Several authors
have developed methods to synthesize and render
3D-textured surfaces using the BTF representa-
tion [29-35]. Other authors used an image-based
approach to capture and render complex surfaces
by direct photography of the full object under var-
ious illumination and viewing directions, simulta-
neously capturing object shape and surface light
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fields [36-38]. Synthesizing 3D textures via tex-
ture morphing enables creating and rendering
novel 3D texture [39]. In computer graphics, 3D-
textured surfaces were traditionally rendered by
bump mapping [40], albeit with limited realism.
In more recent years, several new methods have
been developed that can efficiently render 3D
texture detail. These include view-dependent dis-
placement mapping [41], relief texture mapping
[42], the polynomial texture map [43], and a
Blender-based rendering method [44].
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Synonyms

Binocular stereo vision; Stereo matching

Related Concepts

Dense Reconstruction
Epipolar Geometry
Multiview Stereo
Occlusion Handling
Photo-Consistency
Subpixel Estimation
Wide Baseline Matching

Definition

Binocular stereo refers to the task of recovering
depths of a static scene using a pair of over-
lapping images captured from different view-
points. Binocular stereo systems usually use two
identical parallel cameras that are horizontally
separated by a certain distance, referred to as the
baseline. The task of binocular stereo amounts
to finding dense pixel correspondences between
the image pair along horizontal scan lines (called
epipolar lines) or estimating the disparity for
each pixel of the stereo images. The outcome
of binocular stereo takes a form of a depth map
that can be computed from disparity given the
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baseline and focal length of a stereo system or
instead of a disparity map itself.

Background

Binocular stereo is one of the oldest topics
in computer vision. Similar to the mechanism
of human depth perception, the principle of
binocular stereo is triangulation, which is
mathematically formulated based on the epipolar
geometry. However, due to ambiguous pixel
correspondences, binocular stereo typically
becomes ill-posed when scenes have no textures
or show repetitive patterns.

Wide baseline stereo refers to a particular
setting of binocular stereo where the two cam-
eras are widely separated. This leads to a more
difficult task because of larger disparity ranges,
lesser overlaps between image pairs, and a higher
likelihood of occlusions.

Occlusion is an inevitable problem in binocu-
lar stereo, which occurs when a part of an object
in one view is not present in the other view
because it is occluded by another object or is
out of the field of view in the other view. Since
occluded regions have no true visual correspon-
dence, they produce incorrect depth estimates
unless properly handled.

Binocular stereo can be seen as special or
simplified cases of other related computer vision
tasks. For example, multiview stereo uses two or
more images captured from calibrated but possi-
bly irregular viewpoints. In principle, multiview
stereo can achieve higher accuracy than binocular
stereo, because the use of multiple images can
reduce matching ambiguities and can also lead
to fewer occluded surfaces (as each surface point
has a better chance of being visible from at least
two views). However, multiview stereo is a more
complicated task, because images from irregular
viewpoints may contain low-overlapping image
pairs that have to be excluded from matching
via viewpoint selection. Also, surface patches
often undergo more significant distortions across
views, which makes accurate evaluations of patch
similarity difficult.

Binocular Stereo

Optical flow is also a visual correspondence
estimation task between two images but involves
estimating more general motions of a dynamic
scene between two different temporal frame
images captured by a possibly moving monocular
camera. While pixel motions in binocular stereo
(disparities) are induced by factors of object
positions and the left-to-right camera motion,
optical flow involves more complicated motion
factors of object positions, an unknown camera
motion, and dynamic object movements. Because
of this complexity, estimation of pixel motions in
optical flow requires a 2D search space, which
is wider than 1D search spaces for disparities
and depths in binocular and multiview stereo.
The presence of dynamic object movements also
makes the occlusion reasoning more complicated
than stereo.

Binocular stereo can thus be considered as the
most fundamental dense visual correspondence
estimation task, which is built upon notions from
a wide range of computer vision areas such as
camera calibration, image filtering, and combi-
natorial optimization as explained in following
sections.

Theory and Application

We first discuss the mathematical foundation of
binocular stereo based on the epipolar geometry.
We then review classical methodologies of binoc-
ular stereo and also review recent learning-based
methodologies using neural networks.

a) Mathematical Principle

In this section, we explain how a 3D point can
be triangulated from a pair of corresponding
pixels, using a typical rectified setting of binoc-
ular stereo shown in Fig. 1. Here, two identical
pinhole cameras, both directed along the z axis
in the 3D world coordinate system, are posi-
tioned at the origin (0, 0, 07 (left viewpoint)
and a horizontally shifted place (b, 0,0)” (right
viewpoint) where b is baseline. Both cameras
are calibrated and have the following intrinsic
parameter matrix:
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Binocular Stereo, Fig. 1 Rectified setting of binocular stereo where two parallel cameras are horizontally placed
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where (cy, ¢y) is the principal point and f is
the focal length. Note that in reality it is dif-
ficult to setup such an ideally rectified stereo
capturing system. However, given a calibrated
stereo system (i.e., the relative pose and intrinsic
parameters of the two cameras are known), we
can transform unrectified stereo image pairs into
rectified ones using a technique of stereo image
rectification.

In this rectified setting, suppose there is a
surface shown at a pixel p = (u, v)7 in the left
view image (reference image). Its unknown 3D
coordinate X = (x,y,z)! in question can be
represented as

x = K~ '(zp), 2
where p is the homogeneous coordinate of p. This
3D point x can be projected to the right view
image at the following 2D location p’ = (u, v")”.

p =7(K[Rt]X). A3)
Here, R is the identity rotation matrix, t =

(—b,0, O)T is the translation representing hori-
zontal baseline, and 7 is a function 7w (x, y, z7) =

(x/z, y/2)T. Thus, by plugging Egs. 2 into 3, we
obtain an expression for the point corresponding
to p in the right image as

r fb/z
p'=p [0} @

This result shows that for each pixel p in
the left image, its correspondence p’ in the right
image should be found at a horizontally shifted
position of p by shifting the pixel by the follow-
ing amount to the left.

d= fb/z. 5)

This horizontal shifting amount d is called dis-
parity. As shown by Eq. 5, once we obtain a dis-
parity d for a pixel (or obtain its correspondence
p’), we can obtain its depth z from the disparity
given the baseline b and focal length f of the
considered stereo system.

b) Classical Methodologies

Scharstein and Szeliski [11] provide a well-
known taxonomy of classical stereo algorithms
based on the following four steps of algorithms:
matching cost computation (photo-consistency),
cost aggregation, disparity computation and opti-
mization, and disparity refinement. In this sec-
tion, we discuss classical stereo algorithms in
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terms of design and minimization of the follow-
ing objective function:

E(D) = Z Cp(Dp) + R(D). (6)
P

Here, D represents a disparity map that we esti-
mate for an input stereo image pair. Cp(Dp) is a
matching cost term that evaluates a given dispar-
ity estimate Dy, for a pixel p by measuring photo-
consistencies between the two images. R(D) is a
regularization term that enforces some notion of
smoothness on the disparity map D.

The disparity map D often takes a discrete
variable form D € {dy,da, ...,dg} %, and
thus the objective function E(D) is optimized
using discrete (combinatorial) optimization algo-
rithms. This is because objective functions of
stereo are usually highly non-convex, and contin-
uous optimization methods can be easily trapped
at poor local minima.

Stereo algorithms can be broadly divided into
local and global methods. Local methods rely
only on the matching cost term and minimize the
objective function by a simple winner-takes-all
strategy. Global methods use a more complicated
objective function with explicit regularizers,
which involve computationally more expensive
optimization procedures. Below we review
important components and techniques of those
local and global stereo methods.

Photo-consistency As a critical component
of the matching cost term, photo-consistency
o(p,p’) is a scalar function that evaluates
dissimilarity between two pixels or image
patches at respective locations p and p’ in a
given image pair {I,I'}. The simplest photo-
consistency measure is SAD (sum of absolute
difference) that evaluates p(p,p’) = |Ip — Il’)/|,
but directly comparing image intensities is not
robust to illumination changes. As a more robust
measure, normalized cross correlation (NCC) is
used to compare two image patches. Zabih and
Woodfill [18] propose the CENSUS transform
that encodes an image patch into a binary feature
vector, whose dissimilarity can be efficiently
computed as the Hamming distance.

Binocular Stereo

Cost aggregation Cost aggregation refers to a
technique to refine noisy raw photo-consistency
measures po(p, p’) by summing them over pixels
in a patch around p as

Co(d) =) wpsp(s,sy).

seWp

(N

Here, W, is a support window centered at p in
the reference image, wps is some weight func-
tion, and s, = s — (d, 0)”. Cost aggregation is
often referred to as cost volume filtering, because
if we precompute raw matching costs p(p, p;)
for all pixels p and for all pre-defined dispari-
tiesd € {di,dy,...,dg} as a 3D cost volume
V(p, d), then cost aggregation is carried out by
applying an image filter on 2D cost map slices
Va(p) = V(p,d) with a filter kernel of wps.
Although a naive implementation of cost aggre-
gation requires O (|Wp|) of computations for each
term Cp(d), the notion of cost volume filtering
can allow O(1) of computations when using a
constant-time filter (e.g., a box filter wps = 1).

Cost aggregation relies on an assumption that
the support pixels s in a window W, have the
same disparity. However, as discussed in [3], this
assumption often breaks down in two cases: (1)
when there are depth boundaries in the window
and (2) when the window region shows a highly
slanted surface that has significantly varying dis-
parities.

The first issue causes boundary-flattening arti-
facts in resulting disparity maps, but it can be well
handled by adaptive window approaches [17] that
use soft support window weights wps for cost
aggregation. Yoon and Kweon [17] propose to
use the joint bilateral filtering for cost aggrega-
tion as illustrated in Fig. 2.

The second issue causes staircase artifacts
at slated surfaces especially when large support
windows are used. For this, Bleyer et al. [3] pro-
pose a slanted patch-matching technique, which
approximates a surface in a support window by
linearly varying disparities (parameterized by a
disparity plane d = au + bv + ¢) instead of a
constant disparity and can thus relax the fronto-
parallel window bias. This approach imposes
a complicated inference task of pixelwise 3D
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continuous variables (a, b, c), which is solved by
inference techniques explained later in a section
on continuous disparity estimation.

Regularization Local methods that only rely on
the matching cost term often produce inaccurate
disparities due to low-feature regions or noises
of matching costs. Therefore, global methods
add a regularization term R(D) in the objective
function that is minimized by an optimization
algorithm.

A widely adopted regularization is the trun-
cated linear model

RMD)= Y wpqmin{t,|Dy— Dgl}. (8)
(p.@)eN

where N is the set of neighboring pixel pairs,
wpq 18 a contrast-sensitive weight for preserving
edges, and 7 is a user-defined threshold parameter
for allowing depth jumps at object boundaries.
Because of its simple pairwise function form,
adopting this model can keep the optimization
quite tractable [13]. However, it is known to have
the fronto-parallel bias causing staircase artifacts
at slanted surfaces [16].

A variety of regularizers have been proposed
to handle the fronto-parallel bias. Woodford et al.
[16] propose a second-order smoothness term,
which evaluates |Dq — 2Dp + Dyl instead of
|Dp — Dg| for three consecutive pixels (q, p, r).
However, it imposes complicated optimization
due to the higher-order form of the objective
function and treatment of continuous disparities.
Olsson et al. [10] propose a powerful curva-
ture regularization term, which requires pixelwise
continuous disparity plane estimation but allows
an efficient pairwise function form. Scharstein
et al. [12] propose a scheme to encode pre-
estimated surface orientation priors into regular-
ization without increasing computational costs of
optimization.

Optimization Optimization is a necessary step
in global methods to minimize their objective
function with pairwise or higher-order interaction
terms for enforcing regularization.
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When disparities are discrete variables and
the objective function has only up to their
pairwise interactions, then its optimization is well
established [13]; we can directly apply discrete
optimizers such as message-passing algorithms
(belief propagation) and the expansion move
algorithm using graph cuts to approximately
solve the combinatorial optimization problem. A
commonly used practical optimization method
is the semi-global matching (SGM) [5], which
has a good trade-off property between accuracy
and efficiency for real-time applications. It has
been shown to be a variant of message-passing
techniques [4].

Continuous disparity estimation Because dis-
parities inherently reside in a continuous space,
we need to infer continuous disparities for a more
accurate representation of 3D scenes.

One type of approaches to continuous
disparity estimation seeks continuous disparities
during optimization. Since discrete optimizers
cannot be directly applied for this purpose,
discrete-continuous optimization strategies are
often employed. For example, segment-based
stereo [2] optimizes the assignment of pre-
estimated disparity plane labels to each of
superpixel regions, which produces continuous-
valued but piecewise planar disparity maps
(Note that in segment-based methods, the
objective function in Eq.6 is modified so that
each node p and variable Dj represents a
superpixel and its disparity plane assignment,
respectively.). Fusion-based methods [16] fuse
many continuous-valued disparity map proposals
to produce a better solution by solving a combi-
natorial optimization task using graph cuts, where
proposals are generated, e.g., by segment-based
methods using various patterns of superpixels
(see Fig. 3 for an illustration). PatchMatch stereo
[3] estimates pixelwise continuous disparity
planes using a randomized search scheme, which
no longer requires pre-estimated proposals. Its
variants using belief propagation [1] or graph
cuts [14] further add regularization into this
randomized search scheme.

Another type of approaches estimates contin-
uous disparities as post-processing by refining
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(a) Support window (b) Depth

Binocular Stereo, Fig. 2 Adaptive support windows.
For (a) an support window with (b) depth boundaries,
the adaptive window method [17] computes (e) bilateral

A e

) Bilateral weights

c) Spatial weights (d) Color-based

weights

support weights by combining (c) spatial weights and (d)
color-based weights

Binocular Stereo, Fig. 3 Segment-based disparity map proposals for fusion. (The image courtesy of Woodford et al.
(16D

initial discrete disparity estimates. Since it is
usually used to refine initial disparities at integer
pixels, this refinement process is often called sub-
pixel refinement. For example, techniques based
on gradient descent [8] or curve (parabola) fit-
ting [5] are often employed.

Occlusion handling Occlusion handling in
binocular stereo is usually done either as post-
processing using left right consistency check
[3, 5] or during optimization by incorporating
a occlusion model into the objective function
[7,15]. While the former approach can be adopted
for both local and global methods, the latter
can be only employed by global methods at
the cost of producing complicated higher-order
interactions in the matching cost term.

) Learning-Based Methodologies

As an emerging trend in this field, learning-
based approaches to binocular stereo have been
gathering great interest. In particular, end-to-end
learning approaches using deep neural networks
are popular, which directly learn a mapping func-
tion f from an image pair to a disparity map as

D= f(T;0). &)

The function f is implemented as convolutional
neural networks (CNN), whose parameters © are
optimized so as to minimize some loss function
£(D) over a large amount of training data. The
loss is evaluated using ground-truth disparities in
supervised learning or using a criteria similar to
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Binocular Stereo, Fig. 4 Basic neural network architecture for end-to-end learning of binocular stereo

the classical objective function in Eq. 6 without
using ground truth in self-supervised learning.
Such learning-based methods are often advan-
tageous over classical methods in that they can
automatically handle difficulties of stereo such
as image patch distortions, illumination changes,
occlusions, rectification and calibration errors, by
data-driven approaches. Because computations
of CNNs are massively parallelizable on GPUs,
CNN based methods can perform quite efficiently
even for continuous disparity inference.
Analogously to the taxonomy of classical
stereo algorithms [11], we identify four stages
that neural network architectures for binocular
stereo often perform: feature extraction, volume
construction, cost volume learning, and disparity
computation and refinement. An example
architecture of such neural networks is shown
in Fig.4. Based on this view, below we review
existing works on learning-based methods.

Feature extraction Early works on learning-
based methods use a neural network to compute
stereo matching costs. MC-CNN by Zbontar and
LeCun [19] extracts feature vectors from image
patches and computes matching costs using the
cosine distance (fast version) or fully connected
layers (accurate version). Learned matching costs
are then fed into classical stereo pipelines (SGM
[5]) for disparity estimation. Later, this feature
extraction is taken as the first stage of network
architectures in end-to-end learning approaches
[6, 9, 20], e.g., using feed-forward CNNs [9],

ResNet-like networks [6], spatial pyramid pool-
ing (SSP) layers, or 2D hourglass networks [20],
with the following subsequent stages.

Volume construction A seminal work by Mayer
et al. [9] proposes DispNetC, which constructs a
matching cost volume and regresses out a con-
tinuous disparity map for end-to-end learning.
Volume construction is initially done in [9] by
correlating left and traversed right feature maps,
but it is later extended to concatenate feature
maps [6] or combine concatenation and group-
wise correlation.

Cost volume learning Kendall et al. [6] pro-
pose GC-Net, which processes a concatenation-
based cost feature volume (4D tensor) by a 3D
hourglass network using 3D Conv layers for cost
volume learning. Zhang et al. [20] propose semi-
global aggregation and local-guided aggregation
layers for cost volume learning, analogously to
classical techniques of SGM [5] and adaptive
window-based cost aggregation [17].

Disparity computation and refinement In
early works [9, 19], computing disparities is not
explicitly done in classification-based methods
[19] or done by treating a 3D cost volume as a
2D feature map for a scalar-map regression CNN
in DispNetC [9]. Kendall et al. [6] propose the
soft-argmin operator that can more effectively
output a continuous disparity map from a 3D
cost volume. Regressed disparity maps are often
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further processed by a shallow 2D CNN for
refinement.

Open Problems

Benchmarks and Datasets

As there is an increasing demand for large-
scale binocular stereo datasets for data-driven
approaches, we introduce benchmarks and
datasets that are popularly used in this area.

Middlebury benchmark (version 3) (http://
vision.middlebury.edu/stereo/) provides high-
resolution (1 to 6 MPix) stereo image pairs of
10 testing and 23 training indoor scenes with
highly accurate dense ground-truth disparities
obtained by using structured light scanning. An
example is shown in Fig.5. The benchmark is
designed to contain some challenges such as
different exposures or illumination conditions

between image pairs and the presence of vertical
displacements due to imperfect rectification.

KITTI 2015 benchmark (http://www.cvlibs.net
/datasets/kitti/eval_scene_flow.php?benchmark=
stereo) provides 200 stereo image pairs of
376 x 1242 pixels (0.5 MPix) for each of training
and testing sets, recorded by a synchronized
stereo camera mounted on a vehicle running
on public roads. An example is shown in Fig. 6
(top). The training set images are provided with
ground-truth disparities for background (using
sparse depths measured by a LiDAR sensor) and
foreground regions (using 3D CAD models of
vehicles manually registered to the scenes).

KITTI 2012 benchmark (http://www.cvlibs.net
/datasets/kitti/eval_stereo_flow.php?benchmark=
stereo) provides stereo image pairs of 194
training and 195 testing scenes. The images and
ground-truth disparities are provided similarly to

Binocular Stereo, Fig. 6 KITTI 2015 and 2012 benchmarks
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the 2015 version. An example is shown in Fig.6 References
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Definition

A blackbody is an idealized object that absorbs
all electromagnetic radiation incident on it. The
absorbed energy is incandescently emitted with a
spectral power distribution that is a function of
its temperature. It is called a blackbody partly
because it appears black to the human observer
when it is cold, as it emits mostly infrared radia-
tion.

Background

Blackbody radiation, in general, stood as a major
challenge to the scientists in the nineteenth cen-
tury as they were pushing the limits of classi-
cal physics. Several physicists studied blackbody
radiators, including Lord Rayleigh, James Jeans,
Josef Stefan, Gustav Kirchhoff, Ludwig Boltz-
mann, Wilhelm Wien, and finally, Max Planck,
who arguably broke the way for quantum physics.



Blackbody Radiation

Wien’s approximation is used to approxi-
mately describe the spectral content of radiation
from a blackbody. This approximation was
first derived by Wilhelm Wien in 1893 [8].
This law was found to be accurate only for
short wavelengths of emission spectra of
blackbody radiators and is used today only as
an approximation. Wien stated that the radiant
excitance of a blackbody may be given by

MG T) 2w hv3 . hv 0
T) = —5—exp——
€ c? P kT
2mhc? he

= exp——— 2

5 P @

The above equation holds in the specific case
when exp — khﬁ > 1, which typically occurs
when the wavelength is short. The work by Wien
was soon replaced by the findings of Max Planck,
in 1901.

Another important finding regarding black-
body radiators was made by Josef Stefan in
1879 and later formalized by Ludwig Boltzmann.
Known as the Stefan-Boltzmann law, it states that
the total radiant excitance of a blackbody radiator
is proportional to the fourth power of its absolute
temperature. In other words,

/Me(k, T)=0oT*, (3)
A

where o0 = 5.674 x 10783W -m~!. K =% is known
as the Stefan-Boltzmann constant.

Max Planck, in 1901, stated a more gen-
eral law, known as Planck’s radiation law. This
describes the spectral distribution of radiant exci-
tance M, as a function of wavelength (These
equations are often given in terms of frequencies
instead of wavelength, as shown in this article.
This is easily converted back and forth using
v - A = ¢, where v denotes frequency, A the
wavelength, and ¢ the speed of light in vacuum.)
A and temperature 7 and is given by

C1

3 exn (1) 1]

Me(A,T) = “
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where ¢ = 2rhc? = 3.74183 x 10716W . m—2,
¢ =h-c/k = 14388 x 107>m - K (c is the
speed of light in vacuum: 2.99792458 x 10%m -
s~L his Planck’s constant: 6.62606896 x 10~34].
s, k is Boltzmann’s constant: 1.38065 x 10~23J .
K‘l) [4], and the excitance is defined in units of
W.-m™3 [3,5,6,9].

Figure 1 shows the spectral power distribution
of various blackbody radiators from 1,000 to
10,000K, with all spectral power distributions
normalized to unity at 560 nm. As the blackbody
gets hotter (T increases), one can see that the
red content in the spectrum reduces and the
blue content increases — an indication of
the color as would be seen by the human
observer. Both Wien’s approximation and the
Stefan-Boltzmann law can be derived from
Planck’s law.

Wien’s displacement law may be derived
by differentiating the equation for Planck’s
law Eq.(4) with respect to wavelength A and
equating the result to zero to find the maximum.
It states that the spectral distribution of the
spectral excitance of a blackbody reaches a
maximum at a wavelength A, and that the
product of the this maximum wavelength and
the temperature of a blackbody is a constant,
given by:

h-c

dm T = —————— =2.8977685 x 1073 (5
" 4965114 k ? % )

where h denotes the Planck constant, ¢ denotes
the speed of light in vacuum, and k denotes the
Boltzmann constant. The corresponding value of
the spectral excitance is given by:

M., = T> 1.286673 x 107°Wm~>  (6)

Blackbody radiators are the select few sources
of illumination that match “standard illuminant”
spectral power distributions — this may be seen as
valid in the case of the equivalence of standard
illuminant “A” and a blackbody with a tempera-
ture 2,856 K.
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Blackbody Radiation, Fig. 1 Spectral power distributions of various blackbody radiators from 1,000 to 10,000 K,

with all spectral distributions normalized to unity at 560 nm
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Acronyms

BID Blind Image Deconvolution
PSF Point Spread Function
BTTB Block Toeplitz with Toeplitz Blocks

ML Maximum Likelihood
MAP Maximum a Posteriori
MCMC Markov Chain Monte Carlo
AM Alternating Minimization
Synonyms

Deblurring; Deconvolution; Kernel estimation;
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Related Concepts

» Denoising
» Image-Based Modeling
» Inpainting

Definition

Blind image deconvolution is the problem of
recovering a sharp image (such as that captured
by an ideal pinhole camera) from a blurred and
noisy one, without exact knowledge of how
the image was blurred. The unknown blurring
operation may result from camera motion, scene
motion, defocus, or other optical aberrations.

Background

A correct photographic exposure requires a trade-
off in exposure time and aperture setting. When
illumination is poor, the photographer can choose
to use a long exposure time or a large aperture.
The first setting results in motion blur when the
camera moves relative to objects in the scene
during the exposure. The second setting results in
out-of-focus blur for objects at depths away from
the focal plane. Furthermore, these effects may
be exacerbated by the user due to camera shake,
incorrect focus settings, or other distortions such
as atmospheric turbulence.

Photographed out-of- Estimated PSF
focus image (on a plane)

Blind Deconvolution, Fig. 1 Example of blind decon-
volution using the method in [1] where a single image
on a plane has been captured by a defocused camera.

Under local approximations, these processes
can be modeled as convolution operations
between an ideal “sharp” image and a kernel or
point spread function (PSF). This PSF represents
how a point of light in the scene would be imaged
onto the camera’s sensor. In general, the PSF
may be space-varying or depth-varying, such that
each point in 3D space has its own response in
the kernel function. In general, the effect of the
kernel is to blur and remove information from the
image (see Fig. 1).

When the PSF is known, deconvolution
algorithms can be used to remove the effect
of these degradations. Deconvolution may be
performed using direct (e.g., Fourier-based) or
iterative (e.g., gradient descent or conjugate
gradient-based) algorithms. Essentially, a large
linear system must be inverted to recover the
sharp image, and depending on the conditioning
of the matrix representing the blurring, the
solution may be obtained to a greater or lesser
accuracy. Observation noise also hinders exact
invertibility, and for these reasons, regularization
of the solution is required. Such regularization
typically imparts prior knowledge about the
expected statistics of the sharp image, such
as smoothness, sparseness of its gradients, or
compressibility in some domain, and is typically
key to obtaining well-behaved solutions.

In practice, the PSF is rarely known from
calibration, and in a practical scenario, it must
be estimated from the blurred image itself. While
many algorithms have been proposed to tackle the

d

Actual in-focus image for
comparison

Restored image

(a) Photographed out-of-focus image (on a plane). (b)
Estimated PSF. (¢) Restored image. (d) Actual in-focus
image for comparison
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blind deconvolution problem with some success,
a universal solution is not yet available, and it is
still an active area of research. The difficulty owes
in part to the dimensionality of the unknowns
in the problem, and its extreme ill-posedness,
with the potential for multiple local solutions
arising from non-convex optimization problems.
Progress has been made in both priors to describe
images and blurs and better constrain the solution
and estimation methods to better approximate the
intractable inference problems.

There exist also methods to recover the sharp
image from multiple observations, e.g., a blurred
image and a sharp, but noisy image, or multiple
blurred images. In these cases, the problem is
much more well-posed, and the solution is more
readily obtained; this is also closely related to
the problem of super-resolution, where the sharp
image is estimated at a higher resolution than the
input images.

Theory

Imaging Model

The following linear spatially varying (LSV)
observation model represents the formation of a
general blurred image on the camera sensor:

gy = Y hx,5)[(s)+w),
withs(i?.cf)’eSH

ey

where x € S,, f (s) is the frue or sharp image,
g (x) the observed blurred image, w(x) is addi-
tive noise, and h (x,s) is the kernel function
describing the blur. The position x lies in the
blurred image support S, C R?, while the posi-
tion s lies in the true image support Sy C R2.
Notice that Sy C R* denotes the support of
the kernel 4. In case the blur does not vary with
position s in the true image and the depth is con-
stant, the kernel may be reduced to a stationary
PSF, h (x,s) = h(x — s). Then the image model
becomes a convolution (denoted *):

g(x) =T[hxf1(x)+wx). @

Blind Deconvolution

With discretization and appropriate lexicographic
ordering or raster scanning of the images into
vectors, either Eq.(1) or Eq.(2) may also be
expressed in matrix-vector form:

g=Hf+w,
g=Fh+w.

or equivalently,

3
“

With the spatially invariant degradation model,
the matrices F and H acquire a special structured
block form, termed block Toeplitz with Toeplitz
blocks (BTTB), with constant block entries on
each block diagonal and constant diagonals
within each block. Sometimes these matrices
are approximated as circulant, implying circular
convolution of the sharp image, and then they
may be diagonalized using the discrete Fourier
transform (DFT), enabling fast calculations to be
performed.

Probabilistic Formulation

With uncertainty in the observation model (3), it
is natural to estimate the most likely solution for
the sharp image using a probabilistic approach.
The Bayesian framework provides a unified way
to tackle such ill-posed inverse problems. Here a
likelihood p (g | -) is specified from the imaging
model and combined with a prior p (f,h|-) on
the image and blur to be estimated, ensuring
that only plausible solutions are obtained. The
resulting posterior distribution

p(fhig Q)

Zp(glﬁh,ﬂ)p(flﬂ)p(hlﬂ)
p(g)

&)

is used for inference of the unknowns, where
@ denotes hyperparameters of the model, such
as noise variances or regularization parameters;
these are usually considered known, but correctly
estimating them is often critical for accurate blind
deconvolution. The additive noise w is commonly
assumed to be Gaussian or sometimes Poisson
distributed. In the independent white Gaussian
noise (WGN) case with variance ov%, the distri-
bution is py W) = N (w|0,021). Thus, the

likelihood of g conditioned on &, f is given by:
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e (g f,h,aﬁ) =pw(g—Hf)

3 | ©6)

= (2m0})" 2 exp [——2||g - Hfllz} :
207

where L, is the size of the vector g.

Bayesian Inference Methods

Due to the complexity of the chosen prior models,
it may not be possible to obtain an exact analytic
solution of Eq. (5). A common approximation is
to compute a point estimate of the unknowns
f and h via an optimization procedure. How-
ever, these estimates work well only with highly
peaked distributions. With more uncertainty in
the parameters, it is better to estimate the whole
parameter distribution. Unfortunately, strategies
that do so in the Bayesian framework are typ-
ically more computationally demanding [2—4].
Finally, as the estimated posterior distribution of
the parameters must have a finite representation,
further approximations or simulations must be
introduced.

Maximum a Posteriori and Maximum
Likelihood

The maximum a posteriori (MAP) solution is
one common point estimate where it is possi-
ble to prescribe our prior knowledge about the
unknowns. It is defined as the values f iz and
© that maximize the posterior probability den-

sity (5):

{fh, @ap = argmax p (g | £h, R)p (f|R)
fh,Q

pr|)p(®@). (D

A very related method is maximum likelihood
(ML), where one looks for

=

{fh, @ =argmax p(g| fh,R). 8
fh,Q

Notice that the ML method is essentially the MAP
method, where the prior distributions are uniform
(uninformative). Despite this equivalence, the ML
is usually referred to as a non-Bayesian method.
The advantage of using the MAP approach is that
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we can also encode the case where parameters
are entirely or partly known by using degener-
ate distributions (Dirac deltas), that is, p (2) =
8 (2 — R9). Then, the MAP and ML formulations
become, respectively,

{f h)map = rgmax p (g1 fh R)p(f]R)

p(h|S0) ©))

{ﬁiz}MFarg;Eaxp(th,szo). (10)

Moreover, this formulation allows to easily
incorporate important constraints on the
unknowns, e.g., that the PSF is nonnegative and
that it integrates to 1, which have been shown to
play a fundamental role in the solution of blind
deconvolution [5].

The Bayesian framework can be used to
describe several deconvolution methods and to
emphasize their differences in terms of choice
of likelihood, priors on the image, blur, and
hyperparameters. Further differences can be
found in how the maximization problem is
solved.

A typical example of methods that can be
formulated in the Bayesian framework is regu-
larized approaches based on the L, norm. One
such method is Tikhonov regularization, where
a linear system is solved in least-squares sense
by introducing an additional L, constraint on the
unknowns. More in general, the blind deconvolu-
tion task is formulated as a constrained minimiza-
tion where several regularization constraint terms
are added.

A common choice is to always use a term in
the form of ||g — H f||2, called data fidelity term.
The additional regularization terms encode the
constraints on the unknowns. For example, one
may want to impose smoothness of the image and
the blur. To do so, a term that penalizes small
variations of the image and the blur can be used.
The regularization parameters are then used to
adjust the relative importance between the data
fidelity term and the regularization terms in the
solution.
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An important example that illustrates this pro-
cedure is [6]. In that work, the classical regu-
larized image deconvolution formulation [7, 8]
was extended to the blind image deconvolution
(BID) case by adding regularization on the blur
parameters. The problem is formulated as

Jh=argmin[ g ~ HfI2
th 9,

L fIP + 2l L],
an

where Q;l are local weights for the data fidelity
term, A and A; are the Lagrange multipliers for
each constraint, and Ly and L are the regu-
larization operators. To avoid oversmoothing the
edges, each L operator is the Laplacian multi-
plied by space-varying weights. These weights
are obtained from the local image variance as in
[8-11].

Alternating Minimization or Iterated
Conditional Modes

One of the main difficulties in MAP is to simulta-
neously recover both f and h. The problem can
be already observed in the image model Eq. (1),
which is bilinear in both f and k. One com-
mon way to address this challenge is alternating
minimization (AM). When applied to Eq. (11), it
performs the minimization by working on one
variable at a time, while the others are fixed. As
a result, the minimization of Eq. (11) becomes a
sequence of least-squares problems, whose solu-
tions can be computed in closed form by solving
linear systems. A related method is iterated con-
ditional modes proposed by Besag [12].

Minimum Mean-Squared Error

As mentioned earlier on, the MAP estimate is
only a point estimate of the whole posterior PDF.
While this is not a problem when the posterior is
highly peaked about the maximum, in the case of
high observation noise or a broad (heavy-tailed)
posterior, this estimate is likely to be unreliable
(as chances of obtaining values that are different
from the maximum are very likely). Indeed, in a
high-dimensional Gaussian distribution, most of

Blind Deconvolution

the probability mass lies away from the probabil-
ity density peak [13].

One way to correct for this shortcoming is to
use the minimum mean-squared error (MMSE)
estimate. The rationale is to find the optimal
parameter values as those that minimize the
expected mean-squared error between the esti-
mates and the true values. This requires to com-
pute the mean value of p(f h, 2|g). However,
computing MMSE estimates analytically is gen-
erally difficult. A more practical solution is to use
sampling-based methods (see next paragraph).

Markov Chain Monte Carlo Sampling

A general technique to perform inference is to
simulate the posterior distribution in Eq. (5), by
drawing samples. Provided that we have obtained
enough independent samples, this strategy allows
us to deal with arbitrarily complex models in
high-dimensional spaces, where no analytic
solution is available. Markov chain Monte Carlo
(MCMC) sampling methods approximate the
posterior distribution by the statistics of samples
generated from a Markov chain. Widely used
MCMC algorithms are the Metropolis-Hastings
or Gibbs samplers (see, e.g., [2, 14-16]).

The samples can then be used in Monte Carlo
integration to obtain point estimates or other
distribution statistics. For instance, in the BID
problem, the MMSE estimate of the f can be
readily obtained by taking the mean of the sam-
ples, + 37, £

MCMC can provide better solutions than AM
or any other method. However, there are some
limitations. First, they are very computationally
intensive in comparison to the point estimate
methods. Second, convergence to the posterior
can be theoretically guaranteed, but in practice, it
can be hard to tell when this has occurred, and it
may require a long time to explore the parameter
space.

Marginalizing Hidden Variables

In the discussion so far, the aim was to recover
all the unknowns. However, in most cases, one is
interested in recovering only the sharp image f.
This leads to another approach to the BID prob-
lem where undesired unknowns are marginalized
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and inference is performed on the remaining
variables (i.e., a subset of f; h, and ). Therefore,
one can approach the BID inference problem in
two steps. First, one can calculate

A A

h, = ar%maxffp(glﬂ, S mp(f h|L)p(R)df

,Q
(12)
and, second, one selects the sharp image

A

f

.. = argmaxp(g|Q, £ )p(fIR). (13)
o) P

Alternatively, one can also marginalize & and
to obtain

A

f= argmax/h o p(gIR, £ B)p(f hIR)p(R)dh - dL2.
f ,
14)
Deconvolution Under a Gaussian Prior

(MAP)
If the PSF is known and assuming a Gaussian

priorp(f|2f) = ZN(f|0, Ef) for f, with
a given covariance matrix Xy, the posterior for
f is found as

p(flg)xpElfHp(f|Zy) (15)
x exp(— %[fT(ow—zHTH +2h

f=2f",*H" g) + anng])
(16)

which is a Gaussian

p(fIg)ocN (f|np27) (a7)

1
O(exp(— E[fTZ'J_?lf

Tyl 4 Tyl .
2f Zf uf+ﬂf2f u,f]).
(18)

By comparing Eq. (16) to Eq. (18), we find that
the parameters are given as

2;1 =0, 2H"H + 2;1 (19)

929

rp =% (0,2H" g). (20)

The mean of this distribution, which is also the
maximum, is just

A —1
F=w;= (HTH +a§z;1) H'g. 1)

In practice, as solving the above equation
involves inverting a large linear system, one
employs iterative methods.

Application

Blind deconvolution methods are commonly used
to restore images that have been distorted by
motion blur, out-of-focus blur, and turbulence. As
these methods provide an estimate of blur, other
uses include digital refocusing, that is, digitally
changing the focus setting of a camera after
the snapshot, changing the camera bokeh, and
obtaining a 3D model of the scene (from the out-
of-focus blur).
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Definition

Blur estimation is a process to estimate the blur
kernel (a.k.a. point spread function) from blurry
images so that it can facilitate the high-quality
sharp image restoration or evaluate the quality of
images.

Background

Blur usually occurs when taking a photo with
long exposure time or with wrong focal length.
This is because the lights captured for a pixel
are mixed with the lights captured for the other
pixels within a local neighborhood during the
exposure period. Such effect is modeled by the
point spread function which describes how the
lights are mixed during the exposure period.

In motion blur, the point spread function
describes the relative motions between the
camera and the scene. In the defocus blur, the
point spread function is related to the distance of
a scene point from the focal plane of the camera.
Blur often leads to information loss, and the
resulting image blur is usually undesirable. Esti-
mating blur from blurry images is an important
step for the restoration of high-quality images.

Theory

The Image Formation Model
Mathematically, the blur process can be modeled
by:

B) = Y Ix—yk) +nx), (1)
yeN(x)

where B denotes a blurry image, I denotes a
sharp image, kx denotes the blur kernel at pixel
x, n denotes image noise, and N(x) denotes a
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local neighborhood centered at pixel x. If the blur
kernel kx is spatially variant, the blur model (1)
is usually used to approximate those cases when
the camera exhibits rotational motion or the scene
has large depth disparity or contains a moving
object during exposure period.

While the blur kernel is spatially varying, the
variation of the blur kernel is spatially smooth.
Lots of previous works simplify the problem by
assuming that the blur kernel is spatially invariant
to model the camera motion blur. Thus, the blur
model will reduce to a convolution operation:

B=1®k+n, @
where ® denotes the convolution operator.

As (2) cannot effectively model the blur
caused by camera rotation, several methods [1,2]
assume that the blurry image is the sum of lots
projectively transformed versions of sharp image:

B(x) =) I(Hpk®) +n(x),  (3)
0

where Hp denotes the homography induced at the
camera pose 6.

Methodology

Estimating a blur kernel from a blurry image is
highly ill-posed because only blurry image B is
available and many different pairs of I and k give
rise to the same B. To solve this problem, existing
algorithms usually explore additional informa-
tion of blur kernels and sharp images and can
be categorized into hardware-based, prior-based,
and data driven-based methods.

Hardware-based methods If the effect of blur
is caused by the internal camera setting, such as
lens aberration, the blur kernel can be calibrated.

For example, the simplest method is to cap-
ture an image of a spotlight in a dark room.
When there is no blur, the image of the captured
spotlight (ideally) should occupy only one pixel.
When there is blur, the image of the captured
spotlight will occupy more than one pixel, and the
shape of the recorded spotlight is the blur kernel.
Similarly, for the defocus blur, the focal length of
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the camera can be adjusted in order to obtain a set
of defocus blur kernel [3].

For the motion blur, Ben-Ezra and Nayer
[4] and Tai et al. [5] propose a hybrid camera
system which estimates the blur kernel through
integration of optical flows from the auxiliary
high-speed camera. In [6], Levin et al. develop
prototype camera to estimate spatially variant
blur kernels. The inertia sensors of cameras have
also been explored to facilitate the blur kernel
estimation [7-9].

Another line of research tackles blur kernel
estimation by exploring additional information.
For example, the noisy/blurry image pair by Yuan
etal. [10] and two consecutively captured blurred
images by Chen et al. [11]. Using specific devices
or additional information is able to simplify the
blur kernel estimation process and achieves favor-
able performance. However, designing specific
devices or experimental settings is often expen-
sive.

Prior-based methods As blur kernel estimation
is ill-posed, lots of methods explore the kinds
of priors to make the problem well-posed. Chan
and Wang [12] develop the total variation reg-
ularization to constrain both blur kernels and
sharp images. This method is further explored
by [13]. Fergus et al. [14] and Whyte et al.
[2] propose a multi-scale variational Bayesian
framework to estimate the uniform blur kernels
and non-uniform blur kernels, respectively. Shan
et al. [15] use a parametric model to model
the heavy-tail property of image gradients and
develop an alternating optimization method to
estimate the blur kernel. Levin et al. [16] show
that the variational Bayesian inference method
[14] is able to avoid trivial solutions, while naive
maximum a posterior based methods may not
[15]. They propose an improve maximum a pos-
terior for the blur kernel estimation [16]. In
addition, as the variational Bayesian approach is
computationally expensive, Levin et al. [17] pro-
pose an efficient marginal likelihood optimization
for blur kernel estimation.

As the maximum a posterior based methods
are likely to converge to trivial solution [16],
some edge prediction-based methods [18-21]
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have been proposed for blur kernel estimation. As
one of the earliest edge-based approach, Jia [22]
use alpha mattes to help blur kernel estimation.
In [23], Dai and Wu propose a new motion blur
constraint based on alpha matte. This constraint is
further extended by [24] for the motion blur esti-
mation in dynamic scenes. In addition, the alpha
mattes have been integrated into the maximum
a posterior-based deblurring framework to help
blur estimation in depth aware deblurring [25]
and dynamic scenes deblurring [26] problems.

Cho and Lee [18] develop an effective edge-
prediction method using heuristic filters and the
blur estimation can be solved efficiently. Xu and
Jia [19] develop an edge selection method to
remove small-scale edges for blur kernel estima-
tion. In [20], Sun et al. use a patch prior to refine
edges for blur kernel estimation. As demonstrated
by [27], these edge prediction-based methods
have been proven to be effective in real cases.

To overcome the limitations of the naive
maximum a posterior-based methods and avoid
the heuristic edge-prediction step, some effective
image priors have also been introduced for
blur kernel estimation, e.g., normalized sparsity
prior  [28], LO-regularized prior [29-31],
internal patch recurrence [32], sparsity of dark
channel prior [33], blur normalization [34],
logarithmic image prior [35], and so on. Lai
et al. [36] evaluate the performance of some
aforementioned algorithms and show that using
the intensity information is able to help blur
kernel estimation [31].

Data driven-based methods The data driven
approach is developed for blur estimation. In

[37], Zuo et al. develop a discriminative learning
approach to adaptive learn priors for blur kernel
estimation. Motivated by the success of shrinkage
fields in image restoration [38], Xiao et al. [39]
extend [38] to blur kernel estimation in the text
image deblurring. The deep learning approach is
also employed to estimate blur kernels. In [40],
Sun et al. develop a deep convolutional neural
network to estimate the probabilistic distribution
of motion blur at the patch level. Gong et al. [41]
directly estimate the motion flow from the blurred
image through a fully convolutional deep neural

Blur Estimation

network and use the estimated optical flow as the
motion blur. Schuler et al. [42] and Pan et al. [43]
develop deep convolutional neural networks to
learn the key components that are used for blur
kernel estimation. In spite of achieving decent
results, the generalization ability of these meth-
ods is worth further investigation.

Application

Blur estimation has been an active research effort
in the vision and graphics communities within the
last decade due to its application on deblurring.
Since blur is a common artifact in imaging sys-
tem, its applications range from astronomy tele-
scope to satellite imaging, medical imaging, and
the common consumer-level cameras or mobile
phones. In addition to deblurring, the estimated
point spread function can also be used to evaluate
image quality and to identify moving objects
from a scene.
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Definition

Boosting is an ensemble meta-learning algorithm
for supervised learning such as classification and
regression problems. In the boosting algorithm,
weak hypotheses are sequentially learned at each
stage and aggregated into a single highly accurate
hypothesis.

Background

Boosting is an important branch of ensemble
learning in machine learning. In the paradigm
of ensemble learning, many hypotheses learned
from observed samples are aggregated into a
single accurate hypothesis. The ensemble learn-
ing includes popular learning methods such as
bagging and random forest as well as boosting.
Boosting is, however, thought of as one of the
most promising ensemble methods for classifica-
tion and regression problems.

The study of boosting has started from the
following question: Is it possible to boost “weak
learner” into “strong learner”? which was given
by Kearns and Valiant in 1988. The weak learner
intuitively denotes a learning algorithm that
yields a classifier with prediction accuracy better
than the coin flip, and the strong learner produces
a high accurate classifier. Two years later,
Schapire cracked this conjecture by proposing
“boosting by filtering” [1] in binary classification
problems. After Schapire’s pioneering work,
some boosting algorithms were proposed by
some researchers. In 1997, eventually, Freund
and Schapire proposed Adaboost as an efficient
online learning algorithm with weighting
sampling scheme [2]. Soon after the appearance
of Adaboost, statisticians gave an intuitive
interpretation to Adaboost [3], i.e., Adaboost
is regraded as an optimization algorithm to
find an approximate maximum likelihood
estimator using generalized additive models. This
accessible interpretation had opened the door to
the flood of boosting-like learning algorithms and
wide applications to the analysis of real-world
data.
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Let us introduce the problem setup. The pur-
pose of statistical learning is to produce a hypoth-
esis f(x) based on samples consisting of input-
output pairs S = ((X, Yn),---> Xn, ¥n)). In
binary classification problems, the hypothesis is
trained such that the sign of f(x;) matches the
binary output y; € {+1, —1} for most samples. In
regression problems, f(x;) should approximate
the real-valued output y; € R to achieve highly
accurate prediction.

Algorithm

In this section we introduce boosting algorithms
according to [4]. The boosting algorithm con-
structs the hypothesis fr by the linear combina-
tion of T weak hypotheses, h1(x), ..., hr(x) €
‘H, where H is a set of weak hypotheses. Com-
monly used weak hypotheses are the decision
stumps and regression trees implemented by rpart
and CART [5]. The hypothesis is updated in the
sequel manner, i.e., fr is determined from fr_;
and hr. Weak hypotheses are chosen so that a
loss function is approximately minimized.

Let us define £,(f(x)) = £(f(x),y)
as the loss function of the hypothesis f(x)
on the sap\lple (x,y), and let the empirical
loss be L(f) = +37 ¢,(f(x). In
binary classification problems, y; f(x;) should
take a large value. Thus, the logistic loss
Ly(f) = log(1 + ey or the exponential loss
Ly(f) = e s commonly used. In multiclass
classification, the vector-valued hypothesis
and the corresponding logistic loss are used.
For regression problems, the squared error
Ly(f) = (y — f)2 is the standard choice. The
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detailed formulation is provided in Section 4.6
of [4]. Taylor expansion of the empirical loss
L(f 4 ah) for @ > 0 is given by j

L(f +ah) = L(f) = = Y dih(x) + o(@).

i=1

where the weight d; is defined as the negative
derivative —E’yi( f(x;)). From the above
expansion, a preferable weak hypothesis & is
given by the minimizer of the second term.
Once the preferable hypothesis 4 is determined,
the coefficient o« is found by solving the
one-dimensional problem ming>o Z( f + ah).
This is the generic boosting algorithm. The
learning algorithm of weak hypothesis over
‘H is denoted as WeakLearny. For the input-
output pairs S = ((x1, Y1), ..., (Xn, yn)) with
the weight d = (di,...,d,), WeaklLearny
is regarded as the function mapping to H, i.e,
WeakLearny (S, d) € H. The generic algorithm
of the gradient boosting is shown in Algorithm 1.

Some examples of loss functions, hypotheses
sets, and WeakLearn are shown below.

Adaboost The problem is the binary classifica-
tion. For H C {h : X — {+1, -1}, £,(f) =
e and d; = y;e Y1/ *) | the equality

S din(xi) =Y ldil(1 =2 1h(x;) # yi))
i=1 i=1

holds, where 1[-] is the indicator function. Weak-
Learn is the learning algorithm with weighted
misclassification error:

Algorithm 1 Boosting with WeakLearny

Require: input-output paired samples S = ((x1, y1), ...

return fr

I fo=0

2: fort =1toTdo

3: d; :—E/v,,(f,_l(x,-)), i=1,..., nandd = (dy, ..
4. h = WeakLearnl{(S, d)

5: a; = argming.o L(fi—1 + ahy)

6: Jfi = fi-1 touhy

7: end for

8:

s (X5 yn))

> Initialization
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WeakLearny (S, d)

= argmin Y _ |d;| - 1[a(x;) # y;].
heH

i=1
The decision trees or decision stumps, i.e., deci-
sion trees with depth one, are often used as H.

Gradient boost Gradient boost is applicable to
both classification and regression problems. Let
us define H C {h X — R} and d; =
—Z/yi (f(x;)). WeakLearn is defined as

n
WeakLearny (S, d) = argmin Z(h(xi) - d[)z.
heH

i=1

Note that the weak hypothesis h(x;) that
approximates d; over all samples maximizes
', dih(x;) under the norm constraint. One
can incorporate the regularization term to the
above mean squared error. The regression trees is
used as H.

Implementation: Gradient Boosted
Decision Trees

An algorithmic bottleneck of boosting is to find
a weak hypothesis. A straightforward method
searches over all hypotheses in H, which takes
O (JH|n), which is prohibitive when the set H is
exponentially large, e.g., the set of all decision
trees with fixed size.

In this section we introduce XGBoost [6]
which is an efficient implementation of the gra-
dient boosted regression tree (GBRT). Learning
algorithm to learn weak hypotheses is imple-
mented by the decision tree,

U
hw(x) = ) willx € X,

u=1

where {X,;u = 1,...,U} is the partition of
the domain X = R? and w, is the prediction
value of the output at each region &),. To learn
the decision tree, the loss function £, () with the
regularization term A ), wg /2 is minimized. Let
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us define fr = fr_i1+handy; = y; — fr—1(x;).
Taylor expansion of the regularized loss R(w) :=
L(fr—1 +hy) + 5>, w2 yields

Rov ~ 37 (£, G0 + £, Gh(x)

1

1, A
+§£/y/z (Yi)h(xi)2> +3 > ow
u
Sy + A .
= Xu: <ruwu + MTM%) + Xi:z)’i i),

where r,= Ziek—th leaf Z/yi i), Su = Ziek—th leaf
¢, (). Hence, the optimal prediction value at
each region is w} = —r,/(s, + A). Additional
regularization term such as A’U, A" > 0 works to
determine the size of the decision tree. Concern-
ing the partition of the domain, the one that min-
imizes R(w*) is preferable. Instead of searching
infinite possible partitions, one can grow the tree
greedily; (i) start from root node, (ii) each leaf is
split so as to maximize the gain, i.e., the change
of objective R(w*) by adding the split.

For high-dimensional large-scale data, the
XGBoost is still unsatisfactory. The time-
consuming part is the learning of decision
trees. To reduce the computational cost, the
weighted subsumpling and exclusive feature
bundling are implemented in the LightGBM [7].
Besides LightGBM, efficient implementation
of WeakLearn is possible when 7 is intervals,
bookean conjunctions [8], subgraphs for graph
instances [9, 10], and substrings for text
instances [11].

Theory: Generalization Error

This section describes generalization bounds
related to boosting for binary classification
problems. The generalization ability of boosting
can be explained in terms of the “margin”
of the combined hypothesis. Suppose that
H C {h : X > [—1,1]} be a finite set of
weak hypotheses. For the coefficient & € R/
with the 1-norm [le||; = Y, |an|, the margin of
a combined hypothesis fy(x) = Zhe% aph(x)
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on an input-output pair (x,y) € X x {—1, 1} is
defined by
y Zhe’H aph(x)
lleelly
When |le|; = 1, the margin is given by yfy (x).

The margin has the geometric interpretation.
Given the hypothesis fy = D)3, anh, the label
prediction of x is given by 41 (resp. —1) when
Y opoaph(x) > 0 (resp. Y, aph(x) < 0) holds.
Hence, the prediction boundary is the hyperplane
{(@ner | Ypoangn = 0} in RI?I. Then, the
absolute value of the margin on the input-output
pair (x, y), i.e, | fo(x)|/|let]|1, corresponds to the
oo-norm distance from the point (h(x)),ey €
Rl to the decision boundary. Note that, for
SVMs, the margin is defined in terms of 2-norm
distance (Euclidean distance). See, e.g., [12] for
more details.

We discuss the relation between the margin
and the generalization performances of combined
classifiers in the framework of the statistical
learning theory. The generalization error of a
combined classifier f, is defined as

Prisign(fa(x)) # y} = Pr{yfa(x) < O},

i.e., the probability that f, misclassifies an
instance x randomly drawn from unknown
distribution D over X’ x {—1, 1}.

Theorem 1  (Margin-based generalization
bound [13-15]) Let us define S as n input-
output pairs S = ((x1,¥1).-., (Xn,Yn)) €
(X x {—=1,1D" that are independently and
identically distributed from D. Fix p > Q.
Then, for any § (0 < § < 1) with probability
at least 1 — & over the samples, for any combined
classifier fo such that ||e||; = 1, it holds that

%“{yfa(x) <0} = lzr{)ﬁfoc(xi) < p}

‘o <\/log(|’ﬂ|>1;>g(n/|H|>+ /loga/a))’
p°n n

where Prs{y; fu(x;) < p} is the ratio of samples
in S for which fy has margin less than p.
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The right-hand side of the bound becomes
small when Prg{y; f(x;) < p} is small for large
p. In other words, if the combined classifier has
large margin on S, its generalization error is small
with high probability. As shown in [13], aggre-
gated hypotheses produced by Adaboost have
such a property. Even when the size of the class H
is infinite, the bound above holds by replacing the
term log || with the VC dimension. For details,
see, e.g., Mohri et al. [15].

Theory: Regularization

The margin-based generalization bounds moti-
vate the following optimization problem:

1 n
max p—— » §& (1)
a,p,& V ; !
sub. to
Vi Y enh(x) = p—& G =1,...,n),
heH
Zahzl, an >0 (h € H).
heH

The problem is called the soft margin optimiza-
tion problem, which is about finding a convex
combination of weak hypotheses by directly max-
imizing the margin on samples while allowing
to have lower margins for some samples. The
parameter v is fixed beforehand within the range
[1, n]. Intuitively, the parameter v specifies the
maximum number of samples for which one gives
up to have large margins. More precise meaning
will be explained later. Since the soft margin
optimization problem is a linear programming
problem, the following dual problem has the
same optimal value,

min 2
i 4 2

sub. to

Zyidih(xi) <y (forh € H)

i=1
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n
i=1

We define the edge of the weak hypothesis
h € H with respect to a distribution d over the
sample set S as y ;_; yidih(x;). The edge of h
w.r.t. d can be viewed as the weighted accuracy
(whose range is [—1, 1]). The dual problem (2) is
more intuitive. Note that the dual problem has a
constraint that the edge of each weak hypothesis
in H to be less than y w.r.t. the distribution. So,
the dual problem is viewed as finding the “hard-
est” distribution so that the maximum edge w.r.t.
the distribution is minimized. In addition, the
dual problem has another constraints that d; <
1/v. These constraints ensure that the obtained
distribution does not put too much weight on a
particular sample.

According to the KKT optimality conditions,
the optimal solutions (a*, €%, p*) and (d*, y*)
satisfy

n
aiy* =Y yidih(x) =0,
i=1

n
@i =0, yidih(x) < v¥,

i=1

i (yi Y aph(x) — p*) =0,
heH

df = 0.y Y ajph(xi) = p* — &,
heH

E'(1/v—d)=0, & >0, d <1/v.

These conditions imply that (i) if the edge of &
on the distribution d* is less than y*, then its
coefficient a;; is zero. (ii) If the final hypothesis
fa+ has margin larger than p* on the sample
(xi, i), then the corresponding weight d* is zero.
(iii) If §&* > 0, then d* = 1/v. In particular,
(iii) further implies that the number of samples
whose margins are less than p* is at most v.
This property makes the parameter setting of v
intuitive.

These characterizations of the optimal
solution mean that, to solve the problem,

1
Zd,-=1,0§di§—(fori=1,...,n).
v
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some samples with non-zero weights or some
weak hypotheses with non-zero coefficients are
sufficient. This motivates to solve smaller LP
subproblems repeatedly by adding seemingly
relevant hypotheses/samples, since in general, it
is often time-consuming to solve large-scale soft
margin optimization problems by standard LP
solvers.

The LPBoost [16] in Algorithm 2 is an algo-
rithm which approximately solves the soft margin
optimization problem (1) by repeatedly solving
the subproblems. Like standard boosting algo-
rithms, the LPBoost assumes a subroutine which,
when given a distribution d over the sample
set S, outputs a hypothesis = € H, we call
WeakLearn. When H is moderately large, e.g., a
set of decision stumps, so that exhaustive search
over H is acceptable, let us define WeakLearn by

n
WeakLearny (S, d) = arg Znea}:z ; vidih(x;).

3

This is nothing but the learning method with
weighted misclassification rate. In some cases
where the set H is large such as decision trees
or neural networks, however, the optimization
problem (3) cannot be solved exactly. Suppose
that WeakLearn returns a weak hypothesis whose
edge is larger than some y > O for any input
distribution d. Under this weaker assumption,
it is possible to obtain a solution to (1) whose
objective value is at least y —¢ (see, e.g., [16—18]
for the details).

LPBoost is often faster than solving the soft
margin problem once by LP solvers. However,
there is no known iteration bound for LPBoost
(except the trivial upper bound |#|). Moreover,
in the worst case, it requires £2(n/¢) iterations to
find an e-approximate solution [17]. The Entropy
Regularized LPBoost [18], a modification of
LPBoost where the objective contains an entropic
regularization term, has an O (logn/ €2) iteration
bound. On the other hand, one has to solve an
entropy maximization problem rather than LP at
each trial, which requires more time than LP.
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Algorithm 2 LPBoost

Input: Training samples S = ((x1, y1), ..., (X5, yn)) € X x {+1, —1}.

1: Let d; be the uniform distribution over S and y; = —1.

2: fort=1to... do

3: h; = WeakLearny (S, d;)
4 Let pr = 3 iy yidih (x)).

5: If y, > 7o —ethen T =t — 1 and break.
6

Solve the dual problem with H; = {hy, ..., h:}:

(di11, Y1) = argmax y
dy

sub. to

(C)]

n
ZJ’idihr(xi) <y(fort=1,...,1)

i=1

n
1

D di=1,0<d; <~ (fori=1,....n)
v

i=1

7: end for

8: return fr(x) = Z,T:l ashy(x), where each o, is the Lagrange multiplier for /4, in the last optimization problem.

Algorithm 3 SelfieBoost for deep learning

Input: Training samples (x1, y1), ..., (xu, y») € X x {+1, —1}. Edge parameter p € (0, 1/4).

1: Initial network fy = f(x; ®p) trained by a few SGD iterations

2: fort =1toTdo

> Initialization

3: Resampling m training samples according to the probability p;, i =1, ..., n defined by

pi Xe

»

Let S be the set of m resampled samples.

—Yifi-1(xi)

5: Use SGD or its variants to train the network f(x; @) based on the empirical loss over S,

> Yi(ﬁ—l(xi)_f(xi§@))+% D (f@i 0) = fii(x))?

(x.y)es

6: Let f; be the trained network.
7: end for
8: return f7(x)

(x.y)€S

Boosting for Deep Learning

Deep learning is one of the most significant
developments in scientific community in the past
few decades. The stochastic descent gradient
(SGD) and its variants are commonly used to
train deep neural networks. However, further
improvement will be needed. In order to build
computationally efficient algorithms, some
boosting-like methods have been proposed. The
SelfieBoost in Algorithm 3 is a boosting method
for deep learning with a theoretical guarantee
[19]. Let us briefly introduce SelfieBoost.

In boosting methods, weak hypotheses are
combined to produce a single strong hypothesis.
In DNN, however, such a property of boosting
is not adequate, since the prediction using the
ensemble of DNN is computationally demanding.
In SelfieBoost shown below, a single network
f(x; ®) with the parameter ® for the binary
classification problems is repeatedly trained
using weighted samples.

The empirical loss in Step 5 of SelfieBoost
algorithm is an upper bound of the difference
of the exponential loss, log(zi e‘yif(xi)) —
log ( > e ViJi-1 (xi)). Shalev-Shwartz [19]
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derived an upper bound of the empirical error

e(fr) = % Yo Ayi fr(xi) < 0]. Suppose
that two conditions,

> pi [mfl(x,-) — fi(xi))

i=1
1
3 = fia 2] < =,

|ft(xl) - f‘t*l(xl)l = 15 i = 17---5”7

hold at every iteration of SelfieBoost. The first
condition means the DNN is sufficiently trained
in each step. The second condition implies that

the

outcome of the DNN does not drastically

change from the one in the last step. Under
these conditions, we have e(fr) < e PT. The
exponential decrease of the empirical error holds
as well as Adaboost.
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Related Concepts

Edge detection

Definition

Boundary detection is the process of detecting
and localizing salient boundaries between objects
in a scene.

Background

Boundary detection is closely related to, but not
identical with, edge detection. Edge detection is
a classical problem in computer vision which
aims at finding brightness discontinuities. Edge
detection is usually viewed as a low-level pro-
cess of feature extraction that works under the
assumption of ideal edge models (such as step
and ridge edges).

In comparison, boundary detection is
usually viewed as a mid-level process of
finding boundaries of (and between) objects
in scenes, thus having close ties with both
grouping/segmentation and object shape. A large-
scale dataset of natural images with human-
marked groundtruth boundaries, the Berkeley
Segmentation Dataset (BSDS) [1, 2], was
established in 2001 and quickly became the
standard benchmark for both boundary detection
and segmentation (see examples in Fig. 1). The
Berkeley Segmentation Dataset helped defining
the problem of boundary detection and clarifying
several fundamental issues:

1. It directly addressed the complexities of real-
world scenes by using a variety of photos from
the Corel database.

2. It defined boundary detection as a perceptual
problem by using human-marked boundaries
as the groundtruth.

3. It showed that boundary detection is well
defined by demonstrating that boundaries
marked by human subjects are consistent.

4. Tt illustrated many challenges of boundary
detection, including those of real-world tex-
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ture, complex object appearance, and low-
contrast boundaries.

By clarifying the task and establishing quan-
titative evaluation metrics, the Berkeley bench-
mark has witnessed and motivated large pro-
gresses in boundary detection in the recent years.

Local Boundary Detection

Early approaches to edge detection used local
derivative filters such as the Roberts, Sobel,
or Prewitt filters [3]. More advanced solutions
included that of the zero crossing of Marr and
Hildreth [4], the optimal filter design and non-
maximum suppression in the Canny detector [5],
and the use of quadrature filter pairs in oriented
energy [6]. Scale (of the filter) is an important
issue in edge detection and Lindeberg proposed a
mechanism for automatic scale selection [7].

The key concept in boundary detection is that
of contrast: regions on two sides of a boundary
tend to have different appearances; consequently,
there tends to be a high contrast at a bound-
ary location. To a large extent, this contrast can
be captured and measured locally in an image
neighborhood (e.g., a disk with a fixed radius).
Local contrast can be measured in a number of
ways, such as using linear filters or computing
distances between histograms. To handle real-
world scenes, modern boundary detectors uti-
lize contrast information from multiple chan-
nels (including brightness, color, and texture),
multiple orientations, and multiple scales (see
examples in Fig. 2). Good examples of these
contrast operators can be found in the Pb work
(probability-of-boundary) of Martin et al. [8] and
the gPb work (global probability-of-boundary) of
Arbelaez et al. [9] (Fig. 3).

Given the complexities of contrast cues and
the availability of labeled images, local boundary
detection is often formulated as learning a binary
classifier of boundary vs. non-boundary, which
will produce a soft boundary “likelihood” at each
pixel. Such a dense boundary map can be used
directly or converted to a sparse boundary map
through non-maximum suppression. A number
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Boundary Detection, Fig. 1 Examples of scenes in the
Berkeley Segmentation Dataset [1]. Each photo is labeled
by multiple human subjects, and the boundaries are shown

of supervised machine learning techniques were
used and tested in [8] to combine a small set
of handcrafted contrast cues. Others have taken
a more direct learning approach, such as using
boosting trees to combine thousands of simple
features over patches [10].

Global Boundary Detection

Boundaries are not local phenomena that occur
independently at pixels. In fact, boundaries are
defined at the object level, and boundary pixels
tend to form long, smooth contours, as evident
from the examples in Fig. 1. Considerable efforts
have been devoted to extracting boundaries glob-
ally, closely related to the classical problem of
contour completion in perceptual organization.
Algorithms for global boundary detection can be
quantitatively evaluated based on their precision
recall on the boundary detection task, same as for
local boundary detection.

A variety of very different formulations have
been proposed for global boundary detection and
contour extraction, including classical works
such as the Mumford-Shah functional [11].

as being stacked together. There are variations across
human subjects, but the marked boundaries are largely
consistent especially for the salient ones

Several recent approaches have successfully
demonstrated, through benchmarking, that
globalization greatly improves boundary
detection accuracy over local detectors. Ren et al.
[12] applied constrained Delaunay triangulation
(CDT) to decompose locally detected contours
into pieces and used conditional random fields
(CRF) and belief propagation to integrate local
contrast cues through interactions at junctions.
Zhu et al. [13] computed complex eigenvectors
of a normalized random walk matrix, using
circular embedding, to detect topologically
closed cycles. In the gPb work of Arbelaez et al.
[9], eigenvectors of the affinity matrix were first
computed, as in Normalized Cuts [14], and then
the gradients of these eigenvectors were added
to the local contrast cues to produce a single
contrast map.

[Optional]: One related but different form of global
boundary detection can be found in the case of fop-
down object segmentation [15], where the algo-
rithm has access to the knowledge (such as shape
or texture) of the objects that are in the scene.
It is beyond the scope of the discussion here, as
boundary detection typically refers to the bottom-
up case where no high-level object knowledge is
needed.
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Boundary Detection,
Fig.2 Boundary detection

combines multiple types of

contrast. (Courtesy of [9],
see details there).
Top-performing boundary
detectors integrate together
local contrast
measurements from
multiple channels (row 1,
brightness; 2 and 3, color;
and 4, texture, through
textons) and multiple
orientations (column 2,
vertical; and 3, horizontal).
Red color means high
probability being a
boundary and blue
otherwise. The combined
boundary contrast (last
row, last column) is much
better than any individual
channel

Application

Boundary detection is fundamentally connected
to both image segmentation and object shape,
and there should be no surprise that advances

in boundary detection have led

to many

interesting applications in segmentation and
object recognition.

For image segmentation, the use of interven-
ing contour [16] allows one to convert any bound-
ary map to pairwise affinities for use in the
Normalized Cuts framework, and many systems
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Boundary Detection, Fig. 3 Precision-recall curves and
F-measures of classical and modern boundary detection
algorithms on the Berkeley benchmark. (Courtesy of [9],
also see [1]). A variety of approaches have been pro-
posed and evaluated on the benchmark. One can typi-

(e.g., [17]) have been using modern boundary
detectors such as the Pb operator [8]. Pb is also
used in [18], combined with the Watershed algo-
rithm, to produce superpixels. Arbelaez et al. [9]
proposed a hierarchical segmentation algorithm
that, using the gPb boundary operator, produces
compelling segmentation results and at the same
time further improves the boundary detection
accuracy.

For object recognition, boundary detectors
such as Pb and gPb are often used to produce a
boundary map, which is in turn used to compute
shape descriptors. For instance, the work of
Berg et al. [19] used Pb boundary maps with
Geometric Blur for object and face recognition.
The work of Ferrari et al. [20] used Pb to produce
contour segments as a basis for shape matching.

cally observe qualitative improvements in the boundary
detection accuracy as the F-measure increases. State-of-
the-art boundary detectors perform much better than, for
instance, the Canny detector

There are many segmentation-based approaches
to recognition that also heavily rely on the quality
of boundary detection (e.g., [21]).

State-of-the-art boundary detectors are sophis-
ticated and require fairly intensive computation,
which limits their applicability. There have been
studies and efforts to speed up boundary detec-
tors. In particular, the GPU-based detector of
Catanzaro et al. [22] achieved a two-orders-of-
magnitude improvement of speed over gPb with-
out suffering any loss in boundary quality.
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Related Concepts

Camera Calibration
Hand-Eye Calibration

Definition

According to McGraw-Hill Encyclopedia of Sci-
ence and Technology [1], calibration is the pro-
cess of determining the performance parameters
of an artifact, instrument, or system by comparing
it with measurement standards. Adjustment may
be a part of a calibration, but not necessarily.
A calibration assures that a device or system
will produce results which meet or exceed some
defined criteria with a specified degree of confi-
dence.

© Springer Nature Switzerland AG 2021
K. Ikeuchi (ed.), Computer Vision,
https://doi.org/10.1007/978-3-030-63416-2

Background

In computer vision, there are multiple calibration
problems. The most fundamental one is the cam-
era calibration, which determines the intrinsic
and extrinsic parameters of a camera. It is the first
step toward 3D computer vision. Other problems
include hand-eye calibration, color calibration,
and photometric calibration.

As stated in [1], two important measurement
concepts related to calibration are precision and
accuracy. Precision refers to the minimum dis-
cernible change in the parameter being measured,
while accuracy refers to the actual amount of
error that exists in a calibration. All measure-
ment processes used for calibration are subject
to various sources of error. It is common prac-
tice to classify them as random or systematic
errors. When a measurement is repeated many
times, the results will exhibit random statistical
fluctuations which may or may not be significant.
Systematic errors are offsets from the true value
of a parameter and, if they are known, corrections
are generally applied, eliminating their effect on
the calibration. If they are not known, they can
have an adverse effect on the accuracy of the
calibration. High-accuracy calibrations are usu-
ally accompanied by an analysis of the sources
of error and a statement of the uncertainty of the
calibration. Uncertainty indicates how much the
accuracy of a calibration could be degraded as a
result of the combined errors.


https://doi.org/10.1007/978-3-030-63416-2

118

References

1. Parker SP (ed) (1982) McGraw-Hill encyclopedia of
science and technology, 5th edn. New York, McGraw-
Hill. http://www.answers.com/topic/calibration

Calibration of a Non-single
Viewpoint System
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Related Concepts

Camera Calibration
Camera Model
Center of Projection
Depth Distortion
Extrinsic Parameters
Intrinsic Parameters
Projection

Definition

A non-single viewpoint system refers to a camera
for which the light rays that enter the camera
and contribute to the image produced by the
camera do not pass through a single point. The
analogous definition holds for models for non-
single viewpoint systems. Hence, a non-single
viewpoint camera or model does not possess a
single center of projection. Nevertheless, a non-
single viewpoint model (NSVM), like any other
camera model such as the pinhole model, enables
to project points and other geometric primitives
into the image and to back-project image points
or other image primitives, to 3D. Calibration of a
non-single viewpoint model consists of a process
that allows to compute the parameters of the
model.

Calibration of a Non-single Viewpoint System

Background

There exist a large variety of camera technologies
(“regular” cameras, catadioptric cameras, fish-
eyes, etc.) and camera models designed for these
technologies. Often, technologies are developed
in order to accommodate a desired model, for
example, to provide a uniform spatial resolution.

Most cameras used in computer vision and
other areas can be well modeled by so-called sin-
gle viewpoint, or central, camera models. These
usually model the 3D-to-2D mapping carried out
by a camera, via lines of sight (or camera rays)
that all pass through a single point (the center of
projection or optical center) and a mapping from
these lines of sight to the image points where they
hit the image plane.

Some camera types, especially some cameras
having a wide field of view, but not only these,
cannot be modeled very well using a single view-
point model. This may be the case because a
camera was designed to possess lines of sight that
do not pass through a single point. This is, for
example, the case for catadioptric cameras where
the mirror surface is of conical shape: even if the
camera looking at the mirror is positioned on the
mirror’s axis, the lines of sight of the system do
not converge to a single point; rather there exists a
viewpoint locus. Another example is a single-lens
stereo system consisting of a pinhole camera and
two planar mirrors, such that the obtained images
represent two perspective images acquired from
two different effective viewpoints.

A camera may also be unintentionally of the
non-single viewpoint type, for example, catadiop-
tric cameras that were designed to have a single
viewpoint but that due to a bad alignment of
the camera and the mirror of the system lose
the single viewpoint property. Another example
are fish-eye cameras; fish-eye optics are complex,
and in principle, one can probably consider them
as non-single viewpoint systems. However, in this
and the previous example, it is not clear without
further investigation of the actual system under
consideration, if a single viewpoint model or an
NSVM is better suited. This indeed depends on
“how much” the system deviates from having
a single viewpoint, how close the scene is in a
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typical application, how much image resolution
is available, and so forth. This issue is further
discussed in [1].

Finally, let us also note that it is possible to
treat a set of multiple cameras that are rigidly
attached to one another, as a single imaging
system [2]. In case the cameras are sufficiently
far from one another, the compound imaging sys-
tem can be described as an NSVM. Particularly
interesting is the case where there is no overlap in
the fields of view of the individual cameras [3].

In the following, it is supposed that calibration
is performed by acquiring one or several images
of a calibration object, whose geometry is known
and whose characteristic features (for simplicity,
points shall be considered) can be extracted and
identified in images.

Theory

There are different types of NSVMs. One usually
distinguishes parametric from non-parametric
such models. For example, for non-single
viewpoint catadioptric systems, if the shape
of the system’s mirror is known or is known
to belong to a parametric family of shapes,
then the entire system can be described by few
parameters: intrinsic parameters of the camera
looking at the mirror, relative pose of mirror
and camera, and, possibly, shape parameters
for the mirror. If such a parametric model is
considered, calibration is, conceptually speaking,
analogous to that of pinhole cameras. The main
difference to calibration of pinhole cameras
usually concerns the initialization process that
allows to compute initial estimates of the camera
parameters. Other than that, one may in general
formulate calibration by a bundle adjustment
type optimization of camera parameters, by
minimizing, for example, the reprojection
error, i.e., a measure related to the distance
between the predicted projections of points of
the calibration object and those extracted in
the images. Examples of parametric NSVMs
are the so-called two-plane and GLC models
[4-7], where lines of sight are parameterized by
linear or higher-order transformations applied to
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points in two basis planes, other similar models
where lines of sight are parameterized by linear
transformations [8—11], models for pushbroom
and X-slit cameras [12—15], and others [16].

A different concept consists in using non-
parametric models to calibrate cameras. An
example is the raxel model introduced by
Grossberg and Nayar [17]. It essentially
associates, to each pixel, a ray in 3D supporting
the line of sight and possibly properties such as its
own radiometric response function. Importantly,
one may use such a model without making
any assumption about a parametric relationship
between the position of pixels and the position
and orientation of the associated lines of sight.
Rather, one may store the coordinates of the
lines of sight of all pixels, in a look-up table.
Simplified versions of this model (without
considering optical properties for individual
pixels) have been used in several similar
calibration approaches, for example [17-20].

The principle of these approaches is thus to
compute, for every camera pixel, a line of sight
in 3D. To do so, at least two images of a cali-
bration object are required. The simplest scenario
considers the case where the calibration object is
displaced by some known motion, between the
image acquisitions. For each image, one has to
estimate correspondences between camera pixels
and points on the calibration object. One way
of achieving such dense correspondences is to
use structured light principles, for instance, to
use as calibration object a computer screen and
to display a series of black-and-white patterns
on it that encodes each pixel of the screen by
a unique sequence of black-and-white intensi-
ties (e.g., Grey codes). Once correspondences
of camera pixels and points of the calibration
object (pixels of the computer screen in the above
example) are known, the lines of sight can be
computed by simply fitting straight 3D lines to
the matched points on the calibration object. To
do so, the latter must be expressed in the same 3D
coordinate system, which is possible since it was
assumed above that the motion of the calibration
object between different acquisitions is known.
This approach was proposed independently by
different researchers [17-19].



120

The above approach requires a minimum
of two images, for different positions of the
calibration object, and knowledge of the object’s
displacements. An extension to the case of
unknown displacements was proposed in [20].
That approach requires at least three images;
from matches of camera pixels and points
on the calibration object, it first recovers the
displacements of the object using an analysis
of this scenario’s multi-view geometry and
then computes lines of sights as above. Other
approaches following this line are [21-23].

The above approaches compute, for each cam-
era pixel, an individual line of sight. If one
assumes that the relation between pixels and
lines of sight is particular, for instance, radially
symmetric about an optical axis, then alternative
solutions become possible. Such a possibility is
to use a non-parametric representation of the
distortion or undistortion function of a camera,
i.e., a function that maps viewing angles (angles
between lines of sight and the optical axis) to
distances in the image, between image points,
and the principal point or a distortion center. This
can be done for both single viewpoint and non-
single viewpoint models. In the former case, it
is assumed that all lines of sight pass through a
single center of projection, whereas in the latter
case, the model usually includes a mapping from
viewing angles to the position of the intersec-
tion between lines of sight and the optical axis.
Approaches of the latter type include [24, 25].
Besides making and using the assumption that the
camera is radially symmetric, these calibration
approaches resemble those explained above.

Different other approaches exist, for example,
one based on the “surface model” [26], where
the raxels of the model of Grossberg and Nayar
are interpolated through the help of spline sur-
faces, or the method of [27] which estimates
the refractive surface in front of a camera that
makes the compound imaging system a non-
central one. As for the case of multi-camera
systems modeled as NSVMs, mentioned under
“Background,” dedicated calibration approaches
have been developed especially for the case of
cameras with non-overlapping fields of view; see,
for instance, [28].

Calibration of a Non-single Viewpoint System
Application

All approaches described above, be they
parametric or non-parametric, allow to perform
3D-to-2D projection and/or 2D-to-3D back-
projection, the latter meaning the mapping from
an image point to the associated line of sight. By
definition, the parametric models give analytical
expression to perform these operations. As
for non-parametric ones, projection and back-
projection usually imply some interpolation
and, possibly, a search. For instance, if a non-
parametric model consists of a look-up table
that gives, for each pixel, its line of sight, back-
projection of an image point with non-integer
coordinates requires interpolation, whereas
projection of a 3D point requires the search of the
closest line(s) of sight in the look-up table and
again an interpolation stage.

Other than these particular aspects, NSVMs
can be used for many structure-from-motion
computations completely analogous to other
camera models, in particular the pinhole model.
Among the essential building blocks of structure-
from-motion, there are pose estimation, motion
estimation, and 3D point triangulation for
calibrated cameras. As for pose and motion
estimation (and other tasks), one usually requires
two types of methods in an application: so-called
minimal methods, which perform the estimation
task from the minimum required number of point
matches and which can be efficiently embedded
in robust estimation schemes such as RANSAC,
and non-linear optimization methods that refine
initial estimates obtained from minimal methods.
Minimal methods for pose [29-31] and motion
estimation [32-34] are formulated analogously
to those for the pinhole model, although their
algebraic and algorithmic complexity is generally
higher and the minimal configurations different
(such as the required number of point matches or
views).

Nevertheless, all that is essentially required
by these methods from the NSVM is to com-
pute lines of sight of interest points that are
extracted and matched to another image (for
motion estimation) or to a reference object (for
pose estimation). As for the non-linear optimiza-
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tion stage, the minimization of the reprojection
errors requires 3D-to-2D projections to be car-
ried out, which, as explained above, may require
search and interpolation, in which case the com-
putation of the cost function’s derivatives may
have to rely on numerical differentiation. Other
than that, there is no major conceptual difference
compared to pose/motion estimation with pinhole
cameras.

Another essential structure-from-motion task
is 3D point triangulation. Here again, suboptimal
methods work with lines of sight computed by the
camera model for interest points in the images,
and optimal methods perform the non-linear opti-
mization of reprojection errors, where the same
considerations hold as above for pose and motion
estimation.
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Synonyms

Multi-camera calibration

Related Concepts

Camera Calibration
Camera Parameters (Intrinsic, Extrinsic)

Calibration of Multi-camera Setups

Definition

Calibration of multi-camera setups is a process to
estimate parameters of cameras which are fixed in
a setup. It usually refers to the process to find rel-
ative poses of the cameras in a single coordinate
system under the assumption of known intrinsic
camera parameters.

Background

Many computer vision methods including 3D
reconstruction from stereo cameras utilize the
multiple cameras in a system, assuming that the
relative poses of cameras in a single coordinate
system is already known. While the camera cali-
bration using a planar pattern [1] simplifies cali-
bration process for intrinsic and extrinsic param-
eters of each camera, estimating camera poses in
a fixed global coordinate system is still required.

The term “multi-camera setup” includes many
different camera configurations such as a stereo,
inward-looking cameras, outward-looking cam-
eras, or camera sensor networks. Because each
camera setup has different viewpoint and field of
view (FOV) configuration, one single calibration
method is not able to deal with all the multi-
camera setups. Depending on the camera config-
uration, different calibration approach should be
considered.

Theory

A projection matrix P; of a camera i in a multi-
camera setup is given as

P, =K; [R; T;]. (D

The matrices R; and T; represent the pose of
the camera i in a predetermined fixed coordinate
system. More specifically, the matrices express
a transformation between the fixed global coor-
dinate system and the local camera coordinate
system. The goal of the multi-camera calibration
is to estimate the matrices R; and T; for all i
in the system. The camera matrix K; represents
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intrinsic parameters of the camera i, which can
be assumed to be known by calibrating the intrin-
sic parameters of each camera independently in
advance.

Multi-camera systems can be categorized into
three configurations: inward-looking cameras,
outward-looking cameras and large camera
networks.

Inward-looking cameras The case that all the
cameras in the system have a FOV shared.
A stereo camera is considered inward-looking
because the two cameras should see the same
scene.

Outward-looking cameras The case that all the
cameras in the system do not share their FOV.
Because no FOVs are overlapped, it is usually
called non-overlapping cameras.

Camera networks The case that some cameras
share their FOVs but there are no common
FOV for all cameras. Distributed cameras are
usually in this category. Most likely, nearby
cameras have a common FOV, farther cameras
can not see it.

Each camera configuration has different con-
straints used in the multi-camera calibration, and
the resulting calibration method becomes differ-
ent to each other.

Inward-Looking Cameras

When all the cameras in the multi-camera setup
have a common FOV, the multi-camera calibra-
tion is relatively simple. A calibration object is
placed in the common FOV as shown in Fig. 1
so that each camera can see it, and the pose of
the cameras with respect to the object coordi-
nate system is estimated by using conventional
pose estimation methods [2—4]. In this case, the
common coordinate system of the multi-camera
configuration is set to be the coordinate system
of the calibration object.

For pose estimation of each camera, a planar
pattern is preferable because it provides better
visibility for all cameras. Note that, however, it
is not limited to a planar pattern when the object
visibility from every camera is ensured.

Sinha et al. [5] present an automatic
calibration method using object silhouettes.
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Calibration of Multi-camera Setups, Fig. 1
Calibration of inward-looking cameras

In this method, epipolar geometry between
cameras is estimated from dynamic silhouettes
and projective structure is recovered. Following
self-calibration completes the Euclidean recon-
struction. This aims especially for shape-from-
silhouette or visual hull reconstruction.

Outward-Looking Cameras

When the FOVs of cameras in the system are
not overlapped, it is impossible to place a cali-
bration object which is observable from multiple
cameras. The pose between cameras can be esti-
mated by utilizing the fact that the transformation
between cameras are fixed in motions called a
rigidity constraint [6].

Assume that the coordinate systems of cam-
eras i and j are transformed by a transformation
R;; and t;. When the camera i moves with a
transformation AR; and At;, the motion of the
camera j with arotation AR; and a translation At;
is given as

AR; At;
0" 1

-1
. R,‘j t;; AR; At; R,‘j t;;
Lo’ 1 0" 1 or 1]

@

and this equation can be rewritten in a AX = XB
form on the Euclidean group as
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AR; At; R;; t;;
0" 1 0" 1

_ Rl]tl] ARZ Atl
1071 or 1 |

Solving the unknowns Rj; and t; on the
Euclidean group is known as a hand-eye
calibration in the robotics community [7-9].
Two or more motions of the camera rig provide
enough number of constraints.

One practical problem is to estimate motions
AR and At of each camera. One stable way
is to use calibration objects for each camera.
First place a calibration object for each camera
and take pictures while moving the camera rig.
At each time frame, the poses of each camera
can be estimated by using a conventional pose
estimation method. The motions of cameras are
computed by calculating the difference of the
poses at different time frames. Note that the geo-
metric relation between calibration objects is not
required in calculating each camera motions. The
only requirement is that the calibration objects
are fixed in motions. Figure 2 shows the calibra-
tion objects for three non-overlapping cameras.

By solving the AX = XB equation on the
Euclidean group, the transformation between two
cameras is obtained. If the multi-camera system

Calibration

of Multi-camera Setups,
Fig.2 Calibration of
outward-looking cameras

Calibration object i
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has more than two cameras, every camera can
be registered in the fixed global coordinate sys-
tem by chaining the transformations pairwisely.
However, the pairwise chaining of transformation
does not guarantee the globally consistent regis-
tration. In addition, the transformation between
cameras may be inconsistent depending on the
data provided to the AX = XB solver. Dai et al.
[10] represent a rotation averaging strategy to
improve the consistency of the estimated transfor-
mation, and use a global bundle adjustment [11]
for final polishing. Lebraly et al. [12] more focus
on an sparse implementation of the global bundle
adjustment to ensure the consistency in the fixed
global coordinate system.

Kumar et al. [13] present completely different
approach to use a mirror so that the cameras
can observe the mirrored calibration pattern, and
show successful calibration result for the ladybug
camera.

Camera Networks

One general configuration is a camera network,
which usually has many fixed cameras seeing in
different directions. When every camera shares
its FOV with any other camera in the network,
relative transformations between the cameras can
be estimated using calibration objects, and they
are registered by chaining the transformation. In

Calibration object j

unknown
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Calibration

of Multi-camera Setups,
Fig.3 Calibration of a
camera network

Camera k @

Camera j

fact, this calibration process is cast to a conven-
tional structure from motion problem. Once all
the relative transformations are obtained, glob-
ally consistent localization of the cameras in the
fixed coordinate system is achieved by using bun-
dle adjustment [11]. Figure 3 shows a possible
placement of calibration objects in calibrating a
camera network. Devarajan et al. [14] introduce
a vision graph to describe the feature visibility
between cameras, and try to optimize the graph
network by belief propagation.

Baker and Aloimonos [15] present a method
based on the multi-frame structure from motion
algorithm, and use a rod with two LEDs at each
end as a calibration object. The LEDs provides
accurate and easily detectable correspondences
for the precisely synchronized cameras by waiv-
ing the rod.

Svoboda et al. [16] propose a convenient and
complete self-calibration method using a laser
pointer including intrinsic parameter estimation.
The method is based on the stratification of the
transformations; at first projective reconstruction
is achieved by factorization and later upgraded
to Euclidean space by imposing geometric con-
straints such as a square pixel assumption. Their
source codes are available for public use.

If there is no camera sharing its FOV with
others, it is challenging to establish the common
global coordinate system. One idea is to use a
mobile robot carrying a calibration object [17].
The location of the object is estimated by the

Camera i
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SLAM of the mobile robot. However, this is not
stable enough for practical use yet.

Application

Multi-camera calibration is essential in construct-
ing a system using multiple cameras depending
on the applications and sensor configurations.
The inward-looking configuration is generally
used in many 3D reconstruction tasks such
as stereo and visual hull reconstruction. The
outward-looking configuration is useful to
enlarge the effective FOV of the system, and
especially for structure from motion applications.
The most general camera network has diverse
applications such as 3D reconstruction, surveil-
lance, environmental monitoring and so on. Note
that the camera network includes the inward-
looking configuration of cameras.
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Synonyms

Lens distortion correction

Related Concepts

Calibration

Camera Calibration
Geometric Calibration
Perspective Camera

Definition

Calibration of a projective camera is the process
of determining an adjustment on the camera so
that, after adjustment, it follows the pinhole or
perspective projection model.

Background

A projective camera follows pinhole or perspec-
tive projection, which is also known as rectilin-
ear projection because straight lines in a scene
remain straight in an image. A real camera usu-
ally uses lenses with finite aperture, especially for
low-end cameras (such as WebCams) or wide-
angle cameras. Lens distortion also arises from
imperfect lens design and manufacturing, as well
as camera assembly. A line in a scene is not seen
as a line in the image. A point in 3D space, its
corresponding point in image, and the camera’s
optical center are not collinear. The linear pro-
jective equation is sometimes not sufficient, and
lens distortion has to be considered or corrected
beforehand.
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Theory

According to [1], there are four steps in camera
projection including lens distortion:

Step 1: Rigid transformation from world coordi-
nate system (X,,, Y,,, Z,) to camera one (X,

Y, 7).
(X ¥ 21" =R[ X, ¥, Z,]" +1

Step 2: Perspective projection from 3D camera
coordinates (X, Y, Z) to ideal image coordi-
nates (x, y) under pinhole camera model:

N~

x=f3 y=f

where fis the effective focal length.

Step 3: Lens distortion:

i=x+8x,5’=y+5)'

where (X, y) are the distorted or true image
coordinates and (3y, d,) are distortions applied to
(x, ¥). Note that the lens distortion described here
is different from Tsai’s treatment. Here, we go
from ideal to real image coordinates, similar to

[2].

Step 4: Affine transformation from real image
coordinates (X, y) to frame buffer (pixel)
image coordinates (i, D):

i=d 1% +uy, v = d_l)v) + vg,

where (ug, vo) are coordinates of the principal
point and d, and d, are distances between adja-
cent pixels in the horizontal and vertical direc-
tions, respectively.

There are two types of distortions:

Radial distortion: It is symmetric; ideal image
points are distorted along radial directions
from the distortion center. This is caused by
imperfect lens shape.

Decentering distortion: This is usually caused by
improper lens assembly; ideal image points
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are distorted in both radial and tangential
directions.

The reader is referred to [3—6] for more details.
The distortion can be expressed as power

series in radial distance r = \/m:
Sy =x(k1r2+k2r4~|—k3r6+~~>

+ [m (r2+2x2) +2P2xy] <1+P3V2+ - ) ,
8y = y<k1r2+k2r4+k3r6+-~->

+ [2p1xy+pz (r2+2y2)] <1+p3r2+ - ) :

where k;s are coefficients of radial distortion and
p;s are coefficients of decentering distortion.

Based on the reports in the literature [1, 2, 4],
it is likely that the distortion function is totally
dominated by the radial components and espe-
cially dominated by the first term. It has also been
found that any more elaborated modeling not
only would not help (negligible when compared
with sensor quantization) but also would cause
numerical instability [1, 2].

Denote the ideal pixel image coordinates by
u = x/dy and v = y/d,. By combining Steps 3
and 4 and if only using the first two radial distor-
tion terms, we obtain the following relationship
between (i, v) and (u, v):

=t (4 — ) |:k1 (x2+y2) +ky (x2+y2)2:|

ey

v=v+ (v — vg) |:k1 (x2+y2) +k2<x2+y2>2:| .
2

Lens distortion parameters can be determined
as an integrated part of geometric calibration
[7]. This can be done by observing a known
3D target [1, 2, 6], by observing a 2D planar
pattern [8], by observing a linear point pattern [9],
or by moving the camera through a rigid scene
[10]. The nonlinearity of the integrated projection
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and lens distortion model does not allow for a
direct calculation of all the parameters of the
camera model. Camera calibration including lens
distortion can be performed by minimizing the
distances between the image points and their
predicted positions, i.e.,

min E mi — i (A, R, £, ki, ko, M;)|?
ARk ko & s ( ol
1

3

where m (A, R, t, ky, ko, M;) is the projection
of M; onto the image according to the pinhole
model, followed by distortion according to Eq.
(1) and Eq. (2). The minimization is performed
through an iterative approach such as using the
Levenberg-Marquardt method.

An alternative approach is to perform lens
distortion correction as a separate process. Invari-
ance properties under projective transformation
are exploited. One is the “plumb line” constraint
[4], which is based on the fact that a line in
a scene remains a line in an image. Another is
the cross-ratio constraint [2], which states that,
for four collinear points with known distances
between each other in 3D, their corresponding
image points are collinear, and their cross-ratio
remains the same. Due to lens distortion, projec-
tive invariants are not preserved, and we can use
the variance to compute the distortion.
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Radiometric Calibration
Vignetting

Definition

Calibration of radiometric falloff is the measure-
ment of brightness attenuation away from the
image center for a given camera, lens, and camera
settings.



Calibration of Radiometric Falloff (Vignetting)

Background

Several mechanisms may be responsible for
radiometric falloff. One is the optics of the
camera, which may have a smaller effective
lens opening for light incident at greater off-
axis angles (i.e., irradiance toward the edges
of an image). Radiometric falloff also occurs
naturally due to foreshortening of the lens when
viewed at increasing angles from the optical axis.
A third cause is mechanical in nature, where light
arriving at oblique angles is partially obstructed
by camera components such as the field stop or
lens rim. Digital sensors may also contribute to
this falloff because of angle-dependent sensitivity
to light. The profile of the radiometric falloff field
varies with respect to camera, lens, and camera
settings such as focal length and aperture.

Many computer vision algorithms assume that
the image irradiance measured at the camera
sensor is equal to the scene radiance that arrives
at the camera. However, this assumption often
does not hold because of radiometric falloff. It
is therefore important to measure or estimate the
radiometric falloff, and remove its effects from
images.

Theory

Radiometric falloff, or vignetting, may be mod-
eled as a function f that represents the proportion
of image brightness / at an image position (x, y)
relative to that at the image center (xg, yo):

_ Iy
A TS

ey

Because of approximate radial symmetry
in the optical systems of most cameras, the
radiometric falloff function may alternatively
be expressed in terms of image distance r from
the image center:

1) )
f(r)—mv (2)
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where r = /x2 + y2. The purpose of radiomet-
ric falloff calibration is to recover f, so that its
inverse function f~! can be applied to an image i,
recorded by the same camera and camera settings,
to obtain an image i without radiometric falloff:

iy =1 y). )

The effect of radiometric falloff calibration is
illustrated in Fig. 1.

Methods

A basic method for calibration of radiometric
falloff is to capture a reference image consisting
of a uniform radiance field [1-4]. Since the scene
itself contains no brightness variation, intensity
differences in the image can be attributed solely
to radiometric falloff. It must be noted that in
these and other methods of falloff calibration, it
is assumed that the camera response function is
known.

Another approach examines image sequences
with overlapping views of an arbitrary static
scene [5-9]. In overlapping image regions,
corresponding points are assumed to have
the same scene radiance. Differences in their
intensities are therefore a result of different
radiometric falloff at their respective image
positions. From the positions and relative
intensities among each set of corresponding
points, the radiometric falloff field can be
recovered without knowledge of scene content.
Most of these methods are designed to recover
both the radiometric falloff field and the camera
response function in a joint manner [6-9].

The radiometric falloff field may alternatively
be estimated from a single arbitrary input image.
To infer the falloff field in this case, the intensity
variation caused by falloff needs to be distin-
guished from that due to scene content. This has
been done using a segmentation-based approach
that identifies image regions with reliable data
for falloff estimation [10], and by examining the
effect of falloff on radial gradient distributions in
the image [11].
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Calibration of Radiometric Falloff (Vignetting), Fig. 1 Image calibrated for radiometric falloff

Application

Calibration of radiometric falloff is of importance
to algorithms such as shape-from-shading and
photometric stereo that infer scene properties
from image irradiance values. It is also essential
in applications such as image mosaicing
and segmentation that require photometric
consistency of the same scene point appearing
in different images, or different scene points
within the same image.

A measured radiometric falloff field may be
used to locate the optical center of the image,
since radiometric falloff generally exhibits
radial symmetry. The spatial variation of light
transmission may also be exploited in sensing,
such as to capture high dynamic range intensity
values of scene points viewed from a moving
camera [12].
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Definition

Camera calibration is the process of determining
certain parameters of a camera in order to fulfill
desired tasks with specified performance mea-
sures. The reader is referred to entry Calibration
for a general discussion on calibration.

Background

There are multiple camera calibration prob-
lems. The most common one, which almost
becomes the synonym of camera calibration, is
geometric calibration (see entry » “Geometric
Calibration”). It consists in determining
the intrinsic and extrinsic parameters of a
camera.
Other camera calibration problems include:

Stereo calibration. A stereo (or stereovision)
system consists of multiple cameras. Stereo
calibration determines the relative geometry
(rotation and translation) between cameras.
The intrinsic parameters of each camera
can be determined separately as in camera
calibration or jointly with the relative
geometry.

Photometry concerns the measurement of quan-
tities associated with light. Photometric cal-
ibration of a camera is a process of deter-
mining a function which converts the pixel
values to photometric quantities such as SI
(Systeme International in French) light units.
A test chart of patches with known relative
luminances is usually used for photometric
calibration.

Color calibration. The pixel values of a color
camera depend not only on the surface
reflectance but also on the illuminating source.
White balance is a common color calibration
task, which uses a standard test target with
known reflectance to remove the influence of
lighting on the scene. Another common task
is to calibrate multiple seemingly identical
cameras which are not due to tolerance in
fabrication.
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Camera Extrinsic Parameters
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Synonyms

Camera pose; Extrinsic parameters

Related Concepts

Camera Parameters (Intrinsic, Extrinsic)
Camera Pose
Intrinsics

Definition

Extrinsic, short for extrinsic parameters, refer to
the parameters not forming the essential part of
a thing, which is usually a camera in computer
vision. The extrinsic parameters of a camera
include its pose (rotation and translation) with
respect to a reference coordinate system.

See entry » “Camera Parameters (Intrinsic,
Extrinsic)” for more details.

Camera Model
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Related Concepts

Camera Calibration

Camera Parameters (Intrinsic, Extrinsic)
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Definition

A camera is a device that records lights com-
ing from the scene and saves them in images.
These images may be still photographs or moving
images (videos). The camera model describes
the mathematical relationship between the 3D
coordinates of a point in the scene from which
the light comes from and the 2D coordinates of its
projection onto the image plane. The ideal camera
model is known as the pinhole camera model
or perspective camera model, but other camera
models exist such as thin and thick cameras.

Background

The term camera comes from the camera obscura
(in Latin for “dark chamber”) [1]. A camera
obscura is a dark room, consisting of a darkened
chamber or box, into which light is admitted
through a pinhole (later a convex lens), forming
an image of external objects on a surface of
wall, paper, or glass. A modern camera generally
consists of an enclosed hollow with an opening
(aperture) at one end for light to enter and a
recording or viewing surface (such as a CCD or
CMOS sensor) for capturing the light on the other
end. A majority of cameras have a lens positioned
in front of the camera’s opening to gather the
incoming light and focus all or part of the image
on the recording surface.

A camera may work with the light of the
visible spectrum. If it records each of the red,
blue, and green primary colors at each pixel, then
the camera is called a color camera; if it only
records the shades of black and white (the grey
levels of the light intensity), the camera is called
a black and white camera.

A camera may also work with the light outside
of the visible spectrum, e.g., with the infrared
(IR) light, and the camera is called the IR camera.

Pinhole Camera Model

A pinhole camera can be ideally modeled as the
perspective projection. This is by far the most

Camera Model

popularly used model in the computer vision
community. The reader is referred to the entry
“Perspective Camera” for details.

Thin and Thick Lens Camera Models

Although pinhole cameras model quite well most
of the cameras we use in the computer vision
community, they cannot be used physically in a
real imaging system. This is for two reasons:

— An ideal pinhole, having an infinitesimal aper-
ture, does not allow to gather enough amount
of light to produce measurable image bright-
ness (called image irradiance).

— Because of the wave nature of light, diffrac-
tion occurs at the edge of the pinhole and
the light spread over the image [2]. As the
pinhole is made smaller and smaller, a larger
and larger fraction of the incoming light is
deflected far from the direction of the incom-
ing ray.

To avoid these problems, a real imaging sys-
tem usually uses lenses with finite aperture. This
appendix aims at having the reader know that
there are other camera models available. One
should choose an appropriate model for a partic-
ular imaging device [3, Sect. 2.A.1].

For an ideal lens, which is known as the thin
lens, all optical rays parallel to the optical axis
converge to a point on the optical axis on the other
side of the lens at a distance equal to the so-called
focal length f (see Fig. 1).

The light ray through the center of the lens is
undeflected; thus a thin lens produces the same
projection as the pinhole. However, it gathers
also a finite amount of light reflected from (or
emitted by) the object (see Fig. 2). By the familiar
thin lens law, rays from points at a distance Z
are focused by the lens at a distance —F, and Z
and —F satisfy

1+1_1 "
Z —F

where fis the focal length.
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Camera Model, Fig. 1 Cross-sectional view of a thin lens sliced by a plane containing the optical axis. All light rays
parallel to the optical axis converge to a point at a distance equal to the focal length

Ny

Camera Model, Fig. 2 A thin lens gathers light from a finite area and produces a well-focused image at a particular

distance

If we put an image plane at the distance
—F, then points at other distances than Z are
imaged as small blur circles. This can be seen
by considering the cone of light rays passing
through the lens with apex at the point where

they are correctly focused [2]. The size of the
blur circle can be determined as follows. A
point at distance Zis focused if it is imaged
at a point —F from the lens (see Fig. 3),
where
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Camera Model, Fig. 3 Focus and blur circles

P1 Do
~f

image 3 3

plane ! |

i 0 b |
e s -
o \ | Z

nodal !

points |

e/ |

; P -~ Z -

Camera Model, Fig. 4 Cross-sectional view of a thick lens sliced by a plane containing the optical axis
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circle, e, can be computed by triangle similarity
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where d is the diameter of the lens. If the diameter
of blur circles, e, is less than the resolution of
the image, then the object is well focused and
its image is clean. The range of distances over
which objects are focused “sufficiently well” is
called the depth of field. 1t is clear that the
larger the lens aperture d, the less the depth of
field.

From (1), it is seen that for objects relatively
distant from the lens (i.e., Z > f), we have
F = f If the image plane is located at
distance f from the lens, then the camera
can be modeled reasonably well by the
pinhole.

It is difficult to manufacture a perfect
lens. In practice, several simple lenses are
carefully assembled to make a compound
lens with better properties. In an imaging
device with mechanism of focus and zoom,
the lenses are allowed to move. It appears
difficult to model such a device by a pinhole
or thin lens. Another model, called the thick
lens, is used by more and more researchers
[4,5].

An ideal thick lens is illustrated in Fig. 4.
It is composed of two lenses, each having two
opposite surfaces, one spherical and the other
plane. These two planes p; and pj, called the
principal planes, are perpendicular to the optical
axis and are separated by a distance ¢, called
the thickness of the lens. The principal planes
intersect the optical axis at two points, called
the nodal points. The thick lens produces the
same perspective projection as the ideal thin
lens, except for an additional offset equal to the
lens thickness ¢ along the optical axis. A light
ray arriving at the first nodal point leaves the
rear nodal point without changing direction. A
thin lens can then be considered as a thick lens
with = 0.

It is thus clear that a thick lens can be con-
sidered as a thin lens if the object is relatively
distant to the camera compared to the lens thick-
ness (i.e., Z > 1). It can be further approxi-
mated by a pinhole only when the object is well
focused (i.e., F =~ F ), and this is valid only
locally.
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Definition

Camera parameters are the parameters used in
a camera model to describe the mathematical
relationship between the 3D coordinates of a
point in the scene from which the light comes
from and the 2D coordinates of its projection onto
the image plane. The intrinsic parameters, also
known as internal parameters, are the parameters
intrinsic to the camera itself, such as the focal
length and lens distortion. The extrinsic param-
eters, also known as external parameters or cam-
era pose, are the parameters used to describe
the transformation between the camera and its
external world.

Background

In computer vision, in order to understand the
environment surrounding us with a camera,
we have to know first the camera parameters.
Depending on the accuracy we need to achieve
and on the quality of the camera, some
parameters can be neglected. For example, with
a high-quality camera, the lens distortion can
usually be ignored in most of the applications.

Theory

In the entry » “Perspective Camera”, we describe
the mathematical model of a perspective camera

world coordinate system

camera
coordinate system

Camera Parameters (Intrinsic, Extrinsic)

with only a single parameter, the focal length
/- The relationship between a 3D point and its
image projection is described by

s = PM, ()

where s = § is an arbitrary nonzero scalar and P
is a projective projection matrix given by

£000
0700
0010

P=

Before proceeding, the reader needs to review
the entry » “Perspective Camera”.

Extrinsic Parameters

In the projective projection matrix described in
the entry » “Perspective Camera”, recapitulated
above, we assumed that 3D points are expressed
in the camera coordinate system. In practice, they
can be expressed in any 3D coordinate system,
which is sometimes referred as the world coor-
dinate system. As shown in Fig. 1, we go from
the old coordinate system centered at the optical
center C (camera coordinate system) to the new
coordinate system centered at point O (world
coordinate system) by a rotation R followed by a
translation £ = C O . Then, for a single point, its
coordinates expressed in the camera coordinate

Camera Parameters (Intrinsic, Extrinsic), Fig. 1 World coordinate system and camera extrinsic parameters
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system, M., and those expressed in the world
coordinate system, M,,, are related by

M. = RM,, +t,
or more compactly
M. = DM, 2

where D is a Euclidean transformation of the
three-dimensional space

D:[%t] with 03 = [0,0,01”.  (3)
ol 1

The matrix R and the vector t describe the ori-
entation and position of the camera with respect
to the new world coordinate system. They are
called the extrinsic parameters of the camera.

From (1) and (2), we have

m = PM, = PDM,,.

Therefore the new perspective projection
matrix is given by

Pnew = PD. (4)

This tells us how the perspective projection
matrix P changes when we change coordinate
systems in the three-dimensional space: We sim-

Camera Parameters
(Intrinsic, Extrinsic),
Fig.2 Camera intrinsic
parameters
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ply multiply it on the right by the corresponding
Euclidean transformation.

Intrinsic Parameters and Normalized

Camera

This section considers the transformation in
image coordinate systems. It is very important
in practical applications because:

— We do not know the origin of the image plane
in advance. It generally does not coincide with
the intersection of the optical axis and the
image plane.

— The units of the image coordinate axes are not
necessarily equal, and they are determined by
the sampling rates of the imaging devices.

— The two axes of a real image may not form a
right angle.

To handle these effects, we introduce an affine
transformation.

Consider Fig. 2. The original image coordinate
system (c, x, y) is centered at the principal point ¢
and has the same units on both x- and y-axes. The
coordinate system (o, u, v) is the coordinate sys-
tem in which we address the pixels in an image. It
is usually centered at the upper left corner of the
image, which is usually not the principal point c.
Due to the electronics of acquisition, the pixels
are usually not square. Without loss of generality,
the u-axis is assumed to be parallel to the x-axis.
The units along the u#- and v-axes are assumed

oA
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to be k, and k, with respect to the unit used in
(c, x, y). The u- and v-axes may not be exactly
orthogonal, and we denote their angle by 6. Let
the coordinates of the principal point c in (o, u, v)
be [uo, vo]”. These five parameters do not depend
on the position and orientation of the cameras and
are thus called the camera intrinsic parameters.
For a given point, let mgq = [x, 17 be the
coordinates in the original coordinate system; let
Myey = [, v]7 be the pixel coordinates in the new
coordinate system. It is easy to see that

Iilnew = Hﬁlolda
where
ky kycot 6 ug

0 ky/sin 6 vg
0 0 1

H=

Since, according to (1), we have
sTiolg = PolaM,
we conclude that
SMpey = HPoldM»
and thus

fky fkycotf up0
0 fky/sinBvy0
0 0 10

Pnew = HPOld =

&)

Note that it depends on the products fk, and
Jky, which means that a change in the focal length
and a change in the pixel units are indistinguish-
able. We thus introduce two parameters o, = fky
and o, = fky.

We will now define a special coordinate sys-
tem that allows us to normalize the image coor-
dinates [1]. This coordinate system is called the
normalized coordinate system of the camera. In
this “normalized” camera, the image plane is
located at a unit distance from the optical center
(i.e. f = 1). The perspective projection matrix of
the normalized camera is given by

Camera Parameters (Intrinsic, Extrinsic)

1000
0100
0010

Py = (6)

For a world point [X, Y, zI7 expressed in the
camera coordinate system, its normalized coordi-
nates are

Nlb<

xA:

@)

NI~

y=

A matrix P defined by (5) can be decomposed
into the product of two matrices:

Prew = APy, 8)
where
oy aycot 0 up
A=| 0 ay/sin 6 vy ©))

0 0 1

The matrix A contains only the intrinsic
parameters and is called camera intrinsic matrix.
It is thus clear that the normalized image
coordinates are given by

=A"! (10)

—_ > =D

Through this transformation from the avail-
able pixel image coordinates, [u, v]7, to the imag-
inary normalized image coordinates, [ £, j}]T the
projection from the space onto the normalized
image does not depend on the specific cameras.
This frees us from thinking about characteristics
of the specific cameras and allows us to think
in terms of ideal systems in stereo, motion, and
object recognitions.

The General Form of Perspective

Projection Matrix

The camera can be considered as a system that
depends upon the intrinsic and the extrinsic
parameters. There are five intrinsic parameters:
the scale factors o, and a,, the coordinates 1y and
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v of the principal point, and the angle 6 between
the two image axes. There are six extrinsic
parameters, three for the rotation and three for
the translation, which define the transformation
from the world coordinate system to the standard
coordinate system of the camera.

Combining (4) and (8) yields the general form
of the perspective projection matrix of the cam-
era:

P=APyD =A[Rt]. an

The projection of 3D world coordinates
M = [X,V,Z]7 to 2D pixel coordinates
m = [u, v]7 is then described by

sm = PM, (12)
where s is an arbitrary scale factor. Matrix P has
3 x 4 = 12 elements but has only 11 degrees of
freedom because it is defined up to a scale factor.

Let p;; be the (i, j) entry of matrix P. Elim-

inating the scalar s in (12) yields two nonlinear
equations:

"y puX + pr2Y + pi3Z + piy

(13)
P31 X + p3nY + p33Z + p3a

v — p2X + pnY + p23Z + pos

GV
p31X + pnY + p33Z + p3s

Camera calibration is the process of estimat-
ing the intrinsic and extrinsic parameters of a
camera or the process of first estimating the
matrix P and then deducing the camera param-
eters from P. A wealth of work has been car-
ried out in this domain by researchers either in
photogrammetry [2, 3] or in computer vision
and robotics [4-9] (see [10] for a review). The
usual method of calibration is to compute camera
parameters from one or more images of an object
of known size and shape, for example, a flat
plate with a regular pattern marked on it. From
(12) or (13) and (14), we have two nonlinear
equations relating 2D to 3D coordinates. This
implies that each pair of an identified image point
and its corresponding point on the calibration
object provides two constraints on the intrinsic
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and extrinsic parameters of the camera. The num-
ber of unknowns is 11. It can be shown that, given
N points (N > 6) in general position, the camera
can be calibrated. The presentation of calibration
techniques is beyond the scope of this book.
The interested reader is referred to the above-
mentioned references.

Once the perspective projection matrix P is
given, we can compute the coordinates of the
optical center C of the camera in the world
coordinate system. We first decompose the 3 x 4
matrix P as the concatenation of a 3 x 3 subma-
trix B and a 3-vector b, that is, P = [B b]. Assume
that the rank of B is 3. In the entry » “Perspective
Camera”, we explained that, under the pinhole
model, the optical center projects to [0, 0, 0]
(i.e. s = 0). Therefore, the optical center can be
obtained by solving

PC =0,  thatis, [B b] [ﬂ =0.

The solution is

C=-B"'b. (15)

Given matrix P and an image point m, we can
obtain the equation of the 3-D semi-line defined
by the optical center C and point m. This line is
called the optical ray defined by m. Any point
on it projects to the single point m. We already
know that C is on the optical ray. To define it, we
need another point. Without loss of generality, we
can choose the point D such that the scale factor
s = 1, that is,

m:mm[’f].

This gives D = B! (—b + ﬁl). A point on
the optical ray is thus given by

M=C+1(D-C)=B"(-b+rm),

where '\ varies from O to co.
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Camera Pose
Zhengyou Zhang
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Synonyms

Camera extrinsic parameters

Related Concepts

Camera Calibration
Camera Extrinsic Parameters

Camera Pose

Camera Parameters (Intrinsic, Extrinsic)
Intrinsics
Perspective Camera

Definition

Camera pose is referred to the position and ori-
entation of a camera with respect to a reference
coordinate system, which is usually known as the
world coordinate system.

Background

Determining the camera pose is usually a first
step toward perceiving the surrounding environ-
ment. In structure from motion where a camera
is moving through the environment, one needs to
determine the successive camera poses at differ-
ent instants in order to reconstruct the surround-
ing environment in 3D. In a multi-camera (two or
more) system, one needs to determine the relative
camera pose, i.e., how one camera is related to
other cameras.

The reader is referred to entry » “Camera
Parameters (Intrinsic, Extrinsic)” for details.

Camera Response Function

Radiometric Response Function

Camera Sensor

Image Sensors

Camera-Shake Blur

Motion Blur
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Synonyms

Catoptrics; Dioptrics

Related Concepts

Center of Projection
Field of View
Omnidirectional Camera

Definition

A catadioptric system is a camera configuration
where both lenses and mirrors are jointly used
to achieve specialized optical properties. These
configurations are referred to as catadioptric,
where “cata” comes from mirrors (reflective) and
“dioptric” comes from lenses (refractive).

Background

In 1637, René Descartes observed that the refrac-
tive and reflective “ovals” (conical lenses and
mirrors) have the ability to focus light into one
single point on illumination from a chosen point
[1]. It was reported that the same results were
derived by Feynman et al. [2] and Drucker and
Locke [3]. In computer vision community, Baker
and Nayar presented the complete class of sin-
gle viewpoint catadioptric configurations with
detailed solutions and degenerate cases [4]. Some
of these results have been independently derived
by Bruckstein and Richardson [5]. Survey of
various catadioptric cameras, a review and details
of their calibration, and 3D reconstruction algo-
rithms can also be found in [6, 7].
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Theory and Classification

The combination of mirrors and lenses provides
a wide range of design possibilities leading to
interesting applications in computer vision. Most
catadioptric configurations have larger field of
view compared to conventional pinhole cameras.
Other important design goals are compactness of
a sensor, a single effective viewpoint, image qual-
ity, focusing properties, or a desired projection
function. The catadioptric cameras may be classi-
fied in many ways. In [6], Sturm et al. classify the
catadioptric cameras in to five different types:

— Single-mirror central systems, having a single
effective viewpoint

— Central systems using multiple mirrors

— Noncentral systems

— Single-lens stereo systems

— Programmable devices

In what follows, catadioptric cameras are clas-
sified into central and noncentral systems. Most
of these catadioptric configurations were pro-
posed by researchers along with specified calibra-
tion and 3D reconstruction algorithms.

Central Catadioptric Configurations

It requires a very careful choice of the shape
of the mirrors and their positioning to obtain a
single effective viewpoint in catadioptric imag-
ing. The single viewpoint design goal is impor-
tant because it allows the generation of pure
perspective images from the catadioptric images.
Furthermore, it allows one to solve motion esti-
mation and 3D reconstruction algorithms in the
same way as perspective cameras:

— Planar mirror: In [4, 8], it can be observed that
by using planar mirrors along with a perspec-
tive camera, one can obtain a single viewpoint
configuration. Since planar mirrors do not
increase the field of view of the system, they
are not very interesting for building omnidi-
rectional cameras. Using four planar mirrors
in a pyramidal configuration along with four
perspective cameras, Nalwa [9] produced an
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omnidirectional sensor of field of view of 360°
x50°. The optical centers of the four cameras
and the angles made by the four planar faces
are adjusted to obtain a single effective view-
point for the system.

Conical mirrors: By positioning the optical
center of a perspective camera at the apex of
a cone, one can obtain a single center con-
figuration. Nevertheless, the only light rays
reaching the camera after a reflection in the
mirror are those grazing the cone. This case
is thus not useful to enhance the field of view
while conserving a single center of projection.
However, in the work [10], it was proved that
conical mirrors can be used to construct a non-
degenerate single viewpoint omnidirectional
cameras. The outer surface of the conical
mirror forms a virtual image corresponding
to the real scene behind the conical mirror.
On placing the optical center of the pinhole
camera at the vertex of the cone, the camera
sees the world through the reflection on the
outer surface of the mirror. In other words, the
cone is not blocking the view. On the other
hand, the cone is the view.

Spherical mirror: If the optical center of a
perspective camera is fixed at the center of a
spherical mirror, one can obtain a single view-
point configuration. Unfortunately, all that the
perspective camera sees is its own reflection.
As a result the spherical mirror produces a
degenerate configuration without any advan-
tage. Remember that by positioning the per-
spective camera outside the sphere, one can
obtain a useful noncentral catadioptric cam-
era.

Parabolic mirror: Figure 1 shows a single
viewpoint catadioptric system with a parabolic
mirror and an orthographic camera. It is easier
to study a catadioptric configuration by con-
sidering the back projection rather than the
forward projection. Consider the back projec-
tion of an image point p. The back-projected
ray from the image pixel p, starting from the
optical center at infinity, is parallel to the axis
of the parabolic mirror. This ray intersects and
reflects from the surface of the mirror. The
reflection is in accordance with the laws of

Catadioptric Camera

Parabolic mirror

t t 1 t _t _Orthographic
camera

Catadioptric Camera, Fig. 1 Parabolic mirror + ortho-
graphic camera [8]. P refers to the 3D scene point. F, the
focus of the parabolic mirror, is the effective viewpoint

Image plane

=]

Scene point

Elliptical mirror

Catadioptric Camera, Fig. 2 Elliptical mirror + per-
spective camera [4]. P refers to the 3D scene point. F and
F’ refer to the two foci of the mirror and p refers to the
image point. F is the effective viewpoint

reflection. This reflected light ray is nothing
but the incoming light ray from a scene point
P in forward projection. The incoming ray
passes through the focus F if extended on
the inside of the mirror. This point where all
the incoming light rays intersect (virtually) is
called the effective viewpoint.

— Elliptical mirror: Figure 2 shows a central
catadioptric system with an elliptical mirror
and a perspective camera. The optical center
of the perspective camera is placed at the
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F Perspective camera

Image plane

Scene point
FI

Hyperbolic mirror

Catadioptric Camera, Fig. 3 Hyperbolic mirror + per-
spective camera [4]. P refers to the 3D scene point. F and
F’ refer to the two foci of the mirror and p refers to the
image point. F is the effective viewpoint

upper focus of the elliptical mirror. By back-
projecting an image point p, one can observe
the following. The back-projected ray, starting
from the optical center at the upper focus
of the elliptical mirror, intersects and reflects
from the surface of the elliptical mirror. The
reflected back-projected ray, or the incoming
light ray, virtually passes through the lower
focus of the mirror. Thus, the lower focus (F)
is the effective viewpoint of the system.

— Hyperbolic mirror: In Fig. 3, a catadioptric
system is shown with a hyperbolic mirror and
a perspective camera. The optical center of the
perspective camera is placed at the external
focus of the mirror F'. The back-projected ray
of the image point p starts from the optical
center, which is the external focus F’ of the
mirror, of the perspective camera. Using the
same argument as above, one can observe that
the lower focus F is the effective viewpoint.
The first known work to use a hyperbolic
mirror along with a perspective camera at the
external focus of the mirror to obtain a sin-
gle effective viewpoint configuration is [11].
Later in 1995, a similar implementation was
proposed in [12].

Noncentral Catadioptric Cameras
Single viewpoint configurations are extremely
delicate to construct, handle, and maintain. By
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relaxing this single viewpoint constraint, one
can obtain greater flexibility in designing novel
systems. In fact most real catadioptric cameras
are geometrically noncentral, and even the few
restricted central catadioptric configurations are
usually noncentral in practice [13]. For example,
in the case of para-catadioptric cameras, the
telecentric lens is never truly orthographic and it
is difficult to precisely align the mirror axis and
the axis of the camera. In hyperbolic or elliptic
configurations, precise positioning of the optical
center of the perspective camera in one of the
focal points of the hyperbolic or elliptic mirror
is practically infeasible. In [14], Ramalingam
et al. show that most of the practically used
catadioptric configurations fall under an axial
camera model where all the projection rays
pass through a single line rather than a single
point in space. A few noncentral catadioptric
configurations are mentioned below. Analogous
to the single viewpoint in central cameras, there
is a viewpoint locus in non-central cameras. It
can be defined as follows: a curve or other set of
points such that all projection rays cut at least one
of the points in the viewpoint locus. Usually, one
tries to find the “simplest” such set of points:

— Conical mirror: On using a conical mirror in
front of a perspective camera, one can obtain
an omnidirectional sensor [15, 16]. Neverthe-
less this configuration does not obey the single
viewpoint restriction (besides in the degen-
erate case of the perspective optical center
being located at the cone’s vertex). If the
optical center lies on the mirror axis, then the
viewpoint locus is a circle in 3D, centered
in the mirror axis (it can be pictured as a
halo over the mirror). An alternative choice of
viewpoint locus is the mirror axis. Otherwise,
the viewpoint locus is more general.

— Spherical mirror: On using a spherical mirror
along with a perspective camera, one can
enhance the field of view of the imaging
system [16-18]. Again this configuration
does not obey the single viewpoint restriction
(besides in the degenerate case of the
perspective optical center being located at
the sphere center).
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— Digital micro-mirror array: Another interest-
ing camera is the recently introduced pro-
grammable imaging device using a digital
micro-mirror array [19]. A perspective camera
is made to observe a scene through a pro-
grammable array of micro-mirrors. By con-
trolling the orientations and positions of these
mirrors, one can obtain an imaging system
with complete control (both in terms of geo-
metric and radiometric properties) over the
incoming light ray for every pixel. However,
there are several practical issues which make it
difficult to realize the full potential of such an
imaging system. First, current hardware con-
straints prohibit the usage of more than two
possible orientations for each micro-mirror.
Second, arbitrary orientations of the micro-
mirrors would produce a discontinuous image
which is unusable for many image processing
operations.

— Oblique cameras: An ideal example for a
noncentral camera is an oblique camera. No
two rays intersect in an oblique camera [20].
In addition to developing multi-view geome-
try for oblique cameras, Pajdla also proposed
a physically realizable system which obeys
oblique geometry. The practical system con-
sists of a rotating catadioptric camera that
uses a conical mirror and a telecentric optics.
The viewpoint locus is equivalent to a two-
dimensional surface or a set of points, where
each of the projection rays passes through at
least one of the points. Different catadioptric
configurations come with different calibration
and 3D reconstruction algorithms. Recently,
there has been a lot of interest in unifying dif-
ferent camera models and developing generic
calibration and 3D reconstruction algorithms
[21-24].

Application

Due to enhanced field of view, catadioptric cam-
eras are mainly used in surveillance, car navi-
gation, image-based localization, and augmented
reality applications.
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Synonyms

Optical center; Single viewpoint

Related Concepts

Field of View

Definition

Center of projection is a single 3D point in space
where all the light rays sampled by a conventional
pinhole camera intersect.
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Background

Albrecht Diirer, a German artist, published a trea-
tise on measurement using a series of illustrations
of drawing frames and perspective machines. On
the left side of Fig. 1, an apparatus for drawing
a lute is shown. One end of a thread is attached
to a pointer and the other end to a pulley on
a wall. The thread also passes through a frame
in between the lute and the pulley. When the
pointer is fixed at different points on the lute, the
vertical and horizontal coordinates of the thread,
as it passes through the frame, are marked. By
meticulously marking the coordinates for each
point on the lute, the perspective image of the lute
is created. It is obvious to see the intuition behind
this setup, i.e., its similarity to a pinhole camera.
The pulley is equivalent to the single viewpoint
or the center of projection, the frame replaces the
image plane, and finally, the thread is nothing but
the light ray emerging from the scene. Though
the principle is correct, the procedure is quite
complicated. On the right side of Fig. 1, another
perspective machine is shown. One can observe
an artist squinting through a peep hole with one
eye to keep a single viewpoint and tracing his
sitter’s features onto a glass panel. The idea is to
trace the important features first and then transfer
the drawing for further painting.

Theory

Pinhole Camera Model

Consider the perspective model that is shown in
Fig. 2. Every 3D scene point P(X, Y, Z) gets
projected onto the image plane to a point p(x, y)
through the optical center C.The optical axis is
the perpendicular line to the image plane passing
through the optical center. The center of radial
symmetry in the image or principal point, i.e.,
the point of intersection of the optical axis and
the image plane, is given by O. The distance
between C (optical center) and the image plane
is the focal length f. The optical center of the
camera is the origin of the coordinate system. The
image plane is parallel to the XY plane, held at a
distance of f from the origin. Using the basic laws
of trigonometry, one can observe the following:
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Center of Projection, Fig. 1 Lefr: One of Albrecht perspective principle to accurately draw a man sitting on a
Diirer’s perspective machines, which was used to draw  chair, by looking at him through a peep hole with one eye,
a lute in the year 1525 [1]. Right: An artist uses the and tracing his features on a glass plate
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Center of Projection, Fig. 2 (a) Perspective camera model. (b) The relationship between (&, v) and (x, y) is shown
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the above relations transform to the following:
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where the relationship ~ stands for “equal up to
a scale.”

Practically available CCD cameras deviate
from the perspective model. First, the principal
point (ug, vg) does not necessarily lie on
the geometrical center of the image. Second,
the horizontal and vertical axes (1 and v) of the
image are not always perfect perpendicular. Let
the angle between the two axes be 0. Finally, each
pixel is not a perfect square and consequently,
fu and f, are the two focal lengths that are
measured in terms of the unit lengths along u and
v directions. By incorporating these deviations in
the camera model, one can obtain the following
scene (X, Y, Z) to image (u, v) transformation:

u fx focotf ug 0 );
~1 0 si£v9 vo 0 VA
1 0 0 10 1

In practice, the 3D point is available in some
world coordinate system that is different from the
camera coordinate system. The motion between
these coordinate systems is given by (R, t):

u fx fvcotf ug );
~ fl) p—
1 0 0 1
1
(H

Jx focotf ug

M=| 0 g w |[R R
0 0 1

Sx Jocotd ug
— fo
K=10 smg Y0

0 0 1

The 3 x 4 matrix M that projects a 3D scene
point P to the corresponding image point p is
called the projection matrix. The 3 x 3 matrix K
that contains the internal parameters (ug, vo, 6, fx,
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Jfy) is generally referred to as the intrinsic matrix
of a camera.

In back projection, given an image point p, the
goal is to find the set of 3D points that project to
it. The back projection of an image point is a ray
in space. One can compute this ray by identifying
two points on this ray. The first point can be the
optical center C, since it lies on this ray. Since
MC = 0, C is nothing but the right nullspace of
M. Second, the point M* p, where MT is the
pseudoinverse of M, lies on the back-projected
ray because it projects to point p on the image.
Thus, the back projection of p can be computed
as follows:

P(A) =MTp+AC

The parameter A allows to get different points
on the back-projected ray.

Caustics

In a single viewpoint imaging system, the geome-
try of the projection rays is given by the effective
viewpoint and the direction of the projection rays.
In a noncentral imaging system, caustic, a well-
known terminology in the optics community, can
be utilized for representing the geometry of pro-
jection rays [2]. A caustic refers to the loci of
viewpoints in 3D space to represent a noncentral
imaging system. Concretely, the envelope of all
incoming light rays that are eventually imaged
is defined as the caustic. A caustic is referred
to as diacaustic for dioptric (lens-based systems)
and catacaustic (mirror-based systems) for cata-
dioptric systems. A complete study of conic cata-
dioptric systems has been done [3]. Once the
caustic is determined, each point on the caustic
represents a light ray by providing its position
and the direction. Position is given by the point
on the caustic, and orientation is related to the
concept of tangent. Figure 3 shows the caustic
for several noncentral imaging systems. For a
single viewpoint imaging system, the caustic is
a degenerate one being a single point. Simple
methods exist for the computation of the caustic
from the incoming light rays such as local conic
approximations [4] and the so-called Jacobian
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Center of Projection, Fig. 3 Caustics for several imaging systems (a) Hyperbolic catadioptric system (b) Spherical

catadioptric system (c¢) Pushbroom camera

method [5], A few examples for caustics are
shown in Fig. 3.

Generalized and Multi-perspective

Imaging Models

Many novel camera models have multiple centers
of projection and they cannot be explained by
a simple parametric pinhole model. In computer
vision, there has been significant interest in gen-
eralizing the camera models to reuse the existing
calibration and 3D reconstruction algorithms for
novel cameras. In order to do this, first renounce
on parametric models and adopt the following
very general model: a camera acquires images
consisting of pixels; each pixel captures light that
travels along a ray in 3D. The camera is fully
described by:

— The coordinates of these rays (given in some
local coordinate system).

— The mapping between pixels and rays; this is
basically a simple indexing.

The generic imaging model is shown in Fig. 4.
This allows to describe all above models and
virtually any camera that captures light rays trav-
eling along straight lines. The above imaging
model has already been used, in more or less
explicit form, in various works [3, 6-16], and
is best described in [6]. There are conceptual
links to other works: acquiring an image with
a camera of the general model may be seen as
sampling the plenoptic function [17], and a light
field [18] or lumigraph [19] may be interpreted as
a single image, acquired by a camera of an appro-
priate design. More details of generic imaging

model, their calibration, and 3D reconstruction
algorithms can also be found in [20].

Taxonomy of Generic Imaging Models

Central Model: All the projection rays go through
a single point, the optical center. Examples are
mentioned below:

— The conventional perspective camera forms
the classical example for a central camera.

— Perspective+radial or decentering distortion.
— Central catadioptric configurations using
parabolic, hyperbolic, or elliptical mirrors.

— Fish-eye cameras can be considered as

approximate central cameras.

Axial Model [21]: All the projection rays go
through a single line in space, the camera axis.
Examples of cameras falling into this class are:

— Stereo systems consisting of 2, 3, or more
central cameras with collinear optical centers.

— Noncentral catadioptric cameras of the fol-
lowing type: the mirror is any surface of rev-
olution and the optical center of the central
camera looking at it (can be any central cam-
era, not only perspective) lies on its axis of
revolution. It is easy to verify that in this case,
all the projection rays cut the mirror’s axis of
revolution, i.e., the camera is an axial camera,
with the mirror’s axis of revolution as camera
axis. Note that catadioptric cameras with a
spherical mirror and a central camera looking
at it are always axial ones.

— X-slit cameras [22] (also called two-slit or
crossed-slit cameras), and their special case of
linear push-broom cameras [23].
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Center of Projection, Fig. 4 The main idea behind the generic imaging model: The relation between the image pixels
(P1, P2, P3, Pr) and their corresponding projection rays (ry, I, I3, I'yy) is non-parametric

Noncentral Cameras: A noncentral camera a center strip mosaic. The resulting mosaic
may have completely arbitrary projection rays. corresponds to a noncentral camera.
Common examples are given below:

Multi-camera system consisting of 3 or more
cameras, all of whose optical centers are not
collinear.

Oblique camera: This is an ideal example for
a noncentral camera. No two rays intersect in
an oblique camera [8].

Imaging system using a micro-mirror array
[24]. A perspective camera is made to observe
a scene through a programmable array of
micro-mirrors. By controlling the orientations
and positions of these mirrors, one can obtain
an imaging system with complete control
(both in terms of geometric and radiometric
properties) over the incoming light ray for
every pixel.

Noncentral mosaic: An image sequence is
captured by moving the optical center of a
perspective camera in a circular fashion [3].
The center columns of the captured images
are concatenated to create a noncentral mosaic
image.

Center strip mosaic: The optical center of the
camera is moved [3]. The center columns of
the captured images are concatenated to form

These three classes of camera models may also
be defined as existence of a linear space of d
dimensions that has an intersection with all the
projection rays: d = 0 defines central, d = 1 axial,
and d = 2 general noncentral cameras.

A detailed survey of various camera models,
calibration, and 3D reconstruction algorithms is
given in [25].
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Synonyms

Normalcy modeling

Definition

A determination that there are significant differ-
ences between visual scenes

Background

Change detection is a key task for computer
vision algorithms. The goal is to compare two
or more visual scenes and report any significant
differences between scenes. As with many vision
tasks, the meaning of significant is application-
dependent. The change detection task can be ren-
dered less ambiguous by considering the types of
changes that are not typically of interest. Exam-
ples of changes that are usually irrelevant are:

¢ different camera viewpoint

e varying illumination

¢ wind-based motion, e.g., vegetation and flags
* weather, e.g., snow and rain

The implementation of algorithms that can
detect interesting changes while ignoring trivial
changes such as these is a very difficult prob-
lem, and only quite limited change detection
capabilities have achieved to date. It is also the
case that the change detection task, when viewed
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broadly, overlaps the scope of many other vision
tasks such as visual inspection and moving object
detection.

Early attempts at change detection were based
on simple strategies such as thresholding the
magnitude of intensity differences between a ref-
erence image and an image that manifests change.
This simple approach is only practical if the scene
and imaging conditions are closely controlled so
that the only scene changes are due to events of
interest. Such highly controlled conditions can
be found in industrial applications where the
lighting and camera pose are accurately main-
tained. For example, missing components in a
circuit board can be detected by comparing the
image intensity of a high-quality master board
with images of boards with potentially miss-
ing components or other flaws. In this appli-
cation, images are accurately registered to the
master image, so that intensity differences corre-
spond to physical differences in the boards. The
detected changes correspond to missing com-
ponents or additional material such as excess
solder.

A more advanced change detection principle
is to classify elements of a scene into categories
of interest. Then two scenes can be compared
as to the presence or absence of various cate-
gory instances. Change detection based on this
principle can be successful if the classification
process is insensitive to the types of irrelevant
scene variations mentioned above. This classifi-
cation approach has been applied extensively to
the detection of changes in multi-spectral aerial
and satellite imagery [1]. Multi-spectral images
typically have four or more color bands, so that
each pixel is a feature vector that can be sub-
jected to standard classifiers. Image regions are
classified into types such as roads, vegetation,
forest, and water. Images can then be compared
to determine the change in area of each cate-
gory. This approach requires pixel-level image-
to-image registration, which in turn is only effec-
tive if the viewpoint change between the images
is small and the spatial resolution of the images is
low. More recently, the segmentation of images
into semantic categories has been achieved by
neural networks. Changes are then detected in
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terms of differences in categories produced by the
network. Examples of this approach are [2—4].

Given the complexity of scene appearance
and contextual variations, the great majority
of change detection algorithms have adopted a
learning approach based on the observation of
a number of images. In this learning paradigm,
it is assumed that changes are rare so that a
statistical model for normal image appearance
can be formed without removing regions of the
image that represent change. A good example of
this principle is learning the normal appearance
of a road surface in a set of images that depict
moving vehicles on the road. In any given
image, some of the road surface is visible and
contributes correct image appearance information
to the model. In other images, different parts
of the surface may be visible. The assumption
is that over a large set of training images, the
frequency of vehicle appearance at any given
road surface point will be small compared to the
frequency of the road appearance. This approach
can also be denoted as background modeling
because a model is being constructed for the
scene background rather than the moving or
changing objects, i.e., foreground. This approach
can also be considered as developing a model
for normalcy where changes are infrequent, i.e.,
abnormal.

This statistical modeling principle has
received widespread acceptance with the advent
of cheap computing power and the significance
of video data, which provides large training
samples. A classical reference is the work
of Stauffer and Grimson, who implemented
a moving object detection system in online
video streams [2]. An important aspect of
change detection in video is that illumination
and atmospheric properties vary relatively slowly
compared to the video frame rate. Under this
condition, statistical appearance models can
gradually adapt to such variations and not
manifest them as change.

The effects of viewpoint and illumination can
be overcome through the use of active 3-d range
sensors such as LIDAR (LIght Detection and
Ranging) or laser triangulation. Scene illumina-
tion is provided by the sensor itself and therefore
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has known direction and spatial extent. The result
is a 3-d point cloud of samples from scene sur-
faces and associated surface reflectance values.
In this approach, change is detected by measur-
ing the distance between two 3-d scene point
sets after they have been accurately registered
together. Missing points or points that are sig-
nificantly far from the reference point set are
considered to be change. Such change points can
be grouped into a connected region to further
characterize the change. An example of this strat-
egy is the work of Girardeau Montaut et al. [6].

Theory

The applications of change detection are so broad
that a complete theoretical background is beyond
the scope of an encyclopedia entry. Moreover, the
success of change detection is critically depen-
dent on accurate registration of the reference
and current scenes so that change is due solely
to the actual scene differences. However, the
registration of scene images or 3-d data is a
topic in its own right and will not be considered
here. Instead, two important statistical methods
will be described that have achieved considerable
success in image-based change detection: the
joint probability method by Carlotto [7] and the
background modeling method by Stauffer and
Grimson [5].

Joint Probability Method

This approach can accommodate scenes with
significant differences in illumination and even
between images taken with different sensor
modalities such as visible and IR wave lengths.
The method typically is applied to two images,
x1 (i, j)and x3 (i, j), where the pixel intensity
values, x, are considered to be random variables.
It is assumed that the images are registered and
the joint histogram, p (x1, x3), of the intensity
values at each pixel is accumulated. The expected
intensity of a pixel in image 2, given the image
value in image 1, is defined by

X2 (x1) = /xzp (x2]x1) dxp
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where
p (x1, x2)

p(x1)
Change is then defined as values of

p (x2]x1) =

a1 (i, j) = ||x2 Gy j) = %5 (1 G )

that exceed a decision threshold. The same anal-
ysis can be applied in reverse to compute

ci2 (i, j) = ||x1 G, j) = %1 (2 G )

Gaussian Mixture Method

A second approach to modeling normal scene
appearance is to associate a probability distri-
bution with each image pixel location as shown
in Fig. 1. This distribution accounts for normal
variations in image intensity for each pixel across
a set of images. It is assumed that the images
are spatially registered so that a pixel in each
image corresponds to the same surface element
in the scene. An example of such registration
is provided by a fixed video camera viewing a
dynamic scene with moving objects and a station-
ary background.

The intensity of a given pixel will sometimes
be due to background and sometimes foreground
moving objects. Thus an appropriate distribution
for the overall appearance variation is a Gaussian
mixture distribution defined by,

1 m)?
2

Wk 2
P =Y e " i
Xk: N2moyg

The distribution parameters, wg, g, and
ok, are learned using a continuous online
update algorithm where a new intensity sample,
xntl (i, j), is associated with an existing mixture
component if it is within a few standard
deviations of the component mean or a new
mixture is initiated. The update procedure for a
scalar pixel intensity sample after n observations
is defined by the following equations.

nw; +1
n+1

n+l __
Cl)k =
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Change Detection, Fig. 1
The appearance of each
pixel is modeled by a
Gaussian mixture
distribution

p(x(ij))

The update is applied if the sample x"*! is

with a specified number of standard deviations
from one of the mixture component means. If
a new sample is not within the capture range
of one of the mixture components, then a new
mixture component is added with user-specified
default weight and standard deviation. When the
limit on the number of mixture components is
reached, the component with the smallest value
of ¥k /UI? is discarded. This component is the least
informative (greatest entropy) of the mixture.s

The update can be applied continuously over
a video sequence, and the mixture parameters
will adapt to the normal appearance of the
scene. Change is detected as pixel intensities
having low probability density according to the
mixture distribution. It is the case that such
change objects will introduce new modes into
the mixture. However, these modes will typically
have low weight compared to appearance mixture
components corresponding to the stable scene
background.

The probability of change can be computed
as a Bayesian posterior based on the scene back-
ground mixture. That is,

p (change | x)

Pchange

Pchange + (1 - Pchange) p(xlbackground)
Here x is the observed intensity and p (x|backgro
und) is the Gaussian mixture learned from the
sequence of images. The probability Pepange 15
the prior belief that the pixel exhibits change and
p (change | x) is the posterior belief after observ-
ing the current image intensity value. This result
is based on the assumption that image intensities
are normalized to the range [0, 1] and the proba-
bility density for foreground (change) intensities
is uniform, i.e., p (x | change) = 1. Change is
detected for pixels having p (change | x) greater
than a threshold.

Open Problems

In spite of considerable research on change
detection, the current state-of-the-art algorithms
only perform well in scenes where appearance
is highly consistent and viewpoint variations
can be eliminated by using a fixed camera or
by direct comparison of 3-d data. One possible
way forward is the work of A. Osman Ulusoy
[8] where a 4-d representation is maintained in
a volumetric grid. As new images are observed,
the prior 3-d model appearances in the form of
Gaussian mixtures are replaced by the current
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a)

c)

Change Detection, Fig. 2 An example of 4-d modeling (a) A rendering of the 4-d model at time t. (b) A rendering of
the model at t” where an object (light blue) has been added. (c¢) The 3-d change between t and t* [9]

Change Detection, Fig. 3 Change detection based on joint probability. (a) Satellite image from May 2006. (b) Image
from November 2006. (¢) Significant changes shown in white [10]. (Images copyright Digital Globe)

illumination conditions. The probability of
image appearance is then predicted using the
prior geometry and new appearance models.
Changes in scene structure become evident as low
probability regions in each image manifesting
the change. The change in 3-d structure can be
recovered from the multiple image observations,
and a new 4-d model instance is created. An
example is shown in Fig. 2. Note the significant
difference in illumination between time t and t’.

Experimental Results

An example of detected changes using the joint
probability method is shown in Fig. 3. Note that
significantly different appearance of the orchard
on the right and different overall image contrast
does not result in change since the differences are
accumulated into the joint probability distribu-
tion. The method does not completely account for
specular reflections of some of the building roofs
(e.g., center and lower left) since these occur
relatively infrequently. However, changes in the
location of cars in the roadway at the center are
detected with reasonable accuracy.

a

Change Detection, Fig. 4 An example of change prob-
ability computed using a Gaussian background mixture
model (a) A typical video frame (b) The value of
p (change | x) displayed with white = 1

An example of change detection using the
Gaussian mixture model is shown in Fig. 4.

In this example, a sequence of aerial video
frames are registered to a common ground plane
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and provide updates to the Gaussian mixture
model at each pixel. Some false change proba-
bility can be seen at occluding boundaries and
for metal building roofs that cause large variation
in image intensity as the viewpoint changes. The
actual changes in the scene are the moving vehi-
cles on the roadways, which exhibit highly salient
change probability values.
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Related Concepts

Trichromatic Theory

Definition

Chromaticity is a representation of the tristimulus
values of a light (see entry on » “Trichromatic
Theory”) by only two numbers, computed so as
to suppress via ratios the absolute intensity of
the light. The two numbers (called chromaticity
coordinates) define a space (called chromaticity
space) in which any additive mixture of two
lights lies on a straight line between those two
lights.

Theory

Most often, chromaticity is derived from a stan-
dardized tristimulus coordinate system represent-
ing human vision (e.g., a CIE XYZ system [1, 2]).
If a light has tristimulus values X, Y, and Z,
its chromaticity coordinates are conventionally
defined as the ratios x = X/(X + Y + Z) and
y =Y/(X + Y + Z). More generally, the chro-
maticity coordinates could be defined as the ratios
qr = @X + bY + cZ)/(pX 4+ qY + rZ) and
Q2 = (dX 4+ eY + f2)/(pX + qY + 1Z), where
a, b, c, d,e,f, p, q, r are constants that do not
depend on the light. The above mapping from
X, Y, Z) to (q1, q2) is called a homogeneous
central projection. It has the property of showing
straight lines in (X, Y, Z) as straight lines in
(q1, q2)- Hence it is obvious from looking at the
chromaticity coordinates of three lights whether
one of the lights could have been additively
mixed from the other two. This property is useful
for visualizing the color gamut (set of producible
colors) of a self-luminous trichromatic display
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Spectrum locus and ITU Rec 709
0.9 primary triangle in CIE x,y

0 01 02 03 04 05 06 07 08

Chromaticity, Fig. 1 CIE (x, y) chromaticity diagram
with spectrum locus and RGB display primaries

such as a cathode-ray tube (CRT) or a liquid-
crystal display (LCD). The primaries (say, red,
green, and blue) for such displays define three
points in chromaticity space, and the triangle they
generate spans the chromaticities producible by
the display.

To illustrate the geometry of chromaticity,
the figure below shows the 1931 CIE (X,
y) diagram (Fig. 1). The horseshoe-shaped
curve (from 380 nm at the left-hand end to
720 nm on the right-hand end) is the set of all
monochromatic lights within the space, and
is called the spectrum locus. The straight line
connecting the ends of the curve is the line of
purples. (There are no monochromatic purples.)
Finally, the vertices of the triangle inside the
spectrum locus represent the R, G, and B display
primaries prescribed by ITU Recommendation
709. This set of primaries is only one example
of many prescribed by standards bodies [3],
and of even more sets manifested in real
displays.

Various useful constructions are possible in
chromaticity space. For example, the dominant
wavelength of a light is defined by the point on
the spectrum locus intercepted by a ray from

Chromaticity

the agreed-upon white chromaticity through the
chromaticity of the light in question. Another
example is the set of lights defined by the black-
body radiators (parameterized by their tempera-
ture). These lights collectively define the black-
body locus, which of course lies within the spec-
trum locus. The set of conventional daylights also
forms a curve that is close to the blackbody locus.
As another example, it is possible to transform
from one tristimulus primary set to another such
set using only information in the chromaticity
domain [4].

Because a digital camera is a trichromatic
device, one can also think of a camera’s
response to light as having a chromaticity. Such
chromaticities are useful because they suppress
spatial variations of light intensity in an image
(e.g., at shadow boundaries) and thereby facilitate
image segmentation by object color (see entry
on Band Ratios). Of course, band-ratio pairs
are more general than chromaticities because
the ratios can be separately defined without the
mixture-on-a-straight-line constraint required for
a chromaticity.

It should be noted that camera chromaticity
is not at all the same as the human-vision chro-
maticity and must not be confused with it. In fact,
two lights that have the same human-vision chro-
maticity can have different camera chromatic-
ities, and vice versa. This effect is related to
metameric matching as noted in the entry on
Trichromatic Theory. It should also be noted that,
for the same reason, camera-derived values I, H,
S used by computer-vision and image-processing
applications are also not transformable to human
perceptual attributes (e.g., intensity, hue, and sat-
uration).

For both cameras and humans, chromaticity
generalizes to a non-trichromatic system (i.e.,
one that has a number of different sensor
types that is different from three). A sensor
system with N sensor types delivers N-
stimulus values for each light, the chromaticity
space has N-1 dimensions (so as to suppress
the light intensity), and the chromaticity
coordinates comprise a homogeneous central
projection out of the space of N-stimulus
values.
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Synonyms

Cognitive agent

Related Concepts

Cognitive Vision

Definition

A cognitive system is an autonomous system
that can perceive its environment, learn from
experience, anticipate the outcome of events, act
to pursue goals, and adapt to changing circum-
stances.

Background

There are several scientific perspectives on
the nature of cognition and on how it should
be modeled. All fall under the general
umbrella of cognitive science which embraces
the disciplines of neuroscience, artificial
intelligence, cognitive psychology, linguistics,
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and epistemology. Among these differing
perspectives, however, there are two broad
classes: the cognitivist approach based on
symbolic information processing representational
systems, and the emergent systems approach,
encompassing connectionist systems, dynamical
systems, and enactive systems, all based to a
lesser or greater extent on principles of self-
organization [l1-4]. A third class — hybrid
systems — attempts to combine something from
each of the cognitivist and emergent paradigms.
All three approaches have their origins in
cybernetics [5] which in the decade from 1943
to 1953 made the first efforts to formalize what
had up to that point been purely psychological
and philosophical treatments of cognition. The
intention of the early cyberneticians was to create
a science of mind, based on logic. Examples
of the application of cybernetics to cognition
include the seminal paper by McCulloch
and Pitts “A logical calculus immanent in
nervous activity” [6] and Ashby’s ‘“Design for
a Brain” [7].

Theory

The initial attempt in cybernetics to create a
science of cognition was followed by the devel-
opment of an approach referred to as cognitivism.
The birth of the cognitivist paradigm, and its
sister discipline of Artificial Intelligence, dates
from a conference held at Dartmouth College,
New Hampshire, in July and August 1956 and
attended by people such as John McCarthy,
Marvin Minsky, Allen Newell, Herbert Simon,
and Claude Shannon. Cognitivism holds that
cognition is achieved by computation performed
on internal symbolic knowledge representations
in a process whereby information about the world
is abstracted by perception, and represented
using some appropriate symbolic data-structure,
reasoned about, and then used to plan and act in
the world. The approach has also been labeled by
many as the information processing or symbol
manipulation approach to cognition [1, 8-10].
In most cognitivist approaches concerned with
the creation of artificial cognitive systems, the
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symbolic representations are the descriptive
product of a human designer. This is significant
because it means that they can be directly
accessed and interpreted by humans and that
semantic knowledge can be embedded directly
into and extracted directly from the system. In
cognitivism, the goal of cognition is to reason
symbolically about these representations in order
to effect the required adaptive, anticipatory, goal-
directed behavior. Typically, this approach to
cognition will deploy machine learning and
probabilistic modeling in an attempt to deal
with the inherently uncertain, time-varying, and
incomplete nature of the sensory data that is
used to drive this representational framework.
Significantly, in the cognitivist paradigm, the
instantiation of the computational model of
cognition is inconsequential: any physical
platform that supports the performance of the
required symbolic computations will suffice [8].
This principled separation of operation from
instantiation is referred to as functionalism.

In the emergent paradigm, cognition is the
process whereby an autonomous system becomes
viable and effective in its environment. It does so
through a process of self-organization by which
the system continually maintains its operational
identity through the moderation of mutual
system-environment interaction. In other words,
the ultimate goal of an emergent cognitive system
is to maintain its own autonomy. In achieving
this, the cognitive process determines what is
real and meaningful for the system: the system
constructs its reality — its world and the meaning
of its perceptions and actions — as a result of
its operation in that world. Consequently, the
system’s understanding of its world is inherently
specific to the form of the system’s embodiment
and is dependent on the system’s history of
interactions, i.e., its experiences. This mutual-
specification of the system’s reality by the
system and its environment is referred to as co-
determination [11] and is related to the concept
of radical constructivism [12]. This process of
making sense of its environmental interactions is
one of the foundations of the enactive approach
to cognition [13]. Cognition is also the means by
which the system compensates for the immediate
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nature of perception, allowing it to anticipate
environmental interaction that occurs over longer
time scales, i.e., cognition is intrinsically linked
with the ability of an agent to act prospectively:
to deal with what might be, not just with what
is. Many emergent approaches adhere to the
principle that the primary model for cognitive
learning is anticipative skill construction rather
than knowledge acquisition. Thus, processes
which guide action and improve the capacity
to guide action form the root capacity of all
intelligent systems [14].

As noted already, the emergent paradigm
embraces connectionist systems, dynamical
systems, and enactive systems. Connectionist
systems rely on parallel processing of non-
symbolic distributed activation patterns using
statistical properties, rather than logical rules,
to process information and achieve effective
behavior [15]. In this sense, the neural network
instantiations of the connectionist model are
dynamical systems that capture the statistical
regularities in training data [16]. Dynamical
systems theory has been used to complement
classical approaches in artificial intelligence
[17] and it has also been deployed to model
natural and artificial cognitive systems [10,
18, 19]. Although dynamical systems theory
approaches often differ from connectionist
systems on several fronts, it is better perhaps to
consider them complementary ways of describing
cognitive systems, dynamical systems addressing
macroscopic behavior at an emergent level, and
connectionist systems addressing microscopic
behavior at a mechanistic level [20]. Enactive
systems take the emergent paradigm even further.
Enaction [13, 21-23] asserts that cognition is a
process whereby the issues that are important
for the continued existence of a cognitive entity
are brought out or enacted: co-determined by
the entity and the environment in which it is
embedded. Thus, enaction entails that a cognitive
system operates autonomously, that it generates
its own models of how the world works, and that
the purpose of these models is to preserve the
system’s autonomy.

Considerable effort has gone into develop-
ing hybrid approaches which combine aspects
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of cognitivist and emergent systems. Typically,
hybrid systems exploit symbolic knowledge to
represent the agent’s world and logical rule-based
systems to reason about this knowledge in order
to achieve goals and select actions, while at the
same time using emergent models of perception
and action to explore the world and construct
this knowledge. Thus, hybrid systems still use
cognitivist representations and representational
invariances but they are constructed by the sys-
tem itself as it interacts with and explores the
world rather than through a priori specification
or programming. Consequently, as with emer-
gent systems, the agent’s ability to understand
the external world is dependent on its ability to
interact flexibly with it, and interaction is the
organizing mechanism that establishes the asso-
ciation between perception and action.
Cognitivism and  artificial  intelligence
research are strongly related. In particular,
Newell and Simon’s “Physical Symbol System”
approach to artificial intelligence [8] has been
extremely influential in shaping how we think
about intelligence, natural as well as compu-
tational. In their 1976 paper, two hypotheses
are presented: the Physical Symbol System
Hypothesis and the Heuristic Search Hypothesis.
The first hypothesis is that a physical symbol
system has the necessary and sufficient means
for general intelligent action. This implies that
any system that exhibits general intelligence is a
physical symbol system and any physical symbol
system of sufficient size can be configured
to exhibit general intelligence. The second
hypothesis states that the solutions to problems
are represented as symbol structures and that a
physical-symbol system exercises its intelligence
in problem-solving by search, i.e., by generating
and progressively modifying symbol structures
in an effective and efficient manner until it
produces a solution structure. This amounts to an
assertion that symbol systems solve problems by
heuristic search, i.e., the successive generation
of potential solution structures. The task of
intelligence, then, is to avert the ever-present
threat of the exponential explosion of search.
Subsequently, Newell defined intelligence as the
degree to which a system approximates the ideal
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of a knowledge-level system [24]. A knowledge-
level system is one which can bring to bear all
its knowledge onto every problem it attempts
to solve (or, equivalently, every goal it attempts
to achieve). Perfect intelligence implies complete
utilization of knowledge. It brings this knowledge
to bear according to the principle of maximum
rationality which was proposed by Newell in
1982 [25] as follows: “If an agent has knowledge
that one of its actions will lead to one of its goals,
then the agent will select that action.” Anderson
[26] later offered a slightly different principle,
the principle of rationality, sometimes referred
to as rational analysis, stated as follows: “the
cognitive system optimizes the adaptation of the
behavior of the organism.” Note that Anderson’s
principle considers optimality to be necessary
for rationality, something that Newell’s principle
does not.

Cognitivist and emergent approaches are
normally contrasted on the basis of the symbolic
or non-symbolic nature of their computational
operation and representational framework.
Cognitivist systems typically use production
systems to effect rule-based manipulation of
symbol tokens whereas emergent systems exploit
dynamical processes of self-organization in
which representations are encoded in global
system states. However, the distinction between
cognitivist and emergent is not restricted to
the issue of symbolic representation and they
can be contrasted on the basis of several other
characteristics such as semantic grounding,
temporal constraints, inter-agent epistemology,
embodiment, perception, action, anticipation,
adaptation, motivation, autonomy, among
others [27].

The differences between the cognitivist and
the emergent paradigm can be traced to their
underlying distinct philosophies [28]. Broadly
speaking, cognitivism is dualist, functionalist,
and positivist. It is dualist in the sense that
there is a fundamental distinction between the
mind (the computational processes) and the
body (the computational infrastructure and, if
required, the physical structure that instantiates
any physical interaction). It is functionalist
in the sense that the actual instantiation and
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computational infrastructure is inconsequential:
any instantiation that supports the symbolic
processing is sufficient. It is positivist in the
sense that they assert a unique and absolute
empirically-accessible external reality that is
apprehended by the senses and reasoned about
by the cognitive processes. In contrast, emergent
systems are neither dualist nor functionalist,
since the system’s embodiment is an intrinsic
component of the cognitive process, nor
positivist, since the form and meaning of the
system’s world is dependent in part on the system
itself. The emergent paradigm, and especially
the enactive approach, can trace its roots to the
philosophy of phenomenology [28, 29].

A criticism often leveled at cognitivist sys-
tems is that they are relatively poor at func-
tioning effectively outside well-defined problem
domains because they tend to depend on in-
built assumptions and embedded knowledge aris-
ing from design decisions. Emergent systems
should in theory be much less brittle because they
develop through mutual specification and co-
determination with the environment. However,
the ability to build artificial cognitive systems
based on emergent principles is very limited at
present, and cognitivist and hybrid systems cur-
rently have more advanced capabilities within a
narrower application domain.

Any cognitive system is inevitably going to
be complex. Nonetheless, it is also the case that
it will exhibit some degree of structure. This
structure is often encapsulated in what is known
as a cognitive architecture [30]. Although used
freely by proponents of the cognitivist, emer-
gent, and hybrid approaches to cognitive systems,
the term “cognitive architecture” originated with
the seminal cognitivist work of Newell et al.
[25]. Consequently, the term has a very spe-
cific meaning in this paradigm where cognitive
architectures represent attempts to create unified
theories of cognition [24, 31], i.e., theories that
cover a broad range of cognitive issues, such
as attention, memory, problem-solving, decision-
making, learning, from several aspects including
psychology, neuroscience, and computer science.
In the cognitivist paradigm, the focus of a cog-
nitive architecture is on the aspects of cognition
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that are constant over time and that are inde-
pendent of the task. Since cognitive architectures
represent the fixed part of cognition, they cannot
accomplish anything in their own right and need
to be provided with or acquire knowledge to
perform any given task. For emergent approaches
to cognition, which focus on development from
a primitive state to a fully cognitive state over
the lifetime of the system, the architecture of the
system is equivalent to its phylogenetic configu-
ration: the initial state from which it subsequently
develops through ontogenesis.

Open Problems

The study of cognitive systems is a maturing
discipline with contrasting approaches. Conse-
quently, there are several open problems. These
include the role of physical embodiment, the
need for development, the system’s cognitive
architecture, the degree of autonomy required, the
issue of symbol grounding, the problem of goal
specification, the ability to explain the rationale
for selection actions, the problem of generating
generalized concepts and transferring knowledge
from one context to another, and the interdepen-
dence of perception and action. The nature of
any resolution of these problems is inextricably
linked to the choice of paradigm: cognitivist,
emergent, or hybrid.

The role of physical embodiment in a cog-
nitive system [32-34] depends strongly on the
chosen paradigm. Due to their functionalist char-
acteristics, cognitivist systems do not depend
on physical embodiment to operate successfully
but there is nothing to prevent them from being
embodied if that is what the task in hand requires.
Emergent systems, by definition, require embod-
iment since the body plays a key role in the way
a cognitive system comes to understand — make
sense of — its environment. If a body is required,
the form of embodiment must still be specified
[35]. This is significant because, in the emergent
paradigm at least, the ability of two cognitive
agents to communicate effectively requires them
to have similar embodiments so that they have
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a shared history of interaction and a common
epistemology.

The extent to which a cognitive system
requires a capacity for development and, if so,
the mechanisms by which development can take
place are both open problems. In natural systems,
growth is normally associated with development.
However, growth in artificial systems remains a
distant goal, although one whose achievement
would open up many avenues of fruitful enquiry
in cognitive systems. For current state-of-the-art
cognitive systems, one can define development as
the process by which a system discovers for itself
the models that characterize its interactions with
its environment. This contrasts with learning as
the process whereby the parameters of an existing
model are estimated or improved. Development,
then, requires a capacity for self-modification
[36] and in embodied emergent systems leads to
an increased repertoire of effective actions and
a greater ability to anticipate the need for and
outcome of future actions [27].

The capacity to develop introduces another
open issue: the minimal phylogenetic configu-
ration — the perceptual, cognitive, and 